WO2023089824A1 - Aluminum member and method for producing same - Google Patents

Aluminum member and method for producing same Download PDF

Info

Publication number
WO2023089824A1
WO2023089824A1 PCT/JP2021/042786 JP2021042786W WO2023089824A1 WO 2023089824 A1 WO2023089824 A1 WO 2023089824A1 JP 2021042786 W JP2021042786 W JP 2021042786W WO 2023089824 A1 WO2023089824 A1 WO 2023089824A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum member
porous layer
aluminum
anodization
electrolytic solution
Prior art date
Application number
PCT/JP2021/042786
Other languages
French (fr)
Japanese (ja)
Inventor
隆幸 山口
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to PCT/JP2021/042786 priority Critical patent/WO2023089824A1/en
Priority to TW111121892A priority patent/TW202321474A/en
Publication of WO2023089824A1 publication Critical patent/WO2023089824A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing

Definitions

  • the present disclosure relates to an aluminum member and a manufacturing method thereof.
  • the arithmetic mean height Sa of the surface of the substrate is 0.1 ⁇ m to 0.5 ⁇ m
  • the maximum height Sz is 0.2 ⁇ m to 5 ⁇ m
  • the average length RSm of the roughness curve element is Aluminum members are disclosed that are between 0.5 ⁇ m and 10 ⁇ m.
  • the arithmetic mean height Sa of the base material, the maximum height Sz, and the average length RSm of the roughness curve element are set within predetermined ranges, whereby the aluminum member has a white appearance. is obtained.
  • the aluminum member has improved whiteness when viewed obliquely and that has an appearance similar to that of paper.
  • An object of the present disclosure is to provide an aluminum member with low angular dependence and a method of manufacturing the same.
  • the aluminum member according to the first aspect of the present disclosure includes a base material made of aluminum or an aluminum alloy.
  • the aluminum member includes a barrier layer in contact with the surface of the base material, a first porous layer in contact with the surface of the barrier layer opposite to the base material, and a first porous layer in contact with the surface of the first porous layer opposite to the barrier layer.
  • An anodic oxide film including a porous layer and a second porous layer having a plurality of linearly aligned pores extending from the surface in contact with the surface to the exposed surface.
  • the first porous layer has at least one of a plurality of branched pores and a plurality of pores having an average pore size larger than that of the second porous layer.
  • the anodized film incorporates white pigment particles.
  • a method for manufacturing an aluminum member according to a second aspect of the present disclosure first anodizes a substrate made of aluminum or an aluminum alloy with an electrolytic solution capable of forming a plurality of aligned linearly extending holes.
  • a first anodizing step is included.
  • the method includes a second anodizing step of second anodizing the first anodized substrate with an electrolyte.
  • the method includes incorporating white pigment particles into the anodized film obtained by the first anodization and the second anodization.
  • the electrolytic solution for the second anodization is an electrolytic solution capable of forming at least one of a plurality of pores having an average pore diameter larger than that of the plurality of branching pores and the plurality of linearly extending pores.
  • FIG. 1 is a cross-sectional view showing an example of an aluminum member according to this embodiment.
  • FIG. 2 is a diagram showing an example of a method for manufacturing an aluminum member according to this embodiment.
  • FIG. 3 is a diagram illustrating a method of evaluating angle dependence of whiteness using a goniophotometer.
  • FIG. 4 is a graph showing the angle dependence of Example 1, Comparative Examples 1 to 3, and Reference Example.
  • FIG. 5 is a graph showing the angle dependence of Example 2, Comparative Examples 4 to 6, and Reference Example.
  • FIG. 6 is a graph showing the angle dependence of Example 3, Comparative Examples 7 to 9, and Reference Example.
  • FIG. 7 is a graph showing the angle dependence of Example 4, Comparative Examples 10 to 12, and Reference Example.
  • FIG. 4 is a graph showing the angle dependence of Example 1, Comparative Examples 1 to 3, and Reference Example.
  • FIG. 5 is a graph showing the angle dependence of Example 2, Comparative Examples 4 to 6, and Reference Example.
  • FIG. 6 is a graph showing the angle dependence of Example 3, Compar
  • FIG. 8 is an image obtained by FIB (focused ion beam) processing of the cross section of the aluminum member of Example 6 and magnifying it by 2,550 times with a TEM (transmission electron microscope).
  • FIG. 9 is an image obtained by FIB-processing the cross section of the aluminum member of Example 6 and enlarging it 19,500 times with a TEM.
  • FIG. 10 is an image obtained by FIB-processing the cross section of the aluminum member of Example 6 and enlarging it 43,000 times with a TEM.
  • FIG. 11 is an image obtained by FIB-processing the cross section of the aluminum member of Comparative Example 14 and enlarging it 2,550 times with a TEM.
  • FIG. 9 is an image obtained by FIB-processing the cross section of the aluminum member of Example 6 and magnifying it by 2,550 times with a TEM (transmission electron microscope).
  • FIG. 9 is an image obtained by FIB-processing the cross section of the aluminum member of Example 6 and enlarging
  • FIG. 12 is an image obtained by FIB-processing the cross section of the aluminum member of Comparative Example 14 and enlarging it 19,500 times with a TEM.
  • FIG. 13 is an image obtained by FIB-processing the cross section of the aluminum member of Comparative Example 14 and enlarging it 43,000 times with a TEM.
  • FIG. 14 is an image obtained by FIB-processing the cross section of the aluminum member of Comparative Example 15 and enlarging it 2,550 times with a TEM.
  • FIG. 15 is an image obtained by FIB-processing the cross section of the aluminum member of Comparative Example 15 and enlarging it 19,500 times with a TEM.
  • FIG. 13 is an image obtained by FIB-processing the cross section of the aluminum member of Comparative Example 14 and enlarging it 43,000 times with a TEM.
  • FIG. 14 is an image obtained by FIB-processing the cross section of the aluminum member of Comparative Example 15 and enlarging it 2,
  • FIG. 16 is an image obtained by FIB-processing the cross section of the aluminum member of Comparative Example 15 and enlarging it 43,000 times with a TEM.
  • FIG. 17 is an image obtained by FIB-processing the cross section of the aluminum member of Example 7 and enlarging it 2,550 times with a TEM.
  • FIG. 18 is an image obtained by FIB-processing the cross section of the aluminum member of Example 7 and enlarging it 19,500 times with a TEM.
  • FIG. 19A is the result of line analysis of the aluminum member of Example 7 by EDS (energy dispersive X-ray spectroscopy).
  • FIG. 19B is the result of line analysis of the aluminum member of Example 7 by EDS (energy dispersive X-ray spectroscopy).
  • an aluminum member 1 of this embodiment includes a base material 10 and an anodized film 20 . These components are described below.
  • the base material 10 is made of aluminum or an aluminum alloy.
  • the substrate 10 may be made of, for example, a 1000 series alloy, a 3000 series alloy, a 5000 series alloy, a 6000 series alloy, or a 7000 series alloy.
  • the base material 10 contains 0% by mass to 10% by mass of magnesium, 0.1% by mass or less of iron, and 0.1% by mass or less of silicon, and the balance is aluminum and inevitable impurities aluminum or aluminum It may be made of an alloy.
  • the base material 10 contains 0% to 10% by mass of magnesium, 0.1% by mass or less of iron, 0.1% by mass or less of silicon, 10% by mass or less of zinc, and the balance being aluminum. and aluminum or an aluminum alloy that is an inevitable impurity.
  • magnesium does not necessarily need to be contained in the base material 10, if the base material 10 contains magnesium, aluminum and magnesium form a solid solution, and the strength of the base material 10 can be improved. Moreover, by setting the content of magnesium to 10% by mass or less, the strength of the base material 10 can be improved while suppressing the deterioration of the corrosion resistance of the base material 10 .
  • the content of magnesium may be 0.5% by mass or more, or may be 1% by mass or more. Also, the content of magnesium may be 8% by mass or less, or may be 5% by mass or less.
  • the base material 10 may contain 0.05% by mass or less of iron. Also, the base material 10 may contain 0.05% by mass or less of silicon.
  • Zinc does not necessarily have to be contained in the base material 10, but if the base material 10 contains zinc, the strength of the base material 10 can be maintained. Moreover, by setting the zinc content to 10% by mass or less, the strength of the base material 10 is maintained while the appearance of the aluminum member 1 is not impaired.
  • the content of zinc may be 8% by mass or less.
  • the base material 10 may contain inevitable impurities.
  • unavoidable impurities mean those that are present in raw materials or that are unavoidably mixed in during the manufacturing process. Unavoidable impurities are essentially unnecessary impurities, but they are allowable impurities because they are trace amounts and do not affect the properties in aluminum or aluminum alloys. Unavoidable impurities that can be contained in aluminum or aluminum alloys are elements other than aluminum, magnesium, iron, and silicon. Examples of unavoidable impurities that may be contained in aluminum or aluminum alloys include copper, manganese, chromium, zinc, titanium, gallium, boron, vanadium, zirconium, lead, calcium and cobalt.
  • the total amount of inevitable impurities in the aluminum or aluminum alloy is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, further preferably 0.15% by mass or less, and 0 0.10 mass % or less is particularly preferred.
  • the content of each element contained as inevitable impurities is preferably 0.05% by mass or less, more preferably 0.03% by mass or less, and further preferably 0.01% by mass or less. preferable.
  • the substrate 10 may have unevenness on the surface 11 on the anodized film 20 side.
  • the unevenness formed on the surface 11 of the aluminum member 1 can diffusely reflect light passing through the anodized film 20 .
  • the unevenness of the surface 11 can be formed by a roughening treatment described later.
  • the arithmetic mean height Sa of the surface 11 of the substrate 10 may be between 0.3 ⁇ m and 0.5 ⁇ m.
  • the maximum height Sz of the surface 11 of the substrate 10 may be 3 ⁇ m to 5 ⁇ m.
  • the average length RSm of the roughness curve element of the surface 11 of the substrate 10 may be 6 ⁇ m to 10 ⁇ m.
  • the arithmetic mean height Sa of the surface 11 of the substrate 10 is 0.3 ⁇ m to 0.5 ⁇ m, the maximum height Sz is 3 ⁇ m to 5 ⁇ m, and the average length RSm of the roughness curvilinear element is 6 ⁇ m to 10 ⁇ m. There may be.
  • the arithmetic mean height Sa By setting the arithmetic mean height Sa to 0.3 ⁇ m or more, the light transmitted through the anodized film 20 is diffusely reflected on the surface 11 of the substrate 10, so that the whiteness when the aluminum member 1 is viewed from an angle is further improved. can be higher.
  • the arithmetic mean height Sa By setting the arithmetic mean height Sa to 0.5 ⁇ m or less, it is possible to suppress the light transmitted through the anodized film 20 from being trapped between the unevenness of the surface 11 of the base material 10. 1 can be suppressed from becoming gray in appearance.
  • the arithmetic mean height Sa may be 0.4 ⁇ m or less.
  • the arithmetic mean height Sa can be measured according to ISO25178.
  • the maximum height Sz By setting the maximum height Sz to 3 ⁇ m or more, the light transmitted through the anodized film 20 is diffusely reflected by the surface 11 of the substrate 10, so that the whiteness of the aluminum member 1 when viewed obliquely can be further increased. can be done.
  • the maximum height Sz By setting the maximum height Sz to 5 ⁇ m or less, it is possible to suppress the light transmitted through the anodized film 20 from being trapped between the unevenness of the surface 11 of the base material 10, so that the appearance of the aluminum member 1 can be reduced. can be suppressed from turning gray.
  • the maximum height Sz may be 4.7 ⁇ m or less.
  • the maximum height Sz can be measured according to ISO25178.
  • the pitch of the irregularities on the surface 11 of the base material 10 does not become too small, so that the light transmitted through the anodized film 20 reaches the surface 11 of the base material 10. It is possible to suppress trapping between unevenness. Therefore, it is possible to prevent the appearance of the aluminum member 1 from becoming gray. Further, by setting the average length RSm of the roughness curve element to 10 ⁇ m or less, the pitch of the irregularities on the surface 11 of the substrate 10 does not become too large. Therefore, the light transmitted through the anodized film 20 is diffusely reflected by the surface 11 of the base material 10, and the whiteness of the aluminum member 1 when viewed obliquely can be further increased.
  • the average length RSm of the roughness curvilinear element may be 7 ⁇ m or more and may be 9.5 ⁇ m or less.
  • the average length RSm of roughness curve elements can be measured according to JIS B0601:2013 (ISO 4287:1997, Amd.1:2009).
  • the arithmetic mean height Sa, the maximum height Sz, and the average length RSm of the roughness curve element of the surface 11 of the base material 10 can be measured by removing the anodized film 20 from the base material 10 . Since the unevenness of the surface 11 of the substrate 10 is smoothed by the anodization, the unevenness of the surface 11 of the substrate 10 before anodization and the unevenness of the surface 11 of the substrate 10 after anodization are different in shape. There is a risk that Therefore, in this embodiment, the shape of the surface 11 of the substrate 10 after the anodized film 20 is removed is measured. A method for removing the anodized film 20 from the substrate 10 is not particularly limited.
  • the aluminum member 1 is immersed in a chromic acid (VI) phosphate solution to dissolve and remove the anodized film 20. can do.
  • VI chromic acid
  • the shape and thickness of the base material 10 are not particularly limited, and can be appropriately changed according to the application. Further, the base material 10 may be processed or heat treated.
  • Anodized film 20 is provided on surface 11 of substrate 10 . Such an anodized film 20 can improve corrosion resistance, wear resistance, and the like.
  • Anodized film 20 includes barrier layer 21 , first porous layer 22 , and second porous layer 23 .
  • the second porous layer 23 may be the outermost layer of the anodized film 20 .
  • the barrier layer 21 is in contact with the surface 11 of the substrate 10.
  • Barrier layer 21 is a dense, non-porous layer.
  • the thickness of the barrier layer 21 is not particularly limited, it may be, for example, 1 nm or more, or 10 nm or more. Also, the thickness of the barrier layer 21 may be 500 nm or less, or may be 300 nm or less.
  • the barrier layer 21 contains aluminum oxide.
  • the barrier layer 21 includes sulfur, carbon, sodium, potassium, phosphorus, silicon, nitrogen, which is an element derived from the components of the solution of the electrolytic solution used in the anodization, and nitrogen, which is a constituent element of ammonia. It may contain elements such as In the barrier layer 21 and the first porous layer 22 produced by the two-stage electrolysis method in which the porous type electrolytic solution is combined, the whiteness of the aluminum member 1 is adjusted by the color tone of the film itself obtained by the electrolytic solution components and the refraction of incident light. can be even higher.
  • the first porous layer 22 is in contact with the surface of the barrier layer 21 opposite to the substrate 10 .
  • the first porous layer 22 may have a plurality of branched holes. Each hole of the first porous layer 22 has a dendritic structure, and the first porous layer 22 is provided with a plurality of holes extending while branching from the surface of the barrier layer 21 toward the second porous layer 23 . good too.
  • the first porous layer 22 is provided with linear holes extending from the surface of the barrier layer 21 toward the second porous layer 23, and holes branching from the linear holes may be provided.
  • the average pore diameter of the plurality of pores of the first porous layer 22 is, for example, within the range of 5 nm to 350 nm.
  • the average pore size of the first porous layer 22 may be 10 nm or more, or may be 20 nm or more. Also, the average pore size of the first porous layer 22 may be 300 nm or less. The average pore diameter of the plurality of pores in the first porous layer 22 may be larger than the average pore diameter of the plurality of pores in the second porous layer 23 .
  • the thickness of the first porous layer 22 is not particularly limited, but may be 10 nm or more and 5000 nm or less. By setting the thickness of the first porous layer 22 to 10 nm or more, the whiteness of the aluminum member 1 can be further improved. By setting the thickness of the first porous layer 22 to 5000 nm or less, it is possible to maintain a high degree of whiteness when the anodized film 20 is formed.
  • the thickness of the first porous layer 22 may be 50 nm or more, or may be 100 nm or more.
  • the thickness of the first porous layer 22 may be 4000 nm or less, or may be 3500 nm or less.
  • the first porous layer 22 contains aluminum oxide.
  • the first porous layer 22 contains carboxyl groups such as sulfuric acid, phosphoric acid and their salts, oxalic acid, salicylic acid, citric acid, maleic acid and tartaric acid derived from the electrolytic solution for anodization. Acids and salts thereof, as well as compounds such as silicates and ammonium salts may also be included. Salts include sodium and potassium salts. Since the first porous layer 22 contains the above elements, the first porous layer 22 becomes white, so that the aluminum member 1 with a higher degree of whiteness can be obtained.
  • the second porous layer 23 is in contact with the surface of the first porous layer 22 opposite to the barrier layer 21 .
  • the second porous layer 23 is arranged as the outermost layer of the aluminum member 1 and may be exposed.
  • the second porous layer 23 has a plurality of holes aligned and linearly extending from the surface in contact with the first porous layer 22 toward the exposed surface 24 .
  • the pores of the second porous layer 23 may be connected to the pores of the first porous layer 22 .
  • the average pore diameter of the plurality of pores of the second porous layer 23 is, for example, within the range of 5 nm to 200 nm.
  • the average pore diameter of the second porous layer 23 may be 8 nm or more, or may be 10 nm or more.
  • the average pore size of the second porous layer 23 may be 100 nm or less, 50 nm or less, or 30 nm or less.
  • the thickness of the second porous layer 23 is not particularly limited, but may be 2 ⁇ m or more and 50 ⁇ m or less. By setting the thickness of the second porous layer 23 to 2 ⁇ m or more, the interference color of the anodized film 20 formed on the base material 10 can be suppressed, and the L * value of the aluminum member 1 can be improved. can be done. By setting the thickness of the second porous layer 23 to 50 ⁇ m or less, dissolution during the formation of the anodized film 20 can be reduced.
  • the thickness of the second porous layer 23 may be 5 ⁇ m or more, or may be 8 ⁇ m or more. Also, the thickness of the second porous layer 23 may be 25 ⁇ m or less, or may be 15 ⁇ m or less.
  • the second porous layer 23 contains aluminum oxide.
  • the second porous layer 23 contains a carboxylic acid such as sulfuric acid, amidosulfuric acid, phosphoric acid and their salts, oxalic acid, salicylic acid, citric acid, maleic acid and tartaric acid derived from the electrolytic solution for anodization. Acids containing groups and salts thereof, as well as compounds such as silicates and ammonium salts may be included. Salts include sodium and potassium salts. Since the second porous layer 23 contains the above compound, the transparency of the second porous layer 23 is increased, so that the light diffused by the first porous layer 22 is easily transmitted, and the whiteness is maintained at a high level. The aluminum member 1 is obtained.
  • the first porous layer 22 has at least one of a plurality of branched pores and a plurality of pores with an average pore size larger than that of the second porous layer 23 . That is, the first porous layer 22 may have a plurality of branched pores, may have a plurality of pores with an average pore diameter larger than that of the second porous layer 23, and may have a plurality of pores with an average pore diameter larger than that of the second porous layer 23. may have a plurality of branched pores with a larger average pore size.
  • the average pore diameter is the average value obtained by observing the cross section of the aluminum member 1 with a transmission electron microscope and measuring 10 or more pores.
  • the anodized film 20 incorporates white pigment particles.
  • the white pigment particles may be arranged in at least one of the pores of the first porous layer 22 and the pores of the second porous layer 23 .
  • angle dependence can be improved.
  • the white pigment particles may contain at least one of organic pigment particles and inorganic pigment particles, but preferably contain inorganic pigment particles.
  • the inorganic pigment particles may contain at least one selected from the group consisting of titanium oxide, aluminum oxide, zinc oxide and zinc sulfide.
  • the white pigment particles may be spherical, elliptical, polygonal, plate-like, scale-like, needle-like, amorphous and mixtures thereof.
  • the average particle size of the white pigment particles may be smaller than the average pore size of the first porous layer 22 . Also, the average particle size of the white pigment particles may be smaller than the average pore size of the second porous layer 23 .
  • the average particle size of the white pigment particles may be, for example, 10 nm or more and 200 nm or less. By setting the average particle size of the white pigment particles to 10 nm or more, the angle dependence can be sufficiently reduced. In addition, by setting the average particle diameter of the white pigment particles to 200 nm or less, the white pigment particles can easily enter the pores of the first porous layer 22 and the pores of the second porous layer 23. Many white pigment particles can be efficiently incorporated.
  • the average particle size of the white pigment particles may be 13 nm or more, or 15 nm or more. Also, the average particle size of the white pigment particles may be 150 nm or less, or may be 100 nm or less. As used herein, the average particle size is the average value of particle sizes actually measured using a microscope such as a SEM (scanning electron microscope).
  • the plurality of pores of the first porous layer 22 and the plurality of pores of the second porous layer 23 may have a sealant containing aluminum hydrate in which aluminum is hydrated. You don't have to.
  • the sealant may contain a nickel compound.
  • it may be coated with a transparent organic material, inorganic material, or composite material, or it may not be coated.
  • organic material coatings include resin coatings such as acrylic resins, urethane resins, and fluorine resins.
  • inorganic material coatings include DLC (Diamond-like Carbon), sputtered films of metals such as silicon, and Permeate (registered trademark) series manufactured by D&D Co., Ltd. Examples include inorganic coating films containing inorganic components.
  • composite coatings include coatings that include resins and inorganic materials.
  • the arithmetic mean height Sa of the exposed surface 24 of the anodized film 20 may be 0 ⁇ m to 0.45 ⁇ m. By setting the arithmetic mean height Sa of the surface 24 to 0.45 ⁇ m or less, part of the light is reflected on the surface 24 of the anodized film 20, so that the whiteness of the aluminum member 1 can be further improved.
  • the arithmetic mean height Sa can be measured according to ISO25178. Further, the arithmetic mean height Sa of the surface 24 of the anodized film 20 can be adjusted by polishing the surface 24 or the like.
  • the L * value in the L * a * b * color system of the aluminum member 1 measured from the anodized film 20 side is 82.5 to 100, the a * value is ⁇ 1 to +1, and the b * value is ⁇ It may be from 1.5 to +1.5.
  • the L * value, a * value and b * value in the L * a*b * color system conform to JIS Z8781-4:2013 ( Colorimetry -Part 4: CIE 1976 L*a*b* color space). can be asked for.
  • the L * value, a * value and b * value can be measured using a color difference meter or the like, and are measured under conditions such as a diffuse illumination vertical light receiving method (D/0), a viewing angle of 2°, and a C light source. be able to.
  • the brightness is improved, so that the whiteness of the aluminum member 1 can be further improved.
  • the upper limit of the L * value is not particularly limited, and is 100, which is the maximum value of L * .
  • the L * value may be 85 or greater, or may be 87.5 or greater.
  • the saturation becomes close to 0, so that the aluminum member 1 can be red, yellow, green, blue, etc. can be suppressed, and the whiteness of the aluminum member 1 can be further improved.
  • the a * value may be ⁇ 0.8 to +0.8
  • the b * value may be ⁇ 0.8 to +0.8.
  • the ratio of the maximum reflection intensity to the minimum reflection intensity may be 18 or less.
  • the aluminum member 1 looks white even when viewed from various angles, so the angle dependence of the whiteness degree can be further reduced.
  • the lower limit of the ratio is 1 because the smaller the ratio, the lower the angle dependence.
  • the aluminum member 1 includes the base material 10 made of aluminum or an aluminum alloy and the anodized film 20 .
  • the anodized film 20 includes a barrier layer 21 in contact with the surface 11 of the substrate 10 and a first porous layer 22 in contact with the surface of the barrier layer 21 opposite to the substrate 10 .
  • the anodic oxide film 20 is in contact with the surface of the first porous layer 22 opposite to the barrier layer 21 and has a plurality of holes extending linearly in alignment toward the surface 24 exposed from the surface in contact with the first porous layer 22 .
  • the first porous layer 22 has at least one of a plurality of branched pores and a plurality of pores having an average pore size larger than that of the second porous layer 23 .
  • the anodized film 20 incorporates white pigment particles.
  • the second porous layer 23 has a plurality of linearly extending holes and thus has high translucency, and most of the incident light reaches the first porous layer 22 without being absorbed by the second porous layer 23 .
  • the first porous layer 22 has at least one of a plurality of branched pores and a plurality of pores having an average pore size larger than that of the second porous layer 23 . Therefore, the light passing through the first porous layer 22 is diffusely reflected by the first porous layer 22 .
  • the light reflected by the surface 11 of the substrate 10 is further diffusely reflected by the first porous layer 22 and passes through the second porous layer 23 . Therefore, the aluminum member 1 of the present embodiment is presumed to have low angle dependence of whiteness.
  • the second porous layer 23 has high translucency, and a large amount of light is reflected on the surface 11 of the base material 10 without being absorbed by the second porous layer 23. Therefore, the aluminum member having a high degree of whiteness can be used. 1 is obtained. Furthermore, since the anodized film 20 incorporates white pigment particles, the angle dependence is further improved. Since the aluminum member 1 has a paper-like white appearance, it can be preferably used for housings such as smartphones and personal computers.
  • the method for manufacturing the aluminum member 1 includes a roughening treatment step S1, an etching step S2, a first anodization step S3, a second anodization step S4, and a pigment incorporation step S5. , and a sealing step S6. Each step will be described in detail below.
  • the substrate 10 forming the unevenness may be produced by, for example, preparing a molten metal containing a predetermined element, casting, extruding, rolling, heat treating, or the like. Further, the base material 10 forming unevenness may be used as it is after casting, after rolling, or after heat treatment, without performing any particular surface treatment.
  • the substrate 10 forming the irregularities may be used by grinding with a milling machine, polishing the surface 11 with emery paper, buffing, chemical polishing, electropolishing, or the like.
  • the surface 11 of the base material 10 forming irregularities may be polished so that the arithmetic mean height Sa is approximately less than 100 nm.
  • the brightness of the substrate 10 is increased. Therefore, it is possible to obtain the aluminum member 1 having a paper-like white appearance even after the unevenness formation of the surface 11, the etching step S2, the first anodization step S3, and the second anodization step S4.
  • the unevenness of the surface 11 of the base material 10 may be formed by, for example, blasting.
  • particles can collide with the surface 11 of the substrate 10 to form unevenness.
  • the blasting method is not particularly limited, and for example, at least one of wet blasting and dry blasting can be used.
  • unevenness may be formed by colliding particles having an average particle diameter of 20 ⁇ m or less against the surface 11 of the substrate 10 .
  • the average particle size By setting the average particle size to 20 ⁇ m or less, it is possible to suppress absorption of the light passing through the anodized film 20 by the unevenness of the surface 11 of the substrate 10, thereby making the appearance of the aluminum member 1 whiter. be able to.
  • the average particle size of the blasted particles may be 10.5 ⁇ m or less.
  • the lower limit of the average particle size is not particularly limited, but may be 2 ⁇ m or more.
  • the average particle size represents the particle size when the cumulative value of the particle size distribution on a volume basis is 50%, and can be measured by, for example, a laser diffraction/scattering method.
  • Examples of particles used for blasting include ceramic beads containing silicon carbide, boron carbide, boron nitride, alumina, zirconia, etc., metal beads containing stainless steel, steel, etc., resin beads containing nylon, polyester, melamine resins, etc. Examples include glass beads including glass and the like.
  • the particles can be mixed with a liquid such as water and sprayed onto the substrate 10 . Conditions such as the injection pressure and the total number of particles in the blasting process are not particularly limited, and can be appropriately changed according to the state of the substrate 10 and the like.
  • the particles may collide with the surface of the substrate 10 so that the incident angle is less than or equal to a predetermined value.
  • the incident angle may be 60 degrees or less, 45 degrees or less, 30 degrees or less, 15 degrees or less, or 5 degrees or less.
  • the method of forming unevenness on the surface 11 of the base material 10 is not limited to blasting, and may be formed by other methods such as laser processing and etching using a surface-roughening agent.
  • laser processing unevenness is formed by irradiating the surface 11 of the base material 10 with laser light.
  • the diameter, depth and pitch of the recesses and protrusions on the surface 11 of the base material 10 can be adjusted by adjusting the spot diameter, wavelength, output, frequency and pulse width of the laser light, the moving speed of the laser light with respect to the base material 10, and the like.
  • unevenness may be formed by etching with a chemical containing fluoride such as Arsatin (registered trademark) OL-25 manufactured by Okuno Chemical Industries Co., Ltd.
  • the depth of the recesses and the height of the protrusions on the surface 11 of the substrate 10 can be changed by adjusting the temperature, concentration and time of the etchant.
  • the etching step S2 is not an essential step, but can remove the corners of the unevenness of the surface 11 of the base material 10 formed in the roughening treatment step S1 and smooth the unevenness. Etching conditions are not particularly limited as long as an aluminum member 1 having a high degree of whiteness can be obtained.
  • the roughened base material 10 may be etched with at least one of an acidic solution and an alkaline solution.
  • an acidic solution for example, an aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, or the like can be used.
  • an alkaline solution aqueous solutions, such as sodium hydroxide, potassium hydroxide, and sodium carbonate, can be used, for example.
  • concentrations of the acidic solution and the alkaline solution are not particularly limited, but when using an aqueous sodium hydroxide solution, it may be, for example, 10 g/L to 100 g/L.
  • the etching time and etching temperature are also not particularly limited, and can be appropriately adjusted according to the state of the substrate 10 and the etching solution.
  • the etching time is 5 seconds to 90 seconds and the etching temperature is 40.degree. C. to 60.degree.
  • First anodizing step S3 In the first anodizing step S3, the substrate 10 having the unevenness is first anodized with an electrolytic solution capable of forming a plurality of linearly aligned holes.
  • the electrolytic solution used in the first anodization is not particularly limited as long as it can form a plurality of straight holes in the second porous layer 23 .
  • the electrolytic solution may be, for example, an aqueous solution containing at least one electrolyte selected from the group consisting of sulfuric acid, amidosulfuric acid, phosphoric acid and salts thereof, acids containing carboxyl groups, and salts thereof.
  • Acids containing a carboxyl group include at least one acid selected from the group consisting of oxalic acid, salicylic acid, citric acid, maleic acid and tartaric acid.
  • the electrolytic solution for the first anodization preferably contains at least one selected from the group consisting of sulfuric acid, amidosulfuric acid and compounds having a carboxyl group.
  • the electrolytic solution for the first anodization is preferably an acidic electrolytic solution, and the pH of the electrolytic solution is, for example, 0-2.
  • the concentration of the electrolyte in the electrolytic solution is, for example, 1 g/L to 600 g/L.
  • the conditions for the first anodization are not particularly limited, and can be appropriately adjusted according to the state of the substrate 10 and the like.
  • the temperature of the electrolyte may be, for example, 0°C to 30°C.
  • Current densities may be, for example, between 1 mA/cm 2 and 50 mA/cm 2 .
  • the electrolysis time may be, for example, 10 minutes to 50 minutes.
  • the first anodized substrate 10 is second anodized with an electrolytic solution.
  • the electrolytic solution for the second anodization is an electrolytic solution capable of forming at least one of a plurality of branching pores and a plurality of pores having an average pore diameter larger than that of the plurality of linearly extending pores.
  • the electrolytic solution used in the second anodizing step S4 forms at least one of the plurality of branched pores in the first porous layer 22 and the plurality of pores having an average pore diameter larger than the plurality of linearly extending pores. It is not particularly limited as long as it can be formed.
  • the electrolytic solution may be an aqueous solution containing at least one electrolyte selected from the group consisting of compounds having a carboxyl group such as tartaric acid, phosphoric acid, chromic acid, boric acid, and salts thereof.
  • the electrolytic solution for the second anodization preferably contains at least one selected from the group consisting of a compound having a carboxyl group, phosphoric acid, and salts thereof.
  • the electrolytic solution for the second anodization is preferably an aqueous tartrate solution.
  • the aqueous tartrate solution can form at least a plurality of branching pores.
  • the electrolytic solution for the second anodization is preferably an aqueous solution of phosphoric acid.
  • the phosphoric acid aqueous solution can form a plurality of pores having a larger average pore diameter than the plurality of linearly extending pores.
  • the electrolytic solution for the second anodization may contain at least one selected from the group consisting of sodium, potassium and ammonia.
  • the electrolyte for the second anodization may be an acidic or alkaline electrolyte.
  • the pH of the electrolyte is, for example, 9-14.
  • the electrolyte may be mixed with sodium hydroxide or the like.
  • the concentration of the electrolyte in the electrolytic solution is, for example, 0.5 g/L to 300 g/L.
  • the conditions for the second anodization are not particularly limited, and can be appropriately adjusted according to the state of the substrate 10 and the like.
  • the temperature of the electrolyte may be, for example, 0°C to 40°C.
  • the voltage may be, for example, 2V to 500V.
  • the amount of electricity per unit area may be, for example, 0.05 C/cm 2 to 40 C/cm 2 .
  • the electrolysis time may be, for example, 0.1 minutes to 180 minutes.
  • Pigment incorporation step S5 In the pigment incorporation step S5, white pigment particles are incorporated into the anodized film 20 obtained by the first anodization and the second anodization.
  • the anodized film 20 includes a barrier layer 21 , a first porous layer 22 and a second porous layer 23 .
  • the white pigment particles may be incorporated into the anodized film 20 by electrophoresis, or may be incorporated by a method such as an immersion method that does not involve electrophoresis.
  • electrophoresis method electrodes are immersed in a suspension containing white pigment particles and a dispersion medium for dispersing the white pigment particles, and a voltage is applied between the electrodes. When a voltage is applied, an electrophoresis phenomenon causes the white pigment particles to migrate in the dispersion medium toward the electrodes.
  • white pigment particles can be incorporated into the anodized film 20 by using a member including the substrate 10 and the anodized film 20 as an anode or a cathode.
  • the white pigment particles may be negatively charged or positively charged.
  • a member including the base material 10 and the anodized film 20 is installed at the anode, and when the white pigment particles are positively charged, the base material 10 and the anodized film A member with a coating 20 is placed on the cathode.
  • Carbon may be placed on the electrode on the opposite side of the electrode on which the member is placed.
  • the positive and negative charges of the white pigment particles can be adjusted by the type of white pigment particles and the pH of the suspension.
  • a direct current is normally passed between the electrodes from a power source.
  • the dispersion medium may be an electrolyte, such as an aqueous solution.
  • the pH of the dispersion may be, for example, 8 or more and 11 or less.
  • the applied voltage in electrophoresis may be, for example, 100 V or more and 200 V or less. Also, the voltage application time in electrophoresis may be 1 minute or more and 60 minutes or less.
  • the temperature of the electrolyte in electrophoresis may be, for example, 0°C to 40°C.
  • the material and average particle size of the white pigment particles those described above can be employed.
  • the first anodized and second anodized members are immersed in a suspension containing white pigment particles and a dispersion medium for dispersing the white pigment particles.
  • the white pigment particles can be incorporated into the anodized film 20 .
  • a suspension similar to that used in electrophoresis may be used.
  • the content of white pigment particles in the suspension may be 1% by mass or more and 50% by mass or less.
  • the suspension may contain additives including a dispersant for dispersing the white pigment particles in addition to the white pigment particles and the dispersion medium.
  • sealing treatment step S6 Although the sealing step S6 is not an essential step, by sealing the pores of the first porous layer 22 and the pores of the second porous layer 23, the corrosion resistance of the aluminum member 1 can be improved.
  • the pore-sealing treatment can be performed by a known method, such as hot water, hot steam, aqueous nickel acetate solution, nickel fluoride, silicate, and combinations thereof. By the pore-sealing treatment, an aluminum hydrate in which aluminum is hydrated is produced in the pores.
  • the substrate 10 made of aluminum or an aluminum alloy is coated with an electrolytic solution capable of forming a plurality of linearly extending holes.
  • a first anodic oxidation step S3 is included.
  • the method includes a second anodizing step S4 of second anodizing the first anodized substrate 10 with an electrolytic solution.
  • the method includes a step of incorporating white pigment particles into the anodized film 20 obtained by the first anodization and the second anodization.
  • the electrolytic solution for the second anodization is an electrolytic solution capable of forming at least one of a plurality of pores having an average pore diameter larger than that of the plurality of branching pores and the plurality of linearly extending pores.
  • the anodized film 20 is formed.
  • the first anodizing step S ⁇ b>3 a plurality of linearly aligned holes are formed in the anodized film 20 .
  • the second anodizing step S ⁇ b>4 at least one of a plurality of pores having an average pore diameter larger than that of the plurality of branching pores and the plurality of linearly extending pores is formed in the anodized film 20 . Therefore, the anodized film 20 including the barrier layer 21, the first porous layer 22, and the second porous layer 23 is formed by the first anodizing step S3 and the second anodizing step S4. Then, the white pigment particles are taken into the anodized film 20 by the pigment taking-in step S5. Therefore, the aluminum member 1 having low angular dependence can be manufactured by the above method.
  • Example 1 (roughening treatment) A 50 mm long and 50 mm wide piece was cut from a rolled and annealed 5000-series aluminum alloy plate having a thickness of 3 mm.
  • the 5000 series aluminum alloy contains 4.31% by mass of magnesium, 0.02% by mass of iron and 0.02% by mass of silicon, with the balance being aluminum (Al) and unavoidable impurities.
  • Particles were made to collide with the base material by dry blasting to form unevenness on the surface of the base material.
  • Fujirandom WA particle number 1200 alumina particles, maximum particle size: 27.0 ⁇ m, average particle size: 9.5 ⁇ 0.8 ⁇ m
  • the substrate was degreased by immersing it in a 200 g/L nitric acid aqueous solution at room temperature (about 20° C.) for 3 minutes.
  • etching The substrate on which the unevenness is formed is immersed in an aqueous sodium hydroxide solution with a concentration of 100 g/L at a temperature of 60° C. for 60 seconds for etching, and then immersed in an aqueous nitric acid solution with a concentration of 200 g/L for 2 minutes at room temperature (about 20° C.). to remove the smut.
  • the etched substrate was immersed in an acidic aqueous solution of pH 0 containing sulfuric acid at a concentration of 180 g/L, and first anodized under electrolysis conditions of a temperature of 18° C., a current density of 15 mA/cm 2 and an electrolysis time of 22 minutes.
  • the first anodized member was immersed in an alkaline aqueous solution of pH 13 containing disodium tartrate dihydrate at a concentration of 200 g/L and sodium hydroxide at a concentration of 5 g/L. Then, the member was second anodized under the electrolysis conditions of temperature 5° C., voltage 100 V, amount of electricity 1 C/cm 2 , pressure rise rate 1 V/sec, and electrolysis time about 3 minutes.
  • a dispersion liquid in which titanium oxide particles (white pigment particles) having an average particle size of about 60 nm were dispersed was diluted. Then, the second anodized member was immersed in this diluted solution at 50° C. for 10 minutes, thereby depositing titanium oxide particles on the second anodized member.
  • Example 2 An aluminum member was produced in the same manner as in Example 1 except that titanium oxide particles were deposited on the first anodized member to seal the pores without performing the second anodization.
  • the anodized film of the aluminum member obtained as described above was dissolved in a chromic acid (VI) phosphate solution and removed.
  • the average length RSm of the roughness curve element on the surface of the anodized film side of the substrate is measured using a three-dimensional white interference microscope Contour GT-I of Bruker AXS Co., Ltd., to JIS B0601: 2013. Measured according to The average length RSm of the roughness curvilinear element was measured under the conditions of a cutoff ⁇ c of 80 ⁇ m, an objective lens of 115 ⁇ , an internal lens of 1 ⁇ , and a measurement distance of 79 ⁇ m.
  • color tone Based on JIS Z8722, using a color difference meter CR400 manufactured by Konica Minolta Japan Co., Ltd., the color tone of the aluminum member was measured from the surface of the anodized film to obtain the L * value, a * value and b * value.
  • the illumination/light-receiving optical system is a diffuse illumination vertical light-receiving system (D/0)
  • the observation condition is CIE 2° visual field color matching function approximation
  • the light source is C light source
  • the color system is L * a * b * conditions. measured in
  • gloss Using a gloss meter Gloss Mobile MODEL GM-1 manufactured by Suga Test Instruments Co., Ltd., the gloss of the anodized film side surface of the aluminum member was measured. Gloss was measured at angles of incidence of 20°, 60° and 99.3° when light was incident parallel to and perpendicular to the rolled surface of the substrate, respectively.
  • the angular dependence of the whiteness of the aluminum member was evaluated using a goniophotometer (GP-2 type) manufactured by Nikka Densoku Co., Ltd. Specifically, as shown in FIG. 3, the aluminum member 101 was irradiated with light, and the intensity of the light received by the detector 102 was measured.
  • the detector 102 is rotatably provided with a predetermined distance around the aluminum member 101 . When the detector 102 is arranged at a position where the incident angle of the incident light 103 is 45 degrees and the reflection angle of the reflected light 104 is 45 degrees, the detector angle is 0 degrees.
  • the reflection intensity of the reflected light 104 reflected by the aluminum member 101 on the anodized film side was measured at intervals of 0.5 degrees in the detector angle range of -80 degrees to +40 degrees. Then, the ratio of the maximum reflection intensity to the minimum reflection intensity (maximum reflection intensity/minimum reflection intensity) in the detector angle range of -80 degrees to +20 degrees was calculated.
  • the aluminum member of Example 1 has an L * value of 80 or more, an a * value of ⁇ 1 to +1, and a b * value of ⁇ 1.5 to +1.5. Met.
  • the aluminum member of Example 1 compared with the aluminum members of Comparative Examples 1 to 3, had a lower angle dependence of the light reflection intensity like the copy paper of Reference Example. .
  • Example 1 since the gloss value measured from an oblique angle such as 20° and 60° is smaller than that in Comparative Examples 1 to 3, it is said that the angle dependency is improved because the light from the oblique direction is diffused. Conceivable.
  • Example 2 aluminum members according to Example 2 and Comparative Examples 4 and 6 were produced, and the surface properties, first porous layer average pore diameter, second porous layer average pore diameter, color tone, gloss, and angle dependence were measured in the same manner as above. evaluated to Tables 3 and 4 show the results.
  • Example 2 An aluminum member was produced in the same manner as in Example 1, except that the second anodized member was sealed with water vapor at 130° C. for 30 minutes.
  • Example 5 An aluminum member was produced in the same manner as in Example 2, except that titanium oxide particles were deposited on the first anodized member to seal the pores without performing the second anodization.
  • the aluminum member of Example 2 has an L * value of 80 or more, an a * value of ⁇ 1 to +1, and a b * value of ⁇ 1.5 to +1.5. Met. Further, as shown in FIG. 5, compared with the aluminum members of Comparative Examples 4 to 6, the aluminum member of Example 2 had lower angle dependence of the light reflection intensity like the copy paper of the reference example. . In Example 2, since the gloss value measured from an oblique angle such as 20° and 60° is smaller than that in Comparative Examples 4 to 6, it is said that angle dependence is improved because light from an oblique direction is diffused. Conceivable.
  • Example 3 aluminum members according to Example 3 and Comparative Examples 7 to 9 were produced, and the surface properties, first porous layer average pore diameter, second porous layer average pore diameter, color tone, gloss and angle dependence were measured in the same manner as above. evaluated to Tables 5 and 6 show the results.
  • Example 3 An aluminum member was produced in the same manner as in Example 1, except that the substrate was etched without being blasted.
  • Example 8 An aluminum member was produced in the same manner as in Example 3, except that titanium oxide particles were deposited on the first anodized member to seal the pores without performing the second anodization.
  • the aluminum member of Example 3 has an L * value of 80 or more, an a * value of ⁇ 1 to +1, and a b * value of ⁇ 1.5 to +1.5. Met.
  • the aluminum member of Example 3 compared with the aluminum members of Comparative Examples 7 to 9, had a lower angular dependence of the light reflection intensity, like the copy paper of the reference example. .
  • the gloss value measured from an oblique direction such as 20° and 60° is smaller than that in Comparative Examples 7 to 9, it is said that the angle dependency is improved because the light from the oblique direction is diffused. Conceivable.
  • Example 4 An aluminum member was fabricated in the same manner as in Example 1, except that the substrate was etched without blasting, and the second anodized member was sealed with water vapor at 130° C. for 30 minutes.
  • Example 11 An aluminum member was produced in the same manner as in Example 4, except that titanium oxide particles were deposited on the first anodized member to seal the pores without performing the second anodization.
  • the aluminum member of Example 4 has an L * value of 80 or more, an a * value of ⁇ 1 to +1, and a b * value of ⁇ 1.5 to +1.5. Met. Further, as shown in FIG. 7, the aluminum member of Example 4, compared with the aluminum members of Comparative Examples 10 to 12, had lower angle dependency of the light reflection intensity like the copy paper of Reference Example. . In Example 4, since the gloss value measured from an oblique angle such as 20° and 60° is smaller than that in Comparative Examples 10 to 12, it is said that angle dependence is improved because light from an oblique direction is diffused. Conceivable.
  • Example 5 The first anodized member was immersed in an aqueous phosphoric acid solution (pH 1) with a concentration of 98 g/L. Then, the member was second anodized under the electrolysis conditions of temperature 5° C., voltage 100 V, amount of electricity 1 C/cm 2 , pressure increase rate 1 V/sec, and electrolysis time about 4 minutes. An aluminum member was produced in the same manner as in Example 3 except for the above.
  • the aluminum member of Example 5 has an L * value of 80 or more, an a * value of ⁇ 1 to +1, and a b * value of ⁇ 1.5 to +1.5. Met.
  • the aluminum member of Example 5 compared with the aluminum members of Comparative Examples 8 to 9 and 13, had a lower angle dependence of the light reflection intensity, like the copy paper of Reference Example.
  • the gloss value measured from an oblique angle such as 20 ° and 60 ° is smaller than in Comparative Examples 8 to 9 and Comparative Example 13, the angle dependence is due to the diffusion of light from an oblique direction. is thought to have improved.
  • an aluminum member was produced as follows.
  • Example 6 (roughening treatment) A 50 mm long and 50 mm wide piece was cut from a rolled and annealed 5000-series aluminum alloy plate having a thickness of 3 mm.
  • the 5000 series aluminum alloy contains 4.31% by mass of magnesium, 0.02% by mass of iron and 0.02% by mass of silicon, with the balance being aluminum (Al) and unavoidable impurities.
  • Particles were made to collide with the base material by dry blasting to form unevenness on the surface of the base material.
  • Fujirandom WA particle number 1200 alumina particles, maximum particle size: 27.0 ⁇ m, average particle size: 9.5 ⁇ 0.8 ⁇ m
  • the substrate was degreased by immersing it in a 200 g/L nitric acid aqueous solution at room temperature (about 20° C.) for 3 minutes.
  • etching After etching the substrate on which the unevenness is formed by immersing it in an aqueous sodium hydroxide solution with a concentration of 50 g/L at a temperature of 60° C. for 60 seconds, it is then immersed in an aqueous nitric acid solution with a concentration of 200 g/L for 2 minutes at room temperature (about 20° C.). to remove the smut.
  • the etched substrate was immersed in an acidic aqueous solution of pH 0 containing sulfuric acid at a concentration of 180 g/L, and first anodized under electrolysis conditions of a temperature of 18° C., a current density of 15 mA/cm 2 and an electrolysis time of 11 minutes.
  • the first anodized member was immersed in an alkaline aqueous solution of pH 13 containing disodium tartrate dihydrate at a concentration of 106 g/L and sodium hydroxide at a concentration of 3 g/L. Then, the member was second anodized under the electrolysis conditions of a temperature of 5° C., a voltage of 160 V, an amount of electricity of 1 C/cm 2 , a pressure rise rate of 1 V/sec, and an electrolysis time of 80 seconds. Thus, the aluminum member of this example was produced.
  • Figures 8, 9 and 10 are images of the cross section of the aluminum member of Example 6 which was subjected to FIB processing and magnified by a transmission electron microscope at 2,550 times, 19,500 times and 43,000 times, respectively.
  • 11, 12 and 13 are images obtained by FIB-processing the cross section of the aluminum member of Comparative Example 14 and magnifying the cross-section by a transmission electron microscope at 2,550 times, 19,500 times and 43,000 times, respectively.
  • 14, 15 and 16 are images obtained by FIB-processing the cross section of the aluminum member of Comparative Example 15 and enlarging the cross-section by a transmission electron microscope at 2,550 times, 19,500 times and 43,000 times, respectively.
  • the first porous layer has a plurality of branched pores
  • the second porous layer has a plurality of linearly extending pores. From FIGS. 8 to 16 and the results of elemental analysis by EDS (not shown), the anodized film of Example 6 has a barrier layer and a first porous layer derived from the second anodization formed on the surface of the substrate. I found out. It was also found that a second porous layer derived from the first anodization was formed on the surface of the first porous layer.
  • Example 7 An aluminum member was produced in the same manner as in Example 1 except that the electrolysis time of the first anodization was changed to 11 minutes, the sodium hydroxide concentration of the second anodization was changed to 5 g/L, and the sealing time was changed to 10 minutes.
  • 17 and 18 are images obtained by FIB-processing the cross section of the aluminum member of Example 7 and enlarging it by 2,550 times and 19,500 times with a transmission electron microscope, respectively. 17 and 18 show cross-sectional states similar to FIGS. 8 to 10.
  • the first porous layer has a plurality of branching holes
  • the second porous layer has a linear shape. It can be seen that it has a plurality of holes extending to the .
  • Example 7 was subjected to line analysis by EDS. Specifically, line analysis was performed on the portion indicated by line 1 in the "HAADF Detector" of FIG. 19A. As shown in FIGS. 19A and 19B, it was found that the titanium element derived from titanium oxide of the pigment was incorporated into the anodized film. In addition, there is a marked difference in contrast in the area indicated by the arrow in the SEM image, and line analysis also detected a high intensity of titanium in that area.
  • Reference Signs List 1 aluminum member 10 substrate 11 surface 20 anodized film 21 barrier layer 22 first porous layer 23 second porous layer 24 surface

Abstract

An aluminum member (1) is provided with a base material (10) that is formed of aluminum or an aluminum alloy. The aluminum member (1) is provided with an anodic oxide coating film (20) that comprises: a barrier layer (21) which is in contact with a surface (11) of the base material (10); a first porous layer (22) which is in contact with a surface of the barrier layer (21), the surface being on the reverse side from the base material (10); and a second porous layer (23) which is in contact with a surface of the first porous layer (22), the surface being on the reverse side from the barrier layer (21), and which has a plurality of pores that are arrayed so as to linearly extend from the surface that is in contact with the first porous layer (22) toward an exposed front surface (24). The first porous layer (22) has at least either a plurality of branched pores or a plurality of pores that have a larger average pore diameter than the pores of the second porous layer (23). The anodic oxide coating film (20) incorporates white pigment particles.

Description

アルミニウム部材及びその製造方法Aluminum member and its manufacturing method
 本開示は、アルミニウム部材及びその製造方法に関する。 The present disclosure relates to an aluminum member and a manufacturing method thereof.
 近年、例えば携帯機器やパソコン筐体を、紙のような白色の外観にしたいという要望が増加している。このような要望に応えるため、アルミニウム又はアルミニウム合金により形成された基材の表面に陽極酸化皮膜を形成することによって、アルミニウム部材の外観を白色にする試みがなされている。 In recent years, there has been an increasing demand for mobile devices and personal computer housings, for example, to have a paper-like white appearance. In order to meet such demands, attempts have been made to make the appearance of aluminum members white by forming an anodized film on the surface of a substrate made of aluminum or an aluminum alloy.
 特許文献1には、基材の表面の算術平均高さSaが0.1μm~0.5μmであり、最大高さSzが0.2μm~5μmであり、粗さ曲線要素の平均長さRSmが0.5μm~10μmであるアルミニウム部材が開示されている。 In Patent Document 1, the arithmetic mean height Sa of the surface of the substrate is 0.1 μm to 0.5 μm, the maximum height Sz is 0.2 μm to 5 μm, and the average length RSm of the roughness curve element is Aluminum members are disclosed that are between 0.5 μm and 10 μm.
特許第6525035号公報Japanese Patent No. 6525035
 特許文献1のアルミニウム部材によれば、基材の算術平均高さSa、最大高さSz及び粗さ曲線要素の平均長さRSmを所定の範囲内とすることにより、白色の外観を有するアルミニウム部材が得られる。しかしながら、斜めから見た場合の白色度を向上させ、さらに紙に近い外観を有するアルミニウム部材が求められている。 According to the aluminum member of Patent Document 1, the arithmetic mean height Sa of the base material, the maximum height Sz, and the average length RSm of the roughness curve element are set within predetermined ranges, whereby the aluminum member has a white appearance. is obtained. However, there is a demand for an aluminum member that has improved whiteness when viewed obliquely and that has an appearance similar to that of paper.
 本開示は、このような従来技術が有する課題に鑑みてなされたものである。そして、本開示の目的は、角度依存性が低いアルミニウム部材及びその製造方法を提供することである。 The present disclosure has been made in view of such problems of the conventional technology. An object of the present disclosure is to provide an aluminum member with low angular dependence and a method of manufacturing the same.
 本開示の第1の態様に係るアルミニウム部材は、アルミニウム又はアルミニウム合金により形成される基材を備える。アルミニウム部材は、基材の表面と接するバリア層と、バリア層の基材とは反対側の面に接する第1ポーラス層と、第1ポーラス層のバリア層とは反対の面に接し、第1ポーラス層と接する面から露出する表面に向かって整列して直線状に延びる複数の孔を有する第2ポーラス層とを含む陽極酸化皮膜を備える。第1ポーラス層は複数の分岐する孔及び第2ポーラス層よりも大きい平均孔径の複数の孔の少なくともいずれか一方を有する。陽極酸化皮膜には白色顔料粒子が取り込まれている。 The aluminum member according to the first aspect of the present disclosure includes a base material made of aluminum or an aluminum alloy. The aluminum member includes a barrier layer in contact with the surface of the base material, a first porous layer in contact with the surface of the barrier layer opposite to the base material, and a first porous layer in contact with the surface of the first porous layer opposite to the barrier layer. An anodic oxide film including a porous layer and a second porous layer having a plurality of linearly aligned pores extending from the surface in contact with the surface to the exposed surface. The first porous layer has at least one of a plurality of branched pores and a plurality of pores having an average pore size larger than that of the second porous layer. The anodized film incorporates white pigment particles.
 本開示の第2の態様に係るアルミニウム部材の製造方法は、アルミニウム又はアルミニウム合金により形成される基材を、整列して直線状に延びる複数の孔を形成可能な電解液で第1陽極酸化する第1陽極酸化工程を含む。上記方法は、第1陽極酸化された基材を電解液で第2陽極酸化する第2陽極酸化工程を含む。上記方法は、第1陽極酸化及び第2陽極酸化によって得られた陽極酸化皮膜に白色顔料粒子を取り込む工程を含む。第2陽極酸化の電解液は、複数の分岐する孔及び直線状に延びる複数の孔よりも大きい平均孔径を有する複数の孔の少なくともいずれか一方を形成可能な電解液である。 A method for manufacturing an aluminum member according to a second aspect of the present disclosure first anodizes a substrate made of aluminum or an aluminum alloy with an electrolytic solution capable of forming a plurality of aligned linearly extending holes. A first anodizing step is included. The method includes a second anodizing step of second anodizing the first anodized substrate with an electrolyte. The method includes incorporating white pigment particles into the anodized film obtained by the first anodization and the second anodization. The electrolytic solution for the second anodization is an electrolytic solution capable of forming at least one of a plurality of pores having an average pore diameter larger than that of the plurality of branching pores and the plurality of linearly extending pores.
 本開示によれば、角度依存性が低いアルミニウム部材及びその製造方法を提供することができる。 According to the present disclosure, it is possible to provide an aluminum member with low angle dependence and a method for manufacturing the same.
図1は、本実施形態に係るアルミニウム部材の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of an aluminum member according to this embodiment. 図2は、本実施形態に係るアルミニウム部材の製造方法の一例を示す図である。FIG. 2 is a diagram showing an example of a method for manufacturing an aluminum member according to this embodiment. 図3は、ゴニオフォトメーターを用いて白色度の角度依存性を評価する方法を説明する図である。FIG. 3 is a diagram illustrating a method of evaluating angle dependence of whiteness using a goniophotometer. 図4は、実施例1、比較例1~比較例3及び参考例の角度依存性を示すグラフである。FIG. 4 is a graph showing the angle dependence of Example 1, Comparative Examples 1 to 3, and Reference Example. 図5は、実施例2、比較例4~比較例6及び参考例の角度依存性を示すグラフである。FIG. 5 is a graph showing the angle dependence of Example 2, Comparative Examples 4 to 6, and Reference Example. 図6は、実施例3、比較例7~比較例9及び参考例の角度依存性を示すグラフである。FIG. 6 is a graph showing the angle dependence of Example 3, Comparative Examples 7 to 9, and Reference Example. 図7は、実施例4、比較例10~比較例12及び参考例の角度依存性を示すグラフである。FIG. 7 is a graph showing the angle dependence of Example 4, Comparative Examples 10 to 12, and Reference Example. 図8は、実施例6のアルミニウム部材の断面をFIB(集束イオンビーム)加工し、TEM(透過型電子顕微鏡)で2,550倍に拡大した画像である。FIG. 8 is an image obtained by FIB (focused ion beam) processing of the cross section of the aluminum member of Example 6 and magnifying it by 2,550 times with a TEM (transmission electron microscope). 図9は、実施例6のアルミニウム部材の断面をFIB加工し、TEMで19,500倍に拡大した画像である。FIG. 9 is an image obtained by FIB-processing the cross section of the aluminum member of Example 6 and enlarging it 19,500 times with a TEM. 図10は、実施例6のアルミニウム部材の断面をFIB加工し、TEMで43,000倍に拡大した画像である。FIG. 10 is an image obtained by FIB-processing the cross section of the aluminum member of Example 6 and enlarging it 43,000 times with a TEM. 図11は、比較例14のアルミニウム部材の断面をFIB加工し、TEMで2,550倍に拡大した画像である。FIG. 11 is an image obtained by FIB-processing the cross section of the aluminum member of Comparative Example 14 and enlarging it 2,550 times with a TEM. 図12は、比較例14のアルミニウム部材の断面をFIB加工し、TEMで19,500倍に拡大した画像である。FIG. 12 is an image obtained by FIB-processing the cross section of the aluminum member of Comparative Example 14 and enlarging it 19,500 times with a TEM. 図13は、比較例14のアルミニウム部材の断面をFIB加工し、TEMで43,000倍に拡大した画像である。FIG. 13 is an image obtained by FIB-processing the cross section of the aluminum member of Comparative Example 14 and enlarging it 43,000 times with a TEM. 図14は、比較例15のアルミニウム部材の断面をFIB加工し、TEMで2,550倍に拡大した画像である。FIG. 14 is an image obtained by FIB-processing the cross section of the aluminum member of Comparative Example 15 and enlarging it 2,550 times with a TEM. 図15は、比較例15のアルミニウム部材の断面をFIB加工し、TEMで19,500倍に拡大した画像である。FIG. 15 is an image obtained by FIB-processing the cross section of the aluminum member of Comparative Example 15 and enlarging it 19,500 times with a TEM. 図16は、比較例15のアルミニウム部材の断面をFIB加工し、TEMで43,000倍に拡大した画像である。FIG. 16 is an image obtained by FIB-processing the cross section of the aluminum member of Comparative Example 15 and enlarging it 43,000 times with a TEM. 図17は、実施例7のアルミニウム部材の断面をFIB加工し、TEMで2,550倍に拡大した画像である。FIG. 17 is an image obtained by FIB-processing the cross section of the aluminum member of Example 7 and enlarging it 2,550 times with a TEM. 図18は、実施例7のアルミニウム部材の断面をFIB加工し、TEMで19,500倍に拡大した画像である。FIG. 18 is an image obtained by FIB-processing the cross section of the aluminum member of Example 7 and enlarging it 19,500 times with a TEM. 図19Aは、実施例7のアルミニウム部材をEDS(エネルギー分散型X線分光法)によりライン分析した結果である。FIG. 19A is the result of line analysis of the aluminum member of Example 7 by EDS (energy dispersive X-ray spectroscopy). 図19Bは、実施例7のアルミニウム部材をEDS(エネルギー分散型X線分光法)によりライン分析した結果である。FIG. 19B is the result of line analysis of the aluminum member of Example 7 by EDS (energy dispersive X-ray spectroscopy).
 以下、図面を用いて本実施形態に係るアルミニウム部材及びアルミニウム部材の製造方法について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the aluminum member and the method for manufacturing the aluminum member according to the present embodiment will be described in detail with reference to the drawings. Note that the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from the actual ratios.
 [アルミニウム部材]
 図1に示すように、本実施形態のアルミニウム部材1は、基材10と、陽極酸化皮膜20とを備える。以下において、これらの構成要素を説明する。
[Aluminum member]
As shown in FIG. 1 , an aluminum member 1 of this embodiment includes a base material 10 and an anodized film 20 . These components are described below.
 (基材10)
 基材10は、アルミニウム又はアルミニウム合金により形成される。基材10は、例えば、1000系合金、3000系合金、5000系合金、6000系合金又は7000系合金で形成されていてもよい。基材10は、0質量%~10質量%のマグネシウムと、0.1質量%以下の鉄と、0.1質量%以下のケイ素とを含有し、残部がアルミニウム及び不可避不純物であるアルミニウム又はアルミニウム合金により形成されてもよい。基材10は、0質量%~10質量%のマグネシウムと、0.1質量%以下の鉄と、0.1質量%以下のケイ素と、10質量%以下の亜鉛とを含有し、残部がアルミニウム及び不可避不純物であるアルミニウム又はアルミニウム合金により形成されてもよい。
(Base material 10)
The base material 10 is made of aluminum or an aluminum alloy. The substrate 10 may be made of, for example, a 1000 series alloy, a 3000 series alloy, a 5000 series alloy, a 6000 series alloy, or a 7000 series alloy. The base material 10 contains 0% by mass to 10% by mass of magnesium, 0.1% by mass or less of iron, and 0.1% by mass or less of silicon, and the balance is aluminum and inevitable impurities aluminum or aluminum It may be made of an alloy. The base material 10 contains 0% to 10% by mass of magnesium, 0.1% by mass or less of iron, 0.1% by mass or less of silicon, 10% by mass or less of zinc, and the balance being aluminum. and aluminum or an aluminum alloy that is an inevitable impurity.
 マグネシウムは必ずしも基材10に含有されている必要はないが、基材10がマグネシウムを含有していると、アルミニウムとマグネシウムとが固溶して、基材10の強度を向上させることができる。また、マグネシウムの含有量を10質量%以下とすることにより、基材10の耐食性の低下を抑制しつつ、基材10の強度を向上させることができる。マグネシウムの含有量は、0.5質量%以上であってもよく、1質量%以上であってもよい。また、マグネシウムの含有量は、8質量%以下であってもよく、5質量%以下であってもよい。 Although magnesium does not necessarily need to be contained in the base material 10, if the base material 10 contains magnesium, aluminum and magnesium form a solid solution, and the strength of the base material 10 can be improved. Moreover, by setting the content of magnesium to 10% by mass or less, the strength of the base material 10 can be improved while suppressing the deterioration of the corrosion resistance of the base material 10 . The content of magnesium may be 0.5% by mass or more, or may be 1% by mass or more. Also, the content of magnesium may be 8% by mass or less, or may be 5% by mass or less.
 鉄及びケイ素はアルミニウムと固溶しにくい。そのため、基材10がこれらの元素を含有する場合、これらの元素は陽極酸化皮膜20内に鉄又はケイ素を含む第二相として析出しやすい。陽極酸化皮膜20がこれらのような第二相を含有する場合、陽極酸化皮膜20内を透過する光の一部が第二相に吸収されるため、アルミニウム部材1が黄色を帯びた色のように見えてしまうことがある。基材10は0.05質量%以下の鉄を含有していてもよい。また、基材10は0.05質量%以下のケイ素を含有していてもよい。  Iron and silicon are difficult to form a solid solution with aluminum. Therefore, when the base material 10 contains these elements, these elements tend to precipitate as a second phase containing iron or silicon in the anodized film 20 . When the anodized film 20 contains such a second phase, part of the light transmitted through the anodized film 20 is absorbed by the second phase, so that the aluminum member 1 appears yellowish. Sometimes it looks like The base material 10 may contain 0.05% by mass or less of iron. Also, the base material 10 may contain 0.05% by mass or less of silicon.
 亜鉛は必ずしも基材10に含有されている必要はないが、基材10が亜鉛を含有していると、基材10の強度を維持することができる。また、亜鉛の含有量を10質量%以下とすることにより、基材10の強度を維持しつつアルミニウム部材1の外観が損なわれない。亜鉛の含有量は8質量%以下であってもよい。 Zinc does not necessarily have to be contained in the base material 10, but if the base material 10 contains zinc, the strength of the base material 10 can be maintained. Moreover, by setting the zinc content to 10% by mass or less, the strength of the base material 10 is maintained while the appearance of the aluminum member 1 is not impaired. The content of zinc may be 8% by mass or less.
 基材10は不可避不純物を含有していてもよい。本実施形態において、不可避不純物とは、原料中に存在したり、製造工程において不可避的に混入したりするものを意味する。不可避不純物は、本来は不要なものであるが、微量であり、アルミニウム又はアルミニウム合金中の特性に影響を及ぼさないため、許容されている不純物である。アルミニウム又はアルミニウム合金中に含有される可能性がある不可避不純物は、アルミニウム、マグネシウム、鉄、及びケイ素以外の元素である。アルミニウム又はアルミニウム合金中に含有される可能性がある不可避不純物としては、例えば、銅、マンガン、クロム、亜鉛、チタン、ガリウム、ホウ素、バナジウム、ジルコニウム、鉛、カルシウム及びコバルトなどが挙げられる。不可避不純物の量は、アルミニウム又はアルミニウム合金中に合計で0.5質量%以下であることが好ましく、0.2質量%以下であることがより好ましく、0.15質量%以下がさらに好ましく、0.10質量%以下が特に好ましい。また、不可避不純物として含まれる個々の元素の含有量は0.05質量%以下であることが好ましく、0.03質量%以下であることがより好ましく、0.01質量%以下であることがさらに好ましい。 The base material 10 may contain inevitable impurities. In the present embodiment, unavoidable impurities mean those that are present in raw materials or that are unavoidably mixed in during the manufacturing process. Unavoidable impurities are essentially unnecessary impurities, but they are allowable impurities because they are trace amounts and do not affect the properties in aluminum or aluminum alloys. Unavoidable impurities that can be contained in aluminum or aluminum alloys are elements other than aluminum, magnesium, iron, and silicon. Examples of unavoidable impurities that may be contained in aluminum or aluminum alloys include copper, manganese, chromium, zinc, titanium, gallium, boron, vanadium, zirconium, lead, calcium and cobalt. The total amount of inevitable impurities in the aluminum or aluminum alloy is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, further preferably 0.15% by mass or less, and 0 0.10 mass % or less is particularly preferred. In addition, the content of each element contained as inevitable impurities is preferably 0.05% by mass or less, more preferably 0.03% by mass or less, and further preferably 0.01% by mass or less. preferable.
 基材10は陽極酸化皮膜20側の表面11に凹凸を有していてもよい。アルミニウム部材1は、表面11に形成された凹凸によって陽極酸化皮膜20を透過する光を拡散反射することができる。表面11の凹凸は、後述する粗面化処理によって形成することができる。基材10の表面11の算術平均高さSaは0.3μm~0.5μmであってもよい。また、基材10の表面11の最大高さSzは3μm~5μmであってもよい。また、基材10の表面11の粗さ曲線要素の平均長さRSmは6μm~10μmであってもよい。基材10の表面11の算術平均高さSaは0.3μm~0.5μmであり、最大高さSzは3μm~5μmであり、かつ、粗さ曲線要素の平均長さRSmは6μm~10μmであってもよい。 The substrate 10 may have unevenness on the surface 11 on the anodized film 20 side. The unevenness formed on the surface 11 of the aluminum member 1 can diffusely reflect light passing through the anodized film 20 . The unevenness of the surface 11 can be formed by a roughening treatment described later. The arithmetic mean height Sa of the surface 11 of the substrate 10 may be between 0.3 μm and 0.5 μm. Also, the maximum height Sz of the surface 11 of the substrate 10 may be 3 μm to 5 μm. Also, the average length RSm of the roughness curve element of the surface 11 of the substrate 10 may be 6 μm to 10 μm. The arithmetic mean height Sa of the surface 11 of the substrate 10 is 0.3 μm to 0.5 μm, the maximum height Sz is 3 μm to 5 μm, and the average length RSm of the roughness curvilinear element is 6 μm to 10 μm. There may be.
 算術平均高さSaを0.3μm以上とすることにより、陽極酸化皮膜20を透過した光が基材10の表面11で拡散反射するため、アルミニウム部材1を斜めから見た場合の白色度をさらに高くすることができる。また、算術平均高さSaを0.5μm以下とすることにより、陽極酸化皮膜20を透過した光が基材10の表面11の凹凸間で捕捉されるのを抑制することができるため、アルミニウム部材1の外観が灰色になるのを抑制することができる。算術平均高さSaは0.4μm以下であってもよい。算術平均高さSaは、ISO25178に準じて測定することができる。 By setting the arithmetic mean height Sa to 0.3 μm or more, the light transmitted through the anodized film 20 is diffusely reflected on the surface 11 of the substrate 10, so that the whiteness when the aluminum member 1 is viewed from an angle is further improved. can be higher. In addition, by setting the arithmetic mean height Sa to 0.5 μm or less, it is possible to suppress the light transmitted through the anodized film 20 from being trapped between the unevenness of the surface 11 of the base material 10. 1 can be suppressed from becoming gray in appearance. The arithmetic mean height Sa may be 0.4 μm or less. The arithmetic mean height Sa can be measured according to ISO25178.
 最大高さSzを3μm以上とすることにより、陽極酸化皮膜20を透過した光が基材10の表面11で拡散反射するため、アルミニウム部材1を斜めから見た場合の白色度をさらに高くすることができる。また、最大高さSzを5μm以下とすることにより、陽極酸化皮膜20を透過した光が基材10の表面11の凹凸間で捕捉されるのを抑制することができるため、アルミニウム部材1の外観が灰色になるのを抑制することができる。最大高さSzは、4.7μm以下であってもよい。最大高さSzは、ISO25178に準じて測定することができる。 By setting the maximum height Sz to 3 μm or more, the light transmitted through the anodized film 20 is diffusely reflected by the surface 11 of the substrate 10, so that the whiteness of the aluminum member 1 when viewed obliquely can be further increased. can be done. In addition, by setting the maximum height Sz to 5 μm or less, it is possible to suppress the light transmitted through the anodized film 20 from being trapped between the unevenness of the surface 11 of the base material 10, so that the appearance of the aluminum member 1 can be reduced. can be suppressed from turning gray. The maximum height Sz may be 4.7 μm or less. The maximum height Sz can be measured according to ISO25178.
 粗さ曲線要素の平均長さRSmを6μm以上とすることにより、基材10の表面11の凹凸のピッチが小さくなりすぎないため、陽極酸化皮膜20を透過した光が基材10の表面11の凹凸間で捕捉されるのを抑制することができる。したがって、アルミニウム部材1の外観が灰色になるのを抑制することができる。また、粗さ曲線要素の平均長さRSmを10μm以下とすることにより、基材10の表面11の凹凸のピッチが大きくなりすぎない。そのため、陽極酸化皮膜20を透過した光が基材10の表面11で拡散反射し、アルミニウム部材1を斜めから見た場合の白色度をさらに高くすることができる。粗さ曲線要素の平均長さRSmは、7μm以上であってもよく、9.5μm以下であってもよい。粗さ曲線要素の平均長さRSmは、JIS B0601:2013(ISO 4287:1997,Amd.1:2009)に準じて測定することができる。 By setting the average length RSm of the roughness curve element to 6 μm or more, the pitch of the irregularities on the surface 11 of the base material 10 does not become too small, so that the light transmitted through the anodized film 20 reaches the surface 11 of the base material 10. It is possible to suppress trapping between unevenness. Therefore, it is possible to prevent the appearance of the aluminum member 1 from becoming gray. Further, by setting the average length RSm of the roughness curve element to 10 μm or less, the pitch of the irregularities on the surface 11 of the substrate 10 does not become too large. Therefore, the light transmitted through the anodized film 20 is diffusely reflected by the surface 11 of the base material 10, and the whiteness of the aluminum member 1 when viewed obliquely can be further increased. The average length RSm of the roughness curvilinear element may be 7 μm or more and may be 9.5 μm or less. The average length RSm of roughness curve elements can be measured according to JIS B0601:2013 (ISO 4287:1997, Amd.1:2009).
 基材10の表面11の算術平均高さSa、最大高さSz及び粗さ曲線要素の平均長さRSmは、基材10から陽極酸化皮膜20を除去することにより測定することができる。なお、基材10の表面11の凹凸は陽極酸化によって滑らかになるため、陽極酸化前の基材10の表面11の凹凸と陽極酸化後の基材10の表面11の凹凸とは形状が異なっているおそれがある。そのため、本実施形態では、陽極酸化皮膜20除去後の基材10の表面11の形状を測定している。基材10から陽極酸化皮膜20を除去する方法は特に限定されない。例えばJIS H8688:2013(アルミニウム及びアルミニウム合金の陽極酸化皮膜の単位面積当たりの質量測定方法)に準じ、アルミニウム部材1をリン酸クロム酸(VI)溶液に浸し、陽極酸化皮膜20を溶解して除去することができる。 The arithmetic mean height Sa, the maximum height Sz, and the average length RSm of the roughness curve element of the surface 11 of the base material 10 can be measured by removing the anodized film 20 from the base material 10 . Since the unevenness of the surface 11 of the substrate 10 is smoothed by the anodization, the unevenness of the surface 11 of the substrate 10 before anodization and the unevenness of the surface 11 of the substrate 10 after anodization are different in shape. There is a risk that Therefore, in this embodiment, the shape of the surface 11 of the substrate 10 after the anodized film 20 is removed is measured. A method for removing the anodized film 20 from the substrate 10 is not particularly limited. For example, according to JIS H8688:2013 (a method of measuring the mass per unit area of anodized films of aluminum and aluminum alloys), the aluminum member 1 is immersed in a chromic acid (VI) phosphate solution to dissolve and remove the anodized film 20. can do.
 基材10の形状や厚さは特に限定されず、用途に応じて適宜変更することができる。また、基材10は、加工処理又は熱処理などがされていてもよい。 The shape and thickness of the base material 10 are not particularly limited, and can be appropriately changed according to the application. Further, the base material 10 may be processed or heat treated.
 (陽極酸化皮膜20)
 陽極酸化皮膜20は、基材10の表面11に設けられる。このような陽極酸化皮膜20により、耐食性や耐摩耗性などを向上させることができる。陽極酸化皮膜20は、バリア層21と、第1ポーラス層22と、第2ポーラス層23とを含む。第2ポーラス層23は、陽極酸化皮膜20の最外層であってもよい。
(Anodized film 20)
Anodized film 20 is provided on surface 11 of substrate 10 . Such an anodized film 20 can improve corrosion resistance, wear resistance, and the like. Anodized film 20 includes barrier layer 21 , first porous layer 22 , and second porous layer 23 . The second porous layer 23 may be the outermost layer of the anodized film 20 .
 バリア層21は基材10の表面11と接している。バリア層21は緻密な無孔質の層である。バリア層21の厚さは特に限定されないが、例えば1nm以上であってもよく、10nm以上であってもよい。また、バリア層21の厚さは、500nm以下であってもよく、300nm以下であってもよい。 The barrier layer 21 is in contact with the surface 11 of the substrate 10. Barrier layer 21 is a dense, non-porous layer. Although the thickness of the barrier layer 21 is not particularly limited, it may be, for example, 1 nm or more, or 10 nm or more. Also, the thickness of the barrier layer 21 may be 500 nm or less, or may be 300 nm or less.
 バリア層21は、酸化アルミニウムを含んでいる。また、バリア層21は、アルミニウム及び酸素の他、陽極酸化で用いた電解液の溶液の成分に由来する元素である、硫黄、炭素、ナトリウム、カリウム、リン、ケイ素、アンモニアの構成元素である窒素などの元素を含んでいてもよい。ポーラスタイプ電解液を組み合わせた2段電解法により生成したバリア層21及び第1ポーラス層22では、電解液成分で得られた皮膜自体の色調及び入射光の屈折により、アルミニウム部材1の白色度をさらに高くすることができる。 The barrier layer 21 contains aluminum oxide. In addition to aluminum and oxygen, the barrier layer 21 includes sulfur, carbon, sodium, potassium, phosphorus, silicon, nitrogen, which is an element derived from the components of the solution of the electrolytic solution used in the anodization, and nitrogen, which is a constituent element of ammonia. It may contain elements such as In the barrier layer 21 and the first porous layer 22 produced by the two-stage electrolysis method in which the porous type electrolytic solution is combined, the whiteness of the aluminum member 1 is adjusted by the color tone of the film itself obtained by the electrolytic solution components and the refraction of incident light. can be even higher.
 第1ポーラス層22はバリア層21の基材10とは反対側の面に接している。第1ポーラス層22は複数の分岐する孔を有していてもよい。第1ポーラス層22の各孔は樹状構造を有しており、第1ポーラス層22にはバリア層21の表面から第2ポーラス層23に向かって分岐しながら延びる複数の孔が設けられてもよい。第1ポーラス層22には、バリア層21の表面から第2ポーラス層23に向かって延びる直線状の孔が設けられており、直線状の孔から分岐する孔が設けられていてもよい。第1ポーラス層22の複数の孔の平均孔径は、例えば5nm~350nmの範囲内である。第1ポーラス層22の平均孔径は、10nm以上であってもよく、20nm以上であってもよい。また、第1ポーラス層22の平均孔径は、300nm以下であってもよい。第1ポーラス層22の複数の孔の平均孔径は、第2ポーラス層23の複数の孔の平均孔径よりも大きくてもよい。 The first porous layer 22 is in contact with the surface of the barrier layer 21 opposite to the substrate 10 . The first porous layer 22 may have a plurality of branched holes. Each hole of the first porous layer 22 has a dendritic structure, and the first porous layer 22 is provided with a plurality of holes extending while branching from the surface of the barrier layer 21 toward the second porous layer 23 . good too. The first porous layer 22 is provided with linear holes extending from the surface of the barrier layer 21 toward the second porous layer 23, and holes branching from the linear holes may be provided. The average pore diameter of the plurality of pores of the first porous layer 22 is, for example, within the range of 5 nm to 350 nm. The average pore size of the first porous layer 22 may be 10 nm or more, or may be 20 nm or more. Also, the average pore size of the first porous layer 22 may be 300 nm or less. The average pore diameter of the plurality of pores in the first porous layer 22 may be larger than the average pore diameter of the plurality of pores in the second porous layer 23 .
 第1ポーラス層22の厚さは、特に限定されないが、10nm以上5000nm以下であってもよい。第1ポーラス層22の厚さを10nm以上とすることにより、アルミニウム部材1の白さをより向上させることができる。第1ポーラス層22の厚さを5000nm以下とすることにより、陽極酸化皮膜20を形成した際の白色度を高い状態で維持することができる。第1ポーラス層22の厚さは、50nm以上であってもよく、100nm以上であってもよい。第1ポーラス層22の厚さは、4000nm以下であってもよく、3500nm以下であってもよい。 The thickness of the first porous layer 22 is not particularly limited, but may be 10 nm or more and 5000 nm or less. By setting the thickness of the first porous layer 22 to 10 nm or more, the whiteness of the aluminum member 1 can be further improved. By setting the thickness of the first porous layer 22 to 5000 nm or less, it is possible to maintain a high degree of whiteness when the anodized film 20 is formed. The thickness of the first porous layer 22 may be 50 nm or more, or may be 100 nm or more. The thickness of the first porous layer 22 may be 4000 nm or less, or may be 3500 nm or less.
 第1ポーラス層22は、酸化アルミニウムを含んでいる。また、第1ポーラス層22は、アルミニウム及び酸素の他、陽極酸化の電解液に由来する硫酸、リン酸及びこれらの塩類、蓚酸、サリチル酸、クエン酸、マレイン酸及び酒石酸等のようなカルボキシル基を含む酸並びにこれらの塩類、並びに、ケイ酸塩、アンモニウム塩などの化合物を含んでいてもよい。塩としては、ナトリウム塩及びカリウム塩などが挙げられる。第1ポーラス層22が上記元素を含むことにより、第1ポーラス層22が白色になることから、白色度のさらに高いアルミニウム部材1が得られる。 The first porous layer 22 contains aluminum oxide. In addition to aluminum and oxygen, the first porous layer 22 contains carboxyl groups such as sulfuric acid, phosphoric acid and their salts, oxalic acid, salicylic acid, citric acid, maleic acid and tartaric acid derived from the electrolytic solution for anodization. Acids and salts thereof, as well as compounds such as silicates and ammonium salts may also be included. Salts include sodium and potassium salts. Since the first porous layer 22 contains the above elements, the first porous layer 22 becomes white, so that the aluminum member 1 with a higher degree of whiteness can be obtained.
 第2ポーラス層23は、第1ポーラス層22のバリア層21とは反対の面に接する。第2ポーラス層23はアルミニウム部材1の最外層として配置され、露出していてもよい。第2ポーラス層23は、第1ポーラス層22と接する面から露出する表面24に向かって整列して直線状に延びる複数の孔を有する。第2ポーラス層23の孔は、第1ポーラス層22の孔と連なっていてもよい。第2ポーラス層23の複数の孔の平均孔径は、例えば5nm~200nmの範囲内である。第2ポーラス層23の平均孔径は、8nm以上であってもよく、10nm以上であってもよい。また、第2ポーラス層23の平均孔径は、100nm以下であってもよく、50nm以下であってもよく、30nm以下であってもよい。 The second porous layer 23 is in contact with the surface of the first porous layer 22 opposite to the barrier layer 21 . The second porous layer 23 is arranged as the outermost layer of the aluminum member 1 and may be exposed. The second porous layer 23 has a plurality of holes aligned and linearly extending from the surface in contact with the first porous layer 22 toward the exposed surface 24 . The pores of the second porous layer 23 may be connected to the pores of the first porous layer 22 . The average pore diameter of the plurality of pores of the second porous layer 23 is, for example, within the range of 5 nm to 200 nm. The average pore diameter of the second porous layer 23 may be 8 nm or more, or may be 10 nm or more. Also, the average pore size of the second porous layer 23 may be 100 nm or less, 50 nm or less, or 30 nm or less.
 第2ポーラス層23の厚さは、特に限定されないが、2μm以上50μm以下であってもよい。第2ポーラス層23の厚さを2μm以上とすることにより、基材10の上に生成された陽極酸化皮膜20の干渉色を抑制することができ、アルミニウム部材1のL値を向上させることができる。第2ポーラス層23の厚さを50μm以下とすることにより、陽極酸化皮膜20を形成する際の溶解を低減することができる。第2ポーラス層23の厚さは、5μm以上であってもよく、8μm以上であってもよい。また、第2ポーラス層23の厚さは、25μm以下であってもよく、15μm以下であってもよい。 The thickness of the second porous layer 23 is not particularly limited, but may be 2 μm or more and 50 μm or less. By setting the thickness of the second porous layer 23 to 2 μm or more, the interference color of the anodized film 20 formed on the base material 10 can be suppressed, and the L * value of the aluminum member 1 can be improved. can be done. By setting the thickness of the second porous layer 23 to 50 μm or less, dissolution during the formation of the anodized film 20 can be reduced. The thickness of the second porous layer 23 may be 5 μm or more, or may be 8 μm or more. Also, the thickness of the second porous layer 23 may be 25 μm or less, or may be 15 μm or less.
 第2ポーラス層23は、酸化アルミニウムを含んでいる。また、第2ポーラス層23は、酸化アルミニウムに加え、陽極酸化の電解液に由来する硫酸、アミド硫酸、リン酸及びこれらの塩類、蓚酸、サリチル酸、クエン酸、マレイン酸及び酒石酸等のようなカルボキシル基を含む酸並びにこれらの塩類、並びに、ケイ酸塩、アンモニウム塩などの化合物を含んでいてもよい。塩としては、ナトリウム塩及びカリウム塩などが挙げられる。第2ポーラス層23が上記化合物を含むことにより、第2ポーラス層23の透明性が高くなることから、第1ポーラス層22で拡散された光を透過しやすくなり、白色度を高い状態で維持したアルミニウム部材1が得られる。 The second porous layer 23 contains aluminum oxide. In addition to aluminum oxide, the second porous layer 23 contains a carboxylic acid such as sulfuric acid, amidosulfuric acid, phosphoric acid and their salts, oxalic acid, salicylic acid, citric acid, maleic acid and tartaric acid derived from the electrolytic solution for anodization. Acids containing groups and salts thereof, as well as compounds such as silicates and ammonium salts may be included. Salts include sodium and potassium salts. Since the second porous layer 23 contains the above compound, the transparency of the second porous layer 23 is increased, so that the light diffused by the first porous layer 22 is easily transmitted, and the whiteness is maintained at a high level. The aluminum member 1 is obtained.
 第1ポーラス層22は複数の分岐する孔及び第2ポーラス層23よりも大きい平均孔径の複数の孔の少なくともいずれか一方を有する。すなわち、第1ポーラス層22は、複数の分岐する孔を有していてもよく、第2ポーラス層23よりも大きい平均孔径の複数の孔を有していてもよく、第2ポーラス層23よりも大きい平均孔径の複数の分岐する孔を有していてもよい。これにより、第1ポーラス層22での拡散反射を促進し、白色度の角度依存性を低減することができる。なお、本明細書において、平均孔径は、透過型電子顕微鏡でアルミニウム部材1の断面を観察して10以上の孔を測定した平均値である。 The first porous layer 22 has at least one of a plurality of branched pores and a plurality of pores with an average pore size larger than that of the second porous layer 23 . That is, the first porous layer 22 may have a plurality of branched pores, may have a plurality of pores with an average pore diameter larger than that of the second porous layer 23, and may have a plurality of pores with an average pore diameter larger than that of the second porous layer 23. may have a plurality of branched pores with a larger average pore size. Thereby, the diffuse reflection in the first porous layer 22 can be promoted, and the angle dependence of the whiteness can be reduced. In this specification, the average pore diameter is the average value obtained by observing the cross section of the aluminum member 1 with a transmission electron microscope and measuring 10 or more pores.
 陽極酸化皮膜20には白色顔料粒子が取り込まれている。白色顔料粒子は第1ポーラス層22の孔内及び第2ポーラス層23の孔内の少なくともいずれか一方に配置されていてもよい。陽極酸化皮膜20に白色顔料粒子が取り込まれることにより、角度依存性を向上させることができる。 The anodized film 20 incorporates white pigment particles. The white pigment particles may be arranged in at least one of the pores of the first porous layer 22 and the pores of the second porous layer 23 . By incorporating the white pigment particles into the anodized film 20, angle dependence can be improved.
 白色顔料粒子は、有機顔料粒子及び無機顔料粒子の少なくともいずれか一方を含んでいてもよいが、無機顔料粒子を含んでいることが好ましい。無機顔料粒子は、酸化チタン、酸化アルミニウム、酸化亜鉛及び硫化亜鉛からなる群より選択される少なくとも一種を含んでいてもよい。白色顔料粒子は、球状、楕円状、多角形状、板状、鱗片状、針状、無定形状及びこれらの混合物であってもよい。 The white pigment particles may contain at least one of organic pigment particles and inorganic pigment particles, but preferably contain inorganic pigment particles. The inorganic pigment particles may contain at least one selected from the group consisting of titanium oxide, aluminum oxide, zinc oxide and zinc sulfide. The white pigment particles may be spherical, elliptical, polygonal, plate-like, scale-like, needle-like, amorphous and mixtures thereof.
 白色顔料粒子の平均粒子径は、第1ポーラス層22の平均孔径よりも小さくてもよい。また、白色顔料粒子の平均粒子径は、第2ポーラス層23の平均孔径よりも小さくてもよい。白色顔料粒子の平均粒子径は、例えば10nm以上200nm以下であってもよい。白色顔料粒子の平均粒子径を10nm以上とすることにより、角度依存性を十分に低下させることができる。また、白色顔料粒子の平均粒子径を200nm以下とすることにより、白色顔料粒子が第1ポーラス層22の孔内及び第2ポーラス層23の孔内に入り込みやすくなることから、陽極酸化皮膜20に多くの白色顔料粒子を効率的に取り込むことができる。白色顔料粒子の平均粒子径は、13nm以上であってもよく、15nm以上であってもよい。また、白色顔料粒子の平均粒子径は、150nm以下であってもよく、100nm以下であってもよい。本明細書において、平均粒子径は、SEM(走査型電子顕微鏡)などの顕微鏡を用いて実測した粒子径の平均値である。 The average particle size of the white pigment particles may be smaller than the average pore size of the first porous layer 22 . Also, the average particle size of the white pigment particles may be smaller than the average pore size of the second porous layer 23 . The average particle size of the white pigment particles may be, for example, 10 nm or more and 200 nm or less. By setting the average particle size of the white pigment particles to 10 nm or more, the angle dependence can be sufficiently reduced. In addition, by setting the average particle diameter of the white pigment particles to 200 nm or less, the white pigment particles can easily enter the pores of the first porous layer 22 and the pores of the second porous layer 23. Many white pigment particles can be efficiently incorporated. The average particle size of the white pigment particles may be 13 nm or more, or 15 nm or more. Also, the average particle size of the white pigment particles may be 150 nm or less, or may be 100 nm or less. As used herein, the average particle size is the average value of particle sizes actually measured using a microscope such as a SEM (scanning electron microscope).
 第1ポーラス層22の複数の孔、及び第2ポーラス層23の複数の孔は、アルミニウムが水和されたアルミニウム水和物を含む封孔物を有していてもよく、封孔物を有していなくてもよい。封孔物はニッケル化合物を含んでいてもよい。また、封孔処理の代わりに透明の有機系材料、無機系材料、複合材料でコーティングされてもよく、コーティングされていなくてもよい。有機系材料のコーティングの例としては、アクリル樹脂、ウレタン樹脂及びフッ素樹脂のような樹脂コーティングなどが挙げられる。無機系材料のコーティングの例としては、DLC(Diamond-like Carbon)、ケイ素などの金属がスパッタリングされたスパッタ膜、及び株式会社ディ・アンド・ディ製のパーミエイト(登録商標)シリーズ等でコーティングされた無機成分を含有する無機コーティング膜などが挙げられる。複合材料のコーティングの例としては、樹脂と無機物質とを含むコーティングなどが挙げられる。 The plurality of pores of the first porous layer 22 and the plurality of pores of the second porous layer 23 may have a sealant containing aluminum hydrate in which aluminum is hydrated. You don't have to. The sealant may contain a nickel compound. Also, instead of the sealing treatment, it may be coated with a transparent organic material, inorganic material, or composite material, or it may not be coated. Examples of organic material coatings include resin coatings such as acrylic resins, urethane resins, and fluorine resins. Examples of inorganic material coatings include DLC (Diamond-like Carbon), sputtered films of metals such as silicon, and Permeate (registered trademark) series manufactured by D&D Co., Ltd. Examples include inorganic coating films containing inorganic components. Examples of composite coatings include coatings that include resins and inorganic materials.
 陽極酸化皮膜20の露出する表面24の算術平均高さSaは0μm~0.45μmであってもよい。表面24の算術平均高さSaを0.45μm以下とすることにより陽極酸化皮膜20の表面24で光の一部が反射するため、アルミニウム部材1の白色度をより向上させることができる。算術平均高さSaは、ISO25178に準じて測定することができる。また、陽極酸化皮膜20の表面24の算術平均高さSaは、表面24を研磨するなどして調整することができる。 The arithmetic mean height Sa of the exposed surface 24 of the anodized film 20 may be 0 μm to 0.45 μm. By setting the arithmetic mean height Sa of the surface 24 to 0.45 μm or less, part of the light is reflected on the surface 24 of the anodized film 20, so that the whiteness of the aluminum member 1 can be further improved. The arithmetic mean height Sa can be measured according to ISO25178. Further, the arithmetic mean height Sa of the surface 24 of the anodized film 20 can be adjusted by polishing the surface 24 or the like.
 陽極酸化皮膜20側から測定したアルミニウム部材1のL表色系におけるL値は82.5~100であり、a値は-1~+1であり、b値は-1.5~+1.5であってもよい。L表色系におけるL値、a値及びb値は、JIS Z8781-4:2013(測色-第4部:CIE 1976 L*a*b*色空間)に準じて求めることができる。L値、a値及びb値は色彩色差計などを用いて測定することができ、拡散照明垂直受光方式(D/0)、視野角2°、C光源のような条件で測定することができる。 The L * value in the L * a * b * color system of the aluminum member 1 measured from the anodized film 20 side is 82.5 to 100, the a * value is −1 to +1, and the b * value is − It may be from 1.5 to +1.5. The L * value, a * value and b * value in the L * a*b * color system conform to JIS Z8781-4:2013 ( Colorimetry -Part 4: CIE 1976 L*a*b* color space). can be asked for. The L * value, a * value and b * value can be measured using a color difference meter or the like, and are measured under conditions such as a diffuse illumination vertical light receiving method (D/0), a viewing angle of 2°, and a C light source. be able to.
 L値を82.5以上とすることにより、明度が向上することから、アルミニウム部材1の白色度をより向上させることができる。また、L値の上限は特に限定されず、Lの最大値である100である。L値は85以上であってもよく、87.5以上であってもよい。 By setting the L * value to 82.5 or more, the brightness is improved, so that the whiteness of the aluminum member 1 can be further improved. Also, the upper limit of the L * value is not particularly limited, and is 100, which is the maximum value of L * . The L * value may be 85 or greater, or may be 87.5 or greater.
 また、a値を-1~+1、b値を-1.5~+1.5とすることで、彩度が0に近くなることから、アルミニウム部材1が赤色、黄色、緑色、青色などを帯びることを抑制することができ、アルミニウム部材1の白色度をより向上させることができる。なお、a値は-0.8~+0.8、b値は-0.8~+0.8であってもよい。 In addition, by setting the a * value to −1 to +1 and the b * value to −1.5 to +1.5, the saturation becomes close to 0, so that the aluminum member 1 can be red, yellow, green, blue, etc. can be suppressed, and the whiteness of the aluminum member 1 can be further improved. The a * value may be −0.8 to +0.8, and the b * value may be −0.8 to +0.8.
 ゴニオフォトメーターを用いて陽極酸化皮膜20側の反射強度を-80度~+20度の検出器角度で測定した場合において、最小反射強度に対する最大反射強度の比が18以下であってもよい。上記比が18以下であると、様々な角度からアルミニウム部材1を見た場合であっても白色に見えるため、白色度の角度依存性をさらに低くすることができる。上記比は小さい程角度依存性が低いため、上記比の下限値は1である。 When the reflection intensity on the anodized film 20 side is measured using a goniophotometer at a detector angle of -80 degrees to +20 degrees, the ratio of the maximum reflection intensity to the minimum reflection intensity may be 18 or less. When the above ratio is 18 or less, the aluminum member 1 looks white even when viewed from various angles, so the angle dependence of the whiteness degree can be further reduced. The lower limit of the ratio is 1 because the smaller the ratio, the lower the angle dependence.
 以上の通り、本実施形態に係るアルミニウム部材1は、アルミニウム又はアルミニウム合金により形成される基材10と、陽極酸化皮膜20とを備える。陽極酸化皮膜20は、基材10の表面11と接するバリア層21と、バリア層21の基材10とは反対側の面に接する第1ポーラス層22とを含む。陽極酸化皮膜20は、第1ポーラス層22のバリア層21とは反対の面に接し、第1ポーラス層22と接する面から露出する表面24に向かって整列して直線状に延びる複数の孔を有する第2ポーラス層23を含む。第1ポーラス層22は複数の分岐する孔及び第2ポーラス層23よりも大きい平均孔径の複数の孔の少なくともいずれか一方を有する。陽極酸化皮膜20には白色顔料粒子が取り込まれている。 As described above, the aluminum member 1 according to this embodiment includes the base material 10 made of aluminum or an aluminum alloy and the anodized film 20 . The anodized film 20 includes a barrier layer 21 in contact with the surface 11 of the substrate 10 and a first porous layer 22 in contact with the surface of the barrier layer 21 opposite to the substrate 10 . The anodic oxide film 20 is in contact with the surface of the first porous layer 22 opposite to the barrier layer 21 and has a plurality of holes extending linearly in alignment toward the surface 24 exposed from the surface in contact with the first porous layer 22 . It includes a second porous layer 23 having a The first porous layer 22 has at least one of a plurality of branched pores and a plurality of pores having an average pore size larger than that of the second porous layer 23 . The anodized film 20 incorporates white pigment particles.
 第2ポーラス層23は、直線状に延びる複数の孔を有するために透光性が高く、入射光の大部分が第2ポーラス層23で吸収されずに第1ポーラス層22まで到達する。第1ポーラス層22は複数の分岐する孔及び第2ポーラス層23よりも大きい平均孔径の複数の孔の少なくともいずれか一方を有する。そのため、第1ポーラス層22を通過した光が第1ポーラス層22で拡散反射する。基材10の表面11で反射された光は、第1ポーラス層22でさらに拡散反射し、第2ポーラス層23を通過する。そのため、本実施形態のアルミニウム部材1は、白色度の角度依存性が低いと推定される。また、上述のように、第2ポーラス層23の透光性は高く、多くの光が第2ポーラス層23で吸収されずに基材10の表面11で反射するため、白色度の高いアルミニウム部材1が得られる。さらに、陽極酸化皮膜20には白色顔料粒子が取り込まれているため、角度依存性がさらに向上している。アルミニウム部材1は、紙のような白色の外観を有するため、例えばスマートフォンやパソコンなどの筐体に好ましく用いることができる。 The second porous layer 23 has a plurality of linearly extending holes and thus has high translucency, and most of the incident light reaches the first porous layer 22 without being absorbed by the second porous layer 23 . The first porous layer 22 has at least one of a plurality of branched pores and a plurality of pores having an average pore size larger than that of the second porous layer 23 . Therefore, the light passing through the first porous layer 22 is diffusely reflected by the first porous layer 22 . The light reflected by the surface 11 of the substrate 10 is further diffusely reflected by the first porous layer 22 and passes through the second porous layer 23 . Therefore, the aluminum member 1 of the present embodiment is presumed to have low angle dependence of whiteness. In addition, as described above, the second porous layer 23 has high translucency, and a large amount of light is reflected on the surface 11 of the base material 10 without being absorbed by the second porous layer 23. Therefore, the aluminum member having a high degree of whiteness can be used. 1 is obtained. Furthermore, since the anodized film 20 incorporates white pigment particles, the angle dependence is further improved. Since the aluminum member 1 has a paper-like white appearance, it can be preferably used for housings such as smartphones and personal computers.
 [アルミニウム部材の製造方法]
 アルミニウム部材1の製造方法は、図2に示すように、粗面化処理工程S1と、エッチング工程S2と、第1陽極酸化工程S3と、第2陽極酸化工程S4と、顔料取込工程S5と、封孔処理工程S6とを含んでいる。以下、各工程について詳細に説明する。
[Manufacturing method of aluminum member]
As shown in FIG. 2, the method for manufacturing the aluminum member 1 includes a roughening treatment step S1, an etching step S2, a first anodization step S3, a second anodization step S4, and a pigment incorporation step S5. , and a sealing step S6. Each step will be described in detail below.
 (粗面化処理工程S1)
 粗面化処理工程S1では、アルミニウム又はアルミニウム合金により形成される基材10の表面11に凹凸を形成する。粗面化処理工程S1は必須の工程ではないが、アルミニウム部材1の外観をより白色にすることができる。凹凸を形成する基材10は、例えば、所定の元素を有する溶湯の調製、鋳造、押出、圧延、熱処理などにより作製してもよい。また、凹凸を形成する基材10は、鋳造後、圧延後又は熱処理後、特段の表面処理をせずに、そのまま用いてもよい。また、凹凸を形成する基材10は、フライス盤による研削、並びに、エメリー紙、バフ研磨、化学研磨及び電解研磨等により表面11を研磨して用いてもよい。凹凸を形成する基材10の表面11は、算術平均高さSaを100nm未満程度に研磨してもよい。基材10の表面11の算術平均高さSaを100nm未満とすることにより基材10の明度が高くなる。そのため、表面11の凹凸形成、エッチング工程S2、第1陽極酸化工程S3及び第2陽極酸化工程S4を経ても、より紙に近い白色外観を有するアルミニウム部材1を得ることができる。
(Roughening treatment step S1)
In the roughening treatment step S1, irregularities are formed on the surface 11 of the base material 10 made of aluminum or an aluminum alloy. Although the roughening treatment step S1 is not an essential step, it can make the appearance of the aluminum member 1 whiter. The substrate 10 forming the unevenness may be produced by, for example, preparing a molten metal containing a predetermined element, casting, extruding, rolling, heat treating, or the like. Further, the base material 10 forming unevenness may be used as it is after casting, after rolling, or after heat treatment, without performing any particular surface treatment. Further, the substrate 10 forming the irregularities may be used by grinding with a milling machine, polishing the surface 11 with emery paper, buffing, chemical polishing, electropolishing, or the like. The surface 11 of the base material 10 forming irregularities may be polished so that the arithmetic mean height Sa is approximately less than 100 nm. By setting the arithmetic mean height Sa of the surface 11 of the substrate 10 to less than 100 nm, the brightness of the substrate 10 is increased. Therefore, it is possible to obtain the aluminum member 1 having a paper-like white appearance even after the unevenness formation of the surface 11, the etching step S2, the first anodization step S3, and the second anodization step S4.
 基材10の表面11の凹凸は例えばブラスト処理で形成してもよい。ブラスト処理では、基材10の表面11に粒子を衝突させて凹凸を形成することができる。ブラスト処理の方法は特に限定されず、例えばウェットブラスト及びドライブラストの少なくともいずれか一方を用いることができる。粗面化処理工程S1では20μm以下の平均粒子径を有する粒子を基材10の表面11に衝突させて凹凸を形成してもよい。平均粒子径を20μm以下とすることにより、陽極酸化皮膜20を通過した光が基材10の表面11の凹凸で吸収されるのを抑制することができ、アルミニウム部材1の外観をより白色にすることができる。 The unevenness of the surface 11 of the base material 10 may be formed by, for example, blasting. In the blasting process, particles can collide with the surface 11 of the substrate 10 to form unevenness. The blasting method is not particularly limited, and for example, at least one of wet blasting and dry blasting can be used. In the roughening treatment step S1, unevenness may be formed by colliding particles having an average particle diameter of 20 μm or less against the surface 11 of the substrate 10 . By setting the average particle size to 20 μm or less, it is possible to suppress absorption of the light passing through the anodized film 20 by the unevenness of the surface 11 of the substrate 10, thereby making the appearance of the aluminum member 1 whiter. be able to.
 ブラスト処理の粒子の平均粒子径は、10.5μm以下であってもよい。一方、平均粒子径の下限は特に限定されないが、2μm以上であってもよい。平均粒子径を2μm以上とすることにより、基材10の表面11に適度に凹凸が形成されることから、陽極酸化皮膜20を通過してきた光を拡散反射させることができる。そのため、角度を変えて斜めから見た場合でも、アルミニウム部材1が白く見えるため、アルミニウム部材1を紙のような白色にすることができる。なお、平均粒子径は、体積基準における粒度分布の累積値が50%の時の粒子径を表し、例えば、レーザー回折・散乱法により測定することができる。 The average particle size of the blasted particles may be 10.5 μm or less. On the other hand, the lower limit of the average particle size is not particularly limited, but may be 2 μm or more. By setting the average particle size to 2 μm or more, the unevenness is appropriately formed on the surface 11 of the substrate 10 , so that the light passing through the anodized film 20 can be diffusely reflected. Therefore, even when viewed obliquely from different angles, the aluminum member 1 looks white, so that the aluminum member 1 can be made white like paper. The average particle size represents the particle size when the cumulative value of the particle size distribution on a volume basis is 50%, and can be measured by, for example, a laser diffraction/scattering method.
 ブラスト処理に用いられる粒子としては、例えば、炭化ケイ素、炭化ホウ素、窒化ホウ素、アルミナ、ジルコニアなどを含むセラミックビーズ、ステンレス、スチールなどを含む金属ビーズ、ナイロン、ポリエステル、メラミン樹脂などを含む樹脂ビーズ、ガラスなどを含むガラスビーズなどが挙げられる。なお、ウェットブラストの場合は、粒子を水などの液体に混ぜて基材10に吹き付けることができる。ブラスト処理の際の噴射圧力、粒子総数などの条件は特に限定されず、基材10の状態などに応じて適宜変更することができる。ブラスト処理では、入射角が所定値以下となるように粒子を基材10の表面に衝突させてもよい。入射角は、60度以下であってもよく、45度以下であってもよく、30度以下であってもよく、15度以下であってもよく、5度以下であってもよい。 Examples of particles used for blasting include ceramic beads containing silicon carbide, boron carbide, boron nitride, alumina, zirconia, etc., metal beads containing stainless steel, steel, etc., resin beads containing nylon, polyester, melamine resins, etc. Examples include glass beads including glass and the like. In the case of wet blasting, the particles can be mixed with a liquid such as water and sprayed onto the substrate 10 . Conditions such as the injection pressure and the total number of particles in the blasting process are not particularly limited, and can be appropriately changed according to the state of the substrate 10 and the like. In the blasting process, the particles may collide with the surface of the substrate 10 so that the incident angle is less than or equal to a predetermined value. The incident angle may be 60 degrees or less, 45 degrees or less, 30 degrees or less, 15 degrees or less, or 5 degrees or less.
 基材10の表面11に凹凸を形成する方法はブラスト処理に限定されず、レーザー加工及び粗面化処理剤などを用いたエッチング処理などの他の方法で形成してもよい。レーザー加工では、基材10の表面11にレーザー光を照射することで凹凸を形成する。基材10の表面11の凹部及び凸部の径、深さ及びピッチなどは、レーザー光のスポット径、波長、出力、周波数及びパルス幅、基材10に対するレーザー光の移動速度などを調節することによって変更することができる。エッチング処理による粗面化処理は、例えば、奥野製薬工業株式会社のアルサテン(登録商標)OL-25等のフッ化物を含有した薬品を用いてエッチング処理することで凹凸を形成してもよい。基材10の表面11の凹部の深さ及び凸部の高さなどは、エッチング液の温度、濃度及び時間などを調節することによって変更することができる。 The method of forming unevenness on the surface 11 of the base material 10 is not limited to blasting, and may be formed by other methods such as laser processing and etching using a surface-roughening agent. In laser processing, unevenness is formed by irradiating the surface 11 of the base material 10 with laser light. The diameter, depth and pitch of the recesses and protrusions on the surface 11 of the base material 10 can be adjusted by adjusting the spot diameter, wavelength, output, frequency and pulse width of the laser light, the moving speed of the laser light with respect to the base material 10, and the like. can be changed by In the roughening treatment by etching, for example, unevenness may be formed by etching with a chemical containing fluoride such as Arsatin (registered trademark) OL-25 manufactured by Okuno Chemical Industries Co., Ltd. The depth of the recesses and the height of the protrusions on the surface 11 of the substrate 10 can be changed by adjusting the temperature, concentration and time of the etchant.
 (エッチング工程S2)
 エッチング工程S2は、必須の工程ではないが、粗面化処理工程S1で形成された基材10の表面11の凹凸の角を取り除き、凹凸を滑らかにすることができる。エッチングの条件は特に限定されず、白色度の高いアルミニウム部材1が得られればよい。
(Etching step S2)
The etching step S2 is not an essential step, but can remove the corners of the unevenness of the surface 11 of the base material 10 formed in the roughening treatment step S1 and smooth the unevenness. Etching conditions are not particularly limited as long as an aluminum member 1 having a high degree of whiteness can be obtained.
 エッチング工程S2では、粗面化された基材10を、酸性溶液及びアルカリ性溶液の少なくともいずれか一方によりエッチングしてもよい。酸性溶液としては、例えば、塩酸、硫酸及び硝酸などの水溶液を用いることができる。また、アルカリ性溶液としては、例えば、水酸化ナトリウム、水酸化カリウム及び炭酸ナトリウムなどの水溶液を用いることができる。酸性溶液及びアルカリ性溶液の濃度などは特に限定されないが、水酸化ナトリウム水溶液を用いる場合、例えば10g/L~100g/Lであってもよい。 In the etching step S2, the roughened base material 10 may be etched with at least one of an acidic solution and an alkaline solution. As the acidic solution, for example, an aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, or the like can be used. Moreover, as an alkaline solution, aqueous solutions, such as sodium hydroxide, potassium hydroxide, and sodium carbonate, can be used, for example. The concentrations of the acidic solution and the alkaline solution are not particularly limited, but when using an aqueous sodium hydroxide solution, it may be, for example, 10 g/L to 100 g/L.
 エッチング時間やエッチング温度も特に限定されず、基材10の状態やエッチング液に応じて適宜調整することができる。一例を挙げると、エッチング時間は5秒~90秒、エッチング温度は40℃~60℃である。 The etching time and etching temperature are also not particularly limited, and can be appropriately adjusted according to the state of the substrate 10 and the etching solution. For example, the etching time is 5 seconds to 90 seconds and the etching temperature is 40.degree. C. to 60.degree.
 (第1陽極酸化工程S3)
 第1陽極酸化工程S3では、凹凸が形成された基材10を、整列して直線状に延びる複数の孔を形成可能な電解液で第1陽極酸化する。第1陽極酸化で用いられる電解液は、第2ポーラス層23中にストレート状の複数の孔を形成可能であれば特に限定されない。電解液は、例えば、硫酸、アミド硫酸、リン酸及びこれらの塩類、カルボキシル基を含む酸並びにこれらの塩からなる群より選択される少なくとも1種の電解質を含む水溶液であってもよい。カルボキシル基を含む酸としては、蓚酸、サリチル酸、クエン酸、マレイン酸及び酒石酸からなる群より選択される少なくとも1種の酸が挙げられる。これらの中でも、第1陽極酸化の電解液は硫酸、アミド硫酸及びカルボキシル基を有する化合物からなる群より選択される少なくとも一種を含むことが好ましい。第1陽極酸化の電解液は酸性電解液であることが好ましく、電解液のpHは例えば0~2である。電解液における上記電解質の濃度は、例えば1g/L~600g/Lである。
(First anodizing step S3)
In the first anodizing step S3, the substrate 10 having the unevenness is first anodized with an electrolytic solution capable of forming a plurality of linearly aligned holes. The electrolytic solution used in the first anodization is not particularly limited as long as it can form a plurality of straight holes in the second porous layer 23 . The electrolytic solution may be, for example, an aqueous solution containing at least one electrolyte selected from the group consisting of sulfuric acid, amidosulfuric acid, phosphoric acid and salts thereof, acids containing carboxyl groups, and salts thereof. Acids containing a carboxyl group include at least one acid selected from the group consisting of oxalic acid, salicylic acid, citric acid, maleic acid and tartaric acid. Among these, the electrolytic solution for the first anodization preferably contains at least one selected from the group consisting of sulfuric acid, amidosulfuric acid and compounds having a carboxyl group. The electrolytic solution for the first anodization is preferably an acidic electrolytic solution, and the pH of the electrolytic solution is, for example, 0-2. The concentration of the electrolyte in the electrolytic solution is, for example, 1 g/L to 600 g/L.
 第1陽極酸化の条件は特に制限されず、基材10の状態などに応じて適宜調整することができる。電解液の温度は、例えば0℃~30℃であってもよい。電流密度は、例えば1mA/cm~50mA/cmであってもよい。電解時間は、例えば10分~50分であってもよい。 The conditions for the first anodization are not particularly limited, and can be appropriately adjusted according to the state of the substrate 10 and the like. The temperature of the electrolyte may be, for example, 0°C to 30°C. Current densities may be, for example, between 1 mA/cm 2 and 50 mA/cm 2 . The electrolysis time may be, for example, 10 minutes to 50 minutes.
 (第2陽極酸化工程S4)
 第2陽極酸化工程S4では、第1陽極酸化された基材10を電解液で第2陽極酸化する。第2陽極酸化の電解液は、複数の分岐する孔及び上記直線状に延びる複数の孔よりも大きい平均孔径を有する複数の孔の少なくともいずれか一方を形成可能な電解液である。第2陽極酸化工程S4で用いられる電解液は、第1ポーラス層22中に複数の分岐する孔及び上記直線状に延びる複数の孔よりも大きい平均孔径を有する複数の孔の少なくともいずれか一方を形成可能であれば特に限定されない。電解液は、例えば酒石酸などのようなカルボキシル基を有する化合物、リン酸、クロム酸、ホウ酸及びこれらの塩からなる群より選択される少なくとも一種の電解質を含む水溶液であってもよい。これらの中でも、第2陽極酸化の電解液は、カルボキシル基を有する化合物及びリン酸並びにこれらの塩からなる群より選択される少なくとも一種を含むことが好ましい。具体的には、第2陽極酸化の電解液は酒石酸塩水溶液であることが好ましい。酒石酸塩水溶液は、少なくとも複数の分岐する孔を形成することができる。また、第2陽極酸化の電解液はリン酸水溶液であることも好ましい。リン酸水溶液は上記直線状に延びる複数の孔よりも大きい平均孔径を有する複数の孔を形成することができる。第2陽極酸化の電解液はナトリウム、カリウム及びアンモニアからなる群より選択される少なくとも一種を含有していてもよい。第2陽極酸化の電解液は酸性又はアルカリ性電解液であってもよい。第2陽極酸化の電解液がアルカリ性電解液である場合、電解液のpHは例えば9~14である。電解液をアルカリ性にするため、電解液に水酸化ナトリウムなどを混合してもよい。電解液における上記電解質の濃度は、例えば0.5g/L~300g/Lである。
(Second anodizing step S4)
In the second anodizing step S4, the first anodized substrate 10 is second anodized with an electrolytic solution. The electrolytic solution for the second anodization is an electrolytic solution capable of forming at least one of a plurality of branching pores and a plurality of pores having an average pore diameter larger than that of the plurality of linearly extending pores. The electrolytic solution used in the second anodizing step S4 forms at least one of the plurality of branched pores in the first porous layer 22 and the plurality of pores having an average pore diameter larger than the plurality of linearly extending pores. It is not particularly limited as long as it can be formed. The electrolytic solution may be an aqueous solution containing at least one electrolyte selected from the group consisting of compounds having a carboxyl group such as tartaric acid, phosphoric acid, chromic acid, boric acid, and salts thereof. Among these, the electrolytic solution for the second anodization preferably contains at least one selected from the group consisting of a compound having a carboxyl group, phosphoric acid, and salts thereof. Specifically, the electrolytic solution for the second anodization is preferably an aqueous tartrate solution. The aqueous tartrate solution can form at least a plurality of branching pores. Also, the electrolytic solution for the second anodization is preferably an aqueous solution of phosphoric acid. The phosphoric acid aqueous solution can form a plurality of pores having a larger average pore diameter than the plurality of linearly extending pores. The electrolytic solution for the second anodization may contain at least one selected from the group consisting of sodium, potassium and ammonia. The electrolyte for the second anodization may be an acidic or alkaline electrolyte. When the electrolyte for the second anodization is an alkaline electrolyte, the pH of the electrolyte is, for example, 9-14. In order to make the electrolyte alkaline, the electrolyte may be mixed with sodium hydroxide or the like. The concentration of the electrolyte in the electrolytic solution is, for example, 0.5 g/L to 300 g/L.
 第2陽極酸化の条件は特に制限されず、基材10の状態などに応じて適宜調整することができる。一例を挙げると、電解液の温度は、例えば0℃~40℃であってもよい。電圧は、例えば2V~500Vであってもよい。単位面積当たりの電気量は、例えば0.05C/cm~40C/cmであってもよい。電解時間は、例えば0.1分~180分であってもよい。 The conditions for the second anodization are not particularly limited, and can be appropriately adjusted according to the state of the substrate 10 and the like. By way of example, the temperature of the electrolyte may be, for example, 0°C to 40°C. The voltage may be, for example, 2V to 500V. The amount of electricity per unit area may be, for example, 0.05 C/cm 2 to 40 C/cm 2 . The electrolysis time may be, for example, 0.1 minutes to 180 minutes.
 (顔料取込工程S5)
 顔料取込工程S5では、第1陽極酸化及び第2陽極酸化によって得られた陽極酸化皮膜20に白色顔料粒子を取り込む。陽極酸化皮膜20は、バリア層21と、第1ポーラス層22と、第2ポーラス層23とを含んでいる。
(Pigment incorporation step S5)
In the pigment incorporation step S5, white pigment particles are incorporated into the anodized film 20 obtained by the first anodization and the second anodization. The anodized film 20 includes a barrier layer 21 , a first porous layer 22 and a second porous layer 23 .
 白色顔料粒子は電気泳動法によって陽極酸化皮膜20に取り込まれてもよく、電気泳動を伴わない浸漬法などの方法によって取り込まれてもよい。電気泳動法では、白色顔料粒子と白色顔料粒子を分散させる分散媒とを含む懸濁液中に、電極を浸漬させ、電極間に電圧を印加する。電圧が印加されると、電気泳動現象により、白色顔料粒子が分散媒中で電極に向かって移動する。例えば、基材10と陽極酸化皮膜20とを備える部材を陽極又は陰極として用いることにより、陽極酸化皮膜20に白色顔料粒子を取り込むことができる。 The white pigment particles may be incorporated into the anodized film 20 by electrophoresis, or may be incorporated by a method such as an immersion method that does not involve electrophoresis. In the electrophoresis method, electrodes are immersed in a suspension containing white pigment particles and a dispersion medium for dispersing the white pigment particles, and a voltage is applied between the electrodes. When a voltage is applied, an electrophoresis phenomenon causes the white pigment particles to migrate in the dispersion medium toward the electrodes. For example, white pigment particles can be incorporated into the anodized film 20 by using a member including the substrate 10 and the anodized film 20 as an anode or a cathode.
 白色顔料粒子は、負に帯電していてもよく、正に帯電していてもよい。白色顔料粒子が負に帯電している場合には基材10と陽極酸化皮膜20とを備える部材を陽極に設置し、白色顔料粒子が正に帯電している場合には基材10と陽極酸化皮膜20とを備える部材を陰極に設置する。上記部材が設置された電極とは反対側の電極には、カーボンを設置してもよい。 The white pigment particles may be negatively charged or positively charged. When the white pigment particles are negatively charged, a member including the base material 10 and the anodized film 20 is installed at the anode, and when the white pigment particles are positively charged, the base material 10 and the anodized film A member with a coating 20 is placed on the cathode. Carbon may be placed on the electrode on the opposite side of the electrode on which the member is placed.
 白色顔料粒子の正負の帯電は、白色顔料粒子の種類及び懸濁液のpHなどによって調製することができる。電極間には、通常、電源から直流電流が流される。分散媒は、電解質であればよく、例えば水溶液であってもよい。分散液のpHは、例えば8以上11以下であってもよい。電気泳動法での印加電圧は例えば100V以上200V以下であってもよい。また、電気泳動法での電圧の印加時間は1分以上60分以下であってもよい。電気泳動法での電解液の温度は、例えば0℃~40℃であってもよい。白色顔料粒子の材料及び平均粒子径などは、上述したものを採用することができる。 The positive and negative charges of the white pigment particles can be adjusted by the type of white pigment particles and the pH of the suspension. A direct current is normally passed between the electrodes from a power source. The dispersion medium may be an electrolyte, such as an aqueous solution. The pH of the dispersion may be, for example, 8 or more and 11 or less. The applied voltage in electrophoresis may be, for example, 100 V or more and 200 V or less. Also, the voltage application time in electrophoresis may be 1 minute or more and 60 minutes or less. The temperature of the electrolyte in electrophoresis may be, for example, 0°C to 40°C. As for the material and average particle size of the white pigment particles, those described above can be employed.
 浸漬法では、白色顔料粒子と白色顔料粒子を分散させる分散媒を含む懸濁液中に、上述した第1陽極酸化及び第2陽極酸化した部材を浸漬させる。これにより、陽極酸化皮膜20に白色顔料粒子を取り込むことができる。懸濁液は電気泳動法と同様のものを用いてもよい。 In the immersion method, the first anodized and second anodized members are immersed in a suspension containing white pigment particles and a dispersion medium for dispersing the white pigment particles. Thereby, the white pigment particles can be incorporated into the anodized film 20 . A suspension similar to that used in electrophoresis may be used.
 懸濁液における白色顔料粒子の含有量は1質量%以上50質量%以下であってもよい。懸濁液は、白色顔料粒子及び分散媒に加え、白色顔料粒子を分散させるための分散剤を含む添加剤を含んでいてもよい。 The content of white pigment particles in the suspension may be 1% by mass or more and 50% by mass or less. The suspension may contain additives including a dispersant for dispersing the white pigment particles in addition to the white pigment particles and the dispersion medium.
 (封孔処理工程S6)
 封孔処理工程S6は必須の工程ではないが、第1ポーラス層22の孔及び第2ポーラス層23の孔を封孔することにより、アルミニウム部材1の耐食性を向上させることができる。封孔処理は公知の方法で実施することができ、例えば、高温の水、高温の水蒸気、酢酸ニッケル水溶液、フッ化ニッケル、ケイ酸塩及びこれらの組み合わせによって実施することができる。封孔処理により、アルミニウムが水和されたアルミニウム水和物が、孔内に生成される。
(Sealing treatment step S6)
Although the sealing step S6 is not an essential step, by sealing the pores of the first porous layer 22 and the pores of the second porous layer 23, the corrosion resistance of the aluminum member 1 can be improved. The pore-sealing treatment can be performed by a known method, such as hot water, hot steam, aqueous nickel acetate solution, nickel fluoride, silicate, and combinations thereof. By the pore-sealing treatment, an aluminum hydrate in which aluminum is hydrated is produced in the pores.
 以上の通り、本実施形態に係るアルミニウム部材1の製造方法は、アルミニウム又はアルミニウム合金により形成される基材10を、整列して直線状に延びる複数の孔を形成可能な電解液で第1陽極酸化する第1陽極酸化工程S3を含む。上記方法は、第1陽極酸化された基材10を電解液で第2陽極酸化する第2陽極酸化工程S4を含む。上記方法は、第1陽極酸化及び第2陽極酸化によって得られた陽極酸化皮膜20に白色顔料粒子を取り込む工程を含む。第2陽極酸化の電解液は、複数の分岐する孔及び直線状に延びる複数の孔よりも大きい平均孔径を有する複数の孔の少なくともいずれか一方を形成可能な電解液である。 As described above, in the method for manufacturing the aluminum member 1 according to the present embodiment, the substrate 10 made of aluminum or an aluminum alloy is coated with an electrolytic solution capable of forming a plurality of linearly extending holes. A first anodic oxidation step S3 is included. The method includes a second anodizing step S4 of second anodizing the first anodized substrate 10 with an electrolytic solution. The method includes a step of incorporating white pigment particles into the anodized film 20 obtained by the first anodization and the second anodization. The electrolytic solution for the second anodization is an electrolytic solution capable of forming at least one of a plurality of pores having an average pore diameter larger than that of the plurality of branching pores and the plurality of linearly extending pores.
 上記方法は、第1陽極酸化工程S3及び第2陽極酸化工程S4を含むため、陽極酸化皮膜20が形成される。第1陽極酸化工程S3では整列して直線状に延びる複数の孔が陽極酸化皮膜20に形成される。第2陽極酸化工程S4では複数の分岐する孔及び直線状に延びる複数の孔よりも大きい平均孔径を有する複数の孔の少なくともいずれか一方が陽極酸化皮膜20に形成される。そのため、第1陽極酸化工程S3及び第2陽極酸化工程S4によって、バリア層21と、第1ポーラス層22と、第2ポーラス層23とを含む陽極酸化皮膜20が形成される。そして、顔料取込工程S5によって、陽極酸化皮膜20に白色顔料粒子が取り込まれる。したがって、上記方法によって上述した角度依存性が低いアルミニウム部材1を製造することができる。 Since the above method includes the first anodizing step S3 and the second anodizing step S4, the anodized film 20 is formed. In the first anodizing step S<b>3 , a plurality of linearly aligned holes are formed in the anodized film 20 . In the second anodizing step S<b>4 , at least one of a plurality of pores having an average pore diameter larger than that of the plurality of branching pores and the plurality of linearly extending pores is formed in the anodized film 20 . Therefore, the anodized film 20 including the barrier layer 21, the first porous layer 22, and the second porous layer 23 is formed by the first anodizing step S3 and the second anodizing step S4. Then, the white pigment particles are taken into the anodized film 20 by the pigment taking-in step S5. Therefore, the aluminum member 1 having low angular dependence can be manufactured by the above method.
 以下、本実施形態を実施例、比較例及び参考例によりさらに詳細に説明するが、本実施形態はこれらに限定されるものではない。 Hereinafter, the present embodiment will be described in more detail with examples, comparative examples, and reference examples, but the present embodiment is not limited to these.
 [実施例1]
 (粗面化処理)
 圧延及び焼鈍した厚さ3mmの5000系アルミニウム合金板を、長さ50mm及び幅50mmに切り出したものを基材とした。5000系アルミニウム合金は、マグネシウム4.31質量%、鉄0.02質量%及びケイ素0.02質量%を含有し、残部がアルミニウム(Al)及び不可避不純物である。
[Example 1]
(roughening treatment)
A 50 mm long and 50 mm wide piece was cut from a rolled and annealed 5000-series aluminum alloy plate having a thickness of 3 mm. The 5000 series aluminum alloy contains 4.31% by mass of magnesium, 0.02% by mass of iron and 0.02% by mass of silicon, with the balance being aluminum (Al) and unavoidable impurities.
 上記基材にドライブラストで粒子を衝突させ、基材の表面に凹凸を形成した。粒子は、株式会社不二製作所製のフジランダムWA 粒番号1200(アルミナ粒子、最大粒子径27.0 μm 平均粒子径 9.5±0.8μm)を用いた。ブラスト処理後、基材を200g/Lの硝酸水溶液に室温(約20℃)で3分間浸漬させて脱脂した。 Particles were made to collide with the base material by dry blasting to form unevenness on the surface of the base material. As the particles, Fujirandom WA particle number 1200 (alumina particles, maximum particle size: 27.0 μm, average particle size: 9.5±0.8 μm) manufactured by Fuji Seisakusho Co., Ltd. was used. After blasting, the substrate was degreased by immersing it in a 200 g/L nitric acid aqueous solution at room temperature (about 20° C.) for 3 minutes.
 (エッチング)
 凹凸が形成された基材を、温度60℃で濃度100g/Lの水酸化ナトリウム水溶液に60秒間浸漬してエッチングした後、濃度200g/Lの硝酸水溶液に室温(約20℃)で2分間浸漬してスマットを除去した。
(etching)
The substrate on which the unevenness is formed is immersed in an aqueous sodium hydroxide solution with a concentration of 100 g/L at a temperature of 60° C. for 60 seconds for etching, and then immersed in an aqueous nitric acid solution with a concentration of 200 g/L for 2 minutes at room temperature (about 20° C.). to remove the smut.
 (第1陽極酸化)
 エッチングされた基材を、濃度180g/Lの硫酸を含むpH0の酸性水溶液に浸漬し、温度18℃、電流密度15mA/cm及び電解時間22分の電解条件で第1陽極酸化した。
(First anodizing)
The etched substrate was immersed in an acidic aqueous solution of pH 0 containing sulfuric acid at a concentration of 180 g/L, and first anodized under electrolysis conditions of a temperature of 18° C., a current density of 15 mA/cm 2 and an electrolysis time of 22 minutes.
 (第2陽極酸化)
 第1陽極酸化された部材を、濃度200g/Lの酒石酸二ナトリウム・2水和物と濃度5g/Lの水酸化ナトリウムとを含有するpH13のアルカリ性水溶液に浸漬させた。そして、上記部材を、温度5℃、電圧100V、電気量1C/cm、昇圧速度1V/秒及び電解時間約3分の電解条件で第2陽極酸化した。
(Second anodic oxidation)
The first anodized member was immersed in an alkaline aqueous solution of pH 13 containing disodium tartrate dihydrate at a concentration of 200 g/L and sodium hydroxide at a concentration of 5 g/L. Then, the member was second anodized under the electrolysis conditions of temperature 5° C., voltage 100 V, amount of electricity 1 C/cm 2 , pressure rise rate 1 V/sec, and electrolysis time about 3 minutes.
 (顔料)
 平均粒子径約60nmの酸化チタン粒子(白色顔料粒子)が分散した分散液を希釈した。そして、この希釈液に第2陽極酸化した部材を50℃で10分間浸漬させることにより、第2陽極酸化した部材に酸化チタン粒子を析出させた。
(pigment)
A dispersion liquid in which titanium oxide particles (white pigment particles) having an average particle size of about 60 nm were dispersed was diluted. Then, the second anodized member was immersed in this diluted solution at 50° C. for 10 minutes, thereby depositing titanium oxide particles on the second anodized member.
 (封孔処理)
 酸化チタン粒子を析出させた部材を、酢酸ニッケル系封孔材によって95℃で20分間封孔処理した。このようにして、本例のアルミニウム部材を作製した。
(Pore sealing treatment)
The member on which the titanium oxide particles were deposited was sealed with a nickel acetate-based sealing material at 95° C. for 20 minutes. Thus, the aluminum member of this example was produced.
 [比較例1]
 酸化チタン粒子を析出させず、第2陽極酸化した部材を封孔した以外は実施例1と同様にしてアルミニウム部材を作製した。
[Comparative Example 1]
An aluminum member was produced in the same manner as in Example 1, except that the second anodized member was sealed without depositing titanium oxide particles.
 [比較例2]
 第2陽極酸化をせず、第1陽極酸化させた部材に酸化チタン粒子を析出させて封孔した以外は実施例1と同様にしてアルミニウム部材を作製した。
[Comparative Example 2]
An aluminum member was produced in the same manner as in Example 1 except that titanium oxide particles were deposited on the first anodized member to seal the pores without performing the second anodization.
 [比較例3]
 第2陽極酸化及び酸化チタン粒子の析出をせず、第1陽極酸化した部材を封孔した以外は実施例1と同様にしてアルミニウム部材を作製した。
[Comparative Example 3]
An aluminum member was produced in the same manner as in Example 1, except that the first anodized member was sealed without the second anodization and precipitation of titanium oxide particles.
 [評価]
 各例で得られたアルミニウム部材の表面特性(Sa,Sz及びRSm)、第1ポーラス層平均孔径、第2ポーラス層平均孔径、色調、光沢及び角度依存性を以下の通り評価した。結果を表1及び表2に示す。
[evaluation]
The surface properties (Sa, Sz and RSm) of the aluminum member obtained in each example, the first porous layer average pore size, the second porous layer average pore size, color tone, gloss and angle dependence were evaluated as follows. The results are shown in Tables 1 and 2.
 (算術平均高さSa及び最大高さSz)
 まず、JIS H8688:2013に準じ、上記のようにして得られたアルミニウム部材をリン酸クロム酸(VI)溶液に浸し、陽極酸化皮膜を溶解させて除去した。次に、基材の陽極酸化皮膜側の表面の算術平均高さSa及び最大高さSzを、ブルカー・エイエックスエス株式会社の3次元白色干渉型顕微鏡ContourGT-Iを用いて、ISO25178に準じて測定した。算術平均高さSa及び最大高さSzは、測定範囲を60μm×79μm、対物レンズを115倍、内部レンズを1倍の条件で測定した。
(Arithmetic mean height Sa and maximum height Sz)
First, according to JIS H8688:2013, the aluminum member obtained as described above was immersed in a chromic acid (VI) phosphate solution to dissolve and remove the anodized film. Next, the arithmetic mean height Sa and the maximum height Sz of the surface of the anodized film side of the substrate are measured using a three-dimensional white interference microscope Contour GT-I manufactured by Bruker AXS Co., Ltd., according to ISO25178. It was measured. The arithmetic mean height Sa and the maximum height Sz were measured under the conditions of a measurement range of 60 μm×79 μm, an objective lens of 115×, and an internal lens of 1×.
 (粗さ曲線要素の平均長さRSm)
 まず、JIS H8688:2013に準じ、上記のようにして得られたアルミニウム部材の陽極酸化皮膜をリン酸クロム酸(VI)溶液に溶解させて除去した。次に、基材の陽極酸化皮膜側の表面における粗さ曲線要素の平均長さRSmを、ブルカー・エイエックスエス株式会社の3次元白色干渉型顕微鏡ContourGT-Iを用いて、JIS B0601:2013に準じて測定した。粗さ曲線要素の平均長さRSmは、カットオフλcを80μm、対物レンズを115倍、内部レンズを1倍、測定距離を79μmの条件で測定した。
(Average length RSm of roughness curve element)
First, according to JIS H8688:2013, the anodized film of the aluminum member obtained as described above was dissolved in a chromic acid (VI) phosphate solution and removed. Next, the average length RSm of the roughness curve element on the surface of the anodized film side of the substrate is measured using a three-dimensional white interference microscope Contour GT-I of Bruker AXS Co., Ltd., to JIS B0601: 2013. Measured according to The average length RSm of the roughness curvilinear element was measured under the conditions of a cutoff λc of 80 μm, an objective lens of 115×, an internal lens of 1×, and a measurement distance of 79 μm.
 (平均孔径)
 アルミニウム部材の断面を透過型電子顕微鏡で観察し、ポーラス層の平均孔径を測定した。
(average pore diameter)
A cross section of the aluminum member was observed with a transmission electron microscope to measure the average pore size of the porous layer.
 (色調)
 JIS Z8722に準拠し、コニカミノルタジャパン株式会社製の色彩色差計CR400を用い、陽極酸化皮膜の表面からアルミニウム部材の色調を測色し、L値、a値及びb値を求めた。色調は、照明・受光光学系を拡散照明垂直受光方式(D/0)、観察条件をCIE2°視野等色関数近似、光源をC光源、及び、表色系をLの条件で測定した。
(color tone)
Based on JIS Z8722, using a color difference meter CR400 manufactured by Konica Minolta Japan Co., Ltd., the color tone of the aluminum member was measured from the surface of the anodized film to obtain the L * value, a * value and b * value. For color tone, the illumination/light-receiving optical system is a diffuse illumination vertical light-receiving system (D/0), the observation condition is CIE 2° visual field color matching function approximation, the light source is C light source, and the color system is L * a * b * conditions. measured in
 (光沢)
 スガ試験機株式会社製の光沢計 Gloss Mobile MODEL GM-1を用い、アルミニウム部材の陽極酸化皮膜側の表面の光沢を測定した。光沢は、基材の圧延面に対して平行方向に光が入射した場合と、垂直方向に光が入射した場合とについて、20°、60°及び99.3°の入射角度でそれぞれ測定した。
(gloss)
Using a gloss meter Gloss Mobile MODEL GM-1 manufactured by Suga Test Instruments Co., Ltd., the gloss of the anodized film side surface of the aluminum member was measured. Gloss was measured at angles of incidence of 20°, 60° and 99.3° when light was incident parallel to and perpendicular to the rolled surface of the substrate, respectively.
 (角度依存性)
 アルミニウム部材の白色度の角度依存性を、ニッカ電測株式会社製のゴニオフォトメーター(GP-2型)を用いて評価した。具体的には、図3に示すように、アルミニウム部材101に対して光を照射し、検出器102が受光する光の強度を測定した。検出器102は、アルミニウム部材101を中心として所定の距離をおいて回転可能に設けられている。入射光103の入射角が45度及び反射光104の反射角が45度の位置に検出器102が配置される場合を検出器角度0度とした。検出器角度が-80度~+40度の範囲において0.5度間隔でアルミニウム部材101が反射する反射光104の陽極酸化皮膜側の反射強度を測定した。そして、検出器角度が-80度~+20度の範囲における最小反射強度に対する最大反射強度(最大反射強度/最小反射強度)の比を算出した。
(angle dependence)
The angular dependence of the whiteness of the aluminum member was evaluated using a goniophotometer (GP-2 type) manufactured by Nikka Densoku Co., Ltd. Specifically, as shown in FIG. 3, the aluminum member 101 was irradiated with light, and the intensity of the light received by the detector 102 was measured. The detector 102 is rotatably provided with a predetermined distance around the aluminum member 101 . When the detector 102 is arranged at a position where the incident angle of the incident light 103 is 45 degrees and the reflection angle of the reflected light 104 is 45 degrees, the detector angle is 0 degrees. The reflection intensity of the reflected light 104 reflected by the aluminum member 101 on the anodized film side was measured at intervals of 0.5 degrees in the detector angle range of -80 degrees to +40 degrees. Then, the ratio of the maximum reflection intensity to the minimum reflection intensity (maximum reflection intensity/minimum reflection intensity) in the detector angle range of -80 degrees to +20 degrees was calculated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、実施例1のアルミニウム部材では、L値が80以上であり、a値が-1~+1であり、b値が-1.5~+1.5であった。また、図4に示すように、実施例1のアルミニウム部材は、比較例1~比較例3のアルミニウム部材と比較し、参考例のコピー用紙のように光の反射強度の角度依存性が低かった。実施例1では、比較例1~比較例3よりも20°及び60°のような斜めから測定した光沢値が小さいことから、斜め方向からの光を拡散するため、角度依存性が改善したと考えられる。 As shown in Tables 1 and 2, the aluminum member of Example 1 has an L * value of 80 or more, an a * value of −1 to +1, and a b * value of −1.5 to +1.5. Met. In addition, as shown in FIG. 4, the aluminum member of Example 1, compared with the aluminum members of Comparative Examples 1 to 3, had a lower angle dependence of the light reflection intensity like the copy paper of Reference Example. . In Example 1, since the gloss value measured from an oblique angle such as 20° and 60° is smaller than that in Comparative Examples 1 to 3, it is said that the angle dependency is improved because the light from the oblique direction is diffused. Conceivable.
 次に、実施例2及び比較例4~比較例6に係るアルミニウム部材を作製し、表面特性、第1ポーラス層平均孔径、第2ポーラス層平均孔径、色調、光沢及び角度依存性を上記と同様に評価した。結果を表3及び表4に示す。 Next, aluminum members according to Example 2 and Comparative Examples 4 and 6 were produced, and the surface properties, first porous layer average pore diameter, second porous layer average pore diameter, color tone, gloss, and angle dependence were measured in the same manner as above. evaluated to Tables 3 and 4 show the results.
 [実施例2]
 第2陽極酸化された部材を水蒸気によって130℃で30分間封孔処理した以外は、実施例1と同様にしてアルミニウム部材を作製した。
[Example 2]
An aluminum member was produced in the same manner as in Example 1, except that the second anodized member was sealed with water vapor at 130° C. for 30 minutes.
 [比較例4]
 酸化チタン粒子を析出させず、第2陽極酸化した部材を封孔した以外は実施例2と同様にしてアルミニウム部材を作製した。
[Comparative Example 4]
An aluminum member was produced in the same manner as in Example 2, except that the second anodized member was sealed without depositing titanium oxide particles.
 [比較例5]
 第2陽極酸化をせず、第1陽極酸化させた部材に酸化チタン粒子を析出させて封孔した以外は実施例2と同様にしてアルミニウム部材を作製した。
[Comparative Example 5]
An aluminum member was produced in the same manner as in Example 2, except that titanium oxide particles were deposited on the first anodized member to seal the pores without performing the second anodization.
 [比較例6]
 第2陽極酸化及び酸化チタン粒子の析出をせず、第1陽極酸化した部材を封孔した以外は実施例2と同様にしてアルミニウム部材を作製した。
[Comparative Example 6]
An aluminum member was produced in the same manner as in Example 2, except that the first anodized member was sealed without the second anodization and precipitation of titanium oxide particles.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3及び表4に示すように、実施例2のアルミニウム部材では、L値が80以上であり、a値が-1~+1であり、b値が-1.5~+1.5であった。また、図5に示すように、実施例2のアルミニウム部材は、比較例4~比較例6のアルミニウム部材と比較し、参考例のコピー用紙のように光の反射強度の角度依存性が低かった。実施例2では、比較例4~比較例6よりも20°及び60°のような斜めから測定した光沢値が小さいことから、斜め方向からの光を拡散するため、角度依存性が改善したと考えられる。 As shown in Tables 3 and 4, the aluminum member of Example 2 has an L * value of 80 or more, an a * value of −1 to +1, and a b * value of −1.5 to +1.5. Met. Further, as shown in FIG. 5, compared with the aluminum members of Comparative Examples 4 to 6, the aluminum member of Example 2 had lower angle dependence of the light reflection intensity like the copy paper of the reference example. . In Example 2, since the gloss value measured from an oblique angle such as 20° and 60° is smaller than that in Comparative Examples 4 to 6, it is said that angle dependence is improved because light from an oblique direction is diffused. Conceivable.
 次に、実施例3及び比較例7~比較例9に係るアルミニウム部材を作製し、表面特性、第1ポーラス層平均孔径、第2ポーラス層平均孔径、色調、光沢及び角度依存性を上記と同様に評価した。結果を表5及び表6に示す。 Next, aluminum members according to Example 3 and Comparative Examples 7 to 9 were produced, and the surface properties, first porous layer average pore diameter, second porous layer average pore diameter, color tone, gloss and angle dependence were measured in the same manner as above. evaluated to Tables 5 and 6 show the results.
 [実施例3]
 ブラストを処理せずに基材をエッチングした以外は、実施例1と同様にしてアルミニウム部材を作製した。
[Example 3]
An aluminum member was produced in the same manner as in Example 1, except that the substrate was etched without being blasted.
 [比較例7]
 酸化チタン粒子を析出させず、第2陽極酸化した部材を封孔した以外は実施例3と同様にしてアルミニウム部材を作製した。
[Comparative Example 7]
An aluminum member was produced in the same manner as in Example 3, except that the second anodized member was sealed without depositing titanium oxide particles.
 [比較例8]
 第2陽極酸化をせず、第1陽極酸化させた部材に酸化チタン粒子を析出させて封孔した以外は実施例3と同様にしてアルミニウム部材を作製した。
[Comparative Example 8]
An aluminum member was produced in the same manner as in Example 3, except that titanium oxide particles were deposited on the first anodized member to seal the pores without performing the second anodization.
 [比較例9]
 第2陽極酸化及び酸化チタン粒子の析出をせず、第1陽極酸化した部材を封孔した以外は実施例3と同様にしてアルミニウム部材を作製した。
[Comparative Example 9]
An aluminum member was produced in the same manner as in Example 3, except that the first anodized member was sealed without the second anodization and precipitation of titanium oxide particles.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5及び表6に示すように、実施例3のアルミニウム部材では、L値が80以上であり、a値が-1~+1であり、b値が-1.5~+1.5であった。また、図6に示すように、実施例3のアルミニウム部材は、比較例7~比較例9のアルミニウム部材と比較し、参考例のコピー用紙のように光の反射強度の角度依存性が低かった。実施例3では、比較例7~比較例9よりも20°及び60°のような斜めから測定した光沢値が小さいことから、斜め方向からの光を拡散するため、角度依存性が改善したと考えられる。 As shown in Tables 5 and 6, the aluminum member of Example 3 has an L * value of 80 or more, an a * value of −1 to +1, and a b * value of −1.5 to +1.5. Met. In addition, as shown in FIG. 6, the aluminum member of Example 3, compared with the aluminum members of Comparative Examples 7 to 9, had a lower angular dependence of the light reflection intensity, like the copy paper of the reference example. . In Example 3, since the gloss value measured from an oblique direction such as 20° and 60° is smaller than that in Comparative Examples 7 to 9, it is said that the angle dependency is improved because the light from the oblique direction is diffused. Conceivable.
 次に、実施例4及び比較例10~比較例12に係るアルミニウム部材を作製し、表面特性、第1ポーラス層平均孔径、第2ポーラス層平均孔径、色調、光沢及び角度依存性を上記と同様に評価した。結果を表7及び表8に示す。 Next, aluminum members according to Example 4 and Comparative Examples 10 and 12 were produced, and the surface properties, first porous layer average pore diameter, second porous layer average pore diameter, color tone, gloss, and angle dependence were measured in the same manner as above. evaluated to The results are shown in Tables 7 and 8.
 [実施例4]
 ブラストを処理せずに基材をエッチングし、第2陽極酸化された部材を水蒸気によって130℃で30分間封孔処理した以外は、実施例1と同様にしてアルミニウム部材を作製した。
[Example 4]
An aluminum member was fabricated in the same manner as in Example 1, except that the substrate was etched without blasting, and the second anodized member was sealed with water vapor at 130° C. for 30 minutes.
 [比較例10]
 酸化チタン粒子を析出させず、第2陽極酸化した部材を封孔した以外は実施例4と同様にしてアルミニウム部材を作製した。
[Comparative Example 10]
An aluminum member was produced in the same manner as in Example 4, except that the second anodized member was sealed without depositing titanium oxide particles.
 [比較例11]
 第2陽極酸化をせず、第1陽極酸化させた部材に酸化チタン粒子を析出させて封孔した以外は実施例4と同様にしてアルミニウム部材を作製した。
[Comparative Example 11]
An aluminum member was produced in the same manner as in Example 4, except that titanium oxide particles were deposited on the first anodized member to seal the pores without performing the second anodization.
 [比較例12]
 第2陽極酸化及び酸化チタン粒子の析出をせず、第1陽極酸化した部材を封孔した以外は実施例4と同様にしてアルミニウム部材を作製した。
[Comparative Example 12]
An aluminum member was produced in the same manner as in Example 4, except that the first anodized member was sealed without the second anodization and precipitation of titanium oxide particles.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表7及び表8に示すように、実施例4のアルミニウム部材では、L値が80以上であり、a値が-1~+1であり、b値が-1.5~+1.5であった。また、図7に示すように、実施例4のアルミニウム部材は、比較例10~比較例12のアルミニウム部材と比較し、参考例のコピー用紙のように光の反射強度の角度依存性が低かった。実施例4では、比較例10~比較例12よりも20°及び60°のような斜めから測定した光沢値が小さいことから、斜め方向からの光を拡散するため、角度依存性が改善したと考えられる。 As shown in Tables 7 and 8, the aluminum member of Example 4 has an L * value of 80 or more, an a * value of −1 to +1, and a b * value of −1.5 to +1.5. Met. Further, as shown in FIG. 7, the aluminum member of Example 4, compared with the aluminum members of Comparative Examples 10 to 12, had lower angle dependency of the light reflection intensity like the copy paper of Reference Example. . In Example 4, since the gloss value measured from an oblique angle such as 20° and 60° is smaller than that in Comparative Examples 10 to 12, it is said that angle dependence is improved because light from an oblique direction is diffused. Conceivable.
 次に、実施例5、比較例8~比較例9及び比較例13に係るアルミニウム部材を作製し、表面特性、第1ポーラス層平均孔径、第2ポーラス層平均孔径、色調、光沢及び角度依存性を上記と同様に評価した。結果を表9及び表10に示す。 Next, aluminum members according to Example 5, Comparative Examples 8 to 9, and Comparative Example 13 were produced, and surface characteristics, first porous layer average pore size, second porous layer average pore size, color tone, gloss, and angle dependence was evaluated as above. The results are shown in Tables 9 and 10.
 [実施例5]
 第1陽極酸化された部材を、濃度98g/Lのリン酸水溶液(pH1)に浸漬させた。そして、上記部材を、温度5℃、電圧100V、電気量1C/cm、昇圧速度1V/秒及び電解時間約4分の電解条件で第2陽極酸化した。上記以外は実施例3と同様にしてアルミニウム部材を作製した。
[Example 5]
The first anodized member was immersed in an aqueous phosphoric acid solution (pH 1) with a concentration of 98 g/L. Then, the member was second anodized under the electrolysis conditions of temperature 5° C., voltage 100 V, amount of electricity 1 C/cm 2 , pressure increase rate 1 V/sec, and electrolysis time about 4 minutes. An aluminum member was produced in the same manner as in Example 3 except for the above.
 [比較例13]
 酸化チタン粒子を析出させず、第2陽極酸化した部材を封孔した以外は実施例5と同様にしてアルミニウム部材を作製した。
[Comparative Example 13]
An aluminum member was produced in the same manner as in Example 5, except that the second anodized member was sealed without depositing titanium oxide particles.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表9及び表10に示すように、実施例5のアルミニウム部材では、L値が80以上であり、a値が-1~+1であり、b値が-1.5~+1.5であった。また、実施例5のアルミニウム部材は、比較例8~比較例9及び比較例13のアルミニウム部材と比較し、参考例のコピー用紙のように光の反射強度の角度依存性が低かった。実施例5では、比較例8~比較例9及び比較例13よりも20°及び60°のような斜めから測定した光沢値が小さいことから、斜め方向からの光を拡散するため、角度依存性が改善したと考えられる。 As shown in Tables 9 and 10, the aluminum member of Example 5 has an L * value of 80 or more, an a * value of −1 to +1, and a b * value of −1.5 to +1.5. Met. In addition, the aluminum member of Example 5, compared with the aluminum members of Comparative Examples 8 to 9 and 13, had a lower angle dependence of the light reflection intensity, like the copy paper of Reference Example. In Example 5, since the gloss value measured from an oblique angle such as 20 ° and 60 ° is smaller than in Comparative Examples 8 to 9 and Comparative Example 13, the angle dependence is due to the diffusion of light from an oblique direction. is thought to have improved.
 表1~表10の結果から、実施例1~実施例4のように、第1陽極酸化及び第2陽極酸化を実施し、酸化チタン粒子を添加することでL値を大きく低下させることなく、角度依存性が低いアルミニウム部材が得られることが分かった。 From the results in Tables 1 to 10, the first anodization and the second anodization were performed as in Examples 1 to 4, and titanium oxide particles were added without significantly decreasing the L * value. , an aluminum member with low angle dependence can be obtained.
 次に、透過型電子顕微鏡で断面を観察するためにアルミニウム部材を以下のようにして作製した。 Next, in order to observe the cross section with a transmission electron microscope, an aluminum member was produced as follows.
 [実施例6]
 (粗面化処理)
 圧延及び焼鈍した厚さ3mmの5000系アルミニウム合金板を、長さ50mm及び幅50mmに切り出したものを基材とした。5000系アルミニウム合金は、マグネシウム4.31質量%、鉄0.02質量%及びケイ素0.02質量%を含有し、残部がアルミニウム(Al)及び不可避不純物である。
[Example 6]
(roughening treatment)
A 50 mm long and 50 mm wide piece was cut from a rolled and annealed 5000-series aluminum alloy plate having a thickness of 3 mm. The 5000 series aluminum alloy contains 4.31% by mass of magnesium, 0.02% by mass of iron and 0.02% by mass of silicon, with the balance being aluminum (Al) and unavoidable impurities.
 上記基材にドライブラストで粒子を衝突させ、基材の表面に凹凸を形成した。粒子は、株式会社不二製作所製のフジランダムWA 粒番号1200(アルミナ粒子、最大粒子径27.0μm 平均粒子径9.5±0.8μm)を用いた。ブラスト処理後、基材を200g/Lの硝酸水溶液に室温(約20℃)で3分間浸漬させて脱脂した。 Particles were made to collide with the base material by dry blasting to form unevenness on the surface of the base material. Fujirandom WA particle number 1200 (alumina particles, maximum particle size: 27.0 μm, average particle size: 9.5±0.8 μm) manufactured by Fuji Seisakusho Co., Ltd. was used as the particles. After blasting, the substrate was degreased by immersing it in a 200 g/L nitric acid aqueous solution at room temperature (about 20° C.) for 3 minutes.
 (エッチング)
 凹凸が形成された基材を、温度60℃で濃度50g/Lの水酸化ナトリウム水溶液に60秒間浸漬してエッチングした後、濃度200g/Lの硝酸水溶液に室温(約20℃)で2分間浸漬してスマットを除去した。
(etching)
After etching the substrate on which the unevenness is formed by immersing it in an aqueous sodium hydroxide solution with a concentration of 50 g/L at a temperature of 60° C. for 60 seconds, it is then immersed in an aqueous nitric acid solution with a concentration of 200 g/L for 2 minutes at room temperature (about 20° C.). to remove the smut.
 (第1陽極酸化)
 エッチングされた基材を、濃度180g/Lの硫酸を含むpH0の酸性水溶液に浸漬し、温度18℃、電流密度15mA/cm及び電解時間11分の電解条件で第1陽極酸化した。
(First anodizing)
The etched substrate was immersed in an acidic aqueous solution of pH 0 containing sulfuric acid at a concentration of 180 g/L, and first anodized under electrolysis conditions of a temperature of 18° C., a current density of 15 mA/cm 2 and an electrolysis time of 11 minutes.
 (第2陽極酸化)
 第1陽極酸化された部材を、濃度106g/Lの酒石酸二ナトリウム・2水和物と濃度3g/Lの水酸化ナトリウムとを含有するpH13のアルカリ性水溶液に浸漬させた。そして、上記部材を、温度5℃、電圧160V、電気量1C/cm、昇圧速度1V/秒及び電解時間80秒の電解条件で第2陽極酸化した。このようにして、本例のアルミニウム部材を作製した。
(Second anodic oxidation)
The first anodized member was immersed in an alkaline aqueous solution of pH 13 containing disodium tartrate dihydrate at a concentration of 106 g/L and sodium hydroxide at a concentration of 3 g/L. Then, the member was second anodized under the electrolysis conditions of a temperature of 5° C., a voltage of 160 V, an amount of electricity of 1 C/cm 2 , a pressure rise rate of 1 V/sec, and an electrolysis time of 80 seconds. Thus, the aluminum member of this example was produced.
 [比較例14]
 第2陽極酸化を実施しなかった以外は実施例6と同様にして本例のアルミニウム部材を作製した。
[Comparative Example 14]
An aluminum member of this example was produced in the same manner as in Example 6, except that the second anodization was not performed.
 [比較例15]
 第1陽極酸化を実施せず、第2陽極酸化の電圧を110V、電解時間を11分とした以外は実施例6と同様にしてアルミニウム部材を作製した。
[Comparative Example 15]
An aluminum member was produced in the same manner as in Example 6 except that the first anodization was not performed, the voltage of the second anodization was 110 V, and the electrolysis time was 11 minutes.
 図8、図9及び図10は、実施例6のアルミニウム部材の断面をFIB加工し、透過型電子顕微鏡で2,550倍、19,500倍及び43,000倍にそれぞれ拡大した画像である。図11、図12及び図13は、比較例14のアルミニウム部材の断面をFIB加工し、透過型電子顕微鏡で2,550倍、19,500倍及び43,000倍にそれぞれ拡大した画像である。図14、図15及び図16は、比較例15のアルミニウム部材の断面をFIB加工し、透過型電子顕微鏡で2,550倍、19,500倍及び43,000倍にそれぞれ拡大した画像である。図8~図16に示すように、第1ポーラス層は複数の分岐する孔を有し、第2ポーラス層は直線状に延びる複数の孔を有することが分かる。図8~図16並びに図示しないEDSによる元素分析の結果から、実施例6の陽極酸化皮膜は、第2陽極酸化に由来するバリア層及び第1ポーラス層が基材の表面に形成されていることが分かった。また、第1陽極酸化に由来する第2ポーラス層が第1ポーラス層の表面に形成されていることが分かった。 Figures 8, 9 and 10 are images of the cross section of the aluminum member of Example 6 which was subjected to FIB processing and magnified by a transmission electron microscope at 2,550 times, 19,500 times and 43,000 times, respectively. 11, 12 and 13 are images obtained by FIB-processing the cross section of the aluminum member of Comparative Example 14 and magnifying the cross-section by a transmission electron microscope at 2,550 times, 19,500 times and 43,000 times, respectively. 14, 15 and 16 are images obtained by FIB-processing the cross section of the aluminum member of Comparative Example 15 and enlarging the cross-section by a transmission electron microscope at 2,550 times, 19,500 times and 43,000 times, respectively. As shown in FIGS. 8 to 16, the first porous layer has a plurality of branched pores, and the second porous layer has a plurality of linearly extending pores. From FIGS. 8 to 16 and the results of elemental analysis by EDS (not shown), the anodized film of Example 6 has a barrier layer and a first porous layer derived from the second anodization formed on the surface of the substrate. I found out. It was also found that a second porous layer derived from the first anodization was formed on the surface of the first porous layer.
 次に、顔料の状態について確認するため、実施例7に係るアルミニウム部材を作製した。 Next, in order to confirm the state of the pigment, an aluminum member according to Example 7 was produced.
 [実施例7]
 第1陽極酸化の電解時間を11分、第2陽極酸化の水酸化ナトリウム濃度を5g/L、封孔時間を10分に変更した以外は実施例1と同様にしてアルミニウム部材を作製した。
[Example 7]
An aluminum member was produced in the same manner as in Example 1 except that the electrolysis time of the first anodization was changed to 11 minutes, the sodium hydroxide concentration of the second anodization was changed to 5 g/L, and the sealing time was changed to 10 minutes.
 図17及び図18は、実施例7のアルミニウム部材の断面をFIB加工し、透過型電子顕微鏡で2,550倍及び19,500倍にそれぞれ拡大した画像である。図17及び図18は図8~図10と同様の断面状態を示しており、実施例7のアルミニウム部材において、第1ポーラス層は複数の分岐する孔を有し、第2ポーラス層は直線状に延びる複数の孔を有することが分かる。 17 and 18 are images obtained by FIB-processing the cross section of the aluminum member of Example 7 and enlarging it by 2,550 times and 19,500 times with a transmission electron microscope, respectively. 17 and 18 show cross-sectional states similar to FIGS. 8 to 10. In the aluminum member of Example 7, the first porous layer has a plurality of branching holes, and the second porous layer has a linear shape. It can be seen that it has a plurality of holes extending to the .
 次に、実施例7のアルミニウム部材をEDSによりライン分析した。具体的には、図19Aの「HAADF Detector」における線1で示した部分について、ライン分析した。図19A及び図19Bに示すように、顔料の酸化チタンに由来するチタン元素は、陽極酸化皮膜に取り込まれていることが分かった。また、SEM像に矢印で示す部分にコントラストに顕著な違いがあり、ライン分析でもその個所にチタンの強度が強く検出されていることから酸化チタンが特に多く存在していることが分かった。 Next, the aluminum member of Example 7 was subjected to line analysis by EDS. Specifically, line analysis was performed on the portion indicated by line 1 in the "HAADF Detector" of FIG. 19A. As shown in FIGS. 19A and 19B, it was found that the titanium element derived from titanium oxide of the pigment was incorporated into the anodized film. In addition, there is a marked difference in contrast in the area indicated by the arrow in the SEM image, and line analysis also detected a high intensity of titanium in that area.
 以上の結果から、第1ポーラス層と第2ポーラス層を備え、陽極酸化皮膜に白色顔料粒子が取り込まれたアルミニウム部材は、角度依存性が低いことが分かる。 From the above results, it can be seen that the angle dependence is low for the aluminum member having the first porous layer and the second porous layer and having the white pigment particles incorporated in the anodized film.
 以上、本実施形態を実施例及び比較例によって説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。 Although the present embodiment has been described above with examples and comparative examples, the present embodiment is not limited to these, and various modifications are possible within the scope of the gist of the present embodiment.
 1  アルミニウム部材
 10 基材
 11 表面
 20 陽極酸化皮膜
 21 バリア層
 22 第1ポーラス層
 23 第2ポーラス層
 24 表面
Reference Signs List 1 aluminum member 10 substrate 11 surface 20 anodized film 21 barrier layer 22 first porous layer 23 second porous layer 24 surface

Claims (13)

  1.  アルミニウム又はアルミニウム合金により形成される基材と、
     前記基材の表面と接するバリア層と、前記バリア層の前記基材とは反対側の面に接する第1ポーラス層と、前記第1ポーラス層の前記バリア層とは反対の面に接し、前記第1ポーラス層と接する面から露出する表面に向かって整列して直線状に延びる複数の孔を有する第2ポーラス層とを含む陽極酸化皮膜と、
     を備え、
     前記第1ポーラス層は複数の分岐する孔及び前記第2ポーラス層よりも大きい平均孔径の複数の孔の少なくともいずれか一方を有し、
     前記陽極酸化皮膜には白色顔料粒子が取り込まれている、アルミニウム部材。
    a base material formed of aluminum or an aluminum alloy;
    a barrier layer in contact with the surface of the substrate; a first porous layer in contact with the surface of the barrier layer opposite to the substrate; an anodic oxide film comprising a second porous layer having a plurality of linearly aligned pores extending from the surface in contact with the first porous layer toward the exposed surface;
    with
    The first porous layer has at least one of a plurality of branched pores and a plurality of pores having an average pore size larger than that of the second porous layer,
    An aluminum member, wherein the anodized film incorporates white pigment particles.
  2.  前記陽極酸化皮膜側から測定した前記アルミニウム部材のL表色系におけるL値は82.5~100であり、a値は-1~+1であり、b値は-1.5~+1.5である、請求項1に記載のアルミニウム部材。 The L* value in the L * a * b * color system of the aluminum member measured from the anodized film side is 82.5 to 100, the a * value is −1 to +1, and the b * value is − The aluminum member according to claim 1, which is 1.5 to +1.5.
  3.  ゴニオフォトメーターを用いて前記陽極酸化皮膜側の反射強度を-80度~+20度の検出器角度で測定した場合において、最小反射強度に対する最大反射強度の比が18以下である、請求項1又は2に記載のアルミニウム部材。 2. The ratio of the maximum reflection intensity to the minimum reflection intensity is 18 or less when the reflection intensity on the anodized film side is measured using a goniophotometer at a detector angle of −80 degrees to +20 degrees. 3. The aluminum member according to 2.
  4.  前記基材の表面の算術平均高さSaは0.3μm~0.5μmである、請求項1~3のいずれか一項に記載のアルミニウム部材。 The aluminum member according to any one of claims 1 to 3, wherein the arithmetic mean height Sa of the surface of the base material is 0.3 µm to 0.5 µm.
  5.  前記基材の表面の最大高さSzは3μm~5μmである、請求項1~4のいずれか一項に記載のアルミニウム部材。 The aluminum member according to any one of claims 1 to 4, wherein the maximum height Sz of the surface of the base material is 3 µm to 5 µm.
  6.  前記基材の表面の粗さ曲線要素の平均長さRSmは6μm~10μmである、請求項1~5のいずれか一項に記載のアルミニウム部材。 The aluminum member according to any one of claims 1 to 5, wherein the average length RSm of the roughness curve element on the surface of the base material is 6 µm to 10 µm.
  7.  アルミニウム又はアルミニウム合金により形成される基材を、整列して直線状に延びる複数の孔を形成可能な電解液で第1陽極酸化する第1陽極酸化工程と、
     前記第1陽極酸化された基材を電解液で第2陽極酸化する第2陽極酸化工程と、
     前記第1陽極酸化及び前記第2陽極酸化によって得られた陽極酸化皮膜に白色顔料粒子を取り込む工程と、
     を含み、
     前記第2陽極酸化の電解液は、複数の分岐する孔及び前記直線状に延びる複数の孔よりも大きい平均孔径を有する複数の孔の少なくともいずれか一方を形成可能な電解液である、アルミニウム部材の製造方法。
    a first anodizing step of first anodizing a substrate made of aluminum or an aluminum alloy with an electrolytic solution capable of forming a plurality of linearly aligned pores;
    a second anodizing step of second anodizing the first anodized substrate with an electrolytic solution;
    a step of incorporating white pigment particles into the anodized film obtained by the first anodization and the second anodization;
    including
    The electrolytic solution for the second anodization is an electrolytic solution capable of forming at least one of a plurality of branching holes and a plurality of holes having an average pore diameter larger than that of the plurality of linearly extending holes. manufacturing method.
  8.  前記第1陽極酸化の電解液は酸性電解液であり、前記第2陽極酸化の電解液は酸性又はアルカリ性電解液である、請求項7に記載のアルミニウム部材の製造方法。 The method for manufacturing an aluminum member according to claim 7, wherein the electrolytic solution for the first anodization is an acidic electrolytic solution, and the electrolytic solution for the second anodization is an acidic or alkaline electrolytic solution.
  9.  前記基材の表面に凹凸を形成する粗面化処理工程をさらに備え、
     前記第1陽極酸化工程では前記凹凸が形成された基材を第1陽極酸化する、請求項7又は8に記載のアルミニウム部材の製造方法。
    Further comprising a roughening treatment step of forming unevenness on the surface of the base material,
    9. The method for manufacturing an aluminum member according to claim 7, wherein in the first anodizing step, the substrate on which the irregularities are formed is first anodized.
  10.  前記粗面化処理工程では20μm以下の平均粒子径を有する粒子を前記基材の表面に衝突させて前記凹凸を形成する、請求項9に記載のアルミニウム部材の製造方法。 The method for manufacturing an aluminum member according to claim 9, wherein in the roughening treatment step, particles having an average particle diameter of 20 µm or less are collided with the surface of the base material to form the unevenness.
  11.  前記第1陽極酸化の電解液は硫酸、アミド硫酸及びカルボキシル基を有する化合物からなる群より選択される少なくとも一種を含む、請求項7~10のいずれか一項に記載のアルミニウム部材の製造方法。 The method for manufacturing an aluminum member according to any one of claims 7 to 10, wherein the electrolytic solution for the first anodization contains at least one selected from the group consisting of sulfuric acid, amidosulfuric acid and a compound having a carboxyl group.
  12.  前記第2陽極酸化の電解液はカルボキシル基を有する化合物及びリン酸並びにこれらの塩からなる群より選択される少なくとも一種を含む、請求項7~11のいずれか一項に記載のアルミニウム部材の製造方法。 The aluminum member production according to any one of claims 7 to 11, wherein the electrolytic solution for the second anodization contains at least one selected from the group consisting of a compound having a carboxyl group, phosphoric acid, and salts thereof. Method.
  13.  前記第2陽極酸化の電解液はナトリウム、カリウム及びアンモニアからなる群より選択される少なくとも一種を含有する、請求項7~11のいずれか一項に記載のアルミニウム部材の製造方法。 The method for manufacturing an aluminum member according to any one of claims 7 to 11, wherein the electrolytic solution for the second anodization contains at least one selected from the group consisting of sodium, potassium and ammonia.
PCT/JP2021/042786 2021-11-22 2021-11-22 Aluminum member and method for producing same WO2023089824A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/042786 WO2023089824A1 (en) 2021-11-22 2021-11-22 Aluminum member and method for producing same
TW111121892A TW202321474A (en) 2021-11-22 2022-06-13 Aluminum member and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042786 WO2023089824A1 (en) 2021-11-22 2021-11-22 Aluminum member and method for producing same

Publications (1)

Publication Number Publication Date
WO2023089824A1 true WO2023089824A1 (en) 2023-05-25

Family

ID=86396568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042786 WO2023089824A1 (en) 2021-11-22 2021-11-22 Aluminum member and method for producing same

Country Status (2)

Country Link
TW (1) TW202321474A (en)
WO (1) WO2023089824A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537513A (en) * 2013-09-27 2016-12-01 アップル インコーポレイテッド Method for forming white anodic oxide film by forming branched pore structure
CN108265323A (en) * 2016-12-30 2018-07-10 比亚迪股份有限公司 Al-alloy casing and preparation method thereof and personal electronic equipments
JP2018531325A (en) * 2015-10-30 2018-10-25 アップル インコーポレイテッドApple Inc. Anode coating with improved characteristics
JP2019002049A (en) * 2017-06-15 2019-01-10 株式会社サクラクレパス White aluminum molding, production method thereof, and white pigmentation composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537513A (en) * 2013-09-27 2016-12-01 アップル インコーポレイテッド Method for forming white anodic oxide film by forming branched pore structure
JP2018531325A (en) * 2015-10-30 2018-10-25 アップル インコーポレイテッドApple Inc. Anode coating with improved characteristics
CN108265323A (en) * 2016-12-30 2018-07-10 比亚迪股份有限公司 Al-alloy casing and preparation method thereof and personal electronic equipments
JP2019002049A (en) * 2017-06-15 2019-01-10 株式会社サクラクレパス White aluminum molding, production method thereof, and white pigmentation composition

Also Published As

Publication number Publication date
TW202321474A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
CN111051577B (en) Aluminum member and method for producing same
KR100237502B1 (en) Aluminium surface for technical lighting purpose
EP3088565B1 (en) Substrate treated with color development, and substrate color development treatment method for same
WO2022085548A1 (en) Aluminum member and method for producing same
US20160326655A1 (en) Substrate treated with color development, and substrate color development treatment method for same
WO2023089824A1 (en) Aluminum member and method for producing same
US11932956B2 (en) Aluminum member and method of manufacturing the same
WO2020110903A1 (en) Aluminum member and method for producing same
JP2023118330A (en) Aluminum member and method for manufacturing the same
WO2023203910A1 (en) Aluminum member and method for producing same
WO2022009606A1 (en) Aluminum member and method for producing same
US11549190B2 (en) Aluminum member and method of manufacturing aluminum member
JP2023072154A (en) Aluminum member and production method thereof
Kim et al. Characterization of the chemical conversion films that form on Mg− Al alloy in colloidal silica solution
TW202405256A (en) Aluminum components and manufacturing methods
WO2020152988A1 (en) Aluminum member and method for manufacturing same
JP2023118353A (en) Member to be irradiated with ultraviolet, enclosure for ultraviolet irradiation device and ultraviolet irradiation device
KR101615457B1 (en) Color-treated substrate and color-treatment method thereof
US20230392277A1 (en) Method for producing a ceramic coating on the surface of an aluminum alloy substrate by means of plasma electrolytic oxidation
Liu et al. Effects of Additives on the Microstructure and Tribology Performance of Ta-12W Alloy Micro-Arc Oxidation Coating
JPH1036985A (en) Aluminum material excellent in brightness and its production
Aggerbeck Tailored Aluminium based Coatings for Optical Appearance and Corrosion Resistance
JPH10121277A (en) Treatment of surface of aluminum extruded shape material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964838

Country of ref document: EP

Kind code of ref document: A1