WO2020061799A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2020061799A1
WO2020061799A1 PCT/CN2018/107544 CN2018107544W WO2020061799A1 WO 2020061799 A1 WO2020061799 A1 WO 2020061799A1 CN 2018107544 W CN2018107544 W CN 2018107544W WO 2020061799 A1 WO2020061799 A1 WO 2020061799A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
link
rat
wireless access
access device
Prior art date
Application number
PCT/CN2018/107544
Other languages
English (en)
French (fr)
Inventor
郑小金
伏玉笋
张岩强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/107544 priority Critical patent/WO2020061799A1/zh
Publication of WO2020061799A1 publication Critical patent/WO2020061799A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage

Definitions

  • the present application relates to the field of wireless communications, and in particular, to a data transmission method and device.
  • UE user equipment
  • RAT radio access technology
  • the RAT link based on the licensed spectrum may include 5th generation mobile communication systems new air interface technology (5GNR), long term evolution technology (LTE), and global mobile communication system (global system) For mobile communication (GSM) and universal mobile communication systems (UMTS), etc.
  • the RAT link based on unlicensed spectrum may include wireless local area network (wireless-fidelity, WiFi) and the like.
  • the data transmission rate can be increased by offloading data to multiple RAT links at the upper layer of the wireless access device.
  • this type of offloading cannot sense the channel state of the RAT link at the bottom of the wireless access device, so the offload Performance is poor.
  • the present application provides a data transmission method and device, which solves the problem of poor offload performance when using multiple RAT links for data transmission in the prior art.
  • the present application provides a data transmission method for transmitting data between a wireless access device and a user equipment. There are multiple RAT links between the wireless access device and the user equipment.
  • the method specifically includes :
  • Wireless access equipment such as radio access network (RAN)
  • RAN radio access network
  • RAT radio access technology
  • the wireless access device sends the allocated data to the RAT link in parallel to the RAT link
  • User equipment such as mobile phones, tablets, etc.
  • the data offloading process in the data transmission process is performed on the wireless access device, and the wireless access device allocates data for each link according to the link quality information of the RAT link, thereby more data is allocated.
  • a RAT link with high link quality information for example, a RAT link with high link transmission rate, low link load, low packet loss rate, and low transmission delay. Therefore, the method provided in this application can improve data offload performance when the wireless access device and the user equipment transmit data through multiple links, and improve the data transmission rate between the wireless access device and the user equipment.
  • the wireless access device allocates data for each RAT link according to the link quality information of the RAT link, including: the wireless access device receives a user The link quality information reported by the device periodically. The wireless access device determines a target data allocation ratio of each RAT link according to the link quality information. The wireless access device allocates data for each RAT link according to the target data allocation ratio. Therefore, the wireless access device can adjust the target data allocation ratio allocated for each RAT link in real time according to the link quality information reported by the user equipment in real time, so that the data allocated to each RAT link always matches the corresponding data. The RAT link's link quality information is matched to improve data offload performance.
  • the wireless access device allocates data for each RAT link according to a target data allocation ratio, including: wireless access The device determines the minimum allocation unit of each RAT link according to the target data allocation ratio; the minimum allocation unit is used to indicate the data length allocated by the wireless access device to the RAT link each time. The wireless access device allocates data to each RAT in turn according to the data length indicated by the minimum allocation unit. Therefore, during the data transmission process, the wireless access device can divide the data according to the minimum allocation unit of each RAT link and allocate it to the corresponding RAT link. Among them, the wireless access device is each RAT chain.
  • the ratio of the length of the data packets that are split each time is equal to the target data allocation ratio, so that the ratio of the total amount of data transmitted by each RAT link in the same time is equal to or close to the target data allocation ratio, and it
  • the link quality information is matched to improve data offload performance.
  • the wireless access device allocates data for each RAT link according to a target data allocation ratio, including: wireless access
  • the device generates a reference allocation unit, which indicates a preset data length.
  • the wireless access device separately obtains the real-time data distribution ratio of each RAT link.
  • the wireless access device determines the target RAT link from the RAT link in real time according to the real-time data allocation ratio and the target data allocation ratio.
  • the real-time data allocation ratio of the target RAT link is lower than the target data allocation ratio and has the largest deviation from the target data allocation ratio. .
  • the wireless access device allocates data to the target RAT link according to the data length indicated by the reference allocation unit.
  • the wireless access device determines the data length allocated to the RAT link each time according to the reference allocation unit, and determines the target RAT link for each data allocation in real time according to the real-time data allocation ratio and the target data allocation ratio; The difference between the real-time data allocation ratio of the link and the target data allocation ratio is the largest. Therefore, the wireless access device allocates data for the target RAT link so that the real-time data allocation ratio of the target RAT link approaches the target data allocation ratio.
  • the real-time data allocation ratio of the total amount of data transmitted by each RAT link is equal to or close to the target data allocation ratio, which matches the link quality information of each RAT link, thereby improving data offload performance.
  • the wireless access device allocates data for each RAT link according to a target data allocation ratio, including: wireless access
  • the device obtains the priority and link quality threshold of each RAT link.
  • the wireless access device allocates data to the RAT link with the highest priority whose current load is below the link quality threshold.
  • the wireless access device offloads data to other RAT links when it detects that the current load of the RAT link reaches or exceeds the link quality threshold.
  • the link quality threshold includes at least one of indicators that indicate low link quality information, such as a link load threshold, a link delay threshold, and a link packet loss rate threshold.
  • the wireless access device preferentially allocates data to the RAT link with a higher priority, and at the same time ensures that the data transmitted on the RAT link meets the requirements of the link quality threshold, so that multiple RAT links are ranked from high to high according to the priority. Low in sequence is maximized within the range allowed by the link quality threshold, thereby improving data offload performance.
  • the wireless access device allocates data for the RAT link
  • the method further includes: the wireless access device configures a target IP address corresponding to the RAT link in the data packet, and the target IP address is an IP address of a physical port designated by the user equipment to establish the RAT link.
  • the wireless access device configures a data sequence message for each data packet according to the original sequence of the data packets in the data.
  • the data sequence message is used to send to the user equipment, so that the user equipment sorts the received data packets into complete data according to the data sequence message. .
  • the wireless access device adds a target IP address to the data packet, so that the RAT link can send the data packet to the corresponding user equipment according to the target IP address.
  • the wireless access device configures a data sequence message for each configuration packet. To enable the user equipment to implement reordering and aggregation of data packets according to the data sequence message. Therefore, even if the user equipment does not receive data packets in the original order of the data packets, the data packets can be arranged in the original order, thereby ensuring the data received by the user equipment Is accurate and complete.
  • the method further includes: the wireless access device caches the information to the user. Data sent by the device. If the wireless access device does not receive the data reception confirmation message fed back by the user equipment within a preset delay, it allocates the buffered data to other RAT links.
  • the radio access network device buffers the data that has been sent to the user equipment, so that when the data fails to reach the user equipment (If the wireless access device does not receive a data reception confirmation message from the user equipment within a preset delay, it is deemed that the data has not been delivered to the user equipment), and the buffered data is allocated to other RAT links, so that, Avoid data incomplete during data offload transmission, and improve data offload performance.
  • the RAT link includes a first type link and A second type of link.
  • the first type of link includes at least one RAT link based on the licensed spectrum
  • the second type of link includes at least one RAT link based on the unlicensed spectrum.
  • the RAT link based on the licensed spectrum may include 5th generation mobile communication systems new air interface technology (5GNR), long term evolution technology (LTE), and global mobile communication system (global system) For mobile communication (GSM) and universal mobile communication systems (UMTS), etc.
  • the RAT link based on unlicensed spectrum may include wireless local area network (wireless-fidelity, WiFi) and the like. Therefore, this application can use the licensed spectrum-based RAT link and the unlicensed spectrum-based RAT link to transmit data between the wireless access device and the user equipment at the same time, thereby improving the data transmission speed.
  • the present application also provides a data transmission device.
  • the data transmission device has a function for realizing the behavior of the wireless access device.
  • the function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the data transmission device includes a processor and a transceiver, and the processor is configured to process the data transmission device to perform a corresponding function in the foregoing method.
  • the transceiver is used to implement communication between the data transmission apparatus and the user equipment.
  • the data transmission device may further include a memory, which is coupled to the processor and stores program instructions and data necessary for the data transmission device.
  • the data offloading process in the data transmission process is performed on the wireless access device, and the wireless access device allocates data for each link according to the link quality information of the RAT link, thereby more data is allocated.
  • a RAT link with high link quality information for example, a RAT link with high link transmission rate, low link load, low packet loss rate, and low transmission delay. Therefore, the apparatus provided in this application can improve data offload performance when the wireless access device and the user equipment transmit data through multiple links, and improve the data transmission rate between the wireless access device and the user equipment.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions, and when the computer-readable storage medium runs on the computer, the computer executes the methods in the foregoing aspects.
  • the present application provides a computer program product containing instructions that, when run on a computer, causes the computer to perform the methods of the above aspects.
  • the present application provides a chip system including a processor, which is configured to support the foregoing apparatus or user equipment to implement the functions involved in the foregoing aspects, for example, to generate or process information involved in the foregoing methods.
  • the chip system further includes a memory, which is used to store program instructions and data necessary for the data transmission device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 shows a data transmission scenario diagram between a wireless access device and a user equipment
  • step S101 of a data transmission method provided by the present application
  • step S203 of a data transmission method provided by the present application
  • FIG. 5 is a schematic diagram of data allocation to a RAT link by a wireless access device provided in this application;
  • step S203 of a data transmission method provided by the present application
  • FIG. 7 is a schematic diagram of allocating data to a RAT link by another wireless access device provided in this application.
  • step S203 of a data transmission method provided by the present application.
  • FIG. 9 is a flowchart of configuring a data packet provided by the present application.
  • FIG. 10 is a flowchart of data redistribution provided by this application.
  • FIG. 11 is a schematic diagram of a data transmission device provided by the present application.
  • FIG. 12 is a schematic structural diagram of another data transmission device provided by this application.
  • FIG. 13 is a schematic structural diagram of still another data transmission device provided by the present application.
  • FIG. 14 is a schematic diagram of a computer-readable storage medium provided by the present application.
  • FIG. 15 is a schematic structural diagram of a chip system provided by the present application.
  • FIG. 1 it is a data transmission scenario diagram of a wireless access device and a user equipment.
  • a wireless access device such as a radio access network RAN
  • a user equipment such as a mobile phone, a tablet computer, etc.
  • the wireless access device uses only one RAT link to perform data transmission with the user equipment, and the data transmission rate is not high.
  • some methods split the data of the base station before it is delivered to the wireless access device, so that the wireless access device can communicate with the user equipment through multiple RAT links.
  • data transmission is to blindly offload data. For example, if there are two RAT links, 50% of data is allocated to each of the two RAT links.
  • this shunting method cannot sense the channel status of the RAT link at the bottom of the radio access network. When the channel is blocked or changed, the RAT link cannot carry the assigned data transmission task. Therefore, the shunting performance is poor. .
  • This application provides a data transmission method to solve the problem of poor offload performance when using multiple RAT links for data transmission in the prior art.
  • the data transmission method provided in this application is used to transmit data between a wireless access device and a user equipment. There are multiple radio access technology (RAT) links between the wireless access device and the user equipment.
  • RAT radio access technology
  • FIG. 2 is a flowchart of a data transmission method provided by the present application. The method is shown in Figure 2, and includes the following steps:
  • Step S101 The wireless access device allocates data for each RAT link according to the link quality information of the RAT link.
  • the wireless access device may specifically be a radio access network (RAN), which may include, for example, a GSM radio access network (GRAN), an EDGE radio access network (GSM, EDGE radio access network, etc.).
  • RAN radio access network
  • GRAN GSM radio access network
  • GSM GSM, EDGE radio access network
  • GERAN UMTS radio access network
  • UTRAN high-speed, low-latency LTE radio access network
  • E-UTRAN evolved UMTS terrestrial radio access network
  • cloud-radio access network C-RAN
  • the RAT link may include one or more of a RAT link based on a licensed spectrum and a RAT link based on an unlicensed spectrum.
  • the RAT link based on the licensed spectrum may include 5th generation mobile communication systems new air interface technology (5GNR), long term evolution technology (LTE), and global mobile communication system (global system) For mobile communication (GSM) and universal mobile communication systems (UMTS), etc.
  • the RAT link based on unlicensed spectrum may include wireless local area network (wireless-fidelity, WiFi) and the like.
  • the wireless access device can allocate data to at least one RAT link based on licensed spectrum and at least one RAT link based on unlicensed spectrum, such as 5G NR links and WiFi links; it can also allocate data only Assigned to RAT links based on licensed spectrum, such as 5G NR links and LTE links; data can also be assigned only to RAT links based on unlicensed spectrum, such as 5GHz WiFi links and 2.4GHz WiFi link.
  • the link quality information of the RAT link may specifically include information such as a link transmission rate, a link load, a link delay (such as an air interface delay), a link packet loss rate, and a network jitter of the link.
  • Step S101 that is, the wireless access device allocates data for each RAT link according to the link quality information of the RAT link can be further described in conjunction with FIG. 3.
  • Step S102 The wireless access device sends the allocated data to the user equipment in parallel through the RAT link.
  • the wireless access device sends the allocated data to the air interface (radio) of the corresponding RAT link, so that the RAT link sends the data to the user equipment in parallel according to the respective air interface protocol.
  • the data offloading process in the data transmission process is performed on the wireless access device, and the wireless access device allocates data for each link according to the link quality information of the RAT link, thereby more data is allocated.
  • a RAT link with high link quality information for example, a RAT link with high link transmission rate, low link load, low packet loss rate, and low transmission delay. Therefore, the method provided in this application can improve data offload performance when the wireless access device and the user equipment transmit data through multiple links, and improve the data transmission rate between the wireless access device and the user equipment.
  • step S101 may include the following steps:
  • Step S201 The wireless access device receives the link quality information periodically reported by the user equipment.
  • the user equipment After establishing a RAT link connection with a wireless access device, the user equipment obtains links such as the link load, link delay (such as air interface delay), link packet loss rate, and network jitter of the link of the RAT link. Road quality information, and then periodically and actively report link quality information to the wireless access device.
  • links such as the link load, link delay (such as air interface delay), link packet loss rate, and network jitter of the link of the RAT link.
  • Road quality information and then periodically and actively report link quality information to the wireless access device.
  • the user equipment after receiving the data sent by the wireless access device, the user equipment feeds back a data reception confirmation message to the wireless access device, which is used to inform the wireless access of the status of the user equipment that has received the data. device. Therefore, the user equipment may periodically configure the link quality information in the data reception confirmation message, thereby reporting the link quality information to the wireless access device through the data reception confirmation message.
  • the user equipment sends a heartbeat message to the wireless access device periodically to maintain a connection state between the user equipment and the wireless access device. Therefore, the user equipment may periodically configure the link quality information in the heartbeat message, thereby reporting the link quality information to the wireless access device through the heartbeat message.
  • the wireless access device may periodically send a link quality report instruction to the user equipment, and when the user equipment receives the link quality report instruction, it obtains the link quality information at the current moment, And send it to the user device.
  • the user equipment can monitor the link quality of each RAT link in real time.
  • the link quality of a certain RAT link changes and the change range exceeds a preset permitted range
  • the The wireless access device reports the current link quality information of the RAT link.
  • Step S202 The wireless access device determines a target data allocation ratio of each RAT link according to the link quality information.
  • the target data allocation ratio can be determined according to the ratio of the downlink rates of the LTE link and the WiFi link. That is, the target data distribution ratio of the LTE link and the WiFi link is:
  • Step S203 The wireless access device allocates data for each RAT link according to the target data allocation ratio.
  • the wireless access device allocates data packets for each RAT link according to the target data allocation ratio, so that the ratio of the total length of the data packets sent by the wireless access device to the user equipment through each RAT link is equal to or approximately equal to the target data.
  • Distribution ratio For example, if the length of a data packet is 1500 bytes, then in a data transmission, if the number of data packets allocated to the LTE link is 10, the data volume of the data packets allocated to the WiFi link is 20, so that the ratio of the total amount of data (bytes) transmitted by the LTE link and the WiFi link is 1: 2 (15000 bytes: 30,000 bytes).
  • Step S203 that is, the wireless access device allocates data for each RAT link according to the link quality information of the RAT link can be further described in conjunction with FIGS. 4-9.
  • the wireless access device can adjust the target data allocation ratio allocated for each RAT link in real time according to the link quality information periodically reported by the user equipment, so that the data allocated to each RAT link always matches the corresponding The RAT link's link quality information is matched to improve data offload performance.
  • step S203 may include the following steps:
  • Step S301 The wireless access device determines a minimum allocation unit for each RAT link according to the target data allocation ratio; the minimum allocation unit is used to indicate the data length allocated by the wireless access device to the RAT link each time.
  • the wireless access device can determine that the minimum allocation unit for the 5G NR link is 14 packets / time, and the minimum allocation unit for the WiFi link.
  • Step S302 The wireless access device allocates data to each RAT link in turn according to the data length indicated by the minimum allocation unit.
  • FIG. 5 a schematic diagram of data allocation to a RAT link by a wireless access device provided in the present application is shown.
  • an upstream network element such as a core network, a server, etc.
  • the wireless access device receives the data flow Then, the data flow is segmented according to the minimum allocation unit of each RAT link.
  • the wireless access device when there is a 5G NR link and a WiFi link between the wireless access device and the user equipment, and the minimum allocation unit of the 5G NR link is 14 packets / time, the minimum data unit of the WiFi link is 1 data At the time of packet / time, the wireless access device first cuts out 14 data packets from the data stream and allocates them to the 5G NR link, and then cuts out 1 data packet to allocate to the WiFi link, and then cuts out 14 data The packets are allocated to the 5G NR link, and so on. Therefore, in a period of data transmission, the ratio of the amount of data allocated by the wireless access device to the 5G NR link and the WiFi link is equal to or approximately equal to their target data allocation ratio.
  • the wireless access device can divide the data according to the minimum allocation unit of each RAT link and allocate it to the corresponding RAT link.
  • the wireless access device is each RAT chain.
  • the ratio of the length of the data packets divided by each channel is equal to the target data allocation ratio, so that the ratio of the total amount of data transmitted by each RAT link in the same time is equal to or close to the target data allocation ratio, and it is equal to that of each RAT link.
  • the link quality information is matched to improve data offload performance.
  • step S203 may include the following steps:
  • Step S401 The wireless access device generates a reference allocation unit, where the reference allocation unit indicates a preset data length.
  • each time the wireless access device performs data allocation it cuts out a data length of a reference allocation unit from the data stream and allocates it to the RAT link.
  • the reference allocation unit may be at least one data packet. For example, when the length of the data packet is 1500 bytes, if the reference allocation unit is 2 data packets, the data length indicated by the reference allocation unit is 3000 bytes.
  • the wireless access device may define the size of the reference allocation unit according to the RAT link quality. For example, if the transmission rate of the RAT link is high, the reference allocation unit can be defined to be larger, thereby reducing the amount of data assignment tasks of the wireless access device, reducing the load of the wireless access device, and saving power consumption. The transmission rate of the channel is low, the reference allocation unit can be defined smaller to improve the accuracy of data allocation.
  • Step S402 The wireless access device separately obtains a real-time data allocation ratio of each RAT link.
  • the real-time data distribution ratio refers to the ratio of the amount of data allocated by the wireless access device to each link in the time period from the start time T0 to the current time T1 of the data transmission.
  • the wireless access device allocates 180 data for the 5GHz WiFi link. Packet, 100 data packets are allocated for the 2.4GHz WiFi link, and the real-time data distribution ratio of the 5GHz WiFi link and the 2.4GHz WiFi link is 1.8: 1.
  • the wireless access device is an LTE link. 90 data packets are allocated, 180 data packets are allocated to the 5GHz WiFi link by the wireless access device, and 100 data packets are allocated to the 2.4GHz WiFi link, then the LTE link, 5GHz WiFi link, and 2.4GHz WiFi chain
  • the real-time data distribution ratio of the channel is 0.9: 1.8: 1.
  • Step S403 The wireless access device determines the target RAT link from the RAT link in real time according to the real-time data allocation ratio and the target data allocation ratio; the real-time data allocation ratio of the target RAT link is lower than the target data allocation ratio and is allocated to the target data.
  • the ratio deviation is the largest.
  • the target data allocation ratio is 2: 1.
  • the real-time data distribution ratio of 5GHz WiFi link and 2.4GHz WiFi link is 1.8: 1. Therefore, the real-time data distribution ratio of 5GHz WiFi link is lower than the target data distribution ratio, and the deviation value is 0.2. It is determined that the target RAT link at time T1 is a 5GHz WiFi link.
  • the target data allocation ratio is 1: 2: 1.
  • the real-time data distribution ratio of the LTE link, 5GHz WiFi link, and 2.4GHz WiFi link is 0.9: 1.8: 1. Therefore, the real-time data distribution ratio of the LTE link and 5GHz WiFi link is lower than the target data allocation.
  • the deviation value of the LTE link is 0.1, and the deviation value of 5GHz and WiFi is 0.2, so it can be determined that the target RAT link at time T1 is a 5GHz WiFi link.
  • Step S404 The wireless access device allocates data to the target RAT link according to the data length indicated by the reference allocation unit.
  • FIG. 7 it is a schematic diagram of another radio access device assigning data to a RAT link provided by the present application.
  • the wireless access device allocates data of a reference allocation unit to the target RAT link each time, and after performing data allocation each time, it performs step S402 and step S403 to obtain the latest time.
  • Real-time data distribution ratio and determine whether the target RAT link has changed based on the latest time data distribution ratio. If the target RAT link has not changed, continue to allocate a reference allocation unit of data to the original target RAT link. When the link is changed, a new allocation unit of data is allocated to the new RAT link.
  • the wireless access device determines the data length allocated to the RAT link each time according to the reference allocation unit, and determines the target RAT link for each data allocation in real time according to the real-time data allocation ratio and the target data allocation ratio; The difference between the real-time data allocation ratio of the link and the target data allocation ratio is the largest. Therefore, the wireless access device allocates data for the target RAT link so that the real-time data allocation ratio of the target RAT link approaches the target data allocation ratio.
  • the real-time data allocation ratio of the total amount of data transmitted by each RAT link is equal to or close to the target data allocation ratio, which matches the link quality information of each RAT link, thereby improving data offload performance.
  • step S203 may include the following steps:
  • Step S501 The wireless access device obtains a priority and a link quality threshold of each RAT link.
  • the wireless access device can preset the priority of each link, and can also obtain the user to set the priority of each link from the user equipment.
  • the wireless access device can preset the priority of the 5G NR link over the LTE link. Level, that is, the priority is to use 5G NR links to transmit data.
  • the user equipment sets the priority of the WiFi link higher than the LTE link, that is, the LTE chain is preferentially used Way to transmit data. Then, the user equipment may report the priority of each link set by the user to the wireless access device.
  • the link quality threshold includes at least one of indicators that indicate low link quality information, such as a link traffic threshold, a link delay threshold, and a link packet loss rate threshold.
  • the link traffic threshold can be determined according to the highest transmission rate that the RAT link can provide. For example, when the maximum transmission rate of the LTE link is 150Mbps, the link traffic threshold can be set to 140Mbps to prevent the RAT link. There may be packet loss due to full load.
  • the link delay threshold can be determined according to the round-trip delay (RTT) delay of the RAT link, so the link delay threshold of each RAT link can be different, such as 5GNR
  • the link delay threshold of the link can be set to 20ms, and the link delay threshold of the LTE link can be set to 100ms. It should be added that the above-mentioned link traffic threshold, link delay threshold, and link packet loss rate threshold can be determined by those skilled in the art based on experience, and are not specifically limited in this application.
  • Step S502 The wireless access device allocates data to the RAT link with the highest priority whose current load is lower than the link quality threshold.
  • a user uses a user device (for example, a mobile phone) to watch a 4K-quality movie, and a 5G NR link and an LTE link and a 5G NR link exist between the wireless access device and the user device. Has a higher priority than the LTE link. Then, at time T0, when the current load of the 5G NR link is lower than the link quality threshold, the radio access network allocates data to the 5G NR link, so that only the 5G NR chain passes between the radio access network and the user equipment. Way to transmit data.
  • a user device for example, a mobile phone
  • Step S503 When it is monitored that the current load of the RAT link reaches or exceeds a link quality threshold, the wireless access device offloads data to other RAT links.
  • the wireless access network allocates some data higher than the 5G NR link load threshold to LTE.
  • Link so that the radio access network and user equipment transmit data through the 5G NR link and the LTE link at the same time, so that the load of the 5G NR link remains below the link quality threshold.
  • the load of the 5G NR link is higher than the link quality threshold may occur in the following scenarios: 1.
  • the wireless access device preferentially allocates data to the RAT link with a higher priority, and at the same time ensures that the data transmitted on the RAT link meets the requirements of the link quality threshold, so that multiple RAT links are ranked from high to high according to the priority. Low in sequence is maximized within the range allowed by the link quality threshold, thereby improving data offload performance.
  • the wireless access device allocates data for each of the RAT links according to a target data allocation ratio. Then, in order for the data allocated to each RAT link to be accurately sent to the corresponding user equipment, the wireless access device needs to configure the user equipment's address information for the data on each RAT link; in addition, for the user equipment The received data packets can be reordered and aggregated. The radio access network also needs to inform the user equipment of the original order of the data packets.
  • the present application also provides a method for configuring a data packet. Referring to FIG. 9, a flowchart for configuring a data packet provided by the present application is provided.
  • the wireless access device configuration data packet may include the following steps:
  • Step S601 The wireless access device configures a target IP address corresponding to the RAT link in the data packet, and the target IP address is an IP address of a physical port designated by the user equipment to establish the RAT link.
  • the target IP address may be the IP address assigned by the wireless access device to the user equipment's modem, baseband chip, etc., or the IP address assigned by the wireless access device to the user device's WiFi wireless network card, and so on.
  • the target IP address may further include an IPv4 (internet protocol version 4) address and an IPv6 (internet protocol version 6) address.
  • Step S602 The wireless access device configures a data sequence message for each data packet according to the original order of the data packets in the data, and the data sequence message is used to send to the user equipment, so that the user equipment sorts and aggregates the received data packets according to the data sequence message. Into complete data.
  • the wireless access device adds a target IP address to the data packet, so that the RAT link can send the data packet to the corresponding user equipment according to the target IP address.
  • the wireless access device configures a data sequence message for each configuration packet. To enable the user equipment to implement reordering and aggregation of data packets according to the data sequence message. Therefore, even if the user equipment does not receive data packets in the original order of the data packets, the data packets can be arranged in the original order, thereby ensuring the data received by the user equipment. Is accurate and complete.
  • 4G LTE, 5G NR, WiFi and other RAT links may experience transient fluctuations in link quality, which may cause transient fluctuations in RAT link quality, such as: restart of hardware devices dependent on RAT links, and electromagnetic waves on air interface channels. Interference and transient load fluctuations on the RAT link.
  • link quality of the RAT link fluctuates momentarily, individual data packets sent to the user equipment through the RAT link may be lost or a high transmission delay may occur, affecting the integrity of the data received by the user equipment.
  • this application also provides a method for data redistribution. 10, a flowchart of data redistribution provided for this application.
  • the data re-distribution performed by the wireless access device includes the following steps:
  • Step S701 The wireless access device buffers data sent to the user equipment.
  • Step S701 may be performed before the wireless access device sends data to the user equipment through the RAT link, or may be performed after the wireless access device sends data to the user equipment through the RAT link, and it is necessary to ensure that the buffered data packets are The user device will not be deleted until it is received.
  • the wireless access device may be stored in a storage medium (for example: RAM memory, FLASH flash, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, mobile hard disk, CD-ROM, or any other form of storage medium known in the art) Allocate a buffer space of a specified size, and use the first-in, first-out (FIFO) algorithm to buffer the transmitted data packets according to the order in which data is allocated to each RAT link.
  • the capacity of the buffer space should satisfy that the time interval from the time when the data packet enters the buffer space to the time when it leaves the buffer space is greater than the preset delay in step S702, so as to ensure that the data packets are still stored in the buffer space after the preset delay.
  • Step S702 If the wireless access device does not receive the data reception confirmation message fed back by the user equipment within a preset delay, the wireless access device allocates the buffered data to another RAT link.
  • the user equipment after receiving the data packet sent by the wireless access device, the user equipment immediately sends a data reception confirmation message to the wireless access device to inform the wireless access device that the data packet has been successfully sent.
  • the link quality of the RAT link is poor, such as a high link delay or a high packet loss rate
  • the wireless access device may not be able to successfully send data packets to the user equipment, resulting in the user equipment
  • the received data is incomplete.
  • a delay is preset in this application.
  • the wireless access device does not receive the data reception confirmation message fed back by the user equipment within the preset delay, the buffered data is allocated to other RAT links, thereby ensuring Data transmission integrity.
  • the radio access network device buffers the data that has been sent to the user equipment, so that when the data fails to reach the user equipment (If the wireless access device does not receive a data reception confirmation message from the user equipment within a preset delay, it is deemed that the data has not been delivered to the user equipment), and the buffered data is allocated to other RAT links, so that, Avoid data incomplete during data offload transmission, and improve data offload performance.
  • each solution of the data transmission method provided in the present application is introduced from the perspective of the device itself and from the perspective of the interaction between the devices.
  • each device for example, the foregoing wireless access device and user equipment, includes a hardware structure and / or a software module corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • a data transmission device includes a processing module 801 and a sending module 802.
  • the data transmission apparatus may be configured to perform the operations of the wireless access device.
  • the data transmission apparatus may be configured to perform the operations of the wireless access device.
  • the processing module 801 is configured to allocate data for each RAT link according to the link quality information of the RAT link.
  • the sending module 802 is configured to send the allocated data to the user equipment in parallel through the RAT link.
  • the data offloading process in the data transmission process is performed on the wireless access device, and the wireless access device allocates data for each link according to the link quality information of the RAT link, thereby more data is allocated.
  • a RAT link with high link quality information for example, a RAT link with high link transmission rate, low link load, low packet loss rate, and low transmission delay. Therefore, the apparatus provided in this application can improve data offload performance when the wireless access device and the user equipment transmit data through multiple links, and improve the data transmission rate between the wireless access device and the user equipment.
  • a data transmission apparatus further includes: a receiving module 803, configured to receive link quality information periodically reported by the user equipment.
  • the processing module 801 is configured to determine a target data allocation ratio of each RAT link according to the link quality information.
  • the processing module 801 is further configured to allocate data for each RAT link according to a target data allocation ratio.
  • the wireless access device can adjust the target data allocation ratio allocated for each RAT link in real time according to the link quality information periodically reported by the user equipment, so that the data allocated to each RAT link always matches the corresponding The RAT link's link quality information is matched to improve data offload performance.
  • the processing module 801 is configured to determine the minimum allocation unit of each RAT link according to the target data allocation ratio; the minimum allocation unit is used to indicate the data length allocated by the wireless access device to the RAT link each time.
  • the processing module 801 is further configured to alternately allocate data to each RAT link according to the data length indicated by the minimum allocation unit. Therefore, during the data transmission process, the wireless access device can divide the data according to the minimum allocation unit of each RAT link and allocate it to the corresponding RAT link. Among them, the wireless access device is each RAT chain.
  • the ratio of the length of the data packets divided by each channel is equal to the target data allocation ratio, so that the ratio of the total amount of data transmitted by each RAT link in the same time is equal to or close to the target data allocation ratio, and it is equal to that of each RAT link.
  • the link quality information is matched to improve data offload performance.
  • the processing module 801 is configured to generate a reference allocation unit, where the reference allocation unit indicates a preset data length.
  • the processing module 801 is further configured to obtain a real-time data allocation ratio of each RAT link separately.
  • the processing module 801 is further configured to determine the target RAT link from the RAT link in real time according to the real-time data allocation ratio and the target data allocation ratio.
  • the real-time data allocation ratio of the target RAT link is lower than the target data allocation ratio and is equal to the target data allocation ratio.
  • the deviation is the largest.
  • the processing module 801 is further configured to allocate data to the target RAT link according to the data length indicated by the reference allocation unit.
  • the wireless access device determines the data length allocated to the RAT link each time according to the reference allocation unit, and determines the target RAT link for each data allocation in real time according to the real-time data allocation ratio and the target data allocation ratio; The difference between the real-time data allocation ratio of the link and the target data allocation ratio is the largest. Therefore, the wireless access device allocates data for the target RAT link so that the real-time data allocation ratio of the target RAT link approaches the target data allocation ratio.
  • the real-time data allocation ratio of the total amount of data transmitted by each RAT link is equal to or close to the target data allocation ratio, which matches the link quality information of each RAT link, thereby improving data offload performance.
  • the processing module 801 is configured to obtain a priority and a link quality threshold of each RAT link.
  • the processing module 801 is further configured to allocate data to a RAT link with the highest priority whose current load is lower than a link quality threshold.
  • the processing module 801 is further configured to offload data to other RAT links when it is detected that the current load of the RAT link reaches or exceeds the link quality threshold.
  • the link quality threshold includes at least one of indicators that indicate low link quality information, such as a link traffic threshold, a link delay threshold, and a link packet loss rate threshold.
  • the wireless access device preferentially allocates data to the RAT link with a higher priority, and at the same time ensures that the data transmitted on the RAT link meets the requirements of the link quality threshold, so that multiple RAT links are ranked from high to high Low in sequence is maximized within the range allowed by the link quality threshold, thereby improving data offload performance.
  • the processing module 801 is configured to configure a target IP address corresponding to the RAT link in the data packet, and the target IP address is an IP address of a physical port designated by the user equipment to establish the RAT link.
  • the processing module 801 is further configured to configure a data sequence message for each data packet according to the original sequence of the data packets in the data, and the data sequence message is used to send to the user equipment, so that the user equipment sorts and aggregates the received data packets into the data sequence message according to the data sequence message. Full data. Therefore, the wireless access device adds a target IP address to the data packet, so that the RAT link can send the data packet to the corresponding user equipment according to the target IP address. In addition, the wireless access device configures a data sequence message for each configuration packet.
  • the user equipment To enable the user equipment to implement reordering and aggregation of data packets according to the data sequence message. Therefore, even if the user equipment does not receive data packets in the original order of the data packets, the data packets can be arranged in the original order, thereby ensuring the data received by the user equipment Is accurate and complete.
  • the processing module 801 is configured to buffer data sent to the user equipment.
  • the receiving module 803 is configured to receive a data reception confirmation message fed back by the user equipment.
  • the processing module 801 is further configured to allocate the buffered data to another RAT link if the receiving module 803 does not receive a data reception confirmation message fed back by the user equipment within a preset delay.
  • the radio access network device buffers the data that has been sent to the user equipment, so that when the data fails to reach the user equipment (If the wireless access device does not receive a data reception confirmation message from the user equipment within a preset delay, it is deemed that the data has not been delivered to the user equipment), and the buffered data is allocated to other RAT links, so that, Avoid data incomplete during data offload transmission, and improve data offload performance.
  • the RAT link includes a first type link and a second type link.
  • the first type link includes at least one RAT link based on the licensed spectrum
  • the second type link includes at least one RAT based on the unlicensed spectrum. link. Therefore, this application can use the licensed spectrum-based RAT link and the unlicensed spectrum-based RAT link to transmit data between the wireless access device and the user equipment at the same time, thereby improving the data transmission speed.
  • FIG. 13 is another schematic structural diagram of a data transmission device involved in the foregoing embodiment.
  • the data transmission device includes a processor 901, a transceiver 902, and a memory 903.
  • the memory 903 is coupled to the processor 901 and stores a computer program 904 necessary for the data transmission device.
  • the processor 901 is configured to operate and function of a wireless access device.
  • the transceiver 902 is configured to implement communication between a wireless access device and a user equipment / core network device. According to the above device, the data offloading process in the data transmission process is performed on the wireless access device, and the wireless access device allocates data for each link according to the link quality information of the RAT link, thereby more data is allocated.
  • the method provided in this application can improve data offload performance when the wireless access device and the user equipment transmit data through multiple links, and improve the data transmission rate between the wireless access device and the user equipment.
  • the present application also provides a computer-readable storage medium 1001.
  • the computer-readable storage medium stores instructions, and when the computer-readable storage medium runs on the computer, the computer executes the methods in the foregoing aspects.
  • the storage medium 1001 may be a RAM memory, a flash memory, a ROM memory, an EPROM memory, an EEPROM memory, a register, a hard disk, a mobile hard disk, a CD-ROM, or any other form of storage medium.
  • the present application also provides a computer program product containing instructions that, when run on a computer, causes the computer to perform the methods of the above aspects. Therefore, data offload performance can be improved when the wireless access device and the user equipment transmit data through multiple links, and the data transmission rate between the wireless access device and the user equipment can be improved.
  • FIG. 15 is a schematic structural diagram of the chip system.
  • the chip system includes a processor 1101, which is configured to support the foregoing apparatus or user equipment to implement the functions involved in the foregoing aspects, for example, to generate or process data and information involved in the foregoing methods.
  • the chip system further includes a memory 1102, and the memory 1102 is configured to store program instructions and data necessary for a device that manages a monitoring event.
  • the chip system can be composed of chips, and can also include chips and other discrete devices. Therefore, data offload performance can be improved when the wireless access device and the user equipment transmit data through multiple links, and the data transmission rate between the wireless access device and the user equipment can be improved.
  • the controller / processor used to execute the above-mentioned data transmission device may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a field programmable gate array (FPGA). ) Or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • a processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the steps of the method or algorithm described in combination with the disclosure of this application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, mobile hard disk, CD-ROM, or any other form of storage known in the art Media.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a wireless access device.
  • the processor and the storage medium may also exist as discrete components in the wireless access device.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center via a wired (e.g., Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integrations.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (Solid State Disk (SSD)

Abstract

本申请提供了一种数据传输方法及装置。其中,无线接入设备,例如无线电接入网(radio access network,RAN),根据无线电接入技术(radio access technology,RAT)链路的链路质量信息(例如:链路传输速率、链路负载、丢包率、传输时延等),为每条RAT链路,例如分配数据;无线接入设备通过RAT链路将已分配数据并行发送给用户设备,例如移动电话、平板电脑等。从而,数据传输过程中的数据分流过程在无线接入设备上执行,并且,无线接入设备根据RAT链路的链路质量信息为每条链路分配数据,从而将数据更多地分配给链路质量信息高(例如链路传输速率高、链路负载低、丢包率低、传输时延低的RAT链路)的RAT链路。由此,本申请提供的方法,能够提高无线接入设备与用户设备通过多条链路传输数据时的数据分流性能,提高无线接入设备与用户设备之间的数据传输速率。

Description

一种数据传输方法及装置 技术领域
本申请涉及无线通信领域,尤其涉及一种数据传输方法及装置。
背景技术
在无线通信领域,用户设备(user equipment,UE)可以选择基于授权频谱(license spectrum)和非授权频谱的(unlicense spectrum)的无线电接入技术(radio access technology,RAT)链路与无线接入设备进行数据传输。其中,基于授权频谱的RAT链路可以包括第五代移动通信系统新空口技术(5th generation mobile networks new radio,5G NR)、长期演进技术(long term evolution,LTE)、全球移动通信系统(global system for mobile communication,GSM)和通用移动通信系统(universal mobile telecommunications system,UMTS)等,基于非授权频谱的RAT链路可以包括无线局域网(wireless-fidelity,WiFi)等。
目前,通过在无线接入设备的上层将数据分流给多个RAT链路,能够提高数据的传输速率,但是,这种分流方式无法感知无线接入设备底层的RAT链路的信道状态,因此分流性能很差。
发明内容
本申请提供了一种数据传输方法及装置,解决现有技术中使用多条RAT链路进行数据传输时,分流性能差的问题。
第一方面,本申请提供了一种数据传输方法,用于在无线接入设备和用户设备之间传输数据,该无线接入设备与用户设备之间存在多条RAT链路,该方法具体包括:
无线接入设备,例如无线电接入网(radio access network,RAN),根据无线电接入技术(radio access technology,RAT)链路的链路质量信息(例如:链路传输速率、链路负载、丢包率、传输时延等),为每条RAT链路(例如:5G NR链路、LTE链路、WiFi链路等)分配数据;无线接入设备通过RAT链路将已分配数据并行发送给用户设备,例如移动电话、平板电脑等。
根据上述方法,数据传输过程中的数据分流过程在无线接入设备上执行,并且,无线接入设备根据RAT链路的链路质量信息为每条链路分配数据,从而将数据更多地分配给链路质量信息高(例如链路传输速率高、链路负载低、丢包率低、传输时延低的RAT链路)的RAT链路。由此,本申请提供的方法,能够提高无线接入设备与用户设备通过多条链路传输数据时的数据分流性能,提高无线接入设备与用户设备之间的数据传输速率。
结合第一方面,在第一方面的第一种可能的实现方式中,无线接入设备根据RAT链路的链路质量信息,为每条RAT链路分配数据,包括:无线接入设备接收用户设备定期上报的链路质量信息。无线接入设备根据链路质量信息确定每条RAT链路的目标数据分配比。无线接入设备根据目标数据分配比为每条RAT链路分配数据。由此,无线接入设备可以根据用户设备定期上报的链路质量信息,实时调整为每条RAT链路分配的目标数据分配比, 从而使分配到每条RAT链路上的数据始终与对应的RAT链路的链路质量信息相匹配,从而提高数据分流性能。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,无线接入设备根据目标数据分配比为每条RAT链路分配数据,包括:无线接入设备根据目标数据分配比,分别确定每条RAT链路的最小分配单位;最小分配单位用于指示无线接入设备每次分配给RAT链路的数据长度。无线接入设备根据最小分配单位指示的数据长度轮流向每条RAT分配数据。由此,无线接入设备在数据传输过程中,可以根据每条RAT链路的最小分配单位对数据进行切分,并分配给对应的RAT链路,其中,无线接入设备为各条RAT链路每次切分的数据包的长度之比等于目标数据分配比,从而使各条RAT链路在相同时间内传输的数据总量的比值等于或接近目标数据分配比,与各条RAT链路的链路质量信息相匹配,从而提高数据分流性能。
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,无线接入设备根据目标数据分配比为每条RAT链路分配数据,包括:无线接入设备生成基准分配单位,基准分配单位指示一个预设的数据长度。无线接入设备分别获取每条RAT链路的实时数据分配比。无线接入设备根据实时数据分配比和目标数据分配比从RAT链路中实时确定目标RAT链路,目标RAT链路的实时数据分配比低于目标数据分配比,且与目标数据分配比偏差最大。无线接入设备根据基准分配单位指示的数据长度向目标RAT链路分配数据。由此,无线接入设备根据基准分配单位确定了每次向RAT链路分配的数据长度,并根据实时数据分配比和目标数据分配比实时确定每次数据分配的目标RAT链路;由于目标RAT链路的实时数据分配比与目标数据分配比偏差最大,因此,无线接入设备为目标RAT链路分配数据使得目标RAT链路的实时数据分配比向目标数据分配比逼近,进而,在一段时间内,各个RAT链路传输的数据总量的实时数据分配比等于或接近目标数据分配比,与各条RAT链路的链路质量信息相匹配,从而提高数据分流性能。
结合第一方面的第一种可能的实现方式,在第一方面的第四种可能的实现方式中,无线接入设备根据目标数据分配比为每条RAT链路分配数据,包括:无线接入设备获取每个RAT链路的优先级和链路质量阈值。无线接入设备将数据分配给当前负载低于链路质量阈值的优先级最高的RAT链路。无线接入设备在监测到RAT链路的当前负载达到或者高于链路质量阈值时,将数据分流给其他RAT链路。其中,链路质量阈值包括链路负载阈值、链路时延阈值和链路丢包率阈值等表征链路质量信息低下的指标中的至少一个。由此,无线接入设备会将数据优先分配给优先级高的RAT链路,同时保证RAT链路上传输的数据满足链路质量阈值的要求,使多条RAT链路按照优先级从高到低依次在链路质量阈值允许的范围内得到最大化利用,从而提高数据分流性能。
结合第一方面和第一方面的第一种至第四种可能的实现方式中的任意一种,在第一方面的第五种可能的实现方式中,无线接入设备为RAT链路分配数据,还包括:无线接入设备向数据包中配置RAT链路对应的目标IP地址,目标IP地址为用户设备建立RAT链路指定的物理端口的IP地址。无线接入设备根据数据包在数据中的原始顺序为每个数据包配置数据顺序消息,数据顺序消息用于发送给用户设备,使用户设备根据数据顺序消息将接收的数据包排序聚合成完整数据。由此,无线接入设备向数据包中添加目标IP地址,使RAT链路能够根据目标IP地址将数据包发送给对应的用户设备;另外,无线接入设备为 每个配置包配置数据顺序消息,使用户设备根据数据顺序消息实现数据包的重新排序聚合,因此,即使用户设备不是按照数据包的原始顺序接收数据包,也能够将数据包按照原始顺序排列,从而保证用户设备接收到的数据是准确完整的。
结合第一方面和第一方面的第一种至第五种可能的实现方式中的任意一种,在第一方面的第六种可能的实现方式中,还包括:无线接入设备缓存向用户设备发送的数据。无线接入设备如果在预设时延未接收到用户设备反馈的数据接收确认消息,则将缓存的数据分配给其他RAT链路。由此,无线接入网设备为了应对分配给RAT链路的数据由于各种原因未能送达给用户设备的情况,缓存已向用户设备发送的数据,从而当数据未能送达给用户设备时(无线接入设备如果在预设时延未接收到用户设备反馈的数据接收确认消息,即视为数据未能送达给用户设备),将缓存的数据分配给其他RAT链路,从而,避免在数据分流传输的过程中,某些数据丢失而导致数据不完整的情况发生,提高数据分流性能。
结合第一方面和第一方面的第一种至第六种可能的实现方式中的任意一种,在第一方面的第七种可能的实现方式中,RAT链路包括第一类链路和第二类链路,第一类链路包括至少一条基于授权频谱的RAT链路,第二类链路包括至少一条基于非授权频谱的RAT链路。其中,基于授权频谱的RAT链路可以包括第五代移动通信系统新空口技术(5th generation mobile networks new radio,5G NR)、长期演进技术(long term evolution,LTE)、全球移动通信系统(global system for mobile communication,GSM)和通用移动通信系统(universal mobile telecommunications system,UMTS)等,基于非授权频谱的RAT链路可以包括无线局域网(wireless-fidelity,WiFi)等。由此,本申请可以通过同时使用基于授权频谱的RAT链路和基于非授权频谱的RAT链路在无线接入设备和用户设备之间传输数据,从而提高数据传输速度。
第二方面,本申请还提供一种数据传输装置,该数据传输装置具有实现上述无线接入设备行为的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,上述数据传输装置的结构中包括处理器和收发器,处理器被配置为处理该数据传输装置执行上述方法中相应的功能。收发器用于实现上述数据传输装置与用户设备之间的通信。数据传输装置还可以包括存储器,存储器用于与处理器耦合,其保存该数据传输装置必要的程序指令和数据。
根据上述装置,数据传输过程中的数据分流过程在无线接入设备上执行,并且,无线接入设备根据RAT链路的链路质量信息为每条链路分配数据,从而将数据更多地分配给链路质量信息高(例如链路传输速率高、链路负载低、丢包率低、传输时延低的RAT链路)的RAT链路。由此,本申请提供的装置,能够提高无线接入设备与用户设备通过多条链路传输数据时的数据分流性能,提高无线接入设备与用户设备之间的数据传输速率。
第三方面,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第四方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第五方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持上述装置或用户设备实现上述方面中所涉及的功能,例如,生成或处理上述方法中所涉及的信息。 在一种可能的设计中,芯片系统还包括存储器,存储器,用于保存数据传输装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1所示为无线接入设备与用户设备的数据传输场景图;
图2为本申请提供的一种数据传输方法的流程图;
图3为本申请提供的一种数据传输方法步骤S101的流程图;
图4为本申请提供的一种数据传输方法步骤S203的流程图;
图5为本申请提供的一种无线接入设备向RAT链路分配数据的示意图;
图6为本申请提供的一种数据传输方法步骤S203的流程图;
图7为本申请提供的另一种无线接入设备向RAT链路分配数据的示意图;
图8为本申请提供的一种数据传输方法步骤S203的流程图;
图9为本申请提供的一种配置数据包的流程图;
图10为本申请提供的数据再分配的流程图;
图11为本申请提供的一种数据传输装置的示意图;
图12为本申请提供的另一种数据传输装置的结构示意图;
图13为本申请提供的又一种数据传输装置的结构示意图;
图14为本申请还提供的一种计算机可读存储介质的示意图;
图15为本申请提供的一种芯片系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“多个”是指两个或两个以上。
在对本申请实施例的技术方案说明之前,首先结合附图对本申请实施例的技术场景进行说明。
如图1所示,为无线接入设备与用户设备的数据传输场景图。目前,无线接入设备(例如无线电接入网RAN)与用户设备(例如移动电话、平板电脑等)可以通过多条RAT链路连接。但通常情况下,无线接入设备仅使用一条RAT链路与用户设备进行数据传输,数据传输速率不高。
为了提高无线接入设备与用户设备之间的数据传输速率,一些方法将基站的数据在送达给无线接入设备之前进行分流,使无线接入设备能够通过多条RAT链路与用户设备进行数据传输。但是,目前的数据分流方法是对数据进行盲目的分流,例如有两条RAT链路,那么,对这两条RAT链路每条各分配50%的数据。并且,这种分流方法无法感知无线接入网底层的RAT链路的信道状态,从而当信道发生堵塞、变更等情况时,RAT链路无法承载被分配的数据传输任务,因此,分流性能很差。
本申请提供了一种数据传输方法,以解决现有技术中使用多条RAT链路进行数据传输时,分流性能差的问题。
本申请提供的数据传输方法用于在无线接入设备和用户设备之间传输数据,无线接入设备与用户设备之间存在多条无线电接入技术(radio access technology,RAT)链路。
具体地,图2为本申请提供的一种数据传输方法的流程图。该方法如图2所示,包括以下步骤:
步骤S101,无线接入设备根据RAT链路的链路质量信息,为每条RAT链路分配数据。
其中,无线接入设备具体可以是无线电接入网(radio access network,RAN),例如可以包括GSM无线接入网(GSM radio access network,GRAN)、EDGE无线接入网(GSM EDGE radio access network,GERAN)、UMTS无线接入网(UMTS radio access network,UTRAN)、高速、低时延的LTE无线接入网(evolved UMTS terrestrial radio access network,E-UTRAN)或者基于云计算的集中式结构的无线接入网(cloud radio access network,C-RAN)。
RAT链路可以包括基于授权频谱的RAT链路和非授权频谱的RAT链路中的一个或多个。其中,基于授权频谱的RAT链路可以包括第五代移动通信系统新空口技术(5th generation mobile networks new radio,5G NR)、长期演进技术(long term evolution,LTE)、全球移动通信系统(global system for mobile communication,GSM)和通用移动通信系统(universal mobile telecommunications system,UMTS)等,基于非授权频谱的RAT链路可以包括无线局域网(wireless-fidelity,WiFi)等。
由此,无线接入设备可以将数据分配给至少一个基于授权频谱的RAT链路和至少一个基于非授权频谱的RAT链路,例如分配给5G NR链路和WiFi链路;还可以将数据只分配给基于授权频谱的RAT链路,例如分配给5G NR链路和LTE链路;还可以将数据只分配给基于非授权频谱的RAT链路,例如分配给5GHz的WiFi链路和2.4GHz的WiFi链路。
另外,RAT链路的链路质量信息具体可以包括链路传输速率、链路负载、链路时延(例如空口时延)、链路丢包率和链路的网络抖动等信息。
步骤S101即无线接入设备根据RAT链路的链路质量信息,为每条RAT链路分配数据可以结合图3进一步描述。
步骤S102,无线接入设备通过RAT链路将已分配数据并行发送给用户设备。
具体地,无线接入设备将已分配的数据发送到对应RAT链路的空口(radio),使RAT链路根据各自的空口协议将数据并行发送给用户设备。
根据上述方法,数据传输过程中的数据分流过程在无线接入设备上执行,并且,无线接入设备根据RAT链路的链路质量信息为每条链路分配数据,从而将数据更多地分配给链路质量信息高(例如链路传输速率高、链路负载低、丢包率低、传输时延低的RAT链路)的RAT链路。由此,本申请提供的方法,能够提高无线接入设备与用户设备通过多条链路传输数据时的数据分流性能,提高无线接入设备与用户设备之间的数据传输速率。
参见图3,为本申请提供的一种数据传输方法步骤S101的流程图。在一个实施例中,如图3所示,步骤S101可以包括以下步骤:
步骤S201,无线接入设备接收用户设备定期上报的链路质量信息。
例如,用户设备在与无线接入设备建立RAT链路连接之后,获取RAT链路的链路负载、链路时延(例如空口时延)、链路丢包率和链路的网络抖动等链路质量信息,然后,定期主动上向无线接入设备上报链路质量信息。
在一种可选择的实施方式中,用户设备在接收到无线接入设备发送的数据之后,向无线接入设备反馈数据接收确认消息,用于将用户设备已经接收到数据的状态告诉无线接入设备。因此,用户设备可以定期在数据接收确认消息中配置链路质量信息,从而,将链路质量信息通过数据接收确认消息上报给无线接入设备。
在另一种可选择的实施方式中,用户设备定期向无线接入设备发送心跳消息,用于维持用户设备与无线接入设备之间的连接状态。因此,用户设备可以定期在心跳消息中配置链路质量信息,从而,将链路质量信息通过心跳消息上报给无线接入设备。
在又一种可选择的实施方式中,无线接入设备可以定期向用户设备发送链路质量上报指令,用户设备在接收到链路质量上报指令的情况下,获取当前时刻的链路质量信息,并发送给用户设备。
在一些其他的实施方式中,用户设备可以实时对每一条RAT链路的链路质量进行监测,当某一条RAT链路的链路质量发生变化且变化幅度超出了预设的准许范围,则向无线接入设备上报该RAT链路当前的链路质量信息。
步骤S202,无线接入设备根据链路质量信息确定每条RAT链路的目标数据分配比。
例如,无线接入设备和用户设备之间存在LTE链路和WiFi链路,用户设备上报的链路质量信息显示LTE链路的下行速率可以达到150Mbps,WiFi链路的下行速率可以达到300Mbps,由此,可以根据LTE链路和WiFi链路的下行速率的比值确定目标数据分配比。即,LTE链路和WiFi链路的目标数据分配比为:
150:300=1:2
步骤S203,无线接入设备根据目标数据分配比为每条RAT链路分配数据。
具体地,无线接入设备根据目标数据分配比为每条RAT链路分配数据包,使无线接入设备通过每条RAT链路发送给用户设备的数据包总长度的比值等于或近似等于目标数据分配比。例如,一个数据包的长度为1500字节(Byte),那么,在一次数据传输中,如果分配给LTE链路的数据包数量为10个,那么分配给WiFi链路的数据包数据量就为20个,从而使LTE链路和WiFi链路传输数据的总量(字节数)的比值为1:2(15000字节:30000字节)。
步骤S203即无线接入设备根据RAT链路的链路质量信息,为每条RAT链路分配数据可以结合图4-图9进一步描述。
由此,无线接入设备可以根据用户设备定期上报的链路质量信息,实时调整为每条RAT链路分配的目标数据分配比,从而使分配到每条RAT链路上的数据始终与对应的RAT链路的链路质量信息相匹配,从而提高数据分流性能。
参见图4,为本申请提供的一种数据传输方法步骤S203的流程图。在一个实施例中,如图4所示,步骤S203可以包括以下步骤:
步骤S301,无线接入设备根据目标数据分配比,分别确定每条RAT链路的最小分配单位;最小分配单位用于指示无线接入设备每次分配给RAT链路的数据长度。
例如:无线接入设备和用户设备之间存在5G NR链路和WiFi链路,用户设备上报的链路质量信息显示5G NR链路的下行速率可以达到1.4Gbps,WiFi链路的下行速率可以达到100Mbps,由此,确定的5G NR链路和WiFi链路的目标数据分配比可以为14:1。根据上述5G NR链路和WiFi链路的数据分配比,无线接入设备可以确定为5G NR链路分配数 据的最小分配单位为14个数据包/次,为WiFi链路分配数据的最小分配单位为1个数据包/次;那么,如果每个数据包的长度为1500字节,无线接入设备每次为5G NR链路分配的数据长度为1500字节×14=21000字节,每次为WiFi链路分配的数据长度为1500字节×1=1500字节。
步骤S302,无线接入设备根据最小分配单位指示的数据长度轮流向每条RAT链路分配数据。
参见图5,为本申请提供的一种无线接入设备向RAT链路分配数据的示意图。如图5所示,在数据传输过程中,无线接入设备的上游网元(例如核心网、服务器等)向无线接入设备发送包含数据包队列的数据流,无线接入设备接收到数据流之后,根据每条RAT链路的最小分配单位对数据流进行切分。例如,当无线接入设备和用户设备之间存在5G NR链路和WiFi链路,并且5G NR链路的最小分配单位为14个数据包/次,WiFi链路的最小数据单位为1个数据包/次时,无线接入设备首先从数据流中切分出14个数据包分配给5G NR链路,然后再切分出1个数据包分配给WiFi链路,然后切分出14个数据包分配给5G NR链路,依此循环。从而,实现在一段时间的数据传输中,无线接入设备分配给5G NR链路和WiFi链路的数据量的比值等于或近似等于它们的目标数据分配比。
由此,无线接入设备在数据传输过程中,可以根据每条RAT链路的最小分配单位对数据进行切分,并分配给对应的RAT链路,其中,无线接入设备为各条RAT链路每次切分的数据包的长度之比等于目标数据分配比,从而使各条RAT链路在相同时间内传输的数据总量的比值等于或接近目标数据分配比,与各条RAT链路的链路质量信息相匹配,从而提高数据分流性能。
参见图6,为本申请提供的一种数据传输方法步骤S203的流程图。在另一个实施例中,如图6所示,步骤S203可以包括以下步骤:
步骤S401,无线接入设备生成基准分配单位,基准分配单位指示一个预设的数据长度。
其中,无线接入设备在每一次执行数据分配时,会从数据流中切分出一个基准分配单位的数据长度分配给RAT链路。该基准分配单位可以是至少一个数据包,例如,当数据包的长度为1500字节时,如果基准分配单位为2个数据包,那么基准分配单位指示的数据长度为3000字节。
另外,无线接入设备可以根据RAT链路质量定义基准分配单位的大小。例如,如果RAT链路的传输速率较高,则基准分配单位的可以定义的较大,从而减少无线接入设备分配数据的任务量,降低无线接入设备的负载,节省功耗;如果RAT链路的传输速率较低,则基准分配单位可以定义的较小,以提高数据分配的精度。
步骤S402,无线接入设备分别获取每条RAT链路的实时数据分配比。
其中,实时数据分配比是指从数据传输的起始时刻T0到当前时刻T1的时间段内,无线接入设备为每条链路分配的数据量的比值。
例如,在一个示例中,无线接入设备和用户设备之间存在5GHz WiFi链路和2.4GHz WiFi链路,在T0-T1时间段内,无线接入设备为5GHz WiFi链路分配了180个数据包,为2.4GHz WiFi链路分配了100个数据包,则5GHz WiFi链路和2.4GHz WiFi链路的实时数据分配比为1.8:1。
又例如,在另一个示例中,无线接入设备和用户设备之间存在LTE链路、5GHz WiFi 链路和2.4GHz WiFi链路,在T0-T1时间段内,无线接入设备为LTE链路分配了90个数据包、无线接入设备为5GHz WiFi链路分配了180个数据包,为2.4GHz WiFi链路分配了100个数据包,则LTE链路、5GHz WiFi链路和2.4GHz WiFi链路的实时数据分配比为0.9:1.8:1。
步骤S403,无线接入设备根据实时数据分配比和目标数据分配比从RAT链路中实时确定目标RAT链路;目标RAT链路的实时数据分配比低于目标数据分配比,且与目标数据分配比偏差最大。
例如,在一个示例中,无线接入设备和用户设备之间存在5GHz WiFi链路和2.4GHz WiFi链路,并且目标数据分配比为2:1。在T1时刻,5GHz WiFi链路和2.4GHz WiFi链路的实时数据分配比为1.8:1,因此,5GHz WiFi链路的实时数据分配比低于目标数据分配比,偏差值为0.2,由此可以确定T1时刻的目标RAT链路为5GHz WiFi链路。
又例如,在另一个示例中,无线接入设备和用户设备之间存在LTE链路、5GHz WiFi链路和2.4GHz WiFi链路,并且目标数据分配比为1:2:1。在T1时刻,LTE链路、5GHz WiFi链路和2.4GHz WiFi链路的实时数据分配比为0.9:1.8:1,因此,LTE链路和5GHz WiFi链路的实时数据分配比低于目标数据分配比;其中,LTE链路的偏差值为0.1,5GHz WiFi的偏差值为0.2,由此可以确定T1时刻的目标RAT链路为5GHz WiFi链路。
步骤S404,无线接入设备根据基准分配单位指示的数据长度向目标RAT链路分配数据。
参见图7,为本申请提供的另一种无线接入设备向RAT链路分配数据的示意图。如图6和图7所示,无线接入设备每次向目标RAT链路分配一个基准分配单位的数据,并且在每次执行数据分配之后,跳转执行步骤S402和步骤S403,以获取最新时刻的实时数据分配比,并根据最新时刻的数据分配比确定目标RAT链路是否发生改变,如果目标RAT链路未发生改变,则继续向原目标RAT链路分配一个基准分配单位的数据,如果目标RAT链路发生改变,则向新的RAT链路分配一个基准分配单位的数据。
由此,无线接入设备根据基准分配单位确定了每次向RAT链路分配的数据长度,并根据实时数据分配比和目标数据分配比实时确定每次数据分配的目标RAT链路;由于目标RAT链路的实时数据分配比与目标数据分配比偏差最大,因此,无线接入设备为目标RAT链路分配数据使得目标RAT链路的实时数据分配比向目标数据分配比逼近,进而,在一段时间内,各个RAT链路传输的数据总量的实时数据分配比等于或接近目标数据分配比,与各条RAT链路的链路质量信息相匹配,从而提高数据分流性能。
参见图8,为本申请提供的一种数据传输方法步骤S203的流程图。在又一个实施例中,如图8所示,步骤S203可以包括以下步骤:
步骤S501,无线接入设备获取每个RAT链路的优先级和链路质量阈值。
其中,无线接入设备可以预设每条链路的优先级,也可以从用户设备获取用户设置每条链路的优先级。
例如,在一个使用场景中,无线接入设备和用户设备之间存在5G NR链路和LTE链路,其中5G NR链路可提供最高1.4Gbps的下行速率,LTE链路可提供最高150Mbps的下行速率,并且,在T0时刻,5G NR链路的链路时延和丢包率均优于LTE链路。由于,5G NR链路相比于LTE链路能提供更高的传输速率,更低的链路时延,因此无线接入设备可以预设5G NR链路的优先级高于LTE链路的优先级,即优先使用5G NR链路传输数据。
例如,在另一个使用场景中,无线接入设备和用户设备之间存在LTE链路和WiFi链路,并且,用户设备设置了WiFi链路的优先级高于LTE链路,即优先使用LTE链路传输数据。那么,用户设备可以将用户设置的每条链路的优先级上报给无线接入设备。
另外,链路质量阈值包括链路流量阈值、链路时延阈值和链路丢包率阈值等表征链路质量信息低下的指标中的至少一个。进一步地,链路流量阈值可以根据RAT链路所能提供的最高传输速率确定,例如当LTE链路的最高传输速率为150Mbps时,链路流量阈值与之可以设置为140Mbps,从而防止RAT链路出现满载而导致可能丢包的现象。进一步地,链路时延阈值可以根据RAT链路的RTT(round-trip delay time,来回通信延迟)时延确定,所以每条RAT链路的链路时延阈值可以是不同的,例如5G NR链路的链路时延阈值可以设置为20ms,LTE链路的链路时延阈值可以设置为100ms。需要补充说明的是,上述链路流量阈值、链路时延阈值和链路丢包率阈值均可以由本领域技术人员根据经验确定,本申请中不做具体限定。
步骤S502,无线接入设备将数据分配给当前负载低于链路质量阈值的优先级最高的RAT链路。
例如,在一个使用场景中,用户使用用户设备(例如:手机)观看一部4K画质的电影,并且无线接入设备和用户设备之间存在5G NR链路和LTE链路,5G NR链路的优先级高于LTE链路的优先级。那么,在T0时刻,当5G NR链路的当前负载低于链路质量阈值时,无线接入网将数据分配给5G NR链路,从而无线接入网和用户设备之间仅通过5G NR链路传输数据。
步骤S503,无线接入设备在监测到RAT链路的当前负载达到或者高于链路质量阈值时,将数据分流给其他RAT链路。
例如,延续步骤S520中示出的使用场景中,在T1时刻,当5G NR链路的当前负载高于链路质量阈值时,无线接入网将高于5G NR链路负载阈值的部分数据分配给LTE链路,从而无线接入网和用户设备之间同时通过5G NR链路和LTE链路传输数据,从而使5G NR链路的负载保持在链路质量阈值之下。其中,5G NR链路的负载高于链路质量阈值的情况可能发生在以下场景:1、无线接入网连接的用户设备过多导致5G NR链路的流量过大,超出了链路流量阈值;2、无线接入网和用户设备之间的距离过远,空口的信号强度弱,导致链路时延过大或者丢包率过高,超出了链路时延阈值或者链路丢包率阈值,等等。
由此,无线接入设备会将数据优先分配给优先级高的RAT链路,同时保证RAT链路上传输的数据满足链路质量阈值的要求,使多条RAT链路按照优先级从高到低依次在链路质量阈值允许的范围内得到最大化利用,从而提高数据分流性能。
在图3-图8示出的方法中,无线接入设备根据目标数据分配比为每条所述RAT链路分配数据。那么,为了使分配给每条RAT链路的数据能够准确地发送给对应的用户设备,无线接入设备需要为每一条RAT链路上的数据配置用户设备的地址信息;另外,为了使用户设备能够将接收到的数据包进行重新排序聚合,无线接入网还要将数据包的原始顺序告知给用户设备。对此,本申请还提供了一种配置数据包的方法,参见图9,为本申请提供的一种配置数据包的流程图。在一个实施例中,如图9所示,无线接入设备配置数据包可以包括以下步骤:
步骤S601,无线接入设备向数据包中配置RAT链路对应的目标IP地址,目标IP地址 为用户设备建立RAT链路指定的物理端口的IP地址。
例如:目标IP地址可以是无线接入设备为用户设备的调制解调器、基带芯片等分配的IP地址,可以是无线接入设备为用户设备WiFi无线网卡分配的IP地址,等等。另外,目标IP地址进一步可以包括IPv4(internet protocol version 4,网际协议版本4)地址和IPv6(internet protocol version 6,网际协议版本6)地址。
步骤S602,无线接入设备根据数据包在数据中的原始顺序为每个数据包配置数据顺序消息,数据顺序消息用于发送给用户设备,使用户设备根据数据顺序消息将接收的数据包排序聚合成完整数据。
由此,无线接入设备向数据包中添加目标IP地址,使RAT链路能够根据目标IP地址将数据包发送给对应的用户设备;另外,无线接入设备为每个配置包配置数据顺序消息,使用户设备根据数据顺序消息实现数据包的重新排序聚合,因此,即使用户设备不是按照数据包的原始顺序接收数据包,也能够将数据包按照原始顺序排列,从而保证用户设备接收到的数据是准确完整的。
另外,4G LTE、5G NR、WiFi等RAT链路都可能会出现链路质量瞬时波动的情况,可能导致RAT链路质量瞬时波动的情况例如:RAT链路依赖的硬件设备重启、空口信道的电磁波干扰以及RAT链路上出现瞬时的负载波动等。当RAT链路的链路质量出现瞬时波动时,个别通过RAT链路发送给用户设备的数据包可能会丢失或出现较高的传输时延,影响用户设备接收的数据完整性。为了在链路质量出现瞬时波动的情况下,保证用户设备接收数据的完整性,本申请还提供了一种数据再分配的方法。参见图10,为本申请提供的数据再分配的流程图。在一些实施例中,如图10所示,无线接入设备进行数据再分配包括以下步骤:
步骤S701,无线接入设备缓存向用户设备发送的数据。
其中,步骤S701可以在无线接入设备通过RAT链路向用户设备发送数据之前执行,也可以在无线接入设备通过RAT链路向用户设备发送数据之后执行,并且要保证缓存的数据包在被用户设备接收之前不会被删除。
例如,无线接入设备可以存储介质(例如:RAM存储器、FLASH闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质)中分配一个指定大小的缓存空间,并根据数据分配给各个RAT链路的顺序,采用先进先出算法(first in,first out,FIFO)缓存已发送的数据包。其中,缓存空间的容量应满足数据包从进入缓存空间到离开缓存空间的时间间隔大于步骤S702中的预设时延,从而保证在预设时延后,数据包依然存储在缓存空间中。
步骤S702,无线接入设备如果在预设时延未接收到用户设备反馈的数据接收确认消息,则将缓存的数据分配给其他RAT链路。
例如,用户设备接收无线接入设备的发送的数据包后,立即向无线接入设备发送数据接收确认消息,用于告知无线接入设备数据包已成功发送。但是,在RAT链路的链路质量较差的情况下,如链路时延较高或者丢包率较高等,无线接入设备可能无法将数据包发送成功发送给用户设备,从而导致用户设备接收的数据不完整。为了解决上述问题,本申请预设了一个时延,当无线接入设备在预设时延未接收到用户设备反馈的数据接收确认消息时,将缓存的数据分配给其他RAT链路,从而保证数据传输的完整性。
由此,无线接入网设备为了应对分配给RAT链路的数据由于各种原因未能送达给用户设备的情况,缓存已向用户设备发送的数据,从而当数据未能送达给用户设备时(无线接入设备如果在预设时延未接收到用户设备反馈的数据接收确认消息,即视为数据未能送达给用户设备),将缓存的数据分配给其他RAT链路,从而,避免在数据分流传输的过程中,某些数据丢失而导致数据不完整的情况发生,提高数据分流性能。
上述本申请提供的实施例中,分别从设备本身、以及从设备之间交互的角度对本申请提供的数据传输方法的各方案进行了介绍。可以理解的是,各个设备,例如上述无线接入设备和用户设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
例如,当上述设备通过软件模块来实现相应的功能。如图11所示,一种数据传输装置包括处理模块801和发送模块802。
在一个实施例中,该数据传输装置可用于执行上述无线接入设备的操作。例如:
处理模块801用于根据RAT链路的链路质量信息,为每条RAT链路分配数据。发送模块802用于通过RAT链路将已分配数据并行发送给用户设备。
根据上述装置,数据传输过程中的数据分流过程在无线接入设备上执行,并且,无线接入设备根据RAT链路的链路质量信息为每条链路分配数据,从而将数据更多地分配给链路质量信息高(例如链路传输速率高、链路负载低、丢包率低、传输时延低的RAT链路)的RAT链路。由此,本申请提供的装置,能够提高无线接入设备与用户设备通过多条链路传输数据时的数据分流性能,提高无线接入设备与用户设备之间的数据传输速率。
可选的,如图12所示,本申请提供的一种数据传输装置还包括:接收模块803,用于接收用户设备定期上报的链路质量信息。处理模块801用于根据链路质量信息确定每条RAT链路的目标数据分配比。处理模块801还用于根据目标数据分配比为每条RAT链路分配数据。由此,无线接入设备可以根据用户设备定期上报的链路质量信息,实时调整为每条RAT链路分配的目标数据分配比,从而使分配到每条RAT链路上的数据始终与对应的RAT链路的链路质量信息相匹配,从而提高数据分流性能。
可选的,处理模块801用于根据目标数据分配比,分别确定每条RAT链路的最小分配单位;最小分配单位用于指示无线接入设备每次分配给RAT链路的数据长度。处理模块801还用于根据最小分配单位指示的数据长度轮流向每条RAT链路分配数据。由此,无线接入设备在数据传输过程中,可以根据每条RAT链路的最小分配单位对数据进行切分,并分配给对应的RAT链路,其中,无线接入设备为各条RAT链路每次切分的数据包的长度之比等于目标数据分配比,从而使各条RAT链路在相同时间内传输的数据总量的比值等于或接近目标数据分配比,与各条RAT链路的链路质量信息相匹配,从而提高数据分流性能。
可选的,处理模块801用于生成基准分配单位,基准分配单位指示一个预设的数据长度。处理模块801还用于分别获取每条RAT链路的实时数据分配比。处理模块801还用于根据实时数据分配比和目标数据分配比从RAT链路中实时确定目标RAT链路,目标RAT链 路的实时数据分配比低于目标数据分配比,且与目标数据分配比偏差最大。处理模块801还用于根据基准分配单位指示的数据长度向目标RAT链路分配数据。由此,无线接入设备根据基准分配单位确定了每次向RAT链路分配的数据长度,并根据实时数据分配比和目标数据分配比实时确定每次数据分配的目标RAT链路;由于目标RAT链路的实时数据分配比与目标数据分配比偏差最大,因此,无线接入设备为目标RAT链路分配数据使得目标RAT链路的实时数据分配比向目标数据分配比逼近,进而,在一段时间内,各个RAT链路传输的数据总量的实时数据分配比等于或接近目标数据分配比,与各条RAT链路的链路质量信息相匹配,从而提高数据分流性能。
可选的,处理模块801用于获取每个RAT链路的优先级和链路质量阈值。处理模块801还用于将数据分配给当前负载低于链路质量阈值的优先级最高的RAT链路。处理模块801还用于在监测到RAT链路的当前负载达到或者高于链路质量阈值时,将数据分流给其他RAT链路。其中,链路质量阈值包括链路流量阈值、链路时延阈值和链路丢包率阈值等表征链路质量信息低下的指标中的至少一个。由此,无线接入设备会将数据优先分配给优先级高的RAT链路,同时保证RAT链路上传输的数据满足链路质量阈值的要求,使多条RAT链路按照优先级从高到低依次在链路质量阈值允许的范围内得到最大化利用,从而提高数据分流性能。
可选的,处理模块801用于向数据包中配置RAT链路对应的目标IP地址,目标IP地址为用户设备建立RAT链路指定的物理端口的IP地址。处理模块801还用于根据数据包在数据中的原始顺序为每个数据包配置数据顺序消息,数据顺序消息用于发送给用户设备,使用户设备根据数据顺序消息将接收的数据包排序聚合成完整数据。由此,无线接入设备向数据包中添加目标IP地址,使RAT链路能够根据目标IP地址将数据包发送给对应的用户设备;另外,无线接入设备为每个配置包配置数据顺序消息,使用户设备根据数据顺序消息实现数据包的重新排序聚合,因此,即使用户设备不是按照数据包的原始顺序接收数据包,也能够将数据包按照原始顺序排列,从而保证用户设备接收到的数据是准确完整的。
可选的,处理模块801用于缓存向用户设备发送的数据。接收模块803用于接收用户设备反馈的数据接收确认消息。处理模块801还用于如果接收模块803在预设时延未接收到用户设备反馈的数据接收确认消息,则将缓存的数据分配给其他RAT链路。由此,无线接入网设备为了应对分配给RAT链路的数据由于各种原因未能送达给用户设备的情况,缓存已向用户设备发送的数据,从而当数据未能送达给用户设备时(无线接入设备如果在预设时延未接收到用户设备反馈的数据接收确认消息,即视为数据未能送达给用户设备),将缓存的数据分配给其他RAT链路,从而,避免在数据分流传输的过程中,某些数据丢失而导致数据不完整的情况发生,提高数据分流性能。
可选的,RAT链路包括第一类链路和第二类链路,第一类链路包括至少一条基于授权频谱的RAT链路,第二类链路包括至少一条基于非授权频谱的RAT链路。由此,本申请可以通过同时使用基于授权频谱的RAT链路和基于非授权频谱的RAT链路在无线接入设备和用户设备之间传输数据,从而提高数据传输速度。
图13示出了上述实施例中所涉及的数据传输装置的又一种可能的结构示意图。如图13所示,该数据传输装置包括处理器901、收发器902和存储器903。存储器903用于与处理器901耦合,其保存该数据传输装置必要的计算机程序904。例如,在一个实施中, 处理器901被配置为无线接入设备的操作和功能。收发器902用于实现无线接入设备与用户设备/核心网设备之间的通信。根据上述装置,数据传输过程中的数据分流过程在无线接入设备上执行,并且,无线接入设备根据RAT链路的链路质量信息为每条链路分配数据,从而将数据更多地分配给链路质量信息高(例如链路传输速率高、链路负载低、丢包率低、传输时延低的RAT链路)的RAT链路。由此,本申请提供的方法,能够提高无线接入设备与用户设备通过多条链路传输数据时的数据分流性能,提高无线接入设备与用户设备之间的数据传输速率。
如图14所示,本申请还提供了一种计算机可读存储介质1001,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面的方法。其中该存储介质1001可以是RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者任何其它形式的存储介质。由此,能够提高无线接入设备与用户设备通过多条链路传输数据时的数据分流性能,提高无线接入设备与用户设备之间的数据传输速率。
本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面的方法。从而,能够提高无线接入设备与用户设备通过多条链路传输数据时的数据分流性能,提高无线接入设备与用户设备之间的数据传输速率。
本申请还提供了一种芯片系统,图15为该芯片系统的结构示意图。该芯片系统包括处理器1101,用于支持上述装置或用户设备实现上述方面中所涉及的功能,例如,生成或处理上述方法中所涉及的数据和信息。在一种可能的设计中,芯片系统还包括存储器1102,存储器1102用于保存管理监控事件的装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。从而,能够提高无线接入设备与用户设备通过多条链路传输数据时的数据分流性能,提高无线接入设备与用户设备之间的数据传输速率。
用于执行本申请上述数据传输装置的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于无线接入设备中。当然,处理器和存储介质也可以作为分立组件存在于无线接入设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生 按照本发明实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (18)

  1. 一种数据传输方法,其特征在于,用于在无线接入设备和用户设备之间传输数据,所述无线接入设备与所述用户设备之间存在多条无线电接入技术(radio access technology,RAT)链路,所述方法包括:
    所述无线接入设备根据所述RAT链路的链路质量信息,为每条所述RAT链路分配数据;
    所述无线接入设备通过所述RAT链路将已分配数据并行发送给所述用户设备。
  2. 根据权利要求1所述的方法,其特征在于,所述无线接入设备根据所述RAT链路的链路质量信息,为每条所述RAT链路分配数据,包括:
    所述无线接入设备接收所述用户设备定期上报的所述链路质量信息;
    所述无线接入设备根据所述链路质量信息确定每条RAT链路的目标数据分配比;
    所述无线接入设备根据所述目标数据分配比为每条所述RAT链路分配数据。
  3. 根据权利要求2所述的方法,其特征在于,所述无线接入设备根据所述目标数据分配比为每条所述分配数据,包括:
    所述无线接入设备根据所述目标数据分配比,分别确定每条所述RAT链路的最小分配单位;所述最小分配单位用于指示所述无线接入设备每次分配给所述RAT链路的数据长度;
    所述无线接入设备根据所述最小分配单位指示的数据长度轮流向每条所述RAT链路分配数据。
  4. 根据权利要求2所述的方法,其特征在于,所述无线接入设备根据所述目标数据分配比为每条所述分配数据,包括:
    所述无线接入设备生成基准分配单位,所述基准分配单位指示一个预设的数据长度;
    所述无线接入设备分别获取每条所述RAT链路的实时数据分配比;
    所述无线接入设备根据所述实时数据分配比和所述目标数据分配比从所述RAT链路中实时确定目标RAT链路,所述目标RAT链路的所述实时数据分配比低于所述目标数据分配比,且与所述目标数据分配比偏差最大;
    所述无线接入设备根据基准分配单位指示的数据长度向所述目标RAT链路分配数据。
  5. 根据权利要求2所述的方法,其特征在于,所述无线接入设备根据所述目标数据分配比为每条所述分配数据,包括:
    所述无线接入设备获取每个所述RAT链路的优先级和链路质量阈值;
    所述无线接入设备将数据分配给当前负载低于所述链路质量阈值的优先级最高的所述RAT链路;
    所述无线接入设备在监测到所述RAT链路的当前负载达到或者高于所述链路质量 阈值时,将所述数据分流给其他所述RAT链路;
    其中,所述链路质量阈值包括链路流量阈值、链路时延阈值和链路丢包率阈值等表征链路质量信息低下的指标中的至少一个。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述无线接入设备为所述RAT链路分配数据,还包括:
    所述无线接入设备向数据包中配置所述RAT链路对应的目标互联网协议地址(internet protocol address,IP地址),所述目标IP地址为所述用户设备建立所述RAT链路指定的物理端口的IP地址;
    所述无线接入设备根据数据包在数据中的原始顺序为每个数据包配置数据顺序消息,所述数据顺序消息用于发送给所述用户设备,使所述用户设备根据所述数据顺序消息将接收的数据包排序聚合成完整数据。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,还包括:
    所述无线接入设备缓存向所述用户设备发送的数据;
    所述无线接入设备如果在预设时延未接收到所述用户设备反馈的数据接收确认消息,则将缓存的数据分配给其他RAT链路。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,还包括:
    所述RAT链路包括第一类链路和第二类链路,所述第一类链路包括至少一条基于授权频谱的RAT链路,所述第二类链路包括至少一条基于非授权频谱的RAT链路。
  9. 一种数据传输装置,其特征在于,用于在无线接入设备和用户设备之间传输数据,所述无线接入设备与所述用户设备之间存在多条无线电接入技术(radio access technology,RAT)链路,所述装置包括:
    处理模块,用于根据所述RAT链路的链路质量信息,为每条所述RAT链路分配数据;
    发送模块,用于通过所述RAT链路将已分配数据并行发送给所述用户设备。
  10. 根据权利要求9所述的装置,其特征在于,还包括:接收模块;
    所述接收模块,用于接收所述用户设备定期上报的所述链路质量信息;
    所述处理模块,用于根据所述链路质量信息确定每条RAT链路的目标数据分配比;
    所述处理模块,还用于根据所述目标数据分配比为每条所述RAT链路分配数据。
  11. 根据权利要求10所述的装置,其特征在于,
    所述处理模块,用于根据所述目标数据分配比,分别确定每条所述RAT链路的最小分配单位;所述最小分配单位用于指示所述无线接入设备每次分配给所述RAT链路的数据长度;
    所述处理模块,还用于根据所述最小分配单位指示的数据长度轮流向每条所述RAT链路分配数据。
  12. 根据权利要求10所述的装置,其特征在于,
    所述处理模块,用于生成基准分配单位,所述基准分配单位指示一个预设的数据长度;
    所述处理模块,还用于分别获取每条所述RAT链路的实时数据分配比;
    所述处理模块,还用于根据所述实时数据分配比和所述目标数据分配比从所述RAT链路中实时确定目标RAT链路,所述目标RAT链路的所述实时数据分配比低于所述目标数据分配比,且与所述目标数据分配比偏差最大;
    所述处理模块,还用于根据基准分配单位指示的数据长度向所述目标RAT链路分配数据。
  13. 根据权利要求10所述的装置,其特征在于,
    所述处理模块,用于获取每个所述RAT链路的优先级和链路质量阈值;
    所述处理模块,还用于将数据分配给当前负载低于所述链路质量阈值的优先级最高的所述RAT链路;
    所述处理模块,还用于在监测到所述RAT链路的当前负载达到或者高于所述链路质量阈值时,将所述数据分流给其他所述RAT链路;
    其中,所述链路质量阈值包括链路流量阈值、链路时延阈值和链路丢包率阈值等表征链路质量信息低下的指标中的至少一个。
  14. 根据权利要求9-13任一项所述的装置,其特征在于,
    所述处理模块,用于向数据包中配置所述RAT链路对应的目标IP地址,所述目标IP地址为所述用户设备建立所述RAT链路指定的物理端口的IP地址;
    所述处理模块,还用于根据数据包在数据中的原始顺序为每个数据包配置数据顺序消息,所述数据顺序消息用于发送给所述用户设备,使所述用户设备根据所述数据顺序消息将接收的数据包排序聚合成完整数据。
  15. 根据权利要求9-14任一项所述的装置,其特征在于,
    所述处理模块,用于缓存向所述用户设备发送的数据;
    所述接收模块,用于接收所述用户设备反馈的数据接收确认消息;
    所述处理模块,还用于如果所述接收模块在预设时延未接收到所述用户设备反馈的数据接收确认消息,则将缓存的数据分配给其他RAT链路。
  16. 根据权利要求9-15任一项所述的装置,其特征在于,
    所述RAT链路包括第一类链路和第二类链路,所述第一类链路包括至少一条基于授权频谱的RAT链路,所述第二类链路包括至少一条基于非授权频谱的RAT链路。
  17. 一种数据传输装置,其特征在于,用于在无线接入设备和用户设备之间传输数据,所述无线接入设备与所述用户设备之间存在多条无线电接入技术(radio access technology,RAT)链路,所述装置包括:
    处理器,用于根据所述RAT链路的链路质量信息,为每条所述RAT链路分配数据;
    收发器,用于通过所述RAT链路将已分配数据并行发送给所述用户设备。
  18. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-8任意一项所述的方法。
PCT/CN2018/107544 2018-09-26 2018-09-26 一种数据传输方法及装置 WO2020061799A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107544 WO2020061799A1 (zh) 2018-09-26 2018-09-26 一种数据传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107544 WO2020061799A1 (zh) 2018-09-26 2018-09-26 一种数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2020061799A1 true WO2020061799A1 (zh) 2020-04-02

Family

ID=69949569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107544 WO2020061799A1 (zh) 2018-09-26 2018-09-26 一种数据传输方法及装置

Country Status (1)

Country Link
WO (1) WO2020061799A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102905319A (zh) * 2012-10-23 2013-01-30 李文龙 一种数据分流的方法及系统
CN103547327A (zh) * 2012-12-27 2014-01-29 华为技术有限公司 多种无线制式通信的实现方法及用户设备
US20150351110A1 (en) * 2014-05-30 2015-12-03 Sony Corporation Electronic apparatus, a central node apparatus and a network side apparatus, a transmission method and a configuration method
CN105578528A (zh) * 2016-01-08 2016-05-11 努比亚技术有限公司 数据接口分流方法、装置及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102905319A (zh) * 2012-10-23 2013-01-30 李文龙 一种数据分流的方法及系统
CN103547327A (zh) * 2012-12-27 2014-01-29 华为技术有限公司 多种无线制式通信的实现方法及用户设备
US20150351110A1 (en) * 2014-05-30 2015-12-03 Sony Corporation Electronic apparatus, a central node apparatus and a network side apparatus, a transmission method and a configuration method
CN105578528A (zh) * 2016-01-08 2016-05-11 努比亚技术有限公司 数据接口分流方法、装置及终端设备

Similar Documents

Publication Publication Date Title
JP7150045B2 (ja) 通信方法及び装置
WO2018059234A1 (zh) 一种缓存状态报告的上报方法及装置
JP7177259B2 (ja) データ伝送方法及び装置
US11129048B2 (en) Data transmission method, base station, and wireless communications device
CN108337633B (zh) 数据分流配置方法、基站系统和用户终端
AU2016434922A1 (en) Data transmission method and apparatus
EP3846529B1 (en) Data transmission method and device
CN110326269B (zh) 一种数据报文传输方法及装置
US10869213B2 (en) Transmission status reporting apparatus and method and communication system
WO2018032991A1 (zh) 一种数据处理方法及装置
WO2022001175A1 (zh) 数据包发送的方法、装置
WO2020125573A1 (zh) 通信方法、装置、终端、网络设备及存储介质
JP6454412B2 (ja) 制御メッセージの伝送方法、装置及びコンピュータ記憶媒体
CN110831061A (zh) 调度吞吐量的获取方法及装置、基站、存储介质
WO2020088400A1 (zh) 资源调度方法、装置及设备
US20170339598A1 (en) Control apparatus, communication apparatus, control method, and computer readable storage medium
JP2024505300A (ja) サービス指示方法及び装置
WO2017128609A1 (zh) 一种数据传输方法、装置和系统
CN109995608B (zh) 网络速率计算方法和装置
CN108809510B (zh) 一种数据传输的处理方法和装置
WO2020061799A1 (zh) 一种数据传输方法及装置
WO2022257790A1 (zh) 一种通信方法及装置
CN109561443B (zh) 一种信息处理方法、装置、设备及计算机可读存储介质
WO2021249190A1 (zh) 协议数据单元处理方法、装置、发送设备及存储介质
TW201334469A (zh) 資料封包流量成形技術

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934801

Country of ref document: EP

Kind code of ref document: A1