WO2020059586A1 - Motor and compressor - Google Patents

Motor and compressor Download PDF

Info

Publication number
WO2020059586A1
WO2020059586A1 PCT/JP2019/035652 JP2019035652W WO2020059586A1 WO 2020059586 A1 WO2020059586 A1 WO 2020059586A1 JP 2019035652 W JP2019035652 W JP 2019035652W WO 2020059586 A1 WO2020059586 A1 WO 2020059586A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
neutral
winding
wires
electric wire
Prior art date
Application number
PCT/JP2019/035652
Other languages
French (fr)
Japanese (ja)
Inventor
公興 長谷川
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to CN201980060734.XA priority Critical patent/CN112714993A/en
Priority to US17/276,372 priority patent/US11955855B2/en
Publication of WO2020059586A1 publication Critical patent/WO2020059586A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/09Machines characterised by wiring elements other than wires, e.g. bus rings, for connecting the winding terminations

Definitions

  • the present invention relates to a motor and a compressor.
  • the compressor includes a motor for driving a compression unit that compresses the refrigerant.
  • the motor includes a rotor provided with a permanent magnet and a stator that rotates the rotor by generating a rotating magnetic field, and transmits rotational power to a compression unit via a shaft fixed to the rotor.
  • the stator has a plurality of teeth, and a winding is formed by winding an electric wire around each of the plurality of teeth. In the winding, each of the plurality of winding portions wound around each tooth is star-connected (star-shaped connection), and one end of the winding portion wound around each tooth is connected to a power source, and the winding is performed. The other end (referred to as a neutral line) of the section is connected to a neutral point.
  • the disclosed technology has been made in view of the above, and has as its object to provide a motor and a compressor capable of improving workability in assembling a motor.
  • One mode of the motor disclosed in the present application includes a rotor and a stator that generates a magnetic field for rotating the rotor, the stator includes a plurality of teeth, and a winding portion wound around each of the plurality of teeth, A plurality of windings having a neutral wire provided on one end side of the winding portion and a power supply wire provided on the other end side of the winding portion, and a plurality of neutral wires are electrically connected via a connection member. A plurality of neutral points, the plurality of neutral lines being connected to each other at a position closer to the winding part than the plurality of neutral points; And a second fixing portion in which a plurality of neutral lines are fixed to each other from the first fixing portion to the plurality of neutral points.
  • the workability of assembling the motor can be improved.
  • FIG. 1 is a longitudinal sectional view illustrating a compressor including a three-phase motor according to an embodiment.
  • FIG. 2 is a plan view showing the three-phase motor of the embodiment from the upper insulator side.
  • FIG. 3 is a bottom view showing the stator core in the embodiment.
  • FIG. 4 is a perspective view showing the lower insulator in the embodiment.
  • FIG. 5 is a bottom view showing the stator according to the embodiment.
  • FIG. 6 is a developed view showing a plurality of windings in the embodiment.
  • FIG. 7 is a connection diagram illustrating a connection state of a plurality of windings in the example.
  • FIG. 8 is a perspective view illustrating a state before connection of the first splice terminal and the electric wire in the example.
  • FIG. 1 is a longitudinal sectional view illustrating a compressor including a three-phase motor according to an embodiment.
  • FIG. 2 is a plan view showing the three-phase motor of the embodiment from the upper insulator side.
  • FIG. 10A is a plan view showing a state where nine neutral wires are drawn out in the embodiment.
  • FIG. 10B is a plan view illustrating a state in which the first fixing portion is formed by three neutral wires out of nine neutral wires in the example.
  • FIG. 10C is a plan view illustrating a state in which the first fixing portion is formed by three neutral lines of the remaining six neutral lines in the example.
  • FIG. 10D is a plan view illustrating a state in which the first fixing portion is formed by the remaining three neutral wires in the example.
  • FIG. 11A is a side view showing a state in which three sets of neutral wires have the same length in the embodiment.
  • FIG. 11A is a side view showing a state in which three sets of neutral wires have the same length in the embodiment.
  • FIG. 11B is a side view showing a state in which three sets of neutral wires are joined by crimping in the example.
  • FIG. 11C is a side view showing a state where three sets of neutral wires are bundled into one bundle in the example.
  • FIG. 11D is a side view showing a state where the neutral wires bundled together are covered with an insulating tube in the example.
  • FIG. 1 is a longitudinal sectional view showing a compressor including the three-phase motor of the embodiment.
  • the compressor 1 is a so-called rotary compressor, and includes a container 2, a shaft 3, a compression unit 5, and a three-phase motor 6.
  • the container 2 forms a closed internal space 7.
  • the internal space 7 is formed in a substantially cylindrical shape.
  • the container 2 is formed such that the central axis of a cylinder forming the internal space 7 is parallel to the vertical direction when the container 2 is placed vertically on a horizontal plane.
  • An oil reservoir 8 is formed in the lower part of the internal space 7 in the container 2.
  • Refrigeration oil which is a lubricating oil for lubricating the compression unit 5, is stored in the oil reservoir 8.
  • a suction pipe 11 for sucking the refrigerant and a discharge pipe 12 for discharging the compressed refrigerant are connected to the container 2.
  • the shaft 3 as a rotation shaft is formed in a rod shape, and is disposed in the internal space 7 of the container 2 such that one end is disposed in the oil reservoir 8.
  • the shaft 3 is supported by the container 2 so as to be rotatable about a central axis of a column forming the internal space 7.
  • the shaft 3 supplies the refrigerating machine oil stored in the oil sump 8 to the compression unit 5 by rotating.
  • the compression unit 5 is disposed below the internal space 7 and above the oil reservoir 8.
  • the compressor 1 further includes an upper muffler cover 14 and a lower muffler cover 15.
  • the upper muffler cover 14 is disposed above the compression section 5 in the internal space 7.
  • the upper muffler cover 14 has an upper muffler chamber 16 formed therein.
  • the lower muffler cover 15 is provided below the compression section 5 in the internal space 7 and is located above the oil reservoir 8.
  • the lower muffler cover 15 has a lower muffler chamber 17 formed therein.
  • the lower muffler chamber 17 communicates with the upper muffler chamber 16 via a communication passage (not shown) formed in the compression section 5.
  • a compressed refrigerant discharge hole 18 is formed between the upper muffler cover 14 and the shaft 3, and the upper muffler chamber 16 communicates with the internal space 7 via the compressed refrigerant discharge hole 18.
  • the compression unit 5 compresses the refrigerant supplied from the suction pipe 11 as the shaft 3 rotates, and supplies the compressed refrigerant to the upper muffler chamber 16 and the lower muffler chamber 17.
  • the refrigerant has compatibility with the refrigerating machine oil.
  • the three-phase motor 6 is arranged above the compression section 5 in the internal space 7.
  • FIG. 2 is a plan view showing the three-phase motor 6 in the embodiment from the upper insulator side.
  • the three-phase motor 6 includes a rotor 21 and a stator 22.
  • the rotor 21 is formed in a cylindrical shape by laminating a plurality of silicon steel thin plates (magnetic bodies), and is integrated by a plurality of rivets 9.
  • the shaft 3 is inserted and fixed.
  • six slit-shaped magnet embedding holes 10 a are formed so as to form hexagonal sides around the shaft 3. I have.
  • the magnet embedding holes 10 a are formed at predetermined intervals in the circumferential direction of the rotor 21.
  • a plate-shaped permanent magnet 10b is embedded in the magnet embedding hole 10a.
  • the stator 22 is formed in a substantially cylindrical shape, is disposed so as to surround the rotor 21, and is fixed to the container 2.
  • the stator 22 includes a stator core 23, an upper insulator 24 and a lower insulator 25, and a plurality of windings 46.
  • the upper insulator 24 is fixed to an upper portion of the stator core 23.
  • the lower insulator 25 is fixed to a lower portion of the stator core 23.
  • the upper insulator 24 and the lower insulator 25 are examples of an insulating portion that insulates the stator core 23 and the winding 46.
  • FIG. 3 is a bottom view showing the stator core 23 in the embodiment.
  • the stator core 23 is formed, for example, by laminating a plurality of plates made of a soft magnetic material exemplified by a silicon steel plate, and as shown in FIG. 3, a yoke portion 31 and a plurality of stator core teeth portions 32-1 to 32-32. -9.
  • the yoke part 31 is formed in a substantially cylindrical shape.
  • the first stator core teeth portion 32-1 of the plurality of stator core teeth portions 32-1 to 32-9 is formed in a substantially columnar shape.
  • the first stator core teeth portion 32-1 has one end formed continuously with the inner peripheral surface of the yoke portion 31, that is, formed so as to protrude from the inner peripheral surface of the yoke portion 31.
  • the stator core teeth of the plurality of stator core teeth 32-1 to 32-9 that are different from the first stator core teeth 32-1 are formed in a substantially columnar shape similarly to the first stator core teeth 32-1. And protrudes from the inner peripheral surface of the yoke portion 31.
  • the plurality of stator core teeth 32-1 to 32-9 are further formed on the inner peripheral surface of the yoke 31 at regular intervals of 40 degrees.
  • FIG. 4 is a perspective view showing the lower insulator 25 in the embodiment.
  • the lower insulator 25 is formed of an insulator exemplified by polybutylene terephthalate resin (PBT).
  • PBT polybutylene terephthalate resin
  • the outer peripheral wall portion 41 is formed in a substantially cylindrical shape.
  • the outer peripheral wall 41 has a plurality of slits 44 formed therein.
  • the first insulator tooth portion 42-1 of the plurality of insulator tooth portions 42-1 to 42-9 is formed in a columnar shape having a substantially semicircular cross section.
  • the first insulator tooth portion 42-1 has one end formed continuously with the inner peripheral surface of the outer peripheral wall portion 41, that is, formed so as to protrude from the inner peripheral surface of the outer peripheral wall portion 41.
  • the insulator tooth portion different from the first insulator tooth portion 42-1 among the plurality of insulator tooth portions 42-1 to 42-9 is also formed in a columnar shape, and like the first insulator tooth portion 42-1. It is formed so as to protrude from the inner peripheral surface of the outer peripheral wall portion 41.
  • the plurality of insulator teeth portions 42-1 to 42-9 are formed on the inner peripheral surface of the outer peripheral wall portion 41 at regular intervals of 40 degrees.
  • the plurality of flanges 43-1 to 43-9 correspond to the plurality of insulator teeth 42-1 to 42-9, and are each formed in a substantially semicircular plate shape.
  • the first flange portion 43-1 corresponding to the first insulator tooth portion 42-1 of the plurality of flange portions 43-1 to 43-9 is formed continuously with the other end of the first insulator tooth portion 42-1. Have been.
  • the plurality of insulator teeth portions 42-1 to 42-9 of the plurality of flange portions 43-1 to 43-9 are different from the first flange portion 43-1. Is formed continuously with the other end of
  • the upper insulator 24 is formed similarly to the lower insulator 25. That is, the upper insulator 24 is formed of an insulator and has an outer peripheral wall portion 41, a plurality of insulator teeth portions 42-1 to 42-9, and a plurality of flange portions 43-1 to 43-9. doing.
  • FIG. 5 is a bottom view showing the stator 22 in the embodiment.
  • a plurality of windings 46 are wound around the plurality of stator core teeth 32-1 to 32-9 of the stator core 23, respectively.
  • Each of the stator core teeth 32-1 to 32-9 has a winding 45 formed by a winding 46.
  • the three-phase motor in the embodiment is a concentrated winding type motor having 6 poles and 9 slots (see FIG. 2).
  • the plurality of windings 46 include a plurality of U-phase windings 46-U1 to 46-U3, a plurality of V-phase windings 46-V1 to 46-V3, and a plurality of W-phase windings 46-W1 to 46-W3.
  • the U-phase winding has a plurality of windings. Specifically, a first U-phase winding 46-U1, a second U-phase winding 46-U2, and a third U-phase winding 46-U3 are provided as U-phase windings.
  • the first U-phase winding 46-U1 is wound around the fourth stator core teeth portion 32-4.
  • the second U-phase winding 46-U2 is wound around the seventh stator core teeth 32-7.
  • the third U-phase winding 46-U3 is wound around the first stator core teeth 32-1.
  • the V-phase winding has a plurality of windings.
  • a V-phase winding includes a first V-phase winding 46-V1, a second V-phase winding 46-V2, and a third V-phase winding 46-V3.
  • the first V-phase winding 46-V1 is wound around the eighth stator core teeth portion 32-8.
  • the second V-phase winding 46-V2 is wound around the second stator core teeth portion 32-2.
  • the third V-phase winding 46-V3 is wound around the fifth stator core teeth portion 32-5.
  • the W-phase winding has a plurality of windings. Specifically, as the W-phase winding, a first W-phase winding 46-W1, a second W-phase winding 46-W2, and a third W-phase winding 46-W3 are provided.
  • the first W-phase winding 46-W1 is wound around the sixth stator core teeth portion 32-6.
  • the second W-phase winding 46-W2 is wound around the ninth stator core teeth portion 32-9.
  • the third W-phase winding 46-W3 is wound around the third stator core teeth 32-3.
  • the first stator core teeth portion 32-1 is composed of a first insulator teeth portion 42-1 of the lower insulator 25, a first insulator teeth portion of the upper insulator 24, and an insulating film disposed between the insulators 24 and 25. (Not shown) and a third U-phase winding 46-U3 are wound. Therefore, the third U-phase winding 46-U3 is appropriately insulated from the first stator core teeth portion 32-1 by the upper insulator 24 and the lower insulator 25, and is appropriately insulated from the stator core 23. Further, the third U-phase winding 46-U3 is wound so as to be sandwiched between the first flange 43-1 of the lower insulator 25 and the outer peripheral wall 41, and the first flange of the upper insulator 24. And the outer peripheral wall portion. For this reason, the third U-phase winding 46-U3 is prevented from coming off from the first stator core teeth portion 32-1 toward the rotor 21 by the upper insulator 24 and the lower insulator 25;
  • the upper insulator 24 and the lower insulator 25 are appropriately insulated from the stator core 23 to prevent winding-over.
  • FIG. 6 is a developed view showing a plurality of windings 46 in the embodiment.
  • the first U-phase winding 46-U1 is wound counterclockwise around the fourth stator core teeth portion 32-4.
  • the second U-phase winding 46-U2 is wound clockwise around the seventh stator core teeth portion 32-7.
  • Third U-phase winding 46-U3 is wound counterclockwise around first stator core teeth 32-1.
  • the first V-phase winding 46-V1 is wound counterclockwise around the eighth stator core teeth portion 32-8.
  • Second V-phase winding 46-V2 is wound clockwise around second stator core teeth 32-2.
  • Third V-phase winding 46-V3 is wound counterclockwise around fifth stator core teeth 32-5.
  • the first W-phase winding 46-W1 is wound counterclockwise around the sixth stator core teeth portion 32-6.
  • the second W-phase winding 46-W2 is wound clockwise around the ninth stator core teeth portion 32-9.
  • the third W-phase winding 46-W3 is wound counterclockwise around the third stator core teeth 32-3.
  • the stator 22 includes a plurality of U-phase neutral lines 47-U1 to 47-U3, a plurality of V-phase neutral lines 47-V1 to 47-V3, and a plurality of W-phase neutral lines 47-W1 to 47-W3. And further comprising.
  • the plurality of U-phase neutrals 47-U1 to 47-U3, the plurality of V-phase neutrals 47-V1 to 47-V3, and the plurality of W-phase neutrals 47-W1 to 47-W3 are a plurality of stator core teeth.
  • the upper insulator 24 is located farther from the lower insulator 25 than the parts 32-1 to 32-9.
  • the lead side which is a power supply line is also arranged on the upper insulator 24 side, the upper insulator 24 side is also referred to as a lead side in this specification.
  • first U-phase neutral wire 47-U1 is electrically connected to the first U-phase winding 46-U1.
  • One end of first U-phase neutral wire 47-U1 is arranged on the first direction side (left side in FIG. 6) of fourth stator core teeth portion 32-4, and the other end is connected to fourth stator core teeth portion 32-4. 4 is disposed on the lead side farther from the insulator 25 below.
  • One end of the second U-phase neutral wire 47-U2 is electrically connected to the second U-phase winding 46-U2.
  • One end of second U-phase neutral wire 47-U2 is arranged on the first direction side of seventh stator core teeth portion 32-7, and the other end is arranged on the more lead side than seventh stator core teeth portion 32-7. Have been.
  • third U-phase neutral wire 47-U3 is electrically connected to third U-phase winding 46-U3.
  • the third U-phase neutral wire 47-U3 has one end disposed on the first direction side of the first stator core teeth portion 32-1 and the other end disposed on the lead side with respect to the first stator core teeth portion 32-1. Have been.
  • the plurality of V-phase neutral lines 47-V1 to 47-V3 include a first V-phase neutral line 47-V1, a second V-phase neutral line 47-V2, and a third V-phase neutral line 47-V3.
  • One end of first V-phase neutral wire 47-V1 is electrically connected to first V-phase winding 46-V1.
  • One end of the first V-phase neutral wire 47-V1 is arranged on the first direction side of the fifth stator core teeth portion 32-5, and the other end is arranged on the more lead side than the fifth stator core teeth portion 32-5.
  • One end of the second V-phase neutral wire 47-V2 is electrically connected to the second V-phase winding 46-V2.
  • One end of second V-phase neutral wire 47-V2 is arranged on the first direction side of second stator core teeth portion 32-2, and the other end is arranged on the more lead side than second stator core teeth portion 32-2. Have been.
  • One end of the third V-phase neutral wire 47-V3 is electrically connected to the third V-phase winding 46-V3.
  • One end of third V-phase neutral wire 47-V3 is arranged on the first direction side of fifth stator core teeth portion 32-5, and the other end is arranged on the more lead side than fifth stator core teeth portion 32-5. Have been.
  • the plurality of W-phase neutral lines 47-W1 to 47-W3 include a first W-phase neutral line 47-W1, a second W-phase neutral line 47-W2, and a third W-phase neutral line 47-W3.
  • One end of the first W-phase neutral wire 47-W1 is electrically connected to the first W-phase winding 46-W1.
  • One end of the first W-phase neutral wire 47-W1 is arranged on the first direction side of the sixth stator core teeth portion 32-6, and the other end is arranged on the more lead side than the sixth stator core teeth portion 32-6.
  • One end of the second W-phase neutral wire 47-W2 is electrically connected to the second W-phase winding 46-W2.
  • One end of the second W-phase neutral wire 47-W2 is arranged on the first direction side of the ninth stator core teeth portion 32-9, and the other end is arranged on the more lead side than the ninth stator core teeth portion 32-9. Have been.
  • One end of the third W-phase neutral wire 47-W3 is electrically connected to the third W-phase winding 46-W3.
  • the third W-phase neutral wire 47-W3 has one end located on the first direction side of the third stator core teeth portion 32-3 and the other end located on the lead side with respect to the third stator core teeth portion 32-3. Have been.
  • the stator 22 includes a plurality of U-phase power lines 48-U1 to 48-U3, a plurality of V-phase power lines 48-V1 to 48-V3, and a plurality of W-phase power lines 48-W1 to 48-W3. In addition.
  • each of the plurality of U-phase power supply lines 48-U1 to 48-U3 is disposed on the lead side of the first stator core tooth part 32-1 and one end thereof is located on the second direction side of the first stator core tooth part 32-1. (Right side in FIG. 6).
  • the other end of the first U-phase power line 48-U1 is electrically connected to the first U-phase winding 46-U1.
  • the other end of the second U-phase power supply line 48-U2 is electrically connected to the second U-phase winding 46-U2.
  • the other end of third U-phase power supply wire -U3 is electrically connected to third U-phase winding 46-U3.
  • the first U-phase power line 48-U1 further includes a first U-phase crossover portion 49-U1 partially passing through the plurality of slits 44 of the outer peripheral wall 41 of the lower insulator 25.
  • the first U-phase connecting wire portion 49-U1, which is a part of the first U-phase power line 48-U1 is arranged along the outer peripheral surface of the outer peripheral wall 41 of the lower insulator 25.
  • the second U-phase power line 48-U2 further includes a second U-phase crossover portion 49-U2, partly passing through the plurality of slits 44 of the outer peripheral wall portion 41 of the lower insulator 25.
  • a second U-phase crossover wire portion 49-U2, which is a part of the second U-phase power line 48-U2 is arranged along the outer peripheral surface of the outer peripheral wall 41 of the lower insulator 25.
  • each of the plurality of V-phase power supply lines 48-V1 to 48-V3 is disposed on the lead side of the fifth stator core tooth part 32-5, and one end thereof is located on the second direction side of the fifth stator core tooth part 32-5.
  • first V-phase power supply line -V1 is electrically connected to first V-phase winding 46-V1.
  • second V-phase power supply line -V2 is electrically connected to second V-phase winding 46-V2.
  • the other end of the third V-phase power supply line -V3 is electrically connected to the third V-phase winding 46-V3.
  • the first V-phase power supply line -V1 further includes a first V-phase crossover line portion 49-V1 partially passing through the plurality of slits 44 of the outer peripheral wall portion 41 of the lower insulator 25.
  • the first V-phase crossover portion 49-V1, which is a part of the first V-phase power supply line -V1 is arranged along the outer peripheral surface of the outer peripheral wall portion 41 of the lower insulator 25.
  • the second V-phase power supply line -V2 further passes through a plurality of slits 44 of the outer peripheral wall portion 41 of the lower insulator 25, and includes a second V-phase crossover portion 49-V2.
  • the second V-phase crossover portion 49-V2, which is a part of the second V-phase power supply line -V2, is arranged along the outer peripheral surface of the outer peripheral wall 41 of the lower insulator 25.
  • each of the plurality of W-phase power supply lines 48-W1 to 48-W3 is disposed on the lead side of the third stator core tooth part 32-3, and one end thereof is located on the second direction side of the third stator core tooth part 32-3.
  • first W-phase power supply line -W1 is electrically connected to first W-phase winding 46-W1.
  • second W-phase power supply wire -W2 is electrically connected to second W-phase winding 46-W2.
  • the other end of third W-phase power supply line -W3 is electrically connected to third W-phase winding 46-W3.
  • the first W-phase power supply line -W1 further includes a first W-phase crossover portion 49-W1 partially passing through the plurality of slits 44 of the outer peripheral wall portion 41 of the lower insulator 25.
  • a first W-phase crossover portion 49-W1 which is a part of the first W-phase power supply line -W1 is disposed along the outer peripheral surface of the outer peripheral wall portion 41 of the lower insulator 25.
  • the second W-phase power supply line -W2 further passes through a plurality of slits 44 of the outer peripheral wall portion 41 of the lower insulator 25, and includes a second W-phase crossover portion 49-W2.
  • a second W-phase crossover portion 49-W2, which is a part of the second W-phase power supply line -W2, is arranged along the outer peripheral surface of the outer peripheral wall 41 of the lower insulator 25.
  • FIG. 7 is a connection diagram showing a connection state of a plurality of windings 46 in the embodiment.
  • the three-phase motor in the embodiment is a motor having a star connection in which the windings 46 are connected in parallel.
  • the stator 22 further includes a plurality of neutral points as shown in FIG.
  • the plurality of neutral points are arranged on the lead side of the plurality of stator core teeth portions 32-1 to 32-9, and include a first neutral point 51-1, a second neutral point 51-2, and a third neutral point. It has a point 51-3.
  • the first neutral point 51-1, the second neutral point 51-2, and the third neutral point 51-3 are electrically insulated from each other.
  • first U-phase winding 46-U1 is electrically connected to first neutral point 51-1 via first U-phase neutral wire 47-U1, and the other end is first U-phase power supply line 48.
  • -It is electrically connected to the U-phase power supply via U1.
  • One end of the second U-phase winding 46-U2 is electrically connected to the second neutral point 51-2 via the second U-phase neutral 47-U2, and the other end is connected to the second U-phase power supply 48.
  • -It is electrically connected to the U-phase power supply via U2.
  • One end of the third U-phase winding 46-U3 is electrically connected to the third neutral point 51-3 via the third U-phase neutral 47-U3, and the other end is a third U-phase power supply 48.
  • -It is electrically connected to the U-phase power supply via U3.
  • One end of the first V-phase winding 46-V1 is electrically connected to the third neutral point 51-3 via the first V-phase neutral 47-V1, and the other end is the first V-phase power supply 48. It is electrically connected to a V-phase power supply via -V1.
  • One end of the second V-phase winding 46-V2 is electrically connected to the first neutral point 51-1 via the second V-phase neutral line 47-V2, and the other end is connected to the second V-phase power supply line 48. It is electrically connected to a V-phase power supply via -V2.
  • One end of the third V-phase winding 46-V3 is electrically connected to the second neutral point 51-2 via the third V-phase neutral line 47-V3, and the other end is connected to the third V-phase power supply line 48. It is electrically connected to a V-phase power supply via -V3.
  • first W-phase winding 46-W1 is electrically connected to second neutral point 51-2 via first W-phase neutral 47-W1, and the other end is first W-phase power supply 48.
  • -It is electrically connected to the W-phase power supply via W1.
  • One end of the second W-phase winding 46-W2 is electrically connected to the third neutral point 51-3 via the second W-phase neutral 47-W2, and the other end is connected to the second W-phase power supply 48.
  • -It is electrically connected to the W-phase power supply via W2.
  • One end of the third W-phase winding 46-W3 is electrically connected to the first neutral point 51-1 via the third W-phase neutral 47-W3, and the other end is connected to the third W-phase power supply 48.
  • -It is electrically connected to the W-phase power supply via W3.
  • the stator 22 is manufactured using a winding machine by appropriately arranging a U-phase electric wire, a V-phase electric wire, and a W-phase electric wire on a stator core 23 to which an upper insulator 24 and a lower insulator 25 are appropriately attached.
  • the electric wire is, for example, an enameled wire (an electric wire in which a copper wire is covered with an enamel coating).
  • the winding machine includes, for example, a U-phase electric wire nozzle, a V-phase electric wire nozzle, and a W-phase electric wire nozzle. The nozzle for the U-phase electric wire, the nozzle for the V-phase electric wire, and the nozzle for the W-phase electric wire are fixed to each other.
  • the U-phase electric wire By properly moving the nozzle for the U-phase electric wire, the U-phase electric wire can be arranged at a predetermined position with respect to the stator core 23. By appropriately moving the nozzle for the V-phase electric wire, the V-phase electric wire can be arranged at a predetermined position with respect to the stator core 23. By appropriately moving the nozzle for the W-phase electric wire, the W-phase electric wire can be arranged at a predetermined position with respect to the stator core 23.
  • the winding machine is not limited to the configuration of the present embodiment, and a machine having only one nozzle may be used.
  • the upper insulator 24, the lower insulator 25, and the stator core 23 to which an insulating film (not shown) is appropriately attached are set in the winding machine.
  • the winding machine arranges one end of the U-phase electric wire on the lead side of the first stator core teeth portion 32-1 and puts the U-phase electric wire into the first stator core teeth portion 32-1. 1 along the second direction, and passes through one of the plurality of slits 44.
  • the winding machine appropriately moves the nozzle for the U-phase electric wire so that the U-phase electric wire follows the outer peripheral surface of the outer peripheral wall portion 41 of the lower insulator 25, so that the first U-phase crossover portion 49 from the U-phase electric wire.
  • the winding machine further moves the U-phase electric wire nozzle appropriately to dispose the U-phase electric wire between one of the plurality of slits 44 and the fourth stator core teeth portion 32-4, so that the U-phase electric wire To form a first U-phase power supply line 48-U1.
  • the winding machine forms the first V-phase power line 48-V1 from the V-phase electric wire by moving the nozzle for the V-phase electric wire and the nozzle for the W-phase electric wire in synchronization with the nozzle for the U-phase electric wire.
  • a first W-phase power supply line 48-W1 is formed from the W-phase electric wires.
  • the winding machine appropriately moves the nozzle for the U-phase electric wire and winds the U-phase electric wire counterclockwise around the fourth stator core teeth portion 32-4, so that the first U-phase winding from the U-phase electric wire is wound.
  • Form 46-U1 At this time, the winding machine winds the V-phase electric wire counterclockwise around the eighth stator core teeth portion 32-8 by moving the nozzle for the V-phase electric wire in synchronization with the nozzle for the U-phase electric wire.
  • a first V-phase winding 46-V1 is formed from the wires.
  • the winding machine winds the W-phase electric wire around the sixth stator core teeth portion 32-6 in a counterclockwise direction by moving the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle.
  • a 1W phase winding 46-W1 is formed.
  • the winding machine moves the U-phase electric wire nozzle appropriately to move the U-phase electric wire from the first direction side of the fourth stator core tooth portion 32-4 to the lead side of the fourth stator core tooth portion 32-4.
  • a first U-phase neutral wire 47-U1 is formed from the U-phase electric wire.
  • the winding machine forms the first V-phase neutral wire 47-V1 from the V-phase electric wire by moving the V-phase electric wire nozzle and the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle.
  • a first W-phase neutral wire 47-W1 is formed from the W-phase electric wire.
  • the winding machine moves the U-phase electric wire nozzle appropriately to move the U-phase electric wire from the lead side of the seventh stator core teeth portion 32-7 to the first direction side of the seventh stator core teeth portion 32-7.
  • a second U-phase neutral wire 47-U2 is formed from the U-phase electric wire.
  • the winding machine forms the second V-phase neutral wire 47-V2 from the V-phase electric wire by moving the V-phase electric wire nozzle and the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle.
  • a second W-phase neutral wire 47-W2 is formed from the W-phase electric wire.
  • the winding machine appropriately moves the nozzle for the U-phase electric wire and winds the U-phase electric wire clockwise around the seventh stator core teeth portion 32-7 to thereby rotate the U-phase electric wire from the U-phase electric wire to the second U-phase winding 46.
  • the winding machine winds the V-phase electric wire around the second stator core teeth part 32-2 by moving the V-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle, and To form a second V-phase winding 46-V2.
  • the winding machine winds the W-phase electric wire around the ninth stator core teeth portion 32-9 by moving the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle, and moves the W-phase electric wire from the W-phase electric wire to the second W
  • the phase winding 46-W2 is formed.
  • the winding machine appropriately moves the nozzle for the U-phase electric wire so as to pass the U-phase electric wire through one of the plurality of slits 44 and along the outer peripheral surface of the outer peripheral wall portion 41, so that the U-phase electric wire becomes The 2U phase crossover portion 49-U2 is formed.
  • the winding machine further moves the U-phase electric wire nozzle appropriately and arranges the U-phase electric wire through one of the plurality of slits 44 on the lead side of the first stator core teeth portion 32-1 to thereby provide the U-phase electric wire.
  • the winding machine forms the second V-phase power line 48-V2 from the V-phase electric wire by moving the V-phase electric wire nozzle and the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle.
  • a second W-phase power line 48-W2 is formed from the W-phase electric wires.
  • the winding machine moves the U-phase electric wire nozzle appropriately to move the U-phase electric wire from the lead side of the first stator core teeth portion 32-1 to the second direction side of the first stator core teeth portion 32-1.
  • the winding machine forms the third V-phase power supply line 48-V3 from the V-phase electric wire by moving the V-phase electric wire nozzle and the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle.
  • a third W-phase power line 48-W3 is formed from the W-phase electric wires.
  • the first connection terminal 50-1 is connected to one end of the bundle of the plurality of U-phase power lines 48-U1 to 48-U3, and the plurality of V-phase power lines 48-V1 to 48-V3 are connected to one.
  • the second connection terminal 50-2 is connected to one end of the bundle, and the third connection terminal 50-3 is connected to one end of the plurality of W-phase power lines 48-W1 to 48-W3. (See FIG. 2).
  • the winding machine appropriately moves the nozzle for the U-phase electric wire and winds the U-phase electric wire around the first stator core teeth portion 32-1 in a counterclockwise direction.
  • Form 46-U3 At this time, the winding machine moves the V-phase electric wire nozzle around the fifth stator core teeth portion 32-5 in a counterclockwise direction by moving the V-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle.
  • a third V-phase winding 46-V3 is formed from the wires.
  • the winding machine winds the W-phase electric wire counterclockwise around the third stator core teeth 32-3 by moving the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle.
  • a 3W phase winding 46-W3 is formed.
  • the winding machine moves the U-phase electric wire nozzle appropriately to move the U-phase electric wire from the first direction side of the first stator core teeth portion 32-1 to the lead side of the first stator core teeth portion 32-1.
  • the winding machine forms the third V-phase neutral wire 47-V3 from the V-phase electric wire by moving the V-phase electric wire nozzle and the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle.
  • a third W-phase neutral wire 47-W3 is formed from the W-phase electric wire.
  • the third U-phase winding 46-U3 has both the winding start portion and the winding end portion disposed on the lead side as shown in FIGS.
  • the first U-phase winding 46-U1 and the second U-phase winding 46-U2 start to be wound from the non-lead side and end at the lead side. Therefore, the number of windings of the third U-phase winding 46-U3 is different from the number of windings of the first U-phase winding 46-U1, and the second U-phase winding 46-U2 is wound. The number of turns is different.
  • the first U-phase winding 46-U1 and the second U-phase winding 46-U2 have different lengths in which the U-phase power supply line connected to the U-phase power supply is routed.
  • the first U-phase winding 46-U1 to the third U-phase winding 46-U3 have different windings including the number of windings and the length of the power supply line.
  • the length of the electric wire from the neutral point 51-1 to the U-phase power supply wire is equal to each of the first U-phase winding 46-U1, the second U-phase winding 46-U2, and the third U-phase winding 46-U3.
  • the impedance is also different.
  • the first U-phase neutral line 47-U1 and the second U-phase neutral line 47-U2 are disconnected, the first V-phase neutral line 47-V1 and the second V-phase neutral line 47-V2 are disconnected, and the first W The phase neutral line 47-W1 and the second W-phase neutral line 47-W2 are cut off.
  • the end of the first U-phase neutral line 47-U1, the end of the second V-phase neutral line 47-V2, and the end of the third W-phase neutral line 47-W3 form a plurality of windings without peeling off the coating of the electric wire.
  • a connector that can be electrically connected
  • FIG. 8 is a perspective view showing a state before connection of the first splice terminal 52-1 and the electric wire in the embodiment.
  • the end of the first U-phase neutral line 47-U1, the end of the second V-phase neutral line 47-V2, and the end of the third W-phase neutral line 47-W3 connect to the first splice terminal 52-1.
  • the first neutral point 51-1 is formed by being joined to each other by crimping and electrically connected to each other.
  • the three electric wires neutral wires
  • the first splice terminal 52-1 as a connection member can be electrically connected to each other by bonding three wires by crimping so as to wrap the bundled wires.
  • the electric wire group is crimped by the first splice terminal 52-1, the coating film of each electric wire is peeled off by the uneven portion of the first splice terminal 52-1 and the three electric wires are joined.
  • the number of electric wires bundled by the connecting member is not limited to three. That is, the number of wires to be bundled is not limited as long as the wires can be joined to each other by crimping and electrically connected to each other.
  • the end of the second U-phase neutral line 47-U2, the end of the third V-phase neutral line 47-V3, and the end of the first W-phase neutral line 47-W1 are connected via the second splice terminal 52-2.
  • the second neutral point 51-2 is formed by being joined to each other by crimping and electrically connected to each other.
  • the end of the third U-phase neutral line 47-U3, the end of the first V-phase neutral line 47-V1, and the end of the second W-phase neutral line 47-W2 are crimped to each other by the third splice terminal 52-3.
  • the first neutral point 51-1, the second neutral point 51-2, and the third neutral point 51-3 can be easily formed.
  • the compressor 1 is provided as a component of a refrigeration cycle device (not shown), and is used to compress the refrigerant and circulate the refrigerant through a refrigerant circuit of the refrigeration cycle device.
  • the three-phase motor 6 includes three U-phase power lines 48-U1 to 48-U3, a plurality of V-phase power lines 48-V1 to 48-V3, and a plurality of W-phase power lines 48-W1 to 48-W3.
  • a voltage is applied, a rotating magnetic field is generated.
  • the rotor 21 is rotated by the rotating magnetic field generated by the stator 22.
  • the three-phase motor 6 rotates the shaft 3 by rotating the rotor 21.
  • the compression unit 5 sucks the low-pressure refrigerant gas through the suction pipe 11 as the shaft 3 rotates, generates a high-pressure refrigerant gas by compressing the sucked low-pressure refrigerant gas, and raises the high-pressure refrigerant gas. It is supplied to the muffler room 16 and the lower muffler room 17.
  • the lower muffler cover 15 reduces the pressure pulsation of the high-pressure refrigerant gas supplied to the lower muffler chamber 17 and supplies the high-pressure refrigerant gas with reduced pressure pulsation to the upper muffler chamber 16.
  • the upper muffler cover 14 reduces the pressure pulsation of the high-pressure refrigerant gas supplied to the upper muffler chamber 16, and transmits the high-pressure refrigerant gas having the reduced pressure pulsation to the compression unit 5 and the three-phase motor 6 of the internal space 7. Is supplied through the compressed refrigerant discharge hole 18 to the space between the two.
  • the high-pressure refrigerant gas supplied to the space between the compression unit 5 and the three-phase motor 6 in the internal space 7 passes through a gap formed in the three-phase motor 6, and It is supplied to a space above the three-phase motor 6.
  • the refrigerant supplied to the space above the three-phase motor 6 in the internal space 7 is discharged through the discharge pipe 12 to a device of the refrigeration cycle device disposed downstream of the compressor 1.
  • the nine neutral lines 47 are formed by three first fixing portions 56 fixed to the stator 22 at a position closer to the winding portion 45 than the respective neutral points 51, and from each of the first fixing portions 56 to each neutral point And a second fixing portion 57 in which three sets of neutral lines 47 connected at each of the three neutral points 51 up to 51 are bundled.
  • Each neutral point 51 side of the neutral wire 47 bundled by the second fixing portion 57 is covered with an insulating tube 58 as an insulating member, and the second fixing portion 57 is covered in the circumferential direction of the stator 22 ( It is inserted into the gap G between the winding portions 45 adjacent to each other (in the rotation direction of the rotor 21) (see FIG. 2).
  • FIG. 9 is a flowchart for explaining a manufacturing process of the stator 22 in the embodiment.
  • step S1 by performing winding processing on the stator 22 as described above (step S1), each winding 46 is formed, and each electric wire supplied from each electric wire nozzle side is cut.
  • Step S2 One end (neutral wire 47) of each winding 46 is cut off from each wire nozzle side.
  • the neutral wires 47 of the windings 46 are set as one set each, and the three neutral wires 47 are set to the upper insulator 24. And the three neutral wires 47 are fixed to each other at one place in the circumferential direction of the upper insulator 24 (in this embodiment, when the three neutral wires 47 are bundled together).
  • the three neutral wires 47 are fixed to each other by the portion corresponding to the root of each neutral wire 47 being twisted (step S3), and the three neutral wires 47 are fixed to the stator 22.
  • step S ⁇ b> 3 three sets of the neutral wires 47 are formed as one set of the three neutral wires 47 with respect to the nine neutral wires 47 respectively extended from the nine winding portions 45, thereby forming three sets of the neutral wires 47.
  • Each of the neutral wires 47 is fixed by each of the three first fixing portions 56. Details of the step of forming the first fixing portion 56 will be described later.
  • step S4 the three sets of neutral wires 47 extended from the first fixing portions 56 are cut at a predetermined length (step S4), so that the first fixing portions 56 of the three sets of neutral wires 47 are cut. From the same length.
  • each of the three neutral wires 47 is joined by crimping via each of the splice terminals 52 (52-1 to 52-3) (Step S5), thereby forming each of the three neutral points 51. I do.
  • the three sets of neutral wires 47 are bundled and the three sets of neutral wires 47 are fixed together (in this embodiment, the three sets of neutral wires 47 are twisted together in a bundled state).
  • step S6 the second fixing portion 57 in which the three sets of neutral wires 47 are bundled is formed. The details of the step of forming the second fixing portion 57 will be described later.
  • step S7 the neutral wires 47 bundled together are inserted into the insulating tube 58 (step S7), so that the insulation of the entire neutral wires 47 extended from each winding portion 45 is ensured. You. Finally, the splice terminals 52 (neutral points 51) of the neutral wire 47 covered with the insulating tube 58 are housed in the gaps G between the adjacent winding portions 45 (step S8).
  • FIG. 10A is a plan view showing a state where nine neutral wires 47 are drawn out in the embodiment.
  • FIG. 10B is a plan view illustrating a state in which the first fixing portion 56 is formed by three neutral wires 47 out of the nine neutral wires 47 in the example.
  • FIG. 10C is a plan view illustrating a state in which the first fixing portion 56 is formed by three neutral wires 47 of the remaining six neutral wires 47 in the example.
  • FIG. 10D is a plan view illustrating a state where the first fixing portion 56 is formed by the remaining three neutral wires 47 in the example.
  • FIGS. 10A to 10D are top views of the stator 22 viewed from the upper insulator 24 side, and the winding portions 45 as nine slots are numbered 1 to 9 in a counterclockwise order.
  • FIG. 10A three U-phase neutral lines 47-U1 to 47-U3, three V-phase neutral lines 47-V1 to 47-V3, and three W-phase neutral lines 47-U-47.
  • Nine neutral wires 47 of W1 to 47-W3 are drawn out from the respective winding portions 45 of the stator 22.
  • a V-phase neutral wire 47-V2 drawn from each of the winding portions 45 of Nos. 2, 3, and 4 in the drawing.
  • W-phase neutral line 47-W3 and U-phase neutral line 47-U1 are extended along the outer peripheral surface of the upper insulator 24 and twisted with each other in the vicinity of the winding portion 45 of No. 7, for example.
  • a first fixing portion 56 having a root fixed to the neutral wire 47 is formed.
  • the V-phase neutral line 47-V2 is extended clockwise, and the W-phase neutral line 47-W3 and the U-phase neutral line 47-U1 are rotated counterclockwise. And the three neutral wires 47 are twisted with each other.
  • the neutral wire 47 extending toward one side in the circumferential direction of the upper insulator 24 and the neutral wire 47 extending toward the other side in the circumferential direction of the upper insulator 24 47 are twisted and fixed to each other.
  • the amount of twisting of the three neutral wires 47 is preferably, for example, about three rotations, and is such that the three neutral wires 47 are temporarily fixed (temporarily fixed) in the circumferential direction of the upper insulator 24. This makes the fixing work easy.
  • the neutral wires 47 extending to one side and the other side in the circumferential direction of the insulator 24 are formed so as to be mutually pulled with the insulator 24 interposed therebetween.
  • the neutral wire 47 extending clockwise and the neutral wire 47 extending counterclockwise are not limited to the above-described combination.
  • the upper insulator It may be changed as appropriate in accordance with the position where the first fixing portion 56 is formed in the circumferential direction of the 24.
  • each of the winding portions Nos. 5, 6, and 7 in the drawing The V-phase neutral line 47-V3, the W-phase neutral line 47-W1 and the U-phase neutral line 47-U2 drawn out from 45 are extended along the outer peripheral surface of the upper insulator 24, and a winding portion of No. 7 By twisting each other near 45, a first fixing portion 56 to which three neutral wires 47 are fixed is formed.
  • the V-phase neutral line 47-V3 is extended clockwise, and the W-phase neutral line 47-W1 and the U-phase neutral line 47-U2 are counterclockwise. And three neutral wires 47 are twisted with each other.
  • each of the winding portions No. 8, No. 9 and No. 1 in the drawing The V-phase neutral line 47-V1, the W-phase neutral line 47-W2, and the U-phase neutral line 47-U3 drawn from 45 are extended along the outer peripheral surface of the upper insulator 24, and a winding portion of No. 7 By twisting each other near 45, a first fixing portion 56 to which three neutral wires 47 are fixed is formed.
  • the V-phase neutral line 47-V1 and the W-phase neutral line 47-W2 are extended clockwise, and the U-phase neutral line 47-U3 is rotated counterclockwise. And three neutral wires 47 are twisted with each other.
  • three neutral wires 47 are drawn out of the three first fixing portions 56 with three neutral wires 47 as one set.
  • the three first fixing portions 56 are arranged close to each other in the circumferential direction of the stator 22, and can easily perform the operation of twisting three sets of neutral wires 47 described later. Note that the configuration is not limited to the configuration in which the three neutral wires 47 are routed as one set as described above, and at least two neutral wires 47 are opposite to each other (clockwise and counterclockwise) depending on the structure of the motor. ).
  • the nine neutral wires 47 can be fixed to the upper insulator 24.
  • the neutral line 47 extends along the outer peripheral surface of the insulator 24. The movement of the sex line 47 can be suppressed.
  • the stator 22 has the first fixing portion 56, the roots of the three neutral wires 47 connected at the neutral point 51 are fixed, so that one set of three neutral wires 47 is formed. As a result, it is possible to easily perform the work of connecting at the neutral point 51.
  • FIG. 11A is a side view showing a state in which the lengths of three sets of neutral wires 47 are aligned in the embodiment.
  • FIG. 11B is a side view showing a state in which three sets of neutral wires 47 are joined by crimping in the example.
  • three sets of neutral wires 47 extended from each of the three first fixing portions 56 have the same length from the first fixing portions 56 by cutting one end.
  • the lengths of the neutral wires 47 can be easily made uniform.
  • bonding is performed by crimping via a splice terminal 52 for each of the three neutral wires 47.
  • FIG. 11C is a side view showing a state in which three sets of neutral wires 47 are combined into one bundle in the example.
  • FIG. 11D is a side view showing a state in which the neutral wires 47 bundled together are covered with the insulating tube 58 in the embodiment.
  • the second fixing portion 57 integrated into one bundle is formed.
  • the tension acting on the neutral wire 47 routed along the outer peripheral wall portion 41 of the upper insulator 24 is further increased, and the stator 22 during the operation of the compressor 1 is increased. The movement of the neutral wire 47 due to vibration is suppressed.
  • three sets of neutral wires 47 are bundled together and twisted up to the splice terminal 52 (neutral point 51) to form the second fixing portion 57.
  • the structure is not limited to the structure, and only a part of the three sets of neutral wires 47 combined into one bundle may be twisted to form the second fixing portion 57.
  • the second fixing portion 57 and the splice terminal 52 in which the three sets of neutral wires 47 are gathered are covered with the insulating tube 58, so that the neutral point 51 is shifted from the first fixing portion 56. Insulated over Since the three sets of neutral wires 47 are combined into one bundle by the second fixing portion 57, the three sets of neutral wires 47 can be collectively insulated by one insulating tube 58 without individually insulating the three sets of neutral wires 47. This makes it possible to suppress an increase in manufacturing cost.
  • the second fixing portion 57 covered with the insulating tube 58 passes through the slit 44 as a notch from the outer peripheral side of the upper insulator 24 and passes through a gap G between the adjacent winding portions 45. Has been inserted.
  • the second fixed portion 57 is inserted into the gap G between the winding portions 45 on the outer circumferential side of the stator 22 in the radial direction, and interference with the rotor 21 is suppressed. Further, the second fixing portion 57 is inserted along the central axis direction of the stator 22, that is, along the vertical direction of the compressor 1.
  • the neutral point 51 side of the insulating tube 58 is formed in a flat band shape, and the flat insulating tube 58 is inserted along the center axis direction of the stator 22 so that refrigerant or refrigeration passing through the gap G is formed.
  • the flow resistance of the machine oil is suppressed.
  • the flow rate of the refrigerating machine oil passing through the gap G is suppressed from increasing, and the amount of the refrigerating machine oil discharged to the outside of the compressor 1 can be suppressed.
  • the plurality of neutral wires 47 are fixed to each other at a position closer to the winding part 45 than the plurality of neutral points 51.
  • the neutral wires 47 can be twisted in a state where the neutral wires 47 are regulated by the first fixing portion 56.
  • the operation of twisting the nine neutral wires 47 becomes easier, and The second fixing portion 57 in which the sex wires 47 are bundled can be easily formed.
  • the plurality of first fixing portions 56 in the three-phase motor 6 of the embodiment are configured such that the neutral wires 47 extending along the circumferential direction of the stator 22 are twisted, so that the neutral wires 47 are It is twisted and fixed. This makes it possible to easily temporarily fix the plurality of neutral wires 47 to the stator 22.
  • the plurality of first fixing portions 56 in the three-phase motor 6 of the embodiment are arranged close to each other in the circumferential direction of the stator 22. This makes it easy to twist a plurality of sets of neutral wires 47 extended from the first fixing portion 56 into a single bundle, so that the second fixing portion 57 can be easily formed. Further, it is possible to easily align the lengths of the neutral lines 47 from the first fixing portion 56 to the neutral point 51 and cut the neutral lines 47.
  • the neutral wire 47 extending toward one side in the circumferential direction of the upper insulator 24 and the other side in the circumferential direction of the upper insulator 24 are provided.
  • Neutral wire 47 extending toward is twisted and fixed to each other. Thereby, neutral wire 47 can be easily fixed to upper insulator 24.
  • a plurality of sets of neutral wires 47 connected at each of the plurality of neutral points 51 are twisted in a bundle. This makes it possible to easily form the second fixing portion 57 in which the plurality of neutral wires 47 are bundled.
  • the second fixing portion 57 of the three-phase motor 6 is covered with the insulating tube 58 and inserted into the gap G between the adjacent winding portions 45. Accordingly, the movement of the second fixing portion 57 during use of the three-phase motor 6 is suppressed, and the second fixing portion 57 can be stably held by the gap G of the stator 22. Further, since the second fixing portion 57 is covered with the insulating tube 58, it is possible to collectively insulate the plural sets of neutral wires 47 as compared with the structure in which the plural sets of neutral wires 47 are individually insulated. Therefore, an increase in the manufacturing cost of the three-phase motor 6 can be suppressed.
  • the second fixed portion 57 of the three-phase motor 6 of the embodiment is inserted on the outer peripheral side of the gap G in the radial direction of the stator 22. Thus, interference between the second fixed portion 57 inserted into the gap G and the rotor 21 can be avoided.
  • the second fixing portion 57 of the three-phase motor 6 of the embodiment is inserted into the gap G between the adjacent winding portions 45 from the outer peripheral side of the upper insulator 24 through the slit 44.
  • the second fixing portion 57 drawn from the first fixing portion 56 is supported by the slit 44, so that the second fixing portion 57 is prevented from moving with respect to the upper insulator 24, and is inserted into the gap G.
  • the stability of the mounted state of the second fixing portion 57 can be further enhanced.
  • the three-phase motor is applied to the rotary compressor, but is not limited to the rotary compressor, and may be applied to a scroll compressor.
  • the first fixing portion 56 is formed by twisting a plurality of neutral wires 47
  • the second fixing portion 57 is formed by twisting a plurality of sets of neutral wires 47.
  • the present invention is not limited thereto, and the first fixing portion 56 and the second fixing portion 57 may be formed by a fixing member such as a binding device.
  • the winding procedure of the winding 46 is not limited to the present embodiment. For example, the winding may be performed such that one winding is wound for each tooth.

Abstract

A motor, provided with a rotor and a stator for generating a magnetic field for causing the rotor to rotate. The stator has: a plurality of teeth; a plurality of winding wires having a winding part wound around each of the plurality of teeth, a neutral wire provided on one side of the winding part, and a power supply wire provided on the other side of the winding part; and a plurality of neutral points at which the plurality of neutral wires are electrically connected by a connection terminal. The plurality of neutral wires have a plurality of first fixed parts fixed to each other at positions on the winding part side of the plurality of neutral points, and a second fixed part at which the plurality of neutral wires are fixed to each other between the plurality of first fixed parts and the plurality of neutral points.

Description

モータ及び圧縮機Motor and compressor
 本発明は、モータ及び圧縮機に関する。 The present invention relates to a motor and a compressor.
 例えば、圧縮機は、冷媒を圧縮する圧縮部を駆動するためのモータを備えている。モータは、永久磁石が設けられたロータと、回転磁界を生成することによりロータを回転させるステータと、を備え、ロータに固定されたシャフトを介して圧縮部に回転動力を伝達する。ステータは、複数のティースを有しており、複数のティースの各々に、電線が巻き付けられることにより巻き線が形成される。巻き線において、各ティースに巻回された複数の巻回部の各々は、スター結線(星形結線)されており、各ティースに巻かれた巻回部の一端が電源に接続され、巻回部の他端(中性線と称する。)が中性点に接続されている。 For example, the compressor includes a motor for driving a compression unit that compresses the refrigerant. The motor includes a rotor provided with a permanent magnet and a stator that rotates the rotor by generating a rotating magnetic field, and transmits rotational power to a compression unit via a shaft fixed to the rotor. The stator has a plurality of teeth, and a winding is formed by winding an electric wire around each of the plurality of teeth. In the winding, each of the plurality of winding portions wound around each tooth is star-connected (star-shaped connection), and one end of the winding portion wound around each tooth is connected to a power source, and the winding is performed. The other end (referred to as a neutral line) of the section is connected to a neutral point.
特開2010-166643号公報JP 2010-166643 A
 例えば、9スロット型の3相モータの場合、各中性線を中性点で接続するために、9本の中性線を一束にまとめて半田付けによって接合されるものがある。半田付けを行う場合、電線の絶縁膜を剥離することが必要となり、モータの組み立ての作業性が低い。このため、半田付けによる接合に代えて、カシメ機を用いて接続端子を介して中性線を圧着により接合することが提案されている。 For example, in the case of a nine-slot type three-phase motor, in order to connect each neutral wire at a neutral point, there is a type in which nine neutral wires are bundled together and soldered. When soldering, it is necessary to peel off the insulating film of the electric wire, and the workability of assembling the motor is low. For this reason, it has been proposed to bond a neutral wire by crimping via a connection terminal using a caulking machine instead of bonding by soldering.
 中性線を圧着によって接合する場合、4本以上の中性線を束ねた場合、各中性線を適正に接合することが困難になり、中性線を3本ずつに圧着することが望ましい。このため、9本の中性線を中性点で接続する場合には、3本の中性線を1組として、3組の中性線の束がそれぞれ生じることになる。したがって、モータの組み立て工程では、所定の3本の中性線ごとに組み合せで結線すると共に3組の中性線を取り扱うことになるので、9本の中性線の取り扱いが煩雑になり、組み立ての作業性を低下させ、モータの結線バラツキを招く問題がある。 When the neutral wires are joined by crimping, when four or more neutral wires are bundled, it becomes difficult to properly join each neutral wire, and it is desirable to crimp the neutral wires into three pieces each. . Therefore, when nine neutral lines are connected at a neutral point, three neutral lines are considered as one set, and a bundle of three neutral lines is generated. Therefore, in the motor assembling process, three neutral wires are connected in combination for each of three predetermined neutral wires, and three sets of neutral wires are handled. Therefore, handling of nine neutral wires becomes complicated, and assembling is performed. The workability of the motor is reduced, and the connection of the motor varies.
 開示の技術は、上記に鑑みてなされたものであって、モータの組み立ての作業性を高めることができるモータ及び圧縮機を提供することを目的とする。 技術 The disclosed technology has been made in view of the above, and has as its object to provide a motor and a compressor capable of improving workability in assembling a motor.
 本願の開示するモータの一態様は、ロータと、ロータを回転させる磁界を生成するステータと、を備え、ステータは、複数のティースと、複数のティースの各々に巻回された巻回部と、巻回部の一端側に設けられた中性線と、巻回部の他端側に設けられた電源線と、を有する複数の巻き線と、複数の中性線が接続部材を介して電気的に接続された複数の中性点と、を有し、複数の中性線は、複数の中性点よりも巻回部側の位置で互いに固定された複数の第1固定部と、複数の第1固定部から複数の中性点までの間で複数の中性線が互いに固定された第2固定部と、を有する。 One mode of the motor disclosed in the present application includes a rotor and a stator that generates a magnetic field for rotating the rotor, the stator includes a plurality of teeth, and a winding portion wound around each of the plurality of teeth, A plurality of windings having a neutral wire provided on one end side of the winding portion and a power supply wire provided on the other end side of the winding portion, and a plurality of neutral wires are electrically connected via a connection member. A plurality of neutral points, the plurality of neutral lines being connected to each other at a position closer to the winding part than the plurality of neutral points; And a second fixing portion in which a plurality of neutral lines are fixed to each other from the first fixing portion to the plurality of neutral points.
 本願の開示するモータの一態様によれば、モータの組み立ての作業性を高めることができる。 According to one aspect of the motor disclosed in the present application, the workability of assembling the motor can be improved.
図1は、実施例の3相モータを備える圧縮機を示す縦断面図である。FIG. 1 is a longitudinal sectional view illustrating a compressor including a three-phase motor according to an embodiment. 図2は、実施例の3相モータを上インシュレータ側から示す平面図である。FIG. 2 is a plan view showing the three-phase motor of the embodiment from the upper insulator side. 図3は、実施例におけるステータコアを示す下面図である。FIG. 3 is a bottom view showing the stator core in the embodiment. 図4は、実施例における下インシュレータを示す斜視図である。FIG. 4 is a perspective view showing the lower insulator in the embodiment. 図5は、実施例におけるステータを示す下面図である。FIG. 5 is a bottom view showing the stator according to the embodiment. 図6は、実施例における複数の巻き線を示す展開図である。FIG. 6 is a developed view showing a plurality of windings in the embodiment. 図7は、実施例における複数の巻き線の結線状態を示す結線図である。FIG. 7 is a connection diagram illustrating a connection state of a plurality of windings in the example. 図8は、実施例における第1スプライス端子と電線の接続前の状態を示す斜視図である。FIG. 8 is a perspective view illustrating a state before connection of the first splice terminal and the electric wire in the example. 図9は、実施例におけるステータの製造工程を説明するためのフローチャートである。FIG. 9 is a flowchart for explaining a stator manufacturing process in the embodiment. 図10Aは、実施例において、9本の中性線が引き出された状態を示す平面図である。FIG. 10A is a plan view showing a state where nine neutral wires are drawn out in the embodiment. 図10Bは、実施例において、9本の中性線のうちの3本の中性線によって第1固定部を形成する状態を示す平面図である。FIG. 10B is a plan view illustrating a state in which the first fixing portion is formed by three neutral wires out of nine neutral wires in the example. 図10Cは、実施例において、残りの6本の中性線のうちの3本の中性線によって第1固定部を形成する状態を示す平面図である。FIG. 10C is a plan view illustrating a state in which the first fixing portion is formed by three neutral lines of the remaining six neutral lines in the example. 図10Dは、実施例において、残りの3本の中性線によって第1固定部を形成する状態を示す平面図である。FIG. 10D is a plan view illustrating a state in which the first fixing portion is formed by the remaining three neutral wires in the example. 図11Aは、実施例において、3組の中性線の長さを揃えた状態を示す側面図である。FIG. 11A is a side view showing a state in which three sets of neutral wires have the same length in the embodiment. 図11Bは、実施例において、3組の中性線の各々を圧着により接合した状態を示す側面図である。FIG. 11B is a side view showing a state in which three sets of neutral wires are joined by crimping in the example. 図11Cは、実施例において、3組の中性線を一束にまとめた状態を示す側面図である。FIG. 11C is a side view showing a state where three sets of neutral wires are bundled into one bundle in the example. 図11Dは、実施例において、一束にまとめられた中性線が絶縁チューブで覆われた状態を示す側面図である。FIG. 11D is a side view showing a state where the neutral wires bundled together are covered with an insulating tube in the example.
 以下に、本願の開示するモータの実施例を図面に基づいて詳細に説明する。なお、以下の実施例によって、本願の開示するモータが限定されるものではない。 Hereinafter, embodiments of the motor disclosed in the present application will be described in detail with reference to the drawings. Note that the motor disclosed in the present application is not limited by the following embodiments.
 図1は、実施例の3相モータを備える圧縮機を示す縦断面図である。図1に示すように、圧縮機1は、いわゆるロータリ圧縮機であり、容器2と、シャフト3と、圧縮部5と、3相モータ6と、を備えている。容器2は、密閉された内部空間7を形成している。内部空間7は、概ね円柱状に形成されている。容器2は、水平面上に縦置きされたときに、内部空間7をなす円柱の中心軸が鉛直方向に平行になるように形成されている。容器2には、内部空間7の下部に油溜め8が形成されている。油溜め8には、圧縮部5を潤滑させる潤滑油である冷凍機油が貯留される。容器2には、冷媒を吸入するための吸入管11と、圧縮された冷媒を吐出する吐出管12と、が接続されている。回転軸としてのシャフト3は、棒状に形成されており、一端が油溜め8に配置されるように、容器2の内部空間7に配置されている。シャフト3は、内部空間7をなす円柱の中心軸を中心に回転可能に容器2に支持されている。シャフト3は、回転することにより、油溜め8に貯留された冷凍機油を圧縮部5に供給する。 FIG. 1 is a longitudinal sectional view showing a compressor including the three-phase motor of the embodiment. As shown in FIG. 1, the compressor 1 is a so-called rotary compressor, and includes a container 2, a shaft 3, a compression unit 5, and a three-phase motor 6. The container 2 forms a closed internal space 7. The internal space 7 is formed in a substantially cylindrical shape. The container 2 is formed such that the central axis of a cylinder forming the internal space 7 is parallel to the vertical direction when the container 2 is placed vertically on a horizontal plane. An oil reservoir 8 is formed in the lower part of the internal space 7 in the container 2. Refrigeration oil, which is a lubricating oil for lubricating the compression unit 5, is stored in the oil reservoir 8. A suction pipe 11 for sucking the refrigerant and a discharge pipe 12 for discharging the compressed refrigerant are connected to the container 2. The shaft 3 as a rotation shaft is formed in a rod shape, and is disposed in the internal space 7 of the container 2 such that one end is disposed in the oil reservoir 8. The shaft 3 is supported by the container 2 so as to be rotatable about a central axis of a column forming the internal space 7. The shaft 3 supplies the refrigerating machine oil stored in the oil sump 8 to the compression unit 5 by rotating.
 圧縮部5は、内部空間7の下部に配置され、油溜め8の上方に配置されている。圧縮機1は、さらに、上マフラーカバー14と、下マフラーカバー15と、を備えている。上マフラーカバー14は、内部空間7のうちの圧縮部5の上部に配置されている。上マフラーカバー14は、内部に上マフラー室16を形成している。下マフラーカバー15は、内部空間7における圧縮部5の下部に設けられており、油溜め8の上部に配置されている。下マフラーカバー15は、内部に下マフラー室17を形成している。下マフラー室17は、圧縮部5に形成されている連通路(図示せず)を介して上マフラー室16に連通している。上マフラーカバー14とシャフト3との間には、圧縮冷媒吐出孔18が形成され、上マフラー室16は、圧縮冷媒吐出孔18を介して内部空間7に連通している。 The compression unit 5 is disposed below the internal space 7 and above the oil reservoir 8. The compressor 1 further includes an upper muffler cover 14 and a lower muffler cover 15. The upper muffler cover 14 is disposed above the compression section 5 in the internal space 7. The upper muffler cover 14 has an upper muffler chamber 16 formed therein. The lower muffler cover 15 is provided below the compression section 5 in the internal space 7 and is located above the oil reservoir 8. The lower muffler cover 15 has a lower muffler chamber 17 formed therein. The lower muffler chamber 17 communicates with the upper muffler chamber 16 via a communication passage (not shown) formed in the compression section 5. A compressed refrigerant discharge hole 18 is formed between the upper muffler cover 14 and the shaft 3, and the upper muffler chamber 16 communicates with the internal space 7 via the compressed refrigerant discharge hole 18.
 圧縮部5は、シャフト3が回転することにより吸入管11から供給される冷媒を圧縮し、その圧縮された冷媒を上マフラー室16と下マフラー室17とに供給する。その冷媒は、冷凍機油と相溶性を有している。3相モータ6は、内部空間7のうちの圧縮部5の上部に配置されている。 The compression unit 5 compresses the refrigerant supplied from the suction pipe 11 as the shaft 3 rotates, and supplies the compressed refrigerant to the upper muffler chamber 16 and the lower muffler chamber 17. The refrigerant has compatibility with the refrigerating machine oil. The three-phase motor 6 is arranged above the compression section 5 in the internal space 7.
 図2は、実施例における3相モータ6を上インシュレータ側から示す平面図である。図1及び図2に示すように、3相モータ6は、ロータ21と、ステータ22と、を備えている。ロータ21は、珪素鋼の薄板(磁性体)を複数積層して円柱状に形成されており、複数のリベット9により一体化されている。ロータ21の中心には、シャフト3が挿通され固定されているロータ21には、6個のスリット状の磁石埋め込み孔10aが、シャフト3を中心として6角形の各辺をなすように形成されている。各磁石埋め込み孔10aは、ロータ21の周方向に所定間隔をあけて形成されている。磁石埋め込み孔10aには、板状の永久磁石10bが埋め込まれている。 FIG. 2 is a plan view showing the three-phase motor 6 in the embodiment from the upper insulator side. As shown in FIGS. 1 and 2, the three-phase motor 6 includes a rotor 21 and a stator 22. The rotor 21 is formed in a cylindrical shape by laminating a plurality of silicon steel thin plates (magnetic bodies), and is integrated by a plurality of rivets 9. At the center of the rotor 21, the shaft 3 is inserted and fixed. At the rotor 21, six slit-shaped magnet embedding holes 10 a are formed so as to form hexagonal sides around the shaft 3. I have. The magnet embedding holes 10 a are formed at predetermined intervals in the circumferential direction of the rotor 21. A plate-shaped permanent magnet 10b is embedded in the magnet embedding hole 10a.
 ステータ22は、概ね円筒形に形成されており、ロータ21を囲むように配置されて、容器2に固定されている。ステータ22は、ステータコア23と、上インシュレータ24及び下インシュレータ25と、複数の巻き線46と、を備えている。上インシュレータ24は、ステータコア23の上部に固定されている。下インシュレータ25は、ステータコア23の下部に固定されている。上インシュレータ24及び下インシュレータ25は、ステータコア23と巻き線46とを絶縁する絶縁部の一例である。 The stator 22 is formed in a substantially cylindrical shape, is disposed so as to surround the rotor 21, and is fixed to the container 2. The stator 22 includes a stator core 23, an upper insulator 24 and a lower insulator 25, and a plurality of windings 46. The upper insulator 24 is fixed to an upper portion of the stator core 23. The lower insulator 25 is fixed to a lower portion of the stator core 23. The upper insulator 24 and the lower insulator 25 are examples of an insulating portion that insulates the stator core 23 and the winding 46.
 図3は、実施例におけるステータコア23を示す下面図である。ステータコア23は、例えば、ケイ素鋼板に例示される軟磁性体で形成された複数の板が積層されて形成され、図3に示すように、ヨーク部31と複数のステータコアティース部32-1~32-9とを備えている。ヨーク部31は、概ね円筒形に形成されている。複数のステータコアティース部32-1~32-9のうちの第1ステータコアティース部32-1は、概ね柱体状に形成されている。第1ステータコアティース部32-1は、一端がヨーク部31の内周面に連続して形成され、すなわち、ヨーク部31の内周面から突出するように形成されている。複数のステータコアティース部32-1~32-9のうちの第1ステータコアティース部32-1と異なるステータコアティース部も、第1ステータコアティース部32-1と同様に、概ね柱体状に形成されており、ヨーク部31の内周面から突出している。複数のステータコアティース部32-1~32-9は、さらに、ヨーク部31の内周面に40度ごとの等間隔に配置されて形成されている。 FIG. 3 is a bottom view showing the stator core 23 in the embodiment. The stator core 23 is formed, for example, by laminating a plurality of plates made of a soft magnetic material exemplified by a silicon steel plate, and as shown in FIG. 3, a yoke portion 31 and a plurality of stator core teeth portions 32-1 to 32-32. -9. The yoke part 31 is formed in a substantially cylindrical shape. The first stator core teeth portion 32-1 of the plurality of stator core teeth portions 32-1 to 32-9 is formed in a substantially columnar shape. The first stator core teeth portion 32-1 has one end formed continuously with the inner peripheral surface of the yoke portion 31, that is, formed so as to protrude from the inner peripheral surface of the yoke portion 31. The stator core teeth of the plurality of stator core teeth 32-1 to 32-9 that are different from the first stator core teeth 32-1 are formed in a substantially columnar shape similarly to the first stator core teeth 32-1. And protrudes from the inner peripheral surface of the yoke portion 31. The plurality of stator core teeth 32-1 to 32-9 are further formed on the inner peripheral surface of the yoke 31 at regular intervals of 40 degrees.
 図4は、実施例における下インシュレータ25を示す斜視図である。下インシュレータ25は、ポリブチレンテレフタレート樹脂(PBT)に例示される絶縁体によって形成されており、図4に示すように、外周壁部41と、複数のインシュレータティース部42-1~42-9と、複数の鍔部43-1~43-9と、を有している。外周壁部41は、概ね円筒形に形成されている。外周壁部41は、複数のスリット44が形成されている。複数のインシュレータティース部42-1~42-9のうちの第1インシュレータティース部42-1は、断面が概ね半円である直柱体状に形成されている。第1インシュレータティース部42-1は、一端が外周壁部41の内周面に連続して形成され、すなわち、外周壁部41の内周面から突出するように形成されている。複数のインシュレータティース部42-1~42-9のうちの第1インシュレータティース部42-1と異なるインシュレータティース部も、直柱体状に形成され、第1インシュレータティース部42-1と同様に、外周壁部41の内周面から突出するように形成されている。複数のインシュレータティース部42-1~42-9は、外周壁部41の内周面に40度ごとの等間隔に配置されて形成されている。 FIG. 4 is a perspective view showing the lower insulator 25 in the embodiment. The lower insulator 25 is formed of an insulator exemplified by polybutylene terephthalate resin (PBT). As shown in FIG. 4, an outer peripheral wall portion 41, a plurality of insulator teeth portions 42-1 to 42-9, and And a plurality of flanges 43-1 to 43-9. The outer peripheral wall portion 41 is formed in a substantially cylindrical shape. The outer peripheral wall 41 has a plurality of slits 44 formed therein. The first insulator tooth portion 42-1 of the plurality of insulator tooth portions 42-1 to 42-9 is formed in a columnar shape having a substantially semicircular cross section. The first insulator tooth portion 42-1 has one end formed continuously with the inner peripheral surface of the outer peripheral wall portion 41, that is, formed so as to protrude from the inner peripheral surface of the outer peripheral wall portion 41. The insulator tooth portion different from the first insulator tooth portion 42-1 among the plurality of insulator tooth portions 42-1 to 42-9 is also formed in a columnar shape, and like the first insulator tooth portion 42-1. It is formed so as to protrude from the inner peripheral surface of the outer peripheral wall portion 41. The plurality of insulator teeth portions 42-1 to 42-9 are formed on the inner peripheral surface of the outer peripheral wall portion 41 at regular intervals of 40 degrees.
 複数の鍔部43-1~43-9は、複数のインシュレータティース部42-1~42-9に対応し、それぞれ、概ね半円形の板状に形成されている。複数の鍔部43-1~43-9のうちの第1インシュレータティース部42-1に対応する第1鍔部43-1は、第1インシュレータティース部42-1の他端に連続して形成されている。複数の鍔部43-1~43-9のうちの第1鍔部43-1と異なる鍔部も、第1鍔部43-1と同様に、複数のインシュレータティース部42-1~42-9の他端に連続して形成されている。 The plurality of flanges 43-1 to 43-9 correspond to the plurality of insulator teeth 42-1 to 42-9, and are each formed in a substantially semicircular plate shape. The first flange portion 43-1 corresponding to the first insulator tooth portion 42-1 of the plurality of flange portions 43-1 to 43-9 is formed continuously with the other end of the first insulator tooth portion 42-1. Have been. Similarly to the first flange portion 43-1, the plurality of insulator teeth portions 42-1 to 42-9 of the plurality of flange portions 43-1 to 43-9 are different from the first flange portion 43-1. Is formed continuously with the other end of
 上インシュレータ24も、下インシュレータ25と同様に形成されている。すなわち、上インシュレータ24は、絶縁体によって形成されており、外周壁部41と、複数のインシュレータティース部42-1~42-9と、複数の鍔部43-1~43-9と、を有している。 The upper insulator 24 is formed similarly to the lower insulator 25. That is, the upper insulator 24 is formed of an insulator and has an outer peripheral wall portion 41, a plurality of insulator teeth portions 42-1 to 42-9, and a plurality of flange portions 43-1 to 43-9. doing.
 図5は、実施例におけるステータ22を示す下面図である。ステータコア23の複数のステータコアティース部32-1~32-9は、図5に示すように、複数の巻き線46がそれぞれ巻回されている。各ステータコアティース部32-1~32-9には、各巻き線46によって巻回部45がそれぞれ形成されている。実施形態における3相モータは、6極9スロットの集中巻型のモータである(図2参照)。複数の巻き線46は、複数のU相巻き線46-U1~46-U3と、複数のV相巻き線46-V1~46-V3と、複数のW相巻き線46-W1~46-W3と、を備えている。 FIG. 5 is a bottom view showing the stator 22 in the embodiment. As shown in FIG. 5, a plurality of windings 46 are wound around the plurality of stator core teeth 32-1 to 32-9 of the stator core 23, respectively. Each of the stator core teeth 32-1 to 32-9 has a winding 45 formed by a winding 46. The three-phase motor in the embodiment is a concentrated winding type motor having 6 poles and 9 slots (see FIG. 2). The plurality of windings 46 include a plurality of U-phase windings 46-U1 to 46-U3, a plurality of V-phase windings 46-V1 to 46-V3, and a plurality of W-phase windings 46-W1 to 46-W3. And
 U相巻き線は複数の巻き線を備えている。具体的には、U相巻き線として、第1U相巻き線46-U1と、第2U相巻き線46-U2と、第3U相巻き線46-U3と、を備えている。第1U相巻き線46-U1は、第4ステータコアティース部32-4に巻回されている。第2U相巻き線46-U2は、第7ステータコアティース部32-7に巻回されている。第3U相巻き線46-U3は、第1ステータコアティース部32-1に巻回されている。 The U-phase winding has a plurality of windings. Specifically, a first U-phase winding 46-U1, a second U-phase winding 46-U2, and a third U-phase winding 46-U3 are provided as U-phase windings. The first U-phase winding 46-U1 is wound around the fourth stator core teeth portion 32-4. The second U-phase winding 46-U2 is wound around the seventh stator core teeth 32-7. The third U-phase winding 46-U3 is wound around the first stator core teeth 32-1.
 V相巻き線は複数の巻き線を備えている。具体的には、V相巻き線として、第1V相巻き線46-V1と、第2V相巻き線46-V2と、第3V相巻き線46-V3と、を備えている。第1V相巻き線46-V1は、第8ステータコアティース部32-8に巻回されている。第2V相巻き線46-V2は、第2ステータコアティース部32-2に巻回されている。第3V相巻き線46-V3は、第5ステータコアティース部32-5に巻回されている。 The V-phase winding has a plurality of windings. Specifically, a V-phase winding includes a first V-phase winding 46-V1, a second V-phase winding 46-V2, and a third V-phase winding 46-V3. The first V-phase winding 46-V1 is wound around the eighth stator core teeth portion 32-8. The second V-phase winding 46-V2 is wound around the second stator core teeth portion 32-2. The third V-phase winding 46-V3 is wound around the fifth stator core teeth portion 32-5.
 W相巻き線は複数の巻き線を備えている。具体的には、W相巻き線として、第1W相巻き線46-W1と、第2W相巻き線46-W2と、第3W相巻き線46-W3と、を備えている。第1W相巻き線46-W1は、第6ステータコアティース部32-6に巻回されている。第2W相巻き線46-W2は、第9ステータコアティース部32-9に巻回されている。第3W相巻き線46-W3は、第3ステータコアティース部32-3に巻回されている。 The W-phase winding has a plurality of windings. Specifically, as the W-phase winding, a first W-phase winding 46-W1, a second W-phase winding 46-W2, and a third W-phase winding 46-W3 are provided. The first W-phase winding 46-W1 is wound around the sixth stator core teeth portion 32-6. The second W-phase winding 46-W2 is wound around the ninth stator core teeth portion 32-9. The third W-phase winding 46-W3 is wound around the third stator core teeth 32-3.
 第1ステータコアティース部32-1は、下インシュレータ25の第1インシュレータティース部42-1と、上インシュレータ24の第1インシュレータティース部と、これら各インシュレータ24、25との間に配置される絶縁フィルム(図示せず)と共に第3U相巻き線46-U3が巻回されている。このため、第3U相巻き線46-U3は、上インシュレータ24と下インシュレータ25とにより、第1ステータコアティース部32-1から適切に絶縁され、ステータコア23から適切に絶縁されている。さらに、第3U相巻き線46-U3は、下インシュレータ25の第1鍔部43-1と外周壁部41との間に挟まれるように巻回されており、上インシュレータ24の第1鍔部と外周壁部との間に挟まれるように巻回されている。このため、第3U相巻き線46-U3は、上インシュレータ24及び下インシュレータ25により、第1ステータコアティース部32-1からロータ21の側に外れる、いわゆる巻きこぼれが防止されている。 The first stator core teeth portion 32-1 is composed of a first insulator teeth portion 42-1 of the lower insulator 25, a first insulator teeth portion of the upper insulator 24, and an insulating film disposed between the insulators 24 and 25. (Not shown) and a third U-phase winding 46-U3 are wound. Therefore, the third U-phase winding 46-U3 is appropriately insulated from the first stator core teeth portion 32-1 by the upper insulator 24 and the lower insulator 25, and is appropriately insulated from the stator core 23. Further, the third U-phase winding 46-U3 is wound so as to be sandwiched between the first flange 43-1 of the lower insulator 25 and the outer peripheral wall 41, and the first flange of the upper insulator 24. And the outer peripheral wall portion. For this reason, the third U-phase winding 46-U3 is prevented from coming off from the first stator core teeth portion 32-1 toward the rotor 21 by the upper insulator 24 and the lower insulator 25;
 複数の巻き線46のうちの第3U相巻き線46-U3と異なる他の巻き線に関しても、上インシュレータ24及び下インシュレータ25により、ステータコア23から適切に絶縁され、巻きこぼれが防止されている。 Regarding other windings of the plurality of windings 46 that are different from the third U-phase winding 46-U3, the upper insulator 24 and the lower insulator 25 are appropriately insulated from the stator core 23 to prevent winding-over.
 図6は、実施例における複数の巻き線46を示す展開図である。第1U相巻き線46-U1は、図6に示すように、第4ステータコアティース部32-4に反時計回りに巻回されている。第2U相巻き線46-U2は、第7ステータコアティース部32-7に時計回りに巻回されている。第3U相巻き線46-U3は、第1ステータコアティース部32-1に反時計回りに巻回されている。第1V相巻き線46-V1は、第8ステータコアティース部32-8に反時計回りに巻回されている。第2V相巻き線46-V2は、第2ステータコアティース部32-2に時計回りに巻回されている。第3V相巻き線46-V3は、第5ステータコアティース部32-5に反時計回りに巻回されている。第1W相巻き線46-W1は、第6ステータコアティース部32-6に反時計回りに巻回されている。第2W相巻き線46-W2は、第9ステータコアティース部32-9に時計回りに巻回されている。第3W相巻き線46-W3は、第3ステータコアティース部32-3に反時計回りに巻回されている。 FIG. 6 is a developed view showing a plurality of windings 46 in the embodiment. As shown in FIG. 6, the first U-phase winding 46-U1 is wound counterclockwise around the fourth stator core teeth portion 32-4. The second U-phase winding 46-U2 is wound clockwise around the seventh stator core teeth portion 32-7. Third U-phase winding 46-U3 is wound counterclockwise around first stator core teeth 32-1. The first V-phase winding 46-V1 is wound counterclockwise around the eighth stator core teeth portion 32-8. Second V-phase winding 46-V2 is wound clockwise around second stator core teeth 32-2. Third V-phase winding 46-V3 is wound counterclockwise around fifth stator core teeth 32-5. The first W-phase winding 46-W1 is wound counterclockwise around the sixth stator core teeth portion 32-6. The second W-phase winding 46-W2 is wound clockwise around the ninth stator core teeth portion 32-9. The third W-phase winding 46-W3 is wound counterclockwise around the third stator core teeth 32-3.
 ステータ22は、複数のU相中性線47-U1~47-U3と、複数のV相中性線47-V1~47-V3と、複数のW相中性線47-W1~47-W3と、をさらに備えている。複数のU相中性線47-U1~47-U3、複数のV相中性線47-V1~47-V3及び複数のW相中性線47-W1~47-W3は、複数のステータコアティース部32-1~32-9よりも下インシュレータ25から遠い上インシュレータ24側に配置されている。なお、上インシュレータ24側には、電源線であるリード側も配置されるので、以下、本明細書では上インシュレータ24側をリード側とも呼ぶ。 The stator 22 includes a plurality of U-phase neutral lines 47-U1 to 47-U3, a plurality of V-phase neutral lines 47-V1 to 47-V3, and a plurality of W-phase neutral lines 47-W1 to 47-W3. And further comprising. The plurality of U-phase neutrals 47-U1 to 47-U3, the plurality of V-phase neutrals 47-V1 to 47-V3, and the plurality of W-phase neutrals 47-W1 to 47-W3 are a plurality of stator core teeth. The upper insulator 24 is located farther from the lower insulator 25 than the parts 32-1 to 32-9. In addition, since the lead side which is a power supply line is also arranged on the upper insulator 24 side, the upper insulator 24 side is also referred to as a lead side in this specification.
 第1U相中性線47-U1は、一端が第1U相巻き線46-U1に電気的に接続されている。第1U相中性線47-U1は、その一端が第4ステータコアティース部32-4の第1方向側(図6中の左側)に配置されており、他端が第4ステータコアティース部32-4よりも下インシュレータ25から遠いリード側に配置されている。第2U相中性線47-U2は、一端が第2U相巻き線46-U2に電気的に接続されている。第2U相中性線47-U2は、その一端が第7ステータコアティース部32-7の第1方向側に配置されており、他端が第7ステータコアティース部32-7よりもリード側に配置されている。第3U相中性線47-U3は、一端が第3U相巻き線46-U3に電気的に接続されている。第3U相中性線47-U3は、その一端が第1ステータコアティース部32-1の第1方向側に配置されており、他端が第1ステータコアティース部32-1よりもリード側に配置されている。 一端 One end of the first U-phase neutral wire 47-U1 is electrically connected to the first U-phase winding 46-U1. One end of first U-phase neutral wire 47-U1 is arranged on the first direction side (left side in FIG. 6) of fourth stator core teeth portion 32-4, and the other end is connected to fourth stator core teeth portion 32-4. 4 is disposed on the lead side farther from the insulator 25 below. One end of the second U-phase neutral wire 47-U2 is electrically connected to the second U-phase winding 46-U2. One end of second U-phase neutral wire 47-U2 is arranged on the first direction side of seventh stator core teeth portion 32-7, and the other end is arranged on the more lead side than seventh stator core teeth portion 32-7. Have been. One end of third U-phase neutral wire 47-U3 is electrically connected to third U-phase winding 46-U3. The third U-phase neutral wire 47-U3 has one end disposed on the first direction side of the first stator core teeth portion 32-1 and the other end disposed on the lead side with respect to the first stator core teeth portion 32-1. Have been.
 複数のV相中性線47-V1~47-V3は、第1V相中性線47-V1と、第2V相中性線47-V2と、第3V相中性線47-V3と、を備えている。第1V相中性線47-V1は、一端が第1V相巻き線46-V1に電気的に接続されている。第1V相中性線47-V1は、その一端が第5ステータコアティース部32-5の第1方向側に配置されており、他端が第5ステータコアティース部32-5よりもリード側に配置されている。第2V相中性線47-V2は、一端が第2V相巻き線46-V2に電気的に接続されている。第2V相中性線47-V2は、その一端が第2ステータコアティース部32-2の第1方向側に配置されており、他端が第2ステータコアティース部32-2よりもリード側に配置されている。第3V相中性線47-V3は、一端が第3V相巻き線46-V3に電気的に接続されている。第3V相中性線47-V3は、その一端が第5ステータコアティース部32-5の第1方向側に配置されており、他端が第5ステータコアティース部32-5よりもリード側に配置されている。 The plurality of V-phase neutral lines 47-V1 to 47-V3 include a first V-phase neutral line 47-V1, a second V-phase neutral line 47-V2, and a third V-phase neutral line 47-V3. Have. One end of first V-phase neutral wire 47-V1 is electrically connected to first V-phase winding 46-V1. One end of the first V-phase neutral wire 47-V1 is arranged on the first direction side of the fifth stator core teeth portion 32-5, and the other end is arranged on the more lead side than the fifth stator core teeth portion 32-5. Have been. One end of the second V-phase neutral wire 47-V2 is electrically connected to the second V-phase winding 46-V2. One end of second V-phase neutral wire 47-V2 is arranged on the first direction side of second stator core teeth portion 32-2, and the other end is arranged on the more lead side than second stator core teeth portion 32-2. Have been. One end of the third V-phase neutral wire 47-V3 is electrically connected to the third V-phase winding 46-V3. One end of third V-phase neutral wire 47-V3 is arranged on the first direction side of fifth stator core teeth portion 32-5, and the other end is arranged on the more lead side than fifth stator core teeth portion 32-5. Have been.
 複数のW相中性線47-W1~47-W3は、第1W相中性線47-W1と、第2W相中性線47-W2と、第3W相中性線47-W3と、を備えている。第1W相中性線47-W1は、一端が第1W相巻き線46-W1に電気的に接続されている。第1W相中性線47-W1は、その一端が第6ステータコアティース部32-6の第1方向側に配置されており、他端が第6ステータコアティース部32-6よりもリード側に配置されている。第2W相中性線47-W2は、一端が第2W相巻き線46-W2に電気的に接続されている。第2W相中性線47-W2は、その一端が第9ステータコアティース部32-9の第1方向側に配置されており、他端が第9ステータコアティース部32-9よりもリード側に配置されている。第3W相中性線47-W3は、一端が第3W相巻き線46-W3に電気的に接続されている。第3W相中性線47-W3は、その一端が第3ステータコアティース部32-3の第1方向側に配置されており、他端が第3ステータコアティース部32-3よりもリード側に配置されている。 The plurality of W-phase neutral lines 47-W1 to 47-W3 include a first W-phase neutral line 47-W1, a second W-phase neutral line 47-W2, and a third W-phase neutral line 47-W3. Have. One end of the first W-phase neutral wire 47-W1 is electrically connected to the first W-phase winding 46-W1. One end of the first W-phase neutral wire 47-W1 is arranged on the first direction side of the sixth stator core teeth portion 32-6, and the other end is arranged on the more lead side than the sixth stator core teeth portion 32-6. Have been. One end of the second W-phase neutral wire 47-W2 is electrically connected to the second W-phase winding 46-W2. One end of the second W-phase neutral wire 47-W2 is arranged on the first direction side of the ninth stator core teeth portion 32-9, and the other end is arranged on the more lead side than the ninth stator core teeth portion 32-9. Have been. One end of the third W-phase neutral wire 47-W3 is electrically connected to the third W-phase winding 46-W3. The third W-phase neutral wire 47-W3 has one end located on the first direction side of the third stator core teeth portion 32-3 and the other end located on the lead side with respect to the third stator core teeth portion 32-3. Have been.
 ステータ22は、複数のU相電源線48-U1~48-U3と、複数のV相電源線48-V1~48-V3と、複数のW相電源線48-W1~48-W3と、をさらに備えている。 The stator 22 includes a plurality of U-phase power lines 48-U1 to 48-U3, a plurality of V-phase power lines 48-V1 to 48-V3, and a plurality of W-phase power lines 48-W1 to 48-W3. In addition.
 複数のU相電源線48-U1~48-U3は、一端が第1ステータコアティース部32-1のリード側に配置され、かつ、その一端が第1ステータコアティース部32-1の第2方向側(図6中の右側)に配置されている。第1U相電源線48-U1の他端は、第1U相巻き線46-U1に電気的に接続されている。第2U相電源線48-U2の他端は、第2U相巻き線46-U2に電気的に接続されている。第3U相電源線48-U3の他端は、第3U相巻き線46-U3に電気的に接続されている。 One end of each of the plurality of U-phase power supply lines 48-U1 to 48-U3 is disposed on the lead side of the first stator core tooth part 32-1 and one end thereof is located on the second direction side of the first stator core tooth part 32-1. (Right side in FIG. 6). The other end of the first U-phase power line 48-U1 is electrically connected to the first U-phase winding 46-U1. The other end of the second U-phase power supply line 48-U2 is electrically connected to the second U-phase winding 46-U2. The other end of third U-phase power supply wire -U3 is electrically connected to third U-phase winding 46-U3.
 第1U相電源線48-U1は、さらに、一部が下インシュレータ25の外周壁部41の複数のスリット44を通り、第1U相渡り線部分49-U1を含んでいる。第1U相電源線48-U1の一部である第1U相渡り線部分49-U1は、下インシュレータ25の外周壁部41の外周面に沿うように配置されている。第2U相電源線48-U2は、さらに、一部が下インシュレータ25の外周壁部41の複数のスリット44を通り、第2U相渡り線部分49-U2を含んでいる。第2U相電源線48-U2の一部である第2U相渡り線部分49-U2は、下インシュレータ25の外周壁部41の外周面に沿って配置されている。 The first U-phase power line 48-U1 further includes a first U-phase crossover portion 49-U1 partially passing through the plurality of slits 44 of the outer peripheral wall 41 of the lower insulator 25. The first U-phase connecting wire portion 49-U1, which is a part of the first U-phase power line 48-U1, is arranged along the outer peripheral surface of the outer peripheral wall 41 of the lower insulator 25. The second U-phase power line 48-U2 further includes a second U-phase crossover portion 49-U2, partly passing through the plurality of slits 44 of the outer peripheral wall portion 41 of the lower insulator 25. A second U-phase crossover wire portion 49-U2, which is a part of the second U-phase power line 48-U2, is arranged along the outer peripheral surface of the outer peripheral wall 41 of the lower insulator 25.
 複数のV相電源線48-V1~48-V3は、一端が第5ステータコアティース部32-5のリード側に配置され、かつ、その一端が第5ステータコアティース部32-5の第2方向側に配置されている。第1V相電源線48-V1の他端は、第1V相巻き線46-V1に電気的に接続されている。第2V相電源線48-V2の他端は、第2V相巻き線46-V2に電気的に接続されている。第3V相電源線48-V3の他端は、第3V相巻き線46-V3に電気的に接続されている。 One end of each of the plurality of V-phase power supply lines 48-V1 to 48-V3 is disposed on the lead side of the fifth stator core tooth part 32-5, and one end thereof is located on the second direction side of the fifth stator core tooth part 32-5. Are located in The other end of first V-phase power supply line -V1 is electrically connected to first V-phase winding 46-V1. The other end of second V-phase power supply line -V2 is electrically connected to second V-phase winding 46-V2. The other end of the third V-phase power supply line -V3 is electrically connected to the third V-phase winding 46-V3.
 第1V相電源線48-V1は、さらに、一部が下インシュレータ25の外周壁部41の複数のスリット44を通り、第1V相渡り線部分49-V1を含んでいる。第1V相電源線48-V1の一部である第1V相渡り線部分49-V1は、下インシュレータ25の外周壁部41の外周面に沿って配置されている。第2V相電源線48-V2は、さらに、一部が下インシュレータ25の外周壁部41の複数のスリット44を通り、第2V相渡り線部分49-V2を含んでいる。第2V相電源線48-V2の一部である第2V相渡り線部分49-V2は、下インシュレータ25の外周壁部41の外周面に沿って配置されている。 The first V-phase power supply line -V1 further includes a first V-phase crossover line portion 49-V1 partially passing through the plurality of slits 44 of the outer peripheral wall portion 41 of the lower insulator 25. The first V-phase crossover portion 49-V1, which is a part of the first V-phase power supply line -V1, is arranged along the outer peripheral surface of the outer peripheral wall portion 41 of the lower insulator 25. The second V-phase power supply line -V2 further passes through a plurality of slits 44 of the outer peripheral wall portion 41 of the lower insulator 25, and includes a second V-phase crossover portion 49-V2. The second V-phase crossover portion 49-V2, which is a part of the second V-phase power supply line -V2, is arranged along the outer peripheral surface of the outer peripheral wall 41 of the lower insulator 25.
 複数のW相電源線48-W1~48-W3は、一端が第3ステータコアティース部32-3のリード側に配置され、かつ、その一端が第3ステータコアティース部32-3の第2方向側に配置されている。第1W相電源線48-W1の他端は、第1W相巻き線46-W1に電気的に接続されている。第2W相電源線48-W2の他端は、第2W相巻き線46-W2に電気的に接続されている。第3W相電源線48-W3の他端は、第3W相巻き線46-W3に電気的に接続されている。 One end of each of the plurality of W-phase power supply lines 48-W1 to 48-W3 is disposed on the lead side of the third stator core tooth part 32-3, and one end thereof is located on the second direction side of the third stator core tooth part 32-3. Are located in The other end of first W-phase power supply line -W1 is electrically connected to first W-phase winding 46-W1. The other end of second W-phase power supply wire -W2 is electrically connected to second W-phase winding 46-W2. The other end of third W-phase power supply line -W3 is electrically connected to third W-phase winding 46-W3.
 第1W相電源線48-W1は、さらに、一部が下インシュレータ25の外周壁部41の複数のスリット44を通り、第1W相渡り線部分49-W1を含んでいる。第1W相電源線48-W1の一部である第1W相渡り線部分49-W1は、下インシュレータ25の外周壁部41の外周面に沿って配置されている。第2W相電源線48-W2は、さらに、一部が下インシュレータ25の外周壁部41の複数のスリット44を通り、第2W相渡り線部分49-W2を含んでいる。第2W相電源線48-W2の一部である第2W相渡り線部分49-W2は、下インシュレータ25の外周壁部41の外周面に沿って配置されている。 The first W-phase power supply line -W1 further includes a first W-phase crossover portion 49-W1 partially passing through the plurality of slits 44 of the outer peripheral wall portion 41 of the lower insulator 25. A first W-phase crossover portion 49-W1, which is a part of the first W-phase power supply line -W1, is disposed along the outer peripheral surface of the outer peripheral wall portion 41 of the lower insulator 25. The second W-phase power supply line -W2 further passes through a plurality of slits 44 of the outer peripheral wall portion 41 of the lower insulator 25, and includes a second W-phase crossover portion 49-W2. A second W-phase crossover portion 49-W2, which is a part of the second W-phase power supply line -W2, is arranged along the outer peripheral surface of the outer peripheral wall 41 of the lower insulator 25.
 図7は、実施例における複数の巻き線46の結線状態を示す結線図である。実施形態における3相モータは、巻き線46が並列接続されたスター結線を有するモータである。ステータ22は、図7に示すように、複数の中性点をさらに備えている。複数の中性点は、複数のステータコアティース部32-1~32-9のリード側に配置されており、第1中性点51-1、第2中性点51-2及び第3中性点51-3を有している。第1中性点51-1と第2中性点51-2と第3中性点51-3とは、互いに電気的に絶縁されている。 FIG. 7 is a connection diagram showing a connection state of a plurality of windings 46 in the embodiment. The three-phase motor in the embodiment is a motor having a star connection in which the windings 46 are connected in parallel. The stator 22 further includes a plurality of neutral points as shown in FIG. The plurality of neutral points are arranged on the lead side of the plurality of stator core teeth portions 32-1 to 32-9, and include a first neutral point 51-1, a second neutral point 51-2, and a third neutral point. It has a point 51-3. The first neutral point 51-1, the second neutral point 51-2, and the third neutral point 51-3 are electrically insulated from each other.
 第1U相巻き線46-U1は、一端が第1U相中性線47-U1を介して第1中性点51-1に電気的に接続されており、他端が第1U相電源線48-U1を介してU相電源に電気的に接続されている。第2U相巻き線46-U2は、一端が第2U相中性線47-U2を介して第2中性点51-2に電気的に接続されており、他端が第2U相電源線48-U2を介してU相電源に電気的に接続されている。第3U相巻き線46-U3は、一端が第3U相中性線47-U3を介して第3中性点51-3に電気的に接続されており、他端が第3U相電源線48-U3を介してU相電源に電気的に接続されている。 One end of first U-phase winding 46-U1 is electrically connected to first neutral point 51-1 via first U-phase neutral wire 47-U1, and the other end is first U-phase power supply line 48. -It is electrically connected to the U-phase power supply via U1. One end of the second U-phase winding 46-U2 is electrically connected to the second neutral point 51-2 via the second U-phase neutral 47-U2, and the other end is connected to the second U-phase power supply 48. -It is electrically connected to the U-phase power supply via U2. One end of the third U-phase winding 46-U3 is electrically connected to the third neutral point 51-3 via the third U-phase neutral 47-U3, and the other end is a third U-phase power supply 48. -It is electrically connected to the U-phase power supply via U3.
 第1V相巻き線46-V1は、一端が第1V相中性線47-V1を介して第3中性点51-3に電気的に接続されており、他端が第1V相電源線48-V1を介してV相電源に電気的に接続されている。第2V相巻き線46-V2は、一端が第2V相中性線47-V2を介して第1中性点51-1に電気的に接続されており、他端が第2V相電源線48-V2を介してV相電源に電気的に接続されている。第3V相巻き線46-V3は、一端が第3V相中性線47-V3を介して第2中性点51-2に電気的に接続されており、他端が第3V相電源線48-V3を介してV相電源に電気的に接続されている。 One end of the first V-phase winding 46-V1 is electrically connected to the third neutral point 51-3 via the first V-phase neutral 47-V1, and the other end is the first V-phase power supply 48. It is electrically connected to a V-phase power supply via -V1. One end of the second V-phase winding 46-V2 is electrically connected to the first neutral point 51-1 via the second V-phase neutral line 47-V2, and the other end is connected to the second V-phase power supply line 48. It is electrically connected to a V-phase power supply via -V2. One end of the third V-phase winding 46-V3 is electrically connected to the second neutral point 51-2 via the third V-phase neutral line 47-V3, and the other end is connected to the third V-phase power supply line 48. It is electrically connected to a V-phase power supply via -V3.
 第1W相巻き線46-W1は、一端が第1W相中性線47-W1を介して第2中性点51-2に電気的に接続されており、他端が第1W相電源線48-W1を介してW相電源に電気的に接続されている。第2W相巻き線46-W2は、一端が第2W相中性線47-W2を介して第3中性点51-3に電気的に接続されており、他端が第2W相電源線48-W2を介してW相電源に電気的に接続されている。第3W相巻き線46-W3は、一端が第3W相中性線47-W3を介して第1中性点51-1に電気的に接続されており、他端が第3W相電源線48-W3を介してW相電源に電気的に接続されている。 One end of first W-phase winding 46-W1 is electrically connected to second neutral point 51-2 via first W-phase neutral 47-W1, and the other end is first W-phase power supply 48. -It is electrically connected to the W-phase power supply via W1. One end of the second W-phase winding 46-W2 is electrically connected to the third neutral point 51-3 via the second W-phase neutral 47-W2, and the other end is connected to the second W-phase power supply 48. -It is electrically connected to the W-phase power supply via W2. One end of the third W-phase winding 46-W3 is electrically connected to the first neutral point 51-1 via the third W-phase neutral 47-W3, and the other end is connected to the third W-phase power supply 48. -It is electrically connected to the W-phase power supply via W3.
[ステータの製造方法]
 ステータ22は、巻線機を用いて、上インシュレータ24及び下インシュレータ25が適切に取り付けられたステータコア23に、U相電線、V相電線及びW相電線が適切に配置されることにより、製作される。電線は、例えば、エナメル線(銅線をエナメルの被膜で被覆した電線)である。巻線機は、例えば、U相電線用ノズルと、V相電線用ノズルと、W相電線用ノズルと、を備えている。U相電線用ノズル、V相電線用ノズル及びW相電線用ノズルは、互いに固定されている。U相電線用ノズルは、適切に移動することにより、U相電線をステータコア23に対して所定の位置に配置させることができる。V相電線用ノズルは、適切に移動することにより、V相電線をステータコア23に対して所定の位置に配置させることができる。W相電線用ノズルは、適切に移動することにより、W相電線をステータコア23に対して所定の位置に配置させることができる。なお、巻線機は、本実施例の構成に限られず、1本のノズルのみを備えるものが用いられてもよい。
[Method of manufacturing stator]
The stator 22 is manufactured using a winding machine by appropriately arranging a U-phase electric wire, a V-phase electric wire, and a W-phase electric wire on a stator core 23 to which an upper insulator 24 and a lower insulator 25 are appropriately attached. You. The electric wire is, for example, an enameled wire (an electric wire in which a copper wire is covered with an enamel coating). The winding machine includes, for example, a U-phase electric wire nozzle, a V-phase electric wire nozzle, and a W-phase electric wire nozzle. The nozzle for the U-phase electric wire, the nozzle for the V-phase electric wire, and the nozzle for the W-phase electric wire are fixed to each other. By properly moving the nozzle for the U-phase electric wire, the U-phase electric wire can be arranged at a predetermined position with respect to the stator core 23. By appropriately moving the nozzle for the V-phase electric wire, the V-phase electric wire can be arranged at a predetermined position with respect to the stator core 23. By appropriately moving the nozzle for the W-phase electric wire, the W-phase electric wire can be arranged at a predetermined position with respect to the stator core 23. In addition, the winding machine is not limited to the configuration of the present embodiment, and a machine having only one nozzle may be used.
 巻線機には、まず、上インシュレータ24及び下インシュレータ25と、図示しない絶縁フィルムが適切に取り付けられたステータコア23がセットされる。巻線機は、U相電線用ノズルを適切に移動させることで、U相電線の一端を第1ステータコアティース部32-1のリード側に配置させ、U相電線を第1ステータコアティース部32-1の第2方向側に沿わせ、複数のスリット44の1つに通す。次いで、巻線機は、U相電線用ノズルを適切に移動させてU相電線を下インシュレータ25の外周壁部41の外周面に沿わせることにより、U相電線から第1U相渡り線部分49-U1を形成する。巻線機は、さらに、U相電線用ノズルを適切に移動させてU相電線を複数のスリット44の1つから第4ステータコアティース部32-4までの間に配置することにより、U相電線から第1U相電源線48-U1を形成する。このとき、巻線機は、V相電線用ノズルとW相電線用ノズルとをU相電線用ノズルと同期して移動させることにより、V相電線から第1V相電源線48-V1を形成し、W相電線から第1W相電源線48-W1を形成する。 First, the upper insulator 24, the lower insulator 25, and the stator core 23 to which an insulating film (not shown) is appropriately attached are set in the winding machine. By appropriately moving the nozzle for the U-phase electric wire, the winding machine arranges one end of the U-phase electric wire on the lead side of the first stator core teeth portion 32-1 and puts the U-phase electric wire into the first stator core teeth portion 32-1. 1 along the second direction, and passes through one of the plurality of slits 44. Next, the winding machine appropriately moves the nozzle for the U-phase electric wire so that the U-phase electric wire follows the outer peripheral surface of the outer peripheral wall portion 41 of the lower insulator 25, so that the first U-phase crossover portion 49 from the U-phase electric wire. Form U1. The winding machine further moves the U-phase electric wire nozzle appropriately to dispose the U-phase electric wire between one of the plurality of slits 44 and the fourth stator core teeth portion 32-4, so that the U-phase electric wire To form a first U-phase power supply line 48-U1. At this time, the winding machine forms the first V-phase power line 48-V1 from the V-phase electric wire by moving the nozzle for the V-phase electric wire and the nozzle for the W-phase electric wire in synchronization with the nozzle for the U-phase electric wire. A first W-phase power supply line 48-W1 is formed from the W-phase electric wires.
 次いで、巻線機は、U相電線用ノズルを適切に移動させてU相電線を第4ステータコアティース部32-4に反時計回りに巻回することにより、U相電線から第1U相巻き線46-U1を形成する。このとき、巻線機は、V相電線用ノズルをU相電線用ノズルと同期して移動させることにより、V相電線を第8ステータコアティース部32-8に反時計回りに巻回し、V相電線から第1V相巻き線46-V1を形成する。巻線機は、W相電線用ノズルをU相電線用ノズルと同期して移動させることにより、W相電線を第6ステータコアティース部32-6に反時計回りに巻回し、W相電線から第1W相巻き線46-W1を形成する。 Next, the winding machine appropriately moves the nozzle for the U-phase electric wire and winds the U-phase electric wire counterclockwise around the fourth stator core teeth portion 32-4, so that the first U-phase winding from the U-phase electric wire is wound. Form 46-U1. At this time, the winding machine winds the V-phase electric wire counterclockwise around the eighth stator core teeth portion 32-8 by moving the nozzle for the V-phase electric wire in synchronization with the nozzle for the U-phase electric wire. A first V-phase winding 46-V1 is formed from the wires. The winding machine winds the W-phase electric wire around the sixth stator core teeth portion 32-6 in a counterclockwise direction by moving the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle. A 1W phase winding 46-W1 is formed.
 次いで、巻線機は、U相電線用ノズルを適切に移動させてU相電線を第4ステータコアティース部32-4の第1方向側から第4ステータコアティース部32-4のリード側までの間に配置することにより、U相電線から第1U相中性線47-U1を形成する。このとき、巻線機は、V相電線用ノズルとW相電線用ノズルとをU相電線用ノズルと同期して移動させることにより、V相電線から第1V相中性線47-V1を形成し、W相電線から第1W相中性線47-W1を形成する。 Next, the winding machine moves the U-phase electric wire nozzle appropriately to move the U-phase electric wire from the first direction side of the fourth stator core tooth portion 32-4 to the lead side of the fourth stator core tooth portion 32-4. , A first U-phase neutral wire 47-U1 is formed from the U-phase electric wire. At this time, the winding machine forms the first V-phase neutral wire 47-V1 from the V-phase electric wire by moving the V-phase electric wire nozzle and the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle. Then, a first W-phase neutral wire 47-W1 is formed from the W-phase electric wire.
 次いで、巻線機は、U相電線用ノズルを適切に移動させてU相電線を第7ステータコアティース部32-7のリード側から第7ステータコアティース部32-7の第1方向側までの間に配置することにより、U相電線から第2U相中性線47-U2を形成する。このとき、巻線機は、V相電線用ノズルとW相電線用ノズルとをU相電線用ノズルと同期して移動させることにより、V相電線から第2V相中性線47-V2を形成し、W相電線から第2W相中性線47-W2を形成する。 Next, the winding machine moves the U-phase electric wire nozzle appropriately to move the U-phase electric wire from the lead side of the seventh stator core teeth portion 32-7 to the first direction side of the seventh stator core teeth portion 32-7. , A second U-phase neutral wire 47-U2 is formed from the U-phase electric wire. At this time, the winding machine forms the second V-phase neutral wire 47-V2 from the V-phase electric wire by moving the V-phase electric wire nozzle and the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle. Then, a second W-phase neutral wire 47-W2 is formed from the W-phase electric wire.
 次いで、巻線機は、U相電線用ノズルを適切に移動させてU相電線を第7ステータコアティース部32-7に時計回りに巻回することにより、U相電線から第2U相巻き線46-U2を形成する。このとき、巻線機は、V相電線用ノズルをU相電線用ノズルと同期して移動させることにより、V相電線を第2ステータコアティース部32-2に時計回りに巻回し、V相電線から第2V相巻き線46-V2を形成する。巻線機は、W相電線用ノズルをU相電線用ノズルと同期して移動させることにより、W相電線を第9ステータコアティース部32-9に時計回りに巻回し、W相電線から第2W相巻き線46-W2を形成する。 Next, the winding machine appropriately moves the nozzle for the U-phase electric wire and winds the U-phase electric wire clockwise around the seventh stator core teeth portion 32-7 to thereby rotate the U-phase electric wire from the U-phase electric wire to the second U-phase winding 46. Form U2. At this time, the winding machine winds the V-phase electric wire around the second stator core teeth part 32-2 by moving the V-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle, and To form a second V-phase winding 46-V2. The winding machine winds the W-phase electric wire around the ninth stator core teeth portion 32-9 by moving the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle, and moves the W-phase electric wire from the W-phase electric wire to the second W The phase winding 46-W2 is formed.
 次いで、巻線機は、U相電線用ノズルを適切に移動させてU相電線を複数のスリット44の1つに通して外周壁部41の外周面に沿わせることにより、U相電線から第2U相渡り線部分49-U2を形成する。巻線機は、さらに、U相電線用ノズルを適切に移動させてU相電線を複数のスリット44の1つを通して第1ステータコアティース部32-1のリード側に配置することにより、U相電線から第2U相電源線48-U2を形成する。このとき、巻線機は、V相電線用ノズルとW相電線用ノズルとをU相電線用ノズルと同期して移動させることにより、V相電線から第2V相電源線48-V2を形成し、W相電線から第2W相電源線48-W2を形成する。 Next, the winding machine appropriately moves the nozzle for the U-phase electric wire so as to pass the U-phase electric wire through one of the plurality of slits 44 and along the outer peripheral surface of the outer peripheral wall portion 41, so that the U-phase electric wire becomes The 2U phase crossover portion 49-U2 is formed. The winding machine further moves the U-phase electric wire nozzle appropriately and arranges the U-phase electric wire through one of the plurality of slits 44 on the lead side of the first stator core teeth portion 32-1 to thereby provide the U-phase electric wire. To form a second U-phase power supply line 48-U2. At this time, the winding machine forms the second V-phase power line 48-V2 from the V-phase electric wire by moving the V-phase electric wire nozzle and the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle. , A second W-phase power line 48-W2 is formed from the W-phase electric wires.
 次いで、巻線機は、U相電線用ノズルを適切に移動させてU相電線を第1ステータコアティース部32-1のリード側から第1ステータコアティース部32-1の第2方向側までの間に配置することにより、U相電線から第3U相電源線48-U3を形成する。このとき、巻線機は、V相電線用ノズルとW相電線用ノズルとをU相電線用ノズルと同期して移動させることにより、V相電線から第3V相電源線48-V3を形成し、W相電線から第3W相電源線48-W3を形成する。また、複数のU相電源線48-U1~48-U3が一束にまとめられた一端に第1接続端子50-1が接続され、複数のV相電源線48-V1~48-V3が一束にまとめられた一端に第2接続端子50-2が接続され、複数のW相電源線48-W1~48-W3が一束にまとめられた一端に第3接続端子50-3が接続される(図2参照)。 Next, the winding machine moves the U-phase electric wire nozzle appropriately to move the U-phase electric wire from the lead side of the first stator core teeth portion 32-1 to the second direction side of the first stator core teeth portion 32-1. To form the third U-phase power line 48-U3 from the U-phase electric wire. At this time, the winding machine forms the third V-phase power supply line 48-V3 from the V-phase electric wire by moving the V-phase electric wire nozzle and the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle. , A third W-phase power line 48-W3 is formed from the W-phase electric wires. The first connection terminal 50-1 is connected to one end of the bundle of the plurality of U-phase power lines 48-U1 to 48-U3, and the plurality of V-phase power lines 48-V1 to 48-V3 are connected to one. The second connection terminal 50-2 is connected to one end of the bundle, and the third connection terminal 50-3 is connected to one end of the plurality of W-phase power lines 48-W1 to 48-W3. (See FIG. 2).
 次いで、巻線機は、U相電線用ノズルを適切に移動させてU相電線を第1ステータコアティース部32-1に反時計回りに巻回することにより、U相電線から第3U相巻き線46-U3を形成する。このとき、巻線機は、V相電線用ノズルをU相電線用ノズルと同期して移動させることにより、V相電線を第5ステータコアティース部32-5に反時計回りに巻回し、V相電線から第3V相巻き線46-V3を形成する。巻線機は、W相電線用ノズルをU相電線用ノズルと同期して移動させることにより、W相電線を第3ステータコアティース部32-3に反時計回りに巻回し、W相電線から第3W相巻き線46-W3を形成する。 Next, the winding machine appropriately moves the nozzle for the U-phase electric wire and winds the U-phase electric wire around the first stator core teeth portion 32-1 in a counterclockwise direction. Form 46-U3. At this time, the winding machine moves the V-phase electric wire nozzle around the fifth stator core teeth portion 32-5 in a counterclockwise direction by moving the V-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle. A third V-phase winding 46-V3 is formed from the wires. The winding machine winds the W-phase electric wire counterclockwise around the third stator core teeth 32-3 by moving the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle. A 3W phase winding 46-W3 is formed.
 次いで、巻線機は、U相電線用ノズルを適切に移動させてU相電線を第1ステータコアティース部32-1の第1方向側から第1ステータコアティース部32-1のリード側までの間に配置することにより、U相電線から第3U相中性線47-U3を形成する。このとき、巻線機は、V相電線用ノズルとW相電線用ノズルとをU相電線用ノズルと同期して移動させることにより、V相電線から第3V相中性線47-V3を形成し、W相電線から第3W相中性線47-W3を形成する。 Next, the winding machine moves the U-phase electric wire nozzle appropriately to move the U-phase electric wire from the first direction side of the first stator core teeth portion 32-1 to the lead side of the first stator core teeth portion 32-1. To form a third U-phase neutral wire 47-U3 from the U-phase electric wire. At this time, the winding machine forms the third V-phase neutral wire 47-V3 from the V-phase electric wire by moving the V-phase electric wire nozzle and the W-phase electric wire nozzle in synchronization with the U-phase electric wire nozzle. Then, a third W-phase neutral wire 47-W3 is formed from the W-phase electric wire.
 上述のように巻回することにより、第3U相巻き線46-U3は、図6及び図7に示すように、巻き始め部分と巻き終わり部分が共にリード側に配置される。一方、第1U相巻き線46-U1と第2U相巻き線46-U2は、反リード側から巻き始められてリード側で巻き終わるようになる。したがって、第3U相巻き線46-U3が巻回される巻き数は、第1U相巻き線46-U1が巻回される巻き数と異なり、第2U相巻き線46-U2が巻回される巻き数と異なっている。また、第1U相巻き線46-U1と第2U相巻き線46-U2は、U相電源と接続されるU相電源線が引き回される長さが異なる。言い換えれば、第1U相巻き線46-U1~第3U相巻き線46-U3は、巻き線の巻き数や電源線の長さを含めた巻き方が異なる。このため、中性点51-1からU相電源線までの電線の長さは、第1U相巻き線46-U1、第2U相巻き線46-U2、第3U相巻き線46-U3のそれぞれにおいて異なり、インピーダンスも異なっている。 (6) By winding as described above, the third U-phase winding 46-U3 has both the winding start portion and the winding end portion disposed on the lead side as shown in FIGS. On the other hand, the first U-phase winding 46-U1 and the second U-phase winding 46-U2 start to be wound from the non-lead side and end at the lead side. Therefore, the number of windings of the third U-phase winding 46-U3 is different from the number of windings of the first U-phase winding 46-U1, and the second U-phase winding 46-U2 is wound. The number of turns is different. The first U-phase winding 46-U1 and the second U-phase winding 46-U2 have different lengths in which the U-phase power supply line connected to the U-phase power supply is routed. In other words, the first U-phase winding 46-U1 to the third U-phase winding 46-U3 have different windings including the number of windings and the length of the power supply line. For this reason, the length of the electric wire from the neutral point 51-1 to the U-phase power supply wire is equal to each of the first U-phase winding 46-U1, the second U-phase winding 46-U2, and the third U-phase winding 46-U3. And the impedance is also different.
 第1U相中性線47-U1と第2U相中性線47-U2とが切り離され、第1V相中性線47-V1と第2V相中性線47-V2とが切り離され、第1W相中性線47-W1と第2W相中性線47-W2とが切り離される。第1U相中性線47-U1の端と第2V相中性線47-V2の端と第3W相中性線47-W3の端とが、電線の被膜を剥離せずに複数の巻き線を電気的に接続できる接続具(以下、接続具という)により電気的に接続される。 The first U-phase neutral line 47-U1 and the second U-phase neutral line 47-U2 are disconnected, the first V-phase neutral line 47-V1 and the second V-phase neutral line 47-V2 are disconnected, and the first W The phase neutral line 47-W1 and the second W-phase neutral line 47-W2 are cut off. The end of the first U-phase neutral line 47-U1, the end of the second V-phase neutral line 47-V2, and the end of the third W-phase neutral line 47-W3 form a plurality of windings without peeling off the coating of the electric wire. Are electrically connected by a connector that can be electrically connected (hereinafter, referred to as a connector).
 接続部材としては、例えば、図8に示すような第1スプライス端子52-1が用いられている。図8は、実施例における第1スプライス端子52-1と電線の接続前の状態を示す斜視図である。本実施例では、第1U相中性線47-U1の端と第2V相中性線47-V2の端と第3W相中性線47-W3の端とが第1スプライス端子52-1を介して互いに圧着により接合されて互いに電気的に接続されることで、第1中性点51-1が形成される。図8に示すように、3本の電線(中性線)は互いに接する状態で安定して束ねられる。接続部材としての第1スプライス端子52-1は、束ねられた電線を包むようにして3本の電線を互いに圧着により接合して互いに電気的に接続することができる。第1スプライス端子52-1によって電線群が圧着されることで、第1スプライス端子52-1の凹凸部によって各電線の被覆膜が剥離されて、3本の電線が接合されている。なお、接続部材で束ねる電線の本数は3本には限られない。すなわち、電線を互いに圧着により接合されて互いに電気的に接続することができる限り、束ねる本数は限定されない。 As the connection member, for example, a first splice terminal 52-1 as shown in FIG. 8 is used. FIG. 8 is a perspective view showing a state before connection of the first splice terminal 52-1 and the electric wire in the embodiment. In this embodiment, the end of the first U-phase neutral line 47-U1, the end of the second V-phase neutral line 47-V2, and the end of the third W-phase neutral line 47-W3 connect to the first splice terminal 52-1. The first neutral point 51-1 is formed by being joined to each other by crimping and electrically connected to each other. As shown in FIG. 8, the three electric wires (neutral wires) are stably bundled in contact with each other. The first splice terminal 52-1 as a connection member can be electrically connected to each other by bonding three wires by crimping so as to wrap the bundled wires. When the electric wire group is crimped by the first splice terminal 52-1, the coating film of each electric wire is peeled off by the uneven portion of the first splice terminal 52-1 and the three electric wires are joined. The number of electric wires bundled by the connecting member is not limited to three. That is, the number of wires to be bundled is not limited as long as the wires can be joined to each other by crimping and electrically connected to each other.
 同様に、第2U相中性線47-U2の端と第3V相中性線47-V3の端と第1W相中性線47-W1の端とが第2スプライス端子52-2を介して互いに圧着により接合されて互いに電気的に接続されることで、第2中性点51-2が形成される。第3U相中性線47-U3の端と第1V相中性線47-V1の端と第2W相中性線47-W2の端とが第3スプライス端子52-3により互いに圧着により接合されて互いに電気的に接続されることで、第3中性点51-3が形成される。これにより、第1中性点51-1、第2中性点51-2及び第3中性点51-3を容易に形成することができる。 Similarly, the end of the second U-phase neutral line 47-U2, the end of the third V-phase neutral line 47-V3, and the end of the first W-phase neutral line 47-W1 are connected via the second splice terminal 52-2. The second neutral point 51-2 is formed by being joined to each other by crimping and electrically connected to each other. The end of the third U-phase neutral line 47-U3, the end of the first V-phase neutral line 47-V1, and the end of the second W-phase neutral line 47-W2 are crimped to each other by the third splice terminal 52-3. Are electrically connected to each other to form a third neutral point 51-3. Thus, the first neutral point 51-1, the second neutral point 51-2, and the third neutral point 51-3 can be easily formed.
[圧縮機の動作]
 圧縮機1は、図示しない冷凍サイクル装置の構成要素として設けられており、冷媒を圧縮して、冷凍サイクル装置の冷媒回路に冷媒を循環させるために使用される。3相モータ6は、複数のU相電源線48-U1~48-U3、複数のV相電源線48-V1~48-V3及び複数のW相電源線48-W1~48-W3に三相電圧がそれぞれ印加されることにより、回転磁界を発生させる。ロータ21は、ステータ22により生成された回転磁界によって回転する。3相モータ6は、ロータ21が回転することにより、シャフト3を回転させる。
[Operation of compressor]
The compressor 1 is provided as a component of a refrigeration cycle device (not shown), and is used to compress the refrigerant and circulate the refrigerant through a refrigerant circuit of the refrigeration cycle device. The three-phase motor 6 includes three U-phase power lines 48-U1 to 48-U3, a plurality of V-phase power lines 48-V1 to 48-V3, and a plurality of W-phase power lines 48-W1 to 48-W3. When a voltage is applied, a rotating magnetic field is generated. The rotor 21 is rotated by the rotating magnetic field generated by the stator 22. The three-phase motor 6 rotates the shaft 3 by rotating the rotor 21.
 圧縮部5は、シャフト3が回転することで、吸入管11を介して低圧冷媒ガスを吸入し、その吸入された低圧冷媒ガスを圧縮することにより高圧冷媒ガスを生成し、高圧冷媒ガスを上マフラー室16と下マフラー室17とに供給する。下マフラーカバー15は、下マフラー室17に供給された高圧冷媒ガスの圧力の脈動を低減し、圧力脈動が低減された高圧冷媒ガスを上マフラー室16に供給する。上マフラーカバー14は、上マフラー室16に供給された高圧冷媒ガスの圧力の脈動を低減し、圧力脈動が低減された高圧冷媒ガスを内部空間7のうちの圧縮部5と3相モータ6との間の空間に圧縮冷媒吐出孔18を介して供給する。 The compression unit 5 sucks the low-pressure refrigerant gas through the suction pipe 11 as the shaft 3 rotates, generates a high-pressure refrigerant gas by compressing the sucked low-pressure refrigerant gas, and raises the high-pressure refrigerant gas. It is supplied to the muffler room 16 and the lower muffler room 17. The lower muffler cover 15 reduces the pressure pulsation of the high-pressure refrigerant gas supplied to the lower muffler chamber 17 and supplies the high-pressure refrigerant gas with reduced pressure pulsation to the upper muffler chamber 16. The upper muffler cover 14 reduces the pressure pulsation of the high-pressure refrigerant gas supplied to the upper muffler chamber 16, and transmits the high-pressure refrigerant gas having the reduced pressure pulsation to the compression unit 5 and the three-phase motor 6 of the internal space 7. Is supplied through the compressed refrigerant discharge hole 18 to the space between the two.
 内部空間7のうちの圧縮部5と3相モータ6との間の空間に供給された高圧冷媒ガスは、3相モータ6に形成されている隙間を通過することにより、内部空間7のうちの3相モータ6より上の空間に供給される。内部空間7のうちの3相モータ6より上の空間に供給された冷媒は、吐出管12を介して、冷凍サイクル装置のうちの圧縮機1の下流側に配置された装置に吐出される。 The high-pressure refrigerant gas supplied to the space between the compression unit 5 and the three-phase motor 6 in the internal space 7 passes through a gap formed in the three-phase motor 6, and It is supplied to a space above the three-phase motor 6. The refrigerant supplied to the space above the three-phase motor 6 in the internal space 7 is discharged through the discharge pipe 12 to a device of the refrigeration cycle device disposed downstream of the compressor 1.
[圧縮機の特徴的な構成]
 次に、実施例における3相モータ6の特徴的な構成について説明する。上述したように、3本のU相中性線47-U1~47-U3、3本のV相中性線47-V1~47-V3、及び3本のW相中性線47-W1~47-W3(以下、中性線47とも称する。)は、各中性点51-1~51-3(中性点51とも称する。)でそれぞれ結線されている。本実施例の特徴としては、ステータ22に対する9本の中性線47の取付け構造が含まれる。
[Characteristic structure of compressor]
Next, a characteristic configuration of the three-phase motor 6 in the embodiment will be described. As described above, three U-phase neutral lines 47-U1 to 47-U3, three V-phase neutral lines 47-V1 to 47-V3, and three W-phase neutral lines 47-W1 to 47-W1 47-W3 (hereinafter also referred to as neutral line 47) is connected at each neutral point 51-1 to 51-3 (also referred to as neutral point 51). The features of the present embodiment include a structure for attaching nine neutral wires 47 to the stator 22.
 9本の中性線47は、各中性点51よりも巻回部45側の位置でステータ22に固定された3つの第1固定部56と、各第1固定部56から各中性点51までの間にわたって3つの中性点51の各々で接続された3組の中性線47が一束にまとめられた第2固定部57と、を有する。第2固定部57によって一束にまとめられた中性線47の各中性点51側は、絶縁部材としての絶縁チューブ58で第2固定部57が覆われており、ステータ22の周方向(ロータ21の回転方向)に隣り合う巻回部45の隙間Gに挿入されている(図2参照)。 The nine neutral lines 47 are formed by three first fixing portions 56 fixed to the stator 22 at a position closer to the winding portion 45 than the respective neutral points 51, and from each of the first fixing portions 56 to each neutral point And a second fixing portion 57 in which three sets of neutral lines 47 connected at each of the three neutral points 51 up to 51 are bundled. Each neutral point 51 side of the neutral wire 47 bundled by the second fixing portion 57 is covered with an insulating tube 58 as an insulating member, and the second fixing portion 57 is covered in the circumferential direction of the stator 22 ( It is inserted into the gap G between the winding portions 45 adjacent to each other (in the rotation direction of the rotor 21) (see FIG. 2).
[ステータの製造工程の要部]
 3相モータ6のステータ22の製造工程の要部について説明する。図9は、実施例におけるステータ22の製造工程を説明するためのフローチャートである。図9に示すように、上述のようにステータ22の巻き線加工を行うことによって(ステップS1)、各巻き線46を形成し、各電線用ノズル側から供給された各電線を切断することによって(ステップS2)、各巻き線46の一端(中性線47)を各電線用ノズル側から切り離す。
[Main parts of stator manufacturing process]
The main part of the manufacturing process of the stator 22 of the three-phase motor 6 will be described. FIG. 9 is a flowchart for explaining a manufacturing process of the stator 22 in the embodiment. As shown in FIG. 9, by performing winding processing on the stator 22 as described above (step S1), each winding 46 is formed, and each electric wire supplied from each electric wire nozzle side is cut. (Step S2) One end (neutral wire 47) of each winding 46 is cut off from each wire nozzle side.
 続いて、各巻き線46の各中性線47のうち、U相、V相、W相の中性線47を各1本ずつで1組として、3本の中性線47を上インシュレータ24の外周面に沿って引き回し、上インシュレータ24の周方向の一カ所で、3本の中性線47を互いに固定する(本実施例では3本の中性線47が一本に束ねられたとき、各中性線47の根元にあたる部分が捩られた状態となることで、3本の中性線47が互いに固定される)ことによって(ステップS3)、3本の中性線47がステータ22に固定された第1固定部56を形成する。ステップS3では、9つの巻回部45からそれぞれ延ばされた9本の中性線47に関して、3本の中性線47を1組として第1固定部56を形成することで、3組の中性線47の各々が、3つの各第1固定部56でそれぞれ固定されている。第1固定部56の形成工程の詳細については後述する。 Subsequently, among the neutral wires 47 of the windings 46, the neutral wires 47 of the U-phase, V-phase, and W-phase are set as one set each, and the three neutral wires 47 are set to the upper insulator 24. And the three neutral wires 47 are fixed to each other at one place in the circumferential direction of the upper insulator 24 (in this embodiment, when the three neutral wires 47 are bundled together). The three neutral wires 47 are fixed to each other by the portion corresponding to the root of each neutral wire 47 being twisted (step S3), and the three neutral wires 47 are fixed to the stator 22. To form a first fixing portion 56 fixed to. In step S <b> 3, three sets of the neutral wires 47 are formed as one set of the three neutral wires 47 with respect to the nine neutral wires 47 respectively extended from the nine winding portions 45, thereby forming three sets of the neutral wires 47. Each of the neutral wires 47 is fixed by each of the three first fixing portions 56. Details of the step of forming the first fixing portion 56 will be described later.
 次に、各第1固定部56から延ばされた3組の中性線47を所定の長さで切断することによって(ステップS4)、3組の中性線47の、第1固定部56からの長さを揃える。続いて、3組の中性線47の各々を、各スプライス端子52(52-1~52-3)を介して圧着により接合することによって(ステップS5)、3つの各中性点51を形成する。続いて、3組の中性線47を束ねて、3組の中性線47をまとめて固定する(本実施例では3組の中性線47が一本に束ねられた状態で縒り合せる)ことによって(ステップS6)、3組の中性線47が一束にまとめられた第2固定部57を形成する。第2固定部57の形成工程の詳細については後述する。 Next, the three sets of neutral wires 47 extended from the first fixing portions 56 are cut at a predetermined length (step S4), so that the first fixing portions 56 of the three sets of neutral wires 47 are cut. From the same length. Subsequently, each of the three neutral wires 47 is joined by crimping via each of the splice terminals 52 (52-1 to 52-3) (Step S5), thereby forming each of the three neutral points 51. I do. Subsequently, the three sets of neutral wires 47 are bundled and the three sets of neutral wires 47 are fixed together (in this embodiment, the three sets of neutral wires 47 are twisted together in a bundled state). Thereby (step S6), the second fixing portion 57 in which the three sets of neutral wires 47 are bundled is formed. The details of the step of forming the second fixing portion 57 will be described later.
 次に、一束にまとめられた中性線47を、絶縁チューブ58内へ挿入することによって(ステップS7)、各巻回部45から引き延ばされた中性線47全体の絶縁性が確保される。最後に、絶縁チューブ58で覆われた中性線47の各スプライス端子52(各中性点51)側を、隣り合う巻回部45の隙間Gへ収納する(ステップS8)。 Next, the neutral wires 47 bundled together are inserted into the insulating tube 58 (step S7), so that the insulation of the entire neutral wires 47 extended from each winding portion 45 is ensured. You. Finally, the splice terminals 52 (neutral points 51) of the neutral wire 47 covered with the insulating tube 58 are housed in the gaps G between the adjacent winding portions 45 (step S8).
[第1の固定部の形成工程]
 図10Aは、実施例において、9本の中性線47が引き出された状態を示す平面図である。図10Bは、実施例において、9本の中性線47のうちの3本の中性線47によって第1固定部56を形成する状態を示す平面図である。図10Cは、実施例において、残りの6本の中性線47のうちの3本の中性線47によって第1固定部56を形成する状態を示す平面図である。図10Dは、実施例において、残りの3本の中性線47によって第1固定部56を形成する状態を示す平面図である。図10A~図10Dは、上インシュレータ24側から見たステータ22の上面図であり、9つのスロットである各巻回部45に、反時計回りの順に1~9の番号を付けている。
[Step of Forming First Fixed Part]
FIG. 10A is a plan view showing a state where nine neutral wires 47 are drawn out in the embodiment. FIG. 10B is a plan view illustrating a state in which the first fixing portion 56 is formed by three neutral wires 47 out of the nine neutral wires 47 in the example. FIG. 10C is a plan view illustrating a state in which the first fixing portion 56 is formed by three neutral wires 47 of the remaining six neutral wires 47 in the example. FIG. 10D is a plan view illustrating a state where the first fixing portion 56 is formed by the remaining three neutral wires 47 in the example. FIGS. 10A to 10D are top views of the stator 22 viewed from the upper insulator 24 side, and the winding portions 45 as nine slots are numbered 1 to 9 in a counterclockwise order.
 図10Aに示すように、3本のU相中性線47-U1~47-U3、3本のV相中性線47-V1~47-V3、及び3本のW相中性線47-W1~47-W3である9本の中性線47が、ステータ22の各巻回部45からそれぞれ引き出される。まず、図10A及び図10Bに示すように、9本の中性線47のうち、図中の2番、3番、4番の各巻回部45から引き出されたV相中性線47-V2、W相中性線47-W3及びU相中性線47-U1を上インシュレータ24の外周面に沿って延ばして、例えば、7番の巻回部45の近傍で互いに捩ることによって、3本の中性線47をまとめた状態でその根元が固定された第1固定部56が形成される。このとき、3本の中性線47のうち、V相中性線47-V2が時計回りに延ばされ、W相中性線47-W3及びU相中性線47-U1が反時計回りに延ばされて、3本の中性線47が互いに縒り合せられる。 As shown in FIG. 10A, three U-phase neutral lines 47-U1 to 47-U3, three V-phase neutral lines 47-V1 to 47-V3, and three W-phase neutral lines 47-U-47. Nine neutral wires 47 of W1 to 47-W3 are drawn out from the respective winding portions 45 of the stator 22. First, as shown in FIGS. 10A and 10B, of the nine neutral wires 47, a V-phase neutral wire 47-V2 drawn from each of the winding portions 45 of Nos. 2, 3, and 4 in the drawing. , W-phase neutral line 47-W3 and U-phase neutral line 47-U1 are extended along the outer peripheral surface of the upper insulator 24 and twisted with each other in the vicinity of the winding portion 45 of No. 7, for example. A first fixing portion 56 having a root fixed to the neutral wire 47 is formed. At this time, of the three neutral lines 47, the V-phase neutral line 47-V2 is extended clockwise, and the W-phase neutral line 47-W3 and the U-phase neutral line 47-U1 are rotated counterclockwise. And the three neutral wires 47 are twisted with each other.
 すなわち、第1固定部56では、上インシュレータ24の周方向における一方側へ向かって延ばされた中性線47と、上インシュレータ24の周方向における他方側へ向かって延ばされた中性線47とが互いに捩られて固定されている。3本の中性線47を捩る量は、例えば3回転程度が好ましく、3本の中性線47が、上インシュレータ24の周方向に対して一時的に固定(仮固定)される程度とすることで固定作業が簡単に行われる。3本の中性線47を上述のように引き回すことにより、インシュレータ24の周方向における一方側と他方側へそれぞれ延ばした中性線47が、インシュレータ24を挟んで互いに引っ張り合うように形成されるため、巻回部45から第1固定部56まで延ばされる中性線47にテンションがかかり、インシュレータ24に対して固定される。なお、3本の中性線47のうち、時計回りに延ばされる中性線47と、反時計回りに延ばされる中性線47は、上述の組み合せに限定されるものではなく、例えば、上インシュレータ24の周方向において第1固定部56を形成する位置に応じて適宜変更されてもよい。 That is, in the first fixing portion 56, the neutral wire 47 extending toward one side in the circumferential direction of the upper insulator 24 and the neutral wire 47 extending toward the other side in the circumferential direction of the upper insulator 24 47 are twisted and fixed to each other. The amount of twisting of the three neutral wires 47 is preferably, for example, about three rotations, and is such that the three neutral wires 47 are temporarily fixed (temporarily fixed) in the circumferential direction of the upper insulator 24. This makes the fixing work easy. By routing the three neutral wires 47 as described above, the neutral wires 47 extending to one side and the other side in the circumferential direction of the insulator 24 are formed so as to be mutually pulled with the insulator 24 interposed therebetween. Therefore, tension is applied to the neutral wire 47 extending from the winding portion 45 to the first fixing portion 56, and the neutral wire 47 is fixed to the insulator 24. Of the three neutral wires 47, the neutral wire 47 extending clockwise and the neutral wire 47 extending counterclockwise are not limited to the above-described combination. For example, the upper insulator It may be changed as appropriate in accordance with the position where the first fixing portion 56 is formed in the circumferential direction of the 24.
 続いて、上述の第1固定部56と同様に、図10B及び図10Cに示すように、残る6本の中性線47のうち、図中の5番、6番、7番の各巻回部45から引き出されたV相中性線47-V3、W相中性線47-W1及びU相中性線47-U2を上インシュレータ24の外周面に沿って延ばして、7番の巻回部45の近傍で互いに捩ることによって、3本の中性線47が固定された第1固定部56が形成される。このとき、3本の中性線47のうち、V相中性線47-V3が時計回りに延ばされ、W相中性線47-W1及びU相中性線47-U2が反時計回りに延ばされて、3本の中性線47が互いに捩られている。 Subsequently, similarly to the above-described first fixing portion 56, as shown in FIGS. 10B and 10C, among the remaining six neutral wires 47, each of the winding portions Nos. 5, 6, and 7 in the drawing The V-phase neutral line 47-V3, the W-phase neutral line 47-W1 and the U-phase neutral line 47-U2 drawn out from 45 are extended along the outer peripheral surface of the upper insulator 24, and a winding portion of No. 7 By twisting each other near 45, a first fixing portion 56 to which three neutral wires 47 are fixed is formed. At this time, of the three neutral lines 47, the V-phase neutral line 47-V3 is extended clockwise, and the W-phase neutral line 47-W1 and the U-phase neutral line 47-U2 are counterclockwise. And three neutral wires 47 are twisted with each other.
 続いて、上述の第1固定部56と同様に、図10C及び図10Dに示すように、残る3本の中性線47のうち、図中の8番、9番、1番の各巻回部45から引き出されたV相中性線47-V1、W相中性線47-W2及びU相中性線47-U3を上インシュレータ24の外周面に沿って延ばして、7番の巻回部45の近傍で互いに捩ることによって、3本の中性線47が固定された第1固定部56が形成される。このとき、3本の中性線47のうち、V相中性線47-V1及びW相中性線47-W2が時計回りに延ばされ、U相中性線47-U3が反時計回りに延ばされて、3本の中性線47が互いに捩られている。 Subsequently, similarly to the above-described first fixing portion 56, as shown in FIGS. 10C and 10D, among the remaining three neutral wires 47, each of the winding portions No. 8, No. 9 and No. 1 in the drawing The V-phase neutral line 47-V1, the W-phase neutral line 47-W2, and the U-phase neutral line 47-U3 drawn from 45 are extended along the outer peripheral surface of the upper insulator 24, and a winding portion of No. 7 By twisting each other near 45, a first fixing portion 56 to which three neutral wires 47 are fixed is formed. At this time, of the three neutral lines 47, the V-phase neutral line 47-V1 and the W-phase neutral line 47-W2 are extended clockwise, and the U-phase neutral line 47-U3 is rotated counterclockwise. And three neutral wires 47 are twisted with each other.
 図10Dに示すように、9本の中性線47は、3本の中性線47を1組として、3組の中性線47が、3つの各第1固定部56から引き出される。3つの第1固定部56は、ステータ22の周方向において互いに近接して配置されており、後述する3組の中性線47の縒り合せ作業を容易に行うことができる。なお、上述のように3本の中性線47を1組として引き回す構成に限定されず、モータの構造に応じて、少なくとも2本の中性線47が互いに逆向き(時計回りと反時計回り)に引き回されればよい。 DAs shown in FIG. 10D, three neutral wires 47 are drawn out of the three first fixing portions 56 with three neutral wires 47 as one set. The three first fixing portions 56 are arranged close to each other in the circumferential direction of the stator 22, and can easily perform the operation of twisting three sets of neutral wires 47 described later. Note that the configuration is not limited to the configuration in which the three neutral wires 47 are routed as one set as described above, and at least two neutral wires 47 are opposite to each other (clockwise and counterclockwise) depending on the structure of the motor. ).
 ステータ22は、第1固定部56を有することにより、9本の中性線47を上インシュレータ24に固定することができるので、例えば、組み立て作業時に、インシュレータ24の外周面に沿って延ばした中性線47の移動を抑えることできる。加えて、ステータ22は、第1固定部56を有することにより、中性点51で結線される3本の中性線47の根元が固定されるので、3本の中性線47を1組として中性点51で結線する作業を容易に行うことが可能になる。 Since the stator 22 has the first fixing portion 56, the nine neutral wires 47 can be fixed to the upper insulator 24. For example, during the assembly work, the neutral line 47 extends along the outer peripheral surface of the insulator 24. The movement of the sex line 47 can be suppressed. In addition, since the stator 22 has the first fixing portion 56, the roots of the three neutral wires 47 connected at the neutral point 51 are fixed, so that one set of three neutral wires 47 is formed. As a result, it is possible to easily perform the work of connecting at the neutral point 51.
[第2の固定部の形成工程]
 図11Aは、実施例において、3組の中性線47の長さを揃えた状態を示す側面図である。図11Bは、実施例において、3組の中性線47の各々を圧着により接合した状態を示す側面図である。図11Aに示すように、3つの各第1固定部56から引き延ばされた3組の中性線47は、一端を切断することによって、第1固定部56からの長さが揃えられる。第1固定部56を形成することで、中性線47の長さを容易に揃えることができる。続いて、図11Bに示すように、3組の中性線47ごとに、スプライス端子52を介して圧着により接合する。第1固定部56で3本の中性線47が一組にまとめられているので、スプライス端子52を介してU相、V相、W相の各中性線47を接合する際に、互いに結線する相を誤って接合することが防止でき、組み立ての作業性が高められる。
[Step of Forming Second Fixed Part]
FIG. 11A is a side view showing a state in which the lengths of three sets of neutral wires 47 are aligned in the embodiment. FIG. 11B is a side view showing a state in which three sets of neutral wires 47 are joined by crimping in the example. As shown in FIG. 11A, three sets of neutral wires 47 extended from each of the three first fixing portions 56 have the same length from the first fixing portions 56 by cutting one end. By forming the first fixing portion 56, the lengths of the neutral wires 47 can be easily made uniform. Subsequently, as shown in FIG. 11B, bonding is performed by crimping via a splice terminal 52 for each of the three neutral wires 47. Since the three neutral wires 47 are grouped together in the first fixing portion 56, when the U-phase, V-phase, and W-phase neutral wires 47 are joined via the splice terminal 52, The phases to be connected can be prevented from being erroneously joined, and the workability of assembly can be improved.
 図11Cは、実施例において、3組の中性線47を一束にまとめた状態を示す側面図である。図11Dは、実施例において、一束にまとめられた中性線47が絶縁チューブ58で覆われた状態を示す側面図である。図11Cに示すように、3組の中性線47を縒り合せることによって、一束にまとめられた第2固定部57が形成される。第2固定部57が形成されることで、上インシュレータ24の外周壁部41に沿って引き回された中性線47に作用するテンションが更に高められ、圧縮機1の運転時のステータ22の振動による中性線47の移動が抑えられる。 FIG. 11C is a side view showing a state in which three sets of neutral wires 47 are combined into one bundle in the example. FIG. 11D is a side view showing a state in which the neutral wires 47 bundled together are covered with the insulating tube 58 in the embodiment. As shown in FIG. 11C, by twisting the three sets of neutral wires 47, the second fixing portion 57 integrated into one bundle is formed. By forming the second fixing portion 57, the tension acting on the neutral wire 47 routed along the outer peripheral wall portion 41 of the upper insulator 24 is further increased, and the stator 22 during the operation of the compressor 1 is increased. The movement of the neutral wire 47 due to vibration is suppressed.
 なお、本実施例では、3組の中性線47を一束にまとめて、スプライス端子52(中性点51)までの間にわたって縒り合せられて第2固定部57が形成されるが、この構造に限定されるものではなく、一束にまとめられた3組の中性線47の一部のみが捩じられて第2固定部57が形成されてもよい。 In the present embodiment, three sets of neutral wires 47 are bundled together and twisted up to the splice terminal 52 (neutral point 51) to form the second fixing portion 57. The structure is not limited to the structure, and only a part of the three sets of neutral wires 47 combined into one bundle may be twisted to form the second fixing portion 57.
 続いて、図11Dに示すように、3組の中性線47がまとめられた第2固定部57及びスプライス端子52が絶縁チューブ58によって覆われることにより、第1固定部56から中性点51にわたって絶縁される。第2固定部57で3組の中性線47が一束にまとめられることにより、3組の中性線47を個別に絶縁することなく、1つの絶縁チューブ58で一括して絶縁することが可能になり、製造コストの増加が抑えられる。絶縁チューブ58で覆われた第2固定部57は、図2に示すように、上インシュレータ24の外周側から、切り欠きとしてのスリット44を通って、隣り合う巻回部45の間の隙間Gに挿入されている。 Subsequently, as shown in FIG. 11D, the second fixing portion 57 and the splice terminal 52 in which the three sets of neutral wires 47 are gathered are covered with the insulating tube 58, so that the neutral point 51 is shifted from the first fixing portion 56. Insulated over Since the three sets of neutral wires 47 are combined into one bundle by the second fixing portion 57, the three sets of neutral wires 47 can be collectively insulated by one insulating tube 58 without individually insulating the three sets of neutral wires 47. This makes it possible to suppress an increase in manufacturing cost. As shown in FIG. 2, the second fixing portion 57 covered with the insulating tube 58 passes through the slit 44 as a notch from the outer peripheral side of the upper insulator 24 and passes through a gap G between the adjacent winding portions 45. Has been inserted.
 第2固定部57は、巻回部45の間の隙間Gに対して、ステータ22の径方向における外周側に挿入されて配置されており、ロータ21との干渉が抑えられている。また、第2固定部57は、ステータ22の中心軸方向、すなわち圧縮機1における鉛直方向に沿って挿入されている。絶縁チューブ58の中性点51側は、扁平な帯状に形成されており、扁平状の絶縁チューブ58が、ステータ22の中心軸方向に沿って挿入されることにより、隙間Gを通る冷媒や冷凍機油の流動抵抗となることが抑えられている。これにより、隙間Gを通過する冷凍機油の流速が高くなることが抑えられるので、圧縮機1の外部へ冷凍機油が排出される量を抑えることが可能になる。 The second fixed portion 57 is inserted into the gap G between the winding portions 45 on the outer circumferential side of the stator 22 in the radial direction, and interference with the rotor 21 is suppressed. Further, the second fixing portion 57 is inserted along the central axis direction of the stator 22, that is, along the vertical direction of the compressor 1. The neutral point 51 side of the insulating tube 58 is formed in a flat band shape, and the flat insulating tube 58 is inserted along the center axis direction of the stator 22 so that refrigerant or refrigeration passing through the gap G is formed. The flow resistance of the machine oil is suppressed. Thus, the flow rate of the refrigerating machine oil passing through the gap G is suppressed from increasing, and the amount of the refrigerating machine oil discharged to the outside of the compressor 1 can be suppressed.
 上述のように実施例の3相モータ6の巻き線46において、複数の中性線47は、複数の中性点51よりも巻回部45側の位置で互いに固定された複数の第1固定部56と、複数の第1固定部56から複数の中性点51までの間で複数の中性線47が互いに固定された第2固定部57と、を有する。例えば、9本の中性線47を半田付けで接合する場合と比べて、中性点51で結線される3本の中性線47を一組として第1固定部56で互いに固定されると共に、3組の中性線47が第2固定部67で互いに固定されることにより、9本の中性線47を容易に取り扱い、所定の組み合せで結線される3本の中性線47の組み合せの間違えを防ぐことが可能になる。このため、3相モータ6の組み立ての作業性を高め、組立作業の効率を高めることができる。 As described above, in the winding 46 of the three-phase motor 6 of the embodiment, the plurality of neutral wires 47 are fixed to each other at a position closer to the winding part 45 than the plurality of neutral points 51. A portion 56 and a second fixing portion 57 to which a plurality of neutral lines 47 are fixed to each other between the plurality of first fixing portions 56 and the plurality of neutral points 51. For example, as compared with a case where nine neutral wires 47 are joined by soldering, three neutral wires 47 connected at the neutral point 51 are fixed to each other by the first fixing portion 56 as one set, and Since the three neutral wires 47 are fixed to each other by the second fixing portion 67, the nine neutral wires 47 can be easily handled, and the combination of the three neutral wires 47 can be connected in a predetermined combination. Mistakes can be prevented. Therefore, the workability of assembling the three-phase motor 6 can be improved, and the efficiency of the assembling work can be increased.
 加えて、第1固定部56で固定された3組の中性線47を縒り合せることにより、第1固定部56によって各組の中性線47が規制された状態で縒り合せることができるので、例えば、第1固定部56で固定されていない9本の中性線47を束ねて縒り合せる場合と比べて、9本の中性線47を縒り合せる作業が容易になり、9本の中性線47が一束にまとめられた第2固定部57を容易に形成することができる。 In addition, by twisting the three sets of neutral wires 47 fixed by the first fixing portion 56, the neutral wires 47 can be twisted in a state where the neutral wires 47 are regulated by the first fixing portion 56. For example, as compared with a case where nine neutral wires 47 not fixed by the first fixing portion 56 are bundled and twisted, the operation of twisting the nine neutral wires 47 becomes easier, and The second fixing portion 57 in which the sex wires 47 are bundled can be easily formed.
 また、実施例の3相モータ6における複数の第1固定部56は、ステータ22の周方向に沿って延ばされた中性線47同士が捩られることで、複数の中性線47が互いに捩られて固定されている。これにより、複数の中性線47をステータ22に容易に仮固定することができる。 Further, the plurality of first fixing portions 56 in the three-phase motor 6 of the embodiment are configured such that the neutral wires 47 extending along the circumferential direction of the stator 22 are twisted, so that the neutral wires 47 are It is twisted and fixed. This makes it possible to easily temporarily fix the plurality of neutral wires 47 to the stator 22.
 また、実施例の3相モータ6における複数の第1固定部56は、ステータ22の周方向において互いに近接して配置されている。これにより、第1固定部56から延ばされた複数組の中性線47を一束に縒り合せ易くなるので、第2固定部57を容易に形成することができる。また、第1固定部56から中性点51までの複数組の中性線47の長さを容易に揃えて切断することが可能になる。 In addition, the plurality of first fixing portions 56 in the three-phase motor 6 of the embodiment are arranged close to each other in the circumferential direction of the stator 22. This makes it easy to twist a plurality of sets of neutral wires 47 extended from the first fixing portion 56 into a single bundle, so that the second fixing portion 57 can be easily formed. Further, it is possible to easily align the lengths of the neutral lines 47 from the first fixing portion 56 to the neutral point 51 and cut the neutral lines 47.
 また、実施例の3相モータ6における複数の第1固定部56では、上インシュレータ24の周方向における一方側へ向かって延ばされた中性線47と、上インシュレータ24の周方向における他方側へ向かって延ばされた中性線47とが互いに捩られて固定されている。これにより、中性線47を上インシュレータ24に容易に固定することができる。 In the plurality of first fixing portions 56 of the three-phase motor 6 of the embodiment, the neutral wire 47 extending toward one side in the circumferential direction of the upper insulator 24 and the other side in the circumferential direction of the upper insulator 24 are provided. Neutral wire 47 extending toward is twisted and fixed to each other. Thereby, neutral wire 47 can be easily fixed to upper insulator 24.
 また、実施例の3相モータ6における第2固定部57は、複数の中性点51の各々で接続された複数組の中性線47が一束に縒り合せられている。これにより、複数の中性線47が一束にまとめられた第2固定部57を容易に形成することができる。 In the second fixed portion 57 of the three-phase motor 6 of the embodiment, a plurality of sets of neutral wires 47 connected at each of the plurality of neutral points 51 are twisted in a bundle. This makes it possible to easily form the second fixing portion 57 in which the plurality of neutral wires 47 are bundled.
 また、実施例の3相モータ6における第2固定部57は、絶縁チューブ58で覆われ、隣り合う巻回部45の間の隙間Gに挿入されている。これにより、3相モータ6の使用時に第2固定部57が移動することが抑えられ、ステータ22の隙間Gによって第2固定部57を安定して保持することができる。また、第2固定部57が絶縁チューブ58で覆われることにより、複数組の中性線47を個別に絶縁する構造と比べて、複数組の中性線47を一括して絶縁することが可能になり、3相モータ6の製造コストの増加を抑えることができる。 The second fixing portion 57 of the three-phase motor 6 according to the embodiment is covered with the insulating tube 58 and inserted into the gap G between the adjacent winding portions 45. Accordingly, the movement of the second fixing portion 57 during use of the three-phase motor 6 is suppressed, and the second fixing portion 57 can be stably held by the gap G of the stator 22. Further, since the second fixing portion 57 is covered with the insulating tube 58, it is possible to collectively insulate the plural sets of neutral wires 47 as compared with the structure in which the plural sets of neutral wires 47 are individually insulated. Therefore, an increase in the manufacturing cost of the three-phase motor 6 can be suppressed.
 また、実施例の3相モータ6における第2固定部57は、ステータ22の径方向における隙間Gの外周側に挿入されている。これにより、隙間Gに挿入された第2固定部57とロータ21との干渉を避けることができる。 The second fixed portion 57 of the three-phase motor 6 of the embodiment is inserted on the outer peripheral side of the gap G in the radial direction of the stator 22. Thus, interference between the second fixed portion 57 inserted into the gap G and the rotor 21 can be avoided.
 また、実施例の3相モータ6における第2固定部57は、上インシュレータ24の外周側からスリット44を通って、隣り合う巻回部45の間の隙間Gに挿入されている。これにより、第1固定部56から引き回された第2固定部57がスリット44に支持されるので、第2固定部57が上インシュレータ24に対して移動することが抑えられ、隙間Gに挿入された第2固定部57の取付け状態の安定性を更に高めることができる。 The second fixing portion 57 of the three-phase motor 6 of the embodiment is inserted into the gap G between the adjacent winding portions 45 from the outer peripheral side of the upper insulator 24 through the slit 44. As a result, the second fixing portion 57 drawn from the first fixing portion 56 is supported by the slit 44, so that the second fixing portion 57 is prevented from moving with respect to the upper insulator 24, and is inserted into the gap G. The stability of the mounted state of the second fixing portion 57 can be further enhanced.
 なお、本実施例では、3相モータがロータリ圧縮機に適用されたが、ロータリ圧縮機に限定されず、スクロール圧縮機に適用されてもよい。また、本実施例では、第1固定部56は複数の中性線47が捩じられて形成され、第2固定部57は複数組の中性線47が捩じられて形成されているが、これに限定されず、第1固定部56と第2固定部57は結束具などの固定部材により形成されてもよい。また、巻き線46の巻回手順は本実施例に限定されず、例えば、1本ずつの巻き線がティース毎に巻回されるように行ってもよい。 In the present embodiment, the three-phase motor is applied to the rotary compressor, but is not limited to the rotary compressor, and may be applied to a scroll compressor. In this embodiment, the first fixing portion 56 is formed by twisting a plurality of neutral wires 47, and the second fixing portion 57 is formed by twisting a plurality of sets of neutral wires 47. However, the present invention is not limited thereto, and the first fixing portion 56 and the second fixing portion 57 may be formed by a fixing member such as a binding device. In addition, the winding procedure of the winding 46 is not limited to the present embodiment. For example, the winding may be performed such that one winding is wound for each tooth.
  1 圧縮機
  3 シャフト(回転軸)
  5 圧縮部
  6 3相モータ
 21 ロータ
 22 ステータ
 24 上インシュレータ(インシュレータ)
 32-1 第1ステータコアティース部(ティース)
 32-2 第2ステータコアティース部(ティース)
 32-3 第3ステータコアティース部(ティース)
 32-4 第4ステータコアティース部(ティース)
 32-5 第5ステータコアティース部(ティース)
 41 外周壁部
 44 スリット(切り欠き)
 45 巻回部
 46(46-U1~46-U3) 複数のU相巻き線
 46(46-V1~46-V3) 複数のV相巻き線
 46(46-W1~46-W3) 複数のW相巻き線
 47(47-U1~47-U3) 複数のU相中性線
 47(47-V1~47-V3) 複数のV相中性線
 47(47-W1~47-W3) 複数のW相中性線
 48-U1~48-U3 複数のU相電源線
 48-V1~48-V3 複数のV相電源線
 48-W1~48-W3 複数のW相電源線
 49-U1 第1U相渡り線部分
 49-U2 第2U相渡り線部分
 49-V1 第1V相渡り線部分
 49-V2 第2V相渡り線部分
 49-W1 第1W相渡り線部分
 49-W2 第2W相渡り線部分
 51(51-1~51-3) 中性点
 56 第1固定部
 57 第2固定部
 52(52-1) 第1スプライス端子(接続部材)
 52(52-2) 第2スプライス端子(接続部材)
 52(52-3) 第3スプライス端子(接続部材)
 58 絶縁チューブ(絶縁部材)
  G 隙間
1 compressor 3 shaft (rotary axis)
5 Compression section 6 Three-phase motor 21 Rotor 22 Stator 24 Upper insulator (insulator)
32-1 First stator core teeth section (teeth)
32-2 Second stator core teeth (teeth)
32-3 Third stator core teeth (teeth)
32-4 4th stator core teeth section (teeth)
32-5 Fifth stator core teeth part (teeth)
41 outer peripheral wall 44 slit (notch)
45 Winding part 46 (46-U1 to 46-U3) Plural U-phase windings 46 (46-V1 to 46-V3) Plural V-phase windings 46 (46-W1 to 46-W3) Plural W phases Winding 47 (47-U1 to 47-U3) Multiple U-phase neutral lines 47 (47-V1 to 47-V3) Multiple V-phase neutral lines 47 (47-W1 to 47-W3) Multiple W phases Neutral wire 48-U1 to 48-U3 Multiple U-phase power lines 48-V1 to 48-V3 Multiple V-phase power lines 48-W1 to 48-W3 Multiple W-phase power lines 49-U1 First U-phase crossover line Portion 49-U2 Second U-phase crossover 49-V1 First V-phase crossover 49-V2 Second V-phase crossover 49-W1 First W-phase crossover 49-W2 Second W-phase crossover 51 (51-51) 1 to 51-3) Neutral point 56 First fixing part 57 Second fixing part 52 (52- ) First splice terminal (connecting member)
52 (52-2) Second splice terminal (connection member)
52 (52-3) 3rd splice terminal (connection member)
58 Insulating tube (insulating member)
G gap

Claims (9)

  1.  ロータと、前記ロータを回転させる磁界を生成するステータと、を備え、
     前記ステータは、
     複数のティースと、
     前記複数のティースの各々に巻回された巻回部と、前記巻回部の一端側に設けられた中性線と、前記巻回部の他端側に設けられた電源線と、を有する複数の巻き線と、
     複数の前記中性線が接続部材を介して電気的に接続された複数の中性点と、を有し、
     前記複数の中性線は、前記複数の中性点よりも前記巻回部側の位置で互いに固定された複数の第1固定部と、前記複数の第1固定部から前記複数の中性点までの間で前記複数の中性線が互いに固定された第2固定部と、を有する、モータ。
    A rotor, and a stator for generating a magnetic field for rotating the rotor,
    The stator is
    With multiple teeth,
    It has a winding part wound around each of the plurality of teeth, a neutral wire provided on one end side of the winding part, and a power supply line provided on the other end side of the winding part. Multiple windings,
    And a plurality of neutral points where the plurality of neutral wires are electrically connected via a connection member,
    The plurality of neutral lines are: a plurality of first fixing portions fixed to each other at a position closer to the winding portion than the plurality of neutral points; and the plurality of neutral points from the plurality of first fixing portions. And a second fixing portion in which the plurality of neutral wires are fixed to each other.
  2.  前記複数の第1固定部は、前記ステータの周方向に沿って延ばされた前記中性線同士が捩られることで、前記複数の中性線が互いに固定されている、
    請求項1に記載のモータ。
    The plurality of first fixing portions are fixed to each other by twisting the neutral wires extended along the circumferential direction of the stator,
    The motor according to claim 1.
  3.  前記複数の第1固定部は、前記ステータの周方向において互いに近接して配置されている、
    請求項1または2に記載のモータ。
    The plurality of first fixing portions are arranged close to each other in a circumferential direction of the stator.
    The motor according to claim 1.
  4.  前記モータは、3相モータであり、
     前記複数の中性線は、3本の中性線ごとに前記接続部材を介して圧着により接合されている、
    請求項1ないし3のいずれか1項に記載のモータ。
    The motor is a three-phase motor;
    The plurality of neutral wires are joined by crimping via the connection member for each of the three neutral wires,
    The motor according to any one of claims 1 to 3.
  5.  前記ステータの両端に固定されるインシュレータを更に備え、
     前記複数の第1固定部では、前記インシュレータの周方向における一方側へ向かって延ばされた中性線と、前記周方向における他方側へ向かって延ばされた中性線とが互いに捩られて固定されている、
    請求項1ないし4のいずれか1項に記載のモータ。
    Further comprising an insulator fixed to both ends of the stator,
    In the plurality of first fixing portions, a neutral wire extending toward one side in the circumferential direction of the insulator and a neutral wire extending toward the other side in the circumferential direction are twisted with each other. Fixed
    The motor according to any one of claims 1 to 4.
  6.  前記第2固定部は、前記複数の中性点の各々で接続された複数組の中性線が一束に縒り合せられている、
    請求項1ないし5のいずれか1項に記載のモータ。
    The second fixed portion is a plurality of neutral wires connected at each of the plurality of neutral points are twisted together in a bundle,
    The motor according to any one of claims 1 to 5.
  7.  前記第2固定部は、絶縁部材で覆われ、隣り合う前記巻回部の間の隙間に挿入されている、
    請求項1ないし6のいずれか1項に記載のモータ。
    The second fixing portion is covered with an insulating member, and is inserted into a gap between the adjacent winding portions.
    The motor according to any one of claims 1 to 6.
  8.  前記インシュレータは、前記インシュレータの外周側と前記巻回部とを連通させる切り欠きを有し、
     前記第2固定部は、前記インシュレータの外周側から前記切り欠きを通って、隣り合う前記巻回部の間の隙間に挿入されている、
    請求項5に記載のモータ。
    The insulator has a notch that allows the outer peripheral side of the insulator to communicate with the winding portion,
    The second fixing portion is inserted into the gap between the adjacent winding portions through the notch from the outer peripheral side of the insulator,
    A motor according to claim 5.
  9.  請求項1ないし8のいずれか1項に記載のモータと、
     前記ロータが回転軸を回転させすることで冷媒を圧縮する圧縮部と、
    を備える圧縮機。
    A motor according to any one of claims 1 to 8,
    A compression unit that compresses the refrigerant by rotating the rotation shaft of the rotor,
    A compressor comprising:
PCT/JP2019/035652 2018-09-18 2019-09-11 Motor and compressor WO2020059586A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980060734.XA CN112714993A (en) 2018-09-18 2019-09-11 Motor and compressor
US17/276,372 US11955855B2 (en) 2018-09-18 2019-09-11 Motor and compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018174096A JP6729651B2 (en) 2018-09-18 2018-09-18 Motor and compressor
JP2018-174096 2018-09-18

Publications (1)

Publication Number Publication Date
WO2020059586A1 true WO2020059586A1 (en) 2020-03-26

Family

ID=69887019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035652 WO2020059586A1 (en) 2018-09-18 2019-09-11 Motor and compressor

Country Status (4)

Country Link
US (1) US11955855B2 (en)
JP (1) JP6729651B2 (en)
CN (1) CN112714993A (en)
WO (1) WO2020059586A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6729651B2 (en) * 2018-09-18 2020-07-22 株式会社富士通ゼネラル Motor and compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231205A (en) * 2000-02-14 2001-08-24 Mitsubishi Electric Corp Stator of ac generator
JP2004328917A (en) * 2003-04-25 2004-11-18 Nissan Motor Co Ltd Synchronous motor
JP2011078287A (en) * 2009-10-02 2011-04-14 Daikin Industries Ltd Armature and manufacturing method therefor
JP2014068480A (en) * 2012-09-26 2014-04-17 Aisin Aw Co Ltd Rotary electric machine
JP2018133952A (en) * 2017-02-17 2018-08-23 日立ジョンソンコントロールズ空調株式会社 Stator and compressor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005027314A1 (en) 2003-09-10 2005-03-24 Aisin Aw Co., Ltd. Jig, method, and device for assembling coil
CN2655494Y (en) * 2003-10-31 2004-11-10 日本电产芝浦株式会社 Moulded motor
KR100725738B1 (en) * 2005-09-30 2007-06-08 삼성전자주식회사 Motor
DE102006002900B4 (en) * 2006-01-20 2007-12-20 Siemens Ag Electric machine with a three-strand winding system
JP2010166643A (en) 2009-01-13 2010-07-29 Mitsubishi Electric Corp Hermetically sealed compressor and refrigeration cycle device
WO2013077190A1 (en) * 2011-11-22 2013-05-30 本田技研工業株式会社 Rotary electric machine
WO2013136646A1 (en) 2012-03-13 2013-09-19 パナソニック株式会社 Motor and method for manufacturing stator therefor
FR3004866B1 (en) * 2013-04-23 2015-05-22 Valeo Equip Electr Moteur ELECTRIC MACHINE STATOR WITH INSULATION SLEEVES CONNECTED TO COILS HAVING AN OPTIMIZED LENGTH AND CORRESPONDING ELECTRIC MACHINE
JP6159819B2 (en) * 2013-11-12 2017-07-05 日立オートモティブシステムズ株式会社 Stator and rotating electric machine equipped with the same
JP6368598B2 (en) * 2014-09-16 2018-08-01 日立ジョンソンコントロールズ空調株式会社 Rotating electric machine stator, compressor and air conditioner
JP6539997B2 (en) * 2014-11-25 2019-07-10 日本電産株式会社 motor
WO2016158062A1 (en) * 2015-03-31 2016-10-06 アイシン・エィ・ダブリュ株式会社 Stator
BR112017022426B1 (en) * 2015-04-21 2019-10-22 Mitsuba Corp external rotor type rotary electric machine
JP6566262B2 (en) * 2016-03-17 2019-08-28 株式会社デンソー Rotating electric machine stator
US11245301B2 (en) * 2017-03-31 2022-02-08 Nidec Corporation Bus bar unit and motor including the same
JP6729651B2 (en) * 2018-09-18 2020-07-22 株式会社富士通ゼネラル Motor and compressor
JP7326770B2 (en) * 2019-02-28 2023-08-16 株式会社富士通ゼネラル motor and compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231205A (en) * 2000-02-14 2001-08-24 Mitsubishi Electric Corp Stator of ac generator
JP2004328917A (en) * 2003-04-25 2004-11-18 Nissan Motor Co Ltd Synchronous motor
JP2011078287A (en) * 2009-10-02 2011-04-14 Daikin Industries Ltd Armature and manufacturing method therefor
JP2014068480A (en) * 2012-09-26 2014-04-17 Aisin Aw Co Ltd Rotary electric machine
JP2018133952A (en) * 2017-02-17 2018-08-23 日立ジョンソンコントロールズ空調株式会社 Stator and compressor

Also Published As

Publication number Publication date
JP6729651B2 (en) 2020-07-22
CN112714993A (en) 2021-04-27
US20220045569A1 (en) 2022-02-10
US11955855B2 (en) 2024-04-09
JP2020048303A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
US10355547B2 (en) Rotary electric machine
JP7326770B2 (en) motor and compressor
US9450463B2 (en) Phase winding and connection methods for three phase dynamoelectric machines
WO2012017727A1 (en) Hermetically sealed compressor
JPH0739097A (en) Motor
JP2013165639A (en) Electric machine module cooling system and method
WO2020059586A1 (en) Motor and compressor
JP5529073B2 (en) Stator, motor and compressor
US8405274B2 (en) Motor stator and phase coil preform
EP3285371B1 (en) Stator, and motor and compressor which have same
JP7283049B2 (en) compressor
KR20120076172A (en) Motor for compressor and compressor having the same
JP7176394B2 (en) Rotating electric machine
JP7371714B2 (en) 3-phase motor manufacturing method and 3-phase motor
JP7279301B2 (en) 3-phase motor and compressor
JP7143606B2 (en) 3-phase motor and compressor
JP7105241B2 (en) Stator and stator coil
JP2022115440A (en) Dynamo-electric motor and compressor
US20220263374A1 (en) Motor, compressor, and motor manufacturing method
JP6444084B2 (en) Rotating machine
WO2022202786A1 (en) Electric motor and compressor
WO2023054485A1 (en) Electric compressor
WO2022071025A1 (en) Insulator and motor
JP2023088076A (en) Motor-driven compressor
JPH03235636A (en) Stator for motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863737

Country of ref document: EP

Kind code of ref document: A1