WO2020060069A1 - 모듈 버스바를 포함하는 배터리 모듈 - Google Patents

모듈 버스바를 포함하는 배터리 모듈 Download PDF

Info

Publication number
WO2020060069A1
WO2020060069A1 PCT/KR2019/011203 KR2019011203W WO2020060069A1 WO 2020060069 A1 WO2020060069 A1 WO 2020060069A1 KR 2019011203 W KR2019011203 W KR 2019011203W WO 2020060069 A1 WO2020060069 A1 WO 2020060069A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
body portion
module
bus bar
cylindrical battery
Prior art date
Application number
PCT/KR2019/011203
Other languages
English (en)
French (fr)
Inventor
양근주
윤석진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980006062.4A priority Critical patent/CN111418090B/zh
Priority to JP2020526379A priority patent/JP7062177B2/ja
Priority to US16/768,840 priority patent/US11715865B2/en
Priority to EP19863111.1A priority patent/EP3696883A4/en
Publication of WO2020060069A1 publication Critical patent/WO2020060069A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/06Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles
    • B21D5/08Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles making use of forming-rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module including a module bus bar, and more particularly, to a manufacturing method of manufacturing a battery module capable of reducing current loss and increasing manufacturing efficiency.
  • lithium secondary batteries are free of charge and discharge because they have little memory effect compared to nickel-based secondary batteries. The self-discharge rate is very low, and it is spotlighted for its high energy density.
  • the lithium secondary battery mainly uses a lithium-based oxide and a carbon material as a positive electrode active material and a negative electrode active material, respectively.
  • the lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate each coated with the positive electrode active material and the negative electrode active material are disposed with a separator interposed therebetween, and an exterior material for sealingly storing the electrode assembly together with an electrolyte.
  • the performance of electronic devices improves day by day, the performance of secondary batteries that supply high-output power at a time is also improving.
  • the heat generation amount is very large, and if it cannot properly cope with the temperature rise, an accident such as ignition / explosion may be caused.
  • the battery management unit applied to the electronic device is a temperature element used for temperature measurement of a plurality of secondary batteries, and may include a negative temperature coefficient device (NTC element), a positive temperature coefficient device (PTC) element, and the like. .
  • NTC element negative temperature coefficient device
  • PTC positive temperature coefficient device
  • the battery module of the prior art is provided with an electrically conductive bus bar plate to electrically connect a plurality of secondary cells in series or parallel connection.
  • a bus bar plate is electrically connected to the battery management unit, and is configured to control charging and discharging of a plurality of secondary batteries or to transmit power of the plurality of secondary batteries to external electronic devices through external input / output terminals. It was common.
  • a bus bar plate provided in such a battery module may use a material having a high electrical resistance to increase the weldability of resistance welding with an electrode terminal.
  • busbar plate can be a factor that increases the current loss in transferring the current generated in the secondary battery to an external device, and may impair energy efficiency.
  • the higher the electrical resistance the lower the thermal conductivity, which may be a factor that degrades the heat dissipation performance of the battery module to which such a bus bar plate is applied.
  • the present invention has been devised to solve the above problems, and specifically, it is an object of the present invention to provide a battery module capable of reducing current loss and increasing manufacturing efficiency.
  • a plurality of cylindrical battery cells each of which is formed on the upper and lower electrode terminals;
  • a module housing provided with a receiving portion having a plurality of hollow structures to accommodate the plurality of cylindrical battery cells;
  • a first portion provided with a plurality of connecting portions extending in a horizontal direction to be in contact with electrode terminals of the plurality of cylindrical battery cells and a body portion extending in a horizontal direction and positioned at an upper or lower portion of the plurality of cylindrical battery cells It may include a module bus bar having a metal plate and a second metal plate that is bonded to the body portion of the first metal plate and has a metal having a higher electrical conductivity than the first metal plate.
  • the second metal plate may be clad bonded to the body portion of the first metal plate.
  • a coupling protrusion protruding in a direction in which the body portion of the first metal plate is located may be formed.
  • an engaging groove may be formed in the body portion of the first metal plate so that the engaging projection is inserted and fixed.
  • the main body portion of the first metal plate may be formed with an insertion portion having a support wall protruding outward so that at least a portion of the second metal plate is inserted.
  • the second metal plate may be formed with a receiving groove inserted in the inner direction of the body to surround at least a portion of the body portion of the first metal plate.
  • connection portion of the first metal plate may be relatively thinner than the second metal plate.
  • the module bus bar is formed of a plurality of connection extensions formed in a horizontal direction so as to contact the electrode terminals of the plurality of cylindrical battery cells from one side of the junction portion and the junction portion bonded to the outer surface of the second metal plate.
  • 3 may further include a metal plate.
  • connection portion of the first metal plate and the connection extension portion of the third metal plate may be spaced apart at a predetermined distance.
  • the second metal plate may include a protrusion configured to protrude and extend outward from the body portion of the first metal plate, and a fixing hole in which an external input / output terminal is inserted and coupled may be formed in the protrusion.
  • a mounting portion in which the module bus bar is mounted outside may be formed in the module housing. Furthermore, a hook structure for pressing and fixing the module bus bar mounted on the mounting portion in the inner direction may be formed on the mounting portion.
  • the battery pack according to the present invention for achieving the above object includes at least two or more battery modules.
  • the device according to the present invention for achieving the above object includes a battery pack.
  • a shape processing step of rolling a connection portion configured to electrically connect the main body portion extending in a direction in which a plurality of cylindrical battery cells of the first metal plate are arranged and the plurality of cylindrical battery cells using a rolling roller;
  • the coupling protrusion protruding in the direction in which the first metal plate formed of the second metal plate is located may be inserted and coupled to the body portion of the first metal plate.
  • the manufacturing method may further include a molding step of punching molding using a die so that an external input / output terminal of the second metal plate is formed.
  • the battery module of the present invention can reduce the current loss of the module bus bar by providing a metal having a higher electrical conductivity than the metal provided by the first metal plate. , It can reduce the power loss of the battery module.
  • the second metal plate with high conductivity has a higher thermal conductivity and a faster cooling rate than the first metal plate. Accordingly, it is possible to greatly improve the cooling efficiency of the battery module by helping heat dissipation of the battery module.
  • the second metal plate is clad bonded to the body portion of the first metal plate, so that the electrical connection between the second metal plate and the body portion of the first metal plate is excellent, and the second Since the bonding property (bonding property) between the metal plate and the body portion of the first metal plate is excellent, it is possible to prevent the durability of the module busbar from becoming weak.
  • the second metal plate of the first metal plate can be joined with a strong bonding force to the body portion.
  • the engaging projection can increase the contact area with the second metal plate, as compared with the module bus bar in FIG. 3, thereby increasing the bonding force. It has the effect of exerting and relatively good metal mixing at the junction.
  • the second metal plate can be primarily seated and fixed.
  • the projections of the insert can be stably supported and fixed so that the second metal plate can be joined in place.
  • the insertion portion can increase the contact area with the second metal plate when compared to the module bus bar of FIG. 3, and thus has an effect of reducing high bonding force and electrical resistance that may occur at the joining site.
  • the second metal plate can be stably seated and coupled to the second metal plate by forming an accommodating groove introduced in the inner direction of the body.
  • the second metal plate when rolling the second metal plate onto the body portion of the first metal plate, before the second metal plate is bonded in place, the second metal plate is primarily on the body portion of the first metal plate. Since it can be fixed, there is an advantage to facilitate the bonding process.
  • the thickness of the connection portion of the first metal plate by configuring the thickness of the connection portion of the first metal plate to be thin, welding between the connection portion and the electrode terminal of the cylindrical battery cell can be performed at a low and low process temperature. That is, in the case of resistance welding, as compared with a thick case, the thinner the connection portion, the faster the melting temperature at lower temperatures. Accordingly, it is possible to not only increase the efficiency of the manufacturing process, but also minimize the occurrence of defects in the cylindrical battery cell according to the welding temperature.
  • connection portion of the first metal plate and the connection extension portion of the third metal plate are spaced apart at a predetermined distance so as to be resistance welded to the electrode terminals of the cylindrical battery cell, the connection portion of the first metal plate Compared with the current path of the liver, the current path between the connection portion of the first metal plate and the connection extension of the third metal plate is longer and the electrical resistance is higher, so that the electrode terminal of the cylindrical battery cell from the connection portion of the first metal plate, and the third The current can be concentrated in the current path to the connection extension of the metal plate. Accordingly, resistance welding between the module busbar and the electrode terminal can be efficiently performed. And, it is possible to shorten the manufacturing time and manufacture a battery module having excellent weldability.
  • the first metal plate is through a second metal plate having a relatively high electrical conductivity. Since power can be sent to an external electronic device, power loss supplied from the battery module can be minimized.
  • the second metal plate has better heat dissipation characteristics than the first metal plate, it is more advantageous to dissipate heat generated in the external input / output terminals to the outside.
  • FIG. 1 is a perspective view schematically showing components for a battery module according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view schematically showing separated components for a battery module according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of the module busbar cut along the line C-C 'in FIG. 1.
  • FIG. 4 is a cross-sectional view schematically showing a cut state of a module busbar of a battery module according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a cut state of a module bus bar of a battery module according to another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing a cut state of a module bus bar of a battery module according to another embodiment of the present invention.
  • FIG. 7 is a perspective view schematically showing a module bus bar of a battery module according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view schematically showing a cut state of the module bus bar along the line D-D 'of FIG. 7.
  • FIG. 9 is a perspective view schematically showing components for a battery module according to another embodiment of the present invention.
  • FIG. 1 is a perspective view schematically showing components for a battery module according to an embodiment of the present invention.
  • Figure 2 is an exploded perspective view schematically showing the separated components for the battery module according to an embodiment of the present invention.
  • the battery module 200 may include a plurality of cylindrical battery cells 100, a module housing 220, and a module bus bar 210. have.
  • the cylindrical battery cell 100 may include a cylindrical battery can 120 and an electrode assembly (not shown) accommodated inside the battery can 120.
  • the battery can 120 includes a material having high electrical conductivity, for example, the battery can 120 may include an aluminum or copper material.
  • the battery can 120 may be configured to elongate in the vertical direction.
  • the battery can 120 may be cylindrical extending in the vertical direction.
  • electrode terminals 111 and electrode terminals 112 may be formed on upper and lower portions of the battery can 120, respectively.
  • an anode terminal 111 may be formed on a flat circular upper surface of the battery can 120
  • a cathode terminal 112 may be formed on a flat circular lower surface of the battery can 120. You can.
  • the cylindrical battery cell 100 may be arranged in a plurality of columns and rows in a horizontal direction.
  • the horizontal direction may be said to mean a direction parallel to the ground when the cylindrical battery cell 100 is placed on the ground, and may also be referred to as at least one direction on a plane perpendicular to the vertical direction. Note that the horizontal direction can be referred to as the X and Y directions in FIG. 1.
  • the battery module 200 includes a plurality of cylindrical battery cells 100 arranged in five rows in the left-right direction (x direction) and three rows in the front-rear direction (y direction). It may be provided.
  • the electrode assembly (not shown) may be formed in a structure wound around a jelly-roll type with a separator interposed between the positive electrode and the negative electrode.
  • an anode tab is attached to the anode (not shown) to be connected to the anode terminal 111 at the top of the battery can 120.
  • a negative electrode tab may be attached to the negative electrode (not shown) to be connected to the negative electrode terminal 112 at the bottom of the battery can 120.
  • the module housing 220, the cylindrical battery cell 100 may be provided with a receiving portion (220s1, 220s2) that can be accommodated by inserting therein.
  • the receiving portion (220s1, 220s2), a plurality of hollow structures formed to surround the outer surface of the cylindrical battery cell 100 may be formed.
  • the module housing 220 may be provided with an electrically insulating material.
  • the electrically insulating material may be a polymer plastic. More specifically, the electrically insulating material may be PVC (Poly Vinyl Chloride).
  • the module housing 220 may be provided to form an inner space and may have outer walls 220d formed in front, rear, left, and right directions.
  • the upper case 220a and the lower case 220b may be formed with a through hole 220h such that a fastening bolt 228 is inserted.
  • the upper case 220a and the lower case 220b constituting the module housing 220 have through holes 220h into which bolts 228 are inserted and fixed. Can be formed. Accordingly, the upper case 220a and the lower case 220b may be fastened and coupled through a bolt 228 inserted in the through hole 220h.
  • the module bus bar 210 may be configured to electrically connect a plurality of cylindrical battery cells 100.
  • the module bus bar 210 may be configured to electrically connect a plurality of cylindrical battery cells 100 in series.
  • the module bus bar 210 may be configured to electrically connect a plurality of cylindrical battery cells 100 in parallel.
  • the module bus bar 210 may include metal having excellent electrical conductivity.
  • the module bus bar 210 may include a first metal plate 212 and a second metal plate 214.
  • the first metal plate 212 may include a main body portion 212a positioned above or below the plurality of cylindrical battery cells 100 and extending in a horizontal direction.
  • the body portion 212a may be disposed between the plurality of cylindrical battery cells 100 arranged in the two rows.
  • the body portion 212a may have a rectangular plate shape having a predetermined thickness.
  • the first metal plate 212 has both sides of the body portion 212a in a horizontal direction so as to contact with the electrode terminals 111 of the plurality of cylindrical battery cells 100 from one side of the body portion 212a.
  • a plurality of connecting portions 212b extending from each may be provided. That is, the connecting portion 212b may contact the upper surface of the electrode terminals 111 of the plurality of cylindrical battery cells 100 from the side of the main body portion 212a in the horizontal direction (x direction in FIG. 1). So that it can be extended.
  • the module bus bar 210 may include one first metal plate 212.
  • the first metal plate 212, the main body portion 212a and the main body portion 212a located in the upper or lower portion of the plurality of cylindrical battery cells 100 and extended in the horizontal direction (x direction in FIG. 1) ) May be provided with a plurality of connecting portions 212b extending in a horizontal direction so as to contact the electrode terminals 111 of the plurality of cylindrical battery cells 100.
  • connection portion 212b of the module bus bar 210 that is in electrical contact connection with the electrode terminal 111 of the cylindrical battery cell 100 is formed to have a branched structure in two.
  • the second metal plate 214 may be joined to the body portion 212a of the first metal plate 212.
  • the second metal plate 214 may have a square plate shape similar to the body portion 212a of the first metal plate 212.
  • the second metal plate 214 may be joined on the body portion 212a of the first metal plate 212.
  • the second metal plate 214 may have a rectangular plate shape extending along an extended direction of the body portion 212a.
  • the second metal plate 214 may have a metal having a higher electrical conductivity than the first metal plate 212.
  • the second metal plate 214 may be made of a metal having a higher electrical conductivity than the first metal plate 212.
  • the second metal plate 214 may be configured to have relatively higher electrical conductivity than the first metal plate 212.
  • the first metal plate 212 may include a nickel material
  • the second metal plate 214 may include a copper material.
  • the second metal plate 214 can be configured to have a relatively higher electrical conductivity than the first metal plate 212, the first metal plate 212 )
  • the second metal plate 214 may be applied as long as nickel, aluminum, gold, and silver are metal alloys composed of main materials.
  • the first metal plate 212 may include a metal having a relatively higher resistivity than the second metal plate 214.
  • the high resistivity metal may be nickel.
  • the second metal plate 214 is provided with a metal having a higher electrical conductivity than the metal of the first metal plate 212, so that the module busbar 210 The current loss can be reduced, and the power loss of the battery module 200 can be reduced.
  • the second metal plate 214 having high conductivity has a higher thermal conductivity and a faster cooling rate than the first metal plate 212. Accordingly, the heat dissipation of the battery module 200 can be helped to greatly increase the cooling efficiency of the battery module 200.
  • the first metal plate 212 is provided with a metal having a higher specific resistance than the metal provided by the second metal plate 214, so that the connection portion 212b of the first metal plate 212 is the cylindrical battery.
  • resistance welding is performed with the electrode terminal 111 of the cell 100, high resistance heat can be generated at a welding site by a metal having a high specific resistance, thereby improving welding processability.
  • the connecting portion 212b may include a structure branched into two. That is, the connection portion 212b may have a gap having a predetermined distance between two branched plate shapes. For example, as illustrated in FIG. 1, the connecting portion 212b protrudes in a horizontal direction in the form of two branches (separated structure) from the body portion 212a of the first metal plate 212. It can be extended.
  • the second metal plate 214 may be clad to the body portion 212a of the first metal plate 212.
  • a portion where the body portion 212a of the second metal plate 214 and the first metal plate 212 are clad is bonded to the metal of the second metal plate 214 and the first metal plate 212.
  • some metals of the second metal plate 214 and the metal 1 may be mixed with each other by metal bonding.
  • the second metal plate 214 is clad bonded to the body portion 212a of the first metal plate 212, so that the second metal plate 214 and the first
  • the electrical connection between the main body portion 212a of the metal plate 212 is very excellent, and the bonding property (bondability) between the second metal plate 214 and the main body portion 212a of the first metal plate 212 is excellent.
  • FIG. 4 is a cross-sectional view schematically showing a cut state of a module busbar of a battery module according to another embodiment of the present invention.
  • the module bus bar 210B is provided on an outer surface of the second metal plate 214B facing the main body 212a of the first metal plate 212B.
  • the engaging projection 212p protruding in the direction in which the body portion 212a of the first metal plate 212B is located may be formed.
  • the shape of the engaging projection 212p may be an uneven structure.
  • the shape of the engaging projection 212p is not limited to an uneven structure, and the engaging projection 212p is inserted and fixed to the body portion 212a of the first metal plate 212B to increase the bonding force between the two members. Any suitable shape can be applied.
  • an engaging groove 212h may be formed in the body portion 212a of the first metal plate 212B so that the engaging projection 212p is inserted and fixed.
  • the engaging groove 212h may be in a form that is introduced into a structure corresponding to the external shape of the engaging projection 212p.
  • the outer surface of the second metal plate 214B facing the body 212a of the first metal plate 212B protrudes and extends downwardly.
  • Dog coupling protrusions 212p may be formed.
  • nine coupling grooves 212h introduced into a shape corresponding to the nine coupling protrusions 212p may be formed in the body portion 212a of the first metal plate 212B.
  • the coupling protrusion 212p is formed on the outer surface of the second metal plate 214B, and the coupling groove 212h is provided in the body portion 212a of the first metal plate 212B.
  • the second metal plate 214B can be joined to the body portion 212a of the first metal plate 212B with strong bonding force.
  • the coupling protrusion 212p is coupled with the module bus bar 210 of FIG. 3.
  • FIG. 5 is a cross-sectional view schematically showing a cut state of a module bus bar of a battery module according to another embodiment of the present invention.
  • the second metal plate 214 is inserted into the body 212a of the first metal plate 212C.
  • An insertion portion 212i configured to be formed may be formed. Specifically, the insertion portion 212i may be provided with a support wall 212w protruding outward.
  • an insertion portion 212i in which an insertion space is formed in a body portion 212a of the first metal plate 212C so that a portion of the second metal plate 214 is inserted May be provided.
  • the insertion portion 212i may be provided with two support walls 212w protruding upwardly to support both side portions in the horizontal direction of the second metal plate 214.
  • the second metal plate 214 By forming the insertion portion 212i with a support wall 212w is provided on the body portion 212a of the first metal plate 212C, the second metal plate 214 ) May be primarily seated and fixed.
  • the insertion is performed so that the second metal plate 214 can be joined in place.
  • the projection of the portion 212i can be stably supported and fixed.
  • the insertion portion 212i can increase the contact area with the second metal plate 214 when compared to the module bus bar 210 of FIG. 3, and thus can generate high bonding force and electricity generated at the bonding site. It has the effect of reducing resistance.
  • FIG. 6 is a cross-sectional view schematically showing a cut state of a module bus bar of a battery module according to another embodiment of the present invention.
  • a receiving groove 214h inserted in the inner direction of the body may be formed.
  • the receiving groove 214h may have an interior space sized to cover at least a portion of the body portion 212a of the first metal plate 212D.
  • the second metal plate 214D may cover a part of the horizontal side of the main body 212a of the first metal plate 212D and a top surface and a top surface.
  • the receiving groove 214h may be formed so as to be formed.
  • the second metal plate 214D is formed by forming the receiving groove 214h that is introduced in the inner direction of the body, so that the second metal plate 214D is stably seated and coupled. You can.
  • the second metal plate 214D when rolling the second metal plate 214D onto the body portion 212a of the first metal plate 212D, before the second metal plate 214D is joined in place, the second Since the metal plate 214D can be primarily fixed on the body portion 212a of the first metal plate 212D, there is an advantage of facilitating the bonding process.
  • the receiving groove 214h can increase the contact area between the main body portion 212a and the second metal plate 214D when compared with the module bus bar 210 of FIG. It has the effect of reducing the electrical resistance that can occur at the junction.
  • the connection portion 212b of the first metal plate 212 may have a thickness T1 in the vertical direction relatively thinner than the second metal plate 214.
  • the thickness T1 means a thickness T1 in a direction (up and down) in which the connecting portion 212b faces the electrode terminal 111 of the cylindrical battery cell 100.
  • connection portion 212b of the first metal plate 212 is preferably melted quickly during welding in order to be efficiently bonded to the electrode terminal 111 of the cylindrical battery cell 100.
  • the second metal plate 214 is not a portion where welding is performed, and may serve as a current path for transmitting current transmitted from the cylindrical battery cell 100 to an external electronic device.
  • the second metal plate 214 needs to reduce electrical resistance in order to minimize current loss during more current transmission. Accordingly, it is appropriate that the second metal plate 214 has a large cross-sectional area in a direction in which current flows. That is, the thicker the thickness T2 of the second metal plate 214 is, the more power loss can be reduced.
  • connection portion 212b of the first metal plate 212 has a thickness (T1) in the vertical direction relative to the second metal. It may be thinner than the thickness T2 of the plate 214.
  • the thickness T1 of the connection portion 212b of the first metal plate 212 is thin, the connection portion 212b and the electrode terminal of the cylindrical battery cell 100 ( 111)
  • the welding of the liver can be performed at a fast and low process temperature. That is, in the case of resistance welding, as compared with the case where the connecting portion is relatively thick, the thinner the connecting portion 212b has the advantage of being able to melt at a lower temperature quickly. Accordingly, it is possible to not only increase the efficiency of the manufacturing process, but also minimize the occurrence of defects in the cylindrical battery cell 100 according to the welding temperature.
  • FIG. 7 is a perspective view schematically showing a module bus bar of a battery module according to another embodiment of the present invention.
  • Figure 8 is a cross-sectional view schematically showing a cut state of the module bus bar along the line D-D 'of Figure 7
  • the module bus bar 210E may further include a third metal plate 216.
  • the third metal plate 216 may include a bonding portion 216a bonded to an outer surface of the second metal plate 214.
  • the bonding portion 216a may be located on the second metal plate 214.
  • the bonding portion 216a may be disposed between the plurality of cylindrical battery cells 100 arranged in the two rows.
  • the third metal plate 216 may be formed with a plurality of connection extensions 216b extending in a horizontal direction w from one side of the junction 216a. Furthermore, each of the plurality of connection extensions 216b may be in contact with the electrode terminals 111 of each of the plurality of cylindrical battery cells 100.
  • the third metal plate 216 may have a metal having a lower electrical conductivity than the second metal plate 214.
  • the third metal plate 216 may include a nickel material.
  • the third metal plate 216 can be applied to nickel, aluminum, gold, silver, etc., as long as it is a metal alloy composed of a main material.
  • the module bus bar 210E of the present invention may include a first metal plate 212, a second metal plate 214, and a third metal plate 216.
  • the first metal plate 212 and the third metal plate 216 may mainly include nickel.
  • the second metal plate 214 may mainly include copper. That is, the second metal plate 214 may have relatively higher electrical conductivity than the first metal plate 212 and the third metal plate 216.
  • the third metal plate 216 includes a plurality of connection extensions (a) extending in a horizontal direction from one side of the bonding portion 216a and the bonding portion 216a bonded to the outer surface of the second metal plate 214 ( 216b).
  • the module bus bar 210E further includes a third metal plate 216, thereby providing a body portion 212a of the first metal plate 212.
  • the second metal plate 214 and the bonding portion 216a of the third metal plate 216 may be roll-bonded. Accordingly, the bonding force between the metal plates of the module bus bar 210E is further improved, and the first metal plate 212 and the third metal plate 216 and the second electrically connected to the cylindrical battery cell 100 are second and second.
  • the joining area between the metal plates 214 is increased to minimize electrical resistance due to joining, and to reduce the current loss of the module bus bar 210E.
  • the module bus bar 210E may include the first metal plate having a different shape from the connection portion 212b of the module bus bar 210 of FIG. 3. 212) may have a connection portion 212b1. That is, the module bus bar 210E may be disposed such that the connection extension portion 216b of the third metal plate 216 is spaced apart from the connection portion 212b1 by a predetermined distance. That is, the connection portion 212b1 of the first metal plate 212 and the connection extension portion 216b of the third metal plate 216 may be spaced apart at a predetermined distance and disposed parallel to each other in the horizontal direction.
  • connection portion 212b1 of the first metal plate 212 and the connection extension portion 216b of the third metal plate 216 may be spaced apart at a predetermined distance.
  • the spaced apart distance between the connection portion 212b1 of the first metal plate 212 and the connection extension portion 216b of the third metal plate 216 is connected to the electrode terminal 111 of the cylindrical battery cell 100. In resistance welding, it is appropriate to be spaced at a distance capable of generating an appropriate resistance heat.
  • connection portion 212b1 of the first metal plate 212 and the connection extension portion 216b of the third metal plate 216 may be made of the same material.
  • connection portion 212b1 of the first metal plate 212 and the connection extension portion 216b of the third metal plate 216 may mainly include a nickel material.
  • connection portion 212b1 of the first metal plate 212 and the connection extension portion 216b of the third metal plate 216 are electrode terminals of the cylindrical battery cell 100.
  • the connecting portion 212b1 of the first metal plate 212 compared to the current path between the two connecting portions 212b1 of the first metal plate 212, the connecting portion 212b1 of the first metal plate 212 And the current path between the connection extension portion 216b of the third metal plate 216 is longer and the electrical resistance is higher, so that the electrode of the cylindrical battery cell 100 is connected from the connection portion 212b1 of the first metal plate 212.
  • Current blurring may be concentrated in the current path to the terminal 111 and the connection extension 216b of the third metal plate 216. Accordingly, resistance welding between the module busbar 210E and the electrode terminal can be efficiently performed. And, it is possible to shorten the manufacturing time and manufacture the battery module 200 having excellent weldability.
  • the second metal plate 214 of the module busbar 210A of the other form of the present invention is outward from the body portion 212a of the first metal plate 212. It may be provided with a protrusion 214a configured to protrude and extend. Specifically, the protrusion 214a may be formed with a coupling structure so that an external input / output terminal is coupled. For example, a perforated fixing hole 214b into which an external input / output terminal (not shown) is inserted may be formed in the protrusion 214a. In addition, the external input / output terminal may have a bolt shape that can be inserted and fastened to the fixing hole 214b.
  • protrusions 214a may be formed on two module bus bars 210A.
  • a fixing hole 214b to which an external input / output terminal (not shown) is coupled may be formed in each of the protrusions 214a.
  • the protrusion 214a when forming the protrusion 214a so that the external input / output terminal is coupled to the second metal plate 214 rather than the first metal plate 212, the first metal plate 212 is seen. Since power can be transmitted to an external electronic device through the second metal plate 214 having high electrical conductivity, power loss supplied from the battery module 200 can be minimized. In addition, since the second metal plate 214 has better heat dissipation characteristics than the first metal plate 212, it is more advantageous to dissipate heat generated in the external input / output terminal to the outside.
  • FIG. 9 is a perspective view schematically showing components for a battery module according to another embodiment of the present invention.
  • a mounting portion 222 in which the module bus bar 210 is mounted outside may be formed in the module housing 220.
  • a mounting portion 222 on which the module bus bar 210 can be mounted may be formed on an upper side or a lower side of the module housing 220. That is, between the plurality of cylindrical battery cells 100 accommodated in the module housing 220, a mounting portion 222 in which each of the module bus bars 210 and 210A can be mounted may be formed. In other words, between the two accommodating portions in which the plurality of cylindrical battery cells 100 of the module housing 220 are accommodated, a mounting portion 222 in which each of the module bus bars 210 and 210A can be mounted may be formed. You can.
  • a hook structure 222k for pressing and fixing the module bus bar 210 mounted on the mounting portion 222 in the inner direction may be formed on the mounting portion 222.
  • a pressing portion 222k2 extending in a horizontal direction may be provided to press the outer surface of the module bus bar 210.
  • the module busbar 210 pressed by the hook structure is stably fixed, and the structure is joined to the electrode terminals 111 and 112 of the plurality of cylindrical battery cells 100.
  • a battery pack (not shown) according to the present invention may include at least two or more of the battery modules 200. Specifically, the at least two or more battery modules 200 may be arranged in one direction. In some cases, the battery pack may further include a heat sink (not shown) for heat dissipation purposes.
  • the electronic device (not shown) according to the present invention may include the battery pack.
  • the battery pack may be accommodated in an external case of the electronic device.
  • the electronic device may be a moving means such as an electric bicycle, or may be a power tool or the like.
  • a method of manufacturing the module bus bar 210 may include a shape processing step, a bonding step, and a punching step.
  • the shape processing step, the first metal plate 212 of the plurality of cylindrical battery cells 100 extending in the direction in which the main body portion 212a and the plurality of cylindrical battery cells 100 are electrically It may be a step of rolling the connection portion 212b configured to be connected by using a rolling roller (not shown) to shape it.
  • the bonding step by rolling a second metal plate 214 having a higher electrical conductivity than the first metal plate 212 on the body portion 212a of the first metal plate 212 at a predetermined temperature It may be a step of cladding bonding.
  • the rolling used may be performed by a conventional heat treatment method.
  • the heat treatment temperature may be from room temperature to a temperature lower than the melting points of nickel and copper.
  • the predetermined temperature may be 100 °C to 500 °C.
  • the punching step may be a step of punching molding using a die (not shown) so that a connection portion 212b extending in a horizontal direction from the body portion 212a of the first metal plate 212 is formed. have.
  • the die may be formed so that the connecting portion 212b has a branched structure having a predetermined gap.
  • the module bus bar 210 by configuring the module bus bar 210 to clad bonding to the first metal plate 212 and the second metal plate 214, compared to a bus bar made of a single metal plate , can have two advantages. That is, the first metal plate 212 configured to be joined to the plurality of cylindrical battery cells 100 is provided with a metal having a relatively lower electrical conductivity than the second metal plate 214, the heat dissipation characteristics are low and welding There is an easy advantage. In addition, the second metal plate 214 is provided with a metal having a higher electrical conductivity than the first metal plate 212, so that the current supplied from the plurality of cylindrical battery cells 100 loses power. There is an advantage that it can be transmitted by minimizing.
  • module bus bar 210 is configured such that the first metal plate 212 and the second metal plate 214 are clad to each other (metal mixed), electricity generated at the joining portions of the two members This has the advantage of minimizing resistance.
  • the engaging projection 212p protruding in the direction in which the first metal plate 212 formed in the second metal plate 214 is located is the first metal plate. It may be inserted and coupled to the body portion 212a of 212.
  • the shape of the engaging projection 212p may be an uneven structure.
  • the shape of the engaging projection 212p is not limited to an uneven structure, and the engaging projection 212p is fixed to the body portion 212a of the first metal plate 212 to increase the bonding force between the two members. Any suitable shape can be applied.
  • an engaging groove 212h may be formed in the body portion 212a of the first metal plate 212 so that the engaging projection 212p is inserted and fixed.
  • the engaging groove 212h may be in a form that is introduced into a structure corresponding to the external shape of the engaging projection 212p.
  • the coupling protrusion 212p is formed on the outer surface of the second metal plate 214, and the coupling groove 212h is provided on the body portion 212a of the first metal plate 212.
  • the second metal plate 214 can be bonded to the body portion 212a of the first metal plate 212 with strong bonding force.
  • the manufacturing method includes a molding step of punching molding using a die (not shown) configured to form a fixing hole 214b of the second metal plate 214. It may further include.
  • the second metal plate 214 may form a protruding portion 214a extended to protrude outward from the body portion 212a of the first metal plate 212.
  • the protrusion 214a may be shaped to form a fixing hole 214b drilled to insert an external input / output terminal.
  • the protrusion 214a when the protrusion 214a is formed so that the external input / output terminal is coupled to the second metal plate 214 rather than the first metal plate 212, the first metal plate 212 is seen. Since power can be transmitted to an external electronic device through the second metal plate 214 having high electrical conductivity, power loss supplied from the battery module 200 can be minimized. In addition, since the second metal plate 214 has better heat dissipation characteristics than the first metal plate 212, it is more advantageous to dissipate heat generated in the external input / output terminal to the outside.
  • electrode terminal 212 first metal plate
  • 216a, 216b joints, connection extensions 214a, 214b: protrusions, fixing holes
  • the present invention relates to a battery module comprising a module busbar. Further, the present invention can be used in industries related to battery packs and devices including the battery module.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명에 따른 배터리 모듈은, 전극 단자가 상부 및 하부에 각각 형성된 복수의 원통형 전지셀; 상기 복수의 원통형 전지셀을 삽입 수용하도록 복수의 중공 구조를 가진 수용부가 구비된 모듈 하우징; 및 상기 복수의 원통형 전지셀의 상부 또는 하부에 위치하고 수평 방향으로 연장된 본체부 및 상기 본체부의 일측으로부터 상기 복수의 원통형 전지셀의 전극 단자와 접촉되도록 수평 방향으로 연장 형성된 복수의 접속부가 구비된 제1 금속 플레이트, 및 상기 제1 금속 플레이트의 본체부에 접합되고 상대적으로 상기 제1 금속 플레이트 보다 전기 전도성이 높은 금속을 가진 제2 금속 플레이트를 구비한 모듈 버스바를 포함한다.

Description

모듈 버스바를 포함하는 배터리 모듈
본 발명은 모듈 버스바를 포함하는 배터리 모듈에 관한 것으로서, 보다 상세하게는 전류 손실을 줄이고, 제조 효율을 높일 수 있는 배터리 모듈을 제조하는 제조방법에 관한 것이다.
본 출원은 2018년 09월 21일자로 출원된 한국 특허출원 번호 제10-2018-0114299호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차전지에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 이차전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차전지 등이 있는데, 이 중에서 리튬 이차전지는 니켈 계열의 이차전지에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 또한, 리튬 이차전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체와, 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재를 구비한다.
이러한, 이차전지를 사용함에 있어서 이차전지의 온도, 전류, 및 전압 등을 확인하는 것은 안전사고 발생의 방지 및 이차전지 수명 향상 등의 측면에서 매우 중요하다.
즉, 전자기기의 성능이 날로 향상되어 감에 따라, 한번에 고출력의 전력을 공급하는 이차전지의 성능 또한 향상되어 가고 있다. 특히, 이러한 고출력 전자기기에 사용되는 이차전지의 경우 발열량이 매우 커, 온도 상승에 적절히 대처하지 못하는 경우 발화/폭발 등의 사고를 유발할 수 있다.
이를 위해, 전자기기에 적용되는 배터리 관리 유닛은, 복수의 이차전지의 온도 측정을 위해 사용되는 온도 소자로 NTC 소자(negative temperature coefficient device), PTC 소자(positive temperature coefficient device) 등이 구비될 수 있다.
또한, 종래기술의 배터리 모듈은, 복수의 이차전지를 전기적으로 직렬 연결하거나, 또는 병열 연결하도록 전기 전도성의 버스바 플레이트를 구비하였다. 더욱이, 이러한 버스바 플레이트는, 배터리 관리 유닛과 전기적으로 연결되어, 복수의 이차전지의 충방전을 제어하거나, 외부입출력 단자를 통해 복수의 이차전지의 전력을 외부 전자 디바이스로 전달할 수 있도록 구성되는 것이 일반적이었다.
최근, 이러한 배터리 모듈에 구비되는 버스바 플레이트는, 전극 단자와의 저항 용접의 용접성을 높이기 위해 다소 전기 저항이 높은 소재를 사용하는 경우가 있다.
그러나, 이러한 전기 저항이 높은 버스바 플레이트는, 이차 전지에서 생성된 전류를 외부 디바이스까지 전달하는데 전류 손실을 크게 하는 요소가 될 수 있어, 에너지 효율을 저해할 수 있다. 또한, 전기 저항이 높은 소재일 수록, 열전도도가 떨어져, 이러한 버스바 플레이트를 적용한 배터리 모듈의 방열 성능을 떨어뜨리는 요인이 될 수 있다.
반대로, 전기 저항이 낮은 소재를 사용한 버스바 플레이트를 사용할 경우, 저항 용접을 사용하여 전극 단자와 버스바 플레이트 간의 접합시, 저항열을 충분히 발생시키기 어려워 용접성이 떨어지고 용접 작업의 시간이 길어지는 문제가 있었다. 이에 따라, 제조 비용이 상승하고 배터리 모듈의 내구성이 떨어지는 등의 문제가 발생되었다.
더욱이, 전기 저항을 낮추기 위해 두꺼운 금속 플레이트를 사용할 경우에는, 두꺼운 금속 플레이트를 소정 온도 이상으로 용접 온도를 상승시키는데, 오랜 시간이 걸리고, 많은 열원을 부가해야 하므로, 원통형 전지셀과 두꺼운 금속 플레이트를 직접 저항 용접하는 데는 큰 어려움이 있었다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 상세하게는 전류 손실을 줄이고, 제조 효율을 높일 수 있는 배터리 모듈을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 모듈은,
전극 단자가 상부 및 하부에 각각 형성된 복수의 원통형 전지셀;
상기 복수의 원통형 전지셀을 삽입하여 수용하도록 복수의 중공 구조를 가진 수용부가 구비된 모듈 하우징; 및
상기 복수의 원통형 전지셀의 상부 또는 하부에 위치하고 수평 방향으로 연장된 본체부 및 상기 본체부의 일측으로부터 상기 복수의 원통형 전지셀의 전극 단자와 접촉되도록 수평 방향으로 연장 형성된 복수의 접속부가 구비된 제1 금속 플레이트, 및 상기 제1 금속 플레이트의 본체부에 접합되고 상대적으로 상기 제1 금속 플레이트 보다 전기 전도성이 높은 금속을 가진 제2 금속 플레이트를 구비한 모듈 버스바를 포함할 수 있다.
또한, 상기 제2 금속 플레이트는, 상기 제1 금속 플레이트의 본체부에 클래드 접합될 수 있다.
더욱이, 상기 제1 금속 플레이트의 본체부와 대면하고 있는 상기 제2 금속 플레이트의 외측면에는, 상기 제1 금속 플레이트의 본체부가 위치된 방향으로 돌출된 결합 돌기가 형성될 수 있다.
그리고, 상기 제1 금속 플레이트의 본체부에는 상기 결합 돌기가 삽입 고정하도록 내입된 결합홈이 형성될 수 있다.
나아가, 상기 제1 금속 플레이트의 본체부는, 상기 제2 금속 플레이트의 적어도 일부위가 삽입되도록 외측 방향으로 돌출된 지지벽이 구비된 삽입부가 형성될 수 있다.
또한, 상기 제2 금속 플레이트에는, 상기 제1 금속 플레이트의 본체부의 적어도 일부위를 감싸도록 몸체의 내부 방향으로 내입된 수용홈이 형성될 수 있다.
더욱이, 상기 제1 금속 플레이트의 접속부는 상대적으로 제2 금속 플레이트 보다 두께가 더 얇을 수 있다.
그리고, 상기 모듈 버스바는, 상기 제2 금속 플레이트의 외측면에 접합된 접합부 및 상기 접합부의 일측으로부터 상기 복수의 원통형 전지셀의 전극 단자와 접촉되도록 수평 방향으로 연장 형성된 복수의 접속 연장부가 형성된 제3 금속 플레이트를 더 구비할 수 있다.
또한, 상기 제1 금속 플레이트의 접속부 및 상기 제3 금속 플레이트의 접속 연장부는, 소정 거리로 이격되어 배치될 수 있다.
더욱이, 상기 제2 금속 플레이트는, 상기 제1 금속 플레이트의 본체부로부터 외부 방향으로 돌출 연장되게 구성된 돌출부를 구비하고, 상기 돌출부에는 외부 입출력 단자가 삽입 결합되는 고정홀이 형성될 수 있다.
그리고, 상기 모듈 하우징에는, 상기 모듈 버스바가 외측에 탑재되는 탑재부가 형성될 수 있다. 나아가, 상기 탑재부에는, 상기 탑재부 상에 탑재된 상기 모듈 버스바를 내측 방향으로 가압 고정하는 후크 구조가 형성될 수 있다.
또한, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 팩은 배터리 모듈을 적어도 둘 이상을 포함한다.
더욱이, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 디바이스는, 배터리 팩을 포함한다.
그리고, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 모듈 버스바를 제조하는 방법은,
제1 금속 플레이트의 복수의 원통형 전지셀이 배열된 방향으로 연장된 본체부와 상기 복수의 원통형 전지셀 사이를 전기적으로 연결하도록 구성된 접속부를 압연 롤러를 사용하여 압연하여 형상 가공 단계;
소정 온도에서 상기 제1 금속 플레이트의 본체부 상에 상기 제1 금속 플레이트 보다 높은 전기 전도성을 가진 제2 금속 플레이트를 압연하여 클래딩 접합시키는 접합 단계; 및
상기 제1 금속 플레이트의 상기 본체부로부터 수평 방향으로 연장된 접속부가 형성되도록 다이를 사용하여 펀칭 성형하는 펀칭 단계를 포함한다.
나아가, 상기 접합 단계에서, 상기 제2 금속 플레이트의 형성된 상기 제1 금속 플레이트가 위치된 방향으로 돌출된 결합 돌기가 상기 제1 금속 플레이트의 본체부에 삽입 결합될 수 있다.
또한, 상기 제조방법은, 상기 제2 금속 플레이트의 외부 입출력 단자가 형성되도록 다이를 사용하여 펀칭 성형하는 성형 단계를 더 포함할 수 있다.
본 발명의 일 측면에 의하면, 본 발명의 배터리 모듈은, 제2 금속 플레이트가 상대적으로 제1 금속 플레이트가 구비한 금속 보다 전기 전도성이 높은 금속을 구비함으로써, 모듈 버스바의 전류 손실을 줄일 수 있고, 배터리 모듈의 전력 손실을 줄일 수 있다. 더욱이, 높은 전도성을 가진 제2 금속 플레이트는, 상대적으로 제1 금속 플레이트보다 열 전도율이 높고 냉각 속도가 빠르다. 이에 따라, 배터리 모듈의 열 방출을 도와 배터리 모듈의 냉각 효율을 크게 높일 수 있다.
또한, 본 발명의 다른 일측면에 의하면, 제2 금속 플레이트가 제1 금속 플레이트의 본체부에 클래드 접합됨으로써, 제2 금속 플레이트와 제1 금속 플레이트의 본체부 간의 전기적 연결성이 매우 우수하고, 제2 금속 플레이트와 제1 금속 플레이트의 본체부 간의 접합성(결합성)이 우수하여, 모듈 버스바의 내구성이 취약해지는 것을 방지할 수 있다.
더욱이, 본 발명의 다른 일측면에 의하면, 제2 금속 플레이트의 외측면에 결합 돌기를 형성시키고, 제1 금속 플레이트의 본체부에 결합홈을 형성시키므로 서, 제2 금속 플레이트가 제1 금속 플레이트의 본체부에 강한 결합력으로 접합될 수 있다. 특히, 제1 금속 플레이트의 본체부 상에 제2 금속 플레이트를 압연 접합할 경우, 결합 돌기는, 도 3의 모듈 버스바와 비교할 경우, 제2 금속 플레이트와의 접촉 면적을 증가시킬 수 있어, 높은 결합력을 발휘하고 접합 부위에 금속 혼화가 비교적 잘 이루어질 수 있는 효과가 있다.
그리고, 본 발명의 다른 일측면에 의하면, 제1 금속 플레이트의 본체부에 지지벽이 구비된 삽입부를 형성시키므로 써, 제2 금속 플레이트가 1차적으로 안착 고정될 수 있다. 특히, 제1 금속 플레이트의 본체부 상에 제2 금속 플레이트를 압연 접합할 경우, 제2 금속 플레이트가 정위치에 접합될 수 있도록, 삽입부의 돌기가 안정적으로 지지 고정시킬 수 있는 이점이 있다. 더욱이, 삽입부는, 도 3의 모듈 버스바와 비교할 경우, 제2 금속 플레이트와의 접촉면적을 증가시킬 수 있어, 높은 결합력과 접합 부위에 발생할 수 있는 전기 저항을 줄일 수 있는 효과가 있다.
또한, 본 발명의 일측면에 의하면, 제2 금속 플레이트에 몸체의 내부 방향으로 내입된 수용홈을 형성시키므로 서, 제2 금속 플레이트가 안정적으로 안착 결합될 수 있다. 특히, 제1 금속 플레이트의 본체부 상에 제2 금속 플레이트를 압연 접합할 경우, 제2 금속 플레이트가 정위치에 접합하기 전에, 제2 금속 플레이트를 제1 금속 플레이트의 본체부 상에 1차적으로 고정시킬 수 있어, 접합 공정을 손쉽게 하는 이점이 있다.
더욱이, 본 발명의 다른 일측면에 의하면, 제1 금속 플레이트의 접속부의 두께를 얇게 구성함으로써, 이러한 접속부와 원통형 전지셀의 전극 단자 간의 용접을 빠르고 낮은 공정 온도에서 진행할 할 수 있다. 즉, 저항 용접시, 두꺼운 경우와 비교할 때, 접속부가 얇을수록 낮은 온도에서 빠르게 용융 시킬 수 있는 이점이 있다. 이에 따라, 제조 공정의 효율을 높일 수 있을 뿐만 아니라, 용접 온도에 따른 원통형 전지셀의 불량 발생을 최소화할 수 있다.
그리고, 본 발명의 다른 일측면에 의하면, 제1 금속 플레이트의 접속부 및 제3 금속 플레이트의 접속 연장부를 원통형 전지셀의 전극 단자에 저항 용접하도록 소정 거리로 이격 배치할 경우, 제1 금속 플레이트의 접속부 간의 전류 경로와 비교할 때, 제1 금속 플레이트의 접속부 및 제3 금속 플레이트의 접속 연장부 간의 전류 경로가 더욱 길고 전기 저항이 높아져, 제1 금속 플레이트의 접속부로부터 원통형 전지셀의 전극 단자, 및 제3 금속 플레이트의 접속 연장부까지의 전류 경로로 전류가 집중될 수 있다. 이에 따라, 모듈 버스바와 전극 단자 간의 저항 용접이 효율적으로 이루어질 수 있다. 그리고, 제조 시간을 단축하고, 용접성이 우수한 배터리 모듈을 제조할 수 있다.
나아가, 본 발명의 다른 일측면에 의하면, 제1 금속 플레이트 보다는 제2 금속 플레이트에 외부 입출력 단자가 결합되도록 돌출부를 형성시킬 경우, 제1 금속 플레이트가 상대적으로 전기 전도성이 높은 제2 금속 플레이트를 통해서 외부 전자기기로 전력을 송부할 수 있으므로, 배터리 모듈로부터 공급되는 전력 손실을 최소화할 수 있다. 그리고, 제2 금속 플레이트는 방열 특성이 제1 금속 플레이트 보다 우수하므로, 외부 입출력 단자에 발생된 열을 외부로 방열하는데 더 유리하다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 실시예에 따른 배터리 모듈에 대한 구성들을 개략적으로 나타낸 사시도이다.
도 2는, 본 발명의 일 실시예에 따른 배터리 모듈에 대한 분리된 구성들을 개략적으로 나타낸 분리 사시도이다.
도 3은, 도 1의 C-C' 선을 따라 절단된 모듈 버스바의 개략적인 단면도이다.
도 4는, 본 발명의 다른 일 실시예에 따른 배터리 모듈의 모듈 버스바의 절단된 모습을 개략적으로 나타낸 단면도이다.
도 5는, 본 발명의 또 다른 일 실시예에 따른 배터리 모듈의 모듈 버스바의 절단된 모습을 개략적으로 나타낸 단면도이다.
도 6은, 본 발명의 또 다른 일 실시예에 따른 배터리 모듈의 모듈 버스바의 절단된 모습을 개략적으로 나타낸 단면도이다.
도 7은, 본 발명의 또 다른 일 실시예에 따른 배터리 모듈의 모듈 버스바를 개략적으로 나타낸 사시도이다.
도 8은, 도 7의 D-D' 선을 따라 모듈 버스바의 절단된 모습을 개략적으로 나타낸 단면도이다.
도 9는, 본 발명의 다른 일 실시예에 따른 배터리 모듈에 대한 구성들을 개략적으로 나타낸 사시도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은, 본 발명의 일 실시예에 따른 배터리 모듈에 대한 구성들을 개략적으로 나타낸 사시도이다. 그리고, 도 2는, 본 발명의 일 실시예에 따른 배터리 모듈에 대한 분리된 구성들을 개략적으로 나타낸 분리 사시도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 배터리 모듈(200)은, 복수의 원통형 전지셀(100), 모듈 하우징(220), 및 모듈 버스바(210)를 포함할 수 있다.
여기서, 상기 원통형 전지셀(100)은, 원통형 전지캔(120), 및 상기 전지캔(120)의 내부에 수용된 전극 조립체(도시하지 않음)를 포함할 수 있다.
또한, 상기 전지캔(120)은, 전기 전도성이 높은 재질을 포함하고 있으며, 예를 들면, 상기 전지캔(120)은 알루미늄 또는 구리 소재를 포함할 수 있다.
더욱이, 상기 전지캔(120)이 상하 방향으로 길게 세워진 형태로 구성될 수 있다. 그리고, 상기 전지캔(120)은 상하 방향으로 연장된 원통형일 수 있다. 더욱이, 상기 전지캔(120)의 상부 및 하부 각각에 전극 단자(111)와 전극 단자(112)가 형성될 수 있다. 구체적으로, 상기 전지캔(120)의 상단의 평평한 원형의 상면에는 양극 단자(111)가 형성될 수 있고, 상기 전지캔(120)의 하단의 평평한 원형의 하면에는 음극 단자(112)가 형성될 수 있다.
나아가, 상기 원통형 전지셀(100)은, 수평 방향으로 복수의 열 및 행으로 배치될 수 있다. 여기서 수평 방향이란, 원통형 전지셀(100)을 지면에 놓았을 때 지면에 평행한 방향을 의미한다고 할 수 있으며, 상하 방향에 수직하는 평면상의 적어도 한 방향이 라고도 할 수 있다. 또한, 수평 방향이란, 도 1의 X 및 Y 방향이라고 할 수 있다.
예를 들면, 도 2에 도시된 바와 같이, 상기 배터리 모듈(200)은, 좌우 방향(x 방향)의 5개의 열과 전후 방향(y 방향)의 3행으로 배치된 복수의 원통형 전지셀(100)을 구비할 수 있다.
또한, 전극 조립체(도시하지 않음)는, 양극과 음극 사이에 분리막을 개재한 상태로 젤리-롤형으로 권취한 구조로 형성될 수 있다. 더욱이, 상기 양극(도시하지 않음)에는 양극 탭이 부착되어 전지캔(120)의 상단의 양극 단자(111)에 접속될 수 있다. 상기 음극(도시하지 않음)에는 음극 탭이 부착되어 전지캔(120)의 하단의 음극 단자(112)에 접속될 수 있다.
한편, 상기 모듈 하우징(220)은, 상기 원통형 전지셀(100)을 내부에 삽입하여 수용할 수 있는 수용부(220s1, 220s2)가 구비될 수 있다. 구체적으로, 상기 수용부(220s1, 220s2)는, 상기 원통형 전지셀(100)의 외측면을 감쌀 수 있도록 형성된 중공 구조가 복수개 형성될 수 있다. 이때, 상기 모듈 하우징(220)은, 전기 절연성의 소재를 구비할 수 있다. 예를 들면, 상기 전기 절연성의 소재는, 고분자 플라스틱일 수 있다. 더욱 구체적으로, 상기 전기 절연성의 소재는, PVC(Poly Vinyl Chloride)일 수 있다.
또한, 도 1을 참조하면, 상기 모듈 하우징(220)은, 내부 공간을 형성하도록 이루어지고 전, 후, 좌, 우 방향으로 형성된 외측벽(220d)을 구비할 수 있다. 그리고, 도 2를 참조하면, 상기 상부 케이스(220a) 및 상기 하부 케이스(220b)는 체결 볼트(228)가 삽입되도록 관통홀(220h)이 형성될 수 있다.
예를 들면, 도 1에 도시된 바와 같이, 상기 모듈 하우징(220)을 구성하는 상기 상부 케이스(220a) 및 상기 하부 케이스(220b) 각각에는 볼트(228)가 삽입 고정되는 관통홀(220h)이 형성될 수 있다. 이에 따라, 상기 상부 케이스(220a) 및 상기 하부 케이스(220b)는, 상기 관통홀(220h)에 삽입된 볼트(228)를 통해 체결 결합될 수 있다.
한편, 다시 도 1 내지 도 3을 참조하면, 상기 모듈 버스바(210)는 복수의 원통형 전지셀(100)을 전기적으로 연결하도록 구성될 수 있다. 예를 들면, 상기 모듈 버스바(210)는 복수의 원통형 전지셀(100)을 전기적으로 직렬 연결하도록 구성될 수 있다. 또는, 상기 모듈 버스바(210)는 복수의 원통형 전지셀(100)을 전기적으로 병렬 연결하도록 구성될 수 있다. 이러한 모듈 버스바(210)는 전기 전도성이 우수한 금속을 구비할 수 있다.
또한, 상기 모듈 버스바(210)는 제1 금속 플레이트(212) 및 제2 금속 플레이트(214)를 구비할 수 있다. 구체적으로, 상기 제1 금속 플레이트(212)는, 상기 복수의 원통형 전지셀(100)의 상부 또는 하부에 위치하고 수평 방향으로 연장된 본체부(212a)를 구비할 수 있다. 더욱이, 상기 본체부(212a)는, 상기 2열로 배열된 복수의 원통형 전지셀(100) 사이에 배치될 수 있다. 상기 본체부(212a)는 소정 두께의 사각 플레이트 형상을 가질 수 있다.
그리고, 상기 제1 금속 플레이트(212)는, 상기 본체부(212a)의 일측으로부터 상기 복수의 원통형 전지셀(100)의 전극 단자(111)와 접촉되도록 수평 방향으로 본체부(212a)의 양측부 각각으로부터 연장 형성된 복수의 접속부(212b)가 구비될 수 있다. 즉, 상기 접속부(212b)는, 상기 본체부(212a)의 수평 방향(도 1의 x 방향)의 측부로부터 상기 복수의 원통형 전지셀(100)의 전극 단자(111)의 상부면과 접촉할 수 있도록 연장 형성될 수 있다.
예를 들면, 도 3에 도시된 바와 같이, 상기 모듈 버스바(210)는, 하나의 제1 금속 플레이트(212)를 구비할 수 있다. 또한, 상기 제1 금속 플레이트(212)는, 상기 복수의 원통형 전지셀(100)의 상부 또는 하부에 위치하고 수평 방향(도 1의 x 방향)으로 연장된 본체부(212a) 및 상기 본체부(212a)의 일측으로부터 상기 복수의 원통형 전지셀(100)의 전극 단자(111)와 접촉되도록 수평 방향으로 연장 형성된 복수의 접속부(212b)가 구비될 수 있다.
더욱이, 본 발명의 일측면에 의하면, 원통형 전지셀(100)의 전극 단자(111)와 전기적으로 접촉 연결되는 모듈 버스바(210)의 접속부(212b)는, 2개로 분지된 구조를 가지도록 형성됨으로써, 접속부(212b)와 전극 단자(111) 간의 용접 공정시, 분지된 구조의 간극을 통해 용접 가열을 위한 열 전도율을 효과적으로 높여, 용접 시간을 단축하고 용접 신뢰성을 높일 수 있다.
그리고, 상기 제2 금속 플레이트(214)는, 상기 제1 금속 플레이트(212)의 본체부(212a)에 접합될 수 있다. 나아가, 상기 제2 금속 플레이트(214)는, 상기 제1 금속 플레이트(212)의 본체부(212a)와 유사하게 사각 플레이트 형상을 가질 수 있다. 예를 들면, 도 3에 도시된 바와 같이, 상기 제2 금속 플레이트(214)는, 상기 제1 금속 플레이트(212)의 본체부(212a) 상에 접합될 수 있다. 그래서, 상기 제2 금속 플레이트(214)는, 본체부(212a)의 연장된 방향을 따라 연장된 사각 플레이트 형상을 가질 수 있다.
또한, 상기 제2 금속 플레이트(214)는, 상대적으로 상기 제1 금속 플레이트(212) 보다 전기 전도성이 높은 금속을 가질 수 있다. 구체적으로, 상기 제2 금속 플레이트(214)는, 상대적으로 상기 제1 금속 플레이트(212) 보다 전기 전도성이 높은 금속으로 이루어질 수 있다. 더욱이, 상기 제2 금속 플레이트(214)는, 상대적으로 상기 제1 금속 플레이트(212) 보다 전기 전도성이 더 높도록 구성될 수 있다.
예를 들면, 상기 제1 금속 플레이트(212)는 니켈 소재를 구비하고, 상기 제2 금속 플레이트(214)는 구리 소재를 구비할 수 있다. 그러나, 반드시 이러한 소재로만 한정되는 것은 아니고, 상기 제2 금속 플레이트(214)를 상대적으로 상기 제1 금속 플레이트(212) 보다 높은 전기 전도성을 가질 수 있도록 구성할 수 있다면, 상기 제1 금속 플레이트(212) 및 상기 제2 금속 플레이트(214)는 니켈, 알루미늄, 금, 은 등이 주재료로 구성된 금속 합금이면 모두 적용이 가능하다.
달리 말해, 상기 제1 금속 플레이트(212)는, 상기 제2 금속 플레이트(214) 보다 상대적으로 높은 비저항의 금속을 구비할 수 있다. 예를 들면, 상기 높은 비저항의 금속은 니켈일 수 있다.
따라서, 본 발명의 이러한 구성에 의하면, 상기 제2 금속 플레이트(214)는, 상대적으로 제1 금속 플레이트(212)가 구비한 금속 보다 전기 전도성이 높은 금속을 구비함으로써, 모듈 버스바(210)의 전류 손실을 줄일 수 있고, 배터리 모듈(200)의 전력 손실을 줄일 수 있다. 더욱이, 상기 높은 전도성을 가진 제2 금속 플레이트(214)는, 상대적으로 제1 금속 플레이트(212)보다 열 전도율이 높고 냉각 속도가 빠르다. 이에 따라, 배터리 모듈(200)의 열 방출을 도와 배터리 모듈(200)의 냉각 효율을 크게 높일 수 있다.
반대로, 상기 제1 금속 플레이트(212)는, 상기 제2 금속 플레이트(214)가 구비한 금속 보다 비저항이 높은 금속을 구비함으로써, 상기 제1 금속 플레이트(212)의 접속부(212b)를 상기 원통형 전지셀(100)의 전극 단자(111)와 저항 용접시, 비저항이 높은 금속에 의해 용접 부위에서 높은 저항열을 발생시킬 수 있어, 용접 공정성을 향상시킬 수 있다.
또한, 상기 접속부(212b)는, 2개로 분지된 구조를 포함할 수 있다. 즉, 상기 접속부(212b)는, 분지된 2개의 플레이트 형상 사이에 소정 거리의 간극이 형성된 형태일 수 있다. 예를 들면, 도 1에 도시된 바와 같이, 상기 접속부(212b)는, 상기 제1 금속 플레이트(212)의 본체부(212a)로부터 2개로 분지된 구조(분리된 구조) 형태로 수평 방향으로 돌출 연장되어 형성될 수 있다.
한편, 다시 도 3을 참조하면, 상기 제2 금속 플레이트(214)는, 상기 제1 금속 플레이트(212)의 본체부(212a)에 클래드 접합될 수 있다. 여기서, 상기 제2 금속 플레이트(214)와 상기 제1 금속 플레이트(212)의 본체부(212a)가 클래드 접합된 부위는, 상기 제2 금속 플레이트(214)의 금속과 상기 제1 금속 플레이트(212)의 본체부(212a)의 금속이 서로 금속 결합된 상태일 수 있다.
즉, 상기 제2 금속 플레이트(214)와 상기 제1 금속 플레이트(212)의 본체부(212a)가 서로 소정 온도에서 압연 접합되는 과정에서, 상기 제2 금속 플레이트(214)의 일부 금속과 상기 제1 금속 플레이트(212)의 본체부(212a)의 일부 금속이 서로 금속 결합되어 혼화될 수 있다.
따라서, 본 발명의 이러한 구성에 의하면, 상기 제2 금속 플레이트(214)가 상기 제1 금속 플레이트(212)의 본체부(212a)에 클래드 접합됨으로써, 상기 제2 금속 플레이트(214)와 상기 제1 금속 플레이트(212)의 본체부(212a) 간의 전기적 연결성이 매우 우수하고, 상기 제2 금속 플레이트(214)와 상기 제1 금속 플레이트(212)의 본체부(212a) 간의 접합성(결합성)이 우수하여, 상기 모듈 버스바(210)의 내구성이 취약해지는 것을 방지할 수 있다.
도 4는, 본 발명의 다른 일 실시예에 따른 배터리 모듈의 모듈 버스바의 절단된 모습을 개략적으로 나타낸 단면도이다.
도 4를 참조하면, 다른 일 실시예에 따른 모듈 버스바(210B)는, 상기 제1 금속 플레이트(212B)의 본체부(212a)와 대면하고 있는 상기 제2 금속 플레이트(214B)의 외측면에, 상기 제1 금속 플레이트(212B)의 본체부(212a)가 위치된 방향으로 돌출된 결합 돌기(212p)가 형성될 수 있다. 그리고, 상기 결합 돌기(212p)의 형상은, 요철 구조일 수 있다.
그러나, 상기 결합 돌기(212p)의 형상을 요철 구조로만 한정되는 것은 아니고, 상기 결합 돌기(212p)가 상기 제1 금속 플레이트(212B)의 본체부(212a)에 삽입 고정되어 두 부재의 결합력을 높일 수 있는 적절한 형상이면 적용이 가능하다.
나아가, 상기 제1 금속 플레이트(212B)의 본체부(212a)에는 상기 결합 돌기(212p)가 삽입 고정되도록 내입된 결합홈(212h)이 형성될 수 있다. 구체적으로, 상기 결합홈(212h)은, 상기 결합 돌기(212p)의 외형과 대응되는 구조로 내입된 형태일 수 있다.
예를 들면, 도 4에 도시된 바와 같이, 상기 제1 금속 플레이트(212B)의 본체부(212a)와 대면하고 있는 상기 제2 금속 플레이트(214B)의 외측면에는, 하부 방향으로 돌출 연장된 9개의 결합 돌기(212p)가 형성될 수 있다. 그리고, 상기 제1 금속 플레이트(212B)의 본체부(212a)에는 9개의 결합 돌기(212p)와 대응되는 형상으로 내입된 9개의 결합홈(212h)이 형성될 수 있다.
따라서, 본 발명의 이러한 구성에 의하면, 상기 제2 금속 플레이트(214B)의 외측면에는 결합 돌기(212p)를 형성시키고, 상기 제1 금속 플레이트(212B)의 본체부(212a)에는 결합홈(212h)을 형성시키므로 써, 상기 제2 금속 플레이트(214B)가 상기 제1 금속 플레이트(212B)의 본체부(212a)에 강한 결합력으로 접합될 수 있다. 특히, 상기 제1 금속 플레이트(212B)의 본체부(212a) 상에 제2 금속 플레이트(214B)를 압연하여 접합할 경우, 상기 결합 돌기(212p)는, 도 3의 모듈 버스바(210)와 비교할 경우, 상기 제2 금속 플레이트(214B)와의 접촉면적(결합면적)을 증가시킬 수 있어, 높은 결합력을 발휘하고 접합 부위에 금속 혼화가 비교적 잘 이루어질 수 있는 효과가 있다.
도 5는, 본 발명의 또 다른 일 실시예에 따른 배터리 모듈의 모듈 버스바의 절단된 모습을 개략적으로 나타낸 단면도이다.
도 5를 참조하면, 또 다른 일 실시예에 따른 모듈 버스바(210C)는, 상기 제1 금속 플레이트(212C)의 본체부(212a)에는 상기 제2 금속 플레이트(214)의 적어도 일부위가 삽입되도록 구성된 삽입부(212i)가 형성될 수 있다. 구체적으로, 상기 삽입부(212i)는, 외측 방향으로 돌출된 지지벽(212w)이 구비될 수 있다.
예를 들면, 도 5에 도시된 바와 같이, 상기 제1 금속 플레이트(212C)의 본체부(212a)에는, 상기 제2 금속 플레이트(214)의 일부위가 삽입되도록 삽입 공간이 형성된 삽입부(212i)가 구비될 수 있다. 또한, 상기 삽입부(212i)에는, 상기 제2 금속 플레이트(214)의 수평 방향의 양측부를 지지하도록 상부 방향으로 돌출 형성된 2개의 지지벽(212w)이 구비될 수 있다.
따라서, 본 발명의 이러한 구성에 의하면, 상기 제1 금속 플레이트(212C)의 본체부(212a)에 지지벽(212w)이 구비된 삽입부(212i)를 형성시키므로 서, 상기 제2 금속 플레이트(214)가 1차적으로 안착 고정될 수 있다. 특히, 상기 제1 금속 플레이트(212C)의 본체부(212a) 상에 제2 금속 플레이트(214)를 압연 접합할 경우, 상기 제2 금속 플레이트(214)가 정위치에 접합될 수 있도록, 상기 삽입부(212i)의 돌기가 안정적으로 지지 고정시킬 수 있는 이점이 있다. 더욱이, 상기 삽입부(212i)는, 도 3의 모듈 버스바(210)와 비교할 경우, 상기 제2 금속 플레이트(214)와의 접촉면적을 증가시킬 수 있어, 높은 결합력과 접합 부위에 발생할 수 있는 전기 저항을 줄일 수 있는 효과가 있다.
도 6은, 본 발명의 또 다른 일 실시예에 따른 배터리 모듈의 모듈 버스바의 절단된 모습을 개략적으로 나타낸 단면도이다.
도 6을 참조하면, 다른 일 실시예에 따른 모듈 버스바(210D)가 구비한 다른 형태의 제2 금속 플레이트(214D)에는, 몸체의 내부 방향으로 내입된 수용홈(214h)이 형성될 수 있다. 구체적으로, 상기 수용홈(214h)은, 상기 제1 금속 플레이트(212D)의 본체부(212a)의 적어도 일부위를 감쌀 수 있는 크기의 내부 공간을 가질 수 있다. 예를 들면, 도 6에 도시된 바와 같이, 상기 제2 금속 플레이트(214D)에는, 상기 제1 금속 플레이트(212D)의 본체부(212a)의 수평 방향의 좌우 측면의 일부와 상단면을 감쌀 수 있도록 내입된 수용홈(214h)이 형성될 수 있다.
따라서, 본 발명의 이러한 구성에 의하면, 상기 제2 금속 플레이트(214D)에 몸체의 내부 방향으로 내입된 수용홈(214h)을 형성시키므로 써, 상기 제2 금속 플레이트(214D)가 안정적으로 안착 결합될 수 있다. 특히, 상기 제1 금속 플레이트(212D)의 본체부(212a) 상에 제2 금속 플레이트(214D)를 압연 접합할 경우, 상기 제2 금속 플레이트(214D)가 정위치에 접합하기 전에, 상기 제2 금속 플레이트(214D)를 상기 제1 금속 플레이트(212D)의 본체부(212a) 상에 1차적으로 고정시킬 수 있어, 접합 공정을 손쉽게 하는 이점이 있다.
더욱이, 상기 수용홈(214h)은, 도 3의 모듈 버스바(210)와 비교할 경우, 상기 본체부(212a)와 상기 제2 금속 플레이트(214D)와의 접촉 면적을 증가시킬 수 있어, 높은 결합력과 접합 부위에 발생할 수 있는 전기 저항을 줄일 수 있는 효과가 있다.
한편, 다시 도 2와 함께 도 3을 참조하면, 상기 제1 금속 플레이트(212)의 접속부(212b)는, 상대적으로 제2 금속 플레이트(214) 보다 상하 방향의 두께(T1)가 더 얇을 수 있다. 여기서, 두께(T1)는, 상기 접속부(212b)가 상기 원통형 전지셀(100)의 전극 단자(111)와 대면하는 방향(상하 방향)의 두께(T1)를 의미한다.
구체적으로, 상기 제1 금속 플레이트(212)의 접속부(212b)는, 상기 원통형 전지셀(100)의 전극 단자(111)와 효율적으로 접합되기 위해서는 용접시, 빠르게 용융되는 것이 적절하다. 반면에, 상기 제2 금속 플레이트(214)는, 용접이 이루워지는 부위가 아니고, 상기 원통형 전지셀(100)로부터 전달된 전류를 외부 전자장치로 전송하는 전류 경로 역할을 수행할 수 있다. 이를 위해, 상기 제2 금속 플레이트(214)는, 보다 전류 전송시 전류 손실을 최소화하기 위해 전기 저항을 줄일 필요가 있다. 이에 따라, 상기 제2 금속 플레이트(214)는, 전류가 흐르는 방향의 단면적이 되도록 큰 것이 적절하다. 즉, 상기 제2 금속 플레이트(214)의 두께(T2)는 두꺼울수록 전력 손실을 줄일 수 있다.
예를 들면, 도 3에 도시된 바와 같이, 본 발명의 모듈 버스바(210)는, 상기 제1 금속 플레이트(212)의 접속부(212b)가 상하 방향의 두께(T1)가 상대적으로 제2 금속 플레이트(214)의 두께(T2) 보다 더 얇을 수 있다.
따라서, 본 발명의 이러한 구성에 의하면, 상기 제1 금속 플레이트(212)의 접속부(212b)의 두께(T1)를 얇게 구성함으로써, 상기 접속부(212b)와 상기 원통형 전지셀(100)의 전극 단자(111) 간의 용접을 빠르고 낮은 공정 온도에서 진행할 할 수 있다. 즉, 저항 용접시, 상기 접속부가 상대적으로 두꺼운 경우와 비교할 경우, 상기 접속부(212b)가 얇을수록 낮은 온도에서 빠르게 용융시킬 수 있는 이점이 있다. 이에 따라, 제조 공정의 효율을 높일 수 있을 뿐만 아니라, 용접 온도에 따른 원통형 전지셀(100)의 불량 발생을 최소화할 수 있다.
도 7은, 본 발명의 또 다른 일 실시예에 따른 배터리 모듈의 모듈 버스바를 개략적으로 나타낸 사시도이다. 그리고, 도 8은, 도 7의 D-D' 선을 따라 모듈 버스바의 절단된 모습을 개략적으로 나타낸 단면도이다.
도 2와 함께, 도 7 및 도 8을 참조하면, 또 다른 일 실시예에 따른 모듈 버스바(210E)는, 제3 금속 플레이트(216)를 더 포함할 수 있다. 구체적으로, 상기 제3 금속 플레이트(216)는, 상기 제2 금속 플레이트(214)의 외측면에 접합된 접합부(216a)를 포함할 수 있다. 또한, 상기 접합부(216a)는, 제2 금속 플레이트(214) 상에 위치될 수 있다. 더욱이, 상기 접합부(216a)는, 상기 2열로 배열된 복수의 원통형 전지셀(100) 사이에 배치될 수 있다.
그리고, 상기 제3 금속 플레이트(216)는, 상기 접합부(216a)의 일측으로부터 수평 방향(w)으로 연장 형성된 복수의 접속 연장부(216b)가 형성될 수 있다. 나아가, 복수의 접속 연장부(216b) 각각은 상기 복수의 원통형 전지셀(100) 각각의 전극 단자(111)와 접촉될 수 있다.
또한, 상기 제3 금속 플레이트(216)는, 상대적으로 상기 제2 금속 플레이트(214) 보다 전기 전도성이 낮은 금속을 가질 수 있다. 예를 들면, 상기 제3 금속 플레이트(216)는, 니켈 소재를 구비할 수 있다. 더욱이, 상기 제3 금속 플레이트(216)는 니켈, 알루미늄, 금, 은 등이 주재료로 구성된 금속 합금이면 모두 적용이 가능하다.
예를 들면, 도 8에 도시된 바와 같이, 본 발명의 모듈 버스바(210E)는, 제1 금속 플레이트(212), 제2 금속 플레이트(214), 및 제3 금속 플레이트(216)를 구비할 수 있다. 이때, 상기 제1 금속 플레이트(212) 및 상기 제3 금속 플레이트(216)는 니켈을 주로 구비할 수 있다. 또한, 상기 제2 금속 플레이트(214)는, 주로 구리를 구비할 수 있다. 즉, 상기 제2 금속 플레이트(214)는, 상대적으로 상기 제1 금속 플레이트(212) 및 상기 제3 금속 플레이트(216) 보다 높은 전기 전도성을 가질 수 있다. 더욱이, 상기 제3 금속 플레이트(216)는, 상기 제2 금속 플레이트(214)의 외측면에 접합된 접합부(216a)와 상기 접합부(216a)의 일측으로부터 수평 방향으로 연장 형성된 복수의 접속 연장부(216b)를 구비할 수 있다.
이에 따라, 본 발명의 이러한 구성에 의하면, 다른 실시에에 따른 모듈 버스바(210E)는, 추가적으로 제3 금속 플레이트(216)를 구비함으로써, 상기 제1 금속 플레이트(212)의 본체부(212a), 상기 제2 금속 플레이트(214), 및 상기 제3 금속 플레이트(216)의 접합부(216a)를 압연 접합할 수 있다. 이에 따라, 모듈 버스바(210E)의 금속 플레이트들 간의 접합력을 보다 향상시키고, 상기 원통형 전지셀(100)과 전기적으로 연결되는 제1 금속 플레이트(212) 및 제3 금속 플레이트(216)와 제2 금속 플레이트(214) 간의 접합 면적이 증대되어 접합에 따른 전기 저항을 최소화할 수 있고, 모듈 버스바(210E)의 전류 손실을 줄일 수 있다.
다시, 도 7 및 도 8을 참조하면, 또 다른 일 실시예에 따른 모듈 버스바(210E)는, 도 3의 모듈 버스바(210)의 접속부(212b)와 다른 형태의 상기 제1 금속 플레이트(212)의 접속부(212b1)를 가질 수 있다. 즉, 상기 모듈 버스바(210E)는 상기 제3 금속 플레이트(216)의 접속 연장부(216b)가, 상기 접속부(212b1)와 소정 거리로 이격되어 배치될 수 있다. 즉, 상기 제1 금속 플레이트(212)의 접속부(212b1) 및 상기 제3 금속 플레이트(216)의 접속 연장부(216b)는 소정 거리로 이격되어 수평 방향으로 서로 평행하게 배치될 수 있다.
더욱이, 상기 제1 금속 플레이트(212)의 접속부(212b1) 및 상기 제3 금속 플레이트(216)의 접속 연장부(216b)는 소정의 거리로 이격되어 배치될 수 있다. 그리고, 상기 제1 금속 플레이트(212)의 접속부(212b1) 및 상기 제3 금속 플레이트(216)의 접속 연장부(216b)의 이격된 거리는, 상기 원통형 전지셀(100)의 전극 단자(111)에 저항 용접시 적절한 저항열을 발생시킬 수 있는 거리로 이격되는 것이 적절하다.
나아가, 상기 제1 금속 플레이트(212)의 접속부(212b1) 및 상기 제3 금속 플레이트(216)의 접속 연장부(216b)는 서로 같은 소재로 구성될 수 있다. 예를 들면, 상기 제1 금속 플레이트(212)의 접속부(212b1) 및 상기 제3 금속 플레이트(216)의 접속 연장부(216b)는, 니켈 소재를 주로 구비할 수 있다.
따라서, 본 발명의 이러한 구성에 의하면, 상기 제1 금속 플레이트(212)의 접속부(212b1) 및 상기 제3 금속 플레이트(216)의 접속 연장부(216b)를 상기 원통형 전지셀(100)의 전극 단자(111)에 저항 용접하도록 소정 거리로 이격 배치할 경우, 상기 제1 금속 플레이트(212)의 2개의 접속부(212b1) 간의 전류 경로와 비교할 때, 상기 제1 금속 플레이트(212)의 접속부(212b1)와 상기 제3 금속 플레이트(216)의 접속 연장부(216b) 간의 전류 경로가 더욱 길고 전기 저항이 높아, 상기 제1 금속 플레이트(212)의 접속부(212b1)로부터 상기 원통형 전지셀(100)의 전극 단자(111), 및 상기 제3 금속 플레이트(216)의 접속 연장부(216b)까지의 전류 경로로 전류 흐림이 집중될 수 있다. 이에 따라, 모듈 버스바(210E)와 전극 단자 간의 저항 용접이 효율적으로 이루어질 수 있다. 그리고, 제조 시간을 단축하고, 용접성이 우수한 배터리 모듈(200)을 제조할 수 있다.
다시 도 1과 도 3을 참조하면, 본 발명의 다른 형태의 모듈 버스바(210A)의 상기 제2 금속 플레이트(214)는, 상기 제1 금속 플레이트(212)의 본체부(212a) 보다 외부 방향으로 돌출 연장되게 구성된 돌출부(214a)를 구비할 수 있다. 구체적으로, 상기 돌출부(214a)는, 외부 입출력 단자가 결합되도록 결합 구조가 형성될 수 있다. 예를 들면, 상기 돌출부(214a)에는 외부 입출력 단자(도시하지 않음)가 삽입 결합되는 천공된 고정홀(214b)이 형성될 수 있다. 그리고, 상기 외부 입출력 단자는, 상기 고정홀(214b)에 삽입 체결될 수 있는 볼트 형태를 가질 수 있다.
예를 들면, 도 1에 도시된 바와 같이, 6개의 모듈 버스바(210A) 중, 2개의 모듈 버스바(210A)에 돌출부(214a)가 형성될 수 있다. 또한, 상기 각각의 돌출부(214a)에는, 외부 입출력 단자(도시하지 않음)가 결합되는 고정홀(214b)이 형성될 수 있다.
따라서, 본 발명의 이러한 구성에 의하면, 제1 금속 플레이트(212) 보다는 제2 금속 플레이트(214)에 외부 입출력 단자가 결합되도록 돌출부(214a)를 형성시킬 경우, 제1 금속 플레이트(212)를 보다 전기 전도성이 높은 제2 금속 플레이트(214)를 통해서 외부 전자기기로 전력을 송부할 수 있으므로, 배터리 모듈(200)로부터 공급되는 전력 손실을 최소화할 수 있다. 그리고, 상기 제2 금속 플레이트(214)는 방열 특성이 제1 금속 플레이트(212) 보다 우수하므로, 외부 입출력 단자에 발생된 열을 외부로 방열하는데 더 유리하다.
도 9는, 본 발명의 다른 일 실시예에 따른 배터리 모듈에 대한 구성들을 개략적으로 나타낸 사시도이다.
도 9를 참조하면, 본 발명의 다른 일 실시예에 따른 배터리 모듈(200F)은, 상기 모듈 하우징(220)에, 상기 모듈 버스바(210)가 외측에 탑재되는 탑재부(222)가 형성될 수 있다. 구체적으로, 상기 모듈 하우징(220)의 상측면 또는 하측면에는, 상기 모듈 버스바(210)가 탑재될 수 있는 탑재부(222)가 형성될 수 있다. 즉, 상기 모듈 하우징(220)에 수납된 복수의 원통형 전지셀(100) 사이에, 상기 모듈 버스바들(210, 210A) 각각이 탑재될 수 있는 탑재부(222)가 형성될 수 있다. 달리 말해, 상기 모듈 하우징(220)의 복수의 원통형 전지셀(100)가 수용되는 2개의 수용부 사이에, 상기 모듈 버스바들(210, 210A) 각각이 탑재될 수 있는 탑재부(222)가 형성될 수 있다.
또한, 상기 탑재부(222)에는, 상기 탑재부(222) 상에 탑재된 상기 모듈 버스바(210)를 내측 방향으로 가압 고정하는 후크 구조(222k)가 형성될 수 있다. 구체적으로, 상기 후크 구조(222k)는, 상기 모듈 버스바(210)의 상측면 또는 하측면으로부터 외측 방향으로 연장 돌출된 몸체부(222k1), 및 상기 몸체부(222k1)의 연장 방향의 단부로부터 상기 모듈 버스바(210)의 외측면을 가압하도록 수평 방향으로 연장된 가압부(222k2)를 구비할 수 있다.
따라서, 본 발명의 이러한 구성은, 상기 후크 구조에 의해 가압된 모듈 버스바(210)는 안정적으로 고정되어, 상기 복수의 원통형 전지셀(100)의 전극 단자들(111, 112)과 접합된 구조를 유지할 수 있을 뿐만 아니라, 상기 후크 구조의 내부 방향의 가압 힘에 의해 복수의 금속 플레이트 간의 접합 상태를 긴밀하게 유지시켜줄 수 있어, 모듈 버스바(210)의 내구성 또한 향상시킬 수 있는 이점이 있다.
또한, 본 발명에 따른 배터리 팩(도시하지 않음)은, 상기 배터리 모듈(200)을 적어도 둘 이상 포함할 수 있다. 구체적으로, 상기 적어도 둘 이상의 배터리 모듈(200)은, 일 방향으로 정렬 배치된 구조일 수 있다. 경우에 따라, 상기 배터리 팩은, 방열 목적으로 히트 싱크(도시하지 않음)를 더 구비할 수 있다.
그리고, 본 발명에 따른 전자 디바이스(도시하지 않음)는, 상기 배터리 팩을 포함할 수 있다. 예를 들면, 상기 배터리 팩은, 상기 전자 디바이스의 외장 케이스 내부에 수용될 수 있다. 또한, 상기 전자 디바이스는, 전기 자전거와 같은 이동 수단일 수 있고, 또는 전동 공구 등일 수 있다.
한편, 다시 도 1 내지 도 3을 참조하면, 본 발명에 따른 모듈 버스바(210)를 제조하는 방법은, 형상 가공 단계, 접합 단계, 및 펀칭 단계를 포함할 수 있다. 구체적으로, 상기 형상 가공 단계는, 제1 금속 플레이트(212)의 복수의 원통형 전지셀(100)이 배열된 방향으로 연장된 본체부(212a)와 상기 복수의 원통형 전지셀(100) 사이를 전기적으로 연결하도록 구성된 접속부(212b)를 압연 롤러(도시하지 않음)를 사용하여 압연하여 형상 가공하는 단계일 수 있다.
또한, 상기 접합 단계는, 소정 온도에서 상기 제1 금속 플레이트(212)의 본체부(212a) 상에 상기 제1 금속 플레이트(212) 보다 높은 전기 전도성을 가진 제2 금속 플레이트(214)를 압연하여 클래딩 접합시키는 단계일 수 있다. 이때, 사용되는 압연은 통상의 열 처리 방법으로 수행될 수 있다. 예를 들면, 열 처리 온도는 상온에서부터 니켈 및 구리의 융점보다 낮은 온도가 될 수 있다. 더욱 구체적으로, 상기 소정 온도는 100℃ 내지 500℃가 될 수 있다. 그리고, 상기 펀칭 단계는, 상기 제1 금속 플레이트(212)의 상기 본체부(212a)로부터 수평 방향으로 연장된 접속부(212b)가 형성되도록 다이(도시하지 않음)를 사용하여 펀칭 성형하는 단계일 수 있다. 이때 다이는, 상기 접속부(212b)가 소정의 간극을 가진 분지된 구조를 가지도록 형성될 수 있다.
따라서, 본 발명의 이러한 구성에 의하면, 모듈 버스바(210)를 제1 금속 플레이트(212) 및 제2 금속 플레이트(214)가 서로 클래딩 접합하도록 구성함으로써, 단일의 금속 플레이트로 이루어진 버스바와 비교하여, 2가지 장점을 가질 수 있다. 즉, 상기 복수의 원통형 전지셀(100)과 접합되도록 구성된 제1 금속 플레이트(212)는 상대적으로 상기 제2 금속 플레이트(214) 보다 낮은 전기 전도성을 가진 금속을 구비하고, 방열 특성이 낮아 용접이 용이한 장점이 있다. 그리고, 상기 제2 금속 플레이트(214)는, 상대적으로 상기 제1 금속 플레이트(212) 보다 높은 전기 전도성을 가진 금속을 구비함으로써, 상기 복수의 원통형 전지셀(100)로부터 공급된 전류를 전력 손실을 최소화하여 전송할 수 있는 장점이 있다.
또한, 상기 모듈 버스바(210)는 상기 제1 금속 플레이트(212) 및 상기 제2 금속 플레이트(214)가 서로 클래딩 접합(금속 혼화됨)하도록 구성되기 때문에, 두 부재의 접합 부위에서 발생되는 전기 저항을 최소화할 수 있는 이점이 있다.
한편, 다시 도 4를 참조하면, 상기 압연 단계에서, 상기 제2 금속 플레이트(214)의 형성된 상기 제1 금속 플레이트(212)가 위치된 방향으로 돌출된 결합 돌기(212p)가 상기 제1 금속 플레이트(212)의 본체부(212a)에 삽입 결합될 수 있다.
이때, 상기 결합 돌기(212p)의 형상은 요철 구조일 수 있다. 그러나, 상기 결합 돌기(212p)의 형상을 요철 구조로만 한정되는 것은 아니고, 상기 결합 돌기(212p)가 상기 제1 금속 플레이트(212)의 본체부(212a)에 삽입 고정되어 두 부재의 결합력을 높일 수 있는 적절한 형상이면 적용이 가능하다.
나아가, 상기 제1 금속 플레이트(212)의 본체부(212a)에는 상기 결합 돌기(212p)가 삽입 고정되도록 내입된 결합홈(212h)이 형성될 수 있다. 구체적으로, 상기 결합홈(212h)은, 상기 결합 돌기(212p)의 외형과 대응되는 구조로 내입된 형태일 수 있다.
따라서, 본 발명의 이러한 구성에 의하면, 상기 제2 금속 플레이트(214)의 외측면에는 결합 돌기(212p)를 형성시키고, 상기 제1 금속 플레이트(212)의 본체부(212a)에는 결합홈(212h)을 형성시키므로 써, 상기 제2 금속 플레이트(214)가 상기 제1 금속 플레이트(212)의 본체부(212a)에 강한 결합력으로 접합될 수 있다. 더욱이, 상기 제2 금속 플레이트(214)와 상기 제1 금속 플레이트(212)의 본체부(212a)의 접합 부위에 금속 혼화가 비교적 잘 이루어질 수 있는 효과가 있다.
한편, 다시 도 1 및 도 3을 참조하면, 상기 제조방법은, 상기 제2 금속 플레이트(214)의 고정홀(214b)이 형성되도록 구성된 다이(도시하지 않음)를 사용하여 펀칭 성형하는 성형 단계를 더 포함할 수 있다.
구체적으로, 상기 제2 금속 플레이트(214)는, 상기 제1 금속 플레이트(212)의 본체부(212a)로부터 외부 방향으로 돌출되도록 길게 연장된 돌출부(214a)를 형성시킬 수 있다. 또한, 상기 돌출부(214a)에는, 외부 입출력 단자가 삽입되도록 천공된 고정홀(214b)이 형성되도록 형상 가공할 수 있다.
따라서, 본 발명의 이러한 구성에 의하면, 제1 금속 플레이트(212) 보다 제2 금속 플레이트(214)에 외부 입출력 단자가 결합되도록 돌출부(214a)가 형성될 경우, 제1 금속 플레이트(212)를 보다 전기 전도성이 높은 제2 금속 플레이트(214)를 통해서 외부 전자기기로 전력을 송부할 수 있으므로, 배터리 모듈(200)로부터 공급되는 전력 손실을 최소화할 수 있다. 그리고, 상기 제2 금속 플레이트(214)는 방열 특성이 제1 금속 플레이트(212) 보다 우수하므로, 외부 입출력 단자에 발생된 열을 외부로 방열하는데 더 유리하다.
한편, 본 명세서에서 상, 하, 좌, 우, 전, 후와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있음은 본 발명의 당업자에게 자명하다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
[부호의 설명]
200: 배터리 모듈 210: 모듈 버스바
100: 원통형 전지셀 220: 모듈 하우징
220s1, 220s2: 수용부
111, 112: 전극 단자 212: 제1 금속 플레이트
214: 제2 금속 플레이트 216: 제3 금속 플레이트
220a, 220b: 상부 케이스, 하부 케이스 212a, 212b: 본체부, 접속부
212p, 212h: 결합 돌기, 결합홈 212i: 삽입부
212w: 지지벽 214h: 수용홈
216a, 216b: 접합부, 접속 연장부 214a, 214b: 돌출부, 고정홀
222: 탑재부 222k: 후크 구조
본 발명은 모듈 버스바를 포함하는 배터리 모듈에 관한 것이다. 또한, 본 발명은 상기 배터리 모듈을 포함하는 배터리 팩 및 디바이스와 관련된 산업에 이용 가능하다.

Claims (15)

  1. 전극 단자가 상부 및 하부에 각각 형성된 복수의 원통형 전지셀;
    상기 복수의 원통형 전지셀을 삽입하여 수용하도록 복수의 중공 구조를 가진 수용부가 구비된 모듈 하우징; 및
    상기 복수의 원통형 전지셀의 상부 또는 하부에 위치하고 수평 방향으로 연장된 본체부 및 상기 본체부의 일측으로부터 상기 복수의 원통형 전지셀의 전극 단자와 접촉되도록 수평 방향으로 연장 형성된 복수의 접속부가 구비된 제1 금속 플레이트, 및 상기 제1 금속 플레이트의 본체부에 접합되고 상대적으로 상기 제1 금속 플레이트 보다 전기 전도성이 높은 금속을 가진 제2 금속 플레이트를 구비한 모듈 버스바
    를 포함하는 것을 특징으로 하는 배터리 모듈.
  2. 제1항에 있어서,
    상기 제2 금속 플레이트는 상기 제1 금속 플레이트의 본체부에 클래드 접합된 것을 특징으로 하는 배터리 모듈.
  3. 제1항에 있어서,
    상기 제1 금속 플레이트의 본체부와 대면하고 있는 상기 제2 금속 플레이트의 외측면에는, 상기 제1 금속 플레이트의 본체부가 위치된 방향으로 돌출된 결합 돌기가 형성되고,
    상기 제1 금속 플레이트의 본체부에는 상기 결합 돌기가 삽입 고정하도록 내입된 결합홈이 형성된 것을 특징으로 하는 배터리 모듈.
  4. 제1항에 있어서,
    상기 제1 금속 플레이트의 본체부는, 상기 제2 금속 플레이트의 적어도 일부위가 삽입되도록 외측 방향으로 돌출된 지지벽이 구비된 삽입부가 형성된 것을 특징으로 하는 배터리 모듈.
  5. 제1항에 있어서,
    상기 제2 금속 플레이트에는, 상기 제1 금속 플레이트의 본체부의 적어도 일부위를 감싸도록 몸체의 내부 방향으로 내입된 수용홈이 형성된 것을 특징으로 하는 배터리 모듈.
  6. 제1항에 있어서,
    상기 제1 금속 플레이트의 접속부는 상대적으로 제2 금속 플레이트 보다 두께가 더 얇은 것을 특징으로 하는 배터리 모듈.
  7. 제1항에 있어서,
    상기 모듈 버스바는, 상기 제2 금속 플레이트의 외측면에 접합된 접합부 및 상기 접합부의 일측으로부터 상기 복수의 원통형 전지셀의 전극 단자와 접촉되도록 수평 방향으로 연장 형성된 복수의 접속 연장부가 형성된 제3 금속 플레이트를 더 구비한 것을 특징으로 하는 배터리 모듈.
  8. 제7항에 있어서,
    상기 제1 금속 플레이트의 접속부 및 상기 제3 금속 플레이트의 접속 연장부는, 소정 거리로 이격되어 배치된 것을 특징으로 하는 배터리 모듈.
  9. 제1항에 있어서,
    상기 제2 금속 플레이트는, 상기 제1 금속 플레이트의 본체부로부터 외부 방향으로 돌출 연장되게 구성된 돌출부를 구비하고, 상기 돌출부에는 외부 입출력 단자가 삽입 결합되는 고정홀이 형성된 것을 특징으로 하는 배터리 모듈.
  10. 제1항에 있어서,
    상기 모듈 하우징에는 상기 모듈 버스바가 외측에 탑재되는 탑재부가 형성되고,
    상기 탑재부에는 상기 탑재부 상에 탑재된 상기 모듈 버스바를 내측 방향으로 가압 고정하는 후크 구조가 형성된 것을 특징으로 하는 배터리 모듈.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 배터리 모듈을 적어도 둘 이상을 포함하는 것을 특징으로 하는 배터리 팩.
  12. 제11항에 따른 배터리 팩을 포함하는 것을 특징으로 하는 디바이스.
  13. 모듈 버스바를 제조하는 방법으로서,
    제1 금속 플레이트의 복수의 원통형 전지셀이 배열된 방향으로 연장된 본체부와 상기 복수의 원통형 전지셀 사이를 전기적으로 연결하도록 구성된 접속부를 압연 롤러를 사용하여 압연하여 형상 가공 단계;
    소정 온도에서 상기 제1 금속 플레이트의 본체부 상에 상기 제1 금속 플레이트 보다 높은 전기 전도성을 가진 제2 금속 플레이트를 압연하여 클래딩 접합시키는 접합 단계; 및
    상기 제1 금속 플레이트의 상기 본체부로부터 수평 방향으로 연장된 접속부가 형성되도록 다이를 사용하여 펀칭 성형하는 펀칭 단계
    를 포함하는 것을 특징으로 하는 제조방법.
  14. 제13항에 있어서,
    상기 접합 단계에서, 상기 제2 금속 플레이트의 형성된 상기 제1 금속 플레이트가 위치된 방향으로 돌출된 결합 돌기가 상기 제1 금속 플레이트의 본체부에 삽입 결합되는 것을 특징으로 하는 제조방법.
  15. 제13항에 있어서,
    상기 제조방법은,
    상기 제2 금속 플레이트의 외부 입출력 단자가 형성되도록 다이를 사용하여 펀칭 성형하는 성형 단계를 더 포함하는 것을 특징으로 하는 제조방법.
PCT/KR2019/011203 2018-09-21 2019-08-30 모듈 버스바를 포함하는 배터리 모듈 WO2020060069A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980006062.4A CN111418090B (zh) 2018-09-21 2019-08-30 电池模块、电池组、设备和制造模块汇流条的方法
JP2020526379A JP7062177B2 (ja) 2018-09-21 2019-08-30 モジュールバスバーを含むバッテリーモジュール
US16/768,840 US11715865B2 (en) 2018-09-21 2019-08-30 Battery module including module bus bar
EP19863111.1A EP3696883A4 (en) 2018-09-21 2019-08-30 BATTERY MODULE INCLUDING MODULE OMNIBUS BARS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0114299 2018-09-21
KR1020180114299A KR102340419B1 (ko) 2018-09-21 2018-09-21 모듈 버스바를 포함하는 배터리 모듈

Publications (1)

Publication Number Publication Date
WO2020060069A1 true WO2020060069A1 (ko) 2020-03-26

Family

ID=69887490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011203 WO2020060069A1 (ko) 2018-09-21 2019-08-30 모듈 버스바를 포함하는 배터리 모듈

Country Status (6)

Country Link
US (1) US11715865B2 (ko)
EP (1) EP3696883A4 (ko)
JP (1) JP7062177B2 (ko)
KR (1) KR102340419B1 (ko)
CN (1) CN111418090B (ko)
WO (1) WO2020060069A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11532858B2 (en) * 2020-03-04 2022-12-20 Damon Motors Inc. Busbar holder for battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725560A (zh) * 2021-07-23 2021-11-30 浙江南都电源动力股份有限公司 软包电池连接板、极耳焊接工装及其焊接方法
DE102021006202B3 (de) 2021-12-16 2022-12-22 Mercedes-Benz Group AG Batteriemodul mit einem Modulgehäuse
KR20230126920A (ko) 2022-02-24 2023-08-31 주식회사 엘지에너지솔루션 전지 셀들에 대한 전기적 연결 구성을 개선한 배터리 모듈 및 이를 포함하는 배터리 팩
KR20240024622A (ko) * 2022-08-17 2024-02-26 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
KR20240075099A (ko) * 2022-11-21 2024-05-29 주식회사 엘지에너지솔루션 고전압 파우치 전지 셀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134835A (ja) * 1996-10-30 1998-05-22 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池の電流取出構造
JP2004127554A (ja) * 2002-09-30 2004-04-22 Sanyo Electric Co Ltd 接続リード板およびリード板付き電池
KR20140008123A (ko) * 2012-07-10 2014-01-21 인셀(주) 전지 장착용 케이스 및 이를 구비한 전지 어셈블리
JP3189971U (ja) * 2013-05-17 2014-04-10 昇陽國際半導體股▲ふん▼有限公司 電池セル固定装置およびその動力電池パック
KR20170025074A (ko) * 2015-08-27 2017-03-08 삼성에스디아이 주식회사 배터리 팩
KR20180114299A (ko) 2017-04-10 2018-10-18 현대자동차주식회사 차량용 egr 쿨러

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064534Y2 (ja) * 1988-06-09 1994-02-02 三洋電機株式会社 電池装置
ES2092237T3 (es) 1992-12-22 1996-11-16 Honda Motor Co Ltd Bateria con estructura antioxidante.
JP2000036299A (ja) * 1998-07-17 2000-02-02 Japan Storage Battery Co Ltd 電池用の端子接続板
JP3848565B2 (ja) * 2001-11-27 2006-11-22 松下電器産業株式会社 電池間接続構造および電池モジュール並びに電池パック
JP4127501B2 (ja) 2002-11-19 2008-07-30 松下電器産業株式会社 電池間接続構造および電池モジュール並びに電池パック
JP5044108B2 (ja) 2004-09-14 2012-10-10 パナソニック株式会社 電池間接続装置
US7776467B2 (en) 2005-07-05 2010-08-17 Panasonic Corporation Inter-battery connection device
JP5535597B2 (ja) 2009-11-27 2014-07-02 有限会社スガイ総業 単電池の接続装置、この接続装置を具備する組電池およびその製造方法
CN102189382B (zh) * 2011-04-28 2013-02-27 上海交通大学 嵌入式铜-铝-铜复合板材的制备方法
KR101201066B1 (ko) * 2011-06-14 2012-11-14 삼성에스디아이 주식회사 배터리 팩
FR2979472B1 (fr) 2011-08-29 2013-08-23 Batscap Sa Connecteur dispose entre deux ensembles de stockage d'energie
JP5530464B2 (ja) 2012-01-11 2014-06-25 トヨタ自動車株式会社 パワーコントロールユニット用バスバー
US9318734B2 (en) 2012-05-21 2016-04-19 Tyco Electronics Corporation Bimetal buss bar assembly
DE102012219782A1 (de) 2012-10-29 2014-04-30 Lisa Dräxlmaier GmbH Batteriemodul
US9263762B2 (en) 2013-11-22 2016-02-16 Lanyang Energy Technology Co., Ltd. Lithium ion batteries
KR20150064348A (ko) 2013-12-03 2015-06-11 주식회사 유라코퍼레이션 클래드메탈 버스바 및 그 제조방법
KR20160069242A (ko) 2014-12-08 2016-06-16 희성금속 주식회사 자동차 릴레이 접점용 클래드의 제조방법 및 이로부터 제조된 자동차 릴레이 접점용 클래드
CN206194879U (zh) 2016-11-21 2017-05-24 山东精工电子科技有限公司 一种易组装便于散热动力圆柱锂电池模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134835A (ja) * 1996-10-30 1998-05-22 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池の電流取出構造
JP2004127554A (ja) * 2002-09-30 2004-04-22 Sanyo Electric Co Ltd 接続リード板およびリード板付き電池
KR20140008123A (ko) * 2012-07-10 2014-01-21 인셀(주) 전지 장착용 케이스 및 이를 구비한 전지 어셈블리
JP3189971U (ja) * 2013-05-17 2014-04-10 昇陽國際半導體股▲ふん▼有限公司 電池セル固定装置およびその動力電池パック
KR20170025074A (ko) * 2015-08-27 2017-03-08 삼성에스디아이 주식회사 배터리 팩
KR20180114299A (ko) 2017-04-10 2018-10-18 현대자동차주식회사 차량용 egr 쿨러

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3696883A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11532858B2 (en) * 2020-03-04 2022-12-20 Damon Motors Inc. Busbar holder for battery

Also Published As

Publication number Publication date
JP2021502685A (ja) 2021-01-28
US11715865B2 (en) 2023-08-01
EP3696883A1 (en) 2020-08-19
EP3696883A4 (en) 2021-01-13
JP7062177B2 (ja) 2022-05-06
KR102340419B1 (ko) 2021-12-15
CN111418090B (zh) 2023-02-28
CN111418090A (zh) 2020-07-14
KR20200034469A (ko) 2020-03-31
US20210167467A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2020060069A1 (ko) 모듈 버스바를 포함하는 배터리 모듈
WO2019203426A1 (ko) 버스바를 구비한 배터리 모듈 및 배터리 팩
WO2019107717A1 (ko) 방열 플레이트를 구비한 배터리 모듈
WO2019156390A1 (ko) 전류 차단부를 구비한 버스바 및 그것을 포함한 배터리 모듈
WO2019117514A1 (ko) 버스바 어셈블리를 포함하는 배터리 모듈
WO2019124876A1 (ko) 버스바 어셈블리를 구비한 배터리 모듈
WO2021107336A1 (ko) 배터리 모듈, 배터리 팩, 및 자동차
WO2019245126A1 (ko) 버스바를 구비한 배터리 모듈 및 배터리 팩
WO2019059538A1 (ko) 가이드 결합 구조를 포함한 배터리 모듈 및 그것을 포함한 배터리 팩
WO2020055219A1 (ko) 열수축성 튜브를 포함하는 배터리 모듈
WO2019107764A1 (ko) 엔드 프레임을 구비한 배터리 모듈
WO2019107735A1 (ko) 버스바 어셈블리를 구비한 배터리 모듈
WO2019098588A1 (ko) 센싱 어셈블리 및 버스바 어셈블리를 포함하는 배터리 모듈
WO2013103244A1 (ko) 배터리 팩 및 이에 적용되는 커넥팅 바
WO2020040460A1 (ko) 버스바 플레이트를 포함하는 배터리 모듈
WO2012023731A2 (ko) 전지모듈 및 이를 포함하는 전지팩
WO2022050780A1 (ko) 배터리 팩, 및 자동차, 및 이를 포함하는 전자 디바이스
WO2020071642A1 (ko) 접속 플레이트를 구비한 배터리 팩
WO2019245214A1 (ko) 이차 전지 및 버스바를 포함한 배터리 모듈
WO2015152527A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2018225920A1 (ko) 배터리 모듈
WO2021118028A1 (ko) 인근 모듈로의 가스 이동을 방지할 수 있는 전지 모듈
WO2018186659A1 (ko) 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
WO2018221818A1 (ko) 배터리 모듈
WO2019004632A1 (ko) 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526379

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019863111

Country of ref document: EP

Effective date: 20200515

NENP Non-entry into the national phase

Ref country code: DE