WO2020059728A1 - Aluminum member and manufacturing method for same - Google Patents

Aluminum member and manufacturing method for same Download PDF

Info

Publication number
WO2020059728A1
WO2020059728A1 PCT/JP2019/036453 JP2019036453W WO2020059728A1 WO 2020059728 A1 WO2020059728 A1 WO 2020059728A1 JP 2019036453 W JP2019036453 W JP 2019036453W WO 2020059728 A1 WO2020059728 A1 WO 2020059728A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
aluminum member
film
member according
porous layer
Prior art date
Application number
PCT/JP2019/036453
Other languages
French (fr)
Japanese (ja)
Inventor
裕太 清水
修平 榎
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to CN201980061377.9A priority Critical patent/CN112739855B/en
Priority to CN202311219931.6A priority patent/CN117258542A/en
Priority to JP2020548531A priority patent/JP7306405B2/en
Publication of WO2020059728A1 publication Critical patent/WO2020059728A1/en
Priority to JP2023038925A priority patent/JP2023085311A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54306Solid-phase reaction mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated

Definitions

  • the present invention relates to an aluminum member and a method for manufacturing the same.
  • test kit using immunochromatography has been known as an in vitro diagnostic drug for quickly and easily testing for infections such as influenza virus.
  • This test kit is, for example, a sample collected from a living body is dropped at a predetermined position and is positive when both the test line and the control line can be visually confirmed, and only the control line can be visually confirmed. If it is, it indicates a negative.
  • the test kit includes a nitrocellulose membrane filter as a developing member for developing a sample, as shown in Patent Document 1, for example.
  • the collected sample flows through the membrane filter by capillary action and is developed to a test line and a control line.
  • Nitrocellulose membrane filters generally have high whiteness, so it is relatively easy to visually check the test line and control line, and they are used in many test kits.
  • nitrocellulose membrane filters tend to have non-uniform pore sizes and non-uniform thicknesses depending on the date of production, production location, production lot, and the like, and tend to have large variations in quality. If such a variation in quality is large, the flow velocity of the liquid flowing due to the capillary phenomenon is likely to be non-uniform, which may adversely affect the inspection result.
  • nitrocellulose membrane filters generally have poor storage stability. Therefore, there is a demand for a deployment member that replaces the nitrocellulose membrane filter and has high whiteness and preservability.
  • An object of the present invention is to provide an aluminum member having high whiteness and high water absorption performance, and a method for manufacturing the same.
  • the aluminum member according to the aspect of the present invention includes a porous layer including a base material made of metallic aluminum, and a coating containing aluminum oxide covering the surface of the base material.
  • the film has a thickness of 5 nm to 1000 nm, and the film has at least one of a plurality of concave portions and a plurality of convex portions formed on the surface.
  • the depth of each concave portion included in the plurality of concave portions is 10 nm to 100 nm, and the height of each convex portion included in the plurality of convex portions is 10 nm to 100 nm.
  • the porous layer has a plurality of pores, and the plurality of pores have an average pore diameter of 0.1 ⁇ m to 10 ⁇ m.
  • the method for manufacturing an aluminum member according to an aspect of the present invention includes a film forming step of anodizing an aluminum plate having a porous structure and forming a film containing aluminum oxide on the aluminum plate.
  • the method for manufacturing an aluminum member includes a depolarizing step of depolarizing the aluminum plate on which the film is formed and removing a part of the surface of the film. The film forming step and the depolarizing step are alternately repeated.
  • the aluminum plate is made of metal aluminum.
  • FIG. 1 is a schematic cross-sectional view illustrating a tertiary rough surface structure of a porous layer in which a part of the porous layer according to the present embodiment is enlarged.
  • FIG. 2 is a schematic cross-sectional view showing a primary rough surface structure and a secondary rough surface structure of a porous layer in which a portion surrounded by a frame in FIG. 1 is enlarged.
  • FIG. 3 is a schematic cross-sectional view showing another example of the primary roughened surface structure and the secondary roughened surface structure of the porous layer.
  • FIG. 4 is a schematic cross-sectional view showing another example of the primary roughened surface structure and the secondary roughened surface structure of the porous layer.
  • FIG. 1 is a schematic cross-sectional view illustrating a tertiary rough surface structure of a porous layer in which a part of the porous layer according to the present embodiment is enlarged.
  • FIG. 2 is a schematic cross-sectional view showing a primary rough surface structure and a secondary rough surface
  • FIG. 5 is a cross-sectional view illustrating an example of the aluminum member according to the present embodiment.
  • FIG. 6 is a perspective view showing an example of an inspection kit using the aluminum member according to the present embodiment.
  • FIG. 7 is a photograph obtained by observing the surface of the aluminum plate after etching with a scanning electron microscope (SEM).
  • FIG. 8 is a photograph of the surface of the aluminum member according to Example 3 observed with a scanning electron microscope.
  • FIG. 9 is a photograph of the surface of the aluminum member according to Example 10 observed with a scanning electron microscope.
  • FIG. 10 is a photograph obtained by observing the surface of the aluminum member according to Comparative Example 3 with a scanning electron microscope.
  • Al member In the present embodiment, it was examined whether an aluminum member having a porous structure could be used as a substitute for a nitrocellulose membrane filter. However, it is generally considered that it is difficult for an aluminum member to exhibit a capillary phenomenon that can be applied to immunochromatography. In addition, the aluminum member is usually gray, and it is difficult to confirm the coloring of the test line and the control line.
  • the aluminum member according to the present embodiment described in detail below has high whiteness and high water wicking performance.
  • Such an aluminum member is expected to be useful not only as a substitute for a nitrocellulose membrane filter but also for various uses.
  • FIG. 1 is a schematic cross-sectional view in which a part of the porous layer 40 according to the present embodiment is enlarged.
  • 2 to 4 are schematic cross-sectional views showing the primary roughened surface structure 10 and the secondary roughened surface structure 20 of the porous layer 40 in which a portion surrounded by the frame in FIG. 1 is enlarged.
  • the aluminum member 100 according to the present embodiment includes a porous layer 40.
  • the porous layer 40 includes a base material 11 and a film 12.
  • the coating 12 is in contact with the base material 11, and the coating 12 is disposed on the outer surface of the aluminum member 100.
  • the coating 12 has at least one of a concave portion 13 (first concave portion) and a convex portion 14 (first convex portion) on the surface.
  • the porous layer 40 has a plurality of holes 15.
  • Aluminum member 100 has a rough surface structure on its surface.
  • the rough surface structure refers to a surface structure having a plurality of irregularities on the surface so that the surface is rougher than a smooth surface.
  • the rough surface structure refers to a structure in which at least one of the concave portion 13 and the convex portion 14 is dispersed on the surface of the aluminum member 100. It is preferable that no needle-like or plate-like uneven structure is arranged on the rough surface structure on the surface of the aluminum member 100.
  • the rough surface structure of the aluminum member 100 can be represented by the primary rough surface structure 10, the secondary rough surface structure 20, and the tertiary rough surface structure 30 in the order of increasing the surface roughness scale.
  • the scale of the surface roughness of the secondary rough structure 20 is larger than the scale of the surface roughness of the primary rough structure 10
  • the scale of the surface roughness of the tertiary rough structure 30 is larger than the surface roughness of the secondary rough structure 20. Greater than the degree scale.
  • the aluminum member 100 has a primary roughened surface structure 10, a secondary roughened surface structure 20, and a tertiary roughened surface structure 30 to increase whiteness.
  • the primary roughened surface structure 10 has a fine structure formed by the film 12 and at least one of the plurality of concave portions 13 and the plurality of convex portions 14 existing on the surface of the film 12. It has a rough surface structure.
  • the primary rough surface structure 10 is formed on the surface of the coating 12.
  • the primary rough surface structure 10 has a surface roughness scale on the order of several nm to several hundred nm.
  • the secondary rough surface structure 20 is a rough surface structure formed by the base material 11 and the plurality of holes 15 in the porous layer 40. That is, the secondary rough surface structure 20 is formed by the convex portions 21 (second convex portions, projecting portions) and the concave portions 22 (second concave portions, indentations).
  • the protrusion 21 is formed by the base material 11 and the coating 12 and protrudes toward the outside of the porous layer 40.
  • the recess 22 is formed by the base material 11 and the coating 12, and is recessed toward the inside of the porous layer 40.
  • the holes 15 are formed by the internal space of the porous layer 40 surrounded by the base material 11 and the coating 12 that form the concave portions 22.
  • the secondary rough surface structure 20 is formed on the surface of the aluminum member 100 by the base material 11 and the coating 12 itself.
  • the secondary rough surface structure 20 has a surface roughness scale on the order of several hundred nm to several tens of ⁇ m.
  • the porous layer 40 is a porous body having the pores 15 communicating with the outside inside.
  • the holes 15 are surrounded by the coating 12. That is, the concave portions 13 and the convex portions 14 of the primary rough surface structure 10 are formed in the coating 12 on the surface of the porous layer 40, whereas the holes 15 of the secondary rough surface structure 20 It is formed by being surrounded by a base material 11 and a film 12 covering the surface thereof.
  • the holes 15 forming one cell structure surrounded by the coating 12 may communicate with the holes 15 forming another cell structure.
  • the porous layer 40 may have an open cell type structure.
  • the holes 15 may penetrate from one surface of the porous layer 40 to the other surface, or may not penetrate.
  • the tertiary rough surface structure 30 is constituted by the outer surface of the porous layer 40.
  • the tertiary rough surface structure 30 is a coarse rough surface structure formed by collecting a plurality of irregularities due to the primary rough surface structure 10 and the secondary rough surface structure 20.
  • the tertiary rough surface structure 30 is an aggregate including a set of the primary rough surface structure 10 and the secondary rough surface structure 20 on the surface of the aluminum member 100.
  • the tertiary rough surface structure 30 has an uneven structure composed of an aggregate of the primary rough surface structure 10 and the secondary rough surface structure 20 by repeating the film forming step and the depolarizing step after the etching step. It is formed by developing.
  • the tertiary rough surface structure 30 is a structure having a surface roughness scale on the order of several tens of ⁇ m to several hundred ⁇ m.
  • an uneven structure is formed on the surface of the aluminum member 100 by the tertiary rough surface structure 30 including an aggregate of the primary rough surface structure 10 and the secondary rough surface structure 20.
  • the tertiary roughened surface structure 30 is formed by an aggregate of the primary roughened surface structure 10 and the secondary roughened surface structure 20, and includes a convex portion 31 (third convex portion and a mountain portion) and a concave portion 32 (third concave portion). , Valleys) are formed.
  • the protrusion 31 rises like a mountain with respect to the thickness direction of the surface of the aluminum member 100, and the recess 32 falls like a valley with respect to the thickness direction of the surface of the aluminum member 100.
  • the tertiary rough surface structure 30 has a periodic valley structure with a larger scale than the primary rough surface structure 10 and the secondary rough surface structure 20. have.
  • the period of the tertiary rough surface structure 30 is preferably 10 ⁇ m to 500 ⁇ m, more preferably 30 ⁇ m to 200 ⁇ m.
  • the period of the tertiary rough surface structure 30 refers to, in the planar direction of the aluminum member 100, the convex portions 31 that periodically appear adjacent to each other across the concave portion 32 or the concave portions that periodically appear adjacent to each other across the convex portion 31. 32.
  • the period of the tertiary rough surface structure 30 is in such a range, the aluminum member 100 having better whiteness can be provided.
  • the period of the tertiary rough surface structure 30 can be measured by observing the cross section of the aluminum member 100 with an optical microscope or the like.
  • the aluminum member 100 has the tertiary rough surface structure 30 as described above, the glossiness of the surface is reduced and the matte feeling is improved. Thereby, the gloss generated on the surface of the aluminum member 100 is suppressed, and the visibility of information such as colors, patterns, figures, symbols, and characters presented on the aluminum member 100 is improved. Such improvement in visibility is effective, for example, when the aluminum member 100 is used as a test sheet or a developing member for chromatography, and the test results generated on the aluminum member 100 are visually or optically confirmed.
  • the base material 11 is made of metal aluminum.
  • the metallic aluminum constituting the base material 11 is preferably pure aluminum having a purity of 99% or more, more preferably pure aluminum having a purity of 99.9% or more, and pure metal having a purity of 99.98% or more. More preferably, it is aluminum.
  • the base material 11 may contain unavoidable impurities.
  • the unavoidable impurities mean those which are present in the raw material or unavoidably mixed in the manufacturing process.
  • the unavoidable impurities are originally unnecessary, but are trace amounts and do not affect the properties in aluminum, and are thus allowed impurities.
  • Inevitable impurities that may be contained in aluminum are elements other than aluminum (Al).
  • inevitable impurities that may be contained in aluminum, for example, magnesium (Mg), iron (Fe), silicon (Si), copper (Cu), lead (Pb), manganese (Mn), chromium (Cr) ), Zinc (Zn), titanium (Ti), gallium (Ga), boron (B), vanadium (V), zirconium (Zr), calcium (Ca), cobalt (Co), and the like.
  • the amount of the inevitable impurities is preferably 1% by mass or less in total in aluminum, more preferably 0.1% by mass or less, and even more preferably 0.02% by mass or less.
  • the shape of the base material 11 is not particularly limited, and may be porous, tree-like, fibrous, massive, spongy, or the like.
  • the coating 12 covers the surface of the base material 11. More specifically, the coating 12 is in contact with the surface of the base material 11 and the pores 15 to suppress the base material 11 from being corroded.
  • the film 12 contains aluminum oxide.
  • the film 12 is an anodic oxide film, and the anodic oxide film is preferably a barrier type anodic oxide film.
  • the film 12 may include aluminum hydroxide.
  • the film 12 may have a hydrated film containing aluminum hydroxide.
  • the coating 12 may be formed by laminating an anodized film and a hydrated film in this order from the base material 11 side, but the surface side of the anodized film covering the surface of the base material 11 may be used. It is preferable that a hydration film is provided on a part of the film.
  • the coating 12 may be one in which the anodized film and the hydrated film are distributed in a sea-island shape on the surface of the base material 11, but the anodized film is distributed in the sea shape on the surface of the base material 11.
  • the hydrated film is distributed in an island shape.
  • the ratio of the hydrated film to the entire outer surface of the film 12 is preferably 5% or more and 50% or less, more preferably 10% or more and 40% or less, and 15% or more and 30% or less. Is more preferable.
  • the coating 12 contains aluminum hydroxide and aluminum hydroxide is present on a part of the outermost surfaces of the base material 11 and the porous layer 40, it is preferable that the aluminum hydroxide forms the projections 14.
  • the porous layer 40 according to the present embodiment does not include a hydrated film covering the base material 11 and the porous layer 40 over the entire outermost surface. Since the porous layer 40 does not include a hydrated film on the entire outermost surface, diffuse reflection becomes superior, and the whiteness of the aluminum member 100 can be further improved.
  • Aluminum hydroxide is represented by the general formula Al (OH) 3 .
  • the aluminum member 100 may be observed in black or gray.
  • a hydrated film has a sharp tip shape in the vicinity of the surface, and although this tip portion contributes to diffuse reflection of incident light, the portion that can diffusely reflect is formed at the tip portion. It is considered that the effect is limited by the area.
  • such a coating has an internal shape in which the space between adjacent needle-like or plate-like hydration coatings gradually narrows from the tip to the base. Therefore, the incident light that has entered the interior is absorbed by the hydrated film while repeating reflection, and the fact that the light is not easily emitted to the outside also affects that the aluminum member 100 is observed in black or gray. it is conceivable that.
  • the film 12 made of the anodic oxide film is provided on the surface of the porous layer 40, and the concave portions 13 and the holes 15 exist on the outermost surface of the film 12.
  • the aluminum hydroxide covers the entire outermost surface of the porous layer 40 and does not form a hydrated film. In this case, the whiteness can be improved by the convex portions 14. Further, the whiteness can be improved by the convex portions 14 and the concave portions 13 exposed on the outermost surface of the porous layer 40 without being covered with the hydrated film.
  • the film 12 usually has a thickness of 5 nm to 1000 nm.
  • the thickness of the film 12 is preferably from 20 nm to 800 nm, more preferably from 30 nm to 500 nm, and still more preferably from 50 nm to 300 nm.
  • the thickness of the film 12 can be measured, for example, by observing the cross section of the film 12 with a scanning electron microscope or the like. In the present specification, the thickness of the coating 12 means a thickness not including the concave portions 13 and the convex portions 14.
  • the coating 12 has at least one of the plurality of concave portions 13 and the plurality of convex portions 14 formed on the surface.
  • the film 12 may have a plurality of recesses 13 on the surface of the film 12.
  • the film 12 may have a plurality of convex portions 14 on the surface of the film 12.
  • the film 12 may have a concave portion 13 and a convex portion 14 on the surface of the film 12. That is, the film 12 may have either the concave portion 13 or the convex portion 14, or may have both the concave portion 13 and the convex portion 14.
  • the presence or absence of the concave portion 13 or the convex portion 14 can be determined by observing the surface of the coating 12 with a scanning electron microscope or the like.
  • the concave portion 13 and the convex portion 14 contribute to the whiteness of the aluminum member 100.
  • the reason why the whiteness of the aluminum member 100 is improved by forming at least one of the concave portion 13 and the convex portion 14 on the surface of the film 12 is not necessarily clear, but is presumed as follows. First, when light enters the aluminum member, the incident light is reflected on the surface of the aluminum member. At this time, if the surface of the aluminum member is smooth, the aluminum member has a mirror-like gloss. Here, when there are minute irregularities on the surface of the aluminum member, diffuse reflection of the incident light occurs due to the irregularities, but there are usually no irregularities that are visible in white.
  • the diffuse reflection on the surface of the coating 12 can be increased by the concave portions 13 and the convex portions 14. That is, when the film 12 has the concave portion 13, the area in which the incident light can be diffusely reflected is increased by the concave portion 13, so that the aluminum member 100 is observed to be white. Similarly, when the coating 12 has the convex portions 14, the area where the incident light can be diffusely reflected is increased by the convex portions 14, so that the aluminum member 100 is observed to show white.
  • the recess 13 is preferably formed so as to be depressed from the exposed surface of the coating 12 toward the base material 11. It is preferable that the bottom of the recess 13 does not penetrate to the base material 11, and the coating 12 is formed between the recess 13 and the base material 11.
  • the shape of the concave portion 13 is not particularly limited, but is preferably substantially U-shaped or substantially V-shaped in cross section in the laminating direction of the base material 11 and the film 12 (the thickness direction of the film 12).
  • the anodized and depolarized aluminum plate is etched to form a film 12 made of an anodized film on the surface of the base material 11.
  • the recess 13 is formed in this anodic oxide film.
  • the convex portion 14 is formed to protrude outward from the exposed surface of the film 12.
  • the shape of the convex portion 14 is not particularly limited, but is preferably granular or massive.
  • each recess 13 included in the plurality of recesses is preferably 10 nm to 200 nm, more preferably 20 nm to 150 nm, and even more preferably 50 nm to 100 nm.
  • the diameter of each protrusion 14 included in the plurality of protrusions is preferably from 10 nm to 200 nm, more preferably from 20 nm to 150 nm, and further preferably from 50 nm to 100 nm.
  • the diameter of the concave portion 13 and the convex portion 14 By setting the diameter of the concave portion 13 and the convex portion 14 in such a range, the light incident on the porous layer 40 can be easily diffused and reflected by the concave portion 13 and the convex portion 14, and the aluminum member 100 having a better whiteness can be obtained.
  • the diameter of the recess 13 can be obtained by observing the surface of the coating 12 with a scanning electron microscope or the like and measuring the diameter of the entrance of the recess 13.
  • the diameter of the protrusion 14 can be obtained by observing the surface of the coating 12 with a scanning electron microscope or the like and measuring the diameter of the portion where the diameter of the protrusion 14 is largest.
  • the position of the concave portion 13 is determined by the deepest position of the concave portion 13 (the peak position on the bottom side).
  • the interval between adjacent recesses 13 can be determined by the distance between the peak positions on the bottom side of each recess 13. If a certain recess 13 is present at a distance of 50 nm or more from the surrounding recess 13, the recess 13 is regarded as an independent recess 13.
  • this group is regarded as one recess 13.
  • the diameter of the entire group is measured as the diameter of the recess 13.
  • the plurality of recesses 13 share the peripheral edge of the recess and the peak positions on the bottom side of the plurality of recesses 13 are vacant by 50 nm or more, the plurality of recesses 13 are separately and independently provided. It is regarded as the recess 13.
  • a region belonging to each of the concave portions 13 can be defined by performing Voronoi division with respect to the concave portion sharing the peripheral edge portion with the peak position on the bottom side of the plurality of concave portions 13 as a base point.
  • the position of the protrusion 14 is determined by the highest position of the protrusion 14 (the peak position on the top side).
  • the interval between the adjacent protrusions 14 can be determined by the distance between the top peak positions of the respective protrusions 14. If a certain protrusion 14 is present at a distance of 50 nm or more from the surrounding protrusions 14, the protrusion 14 is regarded as an independent protrusion 14.
  • a group in which the plurality of convex portions 14 are gathered with an interval of less than 50 nm, and a group in which there is an interval of 50 nm or more with surrounding convex portions 14 not included in the group is formed. If so, this group is regarded as one protrusion 14. Then, the diameter of the entire group is measured as the diameter of the projection 14. In the case where the plurality of protrusions 14 share the overhanging peripheral portion and the peak positions on the top side of the plurality of protrusions 14 are vacant by 50 nm or more, the plurality of protrusions 14 are separately provided. Are regarded as independent projections 14. At this time, a region belonging to each convex portion 14 is defined by performing Voronoi division on the overhang that shares the peripheral portion with the peak position on the top side of the plurality of convex portions 14 as a generating point. Can be.
  • each of the recesses 13 included in the plurality of recesses is generally 10 nm to 100 nm, preferably 20 nm to 80 nm, and more preferably 30 nm to 50 nm in cross-sectional view in the laminating direction of the base material 11 and the film 12. Is more preferable.
  • the depth of the recess 13 can be obtained by observing the cross section of the coating 12 with a scanning electron microscope or the like and calculating the average value of the distance from the entrance to the bottom of the recess 13.
  • each protrusion 14 included in the plurality of protrusions is generally 10 nm to 100 nm, preferably 20 nm to 80 nm, and more preferably 30 nm to 50 nm in cross-sectional view in the laminating direction of the base material 11 and the film 12. Is more preferable.
  • the height of the protrusion 14 is obtained by observing a cross section of the film 12 with a scanning electron microscope or the like and calculating an average value obtained by measuring the distance from the surface of the flat portion of the film 12 to the top of the protrusion 14. be able to.
  • the depth of the concave portion 13 and the height of the convex portion 14 exceed the lower limit of the above range, the area where the concave portion 13 and the convex portion 14 can diffuse and reflect the incident light increases, and the diffuse reflection tends to increase.
  • the depth of the concave portion 13 and the height of the convex portion 14 are less than the upper limit of the above range, a decrease in diffuse reflection caused by the concave portion 13 and the convex portion 14 becoming a needle-like or plate-like concave-convex structure, for example. Can be suppressed.
  • the decrease in the diffuse reflection is due to the fact that the area in which the incident light can be diffusely reflected is reduced and the incident light is absorbed by the needle-shaped or plate-shaped uneven structure.
  • the aluminum member 100 tends to be observed as exhibiting white color.
  • the density of the concave portions 13 and the convex portions 14 in the coating 12 is preferably 3 / ⁇ m 2 to 500 / ⁇ m 2 , more preferably 5 / ⁇ m 2 to 200 / ⁇ m 2 , and 10 / ⁇ m 2 to 100 particles / ⁇ m 2 is more preferable.
  • the densities of the concave portions 13 and the convex portions 14 can be obtained by counting the total number of the concave portions 13 and the convex portions 14 per unit area on the surface of the film 12 using a scanning electron microscope or the like.
  • the area ratio of the concave portions 13 and the convex portions 14 in the film 12 is preferably 5% to 80%, more preferably 20% to 70%, and further preferably 30% to 60%.
  • the area ratio of the concave portions 13 and the convex portions 14 represents the ratio of the area occupied by the concave portions 13 and the convex portions 14 to the surface area of the film 12 on the surface of the porous layer 40 as a percentage.
  • the area ratio of the concave portions 13 and the convex portions 14 can be obtained by calculating the total area occupied by the concave portions 13 and the convex portions 14 per unit area on the surface of the film 12 using a scanning electron microscope or the like.
  • the porous layer 40 has a plurality of pores, and the plurality of pores have an average pore diameter of 0.1 ⁇ m to 10 ⁇ m.
  • the average pore diameter of the pores 15 in the porous layer 40 is preferably 0.5 ⁇ m to 8 ⁇ m, and more preferably 1 ⁇ m to 5 ⁇ m.
  • the average pore diameter d ( ⁇ m) of the porous layer 40 is preferably in a range represented by the following equation, where the time required for the aluminum member 100 to suck up 4 cm of water is t seconds.
  • Average pore diameter d k / t
  • k is a constant, and specifically, k is preferably from 200 to 2000, and more preferably from 500 to 1500.
  • Such holes 15 make it easy to secure an appropriate diameter for sucking up water by capillary action, and improve the water sucking performance of the aluminum member 100.
  • the average pore diameter of the pores 15 can be measured, for example, by a mercury intrusion method.
  • the diameter of the concave portion 13 or the convex portion 14 is within the above-described predetermined range and smaller than the average pore diameter of the porous layer 40.
  • the diameter of the concave portion 13 is preferably 10 nm to 200 nm, and is preferably smaller than the average pore diameter in the porous layer 40.
  • the diameter of the projections 14 is 10 nm to 200 nm and smaller than the average pore diameter in the porous layer 40.
  • the thickness of the porous layer 40 is preferably 30 ⁇ m to 10 cm. By setting the thickness of the porous layer 40 in such a range, it is easy to secure a sufficient thickness for absorbing water by capillary action, and the aluminum member 100 having better whiteness and water absorption performance is provided. can do.
  • the thickness of the porous layer 40 is preferably 40 ⁇ m or more, and more preferably 50 ⁇ m or more.
  • the thickness of the porous layer 40 is more preferably 1000 ⁇ m or less, further preferably 200 ⁇ m or less, and particularly preferably 150 ⁇ m or less.
  • the aluminum member 100 may further include a substrate 50.
  • the substrate 50 can support the porous layer 40, and can improve the rigidity of the aluminum member 100.
  • the substrate 50 may have a layered shape.
  • the porous layer 40 may be provided on at least one surface of the substrate 50. Specifically, the porous layer 40 may be provided only on one surface side of the substrate 50, or may be provided on both surface sides of the substrate 50. The porous layer 40 is preferably disposed on the outermost surface of the aluminum member 100.
  • the thickness of the substrate 50 is more than 0 ⁇ m.
  • the thickness of the substrate 50 depends on the application, but may be, for example, 1 mm or less, 100 ⁇ m or less, 10 ⁇ m or less, or 1 ⁇ m or less.
  • the material forming the substrate 50 may be substantially the same as the material of the base material 11. When the substrate 50 and the base material 11 are the same material, the substrate 50 and the base material 11 may be integrally formed. In this case, the substrate 50 and the base material 11 of the porous layer 40 may be formed continuously.
  • the substrate 50 may be made of metal aluminum.
  • the metallic aluminum constituting the substrate 50 is preferably pure aluminum having a purity of 99% or more, more preferably pure aluminum having a purity of 99.9% or more, and pure aluminum having a purity of 99.98% or more. Is more preferable.
  • the thickness of the aluminum member 100 depends on the application, but may be, for example, 50 ⁇ m or more, 100 ⁇ m or more, or 150 ⁇ m or more. Further, the thickness of aluminum member 100 may be 300 ⁇ m or less, 250 ⁇ m or less, or 200 ⁇ m or less. By setting the thickness of the aluminum member 100 in such a range, the aluminum member 100 having good bending strength can be provided.
  • the arithmetic average roughness Sa of the aluminum member 100 is preferably 0.1 ⁇ m to 30 ⁇ m, more preferably 0.6 ⁇ m to 20 ⁇ m, and further preferably 1 ⁇ m to 10 ⁇ m.
  • the arithmetic average roughness Sa can be obtained by measuring the surface of the aluminum member 100 on the side of the porous layer 40 according to ISO25178.
  • the arithmetic mean roughness Sa of the aluminum member 100 mainly reflects the roughness of the secondary rough surface structure 20.
  • the aluminum member 100 preferably has an L * value in the L * a * b * color system of 80 or more, more preferably 85 or more, even more preferably 90 or more, and even more preferably 95 or more. Is particularly preferred.
  • the L * value in the L * a * b * color system can be determined according to JIS Z8722: 2009 (color measurement method-reflection and transmission object colors). Specifically, the L * value can be measured using a colorimeter or the like, and can be measured under conditions such as a diffuse illumination vertical light receiving system (D / 0), a viewing angle of 2 °, and a C light source. .
  • the aluminum member 100 preferably has a water suction height of 3 cm or more, more preferably 4 cm or more, and even more preferably 5 cm or more, due to capillary action.
  • a water suction height of 3 cm or more, more preferably 4 cm or more, and even more preferably 5 cm or more, due to capillary action.
  • the suction height is, for example, such that the aluminum member 100 is immersed in pure water and allowed to stand for 10 minutes so that the plane direction of the aluminum member 100 is perpendicular to the liquid level, and then the water is sucked up by capillary action. It can be obtained by measuring the height.
  • the pure water is pure water having a specific resistance of 10 k ⁇ m measured at 30 ° C.
  • the aluminum member 100 does not break even if it is bent 100 times or more. When the aluminum member 100 satisfies such requirements, the aluminum member 100 is easily stored and transported in a roll shape.
  • the MIT type bending test method is specified by EIAJ RC-2364A, and the MIT type bending test device uses the device specified by JIS P8115 (paper and board-folding strength test method-MIT test machine method). can do.
  • the aluminum member 100 includes the porous layer 40 including the base material 11 made of metallic aluminum, and the coating 12 containing aluminum oxide covering the surface of the base material 11.
  • the film 12 has a thickness of 5 nm to 1000 nm, and the film 12 has at least one of a plurality of concave portions 13 and a plurality of convex portions 14 formed on the surface.
  • the depth of each recess 13 included in the plurality of recesses 13 is 10 nm to 100 nm, and the height of each projection 14 included in the plurality of protrusions 14 is 10 nm to 100 nm.
  • the porous layer 40 has a plurality of pores 15, and the average pore diameter of the plurality of pores 15 is 0.1 ⁇ m to 10 ⁇ m.
  • the aluminum member 100 may further include a substrate 50 made of metallic aluminum, and the porous layer 40 may be provided on at least one surface of the substrate 50.
  • the aluminum member 100 according to the present embodiment has high whiteness and water wicking performance, but is not limited to an application in which any of these characteristics is required, and is used in an application in which any one of the characteristics is required. Can also be used.
  • Examples of useful applications of the aluminum member 100 according to the present embodiment include, for example, a gas or liquid separation membrane; a moisture absorbing material; a water absorbing material; and adsorb foreign substances such as pollen, particulate matter, bacteria, odor components, and heavy metals.
  • Adsorbent material e.g., Wiping sheet; Test sheet for chemicals such as concentrated sulfuric acid, urine test and pH test; Developing member for chromatography such as thin-layer chromatography; Material for disinfection and sterilization; Reflector: Standard white plate Separators such as batteries and electric double layer capacitors; catalyst carriers; reaction sites for synthetic reactions and the like; heat insulating materials;
  • Examples of the separation membrane include a reverse osmosis membrane, an ion exchange membrane, and a gas separation membrane.
  • the adsorption material include a mask, a filtration membrane, a filter, and the like.
  • the aluminum member 100 Since the aluminum member 100 has high whiteness, it is preferable to use it as a test sheet, a developing member for chromatography, a reflector, and a standard white plate. Further, since the aluminum member 100 is porous, it is preferable to use the aluminum member 100 as a separation membrane, a moisture absorbing material, a water absorbing material, an adsorbing material, a developing member for chromatography, a separator, a catalyst carrier, a reaction field, and a heat insulating material.
  • the aluminum member 100 is more preferably used for chromatography because of its high whiteness and high water absorption performance.
  • chromatography it is more preferable to use for lateral flow type chromatography.
  • the chromatography is preferably immunochromatography.
  • immunochromatography it is more preferable to be used for a lateral flow immunoassay. Therefore, the aluminum member 100 may be a developing member for chromatography.
  • the developing member for chromatography may be a test strip for chromatography.
  • the aluminum member 100 is also preferably used for an in vitro diagnostic drug such as a test kit using immunochromatography. Note that the test kit may be referred to as a diagnostic kit.
  • the test kit 200 includes an aluminum member 100.
  • the test kit 200 includes an aluminum member 100, a sample supply unit 110, a determination unit 120, and an absorption unit 130.
  • the sample supply unit 110 may include, for example, a labeled antibody that specifically binds to a detection target such as an influenza virus.
  • a sample collected from a living body or the like is supplied to the sample supply unit 110 and mixed with the labeled antibody to form a mixed solution.
  • the mixed solution is developed to the determination unit 120 by the capillary action of the aluminum member 100, and the excess sample is absorbed by the absorption unit 130.
  • the determination unit 120 has, for example, a test line and a control line.
  • the test line for example, an antibody that specifically binds to the detection target is fixed.
  • the labeled antibody is fixed to the antibody on the test line via the detection target.
  • an antibody that specifically binds to the labeled antibody is immobilized on the control line.
  • the mixture containing the sample and the labeled antibody is developed to the control line, the labeled antibody binds to the antibody immobilized on the control line.
  • Labeled antibodies generally include a label such as colored particles or colloidal gold particles, and an antibody that binds to the label to form a complex and specifically binds to a detection target. Therefore, when there is a place where the concentration or the density of the labeled antibody is high, the place can be visually confirmed by densely packed labels. Therefore, with the test kit 200, it is possible to test that both the test line and the control line are positive when they can be visually confirmed, and that the test kit 200 is negative when only the control line can be visually confirmed. .
  • the test kit 200 can be used, for example, for infectious disease tests; genetic analysis; pregnancy tests; livestock tests; allergen tests for foods, animals, plants, metals, house dust, and the like.
  • the test target by the test kit 200 includes, for example, amino acids, peptides, proteins, genes, sugars, lipids, cells, or complexes thereof. More specifically, peptides such as PCT (procalcitonin); proteins such as urinary albumin; hormones such as HCG (human chorionic gonadotropin) and LH (luteinizing hormone); HBs antigen, rotavirus antigen, adenovirus antigen , RSV (Respiratory @ Syncytial virus) antigen, influenza virus antigen, norovirus antigen, mump virus antigen, cytomegalovirus antigen, herpes simplex virus antigen, varicella-zoster virus antigen, SARS (severe acute respiratory syndrome) antigen, HBs antibody, HCV (Hepatitis C virus) Antigens or antibodies for viral infections such as antibodies, HIV antibodies, EBV antibodies, RSV antibodies, rubella virus antibodies, measles virus antibodies, enterovirus antibodies, dengue virus antibodies, S
  • the method for manufacturing the aluminum member 100 of the present embodiment is not particularly limited, but includes, for example, an etching step, a film forming step, and a depolarizing step.
  • the method for manufacturing the aluminum member 100 may include a hydration step as needed.
  • each step will be described in detail.
  • the etching step before the film forming step, the aluminum plate is etched to form a porous structure on the aluminum plate.
  • the etching step an aluminum plate having a porous structure having a plurality of pits can be formed.
  • the base material 11 is formed by etching the aluminum plate.
  • the same material as that of the substrate 50 described above can be used for the aluminum plate. That is, the aluminum plate may be made of metallic aluminum.
  • the etching step can be performed by, for example, electrolytic etching, chemical etching, or the like.
  • electrolytic etching include DC electrolytic etching and AC electrolytic etching.
  • chemical etching include chemical etching using an acidic solution and chemical etching using an alkaline solution. These etching techniques may be performed alone or a plurality of techniques may be combined.
  • the explanation will be made by taking electrolytic etching as an example.
  • the etching step by performing DC electrolytic etching, pits are formed on the surface of the aluminum plate, and the pits grow in a tunnel shape in a depth direction perpendicular to the surface of the aluminum plate, and the pit diameter is reduced. Expanding. Further, by performing the AC electrolytic etching, the pits are formed in a three-dimensional direction and grow in a spongy manner, and the diameter of the pits is increased. When the pits have grown to the center of the aluminum plate, the aluminum member 100 including the porous layer 40 is formed. If pits do not grow to the center of the aluminum plate and there is a center where the porous layer 40 is not formed, an aluminum member 100 including the porous layer 40 and the substrate 50 is formed.
  • the etching of the substrate 50 is an AC type electrochemical etching.
  • the etching conditions are not particularly limited, for example, the etching time is 1 minute to 60 minutes, and the etching temperature is 20 ° C. to 80 ° C.
  • the current density is, for example, 50 mA / cm 2 to 500 mA / cm 2 .
  • the etching solution used for etching is preferably an aqueous solution containing hydrochloric acid.
  • the concentration of the aqueous hydrochloric acid solution is preferably from 6% by mass to 25% by mass.
  • the aqueous hydrochloric acid solution may contain aluminum ions derived from aluminum chloride or the like in order to suppress excessive dissolution of aluminum.
  • the concentration of aluminum chloride is preferably 0.1% by mass to 10% by mass.
  • the etching step may be performed in a single-step process, or may be performed in different multi-step processes.
  • the etching step may include a plurality of etching steps in which the chemical species contained in the etching solution, the concentration of the etching solution, the etching time, the etching temperature, the current density, and the like are different.
  • an aluminum plate having a porous structure is anodized to form a film 12 containing aluminum oxide on the surface of the aluminum plate.
  • a film 12 is formed by anodic oxidation on the surface of the base material 11 which has been made porous by the etching step.
  • the coating 12 is formed on the surface of the base material 11 exposed to the outside and the surface of the base material 11 forming internal pits on the aluminum plate.
  • an anode on which the substrate 50 is installed and a cathode on which stainless steel (SUS) is installed are immersed in an electrolytic solution to be subjected to electrolytic treatment.
  • the electrolytic solution used for forming the film is not particularly limited.
  • an aqueous solution of boric acid, ammonium borate, phosphoric acid, pyrophosphoric acid, ammonium phosphate, ammonium adipate, sulfuric acid, oxalic acid, or the like can be used.
  • the conditions for forming the film are not particularly limited.
  • the voltage is 5 V to 500 V.
  • the film formation may be performed in a single-step process, or may be performed in different steps.
  • depolarization process In the depolarization (depolarization) process, the aluminum plate on which the film 12 is formed is subjected to a depolarization process to remove a part of the surface of the film 12. In the depolarizing step, a part of the film 12 formed in the film forming step is removed, and voids and cracks remaining in the film 12 are exposed. In the depolarization treatment step, the surface of the film 12 is roughened by removing (eroding) the film 12, and the concave portion 13 can be formed on the surface of the film 12. The depolarization treatment is performed, for example, by immersing the aluminum plate, on which the film 12 is formed in the film formation step, in a depolarization treatment liquid.
  • the depolarization treatment liquid is not particularly limited as long as it can remove (erode) the surface of the aluminum oxide film, but is selected from the group consisting of phosphoric acids, metal salts of phosphoric acids, tartaric acid, hydrochloric acid, and metal salts of hydrochloric acid. It is preferably a solution in which at least one is dissolved, or at least one of a sodium hydroxide solution and an aqueous ammonia solution.
  • Phosphoric acids include, for example, orthophosphoric acid, phosphorous acid, hypophosphorous acid, and mixtures thereof.
  • the metal forming the metal salt includes, for example, aluminum, sodium, magnesium, calcium, zinc and the like.
  • the content of the phosphoric acid or the metal salt of the phosphoric acid is preferably, for example, 0.1 g / L to 50 g / L.
  • the treatment temperature of the phosphoric acid treatment is preferably, for example, 50 ° C. to 80 ° C.
  • the treatment time of the phosphoric acid treatment is preferably 1 minute to 60 minutes.
  • the etching step, the film forming step, and the depolarization step can be performed at least once in this order.
  • the number of times each step is performed is not particularly limited, it is preferable that the film forming step and the depolarizing step are alternately repeated after the etching step. Thereby, the erosion of the coating 12 and the repair of the eroded coating 12 are repeated, so that a good porous layer 40 is formed.
  • At least one of the plurality of concave portions 13 and the plurality of convex portions 14 is preferably formed by alternately repeating the film forming step and the depolarizing step two or more times.
  • the number of repetitions of the film forming step and the depolarizing step is not particularly limited, but may be, for example, 20 times or less, or 15 times or less.
  • the number of repetitions of the film forming step and the depolarizing step is preferably 2 to 10 times, more preferably 3 to 8 times. More preferably, the number of repetitions of the film forming step and the depolarizing step is 5 or more.
  • the method for manufacturing the aluminum member 100 may include a hydration step, when the hydration step is performed, the film formation step and the depolarization step are thereafter performed. It is preferable to repeat.
  • the method of manufacturing the aluminum member 100 may further include a hydration step of hydrating the aluminum plate to form a hydrated film on the aluminum plate having a porous structure before the film formation step.
  • the hydration treatment step is generally a step of forming a hydration film of aluminum hydroxide on the surface of metal aluminum after the etching step. The aluminum whose surface has been made porous is treated with hot water such as boiling water. This is the step of heat treatment.
  • the whiteness of the aluminum member 100 can be further improved.
  • the hydrated film can be dissolved by further performing anodization and depolarization.
  • the hydrated film can be reduced or eliminated, and the protrusions 14 can be formed on the surface of the film 12.
  • the whiteness can be improved by the convex portions 14.
  • the protrusion 14 can be formed by the remaining hydrated film or anodic oxide film.
  • the hydrated film on the inner layer side is taken into the anodic oxide film in order, and the surface of the base material 11 is composed of the anodic oxide film and the remainder of the hydrated film.
  • a coating 12 results.
  • a layer structure is formed in which the base material 11, the anodic oxide film, and the rest of the hydrated film are laminated in this order.
  • the layer structure is further subjected to an anodizing treatment and a depolarizing treatment, so that the protrusions 14 are formed on the film 12.
  • the concave portion 13 can be formed on the film 12 together with the convex portion 14.
  • the concave portion 13 can be formed on the surface of the film 12.
  • the convex portion 14 is formed by (the remainder of) a hydrated film or an anodized film.
  • the pores 15 are formed in the porous layer 40 through the formation of the pits in the base material 11 by the etching process and the formation and removal of the anodic oxide film by the film forming process and the depolarizing process.
  • the secondary rough surface structure 20 is formed.
  • a concave portion 13 is formed on the surface of the film 12, and the primary rough surface structure 10 is formed.
  • the convex portion 14 is formed on the surface of the film 12, and the primary rough surface structure 10 is formed.
  • the method for manufacturing the aluminum member 100 includes a film forming step of anodizing an aluminum plate having a porous structure and forming a film 12 containing aluminum oxide on the aluminum plate.
  • the method for manufacturing the aluminum member 100 includes a depolarization process of depolarizing the aluminum plate on which the film 12 is formed and removing a part of the surface of the film 12.
  • the film forming step and the depolarizing step are alternately repeated.
  • the aluminum plate is made of metal aluminum.
  • at least one of the plurality of concave portions 13 and the plurality of convex portions 14 is formed on the surface of the film 12 by the film forming step and the depolarizing step.
  • the film 12 has a thickness of 5 nm to 1000 nm.
  • the depth of each recess 13 included in the plurality of recesses 13 is 10 nm to 100 nm, and the height of each projection 14 included in the plurality of protrusions 14 is 10 nm to 100 nm.
  • the aluminum member 100 has a plurality of pores 15, and the average pore diameter of the plurality of pores 15 is 0.1 ⁇ m to 10 ⁇ m.
  • the method for manufacturing the aluminum member 100 including the porous layer 40 by electrochemical etching or the like has been described.
  • the method for manufacturing the aluminum member 100 is not limited to the above embodiment, and for example, the porous layer 40 may be formed by sintering aluminum powder.
  • Example 1 An aluminum foil having a thickness of 150 ⁇ m is subjected to alternating current electrolytic etching in an aqueous solution containing 3 mol / L hydrochloric acid and 0.2 mol / L sulfuric acid to make the surface of the aluminum foil porous, and then sufficiently washed with water. Washed. As the aluminum foil, high-purity aluminum having a purity of 99.98% was used.
  • FIG. 7 is a photograph showing a state of the surface of the aluminum plate after the etching observed with a scanning electron microscope.
  • the etched aluminum plate has a diameter of about 0.1 ⁇ m to 1 ⁇ m, and has a porous structure having a plurality of pits traveling inside.
  • a plurality of pits having a diameter of about 0.1 ⁇ m to 1 ⁇ m are formed on the surface of the aluminum plate and are exposed to the outside, and the aluminum plate is roughened.
  • the electrolytically etched aluminum foil was anodized to form a film on the surface of the base material made of pure aluminum.
  • an aluminum foil provided on the anode and stainless steel (SUS) provided on the cathode were immersed in a boric acid electrolyte having a concentration of 80 g / L and an electrolyte temperature of 70 ° C. .
  • anodizing treatment was performed at a voltage of 200 V for 10 minutes.
  • the aluminum foil on which the film was formed was sufficiently washed with water, the aluminum foil was immersed in a phosphoric acid aqueous solution having a concentration of 50 g / L and a temperature of 60 ° C. for 20 minutes to perform a depolarization treatment.
  • Example 2 An aluminum member was produced in the same manner as in Example 1, except that the boric acid electrolytic solution used for the anodizing treatment was changed to an aqueous solution of ammonium dihydrogen phosphate 1 g / L and the anodizing treatment voltage was changed to 50 V.
  • Example 3 An aluminum member was produced in the same manner as in Example 1, except that the boric acid electrolytic solution used for the anodizing treatment was changed to an aqueous solution of ammonium adipate 100 g / L, and the anodizing treatment voltage was changed to 150 V.
  • Example 4 An aluminum member was prepared in the same manner as in Example 1 except that the boric acid electrolyte used for the anodizing treatment was changed to an aqueous solution of oxalic acid of 50 g / L, the anodizing treatment temperature was changed to 30 ° C., and the anodizing treatment voltage was changed to 20 V. Produced.
  • Example 5 Before performing the anodizing treatment, as a pretreatment, the electrode was immersed in a phosphoric acid aqueous solution having a concentration of 50 g / L and a temperature of 60 ° C. for 10 minutes to perform depolarization treatment, and the voltage of the anodizing treatment was changed to 150 V.
  • An aluminum member was produced in the same manner as in Example 1.
  • Example 6 An aluminum member was produced in the same manner as in Example 1 except that a hydrophilic coating agent was applied as a post-treatment to the sample after repeating the depolarization treatment.
  • Example 7 An aluminum member was produced in the same manner as in Example 1, except that one surface of the sample after repeating the depolarization treatment was coated with a 20- ⁇ m-thick nylon resin as a post-treatment.
  • Example 8 An aluminum member was produced in the same manner as in Example 1, except that one of the depolarization treatments with the phosphoric acid aqueous solution was changed to heat treatment. The heat treatment was performed in air at 500 ° C. for 5 minutes.
  • Example 9 An aluminum member was produced in the same manner as in Example 1 except that the aqueous solution of phosphoric acid used for the depolarization treatment was changed to a 5 g / L aqueous solution of sodium hydroxide, and the temperature of the depolarization treatment was changed to 40 ° C.
  • Example 10 Before the anodizing treatment, the electrolytically etched aluminum foil is immersed in boiling pure water for 10 minutes to perform a hydration treatment. Thereafter, the anodizing treatment and the depolarization treatment are performed. The number of repetitions was changed to seven. Except for the above, an aluminum member was produced in the same manner as in Example 1.
  • Example 1 An aluminum member was produced in the same manner as in Example 1 except that the anodized aluminum foil was subjected to the anodic oxidation treatment only once and the depolarization treatment was not performed.
  • Example 2 An aluminum member was produced in the same manner as in Example 1, except that the anodic oxidation treatment and the depolarization treatment were performed without performing the electrolytic etching.
  • the film thickness, the diameter of the concave portion or convex portion of the primary structure, the depth of the concave portion or the height of the convex portion, the average pore diameter of the pores, the bending test, the arithmetic average roughness Sa , The period of the tertiary rough surface structure, the L * value, and the water suction height were evaluated as follows.
  • the cut surface was mirror-finished with a cross section polisher (registered trademark) manufactured by JEOL Ltd. to obtain a sample for measuring the film thickness.
  • the thickness of the film was measured by observing the cross section of the sample for measuring the film thickness with a scanning electron microscope ULTRA plus manufactured by Carl Zeiss Co., Ltd.
  • the surface of the film was observed with a scanning electron microscope ULTRA plus manufactured by Carl Zeiss Co., Ltd., and the diameter of the concave portion was determined by averaging the diameter of the entrance portion of the concave portion.
  • the surface of the film was observed with a scanning electron microscope ULTRA plus manufactured by Carl Zeiss Co., Ltd., and the diameter of the convex part was averaged to find the diameter of the part where the convex part was the largest.
  • the cross section of the film was observed with a scanning electron microscope, and the depth of the recess was determined by calculating the average value of the distance from the entrance to the bottom of the recess.
  • the height of the projections was determined by observing the cross section of the coating with a scanning electron microscope and calculating the average value of the distance from the surface of the flat portion of the coating to the top of the projections.
  • the average pore diameter of the pores was measured by the mercury intrusion method.
  • the bending test was performed according to the MIT-type bending test method (EIAJ RC-2364A) specified by the Japan Electronic Machinery Manufacturers Association.
  • EIAJ RC-2364A MIT-type bending test method
  • JIS P8115 paper and paperboard-folding strength test method-MIT test machine method
  • the arithmetic average roughness Sa of the surface of the aluminum member on the porous layer side was measured according to ISO25178.
  • the conditions for measuring the arithmetic average roughness Sa are as follows.
  • FIGS. 8, 9 and 10 are photographs of the surface of the aluminum member according to Example 3, Example 10 and Comparative Example 3, respectively, observed with a scanning electron microscope.
  • the aluminum member according to Example 3 did not include a hydrated film because it was not subjected to a hydration treatment, and had a primary rough surface structure with concave portions having a diameter of 10 nm to 200 nm on the surface of the aluminum member as indicated by arrows. Had been formed.
  • the anodic oxidation treatment and the depolarization treatment were repeatedly performed after forming a hydrated film by boiling with boiling pure water.
  • Table 1 shows the evaluation results of the aluminum members obtained in each example.
  • the aluminum members of Examples 1 to 10 had better whiteness (L * value) and water wicking performance than the aluminum members of Comparative Examples 1 to 3.
  • Comparative Example 1 since the depolarization treatment was not performed after the anodic oxidation treatment, no concave portion or convex portion was formed, and the whiteness was low.
  • Comparative Example 2 since no electrolytic etching was performed, no holes were formed, and the water wicking performance was insufficient.
  • Comparative Example 3 since the number of repetitions of the anodic oxidation treatment and the depolarization treatment after the hydration treatment was small, the entire surface was covered with the hydrated film, and the whiteness was low.
  • the arithmetic mean roughness Sa of the aluminum plate (not shown) before etching is 0.37 ⁇ m, and the L * value is 49.5.
  • the arithmetic average roughness Sa of the etched aluminum plate shown in FIG. 7 is 0.336 ⁇ m, and the L * value is 71.4. Therefore, simply etching the aluminum plate does not increase the whiteness of the aluminum plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Laminated Bodies (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

An aluminum member 100 is provided with a porous layer 40 that includes a base material 11 made of metallic aluminum and a coating 12 that contains aluminum oxide and covers a surface of the base material 11. The coating 12 has a thickness of 5-1000 nm, and a plurality of recesses 13 and/or protrusions 14 are formed on the surface of the coating 12, the recesses 13 having a depth of 10-100 nm and the protrusions 14 having a height of 10-100 nm. The porous layer 40 has a plurality of holes 15 having an average pore diameter of 0.1 to 10 μm.

Description

アルミニウム部材及びその製造方法Aluminum member and method of manufacturing the same
 本発明は、アルミニウム部材及びその製造方法に関する。 The present invention relates to an aluminum member and a method for manufacturing the same.
 従来、例えばインフルエンザウイルスなどの感染を迅速かつ簡易に検査する体外診断用医薬品として、イムノクロマトグラフィーを利用した検査キットが知られている。この検査キットは、例えば、生体などから採取した検体を所定の位置に滴下し、テストラインとコントロールラインの両方が目視にて確認できた場合に陽性であり、コントロールラインのみが目視にて確認できた場合には陰性であることを示すものである。 Conventionally, a test kit using immunochromatography has been known as an in vitro diagnostic drug for quickly and easily testing for infections such as influenza virus. This test kit is, for example, a sample collected from a living body is dropped at a predetermined position and is positive when both the test line and the control line can be visually confirmed, and only the control line can be visually confirmed. If it is, it indicates a negative.
 検査キットは、例えば特許文献1に示されるように、検体を展開するための展開部材として、ニトロセルロース製メンブレンフィルターを備えている。採取した検体は、毛細管現象によってメンブレンフィルター内を流れ、テストラインとコントロールラインまで展開される。 The test kit includes a nitrocellulose membrane filter as a developing member for developing a sample, as shown in Patent Document 1, for example. The collected sample flows through the membrane filter by capillary action and is developed to a test line and a control line.
特開第2003-344406号公報JP-A-2003-344406
 ニトロセルロース製メンブレンフィルターは、一般的に白色度が高いため、テストライン及びコントロールラインを目視にて確認することが比較的容易であり、多くの検査キットで使用されている。 Nitrocellulose membrane filters generally have high whiteness, so it is relatively easy to visually check the test line and control line, and they are used in many test kits.
 しかしながら、ニトロセルロース製メンブレンフィルターは、生産日、製造場所及び製造ロットなどによって、空孔のサイズが不均一であったり、厚さが不均一であったりし、品質のばらつきが大きい傾向にある。このような品質のばらつきが大きいと、毛細管現象により流れる液体の流速が不均一になりやすく、検査結果に悪影響を及ぼすおそれがある。 However, nitrocellulose membrane filters tend to have non-uniform pore sizes and non-uniform thicknesses depending on the date of production, production location, production lot, and the like, and tend to have large variations in quality. If such a variation in quality is large, the flow velocity of the liquid flowing due to the capillary phenomenon is likely to be non-uniform, which may adversely affect the inspection result.
 また、ニトロセルロース製メンブレンフィルターは、一般的に保存性が良好でない。そのため、白色度及び保存性の高い、ニトロセルロース製メンブレンフィルターに代わる展開部材が望まれている。 ニ ト ロ In addition, nitrocellulose membrane filters generally have poor storage stability. Therefore, there is a demand for a deployment member that replaces the nitrocellulose membrane filter and has high whiteness and preservability.
 本発明は、このような従来技術が有する課題に鑑みてなされたものである。そして、本発明の目的は、白色度及び水の吸い上げ性能が高いアルミニウム部材及びその製造方法を提供することである。 The present invention has been made in view of such problems of the conventional technology. An object of the present invention is to provide an aluminum member having high whiteness and high water absorption performance, and a method for manufacturing the same.
 本発明の態様に係るアルミニウム部材は、金属アルミニウムにより構成された母材と、母材の表面を被覆する酸化アルミニウムを含む皮膜と、を含む多孔質層を備える。皮膜は5nm~1000nmの厚さを有し、皮膜は表面に形成された複数の凹部及び複数の凸部の少なくともいずれか一方を有する。複数の凹部に含まれる各凹部の深さは10nm~100nmであり、複数の凸部に含まれる各凸部の高さは10nm~100nmである。多孔質層は複数の空孔を有し、複数の空孔の平均細孔径が0.1μm~10μmである。 ア ル ミ ニ ウ ム The aluminum member according to the aspect of the present invention includes a porous layer including a base material made of metallic aluminum, and a coating containing aluminum oxide covering the surface of the base material. The film has a thickness of 5 nm to 1000 nm, and the film has at least one of a plurality of concave portions and a plurality of convex portions formed on the surface. The depth of each concave portion included in the plurality of concave portions is 10 nm to 100 nm, and the height of each convex portion included in the plurality of convex portions is 10 nm to 100 nm. The porous layer has a plurality of pores, and the plurality of pores have an average pore diameter of 0.1 μm to 10 μm.
 本発明の態様に係るアルミニウム部材の製造方法は、多孔質構造を有するアルミニウム板を陽極酸化し、アルミニウム板に酸化アルミニウムを含む皮膜を形成する皮膜形成工程を備える。アルミニウム部材の製造方法は、皮膜が形成されたアルミニウム板を減極処理し、皮膜の表面の一部を除去する減極処理工程を備える。皮膜形成工程と減極処理工程とを交互に繰り返す。アルミニウム板は金属アルミニウムにより構成されている。 The method for manufacturing an aluminum member according to an aspect of the present invention includes a film forming step of anodizing an aluminum plate having a porous structure and forming a film containing aluminum oxide on the aluminum plate. The method for manufacturing an aluminum member includes a depolarizing step of depolarizing the aluminum plate on which the film is formed and removing a part of the surface of the film. The film forming step and the depolarizing step are alternately repeated. The aluminum plate is made of metal aluminum.
図1は、本実施形態に係る多孔質層の一部を拡大した多孔質層の三次粗面構造を示す模式的な断面図である。FIG. 1 is a schematic cross-sectional view illustrating a tertiary rough surface structure of a porous layer in which a part of the porous layer according to the present embodiment is enlarged. 図2は、図1の枠で囲んだ部分を拡大した多孔質層の一次粗面構造及び二次粗面構造を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing a primary rough surface structure and a secondary rough surface structure of a porous layer in which a portion surrounded by a frame in FIG. 1 is enlarged. 図3は、多孔質層の一次粗面構造及び二次粗面構造の別の例を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing another example of the primary roughened surface structure and the secondary roughened surface structure of the porous layer. 図4は、多孔質層の一次粗面構造及び二次粗面構造の別の例を示す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing another example of the primary roughened surface structure and the secondary roughened surface structure of the porous layer. 図5は、本実施形態に係るアルミニウム部材の一例を示す断面図である。FIG. 5 is a cross-sectional view illustrating an example of the aluminum member according to the present embodiment. 図6は、本実施形態に係るアルミニウム部材を用いた検査キットの一例を示す斜視図である。FIG. 6 is a perspective view showing an example of an inspection kit using the aluminum member according to the present embodiment. 図7は、エッチング後のアルミニウム板の表面を走査型電子顕微鏡(SEM)で観察した写真である。FIG. 7 is a photograph obtained by observing the surface of the aluminum plate after etching with a scanning electron microscope (SEM). 図8は、実施例3に係るアルミニウム部材の表面を走査型電子顕微鏡で観察した写真である。FIG. 8 is a photograph of the surface of the aluminum member according to Example 3 observed with a scanning electron microscope. 図9は、実施例10に係るアルミニウム部材の表面を走査型電子顕微鏡で観察した写真である。FIG. 9 is a photograph of the surface of the aluminum member according to Example 10 observed with a scanning electron microscope. 図10は、比較例3に係るアルミニウム部材の表面を走査型電子顕微鏡で観察した写真である。FIG. 10 is a photograph obtained by observing the surface of the aluminum member according to Comparative Example 3 with a scanning electron microscope.
 以下、図面を用いて本実施形態に係るアルミニウム部材及びその製造方法について詳細に説明する。本発明は以下の実施形態のみに限定されるものではない。また、実施形態における構成要素は、一部又は全部を適宜組み合わせることができる。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the aluminum member according to the present embodiment and a method for manufacturing the same will be described in detail with reference to the drawings. The present invention is not limited only to the following embodiments. In addition, some or all of the components in the embodiments can be appropriately combined. Note that the dimensional ratios in the drawings are exaggerated for the sake of explanation, and may differ from the actual ratios.
[アルミニウム部材]
 本実施形態では、ニトロセルロース製メンブレンフィルターの代替として、多孔質構造を有しているアルミニウム部材を用いることができないか検討した。しかしながら、通常、アルミニウム部材は、イムノクロマトグラフィーに適用できるほどの毛細管現象を発現させることが困難であると考えられている。また、アルミニウム部材は、通常、灰色をしており、テストライン及びコントロールラインなどの発色を確認し難い。
[Aluminum member]
In the present embodiment, it was examined whether an aluminum member having a porous structure could be used as a substitute for a nitrocellulose membrane filter. However, it is generally considered that it is difficult for an aluminum member to exhibit a capillary phenomenon that can be applied to immunochromatography. In addition, the aluminum member is usually gray, and it is difficult to confirm the coloring of the test line and the control line.
 しかしながら、以下で詳述する本実施形態に係るアルミニウム部材は、白色度が高く、水の吸い上げ性能が高いことが分かった。このようなアルミニウム部材は、ニトロセルロース製メンブレンフィルターの代替としてだけではなく、様々な用途に有用であると期待される。 However, it was found that the aluminum member according to the present embodiment described in detail below has high whiteness and high water wicking performance. Such an aluminum member is expected to be useful not only as a substitute for a nitrocellulose membrane filter but also for various uses.
 図1は、本実施形態に係る多孔質層40の一部を拡大した模式的な断面図である。図2~図4は、図1の枠で囲んだ部分を拡大した多孔質層40の一次粗面構造10及び二次粗面構造20を示す模式的な断面図である。図1に示すように、本実施形態に係るアルミニウム部材100は、多孔質層40を備える。また、図2~図4に示すように、多孔質層40は、母材11と、皮膜12と、を含んでいる。そして、多孔質層40では、この母材11に皮膜12が接するとともに、アルミニウム部材100の外表面側に皮膜12が配されている。皮膜12は、その表面に凹部13(第1凹部)及び凸部14(第1凸部)の少なくともいずれか一方を有する。また、多孔質層40は、複数の空孔15を有している。 FIG. 1 is a schematic cross-sectional view in which a part of the porous layer 40 according to the present embodiment is enlarged. 2 to 4 are schematic cross-sectional views showing the primary roughened surface structure 10 and the secondary roughened surface structure 20 of the porous layer 40 in which a portion surrounded by the frame in FIG. 1 is enlarged. As shown in FIG. 1, the aluminum member 100 according to the present embodiment includes a porous layer 40. Further, as shown in FIGS. 2 to 4, the porous layer 40 includes a base material 11 and a film 12. In the porous layer 40, the coating 12 is in contact with the base material 11, and the coating 12 is disposed on the outer surface of the aluminum member 100. The coating 12 has at least one of a concave portion 13 (first concave portion) and a convex portion 14 (first convex portion) on the surface. The porous layer 40 has a plurality of holes 15.
 <粗面構造>
 アルミニウム部材100は、その表面に粗面構造を有している。粗面構造とは、表面に凹凸を複数有することで、平滑な面よりも表面が粗くなっている表面構造をいう。好ましくは、粗面構造は、凹部13及び凸部14の少なくともいずれか一方がアルミニウム部材100の表面上に分散して配置されているものをいう。アルミニウム部材100の表面上の粗面構造には、針状又は板状の凹凸構造物が配置されていないことが好ましい。アルミニウム部材100の粗面構造は、表面粗度のスケールが大きくなる順に、一次粗面構造10、二次粗面構造20、及び三次粗面構造30によって表すことができる。すなわち、二次粗面構造20の表面粗度のスケールは一次粗面構造10の表面粗度のスケールより大きく、三次粗面構造30の表面粗度のスケールは二次粗面構造20の表面粗度のスケールより大きい。後述するように、アルミニウム部材100は、一次粗面構造10と、二次粗面構造20と、三次粗面構造30とを有することによって白色度が高まるものと推測される。
<Rough surface structure>
Aluminum member 100 has a rough surface structure on its surface. The rough surface structure refers to a surface structure having a plurality of irregularities on the surface so that the surface is rougher than a smooth surface. Preferably, the rough surface structure refers to a structure in which at least one of the concave portion 13 and the convex portion 14 is dispersed on the surface of the aluminum member 100. It is preferable that no needle-like or plate-like uneven structure is arranged on the rough surface structure on the surface of the aluminum member 100. The rough surface structure of the aluminum member 100 can be represented by the primary rough surface structure 10, the secondary rough surface structure 20, and the tertiary rough surface structure 30 in the order of increasing the surface roughness scale. That is, the scale of the surface roughness of the secondary rough structure 20 is larger than the scale of the surface roughness of the primary rough structure 10, and the scale of the surface roughness of the tertiary rough structure 30 is larger than the surface roughness of the secondary rough structure 20. Greater than the degree scale. As described later, it is presumed that the aluminum member 100 has a primary roughened surface structure 10, a secondary roughened surface structure 20, and a tertiary roughened surface structure 30 to increase whiteness.
 図2~図4に示すように、一次粗面構造10は、皮膜12と、皮膜12の表面に存在する複数の凹部13及び複数の凸部14の少なくともいずれか一方とによって形成される微細な粗面構造である。一次粗面構造10は、皮膜12の表面に形成されている。一次粗面構造10は、表面粗度のスケールが数nm~数100nm程度のオーダーの構造である。 As shown in FIGS. 2 to 4, the primary roughened surface structure 10 has a fine structure formed by the film 12 and at least one of the plurality of concave portions 13 and the plurality of convex portions 14 existing on the surface of the film 12. It has a rough surface structure. The primary rough surface structure 10 is formed on the surface of the coating 12. The primary rough surface structure 10 has a surface roughness scale on the order of several nm to several hundred nm.
 図2~図4に示すように、二次粗面構造20は、多孔質層40のうち、母材11と複数の空孔15とによって形成される粗面構造である。すなわち、二次粗面構造20は、凸部21(第2凸部、突出部)と、凹部22(第2凹部、陥入部)とによって形成されている。凸部21は、母材11と皮膜12とによって形成され、多孔質層40の外側に向かって突出している。凹部22は、母材11と皮膜12とによって形成され、多孔質層40の内側に向かって陥入している。空孔15は、凹部22を形成する母材11と皮膜12とにより囲まれた多孔質層40の内部空間によって形成されている。言い換えれば、二次粗面構造20は、母材11及び皮膜12自体によって、アルミニウム部材100の表面に形成されている。二次粗面構造20は、表面粗度のスケールが数100nm~数10μm程度のオーダーの構造である。 ~ As shown in FIGS. 2 to 4, the secondary rough surface structure 20 is a rough surface structure formed by the base material 11 and the plurality of holes 15 in the porous layer 40. That is, the secondary rough surface structure 20 is formed by the convex portions 21 (second convex portions, projecting portions) and the concave portions 22 (second concave portions, indentations). The protrusion 21 is formed by the base material 11 and the coating 12 and protrudes toward the outside of the porous layer 40. The recess 22 is formed by the base material 11 and the coating 12, and is recessed toward the inside of the porous layer 40. The holes 15 are formed by the internal space of the porous layer 40 surrounded by the base material 11 and the coating 12 that form the concave portions 22. In other words, the secondary rough surface structure 20 is formed on the surface of the aluminum member 100 by the base material 11 and the coating 12 itself. The secondary rough surface structure 20 has a surface roughness scale on the order of several hundred nm to several tens of μm.
 このようにして、多孔質層40は、外部に連通する空孔15を内部に有する多孔体となっている。このとき、空孔15は皮膜12に囲われている。すなわち、一次粗面構造10の凹部13及び凸部14が多孔質層40の表面における皮膜12に形成されているのに対して、二次粗面構造20の空孔15は多孔質層40の内部における母材11とその表面を覆う皮膜12に囲われて形成されている。皮膜12に囲われた1つのセル構造を形成する空孔15は、他のセル構造を形成する空孔15と連通していてもよい。具体的には、多孔質層40は、オープンセル型構造であってもよい。また、空孔15は、多孔質層40の一方の面から他方の面までを貫通していてもよく、貫通していなくてもよい。 Thus, the porous layer 40 is a porous body having the pores 15 communicating with the outside inside. At this time, the holes 15 are surrounded by the coating 12. That is, the concave portions 13 and the convex portions 14 of the primary rough surface structure 10 are formed in the coating 12 on the surface of the porous layer 40, whereas the holes 15 of the secondary rough surface structure 20 It is formed by being surrounded by a base material 11 and a film 12 covering the surface thereof. The holes 15 forming one cell structure surrounded by the coating 12 may communicate with the holes 15 forming another cell structure. Specifically, the porous layer 40 may have an open cell type structure. The holes 15 may penetrate from one surface of the porous layer 40 to the other surface, or may not penetrate.
 図1に示すように、三次粗面構造30は、多孔質層40の外表面により構成される。三次粗面構造30は、一次粗面構造10及び二次粗面構造20による凹凸が複数集まることで形成される粗大な粗面構造である。三次粗面構造30は、アルミニウム部材100の表面において、一次粗面構造10及び二次粗面構造20の集合からなる集合体である。なお、後述するが、三次粗面構造30は、エッチング工程後に、皮膜形成工程及び減極処理工程を繰り返すことで、一次粗面構造10と二次粗面構造20の集合体からなる凹凸構造が発達することで形成される。三次粗面構造30は、表面粗度のスケールが数10μm~数100μm程度のオーダーの構造である。 よ う As shown in FIG. 1, the tertiary rough surface structure 30 is constituted by the outer surface of the porous layer 40. The tertiary rough surface structure 30 is a coarse rough surface structure formed by collecting a plurality of irregularities due to the primary rough surface structure 10 and the secondary rough surface structure 20. The tertiary rough surface structure 30 is an aggregate including a set of the primary rough surface structure 10 and the secondary rough surface structure 20 on the surface of the aluminum member 100. As will be described later, the tertiary rough surface structure 30 has an uneven structure composed of an aggregate of the primary rough surface structure 10 and the secondary rough surface structure 20 by repeating the film forming step and the depolarizing step after the etching step. It is formed by developing. The tertiary rough surface structure 30 is a structure having a surface roughness scale on the order of several tens of μm to several hundred μm.
 図1に示すように、一次粗面構造10と二次粗面構造20との集合体からなる三次粗面構造30によって、アルミニウム部材100の表面に凹凸構造が形成されている。具体的には、三次粗面構造30は、一次粗面構造10と二次粗面構造20との集合体によって、凸部31(第3凸部、山部)と、凹部32(第3凹部、谷部)とが形成されている。凸部31はアルミニウム部材100の表面の厚み方向に対して山のように盛り上がり、凹部32はアルミニウム部材100の表面の厚み方向に対して谷のように落ち窪んでいる。そして、これらの凸部31と凹部32とが繰り返し間隔を空けて現れることで、三次粗面構造30は、一次粗面構造10及び二次粗面構造20よりもスケールの大きい周期的な山谷構造を有している。 凹凸 As shown in FIG. 1, an uneven structure is formed on the surface of the aluminum member 100 by the tertiary rough surface structure 30 including an aggregate of the primary rough surface structure 10 and the secondary rough surface structure 20. Specifically, the tertiary roughened surface structure 30 is formed by an aggregate of the primary roughened surface structure 10 and the secondary roughened surface structure 20, and includes a convex portion 31 (third convex portion and a mountain portion) and a concave portion 32 (third concave portion). , Valleys) are formed. The protrusion 31 rises like a mountain with respect to the thickness direction of the surface of the aluminum member 100, and the recess 32 falls like a valley with respect to the thickness direction of the surface of the aluminum member 100. When the convex portions 31 and the concave portions 32 appear repeatedly at intervals, the tertiary rough surface structure 30 has a periodic valley structure with a larger scale than the primary rough surface structure 10 and the secondary rough surface structure 20. have.
 三次粗面構造30の周期は10μm~500μmであることが好ましく、30μm~200μmであることがさらに好ましい。三次粗面構造30の周期とは、アルミニウム部材100の平面方向において、凹部32を挟んで隣り合って周期的に現れる凸部31同士、または凸部31を挟んで隣り合って周期的に現れる凹部32同士の間隔をいう。三次粗面構造30の周期がこのような範囲であることにより、白色度がより良好なアルミニウム部材100を提供することができる。三次粗面構造30の周期は、光学顕微鏡などで、アルミニウム部材100の断面を観察して測定することができる。 周期 The period of the tertiary rough surface structure 30 is preferably 10 μm to 500 μm, more preferably 30 μm to 200 μm. The period of the tertiary rough surface structure 30 refers to, in the planar direction of the aluminum member 100, the convex portions 31 that periodically appear adjacent to each other across the concave portion 32 or the concave portions that periodically appear adjacent to each other across the convex portion 31. 32. When the period of the tertiary rough surface structure 30 is in such a range, the aluminum member 100 having better whiteness can be provided. The period of the tertiary rough surface structure 30 can be measured by observing the cross section of the aluminum member 100 with an optical microscope or the like.
 アルミニウム部材100は、上述のような三次粗面構造30を有することで、表面のグロス感が減じてマット感が向上する。これにより、アルミニウム部材100の表面に生じる光沢が抑えられて、アルミニウム部材100に提示される色、模様、図形、記号、文字等の情報の視認性が良好になる。このような視認性の向上は、例えばアルミニウム部材100を試験シートまたはクロマトグラフィー用の展開部材として用いて、アルミニウム部材100上に生じる試験結果を目視または光学的に確認する場合に有効である。 (4) Since the aluminum member 100 has the tertiary rough surface structure 30 as described above, the glossiness of the surface is reduced and the matte feeling is improved. Thereby, the gloss generated on the surface of the aluminum member 100 is suppressed, and the visibility of information such as colors, patterns, figures, symbols, and characters presented on the aluminum member 100 is improved. Such improvement in visibility is effective, for example, when the aluminum member 100 is used as a test sheet or a developing member for chromatography, and the test results generated on the aluminum member 100 are visually or optically confirmed.
 <母材>
 母材11は、金属アルミニウムにより構成されている。母材11を構成する金属アルミニウムは、純度が99%以上の純アルミニウムであることが好ましく、純度が99.9%以上の純アルミニウムであることがより好ましく、純度が99.98%以上の純アルミニウムであることがさらに好ましい。
<Base material>
The base material 11 is made of metal aluminum. The metallic aluminum constituting the base material 11 is preferably pure aluminum having a purity of 99% or more, more preferably pure aluminum having a purity of 99.9% or more, and pure metal having a purity of 99.98% or more. More preferably, it is aluminum.
 母材11は、不可避不純物を含有していてもよい。本実施形態において、不可避不純物とは、原料中に存在したり、製造工程において不可避的に混入したりするものを意味する。不可避不純物は、本来は不要なものであるが、微量であり、アルミニウム中の特性に影響を及ぼさないため、許容されている不純物である。アルミニウム中に含有される可能性がある不可避不純物は、アルミニウム(Al)以外の元素である。アルミニウム中に含有される可能性がある不可避不純物としては、例えば、マグネシウム(Mg)、鉄(Fe)、ケイ素(Si)、銅(Cu)、鉛(Pb)、マンガン(Mn)、クロム(Cr)、亜鉛(Zn)、チタン(Ti)、ガリウム(Ga)、ホウ素(B)、バナジウム(V)、ジルコニウム(Zr)、カルシウム(Ca)、コバルト(Co)などが挙げられる。不可避不純物の量としては、アルミニウム中に合計で1質量%以下であることが好ましく、0.1質量%以下であることがより好ましく、0.02質量%以下であることがさらに好ましい。 The base material 11 may contain unavoidable impurities. In the present embodiment, the unavoidable impurities mean those which are present in the raw material or unavoidably mixed in the manufacturing process. The unavoidable impurities are originally unnecessary, but are trace amounts and do not affect the properties in aluminum, and are thus allowed impurities. Inevitable impurities that may be contained in aluminum are elements other than aluminum (Al). As inevitable impurities that may be contained in aluminum, for example, magnesium (Mg), iron (Fe), silicon (Si), copper (Cu), lead (Pb), manganese (Mn), chromium (Cr) ), Zinc (Zn), titanium (Ti), gallium (Ga), boron (B), vanadium (V), zirconium (Zr), calcium (Ca), cobalt (Co), and the like. The amount of the inevitable impurities is preferably 1% by mass or less in total in aluminum, more preferably 0.1% by mass or less, and even more preferably 0.02% by mass or less.
 母材11の形状は特に限定されず、多孔質状、樹状、繊維状、塊状及び海綿状などであってもよい。 形状 The shape of the base material 11 is not particularly limited, and may be porous, tree-like, fibrous, massive, spongy, or the like.
 <皮膜>
 皮膜12は、母材11の表面を被覆している。具体的には、皮膜12は、母材11の表面及び空孔15と接しており、母材11が腐食するのを抑制している。
<Coating>
The coating 12 covers the surface of the base material 11. More specifically, the coating 12 is in contact with the surface of the base material 11 and the pores 15 to suppress the base material 11 from being corroded.
 皮膜12は、酸化アルミニウムを含む。本実施形態においては、皮膜12は陽極酸化皮膜であり、陽極酸化皮膜はバリア型の陽極酸化皮膜であることが好ましい。また、皮膜12は、水酸化アルミニウムを含んでいてもよい。皮膜12は、水酸化アルミニウムを含む水和皮膜を有していてもよい。 The film 12 contains aluminum oxide. In the present embodiment, the film 12 is an anodic oxide film, and the anodic oxide film is preferably a barrier type anodic oxide film. Further, the film 12 may include aluminum hydroxide. The film 12 may have a hydrated film containing aluminum hydroxide.
 例えば、皮膜12は、母材11側から、陽極酸化皮膜と、水和皮膜とがこの順で積層されたものであってもよいが、母材11の表面を被覆する陽極酸化皮膜の表面側の一部において、水和皮膜が設けられていることが好ましい。または、皮膜12は、母材11の表面に、陽極酸化皮膜と水和皮膜とが海島状に分布するものであってもよいが、母材11の表面に、陽極酸化皮膜が海状に分布するとともに、水和皮膜が島状に分布していることが好ましい。具体的には、皮膜12の外表面全体に対する水和皮膜の割合は、5%以上50%以下であることが好ましく、10%以上40%以下であることがより好ましく、15%以上30%以下であることがさらに好ましい。なお、皮膜12が水酸化アルミニウムを含み、母材11及び多孔質層40の最表面の一部に水酸化アルミニウムが存在する場合、水酸化アルミニウムが凸部14を形成していることが好ましい。 For example, the coating 12 may be formed by laminating an anodized film and a hydrated film in this order from the base material 11 side, but the surface side of the anodized film covering the surface of the base material 11 may be used. It is preferable that a hydration film is provided on a part of the film. Alternatively, the coating 12 may be one in which the anodized film and the hydrated film are distributed in a sea-island shape on the surface of the base material 11, but the anodized film is distributed in the sea shape on the surface of the base material 11. Preferably, the hydrated film is distributed in an island shape. Specifically, the ratio of the hydrated film to the entire outer surface of the film 12 is preferably 5% or more and 50% or less, more preferably 10% or more and 40% or less, and 15% or more and 30% or less. Is more preferable. When the coating 12 contains aluminum hydroxide and aluminum hydroxide is present on a part of the outermost surfaces of the base material 11 and the porous layer 40, it is preferable that the aluminum hydroxide forms the projections 14.
 本実施形態に係る多孔質層40は、母材11及び多孔質層40を被覆する水和皮膜を最表面全体に含んでいないことが好ましい。多孔質層40が最表面全体に水和皮膜を含んでいないことにより、拡散反射が優位になり、アルミニウム部材100の白色度をより向上させることができる。水酸化アルミニウムは一般式Al(OH)で表される。 It is preferable that the porous layer 40 according to the present embodiment does not include a hydrated film covering the base material 11 and the porous layer 40 over the entire outermost surface. Since the porous layer 40 does not include a hydrated film on the entire outermost surface, diffuse reflection becomes superior, and the whiteness of the aluminum member 100 can be further improved. Aluminum hydroxide is represented by the general formula Al (OH) 3 .
 皮膜12の最表面が針状又は板状の水和皮膜によって覆われている場合には、アルミニウム部材100は黒色又は灰色に観察されることがある。これは、このような水和皮膜は、表面近傍が鋭利な先端形状を有しており、この先端部分が入射光の拡散反射に寄与するものの、拡散反射をすることのできる部分が、先端部分に限られ、面積的に少ないことが影響していると考えられる。また、このような皮膜は、先端部分から付け根部分に向かうにつれて、隣接する針状又は板状の水和皮膜同士の間が次第に狭まる内部形状を有している。そのため、この内部に入り込んだ入射光が、反射を繰り返すうちに水和皮膜に吸収され、光が外部に出射しにくいことも、アルミニウム部材100が黒色又は灰色に観察されることに影響していると考えられる。 (4) When the outermost surface of the coating 12 is covered with a needle-like or plate-like hydrated coating, the aluminum member 100 may be observed in black or gray. This is because such a hydrated film has a sharp tip shape in the vicinity of the surface, and although this tip portion contributes to diffuse reflection of incident light, the portion that can diffusely reflect is formed at the tip portion. It is considered that the effect is limited by the area. In addition, such a coating has an internal shape in which the space between adjacent needle-like or plate-like hydration coatings gradually narrows from the tip to the base. Therefore, the incident light that has entered the interior is absorbed by the hydrated film while repeating reflection, and the fact that the light is not easily emitted to the outside also affects that the aluminum member 100 is observed in black or gray. it is conceivable that.
 さらに、水和皮膜が存在すると一次粗面構造10と二次粗面構造20が目詰まりしてしまうことが多いため、アルミニウム部材100の外観が黒色又は灰色になる傾向にある。それゆえ、陽極酸化皮膜からなる皮膜12が多孔質層40の表面に設けられており、凹部13及び空孔15が皮膜12の最表面に存在していることが好ましい。一方、水酸化アルミニウムが多孔質層40の最表面全体を被覆して水和皮膜を形成せずに、多孔質層40の最表面の一部に粒状又は塊状に存在して凸部14を形成する場合には、凸部14によって白色度を向上させることができる。さらに、凸部14と、水和皮膜に覆われずに多孔質層40の最表面に露出する凹部13とによって、白色度を向上させることもできる。また、水酸化アルミニウムが多孔質層40の最表面全体を被覆して水和皮膜を形成するとともに、多孔質層40の最表面に粒状又は塊状に存在して凸部14を形成する場合には、凸部14によって白色度を向上させることができる。 Furthermore, if the hydrated film is present, the primary roughened structure 10 and the secondary roughened structure 20 are often clogged, so that the appearance of the aluminum member 100 tends to be black or gray. Therefore, it is preferable that the film 12 made of the anodic oxide film is provided on the surface of the porous layer 40, and the concave portions 13 and the holes 15 exist on the outermost surface of the film 12. On the other hand, the aluminum hydroxide covers the entire outermost surface of the porous layer 40 and does not form a hydrated film. In this case, the whiteness can be improved by the convex portions 14. Further, the whiteness can be improved by the convex portions 14 and the concave portions 13 exposed on the outermost surface of the porous layer 40 without being covered with the hydrated film. Further, when aluminum hydroxide covers the entire outermost surface of the porous layer 40 to form a hydrated film, and when the aluminum oxide exists in the outermost surface of the porous layer 40 in the form of granules or lump to form the projections 14, The whiteness can be improved by the convex portions 14.
 皮膜12は、通常、5nm~1000nmの厚さを有する。皮膜12の厚さは、20nm~800nmであることが好ましく、30nm~500nmであることがより好ましく、50nm~300nmであることがさらに好ましい。皮膜12の厚さをこのような範囲とすることによって、多孔質層40に入射した光を拡散反射させるだけの十分な厚さを確保しやすくなり、白色度がより良好なアルミニウム部材100を提供することができる。さらに、十分に耐食性の高いアルミニウム部材100を提供することができる。皮膜12の厚さは、例えば、皮膜12の断面を走査型電子顕微鏡などで観察することにより測定することができる。なお、本明細書において、皮膜12の厚さは、凹部13及び凸部14を含まない厚さを意味する。 The film 12 usually has a thickness of 5 nm to 1000 nm. The thickness of the film 12 is preferably from 20 nm to 800 nm, more preferably from 30 nm to 500 nm, and still more preferably from 50 nm to 300 nm. By setting the thickness of the coating 12 to such a range, it is easy to secure a sufficient thickness to diffusely reflect light incident on the porous layer 40, and to provide the aluminum member 100 having better whiteness. can do. Further, the aluminum member 100 having sufficiently high corrosion resistance can be provided. The thickness of the film 12 can be measured, for example, by observing the cross section of the film 12 with a scanning electron microscope or the like. In the present specification, the thickness of the coating 12 means a thickness not including the concave portions 13 and the convex portions 14.
 皮膜12は、表面に形成された複数の凹部13及び複数の凸部14の少なくともいずれか一方を有している。具体的には、図2に示すように、皮膜12は、皮膜12の表面に複数の凹部13を有していてもよい。または、図3に示すように、皮膜12は、皮膜12の表面に複数の凸部14を有していてもよい。または、図4に示すように、皮膜12は、皮膜12の表面に凹部13及び凸部14を有していてもよい。すなわち、皮膜12は、凹部13又は凸部14のいずれか一方を有していてもよく、凹部13及び凸部14の両方を有していてもよい。凹部13又は凸部14の有無は、皮膜12の表面を走査型電子顕微鏡などによって観察することで判別することができる。 The coating 12 has at least one of the plurality of concave portions 13 and the plurality of convex portions 14 formed on the surface. Specifically, as shown in FIG. 2, the film 12 may have a plurality of recesses 13 on the surface of the film 12. Alternatively, as shown in FIG. 3, the film 12 may have a plurality of convex portions 14 on the surface of the film 12. Alternatively, as shown in FIG. 4, the film 12 may have a concave portion 13 and a convex portion 14 on the surface of the film 12. That is, the film 12 may have either the concave portion 13 or the convex portion 14, or may have both the concave portion 13 and the convex portion 14. The presence or absence of the concave portion 13 or the convex portion 14 can be determined by observing the surface of the coating 12 with a scanning electron microscope or the like.
 凹部13及び凸部14は、アルミニウム部材100の白色度に寄与している。皮膜12の表面に凹部13及び凸部14の少なくともいずれか一方が形成されることで、アルミニウム部材100の白色度が向上する理由は必ずしも明らかではないが、以下の通り推察される。まず、アルミニウム部材に対して光が入射した場合には、入射光がアルミニウム部材の表面で反射する。このとき、アルミニウム部材の表面が平滑である場合には、鏡面状の光沢を示すことになる。ここで、アルミニウム部材の表面に微細な凹凸がある場合には、この凹凸による入射光の拡散反射が生じるが、通常は白色に視認できるほどの凹凸は存在していない。 The concave portion 13 and the convex portion 14 contribute to the whiteness of the aluminum member 100. The reason why the whiteness of the aluminum member 100 is improved by forming at least one of the concave portion 13 and the convex portion 14 on the surface of the film 12 is not necessarily clear, but is presumed as follows. First, when light enters the aluminum member, the incident light is reflected on the surface of the aluminum member. At this time, if the surface of the aluminum member is smooth, the aluminum member has a mirror-like gloss. Here, when there are minute irregularities on the surface of the aluminum member, diffuse reflection of the incident light occurs due to the irregularities, but there are usually no irregularities that are visible in white.
 これに対して、本実施形態に係るアルミニウム部材100は、凹部13及び凸部14によって、皮膜12表面での拡散反射を増加させることができる。すなわち、皮膜12が凹部13を有する場合には、入射光を拡散反射できる面積が凹部13によって増大するため、アルミニウム部材100は白色を示すように観察される。同様に、皮膜12が凸部14を有する場合には、入射光を拡散反射できる面積が凸部14によって増大するため、アルミニウム部材100は白色を示すように観察される。 On the other hand, in the aluminum member 100 according to the present embodiment, the diffuse reflection on the surface of the coating 12 can be increased by the concave portions 13 and the convex portions 14. That is, when the film 12 has the concave portion 13, the area in which the incident light can be diffusely reflected is increased by the concave portion 13, so that the aluminum member 100 is observed to be white. Similarly, when the coating 12 has the convex portions 14, the area where the incident light can be diffusely reflected is increased by the convex portions 14, so that the aluminum member 100 is observed to show white.
 凹部13は、皮膜12の露出した表面から母材11に向かって窪んで形成されていることが好ましい。凹部13の底部は母材11まで貫通しておらず、凹部13と母材11との間には皮膜12が形成されていることが好ましい。凹部13の形状は、特に限定されないが、母材11と皮膜12の積層方向(皮膜12の厚さ方向)において、断面視で略U字状又は略V字状であることが好ましい。後述するように、エッチングされたアルミニウム板が陽極酸化処理及び減極処理されることで、母材11の表面に陽極酸化皮膜からなる皮膜12が生じる。凹部13は、この陽極酸化皮膜に形成される。凸部14は、皮膜12の露出した表面から外方に向かって張り出して形成されていることが好ましい。凸部14の形状は、特に限定されないが、粒状又は塊状であることが好ましい。 (4) The recess 13 is preferably formed so as to be depressed from the exposed surface of the coating 12 toward the base material 11. It is preferable that the bottom of the recess 13 does not penetrate to the base material 11, and the coating 12 is formed between the recess 13 and the base material 11. The shape of the concave portion 13 is not particularly limited, but is preferably substantially U-shaped or substantially V-shaped in cross section in the laminating direction of the base material 11 and the film 12 (the thickness direction of the film 12). As will be described later, the anodized and depolarized aluminum plate is etched to form a film 12 made of an anodized film on the surface of the base material 11. The recess 13 is formed in this anodic oxide film. It is preferable that the convex portion 14 is formed to protrude outward from the exposed surface of the film 12. The shape of the convex portion 14 is not particularly limited, but is preferably granular or massive.
 複数の凹部に含まれる各凹部13の径は、10nm~200nmであることが好ましく、20nm~150nmであることがより好ましく、50nm~100nmであることがさらに好ましい。また、複数の凸部に含まれる各凸部14の径は、10nm~200nmであることが好ましく、20nm~150nmであることがより好ましく、50nm~100nmであることがさらに好ましい。凹部13及び凸部14の径をこのような範囲とすることによって、多孔質層40に入射した光を凹部13及び凸部14によって拡散反射させやすくなり、白色度がより良好なアルミニウム部材100を提供することができる。凹部13の径は、皮膜12の表面を走査型電子顕微鏡などによって観察し、凹部13の入口部分の直径を測定することにより得ることができる。凸部14の径は、皮膜12の表面を走査型電子顕微鏡などによって観察し、凸部14の径が最も大きくなる部分の直径を測定することにより得ることができる。 径 The diameter of each recess 13 included in the plurality of recesses is preferably 10 nm to 200 nm, more preferably 20 nm to 150 nm, and even more preferably 50 nm to 100 nm. Further, the diameter of each protrusion 14 included in the plurality of protrusions is preferably from 10 nm to 200 nm, more preferably from 20 nm to 150 nm, and further preferably from 50 nm to 100 nm. By setting the diameter of the concave portion 13 and the convex portion 14 in such a range, the light incident on the porous layer 40 can be easily diffused and reflected by the concave portion 13 and the convex portion 14, and the aluminum member 100 having a better whiteness can be obtained. Can be provided. The diameter of the recess 13 can be obtained by observing the surface of the coating 12 with a scanning electron microscope or the like and measuring the diameter of the entrance of the recess 13. The diameter of the protrusion 14 can be obtained by observing the surface of the coating 12 with a scanning electron microscope or the like and measuring the diameter of the portion where the diameter of the protrusion 14 is largest.
 ここで、複数の凹部13が近接している場合における、凹部13及びその径の認定について説明する。まず、凹部13の位置は、凹部13の最も深い位置(ボトム側のピーク位置)によって定められる。隣接する凹部13同士の間隔は、それぞれの凹部13のボトム側のピーク位置の間の距離によって定めることができる。ある凹部13が、周囲の凹部13と50nm以上の間隔を空けて存在する場合には、この凹部13は独立した凹部13とみなされる。一方、複数の凹部13が50nm未満の間隔をおいて集合している集団であって、当該集団に含まれない周囲の凹部13と50nm以上の間隔を空けて存在する集団を形成している場合には、この集団は一つの凹部13とみなされる。そして、この集団全体の径を凹部13の径として測定する。なお、窪みの周縁部を共有している複数の凹部13であって、これら複数の凹部13のボトム側のピーク位置が50nm以上空いている場合には、これら複数の凹部13は別個に独立した凹部13とみなされる。このとき、周縁部を共有している窪みに対して、複数の凹部13のボトム側のピーク位置を母点としたボロノイ分割をすることによって、それぞれの凹部13に属する領域を画定することができる。 Here, the recognition of the recess 13 and its diameter when the plurality of recesses 13 are close to each other will be described. First, the position of the concave portion 13 is determined by the deepest position of the concave portion 13 (the peak position on the bottom side). The interval between adjacent recesses 13 can be determined by the distance between the peak positions on the bottom side of each recess 13. If a certain recess 13 is present at a distance of 50 nm or more from the surrounding recess 13, the recess 13 is regarded as an independent recess 13. On the other hand, a case where a plurality of recesses 13 are gathered at intervals of less than 50 nm, and a group is formed at intervals of 50 nm or more from surrounding recesses 13 not included in the group. In this case, this group is regarded as one recess 13. Then, the diameter of the entire group is measured as the diameter of the recess 13. In addition, when the plurality of recesses 13 share the peripheral edge of the recess and the peak positions on the bottom side of the plurality of recesses 13 are vacant by 50 nm or more, the plurality of recesses 13 are separately and independently provided. It is regarded as the recess 13. At this time, a region belonging to each of the concave portions 13 can be defined by performing Voronoi division with respect to the concave portion sharing the peripheral edge portion with the peak position on the bottom side of the plurality of concave portions 13 as a base point. .
 同様に、複数の凸部14が近接している場合における、凸部14及びその径の認定について説明する。まず、凸部14の位置は、凸部14の最も高い位置(トップ側のピーク位置)によって定められる。隣接する凸部14同士の間隔は、それぞれの凸部14のトップ側のピーク位置の間の距離によって定めることができる。ある凸部14が、周囲の凸部14と50nm以上の間隔を空けて存在する場合には、この凸部14は独立した凸部14とみなされる。一方、複数の凸部14が50nm未満の間隔をおいて集合している集団であって、当該集団に含まれない周囲の凸部14と50nm以上の間隔を空けて存在する集団を形成している場合には、この集団は一つの凸部14とみなされる。そして、この集団全体の径を凸部14の径として測定する。なお、張り出しの周縁部を共有している複数の凸部14であって、これら複数の凸部14のトップ側のピーク位置が50nm以上空いている場合には、これら複数の凸部14は別個に独立した凸部14とみなされる。このとき、周縁部を共有している張り出しに対して、複数の凸部14のトップ側のピーク位置を母点としたボロノイ分割をすることによって、それぞれの凸部14に属する領域を画定することができる。 Similarly, a description will be given of the recognition of the protrusions 14 and the diameter thereof when the plurality of protrusions 14 are close to each other. First, the position of the protrusion 14 is determined by the highest position of the protrusion 14 (the peak position on the top side). The interval between the adjacent protrusions 14 can be determined by the distance between the top peak positions of the respective protrusions 14. If a certain protrusion 14 is present at a distance of 50 nm or more from the surrounding protrusions 14, the protrusion 14 is regarded as an independent protrusion 14. On the other hand, a group in which the plurality of convex portions 14 are gathered with an interval of less than 50 nm, and a group in which there is an interval of 50 nm or more with surrounding convex portions 14 not included in the group is formed. If so, this group is regarded as one protrusion 14. Then, the diameter of the entire group is measured as the diameter of the projection 14. In the case where the plurality of protrusions 14 share the overhanging peripheral portion and the peak positions on the top side of the plurality of protrusions 14 are vacant by 50 nm or more, the plurality of protrusions 14 are separately provided. Are regarded as independent projections 14. At this time, a region belonging to each convex portion 14 is defined by performing Voronoi division on the overhang that shares the peripheral portion with the peak position on the top side of the plurality of convex portions 14 as a generating point. Can be.
 複数の凹部に含まれる各凹部13の深さは、母材11と皮膜12の積層方向において、通常、断面視で10nm~100nmであり、20nm~80nmであることが好ましく、30nm~50nmであることがより好ましい。凹部13の深さは、皮膜12の断面を走査型電子顕微鏡などによって観察し、凹部13の入口部分から底部までの距離を測定した平均値を算出することにより得ることができる。 The depth of each of the recesses 13 included in the plurality of recesses is generally 10 nm to 100 nm, preferably 20 nm to 80 nm, and more preferably 30 nm to 50 nm in cross-sectional view in the laminating direction of the base material 11 and the film 12. Is more preferable. The depth of the recess 13 can be obtained by observing the cross section of the coating 12 with a scanning electron microscope or the like and calculating the average value of the distance from the entrance to the bottom of the recess 13.
 複数の凸部に含まれる各凸部14の高さは、母材11と皮膜12の積層方向において、通常、断面視で10nm~100nmであり、20nm~80nmであることが好ましく、30nm~50nmであることがより好ましい。凸部14の高さは、皮膜12の断面を走査型電子顕微鏡などによって観察し、皮膜12の平坦部の表面から凸部14の最頂部までの距離を測定した平均値を算出することにより得ることができる。 The height of each protrusion 14 included in the plurality of protrusions is generally 10 nm to 100 nm, preferably 20 nm to 80 nm, and more preferably 30 nm to 50 nm in cross-sectional view in the laminating direction of the base material 11 and the film 12. Is more preferable. The height of the protrusion 14 is obtained by observing a cross section of the film 12 with a scanning electron microscope or the like and calculating an average value obtained by measuring the distance from the surface of the flat portion of the film 12 to the top of the protrusion 14. be able to.
 凹部13の深さ及び凸部14の高さが上記範囲の下限を上回ると、凹部13及び凸部14による入射光を拡散反射できる面積が増加して、拡散反射が増大しやすくなる。また、凹部13の深さ及び凸部14の高さが上記範囲の上限を下回ると、凹部13及び凸部14が例えば針状又は板状の凹凸構造物となることにより生じる、拡散反射の減少を抑えることができる。当該拡散反射の減少は、針状又は板状の凹凸構造物によって、入射光を拡散反射できる面積が減少すること及び入射光の吸収が生じることなどによると考えられる。このようにして、凹部13の深さ及び凸部14の高さが上記範囲内であると、アルミニウム部材100は白色を示すように観察される傾向にある。 When the depth of the concave portion 13 and the height of the convex portion 14 exceed the lower limit of the above range, the area where the concave portion 13 and the convex portion 14 can diffuse and reflect the incident light increases, and the diffuse reflection tends to increase. When the depth of the concave portion 13 and the height of the convex portion 14 are less than the upper limit of the above range, a decrease in diffuse reflection caused by the concave portion 13 and the convex portion 14 becoming a needle-like or plate-like concave-convex structure, for example. Can be suppressed. It is considered that the decrease in the diffuse reflection is due to the fact that the area in which the incident light can be diffusely reflected is reduced and the incident light is absorbed by the needle-shaped or plate-shaped uneven structure. As described above, when the depth of the concave portion 13 and the height of the convex portion 14 are within the above ranges, the aluminum member 100 tends to be observed as exhibiting white color.
 皮膜12における凹部13及び凸部14の密度は、3個/μm~500個/μmであることが好ましく、5個/μm~200個/μmであることがより好ましく,10個/μm~100個/μmであることがさらに好ましい。凹部13及び凸部14の密度をこのような範囲とすることによって、多孔質層40に入射した光を凹部13及び凸部14によって拡散反射させやすくなり、白色度がより良好なアルミニウム部材100を提供することができる。凹部13及び凸部14の密度は、走査型電子顕微鏡などによって、皮膜12の表面における単位面積当たりの凹部13及び凸部14の合計の数をカウントすることによって得ることができる。 The density of the concave portions 13 and the convex portions 14 in the coating 12 is preferably 3 / μm 2 to 500 / μm 2 , more preferably 5 / μm 2 to 200 / μm 2 , and 10 / Μm 2 to 100 particles / μm 2 is more preferable. By setting the densities of the concave portions 13 and the convex portions 14 in such a range, the light incident on the porous layer 40 can be easily diffused and reflected by the concave portions 13 and the convex portions 14, and the aluminum member 100 having better whiteness can be obtained. Can be provided. The densities of the concave portions 13 and the convex portions 14 can be obtained by counting the total number of the concave portions 13 and the convex portions 14 per unit area on the surface of the film 12 using a scanning electron microscope or the like.
 皮膜12における凹部13及び凸部14の面積率は、5%~80%であることが好ましく、20%~70%であることがより好ましく、30%~60%であることがさらに好ましい。凹部13及び凸部14の面積率をこのような範囲とすることにより、多孔質層40に入射した光を凹部13及び凸部14によって拡散反射させやすくなり、白色度がより良好なアルミニウム部材100を提供することができる。凹部13及び凸部14の面積率は、多孔質層40の表面において、皮膜12の表面積に対する凹部13及び凸部14が占める面積の割合をパーセンテージで表したものである。凹部13及び凸部14の面積率は、走査型電子顕微鏡などによって、皮膜12の表面における単位面積当たりの凹部13及び凸部14が占める合計の面積を算出することによって得ることができる。 (5) The area ratio of the concave portions 13 and the convex portions 14 in the film 12 is preferably 5% to 80%, more preferably 20% to 70%, and further preferably 30% to 60%. By setting the area ratio of the concave portions 13 and the convex portions 14 in such a range, the light incident on the porous layer 40 can be easily diffused and reflected by the concave portions 13 and the convex portions 14, and the aluminum member 100 having more favorable whiteness can be obtained. Can be provided. The area ratio of the concave portions 13 and the convex portions 14 represents the ratio of the area occupied by the concave portions 13 and the convex portions 14 to the surface area of the film 12 on the surface of the porous layer 40 as a percentage. The area ratio of the concave portions 13 and the convex portions 14 can be obtained by calculating the total area occupied by the concave portions 13 and the convex portions 14 per unit area on the surface of the film 12 using a scanning electron microscope or the like.
 多孔質層40は複数の空孔を有し、複数の空孔の平均細孔径が0.1μm~10μmである。多孔質層40における空孔15の平均細孔径は、0.5μm~8μmであることが好ましく、1μm~5μmであることがより好ましい。多孔質層40における平均細孔径d(μm)はアルミニウム部材100が水を4cm吸い上げるのに要する時間をt秒とした場合、以下の式で表される範囲であることが好ましい。
  平均細孔径d=k/t
 ここでkは定数であり、具体的にはkは200~2000であることが好ましく、より好ましくは500~1500である。このような空孔15により、毛細管現象による水を吸い上げるための適切な径を確保しやすくなり、アルミニウム部材100の水の吸い上げ性能を向上させることができる。空孔15の平均細孔径は、例えば、水銀圧入法によって測定することができる。なお、凹部13又は凸部14の径は、上述した所定の範囲であり、かつ、多孔質層40における平均細孔径よりも小さいことが好ましい。具体的には、凹部13の径は、10nm~200nmであり、かつ、多孔質層40における平均細孔径よりも小さいことが好ましい。凸部14の径は、10nm~200nmであり、かつ、多孔質層40における平均細孔径よりも小さいことが好ましい。
The porous layer 40 has a plurality of pores, and the plurality of pores have an average pore diameter of 0.1 μm to 10 μm. The average pore diameter of the pores 15 in the porous layer 40 is preferably 0.5 μm to 8 μm, and more preferably 1 μm to 5 μm. The average pore diameter d (μm) of the porous layer 40 is preferably in a range represented by the following equation, where the time required for the aluminum member 100 to suck up 4 cm of water is t seconds.
Average pore diameter d = k / t
Here, k is a constant, and specifically, k is preferably from 200 to 2000, and more preferably from 500 to 1500. Such holes 15 make it easy to secure an appropriate diameter for sucking up water by capillary action, and improve the water sucking performance of the aluminum member 100. The average pore diameter of the pores 15 can be measured, for example, by a mercury intrusion method. In addition, it is preferable that the diameter of the concave portion 13 or the convex portion 14 is within the above-described predetermined range and smaller than the average pore diameter of the porous layer 40. Specifically, the diameter of the concave portion 13 is preferably 10 nm to 200 nm, and is preferably smaller than the average pore diameter in the porous layer 40. It is preferable that the diameter of the projections 14 is 10 nm to 200 nm and smaller than the average pore diameter in the porous layer 40.
 多孔質層40の厚さは、30μm~10cmであることが好ましい。多孔質層40の厚さをこのような範囲とすることにより、毛細管現象により水を吸い上げるための十分な厚みを確保しやすくなり、白色度と水の吸い上げ性能がより良好なアルミニウム部材100を提供することができる。多孔質層40の厚さは、40μm以上であることが好ましく、50μm以上であることがさらに好ましい。多孔質層40の厚さは、1000μm以下であることがより好ましく、200μm以下であることがさらに好ましく、150μm以下であることが特に好ましい。 The thickness of the porous layer 40 is preferably 30 μm to 10 cm. By setting the thickness of the porous layer 40 in such a range, it is easy to secure a sufficient thickness for absorbing water by capillary action, and the aluminum member 100 having better whiteness and water absorption performance is provided. can do. The thickness of the porous layer 40 is preferably 40 μm or more, and more preferably 50 μm or more. The thickness of the porous layer 40 is more preferably 1000 μm or less, further preferably 200 μm or less, and particularly preferably 150 μm or less.
 <基板>
 図5に示すように、アルミニウム部材100は、基板50をさらに備えていてもよい。基板50は、多孔質層40を支持することができ、アルミニウム部材100の剛性を向上させることができる。基板50は、層状の形状をしていてもよい。
<Substrate>
As shown in FIG. 5, the aluminum member 100 may further include a substrate 50. The substrate 50 can support the porous layer 40, and can improve the rigidity of the aluminum member 100. The substrate 50 may have a layered shape.
 多孔質層40は、基板50の少なくとも一方の面側に設けられていてもよい。具体的には、多孔質層40は、基板50の一方の面側にのみ設けられていてもよく、基板50の両方の面側に設けられていてもよい。多孔質層40は、アルミニウム部材100の最表面に配置されていることが好ましい。 The porous layer 40 may be provided on at least one surface of the substrate 50. Specifically, the porous layer 40 may be provided only on one surface side of the substrate 50, or may be provided on both surface sides of the substrate 50. The porous layer 40 is preferably disposed on the outermost surface of the aluminum member 100.
 アルミニウム部材100は、必ずしも基板50を備えている必要がないため、基板50の厚さは0μm超である。基板50の厚さは、用途にもよるが、例えば、1mm以下であってもよく、100μm以下であってもよく、10μm以下であってもよく、1μm以下であってもよい。 Since the aluminum member 100 does not necessarily need to have the substrate 50, the thickness of the substrate 50 is more than 0 μm. The thickness of the substrate 50 depends on the application, but may be, for example, 1 mm or less, 100 μm or less, 10 μm or less, or 1 μm or less.
 基板50を構成する材料は、母材11と実質的に同一の材料であってもよい。基板50と母材11とが同一の材料である場合には、基板50と母材11とが一体として形成されていてもよい。この場合、基板50と、多孔質層40の母材11とが連続して形成されていてもよい。基板50は金属アルミニウムにより構成されていてもよい。基板50を構成する金属アルミニウムは、純度が99%以上の純アルミニウムであることが好ましく、純度が99.9%以上の純アルミニウムであることがより好ましく、純度が99.98%以上の純アルミニウムであることがさらに好ましい。 The material forming the substrate 50 may be substantially the same as the material of the base material 11. When the substrate 50 and the base material 11 are the same material, the substrate 50 and the base material 11 may be integrally formed. In this case, the substrate 50 and the base material 11 of the porous layer 40 may be formed continuously. The substrate 50 may be made of metal aluminum. The metallic aluminum constituting the substrate 50 is preferably pure aluminum having a purity of 99% or more, more preferably pure aluminum having a purity of 99.9% or more, and pure aluminum having a purity of 99.98% or more. Is more preferable.
 アルミニウム部材100の厚さは、用途にもよるが、例えば、50μm以上であってもよく、100μm以上であってもよく、150μm以上であってもよい。また、アルミニウム部材100の厚さは、300μm以下であってもよく、250μm以下であってもよく、200μm以下であってもよい。アルミニウム部材100の厚さをこのような範囲とすることにより、折り曲げ強度が良好なアルミニウム部材100を提供することができる。 The thickness of the aluminum member 100 depends on the application, but may be, for example, 50 μm or more, 100 μm or more, or 150 μm or more. Further, the thickness of aluminum member 100 may be 300 μm or less, 250 μm or less, or 200 μm or less. By setting the thickness of the aluminum member 100 in such a range, the aluminum member 100 having good bending strength can be provided.
 アルミニウム部材100における算術平均粗さSaは、0.1μm~30μmであることが好ましく、0.6μm~20μmであることがより好ましく、1μm~10μmであることがさらに好ましい。算術平均粗さSaをこのような範囲とすることによって、L値が上昇する傾向にあり、白色度がより良好なアルミニウム部材100を提供しやすくなる。算術平均粗さSaは、アルミニウム部材100における多孔質層40側の表面をISO25178に準じて測定して得ることができる。なお、本明細書において、アルミニウム部材100における算術平均粗さSaとは、主に二次粗面構造20による粗さを反映したものである。 The arithmetic average roughness Sa of the aluminum member 100 is preferably 0.1 μm to 30 μm, more preferably 0.6 μm to 20 μm, and further preferably 1 μm to 10 μm. By setting the arithmetic mean roughness Sa in such a range, the L * value tends to increase, and it becomes easy to provide the aluminum member 100 having better whiteness. The arithmetic average roughness Sa can be obtained by measuring the surface of the aluminum member 100 on the side of the porous layer 40 according to ISO25178. In this specification, the arithmetic mean roughness Sa of the aluminum member 100 mainly reflects the roughness of the secondary rough surface structure 20.
 アルミニウム部材100は、L表色系におけるL値が80以上であることが好ましく、85以上であることがより好ましく、90以上であることがさらに好ましく、95以上であることが特に好ましい。L表色系におけるL値は、JIS Z8722:2009(色の測定方法-反射及び透過物体色)に準じて求めることができる。具体的には、L値は色彩色差計などを用いて測定することができ、拡散照明垂直受光方式(D/0)、視野角2°、C光源のような条件で測定することができる。 The aluminum member 100 preferably has an L * value in the L * a * b * color system of 80 or more, more preferably 85 or more, even more preferably 90 or more, and even more preferably 95 or more. Is particularly preferred. The L * value in the L * a * b * color system can be determined according to JIS Z8722: 2009 (color measurement method-reflection and transmission object colors). Specifically, the L * value can be measured using a colorimeter or the like, and can be measured under conditions such as a diffuse illumination vertical light receiving system (D / 0), a viewing angle of 2 °, and a C light source. .
 アルミニウム部材100は、毛細管現象による水の吸い上げ高さが3cm以上であることが好ましく、4cm以上であることがより好ましく、5cm以上であることがさらに好ましい。このようにすることにより、例えば、クロマトグラフィーなどに適したアルミニウム部材100を提供することができる。吸い上げ高さは、例えば、アルミニウム部材100の平面方向が液面に対して垂直となるように、アルミニウム部材100を、純水に浸し、10分放置した後、毛細管現象によって水が吸い上げられた高さを測定することにより得ることができる。なお、純水は、30℃で測定した比抵抗が10kΩmの純水である。 The aluminum member 100 preferably has a water suction height of 3 cm or more, more preferably 4 cm or more, and even more preferably 5 cm or more, due to capillary action. By doing so, for example, an aluminum member 100 suitable for chromatography or the like can be provided. The suction height is, for example, such that the aluminum member 100 is immersed in pure water and allowed to stand for 10 minutes so that the plane direction of the aluminum member 100 is perpendicular to the liquid level, and then the water is sucked up by capillary action. It can be obtained by measuring the height. Note that the pure water is pure water having a specific resistance of 10 kΩm measured at 30 ° C.
 アルミニウム部材100は、MIT型折り曲げ試験法に準じた折り曲げ試験において、100回以上折り曲げても破断しないことが好ましい。アルミニウム部材100がこのような要件を満たす場合、アルミニウム部材100をロール状にした保管及び搬送が容易になる。なお、MIT型折り曲げ試験法はEIAJ RC-2364Aで規定されており、MIT型折り曲げ試験装置はJIS P8115(紙及び板紙-耐折強さ試験方法-MIT試験機法)で規定された装置を使用することができる。 In the bending test according to the MIT bending test method, it is preferable that the aluminum member 100 does not break even if it is bent 100 times or more. When the aluminum member 100 satisfies such requirements, the aluminum member 100 is easily stored and transported in a roll shape. The MIT type bending test method is specified by EIAJ RC-2364A, and the MIT type bending test device uses the device specified by JIS P8115 (paper and board-folding strength test method-MIT test machine method). can do.
 以上の通り、本実施形態に係るアルミニウム部材100は、金属アルミニウムにより構成された母材11と、母材11の表面を被覆する酸化アルミニウムを含む皮膜12と、を含む多孔質層40を備える。皮膜12は5nm~1000nmの厚さを有し、皮膜12は表面に形成された複数の凹部13及び複数の凸部14の少なくともいずれか一方を有している。複数の凹部13に含まれる各凹部13の深さは10nm~100nmであり、複数の凸部14に含まれる各凸部14の高さは10nm~100nmである。多孔質層40は複数の空孔15を有し、複数の空孔15の平均細孔径が0.1μm~10μmである。 As described above, the aluminum member 100 according to the present embodiment includes the porous layer 40 including the base material 11 made of metallic aluminum, and the coating 12 containing aluminum oxide covering the surface of the base material 11. The film 12 has a thickness of 5 nm to 1000 nm, and the film 12 has at least one of a plurality of concave portions 13 and a plurality of convex portions 14 formed on the surface. The depth of each recess 13 included in the plurality of recesses 13 is 10 nm to 100 nm, and the height of each projection 14 included in the plurality of protrusions 14 is 10 nm to 100 nm. The porous layer 40 has a plurality of pores 15, and the average pore diameter of the plurality of pores 15 is 0.1 μm to 10 μm.
 また、アルミニウム部材100は、金属アルミニウムにより構成された基板50をさらに備え、基板50の少なくとも一方の面側には、多孔質層40が設けられていてもよい。 The aluminum member 100 may further include a substrate 50 made of metallic aluminum, and the porous layer 40 may be provided on at least one surface of the substrate 50.
 本実施形態に係るアルミニウム部材100は、高い白色度及び水の吸い上げ性能を有するが、これらの特性のいずれもが要求されている用途に限らず、いずれか一方の特性が要求されている用途にも用いることができる。 The aluminum member 100 according to the present embodiment has high whiteness and water wicking performance, but is not limited to an application in which any of these characteristics is required, and is used in an application in which any one of the characteristics is required. Can also be used.
 本実施形態に係るアルミニウム部材100の有用な用途の例としては、例えば、気体又は液体の分離膜;吸湿材料;吸水材料;花粉、粒子状物質、細菌、臭い成分、重金属などの異物を吸着する吸着材料;拭き取りシート;濃硫酸などの薬品用、検尿用及びpH試験用などの試験シート;薄層クロマトグラフィーなどのクロマトグラフィー用の展開部材;除菌及び殺菌用材料;反射材:標準白色板;電池及び電気二重層キャパシタなどのセパレータ;触媒担体;合成反応等の反応場;断熱素材;などが挙げられる。上記分離膜の例としては、逆浸透膜、イオン交換膜、ガス分離膜などが挙げられる。上記吸着材料の例としては、マスク、濾過膜、フィルターなどが挙げられる。 Examples of useful applications of the aluminum member 100 according to the present embodiment include, for example, a gas or liquid separation membrane; a moisture absorbing material; a water absorbing material; and adsorb foreign substances such as pollen, particulate matter, bacteria, odor components, and heavy metals. Adsorbent material; Wiping sheet; Test sheet for chemicals such as concentrated sulfuric acid, urine test and pH test; Developing member for chromatography such as thin-layer chromatography; Material for disinfection and sterilization; Reflector: Standard white plate Separators such as batteries and electric double layer capacitors; catalyst carriers; reaction sites for synthetic reactions and the like; heat insulating materials; Examples of the separation membrane include a reverse osmosis membrane, an ion exchange membrane, and a gas separation membrane. Examples of the adsorption material include a mask, a filtration membrane, a filter, and the like.
 アルミニウム部材100は、白色度が高いことから、試験シート、クロマトグラフィー用の展開部材、反射材及び標準白色板として用いることが好ましい。また、アルミニウム部材100は、多孔質であることから、分離膜、吸湿材料、吸水材料、吸着材料、クロマトグラフィー用の展開部材、セパレータ、触媒担体、反応場、及び断熱素材として用いることが好ましい。 Since the aluminum member 100 has high whiteness, it is preferable to use it as a test sheet, a developing member for chromatography, a reflector, and a standard white plate. Further, since the aluminum member 100 is porous, it is preferable to use the aluminum member 100 as a separation membrane, a moisture absorbing material, a water absorbing material, an adsorbing material, a developing member for chromatography, a separator, a catalyst carrier, a reaction field, and a heat insulating material.
 これらのなかでも、アルミニウム部材100は、白色度及び水の吸い上げ性能が高いことから、クロマトグラフィーに用いられることがより好ましい。クロマトグラフィーの中でも、ラテラルフロー型のクロマトグラフィーに用いられることがさらに好ましい。また、クロマトグラフィーはイムノクロマトグラフィーであることが好ましい。イムノクロマトグラフィーの中でも、ラテラルフローイムノアッセイに用いられることがより好ましい。そのため、アルミニウム部材100はクロマトグラフィー用の展開部材であってもよい。クロマトグラフィー用の展開部材は、クロマトグラフィー用のテストストリップであってもよい。また、アルミニウム部材100は、イムノクロマトグラフィーを利用した検査キットなどの体外診断用医薬品に用いられることも好ましい。なお、検査キットは、診断キットとも称されることもある。 な Among these, the aluminum member 100 is more preferably used for chromatography because of its high whiteness and high water absorption performance. Among chromatography, it is more preferable to use for lateral flow type chromatography. Further, the chromatography is preferably immunochromatography. Among immunochromatography, it is more preferable to be used for a lateral flow immunoassay. Therefore, the aluminum member 100 may be a developing member for chromatography. The developing member for chromatography may be a test strip for chromatography. The aluminum member 100 is also preferably used for an in vitro diagnostic drug such as a test kit using immunochromatography. Note that the test kit may be referred to as a diagnostic kit.
[検査キット]
 次に、アルミニウム部材100を用いた検査キット200の一例について説明する。図6に示すように、検査キット200は、アルミニウム部材100を備える。具体的には、検査キット200は、アルミニウム部材100と、検体供給部110と、判定部120と、吸収部130と、を備える。
[Test kit]
Next, an example of an inspection kit 200 using the aluminum member 100 will be described. As shown in FIG. 6, the test kit 200 includes an aluminum member 100. Specifically, the test kit 200 includes an aluminum member 100, a sample supply unit 110, a determination unit 120, and an absorption unit 130.
 検体供給部110には、例えば、インフルエンザウイルスなどの検出対象と特異的に結合する標識抗体が含まれていてもよい。生体などから採取した検体は、検体供給部110に供給され、標識抗体と混合され、混合液となる。混合液は、アルミニウム部材100の毛細管現象により、判定部120まで展開され、余剰の検体が吸収部130に吸収される。 The sample supply unit 110 may include, for example, a labeled antibody that specifically binds to a detection target such as an influenza virus. A sample collected from a living body or the like is supplied to the sample supply unit 110 and mixed with the labeled antibody to form a mixed solution. The mixed solution is developed to the determination unit 120 by the capillary action of the aluminum member 100, and the excess sample is absorbed by the absorption unit 130.
 判定部120は、例えば、テストラインとコントロールラインを有する。テストラインには、例えば、検出対象に特異的に結合する抗体が固定されている。検体中に検出対象が含まれている場合には、標識抗体が検出対象を介してテストラインの抗体に固定される。コントロールラインには、例えば、標識抗体と特異的に結合する抗体が固定されている。検体と標識抗体を含む混合液がコントロールラインまで展開されると、標識抗体は、コントロールラインに固定された抗体と結合する。 The determination unit 120 has, for example, a test line and a control line. In the test line, for example, an antibody that specifically binds to the detection target is fixed. When the detection target is contained in the sample, the labeled antibody is fixed to the antibody on the test line via the detection target. For example, an antibody that specifically binds to the labeled antibody is immobilized on the control line. When the mixture containing the sample and the labeled antibody is developed to the control line, the labeled antibody binds to the antibody immobilized on the control line.
 標識抗体は、一般的に、着色粒子又は金コロイド粒子などのような標識と、この標識と結合して複合体を形成するとともに、検出対象と特異的に結合する抗体と、を含んでいる。そのため、標識抗体の濃度又は密度が高い箇所がある場合、標識が密集することで、この箇所を目視にて確認することができる。したがって、検査キット200によって、テストラインとコントロールラインの両方が目視にて確認できた場合に陽性であり、コントロールラインのみが目視にて確認できた場合には陰性であることを検査することができる。 Labeled antibodies generally include a label such as colored particles or colloidal gold particles, and an antibody that binds to the label to form a complex and specifically binds to a detection target. Therefore, when there is a place where the concentration or the density of the labeled antibody is high, the place can be visually confirmed by densely packed labels. Therefore, with the test kit 200, it is possible to test that both the test line and the control line are positive when they can be visually confirmed, and that the test kit 200 is negative when only the control line can be visually confirmed. .
 検査キット200は、例えば、感染症検査;遺伝子解析;妊娠検査;畜産用検査;食品、動物、植物、金属、ハウスダストなどのアレルゲン検査;などに用いることができる。 The test kit 200 can be used, for example, for infectious disease tests; genetic analysis; pregnancy tests; livestock tests; allergen tests for foods, animals, plants, metals, house dust, and the like.
 検査キット200による検査対象としては、例えば、アミノ酸、ペプチド、蛋白質、遺伝子、糖、脂質、細胞、またはこれらの複合体が挙げられる。より具体的には、PCT(プロカルシトニン)などのペプチド;尿中アルブミンなどの蛋白質;HCG(ヒト絨毛性ゴナドトロピン)、LH(黄体形成ホルモン)などのホルモン;HBs抗原、ロタウイルス抗原、アデノウイルス抗原、RSV(Respiratory Syncytialウイルス)抗原、インフルエンザウイルス抗原、ノロウイルス抗原、ムンプウイルス抗原、サイトメガロウイルス抗原、単純ヘルペスウイルス抗原、水痘・帯状疱疹ウイルス抗原、SARS(重症急性呼吸器症候群)抗原、HBs抗体、HCV(C型肝炎ウイルス)抗体、HIV抗体、EBV抗体、RSV抗体、風疹ウイルス抗体、麻疹ウイルス抗体、エンテロウイルス抗体、デングウイルス抗体、SARS抗体などのウイルス感染症の抗原又は抗体;肺炎球菌抗原、マイコプラズマ抗原、A群溶血性連鎖球菌抗原、レジオネラ抗原、結核菌抗原、淋菌抗原、破傷風抗原、マイコプラズマ抗体、ヘリコバクター・ピロリ抗体、結核菌抗体などの細菌感染症の抗原又は抗体;クラジミア抗原などのクラミジア感染症の抗原又は抗体;梅毒トレポネーマ抗体などのスピロヘータ感染症の抗原又は抗体;マラリア抗体、トキソプラズマ抗体などの原虫性疾患の抗原又は抗体;などが挙げられる。 検 査 The test target by the test kit 200 includes, for example, amino acids, peptides, proteins, genes, sugars, lipids, cells, or complexes thereof. More specifically, peptides such as PCT (procalcitonin); proteins such as urinary albumin; hormones such as HCG (human chorionic gonadotropin) and LH (luteinizing hormone); HBs antigen, rotavirus antigen, adenovirus antigen , RSV (Respiratory @ Syncytial virus) antigen, influenza virus antigen, norovirus antigen, mump virus antigen, cytomegalovirus antigen, herpes simplex virus antigen, varicella-zoster virus antigen, SARS (severe acute respiratory syndrome) antigen, HBs antibody, HCV (Hepatitis C virus) Antigens or antibodies for viral infections such as antibodies, HIV antibodies, EBV antibodies, RSV antibodies, rubella virus antibodies, measles virus antibodies, enterovirus antibodies, dengue virus antibodies, SARS antibodies; pneumococcal antigens, mycoplasma Antigens or antibodies for bacterial infectious diseases such as Ma antigen, group A hemolytic streptococcal antigen, Legionella antigen, Mycobacterium tuberculosis antigen, Neisseria gonorrhoeae antigen, Tetanus antigen, Mycoplasma antibody, Helicobacter pylori antibody, Mycobacterium tuberculosis antibody; Chlamydia such as Chlamydia antigen Antigens or antibodies for infectious diseases; antigens or antibodies for spirochete infections such as T. pallidum antibodies; antigens or antibodies for protozoal diseases such as malaria antibodies and toxoplasma antibodies.
[アルミニウム部材の製造方法]
 次に、本実施形態に係るアルミニウム部材100の製造方法について説明する。本実施形態のアルミニウム部材100の製造方法は、特に限定されないが、例えば、エッチング工程と、皮膜形成工程と、減極処理工程と、を有している。また、アルミニウム部材100の製造方法は、必要に応じて、水和処理工程を有していてもよい。以下、各工程について詳細に説明する。
[Production method of aluminum member]
Next, a method for manufacturing the aluminum member 100 according to the present embodiment will be described. The method for manufacturing the aluminum member 100 of the present embodiment is not particularly limited, but includes, for example, an etching step, a film forming step, and a depolarizing step. In addition, the method for manufacturing the aluminum member 100 may include a hydration step as needed. Hereinafter, each step will be described in detail.
 (エッチング工程)
 エッチング工程では、皮膜形成工程の前に、アルミニウム板をエッチングし、アルミニウム板に多孔質構造を形成する。エッチング工程により、複数のピットを有する多孔質構造を有するアルミニウム板を形成することができる。エッチング工程では、アルミニウム板をエッチングすることにより、母材11が形成される。アルミニウム板は、上述した基板50と同様の材料を使用することができる。すなわち、アルミニウム板は、金属アルミニウムにより構成されていてもよい。
(Etching process)
In the etching step, before the film forming step, the aluminum plate is etched to form a porous structure on the aluminum plate. By the etching step, an aluminum plate having a porous structure having a plurality of pits can be formed. In the etching step, the base material 11 is formed by etching the aluminum plate. The same material as that of the substrate 50 described above can be used for the aluminum plate. That is, the aluminum plate may be made of metallic aluminum.
 エッチング工程では、アルミニウム板にピットを形成して、アルミニウム板を多孔質化する。これにより、アルミニウム板を、多孔質構造を有する多孔体とすることで、その表面積を拡大することができる。エッチング工程は、例えば、電解エッチング、化学エッチングなどにより行うことができる。電解エッチングとしては、直流電解エッチング、交流電解エッチングが挙げられる。また、化学エッチングとしては、酸性溶液を用いる化学エッチング、アルカリ性溶液を用いる化学エッチングが挙げられる。これらのエッチング手法は、単独で行ってもよく、複数の手法を組み合わせてもよい。 In the etching step, pits are formed in the aluminum plate to make the aluminum plate porous. Thus, by making the aluminum plate a porous body having a porous structure, the surface area can be increased. The etching step can be performed by, for example, electrolytic etching, chemical etching, or the like. Examples of the electrolytic etching include DC electrolytic etching and AC electrolytic etching. Examples of chemical etching include chemical etching using an acidic solution and chemical etching using an alkaline solution. These etching techniques may be performed alone or a plurality of techniques may be combined.
 ここでは、電解エッチングを例に挙げて説明する。エッチング工程では、直流電解エッチングを行うことで、アルミニウム板の表面にピットが形成され、アルミニウム板の表面に対して垂直方向である深さ方向にピットがトンネル状に成長するとともに、ピットの径が拡大する。また、交流電解エッチングを行うことで、ピットが三次元方向に形成されて海綿状に成長するとともに、ピットの径が拡大する。アルミニウム板の中心部にまでピットが成長した場合には、多孔質層40からなるアルミニウム部材100が形成される。また、アルミニウム板の中心部までピットが成長せず、多孔質層40が形成されない中心部を有する場合には、多孔質層40と基板50とからなるアルミニウム部材100が形成される。 Here, the explanation will be made by taking electrolytic etching as an example. In the etching step, by performing DC electrolytic etching, pits are formed on the surface of the aluminum plate, and the pits grow in a tunnel shape in a depth direction perpendicular to the surface of the aluminum plate, and the pit diameter is reduced. Expanding. Further, by performing the AC electrolytic etching, the pits are formed in a three-dimensional direction and grow in a spongy manner, and the diameter of the pits is increased. When the pits have grown to the center of the aluminum plate, the aluminum member 100 including the porous layer 40 is formed. If pits do not grow to the center of the aluminum plate and there is a center where the porous layer 40 is not formed, an aluminum member 100 including the porous layer 40 and the substrate 50 is formed.
 本実施形態において、基板50のエッチングは、交流方式の電気化学的エッチングであることが好ましい。エッチング条件は特に限定されないが、例えば、エッチング時間は1分~60分であり、エッチング温度は20℃~80℃である。電気化学的エッチングの場合には、例えば、電流密度が50mA/cm~500mA/cmである。 In the present embodiment, it is preferable that the etching of the substrate 50 is an AC type electrochemical etching. Although the etching conditions are not particularly limited, for example, the etching time is 1 minute to 60 minutes, and the etching temperature is 20 ° C. to 80 ° C. In the case of electrochemical etching, the current density is, for example, 50 mA / cm 2 to 500 mA / cm 2 .
 エッチングに用いられるエッチング溶液は、塩酸を含む水溶液であることが好ましい。塩酸水溶液の濃度は、6質量%~25質量%であることが好ましい。塩酸水溶液は、アルミニウムの過剰な溶解を抑制するため、塩化アルミニウムなどに由来するアルミニウムイオンが含まれていてもよい。塩化アルミニウムの濃度は、0.1質量%~10質量%であることが好ましい。 エ ッ チ ン グ The etching solution used for etching is preferably an aqueous solution containing hydrochloric acid. The concentration of the aqueous hydrochloric acid solution is preferably from 6% by mass to 25% by mass. The aqueous hydrochloric acid solution may contain aluminum ions derived from aluminum chloride or the like in order to suppress excessive dissolution of aluminum. The concentration of aluminum chloride is preferably 0.1% by mass to 10% by mass.
 エッチング工程は、一段階の工程で実施されてもよく、異なる複数分かれた多段階の工程で実施されてもよい。例えば、エッチング工程は、エッチング溶液に含まれる化学種、エッチング溶液の濃度、エッチング時間、エッチング温度、及び電流密度などが異なる複数のエッチング工程を有していてもよい。 (4) The etching step may be performed in a single-step process, or may be performed in different multi-step processes. For example, the etching step may include a plurality of etching steps in which the chemical species contained in the etching solution, the concentration of the etching solution, the etching time, the etching temperature, the current density, and the like are different.
 (皮膜形成工程)
 皮膜形成工程では、多孔質構造を有するアルミニウム板を陽極酸化し、アルミニウム板の表面に酸化アルミニウムを含む皮膜12を形成する。皮膜形成工程では、エッチング工程による多孔質化を受けた母材11の表面に、陽極酸化によって皮膜12が形成される。このとき、アルミニウム板において、外部に露出した母材11の表面と、内部のピットを形成する母材11の表面とに皮膜12が形成される。皮膜形成工程では、例えば、基板50が設置された陽極と、ステンレス鋼(SUS)が設置された陰極とを電解液に浸漬し、電解処理される。
(Film formation step)
In the film forming step, an aluminum plate having a porous structure is anodized to form a film 12 containing aluminum oxide on the surface of the aluminum plate. In the film forming step, a film 12 is formed by anodic oxidation on the surface of the base material 11 which has been made porous by the etching step. At this time, the coating 12 is formed on the surface of the base material 11 exposed to the outside and the surface of the base material 11 forming internal pits on the aluminum plate. In the film forming step, for example, an anode on which the substrate 50 is installed and a cathode on which stainless steel (SUS) is installed are immersed in an electrolytic solution to be subjected to electrolytic treatment.
 皮膜形成に用いられる電解液は特に限定されない。例えば、ホウ酸、ホウ酸アンモニウム、リン酸、ピロリン酸、リン酸アンモニウム、アジピン酸アンモニウム、硫酸、又は蓚酸などの水溶液を用いることができる。皮膜形成の条件は特に限定されないが、例えば、電圧は5V~500Vである。皮膜形成は、一段階の工程で実施されてもよく、異なる複数の工程に分けて実施されてもよい。 電解 The electrolytic solution used for forming the film is not particularly limited. For example, an aqueous solution of boric acid, ammonium borate, phosphoric acid, pyrophosphoric acid, ammonium phosphate, ammonium adipate, sulfuric acid, oxalic acid, or the like can be used. The conditions for forming the film are not particularly limited. For example, the voltage is 5 V to 500 V. The film formation may be performed in a single-step process, or may be performed in different steps.
 (減極処理工程)
 減極(デポラリゼーション)処理工程では、皮膜12が形成されたアルミニウム板を減極処理し、皮膜12の表面の一部を除去する。減極処理工程では、皮膜形成工程で形成された皮膜12の一部が除去され、皮膜12中に残ったボイド及びクラックが露出する。また、減極処理工程では、皮膜12の除去(浸食)により皮膜12の表面を粗面化し、皮膜12の表面に凹部13を形成することができる。減極処理では、例えば、皮膜形成工程で皮膜12が形成された部材であるアルミニウム板を、減極処理液に浸漬させることにより実施される。
(Depolarization process)
In the depolarization (depolarization) process, the aluminum plate on which the film 12 is formed is subjected to a depolarization process to remove a part of the surface of the film 12. In the depolarizing step, a part of the film 12 formed in the film forming step is removed, and voids and cracks remaining in the film 12 are exposed. In the depolarization treatment step, the surface of the film 12 is roughened by removing (eroding) the film 12, and the concave portion 13 can be formed on the surface of the film 12. The depolarization treatment is performed, for example, by immersing the aluminum plate, on which the film 12 is formed in the film formation step, in a depolarization treatment liquid.
 減極処理液は、酸化アルミニウム皮膜の表面を除去(浸食)することができれば特に限定されないが、リン酸類、リン酸類の金属塩、酒石酸、塩酸、及び塩酸の金属塩からなる群より選択される少なくとも一種が溶解された溶液、又は、水酸化ナトリウム溶液及びアンモニア水溶液の少なくともいずれか一方であることが好ましい。リン酸類には、例えば、オルトリン酸、亜リン酸、次亜リン酸、及びこれらの混合物などが含まれる。金属塩を形成する金属には、例えば、アルミニウム、ナトリウム、マグネシウム、カルシウム及び亜鉛などが含まれる。 The depolarization treatment liquid is not particularly limited as long as it can remove (erode) the surface of the aluminum oxide film, but is selected from the group consisting of phosphoric acids, metal salts of phosphoric acids, tartaric acid, hydrochloric acid, and metal salts of hydrochloric acid. It is preferably a solution in which at least one is dissolved, or at least one of a sodium hydroxide solution and an aqueous ammonia solution. Phosphoric acids include, for example, orthophosphoric acid, phosphorous acid, hypophosphorous acid, and mixtures thereof. The metal forming the metal salt includes, for example, aluminum, sodium, magnesium, calcium, zinc and the like.
 減極処理液として、リン酸類及びリン酸類の金属塩を用いる場合、リン酸類及びリン酸類の金属塩の含有量は、例えば、0.1g/L~50g/Lであることが好ましい。リン酸処理の処理温度は、例えば50℃~80℃であることが好ましい。また、リン酸処理の処理時間は、1分~60分であることが好ましい。 (4) When phosphoric acid or a metal salt of a phosphoric acid is used as the depolarization treatment liquid, the content of the phosphoric acid or the metal salt of the phosphoric acid is preferably, for example, 0.1 g / L to 50 g / L. The treatment temperature of the phosphoric acid treatment is preferably, for example, 50 ° C. to 80 ° C. Further, the treatment time of the phosphoric acid treatment is preferably 1 minute to 60 minutes.
 本実施形態に係るアルミニウム部材100の製造方法では、皮膜形成工程と減極処理工程とによって、皮膜の表面に複数の凹部13及び複数の凸部14の少なくともいずれか一方を形成する。すなわち、本実施形態に係るアルミニウム部材100の製造方法では、上記エッチング工程と、上記皮膜形成工程と、上記減極処理工程とをこの順で、少なくとも各工程を1回行うことができる。各工程の実施回数は特に限定されないが、上記エッチング工程の後に、上記皮膜形成工程と上記減極処理工程とを交互に繰り返して実施することが好ましい。これにより、皮膜12の浸食と浸食された皮膜12の修復が繰り返されることで、良好な多孔質層40が形成される。複数の凹部13及び複数の凸部14の少なくともいずれか一方は、皮膜形成工程と減極処理工程とを交互に2回以上繰り返すことによって形成されることが好ましい。上記皮膜形成工程と上記減極処理工程の繰り返し回数は特に限定されないが、例えば、20回以下であってもよく、15回以下であってもよい。上記皮膜形成工程と上記減極処理工程の繰り返し回数は、2回~10回であることが好ましく、3回~8回であることがより好ましい。上記皮膜形成工程と上記減極処理工程の繰り返し回数は、5回以上であることがさらに好ましい。皮膜形成工程と減極処理工程を繰り返すことによって、皮膜12に複数の凹部13を形成することができるため、アルミニウム部材100の白色度を向上させることができる。 In the method for manufacturing the aluminum member 100 according to the present embodiment, at least one of the plurality of concave portions 13 and the plurality of convex portions 14 is formed on the surface of the film by the film forming step and the depolarizing step. That is, in the method for manufacturing the aluminum member 100 according to the present embodiment, the etching step, the film forming step, and the depolarization step can be performed at least once in this order. Although the number of times each step is performed is not particularly limited, it is preferable that the film forming step and the depolarizing step are alternately repeated after the etching step. Thereby, the erosion of the coating 12 and the repair of the eroded coating 12 are repeated, so that a good porous layer 40 is formed. At least one of the plurality of concave portions 13 and the plurality of convex portions 14 is preferably formed by alternately repeating the film forming step and the depolarizing step two or more times. The number of repetitions of the film forming step and the depolarizing step is not particularly limited, but may be, for example, 20 times or less, or 15 times or less. The number of repetitions of the film forming step and the depolarizing step is preferably 2 to 10 times, more preferably 3 to 8 times. More preferably, the number of repetitions of the film forming step and the depolarizing step is 5 or more. By repeating the film forming step and the depolarizing step, a plurality of recesses 13 can be formed in the film 12, so that the whiteness of the aluminum member 100 can be improved.
 (水和処理工程)
 本実施形態に係るアルミニウム部材100の製造方法は、水和処理工程を有していてもよいが、水和処理工程を行った場合には、その後に、皮膜形成工程と減極処理工程とを繰り返し行うことが好ましい。アルミニウム部材100の製造方法は、皮膜形成工程の前に、アルミニウム板を水和処理し、多孔質構造を有するアルミニウム板に水和皮膜を形成する水和処理工程をさらに有していてもよい。水和処理工程とは、一般的には、エッチング工程の後に金属アルミニウムの表面に水酸化アルミニウムによる水和皮膜を形成する工程であり、表面が多孔質化されたアルミニウムを沸騰水などの温水で熱処理する工程である。表面の微細な凹凸が水酸化アルミニウムによって覆われると、光の拡散反射が阻害され、アルミニウム部材の白色度が低下する場合がある。さらに、アルミニウム部材の多孔質部分が水酸化アルミニウムで目詰まりしやすくなることで光の拡散反射が阻害されてアルミニウム部材の白色度が低下する。
(Hydration process)
Although the method for manufacturing the aluminum member 100 according to the present embodiment may include a hydration step, when the hydration step is performed, the film formation step and the depolarization step are thereafter performed. It is preferable to repeat. The method of manufacturing the aluminum member 100 may further include a hydration step of hydrating the aluminum plate to form a hydrated film on the aluminum plate having a porous structure before the film formation step. The hydration treatment step is generally a step of forming a hydration film of aluminum hydroxide on the surface of metal aluminum after the etching step.The aluminum whose surface has been made porous is treated with hot water such as boiling water. This is the step of heat treatment. When fine irregularities on the surface are covered with aluminum hydroxide, diffuse reflection of light is hindered, and the whiteness of the aluminum member may be reduced. Further, since the porous portion of the aluminum member is easily clogged with aluminum hydroxide, the diffuse reflection of light is hindered, and the whiteness of the aluminum member is reduced.
 水和処理工程が省略されることにより、アルミニウム部材100の白色度をより向上させることができる。また、水和処理工程によって水和皮膜を形成した場合には、さらに陽極酸化と減極処理とを施すことで、水和皮膜を溶かすことができる。これにより、水和皮膜を減少又は消失させて、皮膜12の表面に凸部14を形成することができる。そして、この凸部14によって、白色度を向上させることができる。このとき、残存した水和皮膜、又は陽極酸化皮膜により凸部14を形成することができると考えられる。 白色 By omitting the hydration step, the whiteness of the aluminum member 100 can be further improved. When a hydrated film is formed by the hydration process, the hydrated film can be dissolved by further performing anodization and depolarization. As a result, the hydrated film can be reduced or eliminated, and the protrusions 14 can be formed on the surface of the film 12. Then, the whiteness can be improved by the convex portions 14. At this time, it is considered that the protrusion 14 can be formed by the remaining hydrated film or anodic oxide film.
 具体的には、陽極酸化と減極処理とを施すことで、内層側の水和皮膜から順に陽極酸化皮膜に取り込まれ、母材11の表面に陽極酸化皮膜と水和皮膜の残部とからなる皮膜12が生じる。言い換えれば、母材11と陽極酸化皮膜と水和皮膜の残部とがこの順で積層される層構造が生じる。この層構造が、さらに陽極酸化処理及び減極処理を受けることで、皮膜12に凸部14が形成される。 Specifically, by performing anodic oxidation and depolarization treatment, the hydrated film on the inner layer side is taken into the anodic oxide film in order, and the surface of the base material 11 is composed of the anodic oxide film and the remainder of the hydrated film. A coating 12 results. In other words, a layer structure is formed in which the base material 11, the anodic oxide film, and the rest of the hydrated film are laminated in this order. The layer structure is further subjected to an anodizing treatment and a depolarizing treatment, so that the protrusions 14 are formed on the film 12.
 なお、陽極酸化処理及び減極処理の条件に応じて、皮膜12に凸部14とともに凹部13を形成することができる。また、水和皮膜が残存しない程度に陽極酸化処理及び減極処理を行うことで、皮膜12の表面に凹部13を形成することができる。凸部14は、水和皮膜(の残部)又は陽極酸化皮膜によって形成される。 凹 部 Depending on the conditions of the anodic oxidation treatment and the depolarization treatment, the concave portion 13 can be formed on the film 12 together with the convex portion 14. By performing the anodizing treatment and the depolarizing treatment to the extent that the hydrated film does not remain, the concave portion 13 can be formed on the surface of the film 12. The convex portion 14 is formed by (the remainder of) a hydrated film or an anodized film.
 上述の通り、エッチング工程による母材11へのピット生成による多孔質化と、皮膜形成工程及び減極処理工程による陽極酸化皮膜の形成及び除去とを経て、多孔質層40に空孔15が生じることによって、二次粗面構造20が形成される。また、皮膜形成工程及び減極処理工程によって、皮膜12の表面に凹部13が生じ、一次粗面構造10が形成される。また、水和処理工程後の皮膜形成工程及び減極処理工程によって、皮膜12の表面に凸部14が生じ、一次粗面構造10が形成される。さらに、エッチング工程後に、皮膜形成工程及び減極処理工程を繰り返すことで、一次粗面構造10と二次粗面構造20の集合体からなる凹凸構造が発達し、三次粗面構造30が形成される。 As described above, the pores 15 are formed in the porous layer 40 through the formation of the pits in the base material 11 by the etching process and the formation and removal of the anodic oxide film by the film forming process and the depolarizing process. Thereby, the secondary rough surface structure 20 is formed. Further, by the film forming step and the depolarizing step, a concave portion 13 is formed on the surface of the film 12, and the primary rough surface structure 10 is formed. Further, by the film forming step and the depolarizing step after the hydration processing step, the convex portion 14 is formed on the surface of the film 12, and the primary rough surface structure 10 is formed. Furthermore, after the etching step, by repeating the film forming step and the depolarizing step, an uneven structure composed of an aggregate of the primary rough surface structure 10 and the secondary rough surface structure 20 develops, and the tertiary rough surface structure 30 is formed. You.
 以上の通り、アルミニウム部材100の製造方法は、多孔質構造を有するアルミニウム板を陽極酸化し、アルミニウム板に酸化アルミニウムを含む皮膜12を形成する皮膜形成工程を有する。アルミニウム部材100の製造方法は、皮膜12が形成されたアルミニウム板を減極処理し、皮膜12の表面の一部を除去する減極処理工程を有する。皮膜形成工程と減極処理工程とを交互に繰り返す。アルミニウム板は金属アルミニウムにより構成されている。さらに、アルミニウム部材100の製造方法は、皮膜形成工程と減極処理工程とによって、皮膜12の表面に複数の凹部13及び複数の凸部14の少なくともいずれか一方を形成する。また、皮膜12は5nm~1000nmの厚さを有する。複数の凹部13に含まれる各凹部13の深さは10nm~100nmであり、複数の凸部14に含まれる各凸部14の高さは10nm~100nmである。アルミニウム部材100は複数の空孔15を有し、複数の空孔15の平均細孔径が0.1μm~10μmである。 As described above, the method for manufacturing the aluminum member 100 includes a film forming step of anodizing an aluminum plate having a porous structure and forming a film 12 containing aluminum oxide on the aluminum plate. The method for manufacturing the aluminum member 100 includes a depolarization process of depolarizing the aluminum plate on which the film 12 is formed and removing a part of the surface of the film 12. The film forming step and the depolarizing step are alternately repeated. The aluminum plate is made of metal aluminum. Further, in the method of manufacturing the aluminum member 100, at least one of the plurality of concave portions 13 and the plurality of convex portions 14 is formed on the surface of the film 12 by the film forming step and the depolarizing step. Further, the film 12 has a thickness of 5 nm to 1000 nm. The depth of each recess 13 included in the plurality of recesses 13 is 10 nm to 100 nm, and the height of each projection 14 included in the plurality of protrusions 14 is 10 nm to 100 nm. The aluminum member 100 has a plurality of pores 15, and the average pore diameter of the plurality of pores 15 is 0.1 μm to 10 μm.
 本実施形態では、電気化学的エッチングなどにより、多孔質層40を備えるアルミニウム部材100の製造方法について説明した。しかしながら、アルミニウム部材100の製造方法は上記実施形態に限られず、例えば、アルミニウム粉体を焼結させて多孔質層40を形成してもよい。 In the present embodiment, a method for manufacturing the aluminum member 100 including the porous layer 40 by electrochemical etching or the like has been described. However, the method for manufacturing the aluminum member 100 is not limited to the above embodiment, and for example, the porous layer 40 may be formed by sintering aluminum powder.
 以下、本実施形態を実施例及び比較例によりさらに詳細に説明するが、本実施形態はこれらに限定されるものではない。 Hereinafter, the present embodiment will be described in more detail with reference to examples and comparative examples, but the present embodiment is not limited thereto.
 [実施例1]
 150μmの厚さを有するアルミニウム箔を、3mol/Lの塩酸と0.2mol/Lの硫酸を含有する水溶液中で交流電解エッチングして、アルミニウム箔の表面を多孔質化した後、水で十分に洗浄した。アルミニウム箔は、純度が99.98%の高純度アルミニウムを使用した。
[Example 1]
An aluminum foil having a thickness of 150 μm is subjected to alternating current electrolytic etching in an aqueous solution containing 3 mol / L hydrochloric acid and 0.2 mol / L sulfuric acid to make the surface of the aluminum foil porous, and then sufficiently washed with water. Washed. As the aluminum foil, high-purity aluminum having a purity of 99.98% was used.
 図7は、エッチング後のアルミニウム板の表面を走査型電子顕微鏡で観察した様子を示す写真である。図7に示すように、エッチングされたアルミニウム板は、0.1μm~1μm程度の径を有し、内部に進行するピットを複数有する多孔質構造となっている。また、アルミニウム板の表面には、0.1μm~1μm程度の径を有するピットが複数形成されて外部に露出しており、アルミニウム板が粗面化されている。 FIG. 7 is a photograph showing a state of the surface of the aluminum plate after the etching observed with a scanning electron microscope. As shown in FIG. 7, the etched aluminum plate has a diameter of about 0.1 μm to 1 μm, and has a porous structure having a plurality of pits traveling inside. A plurality of pits having a diameter of about 0.1 μm to 1 μm are formed on the surface of the aluminum plate and are exposed to the outside, and the aluminum plate is roughened.
 次に、電解エッチングしたアルミニウム箔を陽極酸化し、純アルミニウムからなる母材の表面に皮膜を形成した。具体的には、陽極に設置されたアルミニウム箔と、陰極に設置されたステンレス鋼(SUS)とを、濃度が80g/L、電解液の温度が70℃であるホウ酸電解液に浸漬させた。そして、電圧200Vで10分間陽極酸化処理した。 Next, the electrolytically etched aluminum foil was anodized to form a film on the surface of the base material made of pure aluminum. Specifically, an aluminum foil provided on the anode and stainless steel (SUS) provided on the cathode were immersed in a boric acid electrolyte having a concentration of 80 g / L and an electrolyte temperature of 70 ° C. . Then, anodizing treatment was performed at a voltage of 200 V for 10 minutes.
 次に、皮膜を形成したアルミニウム箔を水で十分に洗浄した後、濃度が50g/L、温度が60℃であるリン酸水溶液に、20分間浸漬させ、減極処理した。 Next, after the aluminum foil on which the film was formed was sufficiently washed with water, the aluminum foil was immersed in a phosphoric acid aqueous solution having a concentration of 50 g / L and a temperature of 60 ° C. for 20 minutes to perform a depolarization treatment.
 そして、上記陽極酸化と上記減極処理を、この順番で、上記と同様の条件にて5回繰り返し、アルミニウム部材を作製した。 {Circle around (5)} Then, the anodizing and the depolarizing treatment were repeated 5 times in this order under the same conditions as above, thereby producing an aluminum member.
 [実施例2]
 陽極酸化処理に用いたホウ酸電解液をリン酸二水素アンモニウム1g/L水溶液に変更し、陽極酸化処理電圧を50Vに変更した以外は、実施例1と同様にしてアルミニウム部材を作製した。
[Example 2]
An aluminum member was produced in the same manner as in Example 1, except that the boric acid electrolytic solution used for the anodizing treatment was changed to an aqueous solution of ammonium dihydrogen phosphate 1 g / L and the anodizing treatment voltage was changed to 50 V.
 [実施例3]
 陽極酸化処理に用いたホウ酸電解液をアジピン酸アンモニウム100g/L水溶液に変更し、陽極酸化処理電圧を150Vに変更した以外は、実施例1と同様にしてアルミニウム部材を作製した。
[Example 3]
An aluminum member was produced in the same manner as in Example 1, except that the boric acid electrolytic solution used for the anodizing treatment was changed to an aqueous solution of ammonium adipate 100 g / L, and the anodizing treatment voltage was changed to 150 V.
 [実施例4]
 陽極酸化処理に用いたホウ酸電解液を蓚酸50g/L水溶液に変更し、陽極酸化処理温度を30℃、陽極酸化処理電圧を20Vに変更した以外は、実施例1と同様にしてアルミニウム部材を作製した。
[Example 4]
An aluminum member was prepared in the same manner as in Example 1 except that the boric acid electrolyte used for the anodizing treatment was changed to an aqueous solution of oxalic acid of 50 g / L, the anodizing treatment temperature was changed to 30 ° C., and the anodizing treatment voltage was changed to 20 V. Produced.
 [実施例5]
 陽極酸化処理を施す前に、前処理として濃度が50g/L、温度が60℃であるリン酸水溶液に10分間浸漬させて減極処理を行い、陽極酸化処理の電圧を150Vに変更した以外は、実施例1と同様にしてアルミニウム部材を作製した。
[Example 5]
Before performing the anodizing treatment, as a pretreatment, the electrode was immersed in a phosphoric acid aqueous solution having a concentration of 50 g / L and a temperature of 60 ° C. for 10 minutes to perform depolarization treatment, and the voltage of the anodizing treatment was changed to 150 V. An aluminum member was produced in the same manner as in Example 1.
 [実施例6]
 減極処理を繰り返した後の試料に、後処理として、親水性コーティング剤を塗布した以外は、実施例1と同様にしてアルミニウム部材を作製した。
[Example 6]
An aluminum member was produced in the same manner as in Example 1 except that a hydrophilic coating agent was applied as a post-treatment to the sample after repeating the depolarization treatment.
 [実施例7]
 減極処理を繰り返した後の試料の一方の面を、後処理として、20μm厚のナイロン樹脂で被覆した以外は、実施例1と同様にしてアルミニウム部材を作製した。
[Example 7]
An aluminum member was produced in the same manner as in Example 1, except that one surface of the sample after repeating the depolarization treatment was coated with a 20-μm-thick nylon resin as a post-treatment.
 [実施例8]
 リン酸水溶液による減極処理の内の1回を熱処理に変更した以外は、実施例1と同様にしてアルミニウム部材を作製した。なお、熱処理は空気中、500℃で5分間実施した。
Example 8
An aluminum member was produced in the same manner as in Example 1, except that one of the depolarization treatments with the phosphoric acid aqueous solution was changed to heat treatment. The heat treatment was performed in air at 500 ° C. for 5 minutes.
 [実施例9]
 減極処理に用いたリン酸水溶液を水酸化ナトリウム5g/L水溶液に変更し、減極処理温度を40℃に変更した以外は、実施例1と同様にしてアルミニウム部材を作製した。
[Example 9]
An aluminum member was produced in the same manner as in Example 1 except that the aqueous solution of phosphoric acid used for the depolarization treatment was changed to a 5 g / L aqueous solution of sodium hydroxide, and the temperature of the depolarization treatment was changed to 40 ° C.
 [実施例10]
 陽極酸化処理前に、電解エッチングしたアルミニウム箔を沸騰した純水に10分間浸漬して水和処理を施して、その後に陽極酸化処理と減極処理を実施し、陽極酸化処理と減極処理の繰り返し回数を7回に変更した。上記以外は、実施例1と同様にしてアルミニウム部材を作製した。
[Example 10]
Before the anodizing treatment, the electrolytically etched aluminum foil is immersed in boiling pure water for 10 minutes to perform a hydration treatment. Thereafter, the anodizing treatment and the depolarization treatment are performed. The number of repetitions was changed to seven. Except for the above, an aluminum member was produced in the same manner as in Example 1.
 [比較例1]
 電解エッチングしたアルミニウム箔に対し、陽極酸化処理を1回だけ実施し、減極処理を実施しなかった以外は、実施例1と同様にしてアルミニウム部材を作製した。
[Comparative Example 1]
An aluminum member was produced in the same manner as in Example 1 except that the anodized aluminum foil was subjected to the anodic oxidation treatment only once and the depolarization treatment was not performed.
 [比較例2]
 電解エッチングを実施せずに陽極酸化処理と減極処理を実施した以外は、実施例1と同様にしてアルミニウム部材を作製した。
[Comparative Example 2]
An aluminum member was produced in the same manner as in Example 1, except that the anodic oxidation treatment and the depolarization treatment were performed without performing the electrolytic etching.
 [比較例3]
 陽極酸化処理と減極処理の繰り返し回数を1回に変更した以外は、実施例10と同様にしてアルミニウム部材を作製した。
[Comparative Example 3]
An aluminum member was produced in the same manner as in Example 10, except that the number of repetitions of the anodic oxidation treatment and the depolarization treatment was changed to one.
 [評価]
 実施例3、実施例10及び比較例3に係るアルミニウム部材の表面を走査型電子顕微鏡で観察した。電子顕微鏡写真を、図8、図9及び図10にそれぞれ示す。
[Evaluation]
The surfaces of the aluminum members according to Example 3, Example 10, and Comparative Example 3 were observed with a scanning electron microscope. Electron micrographs are shown in FIGS. 8, 9 and 10, respectively.
 各例で得られたアルミニウム部材において、皮膜厚さ、一次構造の凹部又は凸部の径、凹部の深さ又は凸部の高さ、空孔の平均細孔径、折り曲げ試験、算術平均粗さSa、三次粗面構造の周期、L値及び水の吸い上げ高さをそれぞれ以下の通り評価した。 In the aluminum member obtained in each example, the film thickness, the diameter of the concave portion or convex portion of the primary structure, the depth of the concave portion or the height of the convex portion, the average pore diameter of the pores, the bending test, the arithmetic average roughness Sa , The period of the tertiary rough surface structure, the L * value, and the water suction height were evaluated as follows.
 (皮膜厚さ)
 アルミニウム部材を切断した後に、日本電子株式会社製のクロスセクションポリッシャ(登録商標)で切断面を鏡面仕上げして、皮膜厚さ測定用のサンプルを得た。この皮膜厚さ測定用のサンプルの断面をカールツァイス株式会社製の走査型電子顕微鏡ULTRA plusで観察して皮膜の厚さを測定した。
(Film thickness)
After cutting the aluminum member, the cut surface was mirror-finished with a cross section polisher (registered trademark) manufactured by JEOL Ltd. to obtain a sample for measuring the film thickness. The thickness of the film was measured by observing the cross section of the sample for measuring the film thickness with a scanning electron microscope ULTRA plus manufactured by Carl Zeiss Co., Ltd.
 (一次構造の凹部の径)
 皮膜の表面をカールツァイス株式会社製の走査型電子顕微鏡ULTRA plusによって観察し、凹部の入口部分の直径を平均して凹部の径を求めた。
(Diameter of concave part of primary structure)
The surface of the film was observed with a scanning electron microscope ULTRA plus manufactured by Carl Zeiss Co., Ltd., and the diameter of the concave portion was determined by averaging the diameter of the entrance portion of the concave portion.
 (一次構造の凸部の径)
 皮膜の表面をカールツァイス株式会社製の走査型電子顕微鏡ULTRA plusによって観察し、凸部が最も大きくなる部分の直径を平均して凸部の径を求めた。
(Diameter of primary structure protrusion)
The surface of the film was observed with a scanning electron microscope ULTRA plus manufactured by Carl Zeiss Co., Ltd., and the diameter of the convex part was averaged to find the diameter of the part where the convex part was the largest.
 (凹部の深さ)
 皮膜の断面を走査型電子顕微鏡によって観察し、凹部の入口部分から底部までの距離を測定した平均値を算出することにより凹部の深さを求めた。
(Depth of recess)
The cross section of the film was observed with a scanning electron microscope, and the depth of the recess was determined by calculating the average value of the distance from the entrance to the bottom of the recess.
 (凸部の高さ)
 皮膜の断面を走査型電子顕微鏡によって観察し、皮膜の平坦部の表面から凸部の最頂部までの距離を測定した平均値を算出することにより凸部の高さを求めた。
(Protrusion height)
The height of the projections was determined by observing the cross section of the coating with a scanning electron microscope and calculating the average value of the distance from the surface of the flat portion of the coating to the top of the projections.
 (空孔の平均細孔径)
 水銀圧入法によって空孔の平均細孔径を測定した。
(Average pore diameter of pores)
The average pore diameter of the pores was measured by the mercury intrusion method.
 (折り曲げ試験)
 折り曲げ試験は、日本電子機械工業会が規定するMIT型折り曲げ試験法(EIAJ RC-2364A)に従って実施した。MIT型折り曲げ試験装置は、JIS P8115(紙及び板紙-耐折強さ試験方法-MIT試験機法)で規定された装置を使用した。折り曲げ試験では、アルミニウム部材を90°折り曲げて元の形状に戻すまでの工程を1回の曲げ回数とし、アルミニウム部材を100回折り曲げ、アルミニウム部材が破断しなかった場合を「良」、破断した場合を「否」として評価した。
(Bending test)
The bending test was performed according to the MIT-type bending test method (EIAJ RC-2364A) specified by the Japan Electronic Machinery Manufacturers Association. As the MIT type bending test apparatus, an apparatus specified in JIS P8115 (paper and paperboard-folding strength test method-MIT test machine method) was used. In the bending test, the process of bending the aluminum member 90 ° and returning it to its original shape was defined as one bending, and the aluminum member was bent 100 times. If the aluminum member did not break, the test was “good”. Was evaluated as “No”.
 (算術平均粗さSa)
 アルミニウム部材における多孔質層側の表面の算術平均粗さSaをISO25178に準じて測定した。なお、算術平均粗さSaの測定条件は以下の通りである。
(Arithmetic average roughness Sa)
The arithmetic average roughness Sa of the surface of the aluminum member on the porous layer side was measured according to ISO25178. The conditions for measuring the arithmetic average roughness Sa are as follows.
 算術平均粗さSaの測定条件
 装置:ブルカー・エイエックスエス株式会社 3次元白色干渉型顕微鏡 ContourGT-I
 測定範囲:60μm×79μm
 対物レンズ:115倍
 内部レンズ:1倍
Arithmetic mean roughness Sa measurement conditions Apparatus: Bruker AXS Co., Ltd. 3-D white interference microscope Contour GT-I
Measurement range: 60 μm × 79 μm
Objective lens: 115x Internal lens: 1x
 (三次粗面構造の周期)
 光学顕微鏡で、得られたアルミニウム部材の断面を観察し、三次粗面構造の周期を測定した。
(Period of tertiary rough surface structure)
The cross section of the obtained aluminum member was observed with an optical microscope, and the period of the tertiary rough surface structure was measured.
 (L値)
 JIS Z8722に準拠し、アルミニウム部材の表面を色彩色差計で測定し、L値を求めた。なお、測色条件は以下の通りである。
(L * value)
According to JIS Z8722, the surface of the aluminum member was measured with a colorimeter to determine the L * value. The colorimetric conditions are as follows.
 L値の測定条件
 色彩色差計:コニカミノルタジャパン株式会社製 CR400
照明・受光光学系:拡散照明垂直受光方式(D/0)
観察条件:CIE2°視野等色関数近似
 光源:C光源
 表色系:L
Measurement conditions for L * value Color difference meter: Konica Minolta Japan CR400
Illumination / light receiving optical system: diffuse illumination vertical light receiving system (D / 0)
Observation conditions: CIE 2 ° visual field color matching function approximation Light source: C light source Color system: L * a * b *
 (水の吸い上げ高さ)
 アルミニウム部材の平面方向が、液面に対して垂直となるようにアルミニウム部材を純水に浸し、10分放置した後、毛細管現象によって水が吸い上げられた高さを水の吸い上げ高さとした。
(Water suction height)
The aluminum member was immersed in pure water so that the plane direction of the aluminum member was perpendicular to the liquid surface, and allowed to stand for 10 minutes. Then, the height at which water was sucked up by capillary action was taken as the water sucking height.
 図8、図9及び図10は、それぞれ、実施例3、実施例10及び比較例3に係るアルミニウム部材の表面を走査型電子顕微鏡で観察した写真である。実施例3に係るアルミニウム部材は、水和処理がされていないことから水和皮膜を含まず、アルミニウム部材の表面に、矢印で示すように、径が10nm~200nmの凹部による一次粗面構造が形成されていた。実施例10に係るアルミニウム部材は、沸騰純水によるボイルによって水和皮膜を形成した後に、陽極酸化処理と減極処理とを繰り返し実施している。そのため、矢印で示すように、アルミニウム部材の表面に径が10nm~200nmの凸部による一次粗面構造が形成されていた。これらの凹部及び凸部が、アルミニウム部材の白色度に寄与していると推測される。これに対して、比較例3のアルミニウム部材では、水和処理後の陽極酸化処理と減極処理とが不十分であったため、凹部又は凸部が形成されず、多孔質化されたアルミニウム板の表面が、針状又は板状の構造を有する水酸化アルミニウムで覆われていた。これにより、比較例3では、アルミニウム部材の白色度が低下していると推測される。 FIGS. 8, 9 and 10 are photographs of the surface of the aluminum member according to Example 3, Example 10 and Comparative Example 3, respectively, observed with a scanning electron microscope. The aluminum member according to Example 3 did not include a hydrated film because it was not subjected to a hydration treatment, and had a primary rough surface structure with concave portions having a diameter of 10 nm to 200 nm on the surface of the aluminum member as indicated by arrows. Had been formed. In the aluminum member according to Example 10, the anodic oxidation treatment and the depolarization treatment were repeatedly performed after forming a hydrated film by boiling with boiling pure water. For this reason, as shown by the arrows, a primary roughened surface structure having protrusions having a diameter of 10 nm to 200 nm was formed on the surface of the aluminum member. It is assumed that these concave portions and convex portions contribute to the whiteness of the aluminum member. On the other hand, in the aluminum member of Comparative Example 3, since the anodic oxidation treatment and the depolarization treatment after the hydration treatment were insufficient, no concave portion or convex portion was formed, and the porous aluminum plate was not used. The surface was covered with aluminum hydroxide having a needle-like or plate-like structure. Thus, in Comparative Example 3, it is assumed that the whiteness of the aluminum member is reduced.
 次に、各例で得られたアルミニウム部材の評価結果を表1に示す。 Next, Table 1 shows the evaluation results of the aluminum members obtained in each example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~実施例10のアルミニウム部材は、比較例1~3のアルミニウム部材と比較し、白色度(L値)及び水の吸い上げ性能が良好であった。一方、比較例1では、陽極酸化処理後に減極処理が実施されなかったため、凹部又は凸部が形成されず、白色度が低いものであった。また、比較例2では、電解エッチングが実施されなかったため、空孔が形成されず、水の吸い上げ性能が不十分であった。また、比較例3では、水和処理後の陽極酸化処理と減極処理との繰り返し回数が少なかったため、表面全てが水和皮膜で覆われた状態となり、白色度が低かった。 As shown in Table 1, the aluminum members of Examples 1 to 10 had better whiteness (L * value) and water wicking performance than the aluminum members of Comparative Examples 1 to 3. On the other hand, in Comparative Example 1, since the depolarization treatment was not performed after the anodic oxidation treatment, no concave portion or convex portion was formed, and the whiteness was low. In Comparative Example 2, since no electrolytic etching was performed, no holes were formed, and the water wicking performance was insufficient. In Comparative Example 3, since the number of repetitions of the anodic oxidation treatment and the depolarization treatment after the hydration treatment was small, the entire surface was covered with the hydrated film, and the whiteness was low.
 なお、図示しないエッチング前のアルミニウム板における算術平均粗さSaは0.37μmであり、L値は49.5である。また、図7に示すエッチング後のアルミニウム板における算術平均粗さSaは0.336μmであり、L値は71.4である。そのため、アルミニウム板を単にエッチングしただけでは、アルミニウム板は白色度が高くなっていない。 The arithmetic mean roughness Sa of the aluminum plate (not shown) before etching is 0.37 μm, and the L * value is 49.5. The arithmetic average roughness Sa of the etched aluminum plate shown in FIG. 7 is 0.336 μm, and the L * value is 71.4. Therefore, simply etching the aluminum plate does not increase the whiteness of the aluminum plate.
 特願2018-174947号(出願日:2018年9月19日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2018-174947 (filing date: September 19, 2018) are incorporated herein.
 以上、本実施形態を実施例及び比較例によって説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。 Although the present embodiment has been described above with reference to examples and comparative examples, the present embodiment is not limited to these, and various modifications can be made within the scope of the present embodiment.
 本発明によれば、白色度及び水の吸い上げ性能が高いアルミニウム部材及びその製造方法を提供することができる。 According to the present invention, it is possible to provide an aluminum member having high whiteness and high water absorption performance, and a method for producing the same.
 10  一次粗面構造
 11  母材
 12  皮膜
 13  凹部
 14  凸部
 15  空孔
 20  二次粗面構造
 30  三次粗面構造
 40  多孔質層
 50  基板
 100 アルミニウム部材
DESCRIPTION OF SYMBOLS 10 Primary rough surface structure 11 Base material 12 Coating 13 Concavity 14 Convex part 15 Void 20 Secondary rough surface structure 30 Tertiary rough surface structure 40 Porous layer 50 Substrate 100 Aluminum member

Claims (15)

  1.  金属アルミニウムにより構成された母材と、前記母材の表面を被覆する酸化アルミニウムを含む皮膜と、を含む多孔質層を備え、
     前記皮膜は5nm~1000nmの厚さを有し、
     前記皮膜は表面に形成された複数の凹部及び複数の凸部の少なくともいずれか一方を有し、
     前記複数の凹部に含まれる各凹部の深さは10nm~100nmであり、
     前記複数の凸部に含まれる各凸部の高さは10nm~100nmであり、
     前記多孔質層は複数の空孔を有し、前記複数の空孔の平均細孔径が0.1μm~10μmである、アルミニウム部材。
    A base material made of metallic aluminum, and a coating containing aluminum oxide covering the surface of the base material, comprising a porous layer,
    The coating has a thickness of 5 nm to 1000 nm;
    The film has at least one of a plurality of concave portions and a plurality of convex portions formed on the surface,
    The depth of each recess included in the plurality of recesses is 10 nm to 100 nm,
    Each of the plurality of protrusions has a height of 10 nm to 100 nm,
    An aluminum member, wherein the porous layer has a plurality of pores, and the plurality of pores have an average pore diameter of 0.1 μm to 10 μm.
  2.  前記各凹部の径は10nm~200nmであり、かつ、前記多孔質層の平均細孔径よりも小さい、請求項1に記載のアルミニウム部材。 The aluminum member according to claim 1, wherein the diameter of each of the concave portions is 10 nm to 200 nm, and is smaller than the average pore diameter of the porous layer.
  3.  前記各凸部の径は10nm~200nmである、請求項1又は2に記載のアルミニウム部材。 The aluminum member according to claim 1, wherein the diameter of each of the protrusions is 10 nm to 200 nm.
  4.  前記皮膜と、前記複数の凹部及び前記複数の凸部の少なくともいずれか一方とによって形成された一次粗面構造と、
     前記母材と前記複数の空孔とによって形成された二次粗面構造と、
     前記一次粗面構造と前記二次粗面構造との集合からなる三次粗面構造と、
     を有する、請求項1~3のいずれか一項に記載のアルミニウム部材。
    The coating, a primary rough surface structure formed by at least one of the plurality of concave portions and the plurality of convex portions,
    A secondary rough surface structure formed by the base material and the plurality of holes,
    A tertiary rough surface structure comprising a set of the primary rough surface structure and the secondary rough surface structure,
    The aluminum member according to any one of claims 1 to 3, having:
  5.  算術平均粗さSaが、0.1μm~30μmである、請求項1~4のいずれか一項に記載のアルミニウム部材。 The aluminum member according to any one of claims 1 to 4, wherein the arithmetic average roughness Sa is 0.1 μm to 30 μm.
  6.  L表色系におけるL値が80以上である、請求項1~5のいずれか一項に記載のアルミニウム部材。 The aluminum member according to any one of claims 1 to 5, wherein the L * value in the L * a * b * color system is 80 or more.
  7.  毛細管現象による水の吸い上げ高さが3cm以上である、請求項1~6のいずれか一項に記載のアルミニウム部材。 (7) The aluminum member according to any one of (1) to (6), wherein the water suction height by capillary action is 3 cm or more.
  8.  MIT型折り曲げ試験法に準じた折り曲げ試験において、100回以上折り曲げても破断しない、請求項1~7のいずれか一項に記載のアルミニウム部材。 The aluminum member according to any one of claims 1 to 7, wherein the aluminum member does not break even after being bent 100 times or more in a bending test according to a MIT type bending test method.
  9.  金属アルミニウムにより構成された基板をさらに備え、
     前記基板の少なくとも一方の面側には、前記多孔質層が設けられる、請求項1~8のいずれか一項に記載のアルミニウム部材。
    Further comprising a substrate made of metal aluminum,
    The aluminum member according to any one of claims 1 to 8, wherein the porous layer is provided on at least one surface side of the substrate.
  10.  クロマトグラフィーに用いられる、請求項1~9のいずれか一項に記載のアルミニウム部材。 (10) The aluminum member according to any one of (1) to (9), which is used for chromatography.
  11.  多孔質構造を有するアルミニウム板を陽極酸化し、前記アルミニウム板に酸化アルミニウムを含む皮膜を形成する皮膜形成工程と、
     前記皮膜が形成されたアルミニウム板を減極処理し、前記皮膜の表面の一部を除去する減極処理工程と、を備え、
     前記皮膜形成工程と前記減極処理工程とを交互に繰り返し、
     前記アルミニウム板は金属アルミニウムにより構成されている、アルミニウム部材の製造方法。
    Anodizing an aluminum plate having a porous structure, a film forming step of forming a film containing aluminum oxide on the aluminum plate,
    Depolarizing the aluminum plate on which the film is formed, and a depolarizing process of removing a part of the surface of the film,
    The film forming step and the depolarizing step are alternately repeated,
    The method for manufacturing an aluminum member, wherein the aluminum plate is made of metal aluminum.
  12.  前記皮膜形成工程と前記減極処理工程とによって、前記皮膜の表面に複数の凹部及び複数の凸部の少なくともいずれか一方を形成し、
     前記皮膜は5nm~1000nmの厚さを有し、
     前記複数の凹部に含まれる各凹部の深さは10nm~100nmであり、
     前記複数の凸部に含まれる各凸部の高さは10nm~100nmであり、
     前記アルミニウム部材は複数の空孔を有し、前記複数の空孔の平均細孔径が0.1μm~10μmである、請求項11に記載のアルミニウム部材の製造方法。
    By the film forming step and the depolarizing step, at least one of a plurality of concave portions and a plurality of convex portions is formed on the surface of the film,
    The coating has a thickness of 5 nm to 1000 nm;
    The depth of each recess included in the plurality of recesses is 10 nm to 100 nm,
    Each of the plurality of protrusions has a height of 10 nm to 100 nm,
    The method for manufacturing an aluminum member according to claim 11, wherein the aluminum member has a plurality of holes, and the average pore diameter of the plurality of holes is 0.1 μm to 10 μm.
  13.  前記皮膜形成工程の前に、前記アルミニウム板をエッチングし、前記アルミニウム板に前記多孔質構造を形成するエッチング工程をさらに有する、請求項11又は12に記載のアルミニウム部材の製造方法。 The method of manufacturing an aluminum member according to claim 11, further comprising an etching step of etching the aluminum plate and forming the porous structure on the aluminum plate before the film forming step.
  14.  前記皮膜形成工程の前に、前記アルミニウム板を水和処理し、前記多孔質構造を有するアルミニウム板に水和皮膜を形成する水和処理工程をさらに有する、請求項11~13のいずれか一項に記載のアルミニウム部材の製造方法。 14. The method according to claim 11, further comprising, before the film forming step, hydrating the aluminum plate to form a hydrated film on the aluminum plate having the porous structure. 3. The method for producing an aluminum member according to item 1.
  15.  前記皮膜形成工程と前記減極処理工程とによって、前記皮膜の表面に複数の凹部及び複数の凸部の少なくともいずれか一方を形成し、
     前記複数の凹部及び前記複数の凸部の少なくともいずれか一方は、前記皮膜形成工程と前記減極処理工程とを交互に2回以上繰り返すことによって形成される、請求項11~14のいずれか一項に記載のアルミニウム部材の製造方法。
    By the film forming step and the depolarizing step, at least one of a plurality of concave portions and a plurality of convex portions is formed on the surface of the film,
    15. The method according to claim 11, wherein at least one of the plurality of concave portions and the plurality of convex portions is formed by alternately repeating the film forming step and the depolarizing step two or more times. Item 13. The method for producing an aluminum member according to Item 1.
PCT/JP2019/036453 2018-09-19 2019-09-18 Aluminum member and manufacturing method for same WO2020059728A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980061377.9A CN112739855B (en) 2018-09-19 2019-09-18 Aluminum member and method for producing same
CN202311219931.6A CN117258542A (en) 2018-09-19 2019-09-18 Aluminum member and method for producing same
JP2020548531A JP7306405B2 (en) 2018-09-19 2019-09-18 Aluminum member and its manufacturing method
JP2023038925A JP2023085311A (en) 2018-09-19 2023-03-13 Aluminum member and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018174947 2018-09-19
JP2018-174947 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020059728A1 true WO2020059728A1 (en) 2020-03-26

Family

ID=69887113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036453 WO2020059728A1 (en) 2018-09-19 2019-09-18 Aluminum member and manufacturing method for same

Country Status (3)

Country Link
JP (2) JP7306405B2 (en)
CN (2) CN117258542A (en)
WO (1) WO2020059728A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114321693B (en) * 2021-12-29 2024-03-12 富联裕展科技(深圳)有限公司 Metal product and preparation method thereof, metal complex and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526755A (en) * 1998-09-17 2002-08-20 スマートビード テクノロジーズ リミティド Raw inspection technology
JP2002293055A (en) * 2001-03-30 2002-10-09 Fuji Photo Film Co Ltd Method for manufacturing substrate for lithographic printing plate, substrate for lithographic printing plate, and original plate for lithographic printing plate
JP2006076281A (en) * 2004-08-13 2006-03-23 Fuji Photo Film Co Ltd Method for manufacturing support for lithographic printing plate
WO2011046114A1 (en) * 2009-10-14 2011-04-21 シャープ株式会社 Die and method for manufacturing die, and anti-reflection coating
WO2015146681A1 (en) * 2014-03-27 2015-10-01 富士フイルム株式会社 Water repellent aluminum base, method for producing water repellent aluminum base, heat exchanger and power transmission line
JP2018080373A (en) * 2016-11-18 2018-05-24 日本軽金属株式会社 Method for manufacturing aluminium electrolytic capacitor electrode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4363970B2 (en) * 2003-12-15 2009-11-11 新日軽株式会社 Surface treatment method of aluminum material
JP5506787B2 (en) * 2009-05-08 2014-05-28 シャープ株式会社 Method for forming anodized layer and method for producing mold
WO2012119306A1 (en) * 2011-03-08 2012-09-13 Nano And Advanced Materials Institute Limited Method for Producing White Anodized Aluminum Oxide
CN103422136B (en) * 2013-08-30 2016-04-06 河北民族师范学院 A kind of have aluminum oxide film of the vesicular structure in different hole depth and aperture and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526755A (en) * 1998-09-17 2002-08-20 スマートビード テクノロジーズ リミティド Raw inspection technology
JP2002293055A (en) * 2001-03-30 2002-10-09 Fuji Photo Film Co Ltd Method for manufacturing substrate for lithographic printing plate, substrate for lithographic printing plate, and original plate for lithographic printing plate
JP2006076281A (en) * 2004-08-13 2006-03-23 Fuji Photo Film Co Ltd Method for manufacturing support for lithographic printing plate
WO2011046114A1 (en) * 2009-10-14 2011-04-21 シャープ株式会社 Die and method for manufacturing die, and anti-reflection coating
WO2015146681A1 (en) * 2014-03-27 2015-10-01 富士フイルム株式会社 Water repellent aluminum base, method for producing water repellent aluminum base, heat exchanger and power transmission line
JP2018080373A (en) * 2016-11-18 2018-05-24 日本軽金属株式会社 Method for manufacturing aluminium electrolytic capacitor electrode

Also Published As

Publication number Publication date
CN112739855B (en) 2023-10-03
JP2023085311A (en) 2023-06-20
JP7306405B2 (en) 2023-07-11
CN117258542A (en) 2023-12-22
CN112739855A (en) 2021-04-30
JPWO2020059728A1 (en) 2021-09-24

Similar Documents

Publication Publication Date Title
KR102116928B1 (en) Blackened surface-treated copper foil, method for manufacturing blackened surface-treated copper foil, copper-clad laminate and flexible printed circuit board
US11152668B2 (en) Layered-double-hydroxide-containing composite material and method for producing same
CN113178665B (en) Separator for enhanced flooded battery, battery and related methods
JP2023085311A (en) Aluminum member and production method thereof
JP6949375B2 (en) Hybrid material manufacturing method and hybrid material
TW201639975A (en) Aluminum plate and current collector for power storage device
CN105934540A (en) Method for manufacturing aluminum plate, aluminum plate, collector for storage device, and storage device
US20180361710A1 (en) Composite body
Reddy et al. Optical and mechanical studies on free standing amorphous anodic porous alumina formed in oxalic and sulphuric acid
CN103553150A (en) Preparation method of Co-Fe LDH (layered double hydroxide)
WO2021079813A1 (en) Aluminum member, test strip for immunochromotagraphy, and aluminum member production method
US9696318B2 (en) Hydrophilic film, preparation method and applications thereof
CN116457506A (en) Aluminum member and method for producing same
WO2010140405A1 (en) Microscopic structure and light emitting device using microscopic structure
Agrisuelas et al. Quality and Efficiency Control of Electrodeposition and Electrodissolution of Ni on a Ternary Composite Electrode Followed by Digital Video Electrochemistry
WO2023089824A1 (en) Aluminum member and method for producing same
JP7239014B2 (en) Steel plate for can and manufacturing method thereof
Chaturvedi Application of Porous Materials in Electrochemical Sensing, Proton Selective 2D Membranes and Electrolyzers
JPH07194972A (en) Aluminum oxide membrane material and physiologically active substance immobilized member
JP2022092815A (en) Steel sheet for cans and production method thereof
CN110849850A (en) Quantum dot-nanochannel-based copper ion detection method
JP2010286380A (en) Method and apparatus for measuring micropore
TW202138619A (en) Roughened nickel-plating sheet having a roughened nickel layer formed on at least one side of a metal substrate by a plurality of nickel projections
CN116750831A (en) Three-dimensional solar evaporation material and preparation method and application thereof
Chau Post Anodic Treatment of Anodized Aluminium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548531

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863927

Country of ref document: EP

Kind code of ref document: A1