WO2020059685A1 - Sensor system and inclination detection method - Google Patents
Sensor system and inclination detection method Download PDFInfo
- Publication number
- WO2020059685A1 WO2020059685A1 PCT/JP2019/036310 JP2019036310W WO2020059685A1 WO 2020059685 A1 WO2020059685 A1 WO 2020059685A1 JP 2019036310 W JP2019036310 W JP 2019036310W WO 2020059685 A1 WO2020059685 A1 WO 2020059685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wafer
- sensor
- tilt
- light
- amount
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C9/00—Measuring inclination, e.g. by clinometers, by levels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/68—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
Definitions
- the present invention relates to a sensor system and the like for detecting the inclination of a wafer stored in a wafer cassette using a photoelectric sensor.
- a technique of projecting detection light onto a wafer while moving a photoelectric sensor and detecting the inclination of a wafer stored in a wafer cassette based on the amount of received detection light is known as a conventional technique.
- Japanese Patent Application Laid-Open No. H11-157210 determines whether there is a peak of a light reception amount exceeding a predetermined threshold outside a range near a wafer storage unit in a wafer cassette.
- a technique for determining that an abnormality such as insertion has occurred is disclosed.
- JP-A-2000-150624 (published on May 30, 2000)
- Patent Document 1 can only determine whether the wafer is tilted. In other words, this technique does not allow the user to know detailed tilt information.
- an object of one embodiment of the present invention is to realize a sensor system or the like that specifies more detailed information on the tilt of a wafer than the presence or absence of the tilt.
- a sensor system is a sensor system that detects an inclination of a wafer stored in a wafer cassette, and includes three or more photoelectric sensors and the three or more photoelectric sensors. Is moved in a direction perpendicular to the plane of the normally accommodated wafer while the plane including the three or more photoelectric sensors is parallel to the plane of the wafer normally accommodated.
- Movement control device during the movement of the photoelectric sensor, an acquisition device that acquires the amount of light received by the photoelectric sensor, based on the change in the amount of light during the period when the photoelectric sensor is detecting the detection target wafer, A specification device for specifying the direction of the tilt of the wafer and the magnitude of the tilt of the wafer.
- an inclination detection method is an inclination detection method using a sensor system that detects an inclination of a wafer stored in a wafer cassette, wherein the sensor system includes: It is provided with three or more photoelectric sensors, and the three or more photoelectric sensors are normally accommodated in a state in which a plane including the three or more photoelectric sensors is parallel to a plane of the wafer in which the plane is normally accommodated.
- the present invention it is possible to specify more detailed information on the inclination of a wafer, such as the amount of vertical displacement of the wafer, the magnitude of the inclination in the horizontal direction, the magnitude of the inclination in the front-rear direction, and the like, whether or not the inclination exists. Can be.
- FIG. 1 is a diagram schematically illustrating an example of a hardware configuration of each device included in a sensor system according to an embodiment of the present invention.
- FIG. 2 is a diagram illustrating an example of an operation of removing a wafer from a wafer cassette by the transfer robot illustrated in FIG. 1.
- FIG. 3 is a diagram illustrating an example of a positional relationship between the wafer and the sensor hand illustrated in FIGS. 1 and 2 in detecting the inclination of the wafer.
- (A) is a figure which shows the positional relationship between the wafer and each sensor shown using XYZ coordinates
- (b) is a figure which shows an example of a temporal change of the light quantity of the detection light in a transmission sensor and a reflection sensor. is there.
- FIG. 4 is a diagram illustrating a change over time in the amount of light detected by a sensor.
- FIG. 7 is a diagram illustrating a comparison of a change with time in the amount of light detected by a transmission sensor with time when the wafer has a tilt and when there is no tilt. It is a schematic diagram for demonstrating the measurement principle of right-left inclination by two reflection-type sensors, and shows the state in which a wafer is not inclined.
- FIG. 4 is a diagram illustrating a change over time in the amount of light detected by a transmission sensor and a reflection sensor.
- FIG. 2 is a diagram schematically illustrating an example of a functional configuration of the PLC illustrated in FIG. 1.
- 2 is a flowchart illustrating an example of a procedure of a process executed by the PLC illustrated in FIG. 1.
- FIG. 11 is a diagram schematically illustrating an example of a hardware configuration of each device included in a sensor system according to a modification of the present invention.
- FIG. 10 is a diagram illustrating a mounting position of a sensor in the sensor hand according to the second embodiment.
- FIG. 7 is a diagram showing a change over time in the amount of light detected by two reflection sensors 67 and 68.
- FIG. 6 is a diagram showing a change over time in the amount of light detected by two reflection sensors 67 (or 68) and 69.
- FIG. 1 is a diagram schematically illustrating an example of a hardware configuration of each device included in the sensor system 1 according to the present embodiment.
- the sensor system 1 is a sensor system that detects a tilt of a wafer stored in a wafer cassette.
- the sensor system 1 includes a PLC (programmable logic controller) 2, a sensor unit 3, a transfer robot 4, a sensor hand 5, and a photoelectric sensor 6.
- the transfer robot 4 includes a chuck 7 for taking out a wafer from a wafer cassette. Details of the PLC 2, the sensor unit 3, the transfer robot 4, and the sensor hand 5 will be described later.
- the photoelectric sensor 6 includes a transmission sensor 61 and reflection sensors 62 and 63.
- the transmission sensor 61 further includes a light projecting unit 61a and a light receiving unit 61b, and is realized by a fiber sensor as an example.
- the light emitting unit 61a emits the detection light
- the light receiving unit 61b receives the detection light.
- the reflection sensors 62 and 63 project detection light toward the outer periphery of the wafer and receive the detection light reflected from the wafer.
- FIG. 3 shows the positional relationship between the sensor hand 5 and the photoelectric sensor.
- the light projecting portion 61a and the light receiving portion 61b of the transmission sensor 61 are at the tip of the sensor hand 5 so that the detection light projected by the light projecting portion 61a passes through two points on an arc forming the outer periphery of the wafer.
- the reflection sensors 62 and 63 are provided at positions symmetrical with respect to a straight line 1 connecting the midpoint of the light projecting unit 61a and the light receiving unit 61b to the center point of the wafer.
- the reflection sensors 62 and 63 are located on a circular arc forming the outer periphery of the wafer other than the two points, and a straight line l passing through the center point of the straight line connecting the two points and the center point of the wafer.
- the symmetrical position is provided so as to be a detection area.
- the direction parallel to the traveling direction of the detection light 60 from the transmission sensor 61 is the y-axis direction
- the direction parallel to the plane 101 of the normally mounted wafer 10 and orthogonal to the y-axis is the x-axis direction
- the direction orthogonal to the x-axis and the y-axis is defined as the z-axis.
- three or more photoelectric sensors including a transmission sensor or a reflection sensor are used to acquire data on a temporal change in the amount of detection light received by these sensors, and compare these data. I do.
- the movement control device (the actuator 8 of the transfer robot 4) includes a plane including the transmission sensor 61 (the light projecting unit 61 a and the light receiving unit 61 b), the reflection sensor 62, and the reflection sensor 63 (ie, the upper surface of the sensor hand 5). ) Is moved at a constant speed in a direction perpendicular to the plane of the normally stored wafer (that is, the z-axis) in a state parallel to the plane of the normally stored wafer. During this time, the sensor unit 3 scans the wafer 10 with the detection light from the photoelectric sensor, and acquires the light amount of the detection light received by the sensor unit 3 with the photoelectric sensor.
- the inclination detection unit 211 specifies the direction of the inclination of the wafer 10 and the magnitude of the inclination of the wafer 10 based on the temporal change in the amount of light during the period when the photoelectric sensor is detecting the target wafer 10.
- the light amount of the detection light to be received is the minimum value.
- the amount of the detection light received becomes the maximum value.
- the light amount of the detection light received by each transmission sensor becomes the minimum value.
- the difference in the timings or the difference in the timing at which the amount of the detection light received by each reflection sensor becomes the maximum value the inclination in the left-right direction and the inclination in the front-back direction of the wafer can be specified. .
- the acquisition device previously acquires data on a temporal change in the amount of detection light received by the transmission sensor or the reflection sensor with respect to a normal wafer having no displacement and no tilt in the z-axis direction.
- the PLC 2 compares the stored reference data 221 with the data of the change over time in the light amount of the detection wafer.
- the PLC 2 specifies the amount of displacement of the wafer in the z-axis direction.
- the PLC 2 is a control device that controls the sensor unit 3 and the transfer robot 4 included in the sensor system 1.
- the PLC 2 includes a control unit 21, a storage unit 22, and a communication interface 23. These components of the PLC 2 are electrically connected to each other by a communication bus.
- the PLC 2 according to the present embodiment corresponds to the “specific device” of the present invention.
- the control unit 21 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and controls each component according to information processing.
- the storage unit 22 is an auxiliary storage device such as a hard disk drive and a solid state drive.
- the communication interface 23 is, for example, a wired LAN (Local Area Network) module, a wireless LAN module, or the like, and is an interface for performing wired or wireless communication via a network.
- a wired LAN Local Area Network
- a wireless LAN module or the like
- control unit 21 may include a plurality of processors.
- FIG. 2 is a diagram illustrating an example of an operation of taking out the wafer 10 from the wafer cassette 20 by the transfer robot 4.
- the transfer robot 4 is a transfer device that transfers the wafer 10, and includes the chuck 7 for removing the wafer 10 from the wafer cassette 20.
- the chuck 7 is, for example, a U-shaped (or Y-shaped) member as shown in FIG.
- the root side of the chuck 7 is connected to the actuator 8 of the transfer robot 4.
- the transfer robot 4 is controlled by the control unit 21, the chuck 7 is inserted below the wafer 10 housed in the wafer cassette 20, as shown in FIG.
- the wafer 10 is placed on the chuck 7 from the state placed on the wafer cassette 20 and is taken out of the wafer cassette 20.
- the transfer robot 4 is controlled by the control unit 21 and transfers the wafer 10 placed on the chuck 7.
- the transfer robot 4 according to the present embodiment corresponds to the “transfer device” of the present invention.
- the sensor hand 5 is connected to the opposite side of the chuck 7 via the actuator 8 of the transfer robot 4.
- the sensor hand 5 includes three or more photoelectric sensors.
- the sensor hand 5 is also moved by the transfer robot 4.
- the transfer robot 4 When taking out a wafer from the wafer cassette 20, the transfer robot 4 first turns the sensor hand 5 toward the wafer cassette 20, scans the wafer 10 stored in the wafer cassette 20, and specifies the inclination and angle of the wafer 10. Thereafter, the transfer robot 4 rotates by 180 degrees, directs the chuck 7 toward the wafer cassette 20, and causes the chuck 7 to perform an operation of taking out the wafer 10 from the wafer cassette 20.
- the transfer robot 4 controls the tilt of the chuck 7 according to the tilt and the angle of the wafer 10 specified above. Thereby, the wafer 10 can be prevented from being damaged by the chuck 7.
- the sensor hand 5 includes a transmission sensor 61, a reflection sensor 62, and a reflection sensor 63.
- the transmission sensor 61 includes a light projecting unit 61a and a light receiving unit 61b.
- the light projecting portion 61a and the light receiving portion 61b are provided so that the detection light passes through two points on an arc forming the outer periphery of the wafer at the tip end of the sensor hand 5. Have been.
- the reflection sensor 62 and the reflection sensor 63 are located on a circular arc forming the outer periphery of the wafer other than the two points, and a straight line l passing through the center point of a straight line connecting the two points and the center point of the wafer.
- the symmetrical position is provided so as to be a detection area. Therefore, in the present embodiment, the transmission sensor 61, the reflection sensor 62, and the reflection sensor 63 are moved by the movement of the sensor hand 5 by the transfer robot 4. That is, the transfer robot 4 also moves the sensor hand 5. Therefore, the transfer robot 4 according to the present embodiment also corresponds to the “movement control device” of the present invention.
- the portion where the light projecting portion 61a and the light receiving portion 61b are provided is also described as "hand".
- the light projecting unit 61 a is provided on one hand of the sensor hand 5, and the light receiving unit 61 b is provided on the other hand.
- a reflection sensor 62 and a reflection sensor 63 are provided on a protrusion 65 and a protrusion 66 extending from the sensor hand 5, respectively.
- the light projecting unit 61a and the light receiving unit 61b of the transmission sensor 61 are each counted as one photoelectric sensor. Therefore, the sensor hand 5 is provided with four photoelectric sensors 6 (light emitting unit 61a, light receiving unit 61b, reflection sensor 62, and reflection sensor 63).
- the light projecting unit 61 a and the light receiving unit 61 b irradiate the detection light 60 to a position 70 mm from the center of the wafer surface 101. It is provided at the position of the chuck 5. Further, the reflection sensors 62 and 63 are arranged such that the distance between them is about 142 mm, and the detection light projected from the reflection sensors 62 and 63 is at most 45 degrees with respect to the straight line l toward the center of the wafer. It is mounted to illuminate an arc that forms an outer circumference of the wafer at an angle.
- the light projecting unit 61a and the light receiving unit 61b may be provided at the position of the sensor hand 5 at which the wafer 10 is irradiated with the detection light, and the positions are not limited to the positions shown in FIG.
- the light emitting unit 61a is provided at the tip of the left hand of the sensor hand 5 in FIG. 3 and the light receiving unit 61b is provided at the tip of the right hand.
- the light receiving unit 61b may be provided at the tip of the left hand
- the light emitting unit 61a may be provided at the tip of the right hand.
- the sensor unit 3 is controlled by the control unit 21 and controls the photoelectric sensors 61, 62, and 63. Specifically, the sensor unit 3 controls start and stop of the projection of the detection light. More specifically, the sensor unit 3 continues to emit the detection light while the photoelectric sensors 61, 62, and 63 are moving. That is, the sensor unit 3 acquires the light amount of the detection light received by the photoelectric sensors 61, 62, and 63 while the photoelectric sensors 61, 62, and 63 are moving, and converts the light amount into light amount data by A / D conversion. Send to PLC2.
- the sensor unit 3 according to the present embodiment corresponds to the “acquisition device” of the present invention.
- FIG. 9 is a diagram schematically illustrating an example of a functional configuration of the PLC 2 according to the present embodiment.
- the control unit 21 of the PLC 2 includes a tilt detection unit 211 and a robot control unit 212 as functional components.
- the storage unit 22 stores at least reference data 221 as an example.
- the inclination detection unit 211 acquires light amount data of the detection light from the sensor unit 3 and, based on a change in light amount (change with time) during a period when the photoelectric sensors 61, 62, and 63 are detecting the wafer 10 to be detected.
- the inclination of the wafer 10 is specified. More specifically, the amount of displacement of the wafer in the z-axis direction, the direction and magnitude of the tilt of the wafer around the x-axis, and the direction and magnitude of the tilt of the wafer around the y-axis direction are specified. I do.
- the “period during which the detection target wafer 10 is detected” is a period during which the detection light 60 is irradiated on the wafer 10 (a period during which the photoelectric sensors 61, 62, and 63 cross the outer peripheral surface 102). is there.
- the robot control unit 212 controls the transfer robot 4 and the sensor hand 5. Specifically, the robot control unit 212 controls the tilt of the chuck 7 according to the tilt of the wafer specified by the tilt detection unit 211.
- the control unit 21 moves the sensor hand 5 at a constant speed along the z-axis direction, and detects the value of the amount of detection light received by each photoelectric sensor at that time. Therefore, the “time-dependent change in light amount” refers to a change in light amount according to the moving distance of the sensor hand 5 along the z-axis.
- the reference data 221 is data used as a reference for the inclination of the wafer 10 when the inclination detection unit 211 specifies the inclination of the wafer 10.
- the reference data 221 is, for example, a temporal change in the amount of detection light received by each of the transmission sensor 61, the reflection sensors 62, and 63 when the wafer 10 is not tilted and has no displacement in the z-axis direction. There may be.
- the reference data 221 may include a temporal change of the light amount shown in FIG.
- control unit 21 may execute an appropriate program to execute the above processing as the inclination detection unit 211 and the robot control unit 212.
- the program may be stored in a ROM, for example.
- the control unit 21 loads the program stored in the ROM into the RAM. Then, the control unit 21 controls the components of the PLC 2 by interpreting and executing the program developed in the RAM by the CPU.
- the recording medium storing the above program may be any non-transitory tangible medium, and may be a ROM, tape, disk, card, semiconductor memory, programmable logic circuit, or the like. Further, the program may be supplied to the PLC 2 via an arbitrary transmission medium (a communication network, a broadcast wave, or the like) capable of transmitting the program. Note that one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
- the inclination detection unit 211 and the robot control unit 212 are both described as being realized by a general-purpose CPU. However, these may be realized by one or more dedicated processors. Further, regarding the functional configuration of the PLC 2, the omission, replacement, and addition of the configuration may be appropriately performed according to the embodiment.
- FIG. 10 is a flowchart illustrating an example of a processing procedure of the PLC 2.
- the processing procedure described below is an example, and there is no intention to limit the processing procedure of the PLC 2 according to the present embodiment to this example. Further, in the processing procedure described below, steps can be omitted, replaced, and added as appropriate according to the embodiment.
- the robot control unit 212 moves the sensor hand 5 to a normally stored wafer in a state where a plane including three or more photoelectric sensors mounted thereon is parallel to the plane of the wafer normally stored. Is moved in a direction (z-axis direction) perpendicular to the plane (step S1, movement step).
- step S1 movement step.
- the process of step S1 is realized by the robot control unit 212 transmitting a control command to the transfer robot 4 via the communication interface 23. Further, when the movement of the sensor hand 5 is started, the robot control unit 212 notifies the inclination detection unit 211 of the start.
- Step S2 acquisition step.
- the process of step S2 is realized by the tilt detection unit 211 transmitting a control command to the sensor unit 3 via the communication interface 23.
- the sensor unit 3 acquires the light amount of the detection light received by each of the photoelectric sensors 61, 62, and 63 (Step S3, acquisition step).
- the sensor unit 3 converts the acquired light amount into light amount data, and temporarily stores the light amount data in association with light receiving unit identification information for identifying each of the photoelectric sensors 61, 62, and 63.
- the sensor unit 3 receives the light amount data transmission instruction from the PLC 2, the sensor unit 3 transmits all the light amount data obtained at that time to the PLC 2 in a state where the light amount identification information is associated with the light amount data.
- the inclination detecting unit 211 of the PLC 2 compares the temporal change of the light amount generated using the received light amount data with the reference data 221 (Step S4). Then, based on the comparison result, the tilt detection unit 211 determines whether the wafer 10 is tilted around the x-axis and y-axis and whether there is a displacement in the z-axis direction (step S5). .
- FIG. 4A is a diagram illustrating an example of irradiation of the wafer 10 with detection light for detecting the inclination of the wafer 10
- FIG. 4B is a diagram illustrating the detection light of the transmission sensor and the reflection sensor. It is a figure showing an example of a temporal change of light quantity.
- the wafer 10 shown in FIG. 4A has a cylindrical shape. Specifically, as shown in FIG. 4A, the wafer 10 has a wafer surface 101 (the plane of the wafer 10) and an outer peripheral surface 102. Further, as shown in FIG. 4A, the sensor system 1 includes three or more photoelectric sensors.
- Two of the three or more photoelectric sensors are a pair of transmissive sensors (a light projecting portion 61a of the transmissive sensor 61 and a pair of transmissive sensors provided so that detection light passes through two points on an arc forming the outer periphery of the wafer).
- the three or more photoelectric sensors further include two reflection sensors (reflection sensors 62 and 63) provided such that a position other than the two points is a detection area on an arc forming the outer periphery of the wafer. Including.
- the two reflection sensors are located on a circular arc forming the outer periphery of the wafer 10 other than the two points, the center point of a straight line connecting the two points and the center point of the wafer. Are provided such that a position symmetrical with respect to a straight line passing through the detection region is a detection region.
- the sensor system 1 includes three photoelectric sensors (a transmission sensor 61, a reflection sensor 62, and a reflection sensor 63) in a state where the plane (that is, the sensor hand 5) is parallel to the plane of the wafer in which the plane is normally accommodated.
- the two photoelectric sensors are moved at a constant speed in the direction perpendicular to the plane of the normally accommodated wafer, that is, in the z-axis direction.
- the photoelectric sensor 6 is moved in the negative direction of the z-axis in FIG. 4A.
- the moving direction is opposite to the example shown in FIG. It may be moved in the forward direction.
- the sensor system 1 controls the transmission sensor 61 so that the light projecting unit 61a continuously emits the detection light 60 while the transmission sensor 61 is moving, and causes the light receiving unit 61b to receive the detection light 60.
- performing projection and reception of the detection light 60 while moving the transmission sensor 61 at a constant speed is also referred to as “scan”.
- a temporal change in the light amount of the detection light 60 received by the light receiving unit 61b is, for example, a graph indicated by A1 in FIG. 4B.
- the light amount of the detection light 60 received by the light receiving unit 61b is maximum. Strictly speaking, the amount of received light exceeds the maximum value just before the graph A1 starts to decrease. This is because the reflected light on the wafer surface 101 is added to the transmission sensor 61 so that the light enters the transmission sensor 61 more greatly. Thereafter, the detection light 60 reaches the upper wafer surface 101 in FIG. For this reason, the light amount decreases, and eventually reaches the minimum value. When the detection light 60 reaches the lower wafer surface 101 in FIG. 4A, the light amount increases again and eventually returns to the maximum value.
- the temporal change of the light amount of the detection light 60 is indicated by A1 in FIG. 4B. It becomes a graph.
- the period in which the detection light projected from the transmission sensor 61 is blocked is the time when the wafer 10 is not tilted. 6
- the width L2 when the amount of received light is equal to or less than a certain amount becomes longer than L1 when the wafer is placed in a normal state, as indicated by A2 in FIG.
- the graph is different from the graphs indicated by A1 in FIG. 4B and FIG. Details of the different graphs will be described later.
- the temporal changes in the detection light received by the reflection sensor 62 and the reflection sensor 63 during scanning are, for example, graphs indicated by B1 and B2 in FIG. 4B, respectively.
- the reflection sensor 62 or 63 The amount of the detection light received is the minimum value.
- the detection light reaches the upper wafer surface 101 in FIG. 4A, the detection light is reflected by the outer peripheral surface 102 of the wafer 10. For this reason, the light amount increases and eventually reaches a maximum value.
- the detection light is not reflected on the outer peripheral surface 102 of the wafer 10, so that the amount of received detection light increases. Eventually it returns to the minimum value.
- the inclination detection unit 211 of the PLC 2 determines whether or not the wafer 10 is inclined and, if so, the direction and magnitude (angle) of the inclination when the wafer 10 is inclined. Identify. Thereby, the sensor system 1 can specify more detailed information on the inclination of the wafer 10 than the presence or absence of the inclination.
- the direction of the inclination for example, among the points forming the outer periphery of the wafer surface 101, the direction from the highest point to the lowest point with respect to the horizontal plane may be specified. Further, as the angle of the inclination, for example, the angle of the wafer surface 101 with respect to the horizontal plane may be defined.
- the measurement of the amount of displacement of the wafer 10 in the z-axis direction will be described.
- the temporal change of the amount of light received by the light receiving unit 61b of the transmission sensor 61 is measured for a normal wafer 10 having no displacement in the z-axis direction and no tilt.
- the data is stored in the storage unit 22.
- the timing when the light amount of the detection light 60 becomes the minimum value corresponds to the position in the z-axis direction 0. This is compared with data on the change with time of the detection light 60 for the detection wafer.
- the displacement amount of the wafer 10 in the z-axis direction can be calculated.
- the amount of displacement and the direction in the z-axis direction can be specified by comparing the timing at which the detection light has a minimum value. .
- the tilt detection unit 211 determines that the wafer has been displaced upward in the z-axis direction. be able to. Conversely, when the timing at which the light amount becomes the minimum value in the data of the change with time of the detection light for the detection wafer is later than that of the reference data, the tilt detection unit 211 moves the wafer downward in the z-axis direction. It can be determined that it has been done.
- control unit 21 calculates the displacement amount of the detection wafer in the z-axis direction based on the difference between the timing when the amount of transmitted light to the detection wafer becomes the minimum value and the timing when the amount of transmitted light in the reference data becomes the minimum value. Can be identified.
- the PLC 2 can calculate the amount of displacement of the wafer in the z-axis direction by using the reflection sensor 62 and the reflection sensor 63.
- the control unit 21 measures a change in the amount of light during scanning of the reflection sensor 62 or the reflection sensor 63 with respect to a wafer in a normal state having no displacement and no tilt in the z-axis direction and stores the reference data and the storage unit 22. . Then, the control unit 21 measures the change over time of the detection light of the two reflection sensors 62 and 63 with respect to the detection wafer, and specifies the timing corresponding to the center point of the point at which the amount of received light reaches the maximum value. I do. By comparing this timing with the timing at which the amount of detection light received by the reflection sensor in the reference data reaches the maximum value, the displacement amount of the wafer in the z-axis direction can be calculated.
- the reflection sensor 62 and the reflection sensor 63 it is possible to specify which of the reflection sensor 62 and the reflection sensor 63 the wafer 10 is tilted around the x-axis depending on which of the reflection sensor 62 and the light reception amount reaches the maximum value first.
- the reflection sensor 62 has the maximum amount of received light before the reflection sensor 63 as shown in FIG. 5B
- the reflection sensor 63 arranged on the right side has the maximum amount of received light before the reflection sensor 62 arranged on the left side, it rises right around the x axis, that is, the wafer tilts to the left. Can be identified.
- the control unit 21 can also calculate the magnitude of the inclination of the wafer around the x-axis from the change over time of the amount of light received by the reflection sensor 62 and the reflection sensor 63 shown in FIG.
- FIG. 5B if the wafer is not tilted around the x-axis, the graphs of the change over time of the detected light amount indicated by the two reflection sensors 62 and 63 overlap. As the inclination of the wafer around the x-axis increases, the graphs of the change in the detected light amount over time shown by the two reflection sensors move away from each other. Therefore, the width L between the points where the two reflection sensors have the maximum value shown in FIG. 5B is proportional to the magnitude of the inclination of the wafer around the x-axis. Therefore, by measuring the width L between the points having the maximum value, the inclination of the wafer around the x-axis can be specified.
- the magnitude of the inclination of the wafer around the x-axis can be specified by analyzing the temporal change of the amount of light received by the light receiving unit 61a of the transmission sensor 61 by the PLC 2.
- the reference data A1 of the change over time of the light received by the transmission sensor 61 with respect to the wafer in which the inclination of the PLC 2 around the x axis is 0 is obtained in advance and stored in the storage unit 22. Then, the PLC 2 compares the reference data A1 with time-dependent change data A2 of the amount of light received from the transmission sensor 61 for the detection wafer. When the transmitted light passes through the wafer, the amount of received light reaches a minimum value.
- the amount of detection light received is a minimum value.
- the width of the portion where the light amount becomes the minimum value becomes wider.
- the PLC 2 compares the width L1 of the portion where the light amount of the detection light is equal to or less than the predetermined value in the reference data A1 with the width L2 of the portion where the amount of received light is equal to or less than the predetermined value in the detection data A2, thereby obtaining the x-axis.
- the magnitude of the inclination of the wafer around it can be specified.
- the PLC 2 calculates the average value of the tilt of the wafer. May be specified.
- FIG. 8 is a diagram showing a temporal change (A1) of the amount of light detected by the transmission sensor 61 and a temporal change (B1 and B2) of the amount of light detected by the reflection sensors 62 and 63. As shown in FIG.
- the wafer is moved by the timing t1 at which the amount of detection light received by the transmission sensor 61 becomes the minimum value and the timing t2 or t3 at which the reflection light amount received by the reflection sensor 62 or 63 becomes the maximum value. It can be specified which direction around the y axis is inclined.
- the two reflection sensors 62 and 63 are arranged on the x-axis direction front side of the transmission sensor 61. Therefore, as shown in FIG. 8, when the timing t2 or t3 when the amount of light received by the reflection sensors 62 and 63 reaches the maximum value is earlier than the timing t1 when the detection light received by the transmission sensor reaches the minimum value.
- the control unit 21 can specify that the wafer is raised forward, that is, inclined backward.
- the controller 21 can be specified that the wafer is lowered forward, that is, tilted forward. Further, for example, the control unit 21 calculates the y-axis based on the difference between the time point t2 at which the amount of detection light received by the reflection sensor 62 reaches a maximum value and the time point t1 at which the amount of detection light received by the transmission sensor 61 reaches a minimum value. The magnitude of the inclination of the wafer around it can be specified.
- the tilt detector 211 outputs the specified tilt direction, angle, and z-axis displacement of the wafer 10 to the robot controller 212.
- the robot controller 212 controls the tilt of the chuck 7 in accordance with the obtained direction, angle (magnitude of tilt), and displacement of the wafer 10 in the z-axis direction (step S8). Specifically, the robot control unit 212 determines the tilt direction, angle, and z-axis position of the chuck 7 according to the acquired tilt direction, angle, and z-axis displacement amount of the wafer 10.
- the robot control unit 212 transmits a control command including the determined tilt direction, angle, and z-axis position of the chuck 7 to the transfer robot 4 via the communication interface 23.
- the transfer robot 4 can adjust the direction and angle of the tilt of the chuck 7 according to the direction and angle of the tilt of the wafer 10 and the amount of displacement in the z-axis direction.
- step S9 is realized by the robot control unit 212 transmitting a control command to the transfer robot 4 via the communication interface 23.
- the control command may be transmitted to the transfer robot 4 together with the control command transmitted in step S8, or may be transmitted after the control command transmitted in step S8.
- steps S6 to S8 are omitted.
- the PLC 2 allows the transfer robot 4 to take out the wafer 10 without adjusting the tilt direction, angle, and position in the z-axis direction of the chuck 7 because the wafer 10 is placed in a normal state. (Step S9).
- the PLC 2 specifies the direction and angle of the tilt of the wafer 10 and the displacement in the z-axis direction. That is, the PLC 2 can specify more detailed information on the inclination of the wafer 10 than the presence or absence of the inclination.
- the PLC 2 can adjust the tilt direction, angle, and z-axis position of the chuck 7 based on the specified tilt direction and angle of the wafer 10 in step S8.
- the wafer 10 can be taken out of the wafer cassette 20 without damaging it. Therefore, even when the wafer 10 is tilted, the transfer of the wafer 10 by the transfer robot 4 can be continued.
- the case where the wafer 10 is tilted includes the case where the wafer 10 is tilted and stored in the wafer cassette 20 and the case where the wafer cassette 20 itself is tilted.
- the inclination of the wafer 10 is specified by using three reflection sensors 67, 68, and 69.
- the sensor hand 5 does not include the transmission sensor, but includes three reflection sensors.
- the sensor hand 5 according to the present embodiment includes a reflection sensor 67 and a reflection sensor 68 at positions of the reflection sensor 62 and the reflection sensor 63 in the first embodiment, respectively. That is, a reflection sensor 69 is provided on the sensor hand 5 side (that is, forward) of the straight line l connecting the two reflection sensors 67 and 68 and the straight line 1 connecting the center point of the wafer and the reflection sensors 67 and 68. I have.
- the reflection sensors 67 and 68 may be provided at the positions of the light projecting unit 61a and the light receiving unit 61b of the transmission sensor 61 in the first embodiment, respectively.
- the PLC 2 specifies the timing corresponding to the center point of the point where the light amount of the detection light becomes the maximum value, and compares it with the timing at which the light amount of the detection light becomes the maximum value in the reference data measured in advance. If the timing at which the temporal change in the light amount on the detection wafer becomes the maximum value is earlier than the timing at which the reference data has the maximum value, the PLC 2 determines that the wafer has been displaced in the z-axis direction. Conversely, if the timing at which the temporal change in the amount of light in the detection wafer becomes the maximum value is later than the timing at which the reference data has the maximum value, the PLC 2 determines that the wafer has been displaced downward in the z-axis direction. I do.
- the PLC 2 can specify the displacement amount of the wafer in the z-axis direction based on the difference between the timing at which the temporal change of the light quantity on the detection wafer becomes the maximum value and the timing at which the light quantity becomes the maximum value in the reference data.
- the transfer robot 4 moves the sensor hand 5 downward at a constant speed at a constant speed, and during that time, the sensor unit 3 acquires data on the change over time of the detection light received by the two reflection sensors 67 and 68 for the detection wafer. I do.
- the PLC 2 specifies the inclination direction and magnitude of the wafer around the x-axis by comparing data of the change over time in the amount of detection light received by the two left and right reflection sensors, that is, the reflection sensors 67 and 68. Specifically, as shown in FIG.
- the PLC 2 when the timing at which the amount of received detection light reaches the maximum value is such that the left reflection sensor 67 is earlier than the right reflection sensor 68, the PLC 2 Identifies that it is rising to the left, that is, leaning to the right. Conversely, if the point at which the amount of light reaches a peak is earlier than the reflection sensor 66, the PLC 2 specifies that the wafer is tilted to the left, that is, the wafer is tilted to the right.
- the PLC 2 specifies the magnitude of the inclination of the wafer around the x-axis by measuring the difference L between the timings at which the amount of light reaches the maximum value by the reflection sensors 67 and 68.
- the front reflection sensor 69 is provided on the x-axis direction front side of the left and right reflection sensors 67 and 68.
- the transfer robot 4 moves the sensor hand 5 downward at a constant speed at a constant speed, and during this time, the sensor unit 3 detects the change over time of the detection light received by the reflection sensor 67 (or 68) and the reflection sensor 69 for the detection wafer. Get the data.
- the PLC 2 compares the acquired data of the change over time in the amount of the detection light received by the reflection sensor 67 (or 68) and the reflection sensor 68, and specifies the tilt direction and the size of the wafer around the y-axis. .
- the front reflection sensor 69 is provided on the x-axis direction front side of the left and right reflection sensors 67 and 68. Therefore, as shown in FIG. 14, when the timing at which the amount of detection light reaches the maximum value is earlier than the reflection sensor 69 in the reflection sensor 67 (or 68), the PLC 2 moves the wafer forward, Identify the wafer as leaning forward.
- the PLC 2 moves the wafer forward, that is, moves the wafer backward. Identify that it is leaning.
- the PLC 2 determines the magnitude L of the difference between the timings at which the amount of the detected light reaches the maximum value using the reflection sensor 67 (68) and the reflection sensor 69, thereby reducing the magnitude of the inclination of the wafer around the y-axis. Identify.
- the technology described in the present specification is not limited to the sensor configuration described above.
- the sensor hand may include two pairs of transmission sensors and one reflection sensor.
- the sensor hand includes two pairs of transmission sensors arranged in the x-axis direction of the wafer such that transmitted light is parallel. With this configuration, the inclination of the wafer can be specified with higher accuracy.
- Modification 1 Modification 1
- the control unit 21 of the PLC 2 includes the inclination detection unit 211 as a functional configuration
- the control unit (not shown) of the sensor unit 3 may include a tilt detection unit 211 as a functional configuration.
- Modification 2 In the above embodiment, as illustrated in FIG. 1, an example in which the sensor system 1 includes only one combination of the sensor unit 3, the transfer robot 4, the chuck 5, and the photoelectric sensor 6 has been described. However, the sensor system 1 may have a plurality of the combinations.
- Modification 4 In the above embodiment, as illustrated in FIG. 10 and the like, an example in which the sensor system 1 specifies the direction and angle of the tilt of the wafer 10 has been described. However, the configuration in which the sensor system 1 specifies the inclination angle of the wafer 10 is not essential. In other words, the sensor system 1 may specify only the direction of the tilt of the wafer 10.
- the sensor system 1 controls the tilt direction, angle, and z-axis position of the chuck 7 in accordance with the specified tilt direction, angle, and displacement amount in the z-axis direction of the wafer 10 is described. explained. Instead of this configuration or in addition to this configuration, when the specified tilt angle of the wafer 10 is equal to or more than a certain value, the sensor system 1 may include a configuration that notifies the user of the sensor system 1 of the fact. Good.
- FIG. 11 is a diagram schematically illustrating an example of a hardware configuration of each device included in the sensor system 1a according to the sixth modification.
- the sensor system 1a differs from the sensor system 1 in that the sensor system 1a includes a PLC 2a instead of the PLC 2, and that the alarm system 7 is newly included.
- the notification device 7 is a device that notifies the user of the sensor system 1 and may be, for example, a display device (display). In the case of this example, the notification device 7 notifies the user that the angle of inclination of the wafer 10 is equal to or greater than a certain value, in other words, the wafer 10 may be damaged when the wafer 10 is removed from the wafer cassette 20. Display a warning screen.
- PLC2a is different from PLC2 in that an output interface 24 is newly provided.
- the output interface 24 is an interface for the PLC 2a to output data.
- the PLC 2a outputs information for performing notification to the user (for example, display information for displaying the screen) to the notification device 7 via the output interface 24.
- the control unit 21 includes a display control unit (not shown) as a functional configuration.
- the tilt detection unit 211 determines whether or not the specified tilt angle of the wafer 10 is equal to or greater than a certain value. If the tilt angle is equal to or greater than the certain value, the display information generation instruction is sent to the display control unit. Output.
- the display control unit receives the generation instruction, generates display information, and outputs the display information to the notification device 7 via the output interface 24.
- the sensor system 1a can notify a user (for example, an operator) of the sensor system 1a that the wafer 10 may be damaged.
- a sensor system is a sensor system that detects an inclination of a wafer stored in a wafer cassette, and includes three or more photoelectric sensors and the three or more photoelectric sensors. Is moved in a direction perpendicular to the plane of the normally accommodated wafer while the plane including the three or more photoelectric sensors is parallel to the plane of the wafer normally accommodated.
- Movement control device during the movement of the photoelectric sensor, an acquisition device that acquires the amount of light received by the photoelectric sensor, based on the change in the amount of light during the period when the photoelectric sensor is detecting the detection target wafer, A specification device for specifying the direction of the tilt of the wafer and the magnitude of the tilt of the wafer.
- the “direction of inclination”, among the points forming the outer periphery of the wafer, the direction from the highest point to the lowest point with respect to the horizontal plane may be specified.
- the “vertical direction” is a direction perpendicular to the plane of a normally stored wafer (that is, the vertical direction), and the “left-right direction” of the wafer is normally stored.
- the “front-back direction” of a wafer refers to a direction that is parallel to the plane of a normally stored wafer and that is orthogonal to the “left-right direction”.
- the amount of displacement of the wafer in the vertical direction and the inclination in the horizontal direction are determined based on the change in the amount of light received by the three or more photoelectric sensors. More detailed information on the inclination of the wafer, such as the size of the wafer and the magnitude of the inclination in the front-back direction, can be obtained. Thus, the sensor system can specify more detailed information than the presence or absence of the inclination.
- two of the three or more photoelectric sensors are a pair of transmission-type sensors provided so that detection light passes through two points on an arc that forms the outer periphery of the wafer. It may be a sensor.
- a pair of transmission sensors including a light projecting unit and a light receiving unit is counted as two photoelectric sensors.
- the three or more photoelectric sensors are further provided such that a position other than the two points is a detection region on an arc forming an outer periphery of the wafer.
- a plurality of reflective sensors may be included.
- one or a plurality of reflection-type sensors are positions on an arc forming the outer periphery of the wafer other than the two points, and a center point of a straight line connecting the two points. It may include two reflection sensors provided such that a position symmetrical with respect to a straight line passing through the center point of the wafer is a detection area.
- the transfer device for transferring the wafer further includes a transfer device having a chuck for taking out the wafer from the wafer cassette, the specific device, the specified device,
- the inclination of the chuck may be controlled according to the inclination and angle of the wafer.
- the tilt of the chuck is controlled in accordance with the tilt, the angle, and the displacement in the z-axis direction of the wafer specified by the specifying device. Therefore, even if the wafer is tilted, the wafer cassette is not damaged. Can be taken from Therefore, even when the wafer is tilted, the transfer can be continued.
- a tilt detection method using a sensor system for detecting a tilt of a wafer housed in a wafer cassette wherein the sensor system comprises: Is provided with three or more photoelectric sensors, and the three or more photoelectric sensors are normally placed in a state in which a plane including the three or more photoelectric sensors is parallel to the plane of the wafer in which the plane is normally accommodated.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Human Computer Interaction (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Manipulator (AREA)
Abstract
The present invention identifies information about an inclination of a wafer, the information being more specific than the presence of the inclination. This sensor system (1) is provided with a PLC (2) that identifies the direction of the inclination of a wafer (10) being detected and the degree of the inclination of the wafer (10) on the basis of the change in light amount during a period in which a photoelectric sensor (6) detects the wafer (10).
Description
本発明は、光電センサを用いて、ウェハカセットに収納されたウェハの傾きを検出するセンサシステムなどに関する。
The present invention relates to a sensor system and the like for detecting the inclination of a wafer stored in a wafer cassette using a photoelectric sensor.
光電センサを移動させながらウェハに検出光を投光し、受光した検出光の光量に基づいて、ウェハカセットに収納されたウェハの傾きを検出する技術が従来技術として知られている。下記特許文献1には、ウェハカセットにおけるウェハ収納部の近傍の範囲外に、所定の閾値を超える受光量のピークがあるか否かを判断し、該ピークがあると判断した場合、ウェハの斜め挿入などの異常が生じていると判断する技術が開示されている。
A technique of projecting detection light onto a wafer while moving a photoelectric sensor and detecting the inclination of a wafer stored in a wafer cassette based on the amount of received detection light is known as a conventional technique. Japanese Patent Application Laid-Open No. H11-157210 determines whether there is a peak of a light reception amount exceeding a predetermined threshold outside a range near a wafer storage unit in a wafer cassette. A technique for determining that an abnormality such as insertion has occurred is disclosed.
しかしながら、特許文献1に開示された技術では、ウェハが傾いているか否かを判断することしかできない。換言すれば、該技術では、傾きの詳細な情報をユーザが知ることができない。
However, the technique disclosed in Patent Document 1 can only determine whether the wafer is tilted. In other words, this technique does not allow the user to know detailed tilt information.
上記の課題を鑑み、本発明の一態様は、ウェハの傾きに関し、傾きの有無より詳細な情報を特定するセンサシステムなどを実現することを目的とする。
In view of the above problems, an object of one embodiment of the present invention is to realize a sensor system or the like that specifies more detailed information on the tilt of a wafer than the presence or absence of the tilt.
上記の課題を解決するために、本発明の一態様に係るセンサシステムは、ウェハカセットに収納されたウェハの傾きを検出するセンサシステムであって、3つ以上の光電センサと、前記3つ以上の光電センサを、前記3つ以上の光電センサを含む平面が正常に収納されている前記ウェハの平面に平行な状態で、前記正常に収納されている前記ウェハの平面に垂直な方向に移動させる移動制御装置と、前記光電センサの移動中に、前記光電センサが受光した光量を取得する取得装置と、前記光電センサが、検出対象のウェハを検出している期間の前記光量の変化に基づき、前記ウェハの傾きの方向及び前記ウェハの傾きの大きさを特定する特定装置と、を備える。
In order to solve the above-described problem, a sensor system according to one embodiment of the present invention is a sensor system that detects an inclination of a wafer stored in a wafer cassette, and includes three or more photoelectric sensors and the three or more photoelectric sensors. Is moved in a direction perpendicular to the plane of the normally accommodated wafer while the plane including the three or more photoelectric sensors is parallel to the plane of the wafer normally accommodated. Movement control device, during the movement of the photoelectric sensor, an acquisition device that acquires the amount of light received by the photoelectric sensor, based on the change in the amount of light during the period when the photoelectric sensor is detecting the detection target wafer, A specification device for specifying the direction of the tilt of the wafer and the magnitude of the tilt of the wafer.
上記の課題を解決するために、本発明の一態様に係る傾き検出方法は、ウェハカセットに収納されたウェハの傾きを検出するセンサシステムを用いた傾き検出方法であって、前記センサシステムは、3つ以上の光電センサを備え、前記3つ以上の光電センサを、前記3つ以上の光電センサを含む平面が正常に収納されている前記ウェハの平面に平行な状態で、前記正常に収納されている前記ウェハの平面に垂直な方向に移動させる移動ステップと、前記移動ステップ中に、前記受光部が受光した光量を取得する取得ステップと、前記光電センサが、検出対象のウェハを検出している期間の前記光量の変化に基づき、前記ウェハの傾きの方向及び前記ウェハの傾きの大きさを特定する特定ステップと、を含んでもよい。
In order to solve the above problem, an inclination detection method according to one embodiment of the present invention is an inclination detection method using a sensor system that detects an inclination of a wafer stored in a wafer cassette, wherein the sensor system includes: It is provided with three or more photoelectric sensors, and the three or more photoelectric sensors are normally accommodated in a state in which a plane including the three or more photoelectric sensors is parallel to a plane of the wafer in which the plane is normally accommodated. A moving step of moving the wafer in a direction perpendicular to the plane of the wafer, and during the moving step, an obtaining step of obtaining an amount of light received by the light receiving unit, and the photoelectric sensor detects a wafer to be detected. Specifying a direction of the inclination of the wafer and a magnitude of the inclination of the wafer based on a change in the amount of light during a certain period.
本発明の一態様によれば、ウェハの傾きに関し、ウェハの上下方向の変位量、左右方向における傾きの大きさ、前後方向における傾きの大きさなど、傾きの有無より詳細な情報を特定することができる。
According to one embodiment of the present invention, it is possible to specify more detailed information on the inclination of a wafer, such as the amount of vertical displacement of the wafer, the magnitude of the inclination in the horizontal direction, the magnitude of the inclination in the front-rear direction, and the like, whether or not the inclination exists. Can be.
<実施形態1>
以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。 <First embodiment>
Hereinafter, an embodiment according to one aspect of the present invention (hereinafter, also referred to as “the present embodiment”) will be described with reference to the drawings.
以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。 <First embodiment>
Hereinafter, an embodiment according to one aspect of the present invention (hereinafter, also referred to as “the present embodiment”) will be described with reference to the drawings.
§1 適用例
まず、図1を用いて、本発明が適用される場面の一例について説明する。図1は、本実施形態に係るセンサシステム1に含まれる各装置のハードウェア構成の一例を模式的に例示する図である。センサシステム1は、ウェハカセットに収納されたウェハの傾きを検出するセンサシステムである。 §1 Application Example First, an example of a scene to which the present invention is applied will be described with reference to FIG. FIG. 1 is a diagram schematically illustrating an example of a hardware configuration of each device included in the sensor system 1 according to the present embodiment. The sensor system 1 is a sensor system that detects a tilt of a wafer stored in a wafer cassette.
まず、図1を用いて、本発明が適用される場面の一例について説明する。図1は、本実施形態に係るセンサシステム1に含まれる各装置のハードウェア構成の一例を模式的に例示する図である。センサシステム1は、ウェハカセットに収納されたウェハの傾きを検出するセンサシステムである。 §1 Application Example First, an example of a scene to which the present invention is applied will be described with reference to FIG. FIG. 1 is a diagram schematically illustrating an example of a hardware configuration of each device included in the sensor system 1 according to the present embodiment. The sensor system 1 is a sensor system that detects a tilt of a wafer stored in a wafer cassette.
図1に示されるとおり、センサシステム1は、PLC(programmable logic controller)2、センサユニット3、搬送ロボット4、センサハンド5、および光電センサ6を含んでいる。搬送ロボット4は、ウェハをウェハカセットから取り出すためのチャック7を備える。PLC2、センサユニット3、搬送ロボット4、およびセンサハンド5の詳細は後述する。光電センサ6は、図1に示されるとおり、透過センサ61および反射センサ62、63を含む。透過センサ61は、さらに投光部61aおよび受光部61bを備え、一例としてファイバセンサで実現される。投光部61aは検出光を投光し、受光部61bは該検出光を受光する。反射型センサ62、63は、ウェハの外周に向かって検出光を投光し、ウェハから反射される検出光を受光する。
As shown in FIG. 1, the sensor system 1 includes a PLC (programmable logic controller) 2, a sensor unit 3, a transfer robot 4, a sensor hand 5, and a photoelectric sensor 6. The transfer robot 4 includes a chuck 7 for taking out a wafer from a wafer cassette. Details of the PLC 2, the sensor unit 3, the transfer robot 4, and the sensor hand 5 will be described later. As shown in FIG. 1, the photoelectric sensor 6 includes a transmission sensor 61 and reflection sensors 62 and 63. The transmission sensor 61 further includes a light projecting unit 61a and a light receiving unit 61b, and is realized by a fiber sensor as an example. The light emitting unit 61a emits the detection light, and the light receiving unit 61b receives the detection light. The reflection sensors 62 and 63 project detection light toward the outer periphery of the wafer and receive the detection light reflected from the wafer.
図3に、センサハンド5と光電センサの位置関係を示している。透過センサ61の投光部61aおよび受光部61bはセンサハンド5の先端部であって、ウェハの外周を形成する円弧上の2点を投光部61aが投光する検出光が通過するように設けられる。反射センサ62および63は、投光部61aおよび受光部61bの中点とウェハの中心点を結ぶ直線lに対して対称な位置に設けられる。また、反射センサ62および63は、前記2点以外の前記ウェハの外周を形成する円弧上の位置であって、前記2点を結ぶ直線の中心点と前記ウェハの中心点とを通る直線lに対して対称な位置が検出領域となるように設けられている。
FIG. 3 shows the positional relationship between the sensor hand 5 and the photoelectric sensor. The light projecting portion 61a and the light receiving portion 61b of the transmission sensor 61 are at the tip of the sensor hand 5 so that the detection light projected by the light projecting portion 61a passes through two points on an arc forming the outer periphery of the wafer. Provided. The reflection sensors 62 and 63 are provided at positions symmetrical with respect to a straight line 1 connecting the midpoint of the light projecting unit 61a and the light receiving unit 61b to the center point of the wafer. Further, the reflection sensors 62 and 63 are located on a circular arc forming the outer periphery of the wafer other than the two points, and a straight line l passing through the center point of the straight line connecting the two points and the center point of the wafer. The symmetrical position is provided so as to be a detection area.
なお、図面においては、透過センサ61からの検出光60の進行方向に平行な方向をy軸方向、正常に載置されたウェハ10の平面101に平行でy軸と直交する方向をx軸方向、およびx軸、y軸に直行する方向をz軸とする。
In the drawings, the direction parallel to the traveling direction of the detection light 60 from the transmission sensor 61 is the y-axis direction, and the direction parallel to the plane 101 of the normally mounted wafer 10 and orthogonal to the y-axis is the x-axis direction. , And the direction orthogonal to the x-axis and the y-axis is defined as the z-axis.
本発明のセンサシステム1では、透過センサまたは反射センサを含む3個以上の光電センサを用いて、これらのセンサで受光される検出光の光量の経時変化のデータを取得し、これらのデータを比較する。これにより、ウェハのz軸方向の変位量、左右方向の傾き(x軸周りの傾き)、及び前後方向の傾き(y軸周りの傾き)などウェハの傾きに関する詳細な情報を得ることができる。
In the sensor system 1 of the present invention, three or more photoelectric sensors including a transmission sensor or a reflection sensor are used to acquire data on a temporal change in the amount of detection light received by these sensors, and compare these data. I do. This makes it possible to obtain detailed information on the tilt of the wafer, such as the amount of displacement of the wafer in the z-axis direction, the tilt in the horizontal direction (tilt around the x-axis), and the tilt in the front-rear direction (tilt around the y-axis).
センサシステム1では、移動制御装置(搬送ロボット4のアクチュエータ8)が、透過センサ61(投光部61a、受光部61b)、反射センサ62、および反射センサ63を含む平面(すなわちセンサハンド5の上面)が正常に収納されているウェハの平面に平行な状態で、正常に収納されているウェハの平面に垂直な方向(すなわちz軸)下向きに一定の速度で移動させる。この間に、センサユニット3が光電センサからの検出光をウェハ10にスキャンし、センサユニット3が光電センサで受光した検出光の光量を取得する。そして、傾き検出部211が、光電センサが検出対象のウェハ10を検出している期間の光量の経時変化に基づき、ウェハ10の傾きの方向、及び、ウェハ10の傾きの大きさを特定する。
In the sensor system 1, the movement control device (the actuator 8 of the transfer robot 4) includes a plane including the transmission sensor 61 (the light projecting unit 61 a and the light receiving unit 61 b), the reflection sensor 62, and the reflection sensor 63 (ie, the upper surface of the sensor hand 5). ) Is moved at a constant speed in a direction perpendicular to the plane of the normally stored wafer (that is, the z-axis) in a state parallel to the plane of the normally stored wafer. During this time, the sensor unit 3 scans the wafer 10 with the detection light from the photoelectric sensor, and acquires the light amount of the detection light received by the sensor unit 3 with the photoelectric sensor. Then, the inclination detection unit 211 specifies the direction of the inclination of the wafer 10 and the magnitude of the inclination of the wafer 10 based on the temporal change in the amount of light during the period when the photoelectric sensor is detecting the target wafer 10.
上記において、透過センサ61がウェハ10を検知している期間は、受光する検出光の光量が最小値となる。また、反射センサ62および63がウェハ10を検知している期間は、受光する検出光の光量が最大値となる。
In the above, during the period when the transmission sensor 61 is detecting the wafer 10, the light amount of the detection light to be received is the minimum value. In addition, during the period when the reflection sensors 62 and 63 are detecting the wafer 10, the amount of the detection light received becomes the maximum value.
3個以上の光電センサを、ウェハの外周を形成する円弧上の異なる位置が検出光の照射領域となるように配置することにより、それぞれの透過センサにおいて受光される検出光の光量が最小値となるタイミングの差、またはそれぞれの反射センサにおいて受光される検出光の光量が最大値となるタイミングの差を利用することにより、ウェハの左右方向の傾き、および前後方向の傾きを特定することができる。
By arranging three or more photoelectric sensors such that different positions on the arc forming the outer periphery of the wafer are the irradiation areas of the detection light, the light amount of the detection light received by each transmission sensor becomes the minimum value. By using the difference in the timings or the difference in the timing at which the amount of the detection light received by each reflection sensor becomes the maximum value, the inclination in the left-right direction and the inclination in the front-back direction of the wafer can be specified. .
また、予め、取得装置が、z軸方向の変位がなく傾きもない正常な状態のウェハに対して、透過センサまたは反射センサで受光される検出光の光量の経時変化のデータを取得し、PLC2がこれを基準データ221として、記憶部22に格納させる。そして、PLC2が、格納された基準データ221と検出用ウェハの光量の経時変化のデータとを比較する。これにより、PLC2が、ウェハのz軸方向の変位量を特定する。
In addition, the acquisition device previously acquires data on a temporal change in the amount of detection light received by the transmission sensor or the reflection sensor with respect to a normal wafer having no displacement and no tilt in the z-axis direction. Causes the storage unit 22 to store this as the reference data 221. Then, the PLC 2 compares the stored reference data 221 with the data of the change over time in the light amount of the detection wafer. Thus, the PLC 2 specifies the amount of displacement of the wafer in the z-axis direction.
§2 構成例
[ハードウェア構成]
<PLC>
次に、図1を用いて、本実施形態に係るPLC2のハードウェア構成の一例について説明する。PLC2は、センサシステム1に含まれるセンサユニット3および搬送ロボット4を制御する制御装置である。 §2 Configuration example [Hardware configuration]
<PLC>
Next, an example of a hardware configuration of thePLC 2 according to the present embodiment will be described with reference to FIG. The PLC 2 is a control device that controls the sensor unit 3 and the transfer robot 4 included in the sensor system 1.
[ハードウェア構成]
<PLC>
次に、図1を用いて、本実施形態に係るPLC2のハードウェア構成の一例について説明する。PLC2は、センサシステム1に含まれるセンサユニット3および搬送ロボット4を制御する制御装置である。 §2 Configuration example [Hardware configuration]
<PLC>
Next, an example of a hardware configuration of the
図1の例では、PLC2は、制御部21、記憶部22、および通信インタフェース23を備える。PLC2が備えるこれらの構成は、通信バスによって互いに電気的に接続される。本実施形態に係るPLC2は、本発明の「特定装置」に相当する。
で は In the example of FIG. 1, the PLC 2 includes a control unit 21, a storage unit 22, and a communication interface 23. These components of the PLC 2 are electrically connected to each other by a communication bus. The PLC 2 according to the present embodiment corresponds to the “specific device” of the present invention.
制御部21は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)などを含み、情報処理に応じて各構成要素の制御を行う。記憶部22は、例えば、ハードディスクドライブ、ソリッドステートドライブなどの補助記憶装置である。
The control unit 21 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and controls each component according to information processing. The storage unit 22 is an auxiliary storage device such as a hard disk drive and a solid state drive.
通信インタフェース23は、例えば、有線LAN(Local Area Network)モジュール、無線LANモジュール等であり、ネットワークを介した有線又は無線通信を行うためのインタフェースである。
The communication interface 23 is, for example, a wired LAN (Local Area Network) module, a wireless LAN module, or the like, and is an interface for performing wired or wireless communication via a network.
なお、PLC2の具体的なハードウェア構成に関して、実施形態に応じて、構成要素の省略、置換および追加が可能である。例えば、制御部21は、複数のプロセッサを含んでいてもよい。
In addition, regarding the specific hardware configuration of the PLC 2, it is possible to omit, replace, and add components according to the embodiment. For example, the control unit 21 may include a plurality of processors.
<搬送ロボット>
次に、図1および図2を用いて、本実施形態に係る搬送ロボット4のハードウェア構成の一例について説明する。図2は、搬送ロボット4によるウェハカセット20からウェハ10を取り出す動作の一例を示す図である。 <Transport robot>
Next, an example of a hardware configuration of thetransfer robot 4 according to the present embodiment will be described with reference to FIGS. FIG. 2 is a diagram illustrating an example of an operation of taking out the wafer 10 from the wafer cassette 20 by the transfer robot 4.
次に、図1および図2を用いて、本実施形態に係る搬送ロボット4のハードウェア構成の一例について説明する。図2は、搬送ロボット4によるウェハカセット20からウェハ10を取り出す動作の一例を示す図である。 <Transport robot>
Next, an example of a hardware configuration of the
図1の例では、搬送ロボット4は、ウェハ10を搬送する搬送装置であって、ウェハ10をウェハカセット20から取り出すためのチャック7を備えている。チャック7は、一例として、図2に示されるとおりU字型(あるいは、Y字型)の部材である。図2に示される通り、チャック7の根元側は、搬送ロボット4のアクチュエータ8と接続されている。制御部21によって搬送ロボット4が制御されることにより、チャック7は、図2に示されるとおり、ウェハカセット20に収納されたウェハ10の下側に挿入され、ウェハ10を持ち上げる。これにより、ウェハ10は、ウェハカセット20に載置された状態から、チャック7に載置された状態となり、ウェハカセット20から取り出される。搬送ロボット4は、制御部21により制御され、チャック7に載置したウェハ10を搬送する。本実施形態に係る搬送ロボット4は、本発明の「搬送装置」に相当する。
In the example of FIG. 1, the transfer robot 4 is a transfer device that transfers the wafer 10, and includes the chuck 7 for removing the wafer 10 from the wafer cassette 20. The chuck 7 is, for example, a U-shaped (or Y-shaped) member as shown in FIG. As shown in FIG. 2, the root side of the chuck 7 is connected to the actuator 8 of the transfer robot 4. As the transfer robot 4 is controlled by the control unit 21, the chuck 7 is inserted below the wafer 10 housed in the wafer cassette 20, as shown in FIG. As a result, the wafer 10 is placed on the chuck 7 from the state placed on the wafer cassette 20 and is taken out of the wafer cassette 20. The transfer robot 4 is controlled by the control unit 21 and transfers the wafer 10 placed on the chuck 7. The transfer robot 4 according to the present embodiment corresponds to the “transfer device” of the present invention.
また、図2の例では、搬送ロボット4のアクチュエータ8を介してチャック7と反対側には、センサハンド5が連結されている。このセンサハンド5には、3つ以上の光電センサが備えられている。センサハンド5も、搬送ロボット4によって移動される。搬送ロボット4は、ウェハカセット20からウェハを取り出す際に、まずセンサハンド5をウェハカセット20側に向け、ウェハカセット20に収納されたウェハ10をスキャンしてウェハ10の傾きおよび角度を特定する。その後、搬送ロボット4は180度回転して、チャック7をウェハカセット20側に向け、チャック7にウェハカセット20からウェハ10を取り出す動作を行わせる。このとき、搬送ロボット4は、上記で特定したウェハ10の傾きおよび角度に応じて、チャック7の傾きを制御する。これにより、ウェハ10がチャック7によって傷つくのを防ぐことができる。
In the example of FIG. 2, the sensor hand 5 is connected to the opposite side of the chuck 7 via the actuator 8 of the transfer robot 4. The sensor hand 5 includes three or more photoelectric sensors. The sensor hand 5 is also moved by the transfer robot 4. When taking out a wafer from the wafer cassette 20, the transfer robot 4 first turns the sensor hand 5 toward the wafer cassette 20, scans the wafer 10 stored in the wafer cassette 20, and specifies the inclination and angle of the wafer 10. Thereafter, the transfer robot 4 rotates by 180 degrees, directs the chuck 7 toward the wafer cassette 20, and causes the chuck 7 to perform an operation of taking out the wafer 10 from the wafer cassette 20. At this time, the transfer robot 4 controls the tilt of the chuck 7 according to the tilt and the angle of the wafer 10 specified above. Thereby, the wafer 10 can be prevented from being damaged by the chuck 7.
また、図1および図2の例では、このセンサハンド5は、透過センサ61、反射センサ62、および反射センサ63を備えている。透過センサ61は、投光部61aおよび受光部61bを備えている。一例として、投光部61aおよび受光部61bは、図3に示されるとおり、センサハンド5の先端部であって、ウェハの外周を形成する円弧上の2点を検出光が通過するように設けられている。反射センサ62および反射センサ63は、前記2点以外の前記ウェハの外周を形成する円弧上の位置であって、前記2点を結ぶ直線の中心点と前記ウェハの中心点とを通る直線lに対して対称な位置が検出領域となるように設けられている。このため、本実施形態では、搬送ロボット4によるセンサハンド5の移動により、透過センサ61、反射センサ62、および反射センサ63の移動が行われる。つまり、搬送ロボット4は、センサハンド5をも移動させる。したがって、本実施形態に係る搬送ロボット4は、本発明の「移動制御装置」にも相当する。
In the examples of FIGS. 1 and 2, the sensor hand 5 includes a transmission sensor 61, a reflection sensor 62, and a reflection sensor 63. The transmission sensor 61 includes a light projecting unit 61a and a light receiving unit 61b. As an example, as shown in FIG. 3, the light projecting portion 61a and the light receiving portion 61b are provided so that the detection light passes through two points on an arc forming the outer periphery of the wafer at the tip end of the sensor hand 5. Have been. The reflection sensor 62 and the reflection sensor 63 are located on a circular arc forming the outer periphery of the wafer other than the two points, and a straight line l passing through the center point of a straight line connecting the two points and the center point of the wafer. The symmetrical position is provided so as to be a detection area. Therefore, in the present embodiment, the transmission sensor 61, the reflection sensor 62, and the reflection sensor 63 are moved by the movement of the sensor hand 5 by the transfer robot 4. That is, the transfer robot 4 also moves the sensor hand 5. Therefore, the transfer robot 4 according to the present embodiment also corresponds to the “movement control device” of the present invention.
なお、以降、センサハンド5において、投光部61aおよび受光部61bが設けられた部分を、「手」とも表記する。図3の例では、センサハンド5の一方の手に投光部61aが設けられ、他方の手に受光部61bが設けられている。また、反射センサ62および反射センサ63がセンサハンド5から延びる突出部65および突出部66にそれぞれ設けられている。なお、本明細書では、透過センサ61の投光部61aおよび受光部61bは、それぞれ一つの光電センサとして数える。したがって、センサハンド5には光電センサ6が4つ(投光部61a、受光部61b、反射センサ62、反射センサ63)が設けられている。
Hereafter, in the sensor hand 5, the portion where the light projecting portion 61a and the light receiving portion 61b are provided is also described as "hand". In the example of FIG. 3, the light projecting unit 61 a is provided on one hand of the sensor hand 5, and the light receiving unit 61 b is provided on the other hand. Further, a reflection sensor 62 and a reflection sensor 63 are provided on a protrusion 65 and a protrusion 66 extending from the sensor hand 5, respectively. In the present specification, the light projecting unit 61a and the light receiving unit 61b of the transmission sensor 61 are each counted as one photoelectric sensor. Therefore, the sensor hand 5 is provided with four photoelectric sensors 6 (light emitting unit 61a, light receiving unit 61b, reflection sensor 62, and reflection sensor 63).
図3に示される例のように、ウェハ10の直径が200mmの場合、一例として、投光部61aおよび受光部61bは、ウェハ面101の中心から70mmの位置に検出光60が照射される、チャック5の位置に設けられる。また、反射センサ62,63は互いの間の距離が142mmほどとなるように、かつ反射センサ62,63から投光される検出光がウェハの中心に向かって、直線lに対し45度以下の角度でウェハの外周を形成する円弧部分を照射するように取り付けられる。
As in the example shown in FIG. 3, when the diameter of the wafer 10 is 200 mm, for example, the light projecting unit 61 a and the light receiving unit 61 b irradiate the detection light 60 to a position 70 mm from the center of the wafer surface 101. It is provided at the position of the chuck 5. Further, the reflection sensors 62 and 63 are arranged such that the distance between them is about 142 mm, and the detection light projected from the reflection sensors 62 and 63 is at most 45 degrees with respect to the straight line l toward the center of the wafer. It is mounted to illuminate an arc that forms an outer circumference of the wafer at an angle.
なお、投光部61aおよび受光部61bは、ウェハ10に検出光が照射される、センサハンド5の位置に設けられていればよく、該位置は、図3に示す位置に限定されない。
Note that the light projecting unit 61a and the light receiving unit 61b may be provided at the position of the sensor hand 5 at which the wafer 10 is irradiated with the detection light, and the positions are not limited to the positions shown in FIG.
また、本実施形態では、図3におけるセンサハンド5の左側の手の先端部に投光部61aを設け、右側の手の先端部に受光部61bを設ける例を説明する。ただし、左側の手の先端部に受光部61b、右側の手の先端部に投光部61aを設けてもよい。
In the present embodiment, an example will be described in which the light emitting unit 61a is provided at the tip of the left hand of the sensor hand 5 in FIG. 3 and the light receiving unit 61b is provided at the tip of the right hand. However, the light receiving unit 61b may be provided at the tip of the left hand, and the light emitting unit 61a may be provided at the tip of the right hand.
<センサユニット3>
センサユニット3は、制御部21により制御され、光電センサ61,62,および63を制御する。具体的には、センサユニット3は、検出光の投光の開始および停止を制御する。より具体的には、センサユニット3は、光電センサ61,62,63の移動中に、検出光を投光し続ける。つまり、また、センサユニット3は、光電センサ61,62,および63の移動中に、光電センサ61,62,63が受光した検出光の光量を取得しA/D変換により光量データに変換した後にPLC2へ送信する。本実施形態に係るセンサユニット3は、本発明の「取得装置」に相当する。 <Sensor unit 3>
Thesensor unit 3 is controlled by the control unit 21 and controls the photoelectric sensors 61, 62, and 63. Specifically, the sensor unit 3 controls start and stop of the projection of the detection light. More specifically, the sensor unit 3 continues to emit the detection light while the photoelectric sensors 61, 62, and 63 are moving. That is, the sensor unit 3 acquires the light amount of the detection light received by the photoelectric sensors 61, 62, and 63 while the photoelectric sensors 61, 62, and 63 are moving, and converts the light amount into light amount data by A / D conversion. Send to PLC2. The sensor unit 3 according to the present embodiment corresponds to the “acquisition device” of the present invention.
センサユニット3は、制御部21により制御され、光電センサ61,62,および63を制御する。具体的には、センサユニット3は、検出光の投光の開始および停止を制御する。より具体的には、センサユニット3は、光電センサ61,62,63の移動中に、検出光を投光し続ける。つまり、また、センサユニット3は、光電センサ61,62,および63の移動中に、光電センサ61,62,63が受光した検出光の光量を取得しA/D変換により光量データに変換した後にPLC2へ送信する。本実施形態に係るセンサユニット3は、本発明の「取得装置」に相当する。 <
The
[PLCの機能構成]
次に、図9を用いて、本実施形態に係るPLC2の機能構成の一例を説明する。図9は、本実施形態に係るPLC2の機能構成の一例を模式的に例示する図である。 [Functional Configuration of PLC]
Next, an example of a functional configuration of thePLC 2 according to the present embodiment will be described with reference to FIG. FIG. 9 is a diagram schematically illustrating an example of a functional configuration of the PLC 2 according to the present embodiment.
次に、図9を用いて、本実施形態に係るPLC2の機能構成の一例を説明する。図9は、本実施形態に係るPLC2の機能構成の一例を模式的に例示する図である。 [Functional Configuration of PLC]
Next, an example of a functional configuration of the
本実施形態に係るPLC2の制御部21は、機能構成として、傾き検出部211およびロボット制御部212を備える。また、記憶部22は、一例として、基準データ221を少なくとも記憶している。
The control unit 21 of the PLC 2 according to the present embodiment includes a tilt detection unit 211 and a robot control unit 212 as functional components. The storage unit 22 stores at least reference data 221 as an example.
傾き検出部211は、センサユニット3から検出光の光量データを取得し、光電センサ61,62,および63が検出対象のウェハ10を検出している期間の光量の変化(経時変化)に基づき、ウェハ10の傾きを特定する。より具体的には、z軸方向におけるウェハの変位量、左右方向すなわちx軸周りのウェハの傾きの方向と大きさ、および前後方向すなわちy軸方向まわりのウェハの傾きの方向と大きさを特定する。
The inclination detection unit 211 acquires light amount data of the detection light from the sensor unit 3 and, based on a change in light amount (change with time) during a period when the photoelectric sensors 61, 62, and 63 are detecting the wafer 10 to be detected. The inclination of the wafer 10 is specified. More specifically, the amount of displacement of the wafer in the z-axis direction, the direction and magnitude of the tilt of the wafer around the x-axis, and the direction and magnitude of the tilt of the wafer around the y-axis direction are specified. I do.
なお、「検出対象のウェハ10を検出している期間」とは、検出光60がウェハ10に照射されている期間(光電センサ61,62,および63が外周面102を横切っている期間)である。ロボット制御部212は、搬送ロボット4およびセンサハンド5を制御する。具体的には、ロボット制御部212は、傾き検出部211が特定したウェハの傾きに応じて、チャック7の傾きを制御する。
The “period during which the detection target wafer 10 is detected” is a period during which the detection light 60 is irradiated on the wafer 10 (a period during which the photoelectric sensors 61, 62, and 63 cross the outer peripheral surface 102). is there. The robot control unit 212 controls the transfer robot 4 and the sensor hand 5. Specifically, the robot control unit 212 controls the tilt of the chuck 7 according to the tilt of the wafer specified by the tilt detection unit 211.
また、制御部21は、センサハンド5をz軸方向に沿って一定速度で移動させ、その際の各光電センサで受光される検出光の光量の値を検出する。したがって、「光量の経時変化」とは、センサハンド5のz軸に沿った移動距離に応じた、光量の変化のことである。
{Circle around (4)} The control unit 21 moves the sensor hand 5 at a constant speed along the z-axis direction, and detects the value of the amount of detection light received by each photoelectric sensor at that time. Therefore, the “time-dependent change in light amount” refers to a change in light amount according to the moving distance of the sensor hand 5 along the z-axis.
基準データ221は、傾き検出部211がウェハ10の傾きを特定するときに使用する、ウェハ10の傾きの基準となるデータである。基準データ221は、一例として、ウェハ10が傾いていない、かつz軸方向の変位もない場合の、透過センサ61、反射センサ62,および63のそれぞれで受光される検出光の光量の経時変化であってもよい。例えば、基準データ221は、図4(b)に示す光量の経時変化を含んでいてもよい。
The reference data 221 is data used as a reference for the inclination of the wafer 10 when the inclination detection unit 211 specifies the inclination of the wafer 10. The reference data 221 is, for example, a temporal change in the amount of detection light received by each of the transmission sensor 61, the reflection sensors 62, and 63 when the wafer 10 is not tilted and has no displacement in the z-axis direction. There may be. For example, the reference data 221 may include a temporal change of the light amount shown in FIG.
一例として、制御部21が、適切なプログラムを実行することにより、傾き検出部211およびロボット制御部212として、上記の処理を実行してもよい。該プログラムは、一例として、ROMに記憶されていてもよい。この例の場合、制御部21は、ROMに記憶されたプログラムをRAMに展開する。そして、制御部21は、RAMに展開されたプログラムをCPUにより解釈および実行して、PLC2の各構成要素を制御する。
As an example, the control unit 21 may execute an appropriate program to execute the above processing as the inclination detection unit 211 and the robot control unit 212. The program may be stored in a ROM, for example. In the case of this example, the control unit 21 loads the program stored in the ROM into the RAM. Then, the control unit 21 controls the components of the PLC 2 by interpreting and executing the program developed in the RAM by the CPU.
なお、上記プログラムを記憶している記録媒体は、一時的でない有形の媒体であればよく、ROMの他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介してPLC2に供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
The recording medium storing the above program may be any non-transitory tangible medium, and may be a ROM, tape, disk, card, semiconductor memory, programmable logic circuit, or the like. Further, the program may be supplied to the PLC 2 via an arbitrary transmission medium (a communication network, a broadcast wave, or the like) capable of transmitting the program. Note that one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
なお、傾き検出部211およびロボット制御部212が実行する処理の詳細については、後述する動作例で説明する。また、本実施形態では、傾き検出部211およびロボット制御部212が、いずれも汎用のCPUによって実現されるものとして説明している。しかしながら、これらが1または複数の専用のプロセッサにより実現されてもよい。また、PLC2の機能構成に関して、実施形態に応じて、適宜構成の省略、置換および追加が行われてもよい。
The details of the processing executed by the tilt detection unit 211 and the robot control unit 212 will be described in an operation example described later. In the present embodiment, the inclination detection unit 211 and the robot control unit 212 are both described as being realized by a general-purpose CPU. However, these may be realized by one or more dedicated processors. Further, regarding the functional configuration of the PLC 2, the omission, replacement, and addition of the configuration may be appropriately performed according to the embodiment.
§3 動作例
次に、図10を用いて、PLC2の動作例を説明する。図10は、PLC2の処理手順の一例を示すフローチャートである。なお、以下で説明する処理手順は一例であり、本実施形態に係るPLC2の処理手順をこの例に限定する意図はない。また、以下で説明する処理手順について、実施の形態に応じて、適宜、ステップの省略、置換および追加が可能である。 §3 Operation Example Next, an operation example of thePLC 2 will be described with reference to FIG. FIG. 10 is a flowchart illustrating an example of a processing procedure of the PLC 2. The processing procedure described below is an example, and there is no intention to limit the processing procedure of the PLC 2 according to the present embodiment to this example. Further, in the processing procedure described below, steps can be omitted, replaced, and added as appropriate according to the embodiment.
次に、図10を用いて、PLC2の動作例を説明する。図10は、PLC2の処理手順の一例を示すフローチャートである。なお、以下で説明する処理手順は一例であり、本実施形態に係るPLC2の処理手順をこの例に限定する意図はない。また、以下で説明する処理手順について、実施の形態に応じて、適宜、ステップの省略、置換および追加が可能である。 §3 Operation Example Next, an operation example of the
ロボット制御部212は、センサハンド5を、これに搭載されている3つ以上の光電センサを含む平面が正常に収納されている前記ウェハの平面に平行な状態で、正常に収納されているウェハの平面に垂直な方向(z軸方向)に移動させる(ステップS1、移動ステップ)。ステップS1の処理は、ロボット制御部212が、通信インタフェース23を介して搬送ロボット4へ制御命令を送信することにより実現される。また、ロボット制御部212は、センサハンド5の移動を開始させると、その旨を傾き検出部211へ通知する。続いて、傾き検出部211は、ロボット制御部212からの通知を受けると、センサユニット3を制御して、各光電センサ61、62、および63から検出光のウェハ10への投光を開始させる(ステップS2、取得ステップ)。ステップS2の処理は、傾き検出部211が、通信インタフェース23を介してセンサユニット3へ制御命令を送信することにより実現される。
The robot control unit 212 moves the sensor hand 5 to a normally stored wafer in a state where a plane including three or more photoelectric sensors mounted thereon is parallel to the plane of the wafer normally stored. Is moved in a direction (z-axis direction) perpendicular to the plane (step S1, movement step). The process of step S1 is realized by the robot control unit 212 transmitting a control command to the transfer robot 4 via the communication interface 23. Further, when the movement of the sensor hand 5 is started, the robot control unit 212 notifies the inclination detection unit 211 of the start. Subsequently, upon receiving the notification from the robot control unit 212, the tilt detection unit 211 controls the sensor unit 3 to start emitting the detection light from each of the photoelectric sensors 61, 62, and 63 to the wafer 10. (Step S2, acquisition step). The process of step S2 is realized by the tilt detection unit 211 transmitting a control command to the sensor unit 3 via the communication interface 23.
続いて、センサユニット3は、各光電センサ61、62、および63が受光した検出光の光量を取得する(ステップS3、取得ステップ)。センサユニット3は、取得した光量を光量データに変換し、各光電センサ61、62、および63を識別する受光部識別情報と対応付けて一時的に保存する。そして、センサユニット3は、PLC2から、光量データの送信指示を受領したとき、その時点で取得していたすべての光量データを、受光部識別情報が対応付けられた状態でPLC2へ送信する。
Subsequently, the sensor unit 3 acquires the light amount of the detection light received by each of the photoelectric sensors 61, 62, and 63 (Step S3, acquisition step). The sensor unit 3 converts the acquired light amount into light amount data, and temporarily stores the light amount data in association with light receiving unit identification information for identifying each of the photoelectric sensors 61, 62, and 63. When the sensor unit 3 receives the light amount data transmission instruction from the PLC 2, the sensor unit 3 transmits all the light amount data obtained at that time to the PLC 2 in a state where the light amount identification information is associated with the light amount data.
続いて、PLC2の傾き検出部211は、受信した光量データを用いて生成される、光量の経時変化と基準データ221とを比較する(ステップS4)。そして、傾き検出部211は、比較結果に基づいてウェハ10がx軸周り、y軸周りに傾いているか否か、および、z軸方向の変位があるか否か、を判定する(ステップS5)。
Next, the inclination detecting unit 211 of the PLC 2 compares the temporal change of the light amount generated using the received light amount data with the reference data 221 (Step S4). Then, based on the comparison result, the tilt detection unit 211 determines whether the wafer 10 is tilted around the x-axis and y-axis and whether there is a displacement in the z-axis direction (step S5). .
以下では、図3に示すような透過センサ1対および2個の反射センサを備えるセンサシステムにおける、ウェハ10のz軸方向変位量、y軸周りのウェハの傾きの大きさ、x軸周りのウェハの傾きの大きさの特定方法について説明する。
Hereinafter, in a sensor system including a pair of transmission sensors and two reflection sensors as shown in FIG. 3, the displacement amount of the wafer 10 in the z-axis direction, the magnitude of the tilt of the wafer around the y-axis, and the wafer around the x-axis A method for determining the magnitude of the inclination of the will be described.
(ウェハ10の傾きの特定)
まず、ウェハ10のz軸方向の変位量の特定について説明する。 (Specification of inclination of wafer 10)
First, identification of the amount of displacement of thewafer 10 in the z-axis direction will be described.
まず、ウェハ10のz軸方向の変位量の特定について説明する。 (Specification of inclination of wafer 10)
First, identification of the amount of displacement of the
図4(a)は、ウェハ10とウェハ10の傾きの検出のための、ウェハ10への検出光の照射の一例を示す図であり、(b)は、透過センサ、反射センサにおける検出光の光量の経時変化の一例を示す図である。図4(a)に示されるウェハ10は、円柱形状を有している。具体的には、ウェハ10は、図4(a)に示すとおり、ウェハ面101(ウェハ10の平面)および外周面102を有している。また、図4(a)に示すとおり、センサシステム1は、3つ以上の光電センサを備える。3つ以上の光電センサのうち2つは、ウェハの外周を形成する円弧上の2点を検出光が通過するように設けられた1対の透過型センサ(透過センサ61の投光部61aおよび受光部61b)である。3つ以上の光電センサは、更に、前記ウェハの外周を形成する円弧上において、前記2点以外の位置が検出領域となるように設けられた二つの反射型センサ(反射センサ62および63)を含む。2つの反射型センサ(反射センサ62および63)は、前記2点以外の前記ウェハ10の外周を形成する円弧上の位置であって、前記2点を結ぶ直線の中心点と前記ウェハの中心点とを通る直線に対して対称な位置が検出領域となるように設けられている。
FIG. 4A is a diagram illustrating an example of irradiation of the wafer 10 with detection light for detecting the inclination of the wafer 10, and FIG. 4B is a diagram illustrating the detection light of the transmission sensor and the reflection sensor. It is a figure showing an example of a temporal change of light quantity. The wafer 10 shown in FIG. 4A has a cylindrical shape. Specifically, as shown in FIG. 4A, the wafer 10 has a wafer surface 101 (the plane of the wafer 10) and an outer peripheral surface 102. Further, as shown in FIG. 4A, the sensor system 1 includes three or more photoelectric sensors. Two of the three or more photoelectric sensors are a pair of transmissive sensors (a light projecting portion 61a of the transmissive sensor 61 and a pair of transmissive sensors provided so that detection light passes through two points on an arc forming the outer periphery of the wafer). A light receiving unit 61b). The three or more photoelectric sensors further include two reflection sensors (reflection sensors 62 and 63) provided such that a position other than the two points is a detection area on an arc forming the outer periphery of the wafer. Including. The two reflection sensors (reflection sensors 62 and 63) are located on a circular arc forming the outer periphery of the wafer 10 other than the two points, the center point of a straight line connecting the two points and the center point of the wafer. Are provided such that a position symmetrical with respect to a straight line passing through the detection region is a detection region.
センサシステム1は、3つの光電センサ(透過センサ61、反射センサ62、および反射センサ63)を含む平面(すなわちセンサハンド5)が正常に収納されている前記ウェハの平面に平行な状態で、3つの光電センサを、正常に収納されている前記ウェハの平面に垂直な方向に、つまりz軸方向に一定速度で移動させる。なお、図示の例では、図4(a)のz軸負方向へ向かって光電センサ6を移動させているが、移動方向は図4(a)に示される例とは逆に、z軸の正方向へ向かって移動させてもよい。また、センサシステム1は、透過センサ61を制御して、透過センサ61の移動中に、投光部61aに検出光60を継続して投光させ、受光部61bに該検出光60を受光させる。なお、以降、透過センサ61を一定速度で移動させながら検出光60の投光および受光を行うことを、「スキャン」とも表記する。
The sensor system 1 includes three photoelectric sensors (a transmission sensor 61, a reflection sensor 62, and a reflection sensor 63) in a state where the plane (that is, the sensor hand 5) is parallel to the plane of the wafer in which the plane is normally accommodated. The two photoelectric sensors are moved at a constant speed in the direction perpendicular to the plane of the normally accommodated wafer, that is, in the z-axis direction. In the illustrated example, the photoelectric sensor 6 is moved in the negative direction of the z-axis in FIG. 4A. However, the moving direction is opposite to the example shown in FIG. It may be moved in the forward direction. In addition, the sensor system 1 controls the transmission sensor 61 so that the light projecting unit 61a continuously emits the detection light 60 while the transmission sensor 61 is moving, and causes the light receiving unit 61b to receive the detection light 60. . Hereinafter, performing projection and reception of the detection light 60 while moving the transmission sensor 61 at a constant speed is also referred to as “scan”.
受光部61bが受光した検出光60の光量の経時変化は、例えば、図4(b)中のA1に示されるグラフとなる。検出光60がウェハ面101に到達する前は、検出光60がウェハ10により遮光されないため、受光部61bが受光した検出光60の光量は最大となっている。なお、より厳密に言えば、グラフA1において減少し始める直前で受光量が最大値を上回っている。これは、ウェハ面101への反射光が加わる事で透過センサ61へはより大きな入光となるためである。その後、検出光60が図4(a)における上側のウェハ面101に到達することにより、検出光60はウェハ10によって遮光される。このため、上記光量は減少し、やがて最小値となる。検出光60が図4(a)における下側のウェハ面101に到達することにより、該光量は再び増加し、やがて最大値に戻る。
(4) A temporal change in the light amount of the detection light 60 received by the light receiving unit 61b is, for example, a graph indicated by A1 in FIG. 4B. Before the detection light 60 reaches the wafer surface 101, since the detection light 60 is not blocked by the wafer 10, the light amount of the detection light 60 received by the light receiving unit 61b is maximum. Strictly speaking, the amount of received light exceeds the maximum value just before the graph A1 starts to decrease. This is because the reflected light on the wafer surface 101 is added to the transmission sensor 61 so that the light enters the transmission sensor 61 more greatly. Thereafter, the detection light 60 reaches the upper wafer surface 101 in FIG. For this reason, the light amount decreases, and eventually reaches the minimum value. When the detection light 60 reaches the lower wafer surface 101 in FIG. 4A, the light amount increases again and eventually returns to the maximum value.
図4(a)に示すように、水平面に対してウェハ面101が平行、すなわち、ウェハ10が傾いていない場合、検出光60の光量の経時変化は、図4(b)中のA1に示すグラフとなる。一方、水平面に対してウェハ面101が平行でない、すなわち、ウェハ10が傾いている場合には、透過センサ61から投光された検出光が遮蔽されている期間が、ウェハ10が傾いていない場合のグラフと比べて長くなり、図6のA2に示すように、受光量が一定量以下となる場合の幅L2が正常な状態に載置されたウェハの場合のL1と比べて長くなる。上記グラフは、図4(b)および図6中のA1に示すグラフと異なる。該異なるグラフの詳細については後述する。
As shown in FIG. 4A, when the wafer surface 101 is parallel to the horizontal plane, that is, when the wafer 10 is not inclined, the temporal change of the light amount of the detection light 60 is indicated by A1 in FIG. 4B. It becomes a graph. On the other hand, when the wafer surface 101 is not parallel to the horizontal plane, that is, when the wafer 10 is tilted, the period in which the detection light projected from the transmission sensor 61 is blocked is the time when the wafer 10 is not tilted. 6, the width L2 when the amount of received light is equal to or less than a certain amount becomes longer than L1 when the wafer is placed in a normal state, as indicated by A2 in FIG. The graph is different from the graphs indicated by A1 in FIG. 4B and FIG. Details of the different graphs will be described later.
また、反射センサ62及び反射センサ63がスキャン中に受光する検出光の経時変化は、例えば、それぞれ、図4(b)中のB1及びB2に示されるグラフとなる。図4(b)中のB1またはB2において、検出光がウェハ面101の外周面102に到達する前においては、検出光がウェハ10の外周面102おいて反射されないため、反射センサ62または63が受光する検出光の光量は最小値となっている。その後、検出光が図4(a)における上側のウェハ面101に到達することにより、検出光はウェハ10の外周面102によって反射される。このため、上記光量は増加し、やがて最大値となる。その後、検出光が図4(a)における下側のウェハ面101に到達すると、検出光がウェハ10の外周面102で反射されることがないため、受光される検出光の光量は増加し、やがて最小値に戻る。
(4) The temporal changes in the detection light received by the reflection sensor 62 and the reflection sensor 63 during scanning are, for example, graphs indicated by B1 and B2 in FIG. 4B, respectively. At B1 or B2 in FIG. 4B, before the detection light reaches the outer peripheral surface 102 of the wafer surface 101, since the detection light is not reflected on the outer peripheral surface 102 of the wafer 10, the reflection sensor 62 or 63 The amount of the detection light received is the minimum value. Thereafter, when the detection light reaches the upper wafer surface 101 in FIG. 4A, the detection light is reflected by the outer peripheral surface 102 of the wafer 10. For this reason, the light amount increases and eventually reaches a maximum value. Thereafter, when the detection light reaches the lower wafer surface 101 in FIG. 4A, the detection light is not reflected on the outer peripheral surface 102 of the wafer 10, so that the amount of received detection light increases. Eventually it returns to the minimum value.
センサシステム1では、PLC2の傾き検出部211が、上述したような光量の経時変化に基づき、ウェハ10が傾いているか否か、および、傾いている場合は傾きの方向および大きさ(角度)を特定する。これにより、センサシステム1は、ウェハ10の傾きについて、傾きの有無より詳細な情報を特定することができる。
In the sensor system 1, the inclination detection unit 211 of the PLC 2 determines whether or not the wafer 10 is inclined and, if so, the direction and magnitude (angle) of the inclination when the wafer 10 is inclined. Identify. Thereby, the sensor system 1 can specify more detailed information on the inclination of the wafer 10 than the presence or absence of the inclination.
なお、傾きの方向としては、例えば、ウェハ面101の外周を形成する各点のうち、水平面を基準として最も上にある点から最も下にある点への方向を特定すればよい。また、傾きの角度としては、例えば、水平面に対するウェハ面101の角度を規定すればよい。
As the direction of the inclination, for example, among the points forming the outer periphery of the wafer surface 101, the direction from the highest point to the lowest point with respect to the horizontal plane may be specified. Further, as the angle of the inclination, for example, the angle of the wafer surface 101 with respect to the horizontal plane may be defined.
(ウェハのz軸方向における変位量の測定方法)
ウェハ10のz軸方向の変位量の測定について説明する。まず、図4に示すような、z軸方向の変位がなく、傾きもない正常な状態のウェハ10について透過センサ61の受光部61bで受光する光量の経時変化を測定しておき、測定結果のデータを記憶部22に格納しておく。検出光60の光量が最小値となるタイミングがz軸方向0の位置に相当する。これと検出用ウェハについて検出光60の経時変化のデータと比較する。光量が最小値となるポイントを基準データにおける光量が最小値となるタイミングと比較することにより、このウェハ10のz軸方向における変位量を算出することができる。換言すれば、センサハンド5はz軸方向に一定の速度で移動しているから、検出光が最小値となるタイミングを比較することにより、z軸方向の変位量および方向を特定することができる。 (Method of measuring displacement in wafer z-axis direction)
The measurement of the amount of displacement of thewafer 10 in the z-axis direction will be described. First, as shown in FIG. 4, the temporal change of the amount of light received by the light receiving unit 61b of the transmission sensor 61 is measured for a normal wafer 10 having no displacement in the z-axis direction and no tilt. The data is stored in the storage unit 22. The timing when the light amount of the detection light 60 becomes the minimum value corresponds to the position in the z-axis direction 0. This is compared with data on the change with time of the detection light 60 for the detection wafer. By comparing the point at which the light amount becomes the minimum value with the timing at which the light amount becomes the minimum value in the reference data, the displacement amount of the wafer 10 in the z-axis direction can be calculated. In other words, since the sensor hand 5 is moving at a constant speed in the z-axis direction, the amount of displacement and the direction in the z-axis direction can be specified by comparing the timing at which the detection light has a minimum value. .
ウェハ10のz軸方向の変位量の測定について説明する。まず、図4に示すような、z軸方向の変位がなく、傾きもない正常な状態のウェハ10について透過センサ61の受光部61bで受光する光量の経時変化を測定しておき、測定結果のデータを記憶部22に格納しておく。検出光60の光量が最小値となるタイミングがz軸方向0の位置に相当する。これと検出用ウェハについて検出光60の経時変化のデータと比較する。光量が最小値となるポイントを基準データにおける光量が最小値となるタイミングと比較することにより、このウェハ10のz軸方向における変位量を算出することができる。換言すれば、センサハンド5はz軸方向に一定の速度で移動しているから、検出光が最小値となるタイミングを比較することにより、z軸方向の変位量および方向を特定することができる。 (Method of measuring displacement in wafer z-axis direction)
The measurement of the amount of displacement of the
検出用ウェハについての検出光の経時変化のデータにおいて光量が最小値となるタイミングが基準データのそれよりも早い場合には、傾き検出部211はウェハがz軸方向において上に変位したと判断することができる。逆に、検出用ウェハについて検出光の経時変化のデータにおいて光量が最小値となるタイミングが基準データのそれよりも後である場合には、傾き検出部211はウェハがz軸方向において下に変位したと判断することができる。また、制御部21は、検出用ウェハに対する透過光の光量が最小値となるタイミングと基準データにおける透過光の光量が最小値となるタイミングの差により、検出用ウェハのz軸方向における変位量を特定することができる。
If the timing at which the amount of light becomes the minimum value in the data of the change with time of the detection light for the detection wafer is earlier than that of the reference data, the tilt detection unit 211 determines that the wafer has been displaced upward in the z-axis direction. be able to. Conversely, when the timing at which the light amount becomes the minimum value in the data of the change with time of the detection light for the detection wafer is later than that of the reference data, the tilt detection unit 211 moves the wafer downward in the z-axis direction. It can be determined that it has been done. Further, the control unit 21 calculates the displacement amount of the detection wafer in the z-axis direction based on the difference between the timing when the amount of transmitted light to the detection wafer becomes the minimum value and the timing when the amount of transmitted light in the reference data becomes the minimum value. Can be identified.
あるいは、PLC2は、反射センサ62、および反射センサ63を用いても、z軸方向におけるウェハの変位量を算出することができる。制御部21が、z軸方向の変位もなく、傾きもない正常な状態のウェハについて反射センサ62または反射センサ63のスキャン中の光量変化を測定し、基準データと記憶部22に格納しておく。そして、制御部21が、検出用ウェハに対して、二つの反射センサ62および反射センサ63の検出光の経時変化を測定し、受光量が最大値となる点の中央点に相当するタイミングを特定する。このタイミングと基準データにおける反射センサで受光する検出光の光量が最大値となるタイミングを比較することにより、ウェハのz軸方向における変位量を算出することもできる。
Alternatively, the PLC 2 can calculate the amount of displacement of the wafer in the z-axis direction by using the reflection sensor 62 and the reflection sensor 63. The control unit 21 measures a change in the amount of light during scanning of the reflection sensor 62 or the reflection sensor 63 with respect to a wafer in a normal state having no displacement and no tilt in the z-axis direction and stores the reference data and the storage unit 22. . Then, the control unit 21 measures the change over time of the detection light of the two reflection sensors 62 and 63 with respect to the detection wafer, and specifies the timing corresponding to the center point of the point at which the amount of received light reaches the maximum value. I do. By comparing this timing with the timing at which the amount of detection light received by the reflection sensor in the reference data reaches the maximum value, the displacement amount of the wafer in the z-axis direction can be calculated.
(x軸周りの傾き方向および傾き量の特定)
図5(a)に示すようにセンサユニット3をz軸方向下向きに移動させながら、反射センサ62および反射センサ63の光量の経時変化を測定すると、図5(b)に示す測定結果が得られる。ここでは、左側に位置する反射センサ62が受光する光量が最大値となるタイミングが、右側に位置する反射センサ63が受光する光量が最大値となるタイミングよりも早い。反射センサからの検出光がウェハを通過するときに、反射センサで受光する検出光の光量は最大となる。したがって、反射センサ62および反射センサ63のうちどちらが先に受光量が最大値に達するかによって、x軸周りどちらにウェハ10が傾いているかを特定することができる。図5(b)のように反射センサ62が反射センサ63よりも先に受光量が最大値となる場合には、x軸周りで左上がり、つまりウェハが右に傾いていることが特定できる。これとは反対に、右側に配置された反射センサ63が左側に配置された反射センサ62よりも先に受光量が最大値となる場合は、x軸周りで右上がり、つまりウェハが左に傾いていると特定することができる。 (Specification of tilt direction and tilt amount around x axis)
When thesensor unit 3 is moved downward in the z-axis direction as shown in FIG. 5A and the change over time in the amount of light of the reflection sensor 62 and the reflection sensor 63 is measured, the measurement result shown in FIG. 5B is obtained. . Here, the timing at which the amount of light received by the reflection sensor 62 located on the left side has the maximum value is earlier than the timing at which the amount of light received by the reflection sensor 63 located on the right side has the maximum value. When the detection light from the reflection sensor passes through the wafer, the amount of the detection light received by the reflection sensor becomes maximum. Therefore, it is possible to specify which of the reflection sensor 62 and the reflection sensor 63 the wafer 10 is tilted around the x-axis depending on which of the reflection sensor 62 and the light reception amount reaches the maximum value first. In the case where the reflection sensor 62 has the maximum amount of received light before the reflection sensor 63 as shown in FIG. 5B, it can be specified that the wafer rises to the left around the x-axis, that is, the wafer is tilted to the right. On the other hand, when the reflection sensor 63 arranged on the right side has the maximum amount of received light before the reflection sensor 62 arranged on the left side, it rises right around the x axis, that is, the wafer tilts to the left. Can be identified.
図5(a)に示すようにセンサユニット3をz軸方向下向きに移動させながら、反射センサ62および反射センサ63の光量の経時変化を測定すると、図5(b)に示す測定結果が得られる。ここでは、左側に位置する反射センサ62が受光する光量が最大値となるタイミングが、右側に位置する反射センサ63が受光する光量が最大値となるタイミングよりも早い。反射センサからの検出光がウェハを通過するときに、反射センサで受光する検出光の光量は最大となる。したがって、反射センサ62および反射センサ63のうちどちらが先に受光量が最大値に達するかによって、x軸周りどちらにウェハ10が傾いているかを特定することができる。図5(b)のように反射センサ62が反射センサ63よりも先に受光量が最大値となる場合には、x軸周りで左上がり、つまりウェハが右に傾いていることが特定できる。これとは反対に、右側に配置された反射センサ63が左側に配置された反射センサ62よりも先に受光量が最大値となる場合は、x軸周りで右上がり、つまりウェハが左に傾いていると特定することができる。 (Specification of tilt direction and tilt amount around x axis)
When the
また、制御部21は、x軸周りのウェハの傾きの大きさも、図5(b)に示した反射センサ62および反射センサ63で受光する光量の経時変化から算出することができる。図5(b)において、ウェハがx軸周りに傾いていなければ、2個の反射センサ62および反射センサ63が示す検出光量の経時変化のグラフは重なる。そして、ウェハのx軸周りの傾きが大きいほど、2個の反射センサが示す検出光量の経時変化のグラフは互いに離れていく。したがって、図5(b)で示した反射センサ2個の最大値となる点の間の幅Lは、x軸周りのウェハの傾きの大きさに比例する。よって、この最大値となる点の間の幅Lを測定することにより、ウェハのx軸周りの傾きを特定することができる。
{Circle around (4)} The control unit 21 can also calculate the magnitude of the inclination of the wafer around the x-axis from the change over time of the amount of light received by the reflection sensor 62 and the reflection sensor 63 shown in FIG. In FIG. 5B, if the wafer is not tilted around the x-axis, the graphs of the change over time of the detected light amount indicated by the two reflection sensors 62 and 63 overlap. As the inclination of the wafer around the x-axis increases, the graphs of the change in the detected light amount over time shown by the two reflection sensors move away from each other. Therefore, the width L between the points where the two reflection sensors have the maximum value shown in FIG. 5B is proportional to the magnitude of the inclination of the wafer around the x-axis. Therefore, by measuring the width L between the points having the maximum value, the inclination of the wafer around the x-axis can be specified.
あるいは、図6に示すように、PLC2が透過センサ61の受光部61aで受光される光量の経時変化を分析することによっても、x軸周りのウェハの傾きの大きさを特定することができる。予め、PLC2がx軸周りの傾きが0であるウェハについて透過センサ61で受光する光の経時変化の基準データA1を取り、記憶部22に格納しておく。そして、PLC2は、この基準データA1と検出用ウェハについての透過センサ61からの受光量の経時変化データA2とを比較する。透過光がウェハを通過する時点で受光量が最小値となる。透過センサ61がウェハを検出している間、受光される検出光の光量は最小値となる。ウェハのx軸周りの傾きが大きいほど、光量が最小値となる部分の幅が広くなる。したがって、PLC2が基準データA1において検出光の光量が所定値以下となる部分の幅L1と、検出用データA2において受光量が所定値以下となる部分の幅L2とを比較することにより、x軸周りにおけるウェハの傾きの大きさを特定することができる。
Alternatively, as shown in FIG. 6, the magnitude of the inclination of the wafer around the x-axis can be specified by analyzing the temporal change of the amount of light received by the light receiving unit 61a of the transmission sensor 61 by the PLC 2. The reference data A1 of the change over time of the light received by the transmission sensor 61 with respect to the wafer in which the inclination of the PLC 2 around the x axis is 0 is obtained in advance and stored in the storage unit 22. Then, the PLC 2 compares the reference data A1 with time-dependent change data A2 of the amount of light received from the transmission sensor 61 for the detection wafer. When the transmitted light passes through the wafer, the amount of received light reaches a minimum value. While the transmission sensor 61 is detecting a wafer, the amount of detection light received is a minimum value. As the inclination of the wafer around the x-axis is larger, the width of the portion where the light amount becomes the minimum value becomes wider. Accordingly, the PLC 2 compares the width L1 of the portion where the light amount of the detection light is equal to or less than the predetermined value in the reference data A1 with the width L2 of the portion where the amount of received light is equal to or less than the predetermined value in the detection data A2, thereby obtaining the x-axis. The magnitude of the inclination of the wafer around it can be specified.
なお、PLC2は、上記反射センサを用いて算出したウェハの傾きの大きさと、透過センサを用いて算出したウェハの傾きの大きさが異なる場合には、これらの平均値をウェハの傾きの大きさとして特定してもよい。
If the magnitude of the tilt of the wafer calculated using the reflection sensor is different from the magnitude of the tilt of the wafer calculated using the transmission sensor, the PLC 2 calculates the average value of the tilt of the wafer. May be specified.
(y軸周りの傾き方向及び傾きの大きさの測定方法)
次に、y軸周りのウェハの傾きおよび傾きの大きさを特定する方法について説明する。 (Measurement method of inclination direction and magnitude of inclination around y axis)
Next, a method of specifying the tilt of the wafer around the y-axis and the magnitude of the tilt will be described.
次に、y軸周りのウェハの傾きおよび傾きの大きさを特定する方法について説明する。 (Measurement method of inclination direction and magnitude of inclination around y axis)
Next, a method of specifying the tilt of the wafer around the y-axis and the magnitude of the tilt will be described.
搬送ロボット4が、センサハンド5をz軸下向きに一定の速度で移動させ、このときPLC2が透過センサ61、反射センサ62、および反射センサ63における検出光の受光量の経時変化を比較する。これにより、y軸周りのウェハの傾き方向および傾きの大きさを特定することができる。図8は、透過センサ61による検出光の光量の経時変化(A1)および反射センサ62および63による検出光の光量の経時変化(B1およびB2)を示す図である。図8に示すように、透過センサ61が受光する検出光の光量が最小値となるタイミングt1と、反射センサ62または63が受光する反射光量が最大値となるタイミングt2またはt3の前後によってウェハがy軸周りのどちらに傾いているか特定することができる。本実施例においては、2個の反射センサ62および反射センサ63は、透過センサ61よりもx軸方向前側に配置されている。したがって、図8に示すように、反射センサ62、63における受光量が最大値となるタイミングt2またはt3が、透過センサが受光する検出光が最小値となるタイミングt1よりも先である場合には、制御部21はウェハが前上がり、つまり後ろに傾いていると特定することができる。逆に、反射センサ62または63で受光する検出光が最大値となる時点t2またはt3が、透過センサで受光する検出光が最小値となる時点t1よりも後である場合には、制御部21はウェハが前下がり、つまり前に傾いていると特定することができる。さらに、制御部21はたとえば、反射センサ62が受光する検出光の光量が最大値となる時点t2と、透過センサ61が受光する検出光の量が最小値となる時点t1の差により、y軸周りにおけるウェハの傾きの大きさを特定することができる。
(4) The transfer robot 4 moves the sensor hand 5 at a constant speed downward in the z-axis, and at this time, the PLC 2 compares the change over time of the amount of light detected by the transmission sensor 61, the reflection sensor 62, and the reflection sensor 63 with time. Thus, the tilt direction and the magnitude of the tilt of the wafer around the y-axis can be specified. FIG. 8 is a diagram showing a temporal change (A1) of the amount of light detected by the transmission sensor 61 and a temporal change (B1 and B2) of the amount of light detected by the reflection sensors 62 and 63. As shown in FIG. 8, the wafer is moved by the timing t1 at which the amount of detection light received by the transmission sensor 61 becomes the minimum value and the timing t2 or t3 at which the reflection light amount received by the reflection sensor 62 or 63 becomes the maximum value. It can be specified which direction around the y axis is inclined. In this embodiment, the two reflection sensors 62 and 63 are arranged on the x-axis direction front side of the transmission sensor 61. Therefore, as shown in FIG. 8, when the timing t2 or t3 when the amount of light received by the reflection sensors 62 and 63 reaches the maximum value is earlier than the timing t1 when the detection light received by the transmission sensor reaches the minimum value. The control unit 21 can specify that the wafer is raised forward, that is, inclined backward. Conversely, if the time t2 or t3 when the detection light received by the reflection sensor 62 or 63 has the maximum value is later than the time t1 when the detection light received by the transmission sensor has the minimum value, the controller 21 Can be specified that the wafer is lowered forward, that is, tilted forward. Further, for example, the control unit 21 calculates the y-axis based on the difference between the time point t2 at which the amount of detection light received by the reflection sensor 62 reaches a maximum value and the time point t1 at which the amount of detection light received by the transmission sensor 61 reaches a minimum value. The magnitude of the inclination of the wafer around it can be specified.
再び図10を参照し、動作例の説明に戻る。傾き検出部211は、特定したウェハ10の傾きの方向、角度、およびz軸方向の変位量を、ロボット制御部212へ出力する。ロボット制御部212は、取得したウェハ10の傾きの方向、角度(傾きの大きさ)およびz軸方向の変位量に応じて、チャック7の傾きを制御する(ステップS8)。具体的には、ロボット制御部212は、取得したウェハ10の傾きの方向、角度およびz軸方向の変位量に応じて、チャック7の傾きの方向、角度およびz軸方向の位置を決定する。そして、ロボット制御部212は、決定したチャック7の傾きの方向、角度およびz軸方向の位置を含む制御命令を、通信インタフェース23を介して搬送ロボット4へ送信する。これにより、搬送ロボット4は、チャック7の傾きの方向および角度を、ウェハ10の傾きの方向、角度およびz軸方向の変位量に応じて調整することができる。
Return to the description of the operation example with reference to FIG. 10 again. The tilt detector 211 outputs the specified tilt direction, angle, and z-axis displacement of the wafer 10 to the robot controller 212. The robot controller 212 controls the tilt of the chuck 7 in accordance with the obtained direction, angle (magnitude of tilt), and displacement of the wafer 10 in the z-axis direction (step S8). Specifically, the robot control unit 212 determines the tilt direction, angle, and z-axis position of the chuck 7 according to the acquired tilt direction, angle, and z-axis displacement amount of the wafer 10. Then, the robot control unit 212 transmits a control command including the determined tilt direction, angle, and z-axis position of the chuck 7 to the transfer robot 4 via the communication interface 23. Thereby, the transfer robot 4 can adjust the direction and angle of the tilt of the chuck 7 according to the direction and angle of the tilt of the wafer 10 and the amount of displacement in the z-axis direction.
最後に、搬送ロボット4は、ウェハカセット20からウェハ10を取り出し(ステップS9)、搬送する。ステップS9の処理は、ロボット制御部212が、通信インタフェース23を介して搬送ロボット4へ制御命令を送信することにより実現される。該制御命令は、ステップS8で送信される制御命令とともに搬送ロボット4へ送信されてもよいし、ステップS8で送信される制御命令の後に送信されてもよい。
(4) Finally, the transfer robot 4 takes out the wafer 10 from the wafer cassette 20 (Step S9) and transfers it. The process of step S9 is realized by the robot control unit 212 transmitting a control command to the transfer robot 4 via the communication interface 23. The control command may be transmitted to the transfer robot 4 together with the control command transmitted in step S8, or may be transmitted after the control command transmitted in step S8.
なお、傾き検出部211が、ウェハ10が傾いていない、かつz軸方向の変位もないと判定した場合(ステップS5でNO)、ステップS6~S8は省略される。すなわち、PLC2は、ウェハ10が正常な状態に載置されているため、チャック7の傾きの方向、角度およびz軸方向の位置を調整することなく、搬送ロボット4にウェハ10の取り出しを行わせる(ステップS9)。
If the tilt detection unit 211 determines that the wafer 10 is not tilted and has no displacement in the z-axis direction (NO in step S5), steps S6 to S8 are omitted. In other words, the PLC 2 allows the transfer robot 4 to take out the wafer 10 without adjusting the tilt direction, angle, and position in the z-axis direction of the chuck 7 because the wafer 10 is placed in a normal state. (Step S9).
[作用・効果]
以上のように、本実施形態では、上記ステップS6およびステップS7において、PLC2がウェハ10の傾きの方向、角度およびz軸方向の変位量を特定する。つまり、PLC2は、ウェハ10の傾きについて、傾きの有無より詳細な情報を特定することができる。 [Action / Effect]
As described above, in the present embodiment, in steps S6 and S7, thePLC 2 specifies the direction and angle of the tilt of the wafer 10 and the displacement in the z-axis direction. That is, the PLC 2 can specify more detailed information on the inclination of the wafer 10 than the presence or absence of the inclination.
以上のように、本実施形態では、上記ステップS6およびステップS7において、PLC2がウェハ10の傾きの方向、角度およびz軸方向の変位量を特定する。つまり、PLC2は、ウェハ10の傾きについて、傾きの有無より詳細な情報を特定することができる。 [Action / Effect]
As described above, in the present embodiment, in steps S6 and S7, the
一例として、PLC2は、上記ステップS8において、特定したウェハ10の傾きの方向および角度に基づいて、チャック7の傾きの方向、角度およびz軸方向の位置を調整することができる。これにより、ウェハ10が傾いている場合であっても、ウェハ10を傷付けることなくウェハカセット20から取り出すことができる。よって、ウェハ10が傾いている場合であっても、搬送ロボット4によるウェハ10の搬送を継続することができる。なお、ウェハ10が傾いている場合とは、ウェハ10が傾いてウェハカセット20に収納されている場合や、ウェハカセット20自体が傾いている場合を含む。
As an example, the PLC 2 can adjust the tilt direction, angle, and z-axis position of the chuck 7 based on the specified tilt direction and angle of the wafer 10 in step S8. Thus, even when the wafer 10 is tilted, the wafer 10 can be taken out of the wafer cassette 20 without damaging it. Therefore, even when the wafer 10 is tilted, the transfer of the wafer 10 by the transfer robot 4 can be continued. The case where the wafer 10 is tilted includes the case where the wafer 10 is tilted and stored in the wafer cassette 20 and the case where the wafer cassette 20 itself is tilted.
<実施形態2>
本発明の第2の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。 <Embodiment 2>
A second embodiment of the present invention will be described below. For convenience of description, members having the same functions as those described in the above embodiment are denoted by the same reference numerals, and description thereof will not be repeated.
本発明の第2の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。 <
A second embodiment of the present invention will be described below. For convenience of description, members having the same functions as those described in the above embodiment are denoted by the same reference numerals, and description thereof will not be repeated.
以下では、図12を参照して本実施形態におけるウェハ10の傾きを特定する方法について説明する。
Hereinafter, a method for specifying the inclination of the wafer 10 in the present embodiment will be described with reference to FIG.
本実施形態では、反射センサ67,68,69の3個を使ってウェハ10の傾きを特定する。
In the present embodiment, the inclination of the wafer 10 is specified by using three reflection sensors 67, 68, and 69.
本実施形態では、図12に示すように、センサハンド5は、透過センサを備えていない一方で、反射センサを3つ備えている。一例として、本実施形態に係るセンサハンド5は、図12に示すように、実施形態1における、反射センサ62および反射センサ63の位置に、反射センサ67および反射センサ68をそれぞれ備え、正面の位置、すなわち二つの反射センサ67,68を結ぶ直線とウェハの中心点を結ぶ直線lの延長線上であって、反射センサ67、68よりもセンサハンド5側(すなわち前方)に反射センサ69を備えている。なお、反射センサ67および68は、実施形態1における透過センサ61の投光部61aおよび受光部61bの位置にそれぞれ備えてもよい。
In the present embodiment, as shown in FIG. 12, the sensor hand 5 does not include the transmission sensor, but includes three reflection sensors. As an example, as shown in FIG. 12, the sensor hand 5 according to the present embodiment includes a reflection sensor 67 and a reflection sensor 68 at positions of the reflection sensor 62 and the reflection sensor 63 in the first embodiment, respectively. That is, a reflection sensor 69 is provided on the sensor hand 5 side (that is, forward) of the straight line l connecting the two reflection sensors 67 and 68 and the straight line 1 connecting the center point of the wafer and the reflection sensors 67 and 68. I have. The reflection sensors 67 and 68 may be provided at the positions of the light projecting unit 61a and the light receiving unit 61b of the transmission sensor 61 in the first embodiment, respectively.
それ以外の構成は、実施形態1と同様である。本実施形態におけるウェハの傾き、すなわち、z軸方向の変位量、x軸周りの傾き方向と大きさ、y軸周りの傾き方向と大きさの特定方法について以下に説明する。
構成 Other configurations are the same as those of the first embodiment. A method of specifying the tilt of the wafer, that is, the amount of displacement in the z-axis direction, the tilt direction and magnitude around the x-axis, and the tilt direction and magnitude around the y-axis in the present embodiment will be described below.
(z軸方向の変位量の測定方法)
予め、搬送ロボット4がセンサハンド5をz軸下向きに一定の速度で移動させながら、センサユニット3が、傾きのない正常な状態のウェハについて反射センサ67、68、または69で受光される検出光の経時変化を取得する。PLC2がこれを基準データとして記憶部22に格納させる。同様に、搬送ロボット4がセンサハンド5をz軸下向きに一定の速度で移動させながら、センサユニット3が検出用ウェハについて2個の反射センサ65および66で受光される検出光の経時変化のデータを取得する。PLC2が検出光の光量が最大値となる点の中央点に相当するタイミングを特定し、予め測定しておいた基準データにおいて検出光の光量が最大値となるタイミングと比較する。検出用ウェハにおける光量の経時変化が最大値となるタイミングが、基準データにおいて最大値となるタイミングよりも先である場合には、PLC2は、ウェハがz軸方向上に変位したと判断する。逆に、検出用ウェハにおける光量の経時変化が最大値となるタイミングが、基準データにおいて最大値となるタイミングよりも後である場合には、PLC2は、ウェハがz軸方向下に変位したと判断する。また、PLC2は、検出用ウェハにおける光量の経時変化が最大値となるタイミングと基準データにおいて光量が最大値となるタイミングの差により、ウェハのz軸方向における変位量を特定することができる。 (Method of measuring the amount of displacement in the z-axis direction)
In advance, while thetransfer robot 4 moves the sensor hand 5 downward at a constant speed at a constant speed, the sensor unit 3 detects the detection light received by the reflection sensor 67, 68, or 69 for a normal wafer having no tilt. To obtain the change over time. The PLC 2 stores this in the storage unit 22 as reference data. Similarly, while the transfer robot 4 moves the sensor hand 5 at a constant speed downward in the z-axis, the sensor unit 3 sets the data of the change over time of the detection light received by the two reflection sensors 65 and 66 for the detection wafer. To get. The PLC 2 specifies the timing corresponding to the center point of the point where the light amount of the detection light becomes the maximum value, and compares it with the timing at which the light amount of the detection light becomes the maximum value in the reference data measured in advance. If the timing at which the temporal change in the light amount on the detection wafer becomes the maximum value is earlier than the timing at which the reference data has the maximum value, the PLC 2 determines that the wafer has been displaced in the z-axis direction. Conversely, if the timing at which the temporal change in the amount of light in the detection wafer becomes the maximum value is later than the timing at which the reference data has the maximum value, the PLC 2 determines that the wafer has been displaced downward in the z-axis direction. I do. Further, the PLC 2 can specify the displacement amount of the wafer in the z-axis direction based on the difference between the timing at which the temporal change of the light quantity on the detection wafer becomes the maximum value and the timing at which the light quantity becomes the maximum value in the reference data.
予め、搬送ロボット4がセンサハンド5をz軸下向きに一定の速度で移動させながら、センサユニット3が、傾きのない正常な状態のウェハについて反射センサ67、68、または69で受光される検出光の経時変化を取得する。PLC2がこれを基準データとして記憶部22に格納させる。同様に、搬送ロボット4がセンサハンド5をz軸下向きに一定の速度で移動させながら、センサユニット3が検出用ウェハについて2個の反射センサ65および66で受光される検出光の経時変化のデータを取得する。PLC2が検出光の光量が最大値となる点の中央点に相当するタイミングを特定し、予め測定しておいた基準データにおいて検出光の光量が最大値となるタイミングと比較する。検出用ウェハにおける光量の経時変化が最大値となるタイミングが、基準データにおいて最大値となるタイミングよりも先である場合には、PLC2は、ウェハがz軸方向上に変位したと判断する。逆に、検出用ウェハにおける光量の経時変化が最大値となるタイミングが、基準データにおいて最大値となるタイミングよりも後である場合には、PLC2は、ウェハがz軸方向下に変位したと判断する。また、PLC2は、検出用ウェハにおける光量の経時変化が最大値となるタイミングと基準データにおいて光量が最大値となるタイミングの差により、ウェハのz軸方向における変位量を特定することができる。 (Method of measuring the amount of displacement in the z-axis direction)
In advance, while the
(x軸周りの傾き方向および大きさの特定)
次に、ウェハのx軸周りの傾きの特定方法について説明する。搬送ロボット4がセンサハンド5をz軸下向きに一定の速度で移動させ、その間にセンサユニット3が検出用ウェハについて2個の反射センサ67および68で受光される検出光の経時変化のデータを取得する。PLC2は左右2個の反射センサ、つまり反射センサ67,68で受光される検出光の光量の経時変化のデータを比較して、ウェハのx軸周りの傾き方向および大きさを特定する。具体的には、図13に示すように、受光される検出光の光量が最大値となるタイミングが左側の反射センサ67のほうが右側の反射センサ68より先だった場合には、PLC2は、ウェハは左上がり、つまり右に傾いていると特定する。逆に、光量がピークとなる時点が反射センサ66のほうが先だった場合には、PLC2は、左上がり、つまりウェハが右に傾いていると特定する。 (Specification of tilt direction and size around x axis)
Next, a method of specifying the tilt of the wafer around the x-axis will be described. Thetransfer robot 4 moves the sensor hand 5 downward at a constant speed at a constant speed, and during that time, the sensor unit 3 acquires data on the change over time of the detection light received by the two reflection sensors 67 and 68 for the detection wafer. I do. The PLC 2 specifies the inclination direction and magnitude of the wafer around the x-axis by comparing data of the change over time in the amount of detection light received by the two left and right reflection sensors, that is, the reflection sensors 67 and 68. Specifically, as shown in FIG. 13, when the timing at which the amount of received detection light reaches the maximum value is such that the left reflection sensor 67 is earlier than the right reflection sensor 68, the PLC 2 Identifies that it is rising to the left, that is, leaning to the right. Conversely, if the point at which the amount of light reaches a peak is earlier than the reflection sensor 66, the PLC 2 specifies that the wafer is tilted to the left, that is, the wafer is tilted to the right.
次に、ウェハのx軸周りの傾きの特定方法について説明する。搬送ロボット4がセンサハンド5をz軸下向きに一定の速度で移動させ、その間にセンサユニット3が検出用ウェハについて2個の反射センサ67および68で受光される検出光の経時変化のデータを取得する。PLC2は左右2個の反射センサ、つまり反射センサ67,68で受光される検出光の光量の経時変化のデータを比較して、ウェハのx軸周りの傾き方向および大きさを特定する。具体的には、図13に示すように、受光される検出光の光量が最大値となるタイミングが左側の反射センサ67のほうが右側の反射センサ68より先だった場合には、PLC2は、ウェハは左上がり、つまり右に傾いていると特定する。逆に、光量がピークとなる時点が反射センサ66のほうが先だった場合には、PLC2は、左上がり、つまりウェハが右に傾いていると特定する。 (Specification of tilt direction and size around x axis)
Next, a method of specifying the tilt of the wafer around the x-axis will be described. The
また、反射センサ67,68で受光される検出光の光量が最大値となるタイミングの差Lはウェハの傾きの大きさと比例する。したがって、PLC2は、反射センサ67,68で光量が最大値となるタイミングの差Lを測定することにより、ウェハのx軸周りにおける傾きの大きさを特定する。
(4) The difference L between the timings at which the amounts of the detection light received by the reflection sensors 67 and 68 reach the maximum value is proportional to the inclination of the wafer. Therefore, the PLC 2 specifies the magnitude of the inclination of the wafer around the x-axis by measuring the difference L between the timings at which the amount of light reaches the maximum value by the reflection sensors 67 and 68.
(y軸周りの傾きの方向および大きさの特定)
次に、ウェハのy軸周りの傾きの方向および大きさの特定方法について説明する。(正面の反射センサ69は、左右の反射センサ67および68よりもx軸方向前側に備えられている)。搬送ロボット4がセンサハンド5をz軸下向きに一定の速度で移動させ、その間にセンサユニット3が検出用ウェハについて反射センサ67(または68)と反射センサ69で受光される検出光の経時変化のデータを取得する。PLC2は、取得された反射センサ67(または68)と反射センサ68とで受光される検出光の光量の経時変化のデータを比較して、ウェハのy軸周りの傾き方向および大きさを特定する。正面の反射センサ69は、左右の反射センサ67および68よりもx軸方向前側に備えられている。したがって、図14に示すように、検出光の光量が最大値となるタイミングが反射センサ67(または68)のほうが反射センサ69よりも先だった場合には、PLC2は、ウェハが前下がり、つまりウェハが前方に傾いていると特定する。逆に、検出光の光量が最大値となるタイミングが正面の反射センサ69のほうが反射センサ67(または68)よりも後だった場合には、PLC2は、ウェハが前上がり、つまりウェハが後方に傾いていると特定する。 (Specification of direction and magnitude of tilt around y-axis)
Next, a method of specifying the direction and magnitude of the tilt of the wafer around the y-axis will be described. (Thefront reflection sensor 69 is provided on the x-axis direction front side of the left and right reflection sensors 67 and 68). The transfer robot 4 moves the sensor hand 5 downward at a constant speed at a constant speed, and during this time, the sensor unit 3 detects the change over time of the detection light received by the reflection sensor 67 (or 68) and the reflection sensor 69 for the detection wafer. Get the data. The PLC 2 compares the acquired data of the change over time in the amount of the detection light received by the reflection sensor 67 (or 68) and the reflection sensor 68, and specifies the tilt direction and the size of the wafer around the y-axis. . The front reflection sensor 69 is provided on the x-axis direction front side of the left and right reflection sensors 67 and 68. Therefore, as shown in FIG. 14, when the timing at which the amount of detection light reaches the maximum value is earlier than the reflection sensor 69 in the reflection sensor 67 (or 68), the PLC 2 moves the wafer forward, Identify the wafer as leaning forward. Conversely, if the timing at which the amount of detected light reaches the maximum value is after the reflection sensor 69 on the front side is higher than the reflection sensor 67 (or 68), the PLC 2 moves the wafer forward, that is, moves the wafer backward. Identify that it is leaning.
次に、ウェハのy軸周りの傾きの方向および大きさの特定方法について説明する。(正面の反射センサ69は、左右の反射センサ67および68よりもx軸方向前側に備えられている)。搬送ロボット4がセンサハンド5をz軸下向きに一定の速度で移動させ、その間にセンサユニット3が検出用ウェハについて反射センサ67(または68)と反射センサ69で受光される検出光の経時変化のデータを取得する。PLC2は、取得された反射センサ67(または68)と反射センサ68とで受光される検出光の光量の経時変化のデータを比較して、ウェハのy軸周りの傾き方向および大きさを特定する。正面の反射センサ69は、左右の反射センサ67および68よりもx軸方向前側に備えられている。したがって、図14に示すように、検出光の光量が最大値となるタイミングが反射センサ67(または68)のほうが反射センサ69よりも先だった場合には、PLC2は、ウェハが前下がり、つまりウェハが前方に傾いていると特定する。逆に、検出光の光量が最大値となるタイミングが正面の反射センサ69のほうが反射センサ67(または68)よりも後だった場合には、PLC2は、ウェハが前上がり、つまりウェハが後方に傾いていると特定する。 (Specification of direction and magnitude of tilt around y-axis)
Next, a method of specifying the direction and magnitude of the tilt of the wafer around the y-axis will be described. (The
また、PLC2は、反射センサ67(68)と反射センサ69で、検出光の光量が最大値となるタイミングの差の大きさLを特定することにより、y軸周りにおけるウェハの傾きの大きさを特定する。
In addition, the PLC 2 determines the magnitude L of the difference between the timings at which the amount of the detected light reaches the maximum value using the reflection sensor 67 (68) and the reflection sensor 69, thereby reducing the magnitude of the inclination of the wafer around the y-axis. Identify.
(その他の実施例)
本明細書で掲示した技術は、上記記載のセンサ構成に限られない。例えば、透過センサ2対、反射センサ1個をセンサハンドが備えることが考えられる。センサハンドは、透過センサ2対が透過光が平行となるようにウェハのx軸方向に並べて備える。この構成により、より精度高くウェハの傾きを特定することができる。 (Other Examples)
The technology described in the present specification is not limited to the sensor configuration described above. For example, the sensor hand may include two pairs of transmission sensors and one reflection sensor. The sensor hand includes two pairs of transmission sensors arranged in the x-axis direction of the wafer such that transmitted light is parallel. With this configuration, the inclination of the wafer can be specified with higher accuracy.
本明細書で掲示した技術は、上記記載のセンサ構成に限られない。例えば、透過センサ2対、反射センサ1個をセンサハンドが備えることが考えられる。センサハンドは、透過センサ2対が透過光が平行となるようにウェハのx軸方向に並べて備える。この構成により、より精度高くウェハの傾きを特定することができる。 (Other Examples)
The technology described in the present specification is not limited to the sensor configuration described above. For example, the sensor hand may include two pairs of transmission sensors and one reflection sensor. The sensor hand includes two pairs of transmission sensors arranged in the x-axis direction of the wafer such that transmitted light is parallel. With this configuration, the inclination of the wafer can be specified with higher accuracy.
§4 変形例
(変形例1)
上記実施形態では、図9に示されるとおり、PLC2の制御部21が、機能構成として傾き検出部211を備える例を説明した。この構成に代えて、センサユニット3の制御部(不図示)が、機能構成として傾き検出部211を備えてもよい。 §4 Modification (Modification 1)
In the above embodiment, as illustrated in FIG. 9, an example in which thecontrol unit 21 of the PLC 2 includes the inclination detection unit 211 as a functional configuration has been described. Instead of this configuration, the control unit (not shown) of the sensor unit 3 may include a tilt detection unit 211 as a functional configuration.
(変形例1)
上記実施形態では、図9に示されるとおり、PLC2の制御部21が、機能構成として傾き検出部211を備える例を説明した。この構成に代えて、センサユニット3の制御部(不図示)が、機能構成として傾き検出部211を備えてもよい。 §4 Modification (Modification 1)
In the above embodiment, as illustrated in FIG. 9, an example in which the
(変形例2)
上記実施形態では、図1に示されるとおり、センサシステム1が、センサユニット3、搬送ロボット4、チャック5、および光電センサ6の組み合わせを1つのみ有する例を説明した。しかしながら、センサシステム1は、該組み合わせを複数有していてもよい。 (Modification 2)
In the above embodiment, as illustrated in FIG. 1, an example in which the sensor system 1 includes only one combination of thesensor unit 3, the transfer robot 4, the chuck 5, and the photoelectric sensor 6 has been described. However, the sensor system 1 may have a plurality of the combinations.
上記実施形態では、図1に示されるとおり、センサシステム1が、センサユニット3、搬送ロボット4、チャック5、および光電センサ6の組み合わせを1つのみ有する例を説明した。しかしながら、センサシステム1は、該組み合わせを複数有していてもよい。 (Modification 2)
In the above embodiment, as illustrated in FIG. 1, an example in which the sensor system 1 includes only one combination of the
(変形例3)
上記実施形態では、図4に示されるとおり、センサシステム1が、1枚のウェハ10をスキャンし、該ウェハ10の傾きの方向および角度を特定する例を説明した。この構成に代えて、センサシステム1は、複数枚のウェハ10(例えば、ウェハカセット20に格納されているすべてのウェハ10)をまとめてスキャンし、ウェハ10それぞれの傾きの方向および角度を特定してもよい。 (Modification 3)
In the above embodiment, as illustrated in FIG. 4, an example has been described in which the sensor system 1 scans onewafer 10 and specifies the direction and angle of inclination of the wafer 10. Instead of this configuration, the sensor system 1 scans a plurality of wafers 10 (for example, all the wafers 10 stored in the wafer cassette 20) collectively and specifies the direction and angle of inclination of each wafer 10. You may.
上記実施形態では、図4に示されるとおり、センサシステム1が、1枚のウェハ10をスキャンし、該ウェハ10の傾きの方向および角度を特定する例を説明した。この構成に代えて、センサシステム1は、複数枚のウェハ10(例えば、ウェハカセット20に格納されているすべてのウェハ10)をまとめてスキャンし、ウェハ10それぞれの傾きの方向および角度を特定してもよい。 (Modification 3)
In the above embodiment, as illustrated in FIG. 4, an example has been described in which the sensor system 1 scans one
(変形例4)
上記実施形態では、図10などに示されるとおり、センサシステム1が、ウェハ10の傾きの方向および角度を特定する例を説明した。しかしながら、センサシステム1がウェハ10の傾きの角度を特定する構成は必須ではない。換言すれば、センサシステム1は、ウェハ10の傾きの方向のみを特定してもよい。 (Modification 4)
In the above embodiment, as illustrated in FIG. 10 and the like, an example in which the sensor system 1 specifies the direction and angle of the tilt of thewafer 10 has been described. However, the configuration in which the sensor system 1 specifies the inclination angle of the wafer 10 is not essential. In other words, the sensor system 1 may specify only the direction of the tilt of the wafer 10.
上記実施形態では、図10などに示されるとおり、センサシステム1が、ウェハ10の傾きの方向および角度を特定する例を説明した。しかしながら、センサシステム1がウェハ10の傾きの角度を特定する構成は必須ではない。換言すれば、センサシステム1は、ウェハ10の傾きの方向のみを特定してもよい。 (Modification 4)
In the above embodiment, as illustrated in FIG. 10 and the like, an example in which the sensor system 1 specifies the direction and angle of the tilt of the
(変形例5)
上記実施形態では、センサシステム1が、特定したウェハ10の傾きの方向、角度およびz軸方向の変位量に応じて、チャック7の傾きの方向、角度およびz軸方向の位置を制御する例を説明した。この構成に代えて、あるいは、この構成に加え、センサシステム1は、特定したウェハ10の傾きの角度が一定以上である場合、その旨をセンサシステム1のユーザに報知する構成を備えていてもよい。 (Modification 5)
In the above embodiment, an example in which the sensor system 1 controls the tilt direction, angle, and z-axis position of thechuck 7 in accordance with the specified tilt direction, angle, and displacement amount in the z-axis direction of the wafer 10 is described. explained. Instead of this configuration or in addition to this configuration, when the specified tilt angle of the wafer 10 is equal to or more than a certain value, the sensor system 1 may include a configuration that notifies the user of the sensor system 1 of the fact. Good.
上記実施形態では、センサシステム1が、特定したウェハ10の傾きの方向、角度およびz軸方向の変位量に応じて、チャック7の傾きの方向、角度およびz軸方向の位置を制御する例を説明した。この構成に代えて、あるいは、この構成に加え、センサシステム1は、特定したウェハ10の傾きの角度が一定以上である場合、その旨をセンサシステム1のユーザに報知する構成を備えていてもよい。 (Modification 5)
In the above embodiment, an example in which the sensor system 1 controls the tilt direction, angle, and z-axis position of the
図11は、変形例6に係るセンサシステム1aに含まれる各装置のハードウェア構成の一例を模式的に例示する図である。センサシステム1aがセンサシステム1と異なる点は、図11に示されるとおり、PLC2に代えてPLC2aを含んでいる点、および、報知装置7を新たに含んでいる点である。
FIG. 11 is a diagram schematically illustrating an example of a hardware configuration of each device included in the sensor system 1a according to the sixth modification. As shown in FIG. 11, the sensor system 1a differs from the sensor system 1 in that the sensor system 1a includes a PLC 2a instead of the PLC 2, and that the alarm system 7 is newly included.
報知装置7は、センサシステム1のユーザに対する報知を行う装置であり、一例として、表示装置(ディスプレイ)であってもよい。この例の場合、報知装置7は、ウェハ10の傾きの角度が一定以上であることをユーザに報知、換言すれば、ウェハ10をウェハカセット20から取り出す際に、ウェハ10が傷つく可能性があることを警告する画面を表示する。
The notification device 7 is a device that notifies the user of the sensor system 1 and may be, for example, a display device (display). In the case of this example, the notification device 7 notifies the user that the angle of inclination of the wafer 10 is equal to or greater than a certain value, in other words, the wafer 10 may be damaged when the wafer 10 is removed from the wafer cassette 20. Display a warning screen.
PLC2aがPLC2と異なる点は、新たに出力インタフェース24を備えている点である。出力インタフェース24は、PLC2aがデータを出力するためのインタフェースである。本変形例では、PLC2aは、出力インタフェース24を介して、報知装置7に、ユーザに対する報知を行うための情報(例えば、上記画面を表示させるための表示情報)を出力する。
PLC2a is different from PLC2 in that an output interface 24 is newly provided. The output interface 24 is an interface for the PLC 2a to output data. In this modified example, the PLC 2a outputs information for performing notification to the user (for example, display information for displaying the screen) to the notification device 7 via the output interface 24.
また、本変形例に係る制御部21は、機能構成として、表示制御部(不図示)を備える。本変形例に係る傾き検出部211は、特定した、ウェハ10の傾きの角度が一定以上であるか否かを判定し、一定以上であった場合、上記表示情報の生成指示を表示制御部に出力する。表示制御部は、上記生成指示を受け、表示情報を生成し、出力インタフェース24を介して報知装置7へ出力する。
The control unit 21 according to the present modification includes a display control unit (not shown) as a functional configuration. The tilt detection unit 211 according to the present modification determines whether or not the specified tilt angle of the wafer 10 is equal to or greater than a certain value. If the tilt angle is equal to or greater than the certain value, the display information generation instruction is sent to the display control unit. Output. The display control unit receives the generation instruction, generates display information, and outputs the display information to the notification device 7 via the output interface 24.
これにより、センサシステム1aは、ウェハ10が傷つく可能性があることを、センサシステム1aのユーザ(例えば、オペレータ)に報知することができる。
Accordingly, the sensor system 1a can notify a user (for example, an operator) of the sensor system 1a that the wafer 10 may be damaged.
〔まとめ〕
上記の課題を解決するために、本発明の一態様に係るセンサシステムは、ウェハカセットに収納されたウェハの傾きを検出するセンサシステムであって、3つ以上の光電センサと、前記3つ以上の光電センサを、前記3つ以上の光電センサを含む平面が正常に収納されている前記ウェハの平面に平行な状態で、前記正常に収納されている前記ウェハの平面に垂直な方向に移動させる移動制御装置と、前記光電センサの移動中に、前記光電センサが受光した光量を取得する取得装置と、前記光電センサが、検出対象のウェハを検出している期間の前記光量の変化に基づき、前記ウェハの傾きの方向及び前記ウェハの傾きの大きさを特定する特定装置と、を備える。 [Summary]
In order to solve the above-described problem, a sensor system according to one embodiment of the present invention is a sensor system that detects an inclination of a wafer stored in a wafer cassette, and includes three or more photoelectric sensors and the three or more photoelectric sensors. Is moved in a direction perpendicular to the plane of the normally accommodated wafer while the plane including the three or more photoelectric sensors is parallel to the plane of the wafer normally accommodated. Movement control device, during the movement of the photoelectric sensor, an acquisition device that acquires the amount of light received by the photoelectric sensor, based on the change in the amount of light during the period when the photoelectric sensor is detecting the detection target wafer, A specification device for specifying the direction of the tilt of the wafer and the magnitude of the tilt of the wafer.
上記の課題を解決するために、本発明の一態様に係るセンサシステムは、ウェハカセットに収納されたウェハの傾きを検出するセンサシステムであって、3つ以上の光電センサと、前記3つ以上の光電センサを、前記3つ以上の光電センサを含む平面が正常に収納されている前記ウェハの平面に平行な状態で、前記正常に収納されている前記ウェハの平面に垂直な方向に移動させる移動制御装置と、前記光電センサの移動中に、前記光電センサが受光した光量を取得する取得装置と、前記光電センサが、検出対象のウェハを検出している期間の前記光量の変化に基づき、前記ウェハの傾きの方向及び前記ウェハの傾きの大きさを特定する特定装置と、を備える。 [Summary]
In order to solve the above-described problem, a sensor system according to one embodiment of the present invention is a sensor system that detects an inclination of a wafer stored in a wafer cassette, and includes three or more photoelectric sensors and the three or more photoelectric sensors. Is moved in a direction perpendicular to the plane of the normally accommodated wafer while the plane including the three or more photoelectric sensors is parallel to the plane of the wafer normally accommodated. Movement control device, during the movement of the photoelectric sensor, an acquisition device that acquires the amount of light received by the photoelectric sensor, based on the change in the amount of light during the period when the photoelectric sensor is detecting the detection target wafer, A specification device for specifying the direction of the tilt of the wafer and the magnitude of the tilt of the wafer.
なお、「傾きの方向」としては、ウェハの外周を形成する各点のうち、水平面を基準として最も上にある点から最も下にある点への方向を特定すればよい。なお、本明細書中で「上下方向」とは正常に収納されているウェハの平面に直行する方向であり(つまり鉛直方向)であり、ウェハの「左右方向」とは正常に収納されているウェハの平面に平行であって、ウェハが搬送チャックなどで把持される2点を結ぶ方向である。ウェハの「前後方向」とは、正常に収納されているウェハの平面に平行であって、「左右方向」と直交する方向をいう。
Note that as the “direction of inclination”, among the points forming the outer periphery of the wafer, the direction from the highest point to the lowest point with respect to the horizontal plane may be specified. In this specification, the “vertical direction” is a direction perpendicular to the plane of a normally stored wafer (that is, the vertical direction), and the “left-right direction” of the wafer is normally stored. A direction parallel to the plane of the wafer and connecting two points where the wafer is gripped by a transfer chuck or the like. The “front-back direction” of a wafer refers to a direction that is parallel to the plane of a normally stored wafer and that is orthogonal to the “left-right direction”.
上記の構成によれば、光電センサが検出対象のウェハを検出している期間に、前記3つ以上の光電センサが受光した光量の変化に基づき、ウェハの上下方向の変位量、左右方向における傾きの大きさ、前後方向における傾きの大きさなどウェハの傾きに関するより詳細な情報を取得することができる。これにより、上記センサシステムは、傾きの有無より詳細な情報を特定することができる。
According to the above configuration, while the photoelectric sensor is detecting the detection target wafer, the amount of displacement of the wafer in the vertical direction and the inclination in the horizontal direction are determined based on the change in the amount of light received by the three or more photoelectric sensors. More detailed information on the inclination of the wafer, such as the size of the wafer and the magnitude of the inclination in the front-back direction, can be obtained. Thus, the sensor system can specify more detailed information than the presence or absence of the inclination.
本発明の一態様に係るセンサシステムにおいて、3つ以上の光電センサのうち2つは、ウェハの外周を形成する円弧上の2点を検出光が通過するように設けられた1対の透過型センサであってもよい。
In the sensor system according to one embodiment of the present invention, two of the three or more photoelectric sensors are a pair of transmission-type sensors provided so that detection light passes through two points on an arc that forms the outer periphery of the wafer. It may be a sensor.
上記の構成によれば、1対の透過センサにより、ウェハの傾きに関し、さらに詳細な情報を特定することができる。なお、本明細書においては、投光部および受光部を備えた1対の透過センサを2個の光電センサと数える。
According to the above configuration, more detailed information on the tilt of the wafer can be specified by the pair of transmission sensors. In this specification, a pair of transmission sensors including a light projecting unit and a light receiving unit is counted as two photoelectric sensors.
本発明の一態様に係るセンサシステムにおいて、3つ以上の光電センサは、更に、前記ウェハの外周を形成する円弧上において、前記2点以外の位置が検出領域となるように設けられた1又は複数の反射型センサを含んでもよい。
In the sensor system according to one embodiment of the present invention, the three or more photoelectric sensors are further provided such that a position other than the two points is a detection region on an arc forming an outer periphery of the wafer. A plurality of reflective sensors may be included.
上記の構成によれば、1対の透過型センサと反射型センサを組み合わせることにより、ウェハの傾きに関し、さらに精度高く詳細な情報を特定することができる。
According to the above configuration, by combining a pair of a transmission type sensor and a reflection type sensor, it is possible to specify more precise and detailed information on the tilt of the wafer.
本発明の一態様に係るセンサシステムにおいて、1又は複数の反射型センサは、前記2点以外の前記ウェハの外周を形成する円弧上の位置であって、前記2点を結ぶ直線の中心点と前記ウェハの中心点とを通る直線に対して対称な位置が検出領域となるように設けられた2個の反射型センサを含んでもよい。
In the sensor system according to one embodiment of the present invention, one or a plurality of reflection-type sensors are positions on an arc forming the outer periphery of the wafer other than the two points, and a center point of a straight line connecting the two points. It may include two reflection sensors provided such that a position symmetrical with respect to a straight line passing through the center point of the wafer is a detection area.
上記の構成によれば、1対の透過型センサと2個以上の反射型センサを組み合わせることにより、ウェハの傾きに関し、さらに精度高く詳細な情報を特定することができる。
According to the above configuration, by combining a pair of transmissive sensors and two or more reflective sensors, it is possible to more precisely specify detailed information on the tilt of the wafer.
本発明の一態様に係るセンサシステムにおいて、前記ウェハを搬送する搬送装置であって、前記ウェハを前記ウェハカセットから取り出すためのチャックを備えた搬送装置をさらに備え、前記特定装置は、特定した前記ウェハの傾きおよび角度に応じて、前記チャックの傾きを制御してもよい。
In the sensor system according to an aspect of the present invention, the transfer device for transferring the wafer, further includes a transfer device having a chuck for taking out the wafer from the wafer cassette, the specific device, the specified device, The inclination of the chuck may be controlled according to the inclination and angle of the wafer.
上記の構成によれば、特定装置が特定したウェハの傾き、角度およびz軸方向における変位に応じて、チャックの傾きを制御するので、ウェハが傾いていたとしても、ウェハを傷つけることなくウェハカセットから取り出すことができる。よって、ウェハが傾いていた場合であっても、搬送を継続することができる。
According to the above configuration, the tilt of the chuck is controlled in accordance with the tilt, the angle, and the displacement in the z-axis direction of the wafer specified by the specifying device. Therefore, even if the wafer is tilted, the wafer cassette is not damaged. Can be taken from Therefore, even when the wafer is tilted, the transfer can be continued.
また、上記の課題を解決するために、本発明の一態様に係る傾き検出方法は、ウェハカセットに収納されたウェハの傾きを検出するセンサシステムを用いた傾き検出方法であって、前記センサシステムは、3つ以上の光電センサを備え、前記3つ以上の光電センサを、前記3つ以上の光電センサを含む平面が正常に収納されている前記ウェハの平面に平行な状態で、前記正常に収納されている前記ウェハの平面に垂直な方向に移動させる移動ステップと、前記移動ステップ中に、前記受光部が受光した光量を取得する取得ステップと、前記光電センサが、検出対象のウェハを検出している期間の前記光量の変化に基づき、前記ウェハの傾きの方向及び前記ウェハの傾きの大きさを特定する特定ステップと、を含んでもよい。
According to another aspect of the present invention, there is provided a tilt detection method using a sensor system for detecting a tilt of a wafer housed in a wafer cassette, wherein the sensor system comprises: Is provided with three or more photoelectric sensors, and the three or more photoelectric sensors are normally placed in a state in which a plane including the three or more photoelectric sensors is parallel to the plane of the wafer in which the plane is normally accommodated. A moving step of moving the stored wafer in a direction perpendicular to the plane of the wafer, an obtaining step of obtaining the amount of light received by the light receiving unit during the moving step, and the photoelectric sensor detects a wafer to be detected. Specifying a direction of the tilt of the wafer and a magnitude of the tilt of the wafer based on a change in the amount of light during the period.
上記の構成によれば、本発明の一態様に係るセンサシステムと同様の作用効果を奏する。
According to the above configuration, the same operation and effect as those of the sensor system according to one embodiment of the present invention can be obtained.
本発明は上述した実施形態および変形例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
The present invention is not limited to the above-described embodiments and modified examples, and various modifications are possible within the scope shown in the claims, and are obtained by appropriately combining technical means disclosed in different embodiments. Embodiments are also included in the technical scope of the present invention.
1、1a センサシステム
2、2a PLC(特定装置)
3 センサユニット(取得装置)
4 搬送ロボット(搬送装置、移動制御装置)
5 センサハンド
6 光電センサ
7 搬送チャック
8 アクチュエータ
9 報知装置
10 ウェハ
20 ウェハカセット
60 検出光
61a 投光部
61b 受光部
62、63 反射センサ
65、66 突出部
67,68,69 反射型センサ
101 ウェハ面(ウェハの平面)
S1 移動ステップ
S2、S3 取得ステップ
S6 特定ステップ 1, 1a Sensor system 2, 2a PLC (specific device)
3 Sensor unit (acquisition device)
4 Transfer robot (transportation device, movement control device)
Reference Signs List 5 sensor hand 6 photoelectric sensor 7 transfer chuck 8 actuator 9 notification device 10 wafer 20 wafer cassette 60 detection light 61a light projecting unit 61b light receiving unit
62, 63 Reflection sensor 65, 66 Projection 67, 68, 69 Reflection sensor 101 Wafer surface (plane of wafer)
S1 Movement step S2, S3 Acquisition step S6 Identification step
2、2a PLC(特定装置)
3 センサユニット(取得装置)
4 搬送ロボット(搬送装置、移動制御装置)
5 センサハンド
6 光電センサ
7 搬送チャック
8 アクチュエータ
9 報知装置
10 ウェハ
20 ウェハカセット
60 検出光
61a 投光部
61b 受光部
62、63 反射センサ
65、66 突出部
67,68,69 反射型センサ
101 ウェハ面(ウェハの平面)
S1 移動ステップ
S2、S3 取得ステップ
S6 特定ステップ 1,
3 Sensor unit (acquisition device)
4 Transfer robot (transportation device, movement control device)
62, 63
S1 Movement step S2, S3 Acquisition step S6 Identification step
Claims (6)
- ウェハカセットに収納されたウェハの傾きを検出するセンサシステムであって、
3つ以上の光電センサと、
前記3つ以上の光電センサを、前記3つ以上の光電センサを含む平面が正常に収納されている前記ウェハの平面に平行な状態で、前記正常に収納されている前記ウェハの平面に垂直な方向に移動させる移動制御装置と、
前記光電センサの移動中に、前記光電センサが受光した光量を取得する取得装置と、
前記光電センサが、検出対象のウェハを検出している期間の前記光量の変化に基づき、前記ウェハの傾きの方向、及び前記ウェハの傾きの大きさを特定する特定装置と、
を備える、センサシステム。 A sensor system for detecting a tilt of a wafer stored in a wafer cassette,
Three or more photoelectric sensors,
The three or more photoelectric sensors are perpendicular to the plane of the normally accommodated wafer while the plane including the three or more photoelectric sensors is parallel to the plane of the normally accommodated wafer. A movement control device for moving in the direction,
An acquisition device that acquires the amount of light received by the photoelectric sensor during movement of the photoelectric sensor,
The photoelectric sensor, based on the change in the amount of light during the detection of the detection target wafer, based on the direction of the tilt of the wafer, and a specifying device that specifies the magnitude of the tilt of the wafer,
A sensor system comprising: - 前記3つ以上の光電センサのうち2つは、ウェハの外周を形成する円弧上の2点を検出光が通過するように設けられた1対の透過型センサである、請求項1に記載のセンサシステム。 2. The sensor according to claim 1, wherein two of the three or more photoelectric sensors are a pair of transmission sensors provided so that the detection light passes through two points on an arc forming the outer periphery of the wafer. 3. Sensor system.
- 前記3つ以上の光電センサは、更に、前記ウェハの外周を形成する円弧上において、前記2点以外の位置が検出領域となるように設けられた1又は複数の反射型センサを含む、請求項2に記載のセンサシステム。 The three or more photoelectric sensors further include one or a plurality of reflection sensors provided such that positions other than the two points are detection areas on an arc forming an outer periphery of the wafer. 3. The sensor system according to 2.
- 前記1又は複数の反射型センサは、前記2点以外の前記ウェハの外周を形成する円弧上の位置であって、前記2点を結ぶ直線の中心点と前記ウェハの中心点とを通る直線に対して対称な位置が検出領域となるように設けられた2個の反射型センサを含む、請求項3に記載のセンサシステム。 The one or more reflective sensors are located on a circular arc forming the outer periphery of the wafer other than the two points, and are formed as straight lines passing through the center point of a straight line connecting the two points and the center point of the wafer. 4. The sensor system according to claim 3, further comprising two reflection sensors provided such that a position symmetrical with respect to the detection region is a detection area. 5.
- 前記センサシステムは、前記ウェハを搬送する搬送装置であって、前記ウェハを前記ウェハカセットから取り出すためのチャックを備えた搬送装置をさらに備え、
前記特定装置は、特定した前記ウェハの傾きおよび角度に応じて、前記チャックの傾きを制御する、請求項1から4のいずれか1項に記載のセンサシステム。 The sensor system is a transfer device for transferring the wafer, further comprising a transfer device having a chuck for taking out the wafer from the wafer cassette,
The sensor system according to claim 1, wherein the specifying device controls the tilt of the chuck according to the specified tilt and angle of the wafer. - ウェハカセットに収納されたウェハの傾きを検出するセンサシステムを用いた傾き検出方法であって、
前記センサシステムは、3つ以上の光電センサを備え、
前記3つ以上の光電センサを、前記3つ以上の光電センサを含む平面が正常に収納されている前記ウェハの平面に平行な状態で、前記正常に収納されている前記ウェハの平面に垂直な方向に移動させる移動ステップと、
前記移動ステップ中に、前記光電センサが受光した光量を取得する取得ステップと、
前記光電センサが、検出対象のウェハを検出している期間の前記光量の変化に基づき、前記ウェハの傾きの方向、及び前記ウェハの傾きの大きさを特定する特定ステップと、を含む、傾き検出方法。 A tilt detection method using a sensor system that detects a tilt of a wafer stored in a wafer cassette,
The sensor system includes three or more photoelectric sensors,
The three or more photoelectric sensors are perpendicular to the plane of the normally accommodated wafer while the plane including the three or more photoelectric sensors is parallel to the plane of the normally accommodated wafer. A moving step for moving in the direction;
During the moving step, an acquiring step of acquiring the amount of light received by the photoelectric sensor,
A step of specifying the direction of the tilt of the wafer and the magnitude of the tilt of the wafer based on a change in the amount of light during a period in which the photoelectric sensor is detecting the detection target wafer. Method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-177786 | 2018-09-21 | ||
JP2018177786A JP2020053416A (en) | 2018-09-21 | 2018-09-21 | Sensor system and tilt detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020059685A1 true WO2020059685A1 (en) | 2020-03-26 |
Family
ID=69887036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/036310 WO2020059685A1 (en) | 2018-09-21 | 2019-09-17 | Sensor system and inclination detection method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020053416A (en) |
WO (1) | WO2020059685A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022050204A1 (en) * | 2020-09-04 | 2022-03-10 | 川崎重工業株式会社 | Robot and hand portion posture adjustment method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022043554A (en) * | 2020-09-04 | 2022-03-16 | 川崎重工業株式会社 | Robot and board posture inspection method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0685042A (en) * | 1992-09-01 | 1994-03-25 | Tokyo Electron Ltd | Wafer detecting device |
JP2001093963A (en) * | 1999-07-16 | 2001-04-06 | Sunx Ltd | Flat object detector |
JP2002076097A (en) * | 2000-08-30 | 2002-03-15 | Hirata Corp | Wafer transferring apparatus and method for wafer alignment |
JP2012523682A (en) * | 2009-04-09 | 2012-10-04 | アーエーエス モトマチオーン ゲーエムベーハー | Method for automatically measuring and teaching the position of an object in a substrate processing system by means of a sensor carrier and associated sensor carrier |
JP2014143388A (en) * | 2012-12-25 | 2014-08-07 | Tokyo Electron Ltd | Substrate transfer apparatus, substrate transfer method and storage medium |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07297264A (en) * | 1994-04-22 | 1995-11-10 | Toshiba Corp | Detecting device of wafer position |
JPH1148057A (en) * | 1997-08-05 | 1999-02-23 | Daihen Corp | Detecting device board thin |
JP2003092338A (en) * | 2001-09-18 | 2003-03-28 | Nec Corp | Detector for semiconductor wafer housing state |
JP6424055B2 (en) * | 2014-09-29 | 2018-11-14 | 株式会社Screenホールディングス | LOADPORT DEVICE, SUBSTRATE PROCESSING DEVICE, AND LOADING METHOD FOR SUBSTRATE CONTAINER |
-
2018
- 2018-09-21 JP JP2018177786A patent/JP2020053416A/en active Pending
-
2019
- 2019-09-17 WO PCT/JP2019/036310 patent/WO2020059685A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0685042A (en) * | 1992-09-01 | 1994-03-25 | Tokyo Electron Ltd | Wafer detecting device |
JP2001093963A (en) * | 1999-07-16 | 2001-04-06 | Sunx Ltd | Flat object detector |
JP2002076097A (en) * | 2000-08-30 | 2002-03-15 | Hirata Corp | Wafer transferring apparatus and method for wafer alignment |
JP2012523682A (en) * | 2009-04-09 | 2012-10-04 | アーエーエス モトマチオーン ゲーエムベーハー | Method for automatically measuring and teaching the position of an object in a substrate processing system by means of a sensor carrier and associated sensor carrier |
JP2014143388A (en) * | 2012-12-25 | 2014-08-07 | Tokyo Electron Ltd | Substrate transfer apparatus, substrate transfer method and storage medium |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022050204A1 (en) * | 2020-09-04 | 2022-03-10 | 川崎重工業株式会社 | Robot and hand portion posture adjustment method |
TWI780888B (en) * | 2020-09-04 | 2022-10-11 | 日商川崎重工業股份有限公司 | Robot and hand posture adjustment method |
Also Published As
Publication number | Publication date |
---|---|
JP2020053416A (en) | 2020-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6710622B2 (en) | Transfer device and transfer method | |
US20200278197A1 (en) | Measurement apparatus, measurement method, system, storage medium, and information processing apparatus | |
US20170264883A1 (en) | Imaging system, measurement system, production system, imaging method, recording medium, and measurement method | |
WO2020059685A1 (en) | Sensor system and inclination detection method | |
EP2463618A1 (en) | Surface profile inspection device | |
JP6116710B2 (en) | Appearance inspection apparatus and appearance inspection method | |
TWI611887B (en) | Position drift detction apparatus and method of detecting position drift in a machine operation using a robot arm | |
JP5494597B2 (en) | Robot system | |
JP6636464B2 (en) | Container thickness inspection device | |
EP2574877B1 (en) | Optical probe | |
US12078478B2 (en) | Measurement apparatus, control apparatus, and control method | |
WO2015122060A1 (en) | Surface shape measurement device, machine tool provided with same, and surface shape measurement method | |
JP2018193201A (en) | Supply control apparatus and supply control method | |
JP7379096B2 (en) | Measuring device and light amount control method | |
JP5454502B2 (en) | Transport vehicle system | |
WO2019167533A1 (en) | Sensor system and inclination detection method | |
JP5989443B2 (en) | Semiconductor integrated circuit and object distance measuring device | |
JP2009186404A (en) | Image information creating device and image information creating method | |
JP3945120B2 (en) | Ranging sensor and adjustment method thereof | |
WO2023188250A1 (en) | Control circuit, system, method, and program | |
JP2008265474A (en) | Brake light detection device | |
WO2023199679A1 (en) | Surface shape measurement device, surface shape measurement method, and belt management method | |
WO2023181308A1 (en) | Computer system, method, and program | |
WO2022168903A1 (en) | Abnormality detection device, abnormality detection method, and program | |
US20220415690A1 (en) | Aligner apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19862356 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19862356 Country of ref document: EP Kind code of ref document: A1 |