WO2023054485A1 - Electric compressor - Google Patents

Electric compressor Download PDF

Info

Publication number
WO2023054485A1
WO2023054485A1 PCT/JP2022/036205 JP2022036205W WO2023054485A1 WO 2023054485 A1 WO2023054485 A1 WO 2023054485A1 JP 2022036205 W JP2022036205 W JP 2022036205W WO 2023054485 A1 WO2023054485 A1 WO 2023054485A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
stator
housing
windings
electric compressor
Prior art date
Application number
PCT/JP2022/036205
Other languages
French (fr)
Japanese (ja)
Inventor
慎介 宮前
イメド ギタリ
モハメド カンチョール
ショーン・マイケル カフマイヤ
ロスティスラフ ハダス
Original Assignee
株式会社ヴァレオジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヴァレオジャパン filed Critical 株式会社ヴァレオジャパン
Priority to JP2023551610A priority Critical patent/JPWO2023054485A1/ja
Publication of WO2023054485A1 publication Critical patent/WO2023054485A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto

Definitions

  • the present invention relates to technology for improving the motor of an electric compressor.
  • Patent Document 1 and Patent Document 2 are known as stators for three-phase AC motors used in electric equipment.
  • the stator includes an annular stator core formed with a plurality of teeth and insulators provided at both ends of the stator core.
  • the insulator has a hook on one end side in the axial direction and on the outer side in the radial direction for hooking the winding end of each coil (winding).
  • the coil is intensively wound around one tooth via insulators provided at both ends of the stator core.
  • the winding end of this coil is hooked on a hook, passed to the next tooth, and concentratedly wound.
  • the winding end of the previous coil becomes a connecting wire that continues to the winding start end of the next coil. In this way, the crossover wires connecting the coils wound around the teeth are arranged radially outside the stator.
  • the beginning and end of the three-phase coil are wired, pulled out, and terminated so that they can be connected to an inverter device that supplies three-phase power.
  • Both the connecting wire and the lead wire (terminal) of the coil are provided on one end side of the stator core.
  • an electric compressor equipped with such a three-phase motor is disclosed in Patent Document 3.
  • an inverter housing covers an open end of a housing (motor housing) made of an aluminum alloy and having a bottomed tubular shape.
  • a lead wire drawn out from one end of the stator core can be engaged with a hermetic pin of the inverter housing through the cluster block.
  • the open end side of the housing has a large inner diameter, and even if a connecting wire (not shown) is arranged near the outer diameter of the coil end as in Patent Document 1 and Patent Document 2, the insulation distance can be maintained. It is designed to be
  • the housing is constructed by casting. It is difficult to increase the inner diameter of the material surface on the back side of the bottomed cylindrical shape by casting, so the inner diameter of the part facing the coil crossover on the bottom wall side (back side) inside the housing is increased by cutting. must be removed. This increases the production cost of the electric compressor.
  • the present invention has been made to solve the above-described problems, and is an electric compressor in which a motor is provided on the inner bottom wall side of a cylindrical housing with a bottom, while ensuring the quality of the housing.
  • An object of the present invention is to provide a technology capable of suppressing the production cost of an electric compressor.
  • a compression mechanism (50) for compressing gas a motor (100) for driving the compression mechanism (50), an inverter device (160) for supplying drive power to the motor (100), and a housing (20), which is a cylindrical member with a bottom and houses the motor (100) therein, and at least part of the compression mechanism (50) is in the housing (20)
  • An electric compressor (10; 200) provided on the side of an internal opening (22), wherein the inverter device (160) is provided on the outer wall surface (21a) of the bottom wall (21) of the housing (20).
  • the motor (100) includes a rotor (102) whose center of rotation is the longitudinal direction of the housing (20), and an inner peripheral surface of the housing (20) arranged radially outside the rotor (102).
  • An annular stator (103) fixed to (20a) is provided, and the stator (103) is a stator core ( 111) and a plurality of conducting wires (120) wound around the plurality of teeth (111c), wherein the plurality of conducting wires (120) are individually wound around the plurality of teeth (111c) by concentrated winding.
  • the bottomed cylindrical housing has a motor on the inner bottom wall side, a compression mechanism on the inner opening side, and an inverter device on the opposite side of the bottom wall to the motor.
  • the stator of the motor has a first end on the bottom wall side of the housing (inverter device side) and a second end on the opening side of the housing (compression mechanism side). All lead wires of the stator are led out from the first end of the stator and can be connected to the inverter device through the bottom wall of the housing.
  • all the connecting wires of the stator are arranged at the second end of the stator, and as a result, are positioned on the opening side of the inner peripheral surface of the housing.
  • the inner peripheral surface on the opening side can be expanded in the radial direction in advance in the preparation stage of the casting mold. Therefore, it is not necessary to partially cut the inner peripheral surface in a post-process in order to secure the interval (insulation distance) between the crossover wire and the inner peripheral surface. Since cutting is not required, there is no need to consider the thickness of the cut portion. Moreover, even if cutting is performed, it is possible to suppress the machining margin to a necessary minimum. Therefore, the production cost of the electric compressor can be suppressed.
  • the plurality of conducting wires (120) form a plurality of winding groups (131 to 133) for three-phase alternating current, and in each of the plurality of winding groups (131 to 133), the plurality of windings
  • the line (121) is connected in series via the plurality of connecting wires (122), and in each of the plurality of winding groups (131-133), at least Since one number of turns (Na) is different from the other number of turns (Nb), all of the plurality of connecting wires (122) are connected to the first and second lead wires (123) with respect to the stator (103). , 124).
  • the number of turns of at least one winding is different from the number of turns of the other windings. Therefore, all of the plurality of connecting wires can be easily positioned on the side opposite to the first and second lead wires with respect to the stator.
  • the number of turns (Na) of the first winding (121a) is half the number of turns (Nb) of the other windings (121b).
  • the number of turns (Na) of one of the plurality of windings (121) is different from the number of turns (Nb) of the other windings (121).
  • all of the plurality of connecting wires can be connected to the first and second lead-outs of the stator by a simple configuration in which the number of turns of the first winding is set to be half less than the number of turns of the other windings. It can easily be positioned on the opposite side of the line.
  • the plurality of crossover wires (122) are return crossover wires (122a) returning from the other windings (121b) to the teeth (111c) around which the first winding (121a) is wound.
  • the return connecting wire (122a) is connected to an additional winding (121d) passing along only half the circumference of the teeth (111c) around which the first winding (121a) is wound.
  • the additional winding (121d) extends from the return crossover wire (122a) to the second lead wire (124) with respect to the teeth (111c) around which the first winding (121a) is wound, and It extends in the same direction as the winding direction (A2) of the first winding (121a).
  • the additional winding extends along only half the circumference of the teeth around which the first winding is wound, from the return connecting wire to the second lead wire, and in the same direction as the winding direction of the first winding. ing. That is, the additional winding generally adds half a turn to the initial winding. Fewer turns in the first winding can be compensated for by additional windings. As a result, the flux of the first winding can be supplemented to be similar to that of the other windings.
  • the plurality of first and second lead wires and the plurality of crossover wires are arranged on opposite sides of the stator, and the magnetic flux of the first winding is distributed in the same manner as the magnetic flux of the other windings. can be compensated to be
  • the end portion (121de) of the additional winding (121d) is fixed to the first end (103a) of the stator (103).
  • the additional winding can be maintained in a state in which it is reliably applied to the teeth without slack or slack. This ensures that the low number of turns of the first winding can be compensated for by additional windings.
  • the first windings (121a) of the plurality of winding groups (131 to 133) are arranged side by side in order in the circumferential direction (A1) of the stator (103).
  • the first and second lead wires (123, 124) of the plurality of winding groups (131 to 133) are arranged side by side in order in the circumferential direction (A1) of the stator (103). .
  • all the first windings are aligned side by side in the circumferential direction of the stator.
  • all the first and second lead lines are also aligned side by side in the circumferential direction of the stator. That is, all the first windings and all the first and second lead wires are centrally located around each first winding, so that they are compactly integrated into the stator and the inverter Wiring to the device is easy.
  • all the first and second lead wires (123, 124) of the plurality of winding groups (131-133) are delta-connected.
  • all the first and second lead wires (123, 124) of the plurality of winding groups (131-133) are star-connected.
  • each first lead wire can be individually connected to the inverter device, and each second lead wire can be connected as one with the neutral point of the star connection.
  • Each first lead line and the neutral point can be gathered at one location on the stator.
  • the cluster block (terminal housing) and the neutral point, which bulge around the stator, can be gathered in one place on the stator, so that the motor itself can be made compact.
  • all the second lead wires (124) are integrated with each other by soldering or welding without being fixed to the stator (103).
  • FIG. 1 is a cross-sectional view of an electric compressor according to Example 1.
  • FIG. 2 is an exploded sectional view of the housing and stator shown in FIG. 1;
  • FIG. Figure 3 is a perspective view of the stator shown in Figure 2;
  • FIG. 4 is a diagram schematically showing the arrangement of a plurality of conducting wires with respect to the stator core when the stator shown in FIG. 3 is developed to the outer peripheral side;
  • FIG. 5 is a diagram schematically showing the arrangement of a plurality of conducting wires for the stator core shown in FIG. 4 divided into winding groups of U-phase, V-phase, and W-phase;
  • 6 is a diagram schematically showing the relationship between the first winding and other windings in the U-phase winding group shown in FIG. 5;
  • FIG. 5 is a diagram schematically showing the relationship between the first winding and other windings in the U-phase winding group shown in FIG. 5;
  • FIG. 5 is a diagram schematically showing the relationship between the first wind
  • FIG. 7 is a perspective view of a configuration in which the end portions of the additional windings shown in FIG. 6 are fixed to the stator;
  • FIG. FIG. 10 is a diagram schematically showing the arrangement of a plurality of conducting wires with respect to the stator core when the stator of the electric compressor according to Example 2 is deployed to the outer peripheral side;
  • FIG. 9 is a diagram illustrating a structure for fixing second lead lines shown in FIG. 8 ;
  • Example 1 An electric compressor 10 of a first embodiment will be described with reference to FIGS. 1 to 7.
  • FIG. 1 An electric compressor 10 of a first embodiment will be described with reference to FIGS. 1 to 7.
  • FIG. 1 An electric compressor 10 of a first embodiment will be described with reference to FIGS. 1 to 7.
  • the electric compressor 10 is suitable for use in a refrigeration cycle using a refrigerant as a working fluid, and is used, for example, in a refrigeration cycle of an automotive air conditioner.
  • the application of the electric compressor 10 is not limited.
  • the electric compressor 10 includes, for example, a housing 20 that can be installed horizontally, a compression mechanism 50 that compresses gas (eg, gaseous refrigerant), a motor 100 that drives the compression mechanism 50, and a driving power for the motor 100. and an inverter device 160 that supplies the
  • the housing 20 is a cylindrical member with a bottom, one end of which is closed by a bottom wall 21 and the other end of which is entirely open. That is, the other end of the housing 20 has an opening 22 .
  • This opening 22 is closed by an openable and closable head member 31 .
  • the housing 20 is made of a cast metal material such as aluminum (including aluminum alloy).
  • the outer wall surface 21a of the bottom wall 21 of the housing 20 is a flat surface.
  • a tubular inverter housing 32 having a bottom is superimposed on and assembled with the outer wall surface 21a.
  • the bottom wall 32 a of the inverter housing 32 overlaps the outer wall surface 21 a of the bottom wall 21 of the housing 20 .
  • An opening 32b of the inverter housing 32 is closed by a lid 33 that can be opened and closed.
  • An inverter device 160 is accommodated in the inverter housing 32 . Details of the inverter device 160 will be described later.
  • the housing 20 has a first storage chamber 23 on the bottom wall 21 side (arrow R1 side) and a second storage chamber 24 on the opening 22 side (arrow R2 side). These first and second storage chambers 23 and 24 are continuous in the longitudinal direction (axial direction) of the housing 20 .
  • the first inner peripheral surface 23a of the first storage chamber 23 and the second inner peripheral surface 24a of the second storage chamber 24 are perfect circles with the longitudinal centerline CL1 of the housing 20 as a reference.
  • the diameter D2 of the second inner peripheral surface 24a is larger than the diameter D1 of the first inner peripheral surface 23a.
  • At least part (for example, the whole) of the compression mechanism 50 is housed in the opening 22 side inside the housing 20, that is, in the second housing chamber 24.
  • a motor 100 is stored inside the housing 20 on the side of the bottom wall 21 , that is, in the first storage chamber 23 . That is, the housing 20 functions as a motor housing and a compressor housing.
  • the housing 20 may be referred to as “motor housing 20" and/or “compressor housing 20".
  • the housing 20 has a suction port 25 for sucking refrigerant from the outside into the first storage chamber 23 .
  • the head member 31 includes an oil separation chamber 31a for separating oil from the refrigerant compressed by the compression mechanism 50, and a discharge port (not shown) for discharging the gaseous refrigerant from which the oil is separated by the oil separation chamber 31a. ) and
  • the first storage chamber 23 and the second storage chamber 24 are partitioned by a disk-shaped partition member 34 (drive shaft support member 34). Both the relative rotation and axial movement of the partition member 34 relative to the housing 20 are restricted.
  • the first storage chamber 23 may be referred to as the "low pressure chamber 23".
  • the partition member 34 has a plurality of suction holes 34a that allow the first storage chamber 23 and the second storage chamber 24 to communicate with each other. It should be noted that this partition member 34 can be considered as an element that constitutes the compression mechanism 50 . In other words, considering the partition wall 34 as part of the compression mechanism 50 does not depart from the gist of the present invention.
  • the first storage chamber 23 is provided with a drive shaft 41 positioned on the longitudinal centerline CL1 of the housing 20.
  • the drive shaft 41 includes both a configuration that serves as the output shaft 101 (motor shaft 101) of the motor 100 and a configuration that is a separate member (not shown) from the output shaft 101 of the motor 100.
  • FIG. Here, a configuration that also serves as the output shaft 101 of the motor 100 will be described.
  • the longitudinal centerline CL1 of the housing 20 may be referred to as "the centerline CL1 of the drive shaft 41 (output shaft 101)".
  • the drive shaft 41 passes through the partition member 34 toward the compression mechanism 50 , and is driven by a first bearing 42 provided in the partition member 34 and a second bearing 43 provided in the bottom wall 21 of the housing 20 . rotatably supported. Further, the drive shaft 41 has an eccentric shaft 44 on one end face penetrating the partition member 34 . The eccentric shaft 44 extends from one end surface of the drive shaft 41 toward the compression mechanism 50 and is parallel to the drive shaft 41 . The centerline CL2 of the eccentric shaft 44 is offset from the centerline CL1 of the drive shaft 41 . An annular bush 45 is rotatably fitted to the eccentric shaft 44 . A part of the bush 45 is integrally provided with a counterweight 46 projecting radially from the bush 45 . The inner peripheral surface of the third bearing 47 is fitted to the outer peripheral surface of the bush 45 .
  • the compression mechanism 50 includes, for example, a fixed scroll 60 supported between the head member 31 and the partition member 34 so as not to rotate relative to each other, and a scroll member that swings circumferentially with respect to the fixed scroll 60 .
  • a possible orbiting scroll 70 is combined to form a so-called scroll compression mechanism that compresses gas (for example, gaseous refrigerant).
  • the fixed scroll 60 has a disc-shaped fixed end plate 61 , a cylindrical outer peripheral wall 62 , and a spiral-shaped fixed spiral wall 63 .
  • the fixed end plate 61 is orthogonal to the center line CL2 of the eccentric shaft 44.
  • the outer peripheral wall 62 is a cylinder extending from the outer peripheral edge of the stationary end plate 61 toward the motor 100 side.
  • the outer peripheral wall 62 is formed with a refrigerant suction port 64 for sucking refrigerant from radially outward to radially inward.
  • the fixed spiral wall 63 is located inside the outer peripheral wall 62 and stands up from the bottom surface of the fixed end plate 61 .
  • the orbiting scroll 70 can revolve with respect to the fixed scroll 60 .
  • the oscillating scroll 70 has a disk-shaped oscillating end plate 71 positioned opposite the fixed spiral wall 63 and a spiral oscillating spiral wall 72 .
  • the orbiting end plate 71 is perpendicular to the center line CL3 of the orbiting scroll 70, is positioned inside the outer peripheral wall 62 of the fixed scroll 60, and is rotatably supported by the eccentric shaft 44.
  • the oscillating spiral wall 72 is erected from the oscillating end plate 71 toward the fixed spiral wall 63 , and is combined with the fixed spiral wall 63 to form a plurality of compression chambers 73 .
  • the orbiting scroll 70 can revolve (rotate eccentrically) around the axis CL ⁇ b>2 of the eccentric shaft 44 .
  • the compression mechanism 50 has an anti-rotation mechanism 80 that prevents the orbiting scroll 70 from rotating.
  • the anti-rotation mechanism 80 includes a plurality of recesses 81 provided in the oscillating end plate 71, a plurality of ring members 82 fitted in the plurality of recesses 81, and the plurality of ring members 82 extending from the partition member 34. It is a pin-and-ring type anti-rotation mechanism comprising a plurality of anti-rotation pins 83 extending inward. The line contact between the plurality of ring members 82 and the plurality of anti-rotation pins 83 prevents rotation of the orbiting scroll 70 and permits the orbiting of the orbiting scroll 70 .
  • the rotation of the drive shaft 41 causes the orbiting scroll 70 to revolve.
  • the refrigerant sucked from the suction port 25 passes through the clearance of the motor 100 in the low pressure chamber 23, passes through the suction hole 34a of the partition member 34, passes through the refrigerant suction port 64 of the fixed scroll 60, and flows into the compression chamber. Enter 73.
  • the compression chamber 73 moves toward the center while gradually decreasing its internal volume. Thereby, the refrigerant in the compression chamber 73 is compressed.
  • the check valve 91 opens, and the compressed refrigerant flows into the discharge chamber 92 in the head member 31 and flows through the oil separation chamber 31a to the discharge port (not shown). ) to the outside.
  • the motor 100 has, for example, a configuration of a three-phase AC brushless motor.
  • the motor 100 includes the output shaft 101 (drive shaft 41), a rotor 102 fixed to the output shaft 101, and an annular stator 103 surrounding the rotor 102. stored.
  • the rotor 102 has its center of rotation in the longitudinal direction of the housing 20 (it is rotatable with respect to the center line CL1 of the output shaft 101).
  • the stator 103 is arranged radially outside the rotor 102 and fixed to the inner peripheral surface 20a of the housing 20 (the first inner peripheral surface 23a of the first storage chamber 23).
  • the stator 103 is fixed to the inner peripheral surface 20a of the housing 20 by being fitted to the first inner peripheral surface 23a by "tight fit".
  • interference fitting for example, shrink fitting, press fitting, and the like can be mentioned.
  • this stator 103 has an annular stator core 111 and a plurality of conducting wires 120. As shown in FIG. Both end surfaces 111a and 111b of the stator core 111 are provided with first and second insulators 112 and 113 (insulators 112 and 113). It is also possible to configure the stator core assembly 110 by previously attaching the first and second insulators 112 and 113 to both end faces 111 a and 111 b of the stator core 111 .
  • the centerline CL1 of the output shaft 101 may be referred to as "the centerline CL1 of the stator core 111".
  • the stator core 111 is constructed with a laminated structure of ferromagnetic plates such as magnetic steel plates.
  • a plurality of teeth 111c are formed on the radial inner surface of stator core 111 and protrude toward center line CL1 of stator core 111 .
  • These teeth 111c are arranged at equal pitches in the circumferential direction of the stator 103 (direction of arrow A1).
  • the number of multiple teeth 111c is a multiple of 3, for example, 18 pieces.
  • the first insulator 112 is an annular member provided on the end surface 111a of the stator core 111 on the inverter device 160 side (arrow R1 side), and is made of an electrically insulating resin molded product.
  • the first insulator 112 forms a first end portion 103a of the stator 103 located on the inverter device 160 side.
  • first insulator 112 has the same shape as stator core 111 (including a plurality of teeth 111c).
  • the second insulator 113 has the same configuration as the first insulator 112, and is an annular member provided on the end surface 111b of the stator core 111 on the compression mechanism 50 side (arrow R2 side), and is an electrically insulating resin. is composed of molded products.
  • the second insulator 113 forms a second end 103b of the stator 103 located on the compression mechanism 50 side.
  • stator core 111 is viewed along center line CL1
  • second insulator 113 has the same shape as stator core 111 (including a plurality of teeth 111c).
  • FIG. 4 is a view of the inner peripheral surface of stator 103 shown in FIG.
  • the teeth 111c shown in FIG. 4 are numbered sequentially from “1” to “18” for convenience.
  • the first tooth 111c is labeled with "1".
  • a plurality of conducting wires 120 are wound around a plurality of teeth 111c, and constitute U-phase, V-phase, and W-phase winding groups 131 to 133 for three-phase alternating current. That is, the number of conductors 120 is three.
  • the plurality of conducting wires 120 include a plurality of windings 121 individually wound around a plurality of teeth 111c by concentrated winding, and a plurality of windings connecting the plurality of windings 121 to each other. and a crossover 122 of .
  • each conducting wire 120 includes a first lead wire 123 drawn from the winding start of the conducting wire 120 and a second lead wire 124 drawn from the winding end of the conducting wire 120 .
  • the plurality of crossover wires 122 are all arranged at the second end portion 103b of the stator 103.
  • the first and second lead wires 123 and 124 are drawn out from the first end portion 103a of the stator 103. As shown in FIG. At least one of the first and second lead wires 123 and 124, for example the first lead wire 123, is connected to an inverter device 160 (see FIG. 1). A connection structure of the first and second lead lines 123 and 124 will be described later.
  • FIG. 5 schematically shows the arrangement of a plurality of conducting wires 120 for stator core 111 shown in FIG. 4, divided into U-phase, V-phase, and W-phase winding groups 131-133.
  • the winding 121a wound first from the first lead wire 123 at the winding start of the conductor 120 is referred to as the "first winding.” 121a”, and the remaining winding 121b is referred to as the "other winding 121b”.
  • the respective first windings 121a are arranged side by side in order in the circumferential direction of the stator 103 (arrow A1 direction).
  • the first winding 121a of the U-phase winding group 131 is wound around the first tooth 111c.
  • the first winding 121a of the V-phase winding group 132 is wound around the second tooth 111c.
  • the first winding 121a of the W-phase winding group 133 is wound around the third tooth 111c.
  • the respective other windings 121b are arranged in order from the first winding 121a in the circumferential direction of the stator 103 every two.
  • the windings 121 of the U-phase winding group 131 are wound around the first, fourth, seventh, tenth, thirteenth, and sixteenth teeth 111c.
  • the winding 121c wound around the 16th tooth 111c is called the "last winding 121c”.
  • the winding 121 wound around the 17th tooth 111c is called the "last winding 121c”.
  • the winding 121 wound around the 18th tooth 111c is called the "last winding 121c”.
  • FIG. 6 schematically shows the relationship between the first winding 121a and the other winding 121b in the U-phase winding group 131 shown in FIG.
  • the number of turns Nb of the other winding 121b is an integer larger than 0 (eg, 30 turns).
  • a winding start portion 121bs and a winding end portion 121be of another winding 121b are located at the second end portion 103b of the stator 103 .
  • the winding start portion 121as of the first winding 121a is located at the first end portion 103a of the stator 103, and is located at the first lead wire. 123 continues.
  • the number of turns Na of each first winding 121a is set to be half less than the number of turns Nb of the other windings 121b. That is, in each of the plurality of winding groups 131 to 133, the number of turns Na of one of the plurality of windings 121 is different from the number of turns Nb of the other winding 121b.
  • the winding end portion 121ae of the first winding 121a is located on the opposite side to the winding start portion 121as of the first winding 121a, that is, the second winding of the stator 103. Located at the end 103b.
  • the start portion 121bs is connected by a crossover wire 122 .
  • the winding end portion 121be of the other winding 121b wound around the fourth tooth 111c and the winding start portion of the next other winding 121b wound around the seventh tooth 111c are separated by the crossover wire 122. It is connected.
  • the following other windings 121b wound around the seventh, tenth, thirteenth, and sixteenth teeth 111c are also connected in series by a crossover wire 122.
  • the V-phase and W-phase winding groups 131 have the same configuration. As is clear from the above description, in each of the U-phase, V-phase, and W-phase winding groups 131 to 133, the winding end portion 121ae of the first winding 121a and the winding start portion of each of the other windings 121b 121bs and the winding end portion 121be of each other winding 121b are connected in series by a crossover wire 122 . Thus, in each of the winding groups 131 to 133, the windings 121 are connected in series via the connecting wires 122. FIG.
  • all the connecting wires 122 can be arranged on the opposite side (opposite side) of the first lead wire 123 with respect to the stator 103 . Moreover, it is only necessary to set the number of turns Na of the first winding 121a to be half less than the number of turns Nb of the other windings 121b.
  • the stator 103 has a first end 103a on the bottom wall 21 side of the housing 20 (inverter device 160 side) and a second end 103b on the opening 22 side of the housing 20 (compression mechanism 50 side). have. All the lead wires 123, 124 of the stator 103 are pulled out from the first end 103a of the stator 103 located on the inverter device 160 side, and can be easily connected to the inverter device 160 through the bottom wall 21 of the housing 20. can be done.
  • all the connecting wires 122 of the stator 103 are arranged at the second end portion 103b of the stator 103 located on the compression mechanism 50 side. It is positioned on the side of the opening 22 in the first inner peripheral surface 23 a) of the storage chamber 23 .
  • the crossover wire 122 is positioned radially outside of the stator 103 , that is, close to the inner peripheral surface 20 a of the housing 20 . In order to properly secure electrical insulation from the connecting wire 122, it is necessary to secure a sufficient distance (insulation distance) between the connecting wire 122 and the inner peripheral surface 20a.
  • the inner peripheral surface 20a on the side of the opening 22 (the first inner peripheral surface 23a of the first storage chamber 23) is radially moved in the preparation stage of the mold. It can be expanded in advance. More specifically, as shown in FIGS. 1 and 2, a radially enlarged recess 20b is formed in the first inner peripheral surface 23a of the first storage chamber 23 at the end on the second storage chamber 24 side. can be set. As a result, a space (insulation distance) between the crossover wire 122 and the inner peripheral surface 20a can be secured.
  • the number of turns Na of each first winding 121a is set to be less than the number of turns Nb of the other windings 121b by a half turn. 121, the number of turns Na of one winding 121a remains different from the number of turns Nb of the other. The magnetic flux of the first winding 121a will be different from the magnetic flux of the other windings 121b.
  • an additional winding 121d is arranged for the teeth 111c around which the first winding 121a is wound.
  • the configuration of the additional winding 121d will be described in detail below.
  • the winding end portion 121ce of the last winding 121c is connected to the first winding 121a via the return connecting wire 122a. return to the tooth 111c (including the vicinity of the tooth 111c). That is, the plurality of crossover wires 122 are return crossover wires 122a that return from the other winding 121b (the last winding 121c) to the teeth 111c (including the vicinity of the teeth 111c) around which the first winding 121a is wound. including. All the connecting wires 122, including the return connecting wire 122a, extend in the same direction, for example, the circumferential direction of the stator 103 (arrow A1 direction).
  • An additional winding 121d is continuous with the return connecting wire 122a, passing along only half the circumference of the tooth 111c around which the first winding 121a is wound.
  • the additional winding 121d extends only half a turn around the tooth 111c around which the first winding 121a is wound, from the return connecting wire 122a to the second lead wire 124, and in the winding direction of the first winding 121a (arrow A2 direction). ) in the same direction as That is, the additional winding 121d adds approximately half a turn to the first winding 121a.
  • the small number of turns Na of the first winding 121a can be compensated for by the additional winding 121d.
  • the magnetic flux of the first winding 121a can be supplemented to be similar to the magnetic flux of the other windings 121b.
  • the plurality of first and second lead wires 123, 124 and the plurality of crossover wires 122 are arranged on opposite sides of the stator 103, and the magnetic flux of the first winding 121a is transferred to other It can be compensated to be similar to the magnetic flux of winding 121b.
  • the number of turns Na of at least one of the plurality of windings 121 is different from the other number of turns Nb. All can be easily positioned opposite the first and second lead lines 123,124.
  • the number of turns Na of the first winding 121a is set to be half less than the number of turns Nb of the other windings 121b.
  • One number of turns Na is different from the other number of turns Nb.
  • all of the plurality of crossover wires 122 can be connected to the stator 103 by a simple configuration in which the number of turns Na of the first winding 121a is half less than the number of turns Nb of the other windings 121b. It can be easily positioned on the side opposite to the first and second lead lines 123,124.
  • the respective first windings 121a of the plurality of winding groups 131 to 133 are arranged side by side in order in the circumferential direction of the stator 103 (arrow A1 direction).
  • the respective first and second lead wires 123, 124 of the plurality of winding groups 131-133 are aligned side by side in the circumferential direction of the stator 103 (arrow A1 direction).
  • FIG. 1 the connection structure between the first and second lead wires 123 and 124 and the inverter device 160 will be described with reference to FIGS. 1 and 4.
  • FIG. 1 the connection structure between the first and second lead wires 123 and 124 and the inverter device 160 will be described with reference to FIGS. 1 and 4.
  • FIG. 1 the connection structure between the first and second lead wires 123 and 124 and the inverter device 160 will be described with reference to FIGS. 1 and 4.
  • the end surface 112a of the first end portion 103a (the end surface 112a of the first insulator 112) of the stator 103 stored in the first storage chamber 23 faces the bottom wall 21 of the housing 20. and close to each other.
  • An electrical connector 144 (cluster block 144) having three terminals 141 to 143 (receptacles 141 to 143) is arranged on the end face 112a side of the first end portion 103a. At least the first lead wires 123 are individually connected to the three terminals 141 to 143 .
  • a relay terminal 152 having three terminal pins 151 is provided on the bottom wall 21 of the housing 20 .
  • Each terminal pin 151 extends from inside housing 20 into inverter housing 32 along center line CL ⁇ b>1 of stator core 111 .
  • One end of these terminal pins 151 can be fitted with three terminals 141 to 143 .
  • the inverter device 160 includes a configuration that is provided directly or indirectly with respect to the outer wall surface 21a of the bottom wall 21 of the housing 20.
  • the inverter device 160 is detachably housed inside the inverter housing 32 so as to be indirectly provided on the outer wall surface 21 a of the bottom wall 21 of the housing 20 .
  • the inverter device 160 is directly provided on the outer wall surface 21a of the bottom wall 21 of the housing 20 without the bottom wall 32a of the inverter housing 32 interposed therebetween.
  • This inverter device 160 comprises a substrate 162 on which control components 161 such as an inverter circuit are mounted, and an inverter-side connector 163 provided on this substrate 162 .
  • This inverter-side connector 163 can be connected to the other end of the terminal pin 151 .
  • the stator 103 By assembling the stator 103 into the housing 20, the three terminals 141 to 143 are individually fitted onto the respective terminal pins 151. As shown in FIG. By assembling the inverter device 160 into the inverter housing 32 , the inverter side connector 163 is connected to each terminal pin 151 . As a result, each first lead line 123 is electrically connected to the inverter device 160 . Drive power can be supplied from the inverter device 160 to the motor 100 .
  • the first terminal 141 is connected to the first lead wire 123 of the U-phase winding group 131 and the second lead wire 124 of the W-phase winding group 133 .
  • the first lead wire 123 of the V-phase winding group 132 and the second lead wire 124 of the U-phase winding group 131 are connected to the second terminal 142 .
  • the first lead wire 123 of the W-phase winding group 133 and the second lead wire 124 of the V-phase winding group 132 are connected to the third terminal 143 .
  • the end portion 121de of the additional winding 121d is fixed to the first end 103a (first insulator 112) of the stator 103.
  • the end portion 121de has a hook 112b integrally formed on the first end portion 103a (first insulator 112) or a hole (not shown) to which a tie string, thin wire, or the like is attached. It is fixed to the stator 103 by a so-called lacing process that is tied together by a wire 171 .
  • the additional winding 121d is reliably laid along the teeth 111c shown in FIG. can be maintained at Similarly, the starting end portion 121ds of the additional winding 121d is also fixed to the second end portion 103b. Therefore, the small number of turns of the first winding 121a can be reliably compensated for by the additional winding 121d.
  • each first winding 121a is fixed to the second end 103b of the stator 103.
  • a start portion 121bs and an end portion 121be of each other winding 121b are fixed to the second end 103b. Therefore, the winding state of each winding 121 can be reliably maintained without slack or slack.
  • the quality of the housing 20 is ensured. While doing so, the production cost of the electric compressor 10 can be suppressed.
  • FIG. 8 schematically shows the arrangement of a plurality of conducting wires 120 with respect to the stator core 111 when the stator 103 of the electric compressor 200 according to the second embodiment is deployed to the outer peripheral side, corresponding to FIG. there is
  • first lead wire 123 of the U-phase winding group 131 is connected to the first terminal 141 .
  • first lead wire 123 of the V-phase winding group 132 is connected to the second terminal 142 .
  • first lead wire 123 of the W-phase winding group 133 is connected to the third terminal 143 .
  • the second lead wires 124 of all winding groups 131 to 133 are connected together as a neutral point 201 of star connection.
  • the first lead wires 123 can be individually connected to the inverter device 160 (see FIG. 1), and the second lead wires 124 can be connected together as a neutral point 201 of the star connection. .
  • Each first lead wire 123 and the neutral point 201 can be collected at one location on the stator 103 .
  • the electric connector 144 and the neutral point 201 which bulge out around the stator 103, can be gathered in one place on the stator 103, so that the motor 100 itself can be made compact.
  • all the second lead wires 124 are connected without being fixed to the stator 103, that is, without being connected to the terminals 141 to 143 (see FIG. 1) fixed to the stator 103. They are integrated with each other by soldering or welding. Therefore, all the second lead wires 124 can be easily integrated as the neutral point 201 of the star connection by soldering or welding. A portion of the neutral point 201 is covered by an electrically insulating sleeve 202 . Furthermore, the electric compressor 200 according to the second embodiment can exhibit effects similar to those of the first embodiment.
  • a wire rod 204 such as a tying thread or a thin wire is attached to a hole 203 having a middle part of the wire in the first end 103a or a hook (not shown). It is possible to fix to the stator 103 by applying a so-called lacing process that is tied by
  • the electric compressor 10; 200 according to the present invention is not limited to the embodiment as long as the action and effect of the present invention are exhibited.
  • the compression mechanism 50 is not limited to the configuration of the scroll compression mechanism, and may be driven by the drive shaft 41 to compress gas (eg, gaseous refrigerant).
  • the electric compressor 10; 200 of the present invention is suitable for use in the refrigerating cycle of a vehicle air conditioner.
  • Reference Signs List 10 200 electric compressor 20 housing 20a inner peripheral surface 21 bottom wall 21a outer wall surface 22 opening 50 compression mechanism 100 motor 102 rotor 103 stator 103a first end 103b second end 110 stator core assembly 111 stator core 111c teeth 120 conducting wire 121 winding 121a first winding 121as winding start portion 121ae winding end portion 121b other winding 121bs winding start portion 121be winding end portion 121c last winding 121ce winding end portion 121d additional winding 121de end portion 121ds start portion 122 transition Wire 122a Return connecting wire 123 First lead wire 124 Second lead wire 131 U-phase winding group 132 V-phase winding group 133 W-phase winding group 160 Inverter device 201 Neutral point of star connection A1 Circumference of stator Direction A2 Winding direction of first winding CL1 Longitudinal centerline of housing (centerline of stator core) Na Number of turns of first winding Nb Number of turns of other wind

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

[Problem] To suppress production costs of an electric compressor while ensuring the quality of a housing. [Solution] This electric compressor (10) has a compression mechanism (50) provided on an opening (22) side in an interior of a housing (20) having a bottomed cylinder shape, a motor (100) stored in the interior of the housing (20), and an inverter (160) provided on an outer wall surface (21a) of a bottom wall (21) of the housing (20). An annular stator (103) of the motor (100) has a plurality of conducting wires having a plurality of windings (121) wound around a plurality of teeth (111c). First and second lead wires (123, 124), drawn from the plurality of conducting wires (120), are drawn from the inverter (160) side of the stator (103). A plurality of crossover wires (122) that connect the plurality of windings (121) of the plurality of conducting wires (120) to one another are positioned on the compression mechanism (50) side of the stator (103).

Description

電動圧縮機electric compressor
 本発明は、電動圧縮機のモータの改良技術に関する。 The present invention relates to technology for improving the motor of an electric compressor.
 電動機器に用いられる三相交流モータのステータとしては、特許文献1や特許文献2の技術が知られている。 The technologies of Patent Document 1 and Patent Document 2 are known as stators for three-phase AC motors used in electric equipment.
 特許文献1~2で知られている三相交流モータによれば、ステータは、複数のティースが形成された円環状のステータコアと、ステータコアの両端に設けられたインシュレータを備えている。インシュレータは、軸線方向の一端側に且つ径方向の外側に、各コイル(巻線)の巻終わり端を引っ掛けるフックを有する。コイルは、ステータコアの両端に設けられたインシュレータを介して1つのティースに集中巻きされる。このコイルは、巻終わり端をフックに引っ掛けられて、次のティースに渡され、また集中巻きされる。先のコイルの巻終わり端は、そのまま次のコイルの巻き始め端へ連続する、渡り線となる。このように、各ティースに巻かれたコイル間を連絡する渡り線は、ステータの径方向の外側に配置される。三相のコイルの巻き始め部と巻き終わり部は結線され、引き出され、三相電源を供給するインバータ装置に接続できるよう末端処理される。コイルの渡り線と引き出し線(端子)は、共にステータコアの一端側に設けられる。 According to the three-phase AC motors known in Patent Documents 1 and 2, the stator includes an annular stator core formed with a plurality of teeth and insulators provided at both ends of the stator core. The insulator has a hook on one end side in the axial direction and on the outer side in the radial direction for hooking the winding end of each coil (winding). The coil is intensively wound around one tooth via insulators provided at both ends of the stator core. The winding end of this coil is hooked on a hook, passed to the next tooth, and concentratedly wound. The winding end of the previous coil becomes a connecting wire that continues to the winding start end of the next coil. In this way, the crossover wires connecting the coils wound around the teeth are arranged radially outside the stator. The beginning and end of the three-phase coil are wired, pulled out, and terminated so that they can be connected to an inverter device that supplies three-phase power. Both the connecting wire and the lead wire (terminal) of the coil are provided on one end side of the stator core.
 このような三相モータを搭載した電動圧縮機が、特許文献3に開示されている。この電動圧縮機においては、アルミニウム合金製の有底筒状の部材から成るハウジング(モータハウジング)の開放端に、インバータハウジングが被されている。ステータコアの一端から引き出された引き出し線は、クラスターブロックを介してインバータハウジングのハーメチックピンに係合できるようになっている。ハウジングの開放端側は、内径が大きくなっており、特許文献1や特許文献2のように、コイルエンドの外径寄りに渡り線(図示せず)が配置されても、絶縁距離が保たれるようになっている。 An electric compressor equipped with such a three-phase motor is disclosed in Patent Document 3. In this electric compressor, an inverter housing covers an open end of a housing (motor housing) made of an aluminum alloy and having a bottomed tubular shape. A lead wire drawn out from one end of the stator core can be engaged with a hermetic pin of the inverter housing through the cluster block. The open end side of the housing has a large inner diameter, and even if a connecting wire (not shown) is arranged near the outer diameter of the coil end as in Patent Document 1 and Patent Document 2, the insulation distance can be maintained. It is designed to be
 ところで、三相モータを搭載した電動圧縮機のなかには、特許文献4に開示されているように、アルミニウム合金製の有底筒状の部材から成るハウジングの、圧縮機構側が開放端となり、インバータ装置側(インバータ回路部側)が閉鎖端となっている、いわゆるインバータ側閉鎖形式の電動圧縮機もある。 By the way, in some electric compressors equipped with a three-phase motor, as disclosed in Patent Document 4, the compression mechanism side of a housing made of an aluminum alloy cylindrical member with a bottom is an open end, and the inverter device side is an open end. There is also a so-called inverter-side closed type electric compressor in which the (inverter circuit side) is a closed end.
特開2017-118671号公報JP 2017-118671 A 国際公開第2020/196071号WO2020/196071 特許第5594836号公報Japanese Patent No. 5594836 特開2020-070732号公報Japanese Patent Application Laid-Open No. 2020-070732
 特許文献4で知られているインバータ側閉鎖形式の電動圧縮機では、特許文献1~2で知られている技術と同様に、ステータの軸線方向の一端部に、コイルの引き出し線(端子)及び渡り線の両方が配置されることになる。コイルの引き出し線がインバータ装置側に位置するので、コイルの渡り線は必然的にインバータ装置側に位置する。コイル間を連絡する渡り線は、ステータの径方向の外側、つまりハウジングの内周面に接近して位置する。渡り線と内周面との間の電気絶縁性を適切に確保するためには、渡り線と内周面との間の間隔(絶縁距離)を十分に確保する必要がある。 In the inverter-side closed type electric compressor known in Patent Document 4, coil lead wires (terminals) and Both crossover lines will be arranged. Since the lead wire of the coil is located on the inverter device side, the coil crossover wire is inevitably located on the inverter device side. A crossover wire that connects the coils is positioned radially outside the stator, that is, close to the inner peripheral surface of the housing. In order to properly secure electrical insulation between the crossover wire and the inner peripheral surface, it is necessary to secure a sufficient distance (insulation distance) between the crossover wire and the inner peripheral surface.
 これに対し、ハウジングの内周面のうち、渡り線が位置する部位分のみを、径方向に拡大することが考えられる。しかし、一般には、ハウジングは鋳造品によって構成される。鋳造で有底円筒状の奥側の素材面の内径を大きくすることは困難であり、ハウジング内部の底壁側(奥側)のコイルの渡り線に対向する箇所の内径を切削加工にて大きく除去する必要がある。これでは、電動圧縮機の生産コストが嵩む。 On the other hand, it is conceivable to radially expand only the portion of the inner peripheral surface of the housing where the connecting wire is located. Generally, however, the housing is constructed by casting. It is difficult to increase the inner diameter of the material surface on the back side of the bottomed cylindrical shape by casting, so the inner diameter of the part facing the coil crossover on the bottom wall side (back side) inside the housing is increased by cutting. must be removed. This increases the production cost of the electric compressor.
 しかも、ハウジングを鋳造するときに、切削する部位の肉厚を、切削する分だけ厚くしておく必要がある。肉厚が増すと、ハウジングの品質を確保する上で不利である。 Moreover, when casting the housing, it is necessary to increase the thickness of the parts to be cut by the amount to be cut. An increase in wall thickness is disadvantageous in ensuring the quality of the housing.
 本発明は、上述の問題を解決するためになされたものであり、有底筒状のハウジングの、内部の底壁側にモータを設けている、電動圧縮機において、ハウジングの品質を確保しつつ、電動圧縮機の生産コストを抑制することができる技術を提供することを、課題とする。 The present invention has been made to solve the above-described problems, and is an electric compressor in which a motor is provided on the inner bottom wall side of a cylindrical housing with a bottom, while ensuring the quality of the housing. An object of the present invention is to provide a technology capable of suppressing the production cost of an electric compressor.
 以下の説明では、本発明の理解を容易にするために添付図面中の参照符号を括弧書きで付記するが、それによって本発明は図示の形態に限定されるものではない。 In the following description, the reference numerals in the attached drawings are added in parentheses to facilitate understanding of the present invention, but the present invention is not limited to the illustrated embodiments.
 本発明によれば、気体を圧縮する圧縮機構(50)と、前記圧縮機構(50)を駆動するモータ(100)と、前記モータ(100)に駆動電力を供給するインバータ装置(160)と、有底筒状の部材であって、内部に前記モータ(100)を格納するハウジング(20)と、を有し、前記圧縮機構(50)は、少なくともその一部が、前記ハウジング(20)の内部の開口部(22)側に設けられ、前記インバータ装置(160)は、前記ハウジング(20)の底壁(21)の外壁面(21a)に設けられている電動圧縮機(10;200)において、前記モータ(100)は、前記ハウジング(20)の長手方向を回転中心とするロータ(102)と、前記ロータ(102)の径方向外側に配置されて前記ハウジング(20)の内周面(20a)に固定されている環状のステータ(103)とを備え、前記ステータ(103)は、周方向(A1)に等ピッチで配列されている複数のティース(111c)が形成されたステータコア(111)と、前記複数のティース(111c)に巻かれている複数の導線(120)と、を有し、前記複数の導線(120)は、前記複数のティース(111c)に集中巻きにより個別に巻かれている複数の巻線(121)と、前記複数の巻線(121)同士を接続する複数の渡り線(122)と、前記導線(120)の巻き始めから引き出される第1引出し線(123)と、前記導線(120)の巻き終わりから引き出される第2引出し線(124)とを含み、前記第1及び第2引出し線(123,124)は、前記ステータ(103)の、前記インバータ装置(160)側に位置する第1端部(103a)から引き出され、前記第1及び第2引出し線(123,124)の少なくとも一方は、前記インバータ装置(160)に接続されており、前記複数の渡り線(122)は、前記ステータ(103)の、前記圧縮機構(50)側に位置する第2端部(103b)に、全て配置されている、ことを特徴とする電動圧縮機が提供される。 According to the present invention, a compression mechanism (50) for compressing gas, a motor (100) for driving the compression mechanism (50), an inverter device (160) for supplying drive power to the motor (100), and a housing (20), which is a cylindrical member with a bottom and houses the motor (100) therein, and at least part of the compression mechanism (50) is in the housing (20) An electric compressor (10; 200) provided on the side of an internal opening (22), wherein the inverter device (160) is provided on the outer wall surface (21a) of the bottom wall (21) of the housing (20). , the motor (100) includes a rotor (102) whose center of rotation is the longitudinal direction of the housing (20), and an inner peripheral surface of the housing (20) arranged radially outside the rotor (102). An annular stator (103) fixed to (20a) is provided, and the stator (103) is a stator core ( 111) and a plurality of conducting wires (120) wound around the plurality of teeth (111c), wherein the plurality of conducting wires (120) are individually wound around the plurality of teeth (111c) by concentrated winding. A plurality of wound windings (121), a plurality of crossover wires (122) connecting the plurality of windings (121), and a first lead wire ( 123) and a second lead wire (124) drawn out from the winding end of the conductor (120), the first and second lead wires (123, 124) of the stator (103), the inverter At least one of the first and second lead wires (123, 124) drawn out from the first end (103a) located on the device (160) side is connected to the inverter device (160), A plurality of crossover wires (122) are all arranged at a second end (103b) of the stator (103) located on the side of the compression mechanism (50). provided.
 このように、有底筒状のハウジングは、内部の底壁側にモータを設け、内部の開口側に圧縮機構を設け、底壁に対してモータとは反対側にインバータ装置を設けている。モータのステータは、ハウジングの底壁側(インバータ装置側)に第1端部を有し、ハウジングの開口側(圧縮機構側)に第2端部を有している。ステータの全ての引出し線は、ステータの第1端部から引き出されており、ハウジングの底壁を通してインバータ装置に接続することができる。 In this way, the bottomed cylindrical housing has a motor on the inner bottom wall side, a compression mechanism on the inner opening side, and an inverter device on the opposite side of the bottom wall to the motor. The stator of the motor has a first end on the bottom wall side of the housing (inverter device side) and a second end on the opening side of the housing (compression mechanism side). All lead wires of the stator are led out from the first end of the stator and can be connected to the inverter device through the bottom wall of the housing.
 加えて、ステータの全ての渡り線は、ステータの第2端部に配置されているので、この結果、ハウジングの内周面のなかの、開口側に位置することになる。例えば、ハウジングを鋳造品によって構成する場合に、鋳型の準備段階において、開口側の内周面を径方向へ予め拡大しておくことができる。このため、渡り線と内周面との間の間隔(絶縁距離)を確保するために、後工程で内周面を部分的に切削加工する必要はない。切削加工が不要なので、切削分の肉厚を考慮しなくてすむ。また、切削加工する場合であっても、必要最小限の加工しろに抑えることができる。従って、電動圧縮機の生産コストを抑制することができる。 In addition, all the connecting wires of the stator are arranged at the second end of the stator, and as a result, are positioned on the opening side of the inner peripheral surface of the housing. For example, when the housing is formed by casting, the inner peripheral surface on the opening side can be expanded in the radial direction in advance in the preparation stage of the casting mold. Therefore, it is not necessary to partially cut the inner peripheral surface in a post-process in order to secure the interval (insulation distance) between the crossover wire and the inner peripheral surface. Since cutting is not required, there is no need to consider the thickness of the cut portion. Moreover, even if cutting is performed, it is possible to suppress the machining margin to a necessary minimum. Therefore, the production cost of the electric compressor can be suppressed.
 好ましくは、前記複数の導線(120)は、三相交流用の複数の巻線群(131~133)を構成し、前記複数の巻線群(131~133)のそれぞれにおいて、前記複数の巻線(121)は、前記複数の渡り線(122)を介して直列に接続しており、前記複数の巻線群(131~133)のそれぞれにおいて、前記複数の巻線(121)の、少なくとも1つの巻き数(Na)が他の巻き数(Nb)と異なることで、前記ステータ(103)に対して、前記複数の渡り線(122)の全てが前記第1及び第2引出し線(123,124)とは反対側に位置している。 Preferably, the plurality of conducting wires (120) form a plurality of winding groups (131 to 133) for three-phase alternating current, and in each of the plurality of winding groups (131 to 133), the plurality of windings The line (121) is connected in series via the plurality of connecting wires (122), and in each of the plurality of winding groups (131-133), at least Since one number of turns (Na) is different from the other number of turns (Nb), all of the plurality of connecting wires (122) are connected to the first and second lead wires (123) with respect to the stator (103). , 124).
 このように、少なくとも1つの巻線の巻き数が、他の巻線の巻き数と異なる。このため、ステータに対し、複数の渡り線の全てを第1及び第2引出し線とは反対側に、容易に位置させることができる。 Thus, the number of turns of at least one winding is different from the number of turns of the other windings. Therefore, all of the plurality of connecting wires can be easily positioned on the side opposite to the first and second lead wires with respect to the stator.
 好ましくは、前記複数の巻線群(131~133)のそれぞれにおいて、最初の巻線(121a)の巻き数(Na)が、他の巻線(121b)の巻き数(Nb)よりも半巻き少なく設定されることで、前記複数の巻線(121)の、1つの巻き数(Na)が他の巻き数(Nb)と異なっている。 Preferably, in each of the plurality of winding groups (131 to 133), the number of turns (Na) of the first winding (121a) is half the number of turns (Nb) of the other windings (121b). By being set to be small, the number of turns (Na) of one of the plurality of windings (121) is different from the number of turns (Nb) of the other windings (121).
 このため、最初の巻線の巻き数を、他の巻線の巻き数よりも半巻き少なく設定するだけの簡単な構成によって、ステータに対し、複数の渡り線の全てを第1及び第2引出し線とは反対側に、容易に位置させることができる。 For this reason, all of the plurality of connecting wires can be connected to the first and second lead-outs of the stator by a simple configuration in which the number of turns of the first winding is set to be half less than the number of turns of the other windings. It can easily be positioned on the opposite side of the line.
 好ましくは、前記複数の渡り線(122)は、前記他の巻線(121b)から、前記最初の巻線(121a)が巻かれている前記ティース(111c)へ戻る、戻り渡り線(122a)を含む。前記戻り渡り線(122a)には、前記最初の巻線(121a)が巻かれている前記ティース(111c)に対して半周のみ沿いつつ通る追加巻線(121d)が連続している。前記追加巻線(121d)は、前記最初の巻線(121a)が巻かれている前記ティース(111c)に対し、前記戻り渡り線(122a)から前記第2引出し線(124)まで、且つ、前記最初の巻線(121a)の巻き方向(A2)と同じ方向へ延びている。 Preferably, the plurality of crossover wires (122) are return crossover wires (122a) returning from the other windings (121b) to the teeth (111c) around which the first winding (121a) is wound. including. The return connecting wire (122a) is connected to an additional winding (121d) passing along only half the circumference of the teeth (111c) around which the first winding (121a) is wound. The additional winding (121d) extends from the return crossover wire (122a) to the second lead wire (124) with respect to the teeth (111c) around which the first winding (121a) is wound, and It extends in the same direction as the winding direction (A2) of the first winding (121a).
 従って、追加巻線は、最初の巻線が巻かれているティースに対して半周のみ、戻り渡り線から第2引出し線まで、且つ、最初の巻線の巻き方向と同じ方向へ、沿いつつ延びている。つまり、追加巻線は、最初の巻線に対し概ね半巻きを追加している。最初の巻線の少ない巻き数を、追加巻線によって補うことができる。この結果、最初の巻線の磁束を、他の巻線の磁束と同様となるように補うことができる。 Therefore, the additional winding extends along only half the circumference of the teeth around which the first winding is wound, from the return connecting wire to the second lead wire, and in the same direction as the winding direction of the first winding. ing. That is, the additional winding generally adds half a turn to the initial winding. Fewer turns in the first winding can be compensated for by additional windings. As a result, the flux of the first winding can be supplemented to be similar to that of the other windings.
 このように、ステータに対して、複数の第1及び第2引出し線と複数の渡り線とを、互いに反対側に配置するとともに、最初の巻線の磁束を、他の巻線の磁束と同様となるように補うことができる。 In this way, the plurality of first and second lead wires and the plurality of crossover wires are arranged on opposite sides of the stator, and the magnetic flux of the first winding is distributed in the same manner as the magnetic flux of the other windings. can be compensated to be
 好ましくは、前記追加巻線(121d)の終端部分(121de)は、前記ステータ(103)の前記第1端部(103a)に固定されている。 Preferably, the end portion (121de) of the additional winding (121d) is fixed to the first end (103a) of the stator (103).
 このように、追加巻線の終端部分を第1端部に固定することにより、ティースに対して追加巻線を緩みや弛みがなく確実に沿わせた状態で維持することができる。このため、最初の巻線の少ない巻き数を、追加巻線によって確実に補うことができる。 By fixing the terminating end portion of the additional winding to the first end in this manner, the additional winding can be maintained in a state in which it is reliably applied to the teeth without slack or slack. This ensures that the low number of turns of the first winding can be compensated for by additional windings.
 好ましくは、前記複数の巻線群(131~133)の、それぞれの前記最初の巻線(121a)は、前記ステータ(103)の周方向(A1)へ順に隣り合って整列している。前記複数の巻線群(131~133)の、それぞれの前記第1及び第2引出し線(123,124)は、前記ステータ(103)の周方向(A1)へ順に隣り合って整列している。 Preferably, the first windings (121a) of the plurality of winding groups (131 to 133) are arranged side by side in order in the circumferential direction (A1) of the stator (103). The first and second lead wires (123, 124) of the plurality of winding groups (131 to 133) are arranged side by side in order in the circumferential direction (A1) of the stator (103). .
 このように、全ての最初の巻線は、ステータの周方向へ隣り合って整列している。しかも、全ての第1及び第2引出し線も、ステータの周方向へ隣り合って整列している。つまり、全ての最初の巻線と、全ての第1及び第2引出し線とは、各最初の巻線の周りに、集中的に位置することによって、ステータに集約されてコンパクトにまとまるとともに、インバータ装置への配線が容易である。 Thus, all the first windings are aligned side by side in the circumferential direction of the stator. Moreover, all the first and second lead lines are also aligned side by side in the circumferential direction of the stator. That is, all the first windings and all the first and second lead wires are centrally located around each first winding, so that they are compactly integrated into the stator and the inverter Wiring to the device is easy.
 好ましくは、前記複数の巻線群(131~133)の、全ての前記第1及び第2引出し線(123,124)は、デルタ結線されている。 Preferably, all the first and second lead wires (123, 124) of the plurality of winding groups (131-133) are delta-connected.
 このように、各最初の巻線の周りに集中的に配置されている、全ての第1及び第2引出し線を、デルタ結線することにより、インバータ装置へ繋ぐ全ての第1及び第2引出し線の長さを、極力短くすることができる。第1及び第2引出し線が短くなった分、各巻線群の銅損を改善することができるとともに、モータを軽量化することができる。 In this way, by delta connecting all the first and second lead wires concentratedly arranged around each first winding, all the first and second lead wires connected to the inverter device can be shortened as much as possible. Since the first and second lead wires are shortened, the copper loss of each winding group can be improved and the weight of the motor can be reduced.
 好ましくは、前記複数の巻線群(131~133)の、全ての前記第1及び第2引出し線(123,124)は、スター結線されている。 Preferably, all the first and second lead wires (123, 124) of the plurality of winding groups (131-133) are star-connected.
 このため、各第1引出し線をインバータ装置に個別に接続するとともに、各第2引出し線同士をスター結線の中性点として、1つに結線することができる。各第1引出し線と中性点とを、ステータの1箇所に集約することができる。つまり、ステータの周囲に膨らみができる、クラスタブロック(端子ハウジング)と中性点とを、ステータの1箇所に集約することができるので、モータ自体をコンパクトにまとめることができる。 Therefore, each first lead wire can be individually connected to the inverter device, and each second lead wire can be connected as one with the neutral point of the star connection. Each first lead line and the neutral point can be gathered at one location on the stator. In other words, the cluster block (terminal housing) and the neutral point, which bulge around the stator, can be gathered in one place on the stator, so that the motor itself can be made compact.
 好ましくは、全ての前記第2引出し線(124)同士は、前記ステータ(103)に固定されることなく、互いに半田固定または溶着固定によって一体化されている。 Preferably, all the second lead wires (124) are integrated with each other by soldering or welding without being fixed to the stator (103).
 このため、全ての第2引出し線同士を、スター結線の中性点として、半田固定または溶着固定によって、容易に一体化できる。 Therefore, all the second lead wires can be easily integrated by soldering or welding as the neutral point of the star connection.
 本発明では、有底筒状のハウジングの、内部の底壁側にモータを設けている、電動圧縮機において、ハウジングの品質を確保しつつ、電動圧縮機の生産コストを抑制することができる。 According to the present invention, in an electric compressor in which a motor is provided on the inner bottom wall side of a bottomed cylindrical housing, it is possible to reduce the production cost of the electric compressor while ensuring the quality of the housing.
実施例1による電動圧縮機の断面図である。1 is a cross-sectional view of an electric compressor according to Example 1. FIG. 図1に示されるハウジングとステータとを分解した断面図である。2 is an exploded sectional view of the housing and stator shown in FIG. 1; FIG. 図2に示されるステータの斜視図である。Figure 3 is a perspective view of the stator shown in Figure 2; 図3に示されるステータを外周側へ展開したときのステータコアに対する複数の導線の配列を模式的に表した図である。FIG. 4 is a diagram schematically showing the arrangement of a plurality of conducting wires with respect to the stator core when the stator shown in FIG. 3 is developed to the outer peripheral side; 図4に示されるステータコアに対する複数の導線の配列をU相、V相、W相の各巻線群に分けて模式的に表した図である。FIG. 5 is a diagram schematically showing the arrangement of a plurality of conducting wires for the stator core shown in FIG. 4 divided into winding groups of U-phase, V-phase, and W-phase; 図5に示されるU相の巻線群における最初の巻線と他の巻線との関係を、模式的に表した図である。6 is a diagram schematically showing the relationship between the first winding and other windings in the U-phase winding group shown in FIG. 5; FIG. 図6に示される追加巻線の終端部分がステータに固定された構成の斜視図である。7 is a perspective view of a configuration in which the end portions of the additional windings shown in FIG. 6 are fixed to the stator; FIG. 実施例2による電動圧縮機のステータを外周側へ展開したときのステータコアに対する複数の導線の配列を模式的に表した図である。FIG. 10 is a diagram schematically showing the arrangement of a plurality of conducting wires with respect to the stator core when the stator of the electric compressor according to Example 2 is deployed to the outer peripheral side; 図8に示される第2引出し線同士の固定構造を説明する図である。FIG. 9 is a diagram illustrating a structure for fixing second lead lines shown in FIG. 8 ;
 本発明の実施の形態を添付図に基づいて以下に説明する。なお、添付図に示した形態は本発明の一例であり、本発明は当該形態に限定されない。 An embodiment of the present invention will be described below based on the accompanying drawings. In addition, the form shown in the accompanying drawings is an example of the present invention, and the present invention is not limited to the form.
<実施例1>
 図1~図7を参照しつつ、実施例1の電動圧縮機10を説明する。
<Example 1>
An electric compressor 10 of a first embodiment will be described with reference to FIGS. 1 to 7. FIG.
 図1に示されるように、電動圧縮機10は、冷媒を作動流体とする冷凍サイクル内で使用するのに適しており、例えば、自動車用空調装置の冷凍サイクル内で用いられる。なお、電動圧縮機10は、用途を限定されるものではない。 As shown in FIG. 1, the electric compressor 10 is suitable for use in a refrigeration cycle using a refrigerant as a working fluid, and is used, for example, in a refrigeration cycle of an automotive air conditioner. The application of the electric compressor 10 is not limited.
 電動圧縮機10は、例えば横置きに設置可能なハウジング20と、気体(例えばガス状の冷媒)を圧縮する圧縮機構50と、この圧縮機構50を駆動するモータ100と、このモータ100に駆動電力を供給するインバータ装置160とを有している。 The electric compressor 10 includes, for example, a housing 20 that can be installed horizontally, a compression mechanism 50 that compresses gas (eg, gaseous refrigerant), a motor 100 that drives the compression mechanism 50, and a driving power for the motor 100. and an inverter device 160 that supplies the
 図1及び図2に示されるように、ハウジング20は、有底筒状の部材であって、一端を底壁21によって閉鎖されるとともに、他端を全面的に開口している。つまり、ハウジング20の他端には、開口部22を有している。この開口部22は、開閉可能なヘッド部材31によって閉鎖されている。ハウジング20は、アルミニウム(アルミニウム合金を含む)等の金属材料の鋳造品によって構成される。 As shown in FIGS. 1 and 2, the housing 20 is a cylindrical member with a bottom, one end of which is closed by a bottom wall 21 and the other end of which is entirely open. That is, the other end of the housing 20 has an opening 22 . This opening 22 is closed by an openable and closable head member 31 . The housing 20 is made of a cast metal material such as aluminum (including aluminum alloy).
 ハウジング20の底壁21の外壁面21aは平坦面である。この外壁面21aには、有底筒状のインバータハウジング32が重ねられ且つ組み付けられている。このインバータハウジング32の底壁32aは、ハウジング20の底壁21の外壁面21aに重なっている。インバータハウジング32の開口部32bは、開閉可能なリッド33によって閉鎖されている。このインバータハウジング32には、インバータ装置160が収納されている。インバータ装置160の詳細は、後述する。 The outer wall surface 21a of the bottom wall 21 of the housing 20 is a flat surface. A tubular inverter housing 32 having a bottom is superimposed on and assembled with the outer wall surface 21a. The bottom wall 32 a of the inverter housing 32 overlaps the outer wall surface 21 a of the bottom wall 21 of the housing 20 . An opening 32b of the inverter housing 32 is closed by a lid 33 that can be opened and closed. An inverter device 160 is accommodated in the inverter housing 32 . Details of the inverter device 160 will be described later.
 ハウジング20は、内部に、底壁21側(矢印R1側)の第1収納室23と、開口部22側(矢印R2側)の第2収納室24とを有している。これらの第1及び第2収納室23,24は、ハウジング20の長手方向(軸線方向)に連続している。第1収納室23の第1内周面23aと、第2収納室24の第2内周面24aは、ハウジング20の長手方向の中心線CL1を基準とした真円である。第1内周面23aの径D1に対して、第2内周面24aの径D2は大径である。 The housing 20 has a first storage chamber 23 on the bottom wall 21 side (arrow R1 side) and a second storage chamber 24 on the opening 22 side (arrow R2 side). These first and second storage chambers 23 and 24 are continuous in the longitudinal direction (axial direction) of the housing 20 . The first inner peripheral surface 23a of the first storage chamber 23 and the second inner peripheral surface 24a of the second storage chamber 24 are perfect circles with the longitudinal centerline CL1 of the housing 20 as a reference. The diameter D2 of the second inner peripheral surface 24a is larger than the diameter D1 of the first inner peripheral surface 23a.
 ハウジング20の内部の開口部22側、つまり第2収納室24には、圧縮機構50の少なくとも一部(例えば全部)が収納されている。ハウジング20の内部の底壁21側、つまり第1収納室23には、モータ100が格納されている。つまり、ハウジング20は、モータハウジングや圧縮機ハウジングの機能を有する。以下、ハウジング20のことを「モータハウジング20」及び/又は「圧縮機ハウジング20」と言い換えることがある。 At least part (for example, the whole) of the compression mechanism 50 is housed in the opening 22 side inside the housing 20, that is, in the second housing chamber 24. A motor 100 is stored inside the housing 20 on the side of the bottom wall 21 , that is, in the first storage chamber 23 . That is, the housing 20 functions as a motor housing and a compressor housing. Hereinafter, the housing 20 may be referred to as "motor housing 20" and/or "compressor housing 20".
 さらに、ハウジング20は、外部から第1収納室23へ冷媒を吸入する吸入ポート25を有する。ヘッド部材31は、圧縮機構50によって圧縮された冷媒からオイルを分離するオイル分離室31aと、このオイル分離室31aによってオイルが分離されたガス状の冷媒を外部へ吐出する吐出ポート(図示せず)とを有する。 Further, the housing 20 has a suction port 25 for sucking refrigerant from the outside into the first storage chamber 23 . The head member 31 includes an oil separation chamber 31a for separating oil from the refrigerant compressed by the compression mechanism 50, and a discharge port (not shown) for discharging the gaseous refrigerant from which the oil is separated by the oil separation chamber 31a. ) and
 第1収納室23と第2収納室24との間は、円盤状の仕切り部材34(駆動軸支持部材34)によって仕切られている。この仕切り部材34は、ハウジング20に対して相対回転と軸方向への相対移動の両方が規制されている。以下、第1収納室23のことを「低圧室23」と言い換えることがある。仕切り部材34は、第1収納室23と第2収納室24とを連通した複数の吸入孔34aを有する。なお、この仕切り部材34は、圧縮機構50を構成する要素として考えることが可能である。つまり、仕切り壁34を圧縮機構50の一部と考えても、本発明の趣旨を逸脱するものではない。 The first storage chamber 23 and the second storage chamber 24 are partitioned by a disk-shaped partition member 34 (drive shaft support member 34). Both the relative rotation and axial movement of the partition member 34 relative to the housing 20 are restricted. Hereinafter, the first storage chamber 23 may be referred to as the "low pressure chamber 23". The partition member 34 has a plurality of suction holes 34a that allow the first storage chamber 23 and the second storage chamber 24 to communicate with each other. It should be noted that this partition member 34 can be considered as an element that constitutes the compression mechanism 50 . In other words, considering the partition wall 34 as part of the compression mechanism 50 does not depart from the gist of the present invention.
 図1に示されるように、第1収納室23にはハウジング20の長手方向の中心線CL1上に位置する駆動軸41が設けられている。この駆動軸41は、モータ100の出力軸101(モータ軸101)を兼ねる構成と、モータ100の出力軸101とは別部材(図示せず)の構成の、両方を含む。ここでは、モータ100の出力軸101を兼ねる構成について説明する。ハウジング20の長手方向の中心線CL1のことを、「駆動軸41(出力軸101)の中心線CL1」と言い換えることがある。 As shown in FIG. 1, the first storage chamber 23 is provided with a drive shaft 41 positioned on the longitudinal centerline CL1 of the housing 20. As shown in FIG. The drive shaft 41 includes both a configuration that serves as the output shaft 101 (motor shaft 101) of the motor 100 and a configuration that is a separate member (not shown) from the output shaft 101 of the motor 100. FIG. Here, a configuration that also serves as the output shaft 101 of the motor 100 will be described. The longitudinal centerline CL1 of the housing 20 may be referred to as "the centerline CL1 of the drive shaft 41 (output shaft 101)".
 この駆動軸41は、圧縮機構50へ向かって仕切り部材34を貫通するとともに、仕切り部材34に設けられた第1軸受42と、ハウジング20の底壁21に設けられた第2軸受43と、によって回転可能に支持されている。さらに駆動軸41は、仕切り部材34を貫通した一端面に、偏心軸44を有している。この偏心軸44は、駆動軸41の一端面から圧縮機構50へ向かって延びており、駆動軸41に対し平行である。偏心軸44の中心線CL2は、駆動軸41の中心線CL1に対しオフセットしている。この偏心軸44には、環状のブッシュ45が回転自在に嵌合している。ブッシュ45の一部には、このブッシュ45から径方向へ突出したカウンタウェイト46が、一体に設けられている。このブッシュ45の外周面には、第3軸受47の内周面が嵌合している。 The drive shaft 41 passes through the partition member 34 toward the compression mechanism 50 , and is driven by a first bearing 42 provided in the partition member 34 and a second bearing 43 provided in the bottom wall 21 of the housing 20 . rotatably supported. Further, the drive shaft 41 has an eccentric shaft 44 on one end face penetrating the partition member 34 . The eccentric shaft 44 extends from one end surface of the drive shaft 41 toward the compression mechanism 50 and is parallel to the drive shaft 41 . The centerline CL2 of the eccentric shaft 44 is offset from the centerline CL1 of the drive shaft 41 . An annular bush 45 is rotatably fitted to the eccentric shaft 44 . A part of the bush 45 is integrally provided with a counterweight 46 projecting radially from the bush 45 . The inner peripheral surface of the third bearing 47 is fitted to the outer peripheral surface of the bush 45 .
 図1に示されるように、圧縮機構50は、例えば、ヘッド部材31と仕切り部材34との間に相対回転不能に支持された固定スクロール60と、この固定スクロール60に対して周方向へ揺動可能な揺動スクロール70と、が組み合わされることにより、気体(例えばガス状の冷媒)を圧縮する、いわゆるスクロール圧縮機構によって構成される。 As shown in FIG. 1 , the compression mechanism 50 includes, for example, a fixed scroll 60 supported between the head member 31 and the partition member 34 so as not to rotate relative to each other, and a scroll member that swings circumferentially with respect to the fixed scroll 60 . A possible orbiting scroll 70 is combined to form a so-called scroll compression mechanism that compresses gas (for example, gaseous refrigerant).
 固定スクロール60は、円板状の固定鏡板61と、円筒状の外周壁62と、渦巻き状の固定渦巻壁63とを有する。固定鏡板61は、偏心軸44の中心線CL2に対し直交している。外周壁62は、固定鏡板61の外周縁からモータ100側へ延びた円筒である。この外周壁62には、径外方から内方へ冷媒を吸入するための冷媒吸入口64が形成されている。固定渦巻壁63は、外周壁62の内側に位置するとともに、固定鏡板61の底面から立設している。 The fixed scroll 60 has a disc-shaped fixed end plate 61 , a cylindrical outer peripheral wall 62 , and a spiral-shaped fixed spiral wall 63 . The fixed end plate 61 is orthogonal to the center line CL2 of the eccentric shaft 44. As shown in FIG. The outer peripheral wall 62 is a cylinder extending from the outer peripheral edge of the stationary end plate 61 toward the motor 100 side. The outer peripheral wall 62 is formed with a refrigerant suction port 64 for sucking refrigerant from radially outward to radially inward. The fixed spiral wall 63 is located inside the outer peripheral wall 62 and stands up from the bottom surface of the fixed end plate 61 .
 揺動スクロール70は、固定スクロール60に対して公転することが可能である。この揺動スクロール70は、固定渦巻壁63に対向して位置した円板状の揺動鏡板71と、渦巻き状の揺動渦巻壁72と、を有する。 The orbiting scroll 70 can revolve with respect to the fixed scroll 60 . The oscillating scroll 70 has a disk-shaped oscillating end plate 71 positioned opposite the fixed spiral wall 63 and a spiral oscillating spiral wall 72 .
 揺動鏡板71は、揺動スクロール70の中心線CL3に対し直交するとともに、固定スクロール60の外周壁62の内側に位置しており、偏心軸44によって回転可能に支持されている。揺動渦巻壁72は、揺動鏡板71から固定渦巻壁63へ向かって立設しており、この固定渦巻壁63に組み合わされることにより、複数の圧縮室73を形成している。駆動軸41が回転することにより、揺動スクロール70は偏心軸44の軸心CL2を中心として公転(偏心した回転)をすることができる。 The orbiting end plate 71 is perpendicular to the center line CL3 of the orbiting scroll 70, is positioned inside the outer peripheral wall 62 of the fixed scroll 60, and is rotatably supported by the eccentric shaft 44. The oscillating spiral wall 72 is erected from the oscillating end plate 71 toward the fixed spiral wall 63 , and is combined with the fixed spiral wall 63 to form a plurality of compression chambers 73 . By rotating the drive shaft 41 , the orbiting scroll 70 can revolve (rotate eccentrically) around the axis CL<b>2 of the eccentric shaft 44 .
 さらに圧縮機構50は、揺動スクロール70の自転を防止する自転防止機構80を有する。この自転防止機構80は、揺動鏡板71に設けられた複数の凹部81と、これらの複数の凹部81に嵌合している複数のリング部材82と、仕切り部材34から複数のリング部材82の内部へ延びた複数の回り止め用ピン83と、からなるピンアンドリング式自転防止機構である。複数のリング部材82と複数の回り止め用ピン83とが線接触することにより、揺動スクロール70の自転を防止しつつ、揺動を許容することができる。 Further, the compression mechanism 50 has an anti-rotation mechanism 80 that prevents the orbiting scroll 70 from rotating. The anti-rotation mechanism 80 includes a plurality of recesses 81 provided in the oscillating end plate 71, a plurality of ring members 82 fitted in the plurality of recesses 81, and the plurality of ring members 82 extending from the partition member 34. It is a pin-and-ring type anti-rotation mechanism comprising a plurality of anti-rotation pins 83 extending inward. The line contact between the plurality of ring members 82 and the plurality of anti-rotation pins 83 prevents rotation of the orbiting scroll 70 and permits the orbiting of the orbiting scroll 70 .
 駆動軸41が回転することにより、揺動スクロール70は公転をする。この結果、吸入ポート25から吸入された冷媒は、低圧室23内のモータ100の隙間を通り、仕切り部材34の吸入孔34aを経由し、固定スクロール60の冷媒吸入口64を通って、圧縮室73へ入る。揺動スクロール70の公転に伴い、圧縮室73は徐々に内容積を減じながら中心側へ移動していく。これにより、圧縮室73内の冷媒は圧縮される。圧縮室73内の圧力が高くなることによって、逆止弁91が開き、圧縮された冷媒は、ヘッド部材31内の吐出室92へ流入し、オイル分離室31aを介して吐出ポート(図示せず)から外方へ吐出される。 The rotation of the drive shaft 41 causes the orbiting scroll 70 to revolve. As a result, the refrigerant sucked from the suction port 25 passes through the clearance of the motor 100 in the low pressure chamber 23, passes through the suction hole 34a of the partition member 34, passes through the refrigerant suction port 64 of the fixed scroll 60, and flows into the compression chamber. Enter 73. As the orbiting scroll 70 revolves, the compression chamber 73 moves toward the center while gradually decreasing its internal volume. Thereby, the refrigerant in the compression chamber 73 is compressed. As the pressure in the compression chamber 73 increases, the check valve 91 opens, and the compressed refrigerant flows into the discharge chamber 92 in the head member 31 and flows through the oil separation chamber 31a to the discharge port (not shown). ) to the outside.
 図1に示されるように、モータ100は、例えば三相交流ブラシレスモータの構成である。このモータ100は、前記出力軸101(駆動軸41)と、この出力軸101に固定されているロータ102と、このロータ102の周囲を包囲している環状のステータ103とを備え、ハウジング20に格納されている。 As shown in FIG. 1, the motor 100 has, for example, a configuration of a three-phase AC brushless motor. The motor 100 includes the output shaft 101 (drive shaft 41), a rotor 102 fixed to the output shaft 101, and an annular stator 103 surrounding the rotor 102. stored.
 ロータ102は、ハウジング20の長手方向を回転中心とする(出力軸101の中心線CL1を基準として回転可能である)。ステータ103は、ロータ102の径方向外側に配置されてハウジング20の内周面20a(第1収納室23の第1内周面23a)に固定されている。例えば、このステータ103は、第1内周面23aに対し「しまりばめ」によって嵌め合わされることにより、ハウジング20の内周面20aに固定される。しまりばめの方法としては、例えば焼き嵌め、圧入等を挙げることができる。 The rotor 102 has its center of rotation in the longitudinal direction of the housing 20 (it is rotatable with respect to the center line CL1 of the output shaft 101). The stator 103 is arranged radially outside the rotor 102 and fixed to the inner peripheral surface 20a of the housing 20 (the first inner peripheral surface 23a of the first storage chamber 23). For example, the stator 103 is fixed to the inner peripheral surface 20a of the housing 20 by being fitted to the first inner peripheral surface 23a by "tight fit". As a method of interference fitting, for example, shrink fitting, press fitting, and the like can be mentioned.
 図1及び図3に示されるように、このステータ103は、環状のステータコア111と複数の導線120とを有する。ステータコア111の両端面111a,111bには、第1及び第2絶縁体112,113(インシュレータ112,113)が設けられている。ステータコア111の両端面111a,111bに、第1及び第2絶縁体112,113を予め取り付けて、ステータコア組立体110を構成することも可能である。以下、出力軸101の中心線CL1のことを「ステータコア111の中心線CL1」と言い換えることがある。 As shown in FIGS. 1 and 3, this stator 103 has an annular stator core 111 and a plurality of conducting wires 120. As shown in FIG. Both end surfaces 111a and 111b of the stator core 111 are provided with first and second insulators 112 and 113 (insulators 112 and 113). It is also possible to configure the stator core assembly 110 by previously attaching the first and second insulators 112 and 113 to both end faces 111 a and 111 b of the stator core 111 . Hereinafter, the centerline CL1 of the output shaft 101 may be referred to as "the centerline CL1 of the stator core 111".
 ステータコア111は、磁性鋼板等の強磁性板の積層構造によって構成されている。ステータコア111の径方向内面には、このステータコア111の中心線CL1へ向かって突出した、複数のティース111cが形成されている。これらのティース111cは、ステータ103の周方向(矢印A1方向)に等ピッチで配列されている。複数のティース111cの個数は3の倍数であって、例えば18個である。 The stator core 111 is constructed with a laminated structure of ferromagnetic plates such as magnetic steel plates. A plurality of teeth 111c are formed on the radial inner surface of stator core 111 and protrude toward center line CL1 of stator core 111 . These teeth 111c are arranged at equal pitches in the circumferential direction of the stator 103 (direction of arrow A1). The number of multiple teeth 111c is a multiple of 3, for example, 18 pieces.
 第1絶縁体112は、ステータコア111の、インバータ装置160側(矢印R1側)の端面111aに設けられた環状の部材であり、電気絶縁性樹脂の成形品によって構成されている。この第1絶縁体112は、ステータ103の、インバータ装置160側に位置する第1端部103aを成す。ステータコア111を中心線CL1に沿って見たときに、第1絶縁体112はステータコア111(複数のティース111cを含む)と同様の形状を呈している。 The first insulator 112 is an annular member provided on the end surface 111a of the stator core 111 on the inverter device 160 side (arrow R1 side), and is made of an electrically insulating resin molded product. The first insulator 112 forms a first end portion 103a of the stator 103 located on the inverter device 160 side. When stator core 111 is viewed along center line CL1, first insulator 112 has the same shape as stator core 111 (including a plurality of teeth 111c).
 第2絶縁体113は、第1絶縁体112と同様の構成であって、ステータコア111の、圧縮機構50側(矢印R2側)の端面111bに設けられた環状の部材であり、電気絶縁性樹脂の成形品によって構成されている。この第2絶縁体113は、ステータ103の、圧縮機構50側に位置する第2端部103bを成す。ステータコア111を中心線CL1に沿って見たときに、第2絶縁体113はステータコア111(複数のティース111cを含む)と同様の形状を呈している。 The second insulator 113 has the same configuration as the first insulator 112, and is an annular member provided on the end surface 111b of the stator core 111 on the compression mechanism 50 side (arrow R2 side), and is an electrically insulating resin. is composed of molded products. The second insulator 113 forms a second end 103b of the stator 103 located on the compression mechanism 50 side. When stator core 111 is viewed along center line CL1, second insulator 113 has the same shape as stator core 111 (including a plurality of teeth 111c).
 図3及び図4を参照する。図4は、図3に示されるステータ103の内周面を外周側へ展開した図であり、ステータコア111に対する複数の導線120の配列を、模式的に表してある。説明の理解を容易にするために、図4に示される複数のティース111cには、便宜的に符号を「1」から「18」まで順に付してある。1番目のティース111cには符号「1」を付した。 See Figures 3 and 4. FIG. 4 is a view of the inner peripheral surface of stator 103 shown in FIG. In order to facilitate understanding of the description, the teeth 111c shown in FIG. 4 are numbered sequentially from "1" to "18" for convenience. The first tooth 111c is labeled with "1".
 複数の導線120は、複数のティース111cに巻かれており、三相交流用のU相、V相、W相の各巻線群131~133を構成する。つまり、複数の導線120の数量は3個である。これら複数の導線120は、複数の巻線群131~133のそれぞれにおいて、複数のティース111cに個別に集中巻きにより巻かれている複数の巻線121と、複数の巻線121同士を接続する複数の渡り線122とを含む。さらに各導線120は、この導線120の巻き始めから引き出される第1引出し線123と、導線120の巻き終わりから引き出される第2引出し線124とを含む。 A plurality of conducting wires 120 are wound around a plurality of teeth 111c, and constitute U-phase, V-phase, and W-phase winding groups 131 to 133 for three-phase alternating current. That is, the number of conductors 120 is three. In each of the plurality of winding groups 131 to 133, the plurality of conducting wires 120 include a plurality of windings 121 individually wound around a plurality of teeth 111c by concentrated winding, and a plurality of windings connecting the plurality of windings 121 to each other. and a crossover 122 of . Further, each conducting wire 120 includes a first lead wire 123 drawn from the winding start of the conducting wire 120 and a second lead wire 124 drawn from the winding end of the conducting wire 120 .
 複数の渡り線122は、ステータ103の第2端部103bに全て配置されている。第1及び第2引出し線123,124は、ステータ103の第1端部103aから引き出されている。第1及び第2引出し線123,124の少なくとも一方、例えば第1引出し線123は、インバータ装置160(図1参照)に接続されている。第1及び第2引出し線123,124の接続構造については、後述する。 The plurality of crossover wires 122 are all arranged at the second end portion 103b of the stator 103. The first and second lead wires 123 and 124 are drawn out from the first end portion 103a of the stator 103. As shown in FIG. At least one of the first and second lead wires 123 and 124, for example the first lead wire 123, is connected to an inverter device 160 (see FIG. 1). A connection structure of the first and second lead lines 123 and 124 will be described later.
 図4及び図5を参照する。図5は、図4に示されるステータコア111に対する複数の導線120の配列を、U相、V相、W相の各巻線群131~133に分けて模式的に表してある。 See Figures 4 and 5. FIG. 5 schematically shows the arrangement of a plurality of conducting wires 120 for stator core 111 shown in FIG. 4, divided into U-phase, V-phase, and W-phase winding groups 131-133.
 ここで、複数の巻線群131~133のそれぞれにおいて、複数の巻線121のなかの、導線120の巻き始めの第1引出し線123から最初に巻かれる巻線121aのことを「最初の巻線121a」といい、残りの巻線121bのことを「他の巻線121b」という。 Here, in each of the plurality of winding groups 131 to 133, among the plurality of windings 121, the winding 121a wound first from the first lead wire 123 at the winding start of the conductor 120 is referred to as the "first winding." 121a", and the remaining winding 121b is referred to as the "other winding 121b".
 それぞれの最初の巻線121aは、ステータ103の周方向(矢印A1方向)へ順に隣り合って整列している。例えば、U相の巻線群131の最初の巻線121aは、1番目のティース111cに巻かれている。V相の巻線群132の最初の巻線121aは、2番目のティース111cに巻かれている。W相の巻線群133の最初の巻線121aは、3番目のティース111cに巻かれている。各巻線群131~133毎に、それぞれの他の巻線121bは、最初の巻線121aからステータ103の周方向へ、それぞれ2つ置きずつに順に整列している。例えば、U相の巻線群131の巻線121は、1番目、4番目、7番目、10番目、13番目、16番目のティース111cに巻かれている。 The respective first windings 121a are arranged side by side in order in the circumferential direction of the stator 103 (arrow A1 direction). For example, the first winding 121a of the U-phase winding group 131 is wound around the first tooth 111c. The first winding 121a of the V-phase winding group 132 is wound around the second tooth 111c. The first winding 121a of the W-phase winding group 133 is wound around the third tooth 111c. For each of the winding groups 131-133, the respective other windings 121b are arranged in order from the first winding 121a in the circumferential direction of the stator 103 every two. For example, the windings 121 of the U-phase winding group 131 are wound around the first, fourth, seventh, tenth, thirteenth, and sixteenth teeth 111c.
 U相の巻線群131では、16番目のティース111cに巻かれる巻線121cのことを「最後の巻線121c」という。V相の巻線群132では、17番目のティース111cに巻かれる巻線121のことを「最後の巻線121c」という。W相の巻線群133では、18番目のティース111cに巻かれる巻線121のことを「最後の巻線121c」という。 In the U-phase winding group 131, the winding 121c wound around the 16th tooth 111c is called the "last winding 121c". In the V-phase winding group 132, the winding 121 wound around the 17th tooth 111c is called the "last winding 121c". In the W-phase winding group 133, the winding 121 wound around the 18th tooth 111c is called the "last winding 121c".
 図5及び図6を参照する。図6は、図5に示されるU相の巻線群131における最初の巻線121aと他の巻線121bとの関係を、模式的に表してある。 See Figures 5 and 6. FIG. 6 schematically shows the relationship between the first winding 121a and the other winding 121b in the U-phase winding group 131 shown in FIG.
 U相、V相、W相の巻線群131~133のそれぞれにおいて、他の巻線121bの巻き数Nbは0より大きい整数である(例えば30ターン)。他の巻線121bの、巻き始め部分121bsと巻き終わり部分121beとは、ステータ103の第2端部103bに位置している。 In each of the U-phase, V-phase, and W-phase winding groups 131 to 133, the number of turns Nb of the other winding 121b is an integer larger than 0 (eg, 30 turns). A winding start portion 121bs and a winding end portion 121be of another winding 121b are located at the second end portion 103b of the stator 103 .
 一方、U相、V相、W相の巻線群131~133のそれぞれにおいて、最初の巻線121aの巻き始め部分121asは、ステータ103の第1端部103aに位置するとともに、第1引出し線123に連続している。それぞれの最初の巻線121aの巻き数Naは、他の巻線121bの巻き数Nbよりも半巻き少なく設定されている。つまり、複数の巻線群131~133のそれぞれにおいて、複数の巻線121の1つの巻き数Naは、他の巻線121bの巻き数Nbと異なっている。最初の巻線121aの巻き数Naが半巻き少ないので、最初の巻線121aの巻き終わり部分121aeは、最初の巻線121aの巻き始め部分121asに対して反対側、つまり、ステータ103の第2端部103bに位置する。 On the other hand, in each of the U-phase, V-phase, and W-phase winding groups 131 to 133, the winding start portion 121as of the first winding 121a is located at the first end portion 103a of the stator 103, and is located at the first lead wire. 123 continues. The number of turns Na of each first winding 121a is set to be half less than the number of turns Nb of the other windings 121b. That is, in each of the plurality of winding groups 131 to 133, the number of turns Na of one of the plurality of windings 121 is different from the number of turns Nb of the other winding 121b. Since the number of turns Na of the first winding 121a is less by half, the winding end portion 121ae of the first winding 121a is located on the opposite side to the winding start portion 121as of the first winding 121a, that is, the second winding of the stator 103. Located at the end 103b.
 U相の巻線群131では、1番目のティース111cに巻かれている最初の巻線121aの巻き終わり部分121aeと、4番目のティース111cに巻かれている次の他の巻線121bの巻き始め部分121bsとが、渡り線122によって接続されている。4番目のティース111cに巻かれている他の巻線121bの巻き終わり部分121beと、7番目のティース111cに巻かれている次の他の巻線121bの巻き始め部分とは、渡り線122によって接続されている。同様に、7番目、10番目、13番目、16番目のティース111cに巻かれている次の他の巻線121b同士も、渡り線122によって直列に接続されている。V相、W相の巻線群131についても同様の構成である。以上の説明から明らかなように、U相、V相、W相の巻線群131~133のそれぞれにおいて、最初の巻線121aの巻き終わり部分121aeと、各他の巻線121bの巻き始め部分121bsと、各他の巻線121bの巻き終わり部分121beとは、渡り線122によって直列に接続される。これにより、複数の巻線群131~133のそれぞれにおいて、複数の巻線121は、複数の渡り線122を介して直列に接続されている。 In the U-phase winding group 131, the winding end portion 121ae of the first winding 121a wound on the first tooth 111c and the winding of the next other winding 121b wound on the fourth tooth 111c. The start portion 121bs is connected by a crossover wire 122 . The winding end portion 121be of the other winding 121b wound around the fourth tooth 111c and the winding start portion of the next other winding 121b wound around the seventh tooth 111c are separated by the crossover wire 122. It is connected. Similarly, the following other windings 121b wound around the seventh, tenth, thirteenth, and sixteenth teeth 111c are also connected in series by a crossover wire 122. FIG. The V-phase and W-phase winding groups 131 have the same configuration. As is clear from the above description, in each of the U-phase, V-phase, and W-phase winding groups 131 to 133, the winding end portion 121ae of the first winding 121a and the winding start portion of each of the other windings 121b 121bs and the winding end portion 121be of each other winding 121b are connected in series by a crossover wire 122 . Thus, in each of the winding groups 131 to 133, the windings 121 are connected in series via the connecting wires 122. FIG.
 このようにして、ステータ103に対し、全ての渡り線122を第1引出し線123とは逆側(反対側)に配置することができる。しかも、最初の巻線121aの巻き数Naを、他の巻線121bの巻き数Nbよりも半巻き少なく設定するだけでよい。 In this way, all the connecting wires 122 can be arranged on the opposite side (opposite side) of the first lead wire 123 with respect to the stator 103 . Moreover, it is only necessary to set the number of turns Na of the first winding 121a to be half less than the number of turns Nb of the other windings 121b.
 図1及び図3に示されるように、ステータ103の第2端部103b(第2絶縁体113)の外周面、つまりステータ103の径方向の外側には、全ての渡り線122が巻かれている。 As shown in FIGS. 1 and 3, all the connecting wires 122 are wound around the outer peripheral surface of the second end portion 103b (second insulator 113) of the stator 103, that is, the radially outer side of the stator 103. there is
 このように、ステータ103は、ハウジング20の底壁21側(インバータ装置160側)に第1端部103aを有し、ハウジング20の開口部22側(圧縮機構50側)に第2端部103bを有している。ステータ103の全ての引出し線123,124は、ステータ103の、インバータ装置160側に位置する第1端部103aから引き出されており、ハウジング20の底壁21を通してインバータ装置160に容易に接続することができる。 Thus, the stator 103 has a first end 103a on the bottom wall 21 side of the housing 20 (inverter device 160 side) and a second end 103b on the opening 22 side of the housing 20 (compression mechanism 50 side). have. All the lead wires 123, 124 of the stator 103 are pulled out from the first end 103a of the stator 103 located on the inverter device 160 side, and can be easily connected to the inverter device 160 through the bottom wall 21 of the housing 20. can be done.
 加えて、ステータ103の全ての渡り線122は、ステータ103の、圧縮機構50側に位置する第2端部103bに配置されているので、この結果、ハウジング20の内周面20a(特に第1収納室23の第1内周面23a)のなかの、開口部22側に位置することになる。このように、渡り線122は、ステータ103の径方向の外側、つまりハウジング20の内周面20aに接近して位置する。渡り線122との間の電気絶縁性を適切に確保するためには、渡り線122と内周面20aとの間の間隔(絶縁距離)を十分に確保する必要がある。 In addition, all the connecting wires 122 of the stator 103 are arranged at the second end portion 103b of the stator 103 located on the compression mechanism 50 side. It is positioned on the side of the opening 22 in the first inner peripheral surface 23 a) of the storage chamber 23 . Thus, the crossover wire 122 is positioned radially outside of the stator 103 , that is, close to the inner peripheral surface 20 a of the housing 20 . In order to properly secure electrical insulation from the connecting wire 122, it is necessary to secure a sufficient distance (insulation distance) between the connecting wire 122 and the inner peripheral surface 20a.
 これに対し、例えば、ハウジング20を鋳造品によって構成する場合に、鋳型の準備段階において、開口部22側の内周面20a(第1収納室23の第1内周面23a)を径方向へ予め拡大しておくことができる。より具体的には、図1及び図2に示されるように、第1収納室23の第1内周面23aのなかの、第2収納室24側の端部に径方向へ拡大した凹部20bを設けておくことができる。この結果、渡り線122と内周面20aとの間の間隔(絶縁距離)を確保することができる。 On the other hand, for example, when the housing 20 is formed by casting, the inner peripheral surface 20a on the side of the opening 22 (the first inner peripheral surface 23a of the first storage chamber 23) is radially moved in the preparation stage of the mold. It can be expanded in advance. More specifically, as shown in FIGS. 1 and 2, a radially enlarged recess 20b is formed in the first inner peripheral surface 23a of the first storage chamber 23 at the end on the second storage chamber 24 side. can be set. As a result, a space (insulation distance) between the crossover wire 122 and the inner peripheral surface 20a can be secured.
 このため、ハウジング20の内周面20aと渡り線122との間の間隔(絶縁距離)を確保するために、後工程で内周面20aを部分的に切削加工する必要はない。切削加工が不要なので、切削分の肉厚を考慮しなくてすむ。また、切削加工する場合であっても、必要最小限の加工しろに抑えることができる。従って、電動圧縮機10の生産コストを抑制することができる。 For this reason, it is not necessary to partially cut the inner peripheral surface 20a in a post-process in order to ensure the spacing (insulation distance) between the inner peripheral surface 20a of the housing 20 and the connecting wire 122. Since cutting is not required, there is no need to consider the thickness of the cut portion. Moreover, even if cutting is performed, it is possible to suppress the machining margin to the minimum required. Therefore, the production cost of the electric compressor 10 can be suppressed.
 但しこのままでは、図6に示されるように、それぞれの最初の巻線121aの巻き数Naが、他の巻線121bの巻き数Nbよりも半巻き分少なく設定されることにより、複数の巻線121のなかの、1つの巻線121aの巻き数Naが、他の巻き数Nbと異なったままである。最初の巻線121aの磁束が、他の巻線121bの磁束と異なってしまう。 However, in this state, as shown in FIG. 6, the number of turns Na of each first winding 121a is set to be less than the number of turns Nb of the other windings 121b by a half turn. 121, the number of turns Na of one winding 121a remains different from the number of turns Nb of the other. The magnetic flux of the first winding 121a will be different from the magnetic flux of the other windings 121b.
 そこで、全ての巻線121の磁束を極力合致させるために、最初の巻線121aが巻かれているティース111cに対して、追加巻線121dを配置することにした。以下、追加巻線121dの構成を詳しく説明する。 Therefore, in order to match the magnetic fluxes of all the windings 121 as much as possible, an additional winding 121d is arranged for the teeth 111c around which the first winding 121a is wound. The configuration of the additional winding 121d will be described in detail below.
 図5及び図6に示されるように、複数の巻線群131~133のそれぞれにおいて、最後の巻線121cの巻き終わり部分121ceは、戻り渡り線122aを介して、最初の巻線121aが巻かれているティース111c(ティース111cの近傍を含む)へ戻る。つまり、複数の渡り線122は、他の巻線121b(最後の巻線121c)から、最初の巻線121aが巻かれているティース111c(ティース111cの近傍を含む)へ戻る、戻り渡り線122aを含む。この戻り渡り線122aを含む、全ての渡り線122が延びる方向は同一方向、例えばステータ103の周方向(矢印A1方向)である。 As shown in FIGS. 5 and 6, in each of the plurality of winding groups 131 to 133, the winding end portion 121ce of the last winding 121c is connected to the first winding 121a via the return connecting wire 122a. return to the tooth 111c (including the vicinity of the tooth 111c). That is, the plurality of crossover wires 122 are return crossover wires 122a that return from the other winding 121b (the last winding 121c) to the teeth 111c (including the vicinity of the teeth 111c) around which the first winding 121a is wound. including. All the connecting wires 122, including the return connecting wire 122a, extend in the same direction, for example, the circumferential direction of the stator 103 (arrow A1 direction).
 この戻り渡り線122aには、最初の巻線121aが巻かれているティース111cに対して半周のみ沿いつつ通る、追加巻線121dが連続している。追加巻線121dは、最初の巻線121aが巻かれているティース111cに対して半周のみ、戻り渡り線122aから第2引出し線124まで、且つ、最初の巻線121aの巻き方向(矢印A2方向)と同じ方向へ延びている。つまり、追加巻線121dは、最初の巻線121aに対し概ね半巻きを追加している。最初の巻線121aの少ない巻き数Naを、追加巻線121dによって補うことができる。この結果、最初の巻線121aの磁束を、他の巻線121bの磁束と同様となるように補うことができる。 An additional winding 121d is continuous with the return connecting wire 122a, passing along only half the circumference of the tooth 111c around which the first winding 121a is wound. The additional winding 121d extends only half a turn around the tooth 111c around which the first winding 121a is wound, from the return connecting wire 122a to the second lead wire 124, and in the winding direction of the first winding 121a (arrow A2 direction). ) in the same direction as That is, the additional winding 121d adds approximately half a turn to the first winding 121a. The small number of turns Na of the first winding 121a can be compensated for by the additional winding 121d. As a result, the magnetic flux of the first winding 121a can be supplemented to be similar to the magnetic flux of the other windings 121b.
 このように、ステータ103に対して、複数の第1及び第2引出し線123,124と複数の渡り線122とを、互いに反対側に配置するとともに、最初の巻線121aの磁束を、他の巻線121bの磁束と同様となるように補うことができる。 In this manner, the plurality of first and second lead wires 123, 124 and the plurality of crossover wires 122 are arranged on opposite sides of the stator 103, and the magnetic flux of the first winding 121a is transferred to other It can be compensated to be similar to the magnetic flux of winding 121b.
 しかも、複数の巻線群131~133のそれぞれにおいて、複数の巻線121の、少なくとも1つの巻き数Naが他の巻き数Nbと異なることで、ステータ103に対して、複数の渡り線122の全てを第1及び第2引出し線123,124とは反対側に、容易に位置させることができる。 Moreover, in each of the plurality of winding groups 131 to 133, the number of turns Na of at least one of the plurality of windings 121 is different from the other number of turns Nb. All can be easily positioned opposite the first and second lead lines 123,124.
 以上の説明をまとめると次の通りである。複数の巻線群131~133のそれぞれにおいて、最初の巻線121aの巻き数Naが、他の巻線121bの巻き数Nbよりも半巻き少なく設定されることで、複数の巻線121の、1つの巻き数Naが他の巻き数Nbと異なっている。このため、最初の巻線121aの巻き数Naを、他の巻線121bの巻き数Nbよりも半巻き少なく設定するだけの簡単な構成によって、ステータ103に対し、複数の渡り線122の全てを第1及び第2引出し線123,124とは反対側に、容易に位置させることができる。 The above explanation can be summarized as follows. In each of the plurality of winding groups 131 to 133, the number of turns Na of the first winding 121a is set to be half less than the number of turns Nb of the other windings 121b. One number of turns Na is different from the other number of turns Nb. For this reason, all of the plurality of crossover wires 122 can be connected to the stator 103 by a simple configuration in which the number of turns Na of the first winding 121a is half less than the number of turns Nb of the other windings 121b. It can be easily positioned on the side opposite to the first and second lead lines 123,124.
 図4を参照すると、上述のように、複数の巻線群131~133の、それぞれの最初の巻線121aは、ステータ103の周方向(矢印A1方向)へ順に隣り合って整列している。複数の巻線群131~133の、それぞれの第1及び第2引出し線123,124は、ステータ103の周方向(矢印A1方向)へ順に隣り合って整列している。 Referring to FIG. 4, as described above, the respective first windings 121a of the plurality of winding groups 131 to 133 are arranged side by side in order in the circumferential direction of the stator 103 (arrow A1 direction). The respective first and second lead wires 123, 124 of the plurality of winding groups 131-133 are aligned side by side in the circumferential direction of the stator 103 (arrow A1 direction).
 つまり、全ての最初の巻線121aと、全ての第1及び第2引出し線123,124とは、各最初の巻線121aの周りに、集中的に位置することによって、ステータ103に集約されてコンパクトにまとまるとともに、インバータ装置160への配線が容易である。 That is, all the first windings 121a and all the first and second lead wires 123, 124 are concentrated in the stator 103 by being centrally located around each first winding 121a. It is compact and easy to wire to the inverter device 160 .
 ここで、図1及び図4を参照しつつ、第1及び第2引出し線123,124とインバータ装置160との接続構造について説明する。 Here, the connection structure between the first and second lead wires 123 and 124 and the inverter device 160 will be described with reference to FIGS. 1 and 4. FIG.
 図1に示されるように、第1収納室23に格納されているステータ103の、第1端部103aの端面112a(第1絶縁体112の端面112a)は、ハウジング20の底壁21に対向し且つ近接している。この第1端部103aの端面112a側には、3個の端子141~143(レセプタクル141~143)を備えた電気コネクタ144(クラスタブロック144)が配置されている。3個の端子141~143には、少なくとも第1引出し線123が個別に接続されている。 As shown in FIG. 1, the end surface 112a of the first end portion 103a (the end surface 112a of the first insulator 112) of the stator 103 stored in the first storage chamber 23 faces the bottom wall 21 of the housing 20. and close to each other. An electrical connector 144 (cluster block 144) having three terminals 141 to 143 (receptacles 141 to 143) is arranged on the end face 112a side of the first end portion 103a. At least the first lead wires 123 are individually connected to the three terminals 141 to 143 .
 ハウジング20の底壁21には、3個のターミナルピン151を備えた中継ターミナル152が設けられている。各ターミナルピン151は、ステータコア111の中心線CL1に沿って、ハウジング20内からインバータハウジング32内へ延びている。これらのターミナルピン151の一端部には、3個の端子141~143が嵌め込み可能である。 A relay terminal 152 having three terminal pins 151 is provided on the bottom wall 21 of the housing 20 . Each terminal pin 151 extends from inside housing 20 into inverter housing 32 along center line CL<b>1 of stator core 111 . One end of these terminal pins 151 can be fitted with three terminals 141 to 143 .
 インバータ装置160は、ハウジング20の底壁21の外壁面21aに対して、直接または間接に設けられている構成を含む。一例を挙げると、インバータ装置160は、インバータハウジング32の内部に取り外し可能に収納されることによって、ハウジング20の底壁21の外壁面21aに間接に設けられる。他の例を挙げると、インバータ装置160は、インバータハウジング32の底壁32aを介することなく、ハウジング20の底壁21の外壁面21aに直接に設けられる。このインバータ装置160は、インバータ回路等の制御部品161を実装した基板162と、この基板162に設けられたインバータ側コネクタ163とを備えている。このインバータ側コネクタ163は、ターミナルピン151の他端部に接続可能である。 The inverter device 160 includes a configuration that is provided directly or indirectly with respect to the outer wall surface 21a of the bottom wall 21 of the housing 20. For example, the inverter device 160 is detachably housed inside the inverter housing 32 so as to be indirectly provided on the outer wall surface 21 a of the bottom wall 21 of the housing 20 . As another example, the inverter device 160 is directly provided on the outer wall surface 21a of the bottom wall 21 of the housing 20 without the bottom wall 32a of the inverter housing 32 interposed therebetween. This inverter device 160 comprises a substrate 162 on which control components 161 such as an inverter circuit are mounted, and an inverter-side connector 163 provided on this substrate 162 . This inverter-side connector 163 can be connected to the other end of the terminal pin 151 .
 ステータ103がハウジング20内に組み付けられることによって、3個の端子141~143は各ターミナルピン151に個別に嵌め込まれている。インバータ装置160がインバータハウジング32内に組み付けられることによって、インバータ側コネクタ163は各ターミナルピン151に接続されている。この結果、各第1引出し線123は、インバータ装置160に電気的に接続されている。インバータ装置160からモータ100へ駆動電力を供給することができる。 By assembling the stator 103 into the housing 20, the three terminals 141 to 143 are individually fitted onto the respective terminal pins 151. As shown in FIG. By assembling the inverter device 160 into the inverter housing 32 , the inverter side connector 163 is connected to each terminal pin 151 . As a result, each first lead line 123 is electrically connected to the inverter device 160 . Drive power can be supplied from the inverter device 160 to the motor 100 .
 図4に示されるように、複数の巻線群131~133の、全ての第1及び第2引出し線123,124は、デルタ結線されている。以下に詳しく説明する。ここで、3個の端子141~143のことを、第1端子141、第2端子142、第3端子143と区別して説明する。第1端子141には、U相の巻線群131の第1引出し線123と、W相の巻線群133の第2引出し線124とが接続されている。第2端子142には、V相の巻線群132の第1引出し線123と、U相の巻線群131の第2引出し線124とが接続されている。第3端子143には、W相の巻線群133の第1引出し線123と、V相の巻線群132の第2引出し線124とが接続されている。 As shown in FIG. 4, all the first and second lead wires 123, 124 of the multiple winding groups 131-133 are delta-connected. A detailed description is given below. Here, the three terminals 141 to 143 will be described separately from the first terminal 141, the second terminal 142, and the third terminal 143. FIG. The first terminal 141 is connected to the first lead wire 123 of the U-phase winding group 131 and the second lead wire 124 of the W-phase winding group 133 . The first lead wire 123 of the V-phase winding group 132 and the second lead wire 124 of the U-phase winding group 131 are connected to the second terminal 142 . The first lead wire 123 of the W-phase winding group 133 and the second lead wire 124 of the V-phase winding group 132 are connected to the third terminal 143 .
 このように、各最初の巻線121aの周りに集中的に配置されている、全ての第1及び第2引出し線123,124を、デルタ結線することにより、インバータ装置160へ繋ぐ全ての第1及び第2引出し線123,124の長さを、極力短くすることができる。第1及び第2引出し線123,124が短くなった分、各巻線群131~133の銅損を改善することができるとともに、モータ100(図1参照)を軽量化することができる。 In this way, by delta connecting all the first and second lead wires 123, 124 concentratedly arranged around each first winding 121a, all the first lead wires connected to the inverter device 160 are connected to the inverter device 160. And the length of the second lead lines 123, 124 can be shortened as much as possible. Since the first and second lead wires 123 and 124 are shortened, the copper loss of each winding group 131 to 133 can be improved and the weight of the motor 100 (see FIG. 1) can be reduced.
 図6に示されるように、追加巻線121dの終端部分121deは、ステータ103の第1端部103a(第1絶縁体112)に固定されている。例えば、図7に示されるように、終端部分121deは、第1端部103a(第1絶縁体112)に一体に有しているフック112bや図示せぬ孔に、縛り糸や細いワイヤ等の線材171によって結び付けられる、いわゆるレーシング処理により、ステータ103に固定される。 As shown in FIG. 6, the end portion 121de of the additional winding 121d is fixed to the first end 103a (first insulator 112) of the stator 103. For example, as shown in FIG. 7, the end portion 121de has a hook 112b integrally formed on the first end portion 103a (first insulator 112) or a hole (not shown) to which a tie string, thin wire, or the like is attached. It is fixed to the stator 103 by a so-called lacing process that is tied together by a wire 171 .
 このように、追加巻線121dの終端部分121deを第1端部103aに固定することにより、図6に示されるティース111cに対して追加巻線121dを緩みや弛みがなく確実に沿わせた状態で維持することができる。同様に、追加巻線121dの始端部分121dsも、第2端部103bに固定されている。このため、最初の巻線121aの少ない巻き数を、追加巻線121dによって確実に補うことができる。 By fixing the terminal end portion 121de of the additional winding 121d to the first end portion 103a in this way, the additional winding 121d is reliably laid along the teeth 111c shown in FIG. can be maintained at Similarly, the starting end portion 121ds of the additional winding 121d is also fixed to the second end portion 103b. Therefore, the small number of turns of the first winding 121a can be reliably compensated for by the additional winding 121d.
 同様に、各最初の巻線121aの巻き終わり部分121aeは、ステータ103の第2端部103bに固定されている。各他の巻線121bの巻き始め部分121bs及び巻き終わり部分121beは、第2端部103bに固定されている。このため、各巻線121の巻き状態を、緩みや弛みがなく確実に維持することができる。 Similarly, the winding end portion 121ae of each first winding 121a is fixed to the second end 103b of the stator 103. A start portion 121bs and an end portion 121be of each other winding 121b are fixed to the second end 103b. Therefore, the winding state of each winding 121 can be reliably maintained without slack or slack.
 以上の説明から明らかなように、上記実施例1では、有底筒状のハウジング20の、内部の底壁21側にモータ100を設けている、電動圧縮機10において、ハウジング20の品質を確保しつつ、電動圧縮機10の生産コストを抑制することができる。 As is clear from the above description, in the first embodiment, in the electric compressor 10 in which the motor 100 is provided on the inner bottom wall 21 side of the bottomed cylindrical housing 20, the quality of the housing 20 is ensured. While doing so, the production cost of the electric compressor 10 can be suppressed.
<実施例2>
 次に、図8及び図9を参照しつつ実施例2の電動圧縮機200を説明する。図8は、実施例2による電動圧縮機200のステータ103を外周側へ展開したときの、ステータコア111に対する複数の導線120の配列を、模式的に表しており、図4に対応させて表している。
<Example 2>
Next, the electric compressor 200 of Example 2 is demonstrated, referring FIG.8 and FIG.9. FIG. 8 schematically shows the arrangement of a plurality of conducting wires 120 with respect to the stator core 111 when the stator 103 of the electric compressor 200 according to the second embodiment is deployed to the outer peripheral side, corresponding to FIG. there is
 実施例2の電動圧縮機200は、上記図1~図7に示される実施例1の電動圧縮機10のステータ103において、各巻線群131~133のなかの、全ての第1及び第2引出し線123,124を、スター結線したことを特徴とする。その他の基本的な構成については、上記実施例1による電動圧縮機10と共通する。実施例1による電動圧縮機10と共通する部分については、符号を流用すると共に、詳細な説明を省略する。 In the electric compressor 200 of the second embodiment, in the stator 103 of the electric compressor 10 of the first embodiment shown in FIGS. A feature is that the lines 123 and 124 are star-connected. Other basic configurations are common to the electric compressor 10 according to the first embodiment. Reference numerals are used for parts that are common to the electric compressor 10 according to the first embodiment, and detailed description thereof is omitted.
 詳しく述べると、第1端子141には、U相の巻線群131の第1引出し線123のみが接続されている。第2端子142には、V相の巻線群132の第1引出し線123のみが接続されている。第3端子143には、W相の巻線群133の第1引出し線123のみが接続されている。全ての巻線群131~133の第2引出し線124同士は、スター結線の中性点201として、1つに結線されている。 Specifically, only the first lead wire 123 of the U-phase winding group 131 is connected to the first terminal 141 . Only the first lead wire 123 of the V-phase winding group 132 is connected to the second terminal 142 . Only the first lead wire 123 of the W-phase winding group 133 is connected to the third terminal 143 . The second lead wires 124 of all winding groups 131 to 133 are connected together as a neutral point 201 of star connection.
 このため、各第1引出し線123をインバータ装置160(図1参照)に個別に接続するとともに、各第2引出し線124同士をスター結線の中性点201として、1つに結線することができる。各第1引出し線123と中性点201とを、ステータ103の1箇所に集約することができる。つまり、ステータ103の周囲に膨らみができる、電気コネクタ144と中性点201とを、ステータ103の1箇所に集約することができるので、モータ100自体をコンパクトにまとめることができる。 Therefore, the first lead wires 123 can be individually connected to the inverter device 160 (see FIG. 1), and the second lead wires 124 can be connected together as a neutral point 201 of the star connection. . Each first lead wire 123 and the neutral point 201 can be collected at one location on the stator 103 . In other words, the electric connector 144 and the neutral point 201, which bulge out around the stator 103, can be gathered in one place on the stator 103, so that the motor 100 itself can be made compact.
 図9に示されるように、全ての第2引出し線124同士は、ステータ103に固定されることなく、つまり、ステータ103に固定された端子141~143(図1参照)に接続することなく、互いに半田固定または溶着固定によって一体化されている。このため、全ての第2引出し線124同士を、スター結線の中性点201として、半田固定または溶着固定によって、容易に一体化できる。中性点201の部分は、電気絶縁性のスリーブ202によって被覆されている。さらに、実施例2による電動圧縮機200は、上記実施例1と同様の効果を発揮することができる。 As shown in FIG. 9, all the second lead wires 124 are connected without being fixed to the stator 103, that is, without being connected to the terminals 141 to 143 (see FIG. 1) fixed to the stator 103. They are integrated with each other by soldering or welding. Therefore, all the second lead wires 124 can be easily integrated as the neutral point 201 of the star connection by soldering or welding. A portion of the neutral point 201 is covered by an electrically insulating sleeve 202 . Furthermore, the electric compressor 200 according to the second embodiment can exhibit effects similar to those of the first embodiment.
 実施例2では、第2引出し線124が長過ぎる場合には、線途中の部分を第1端部103aに有している孔203や図示せぬフックに、縛り糸や細いワイヤ等の線材204によって結び付けられる、いわゆるレーシング処理を施すことにより、ステータ103に固定することは可能である。 In the second embodiment, when the second lead wire 124 is too long, a wire rod 204 such as a tying thread or a thin wire is attached to a hole 203 having a middle part of the wire in the first end 103a or a hook (not shown). It is possible to fix to the stator 103 by applying a so-called lacing process that is tied by
 以上の説明から明らかなように、上記実施例1~2のモータ100;200は、ステータ103に対し、全ての渡り線122と全ての引出し線123,124とを、互いに逆向きの配置とするのに、極めて有効な技術である。この技術は、ハウジング20(モータハウジング20)にモータ100のみを格納する(例えば、圧縮機構50を格納しない)技術にも、適用することができる。 As is clear from the above description, in the motors 100 and 200 of the first and second embodiments, all the connecting wires 122 and all the lead wires 123 and 124 are arranged in opposite directions with respect to the stator 103. However, it is an extremely effective technique. This technique can also be applied to a technique of housing only the motor 100 (for example, not housing the compression mechanism 50) in the housing 20 (motor housing 20).
 なお、本発明による電動圧縮機10;200は、本発明の作用及び効果を奏する限りにおいて、実施例に限定されるものではない。
 圧縮機構50は、スクロール圧縮機構の構成に限定されるものではなく、駆動軸41によって駆動されて、気体(例えばガス状の冷媒)を圧縮するものであればよい。
It should be noted that the electric compressor 10; 200 according to the present invention is not limited to the embodiment as long as the action and effect of the present invention are exhibited.
The compression mechanism 50 is not limited to the configuration of the scroll compression mechanism, and may be driven by the drive shaft 41 to compress gas (eg, gaseous refrigerant).
 本発明の電動圧縮機10;200は、車両用空調装置の冷凍サイクル内で用いるのに好適である。 The electric compressor 10; 200 of the present invention is suitable for use in the refrigerating cycle of a vehicle air conditioner.
 10,200 電動圧縮機
 20    ハウジング
 20a   内周面
 21    底壁
 21a   外壁面
 22    開口部
 50    圧縮機構
 100   モータ
 102   ロータ
 103   ステータ
 103a  第1端部
 103b  第2端部
 110   ステータコア組立体
 111   ステータコア
 111c  ティース
 120   導線
 121   巻線
 121a  最初の巻線
 121as 巻き始め部分
 121ae 巻き終わり部分
 121b  他の巻線
 121bs 巻き始め部分
 121be 巻き終わり部分
 121c  最後の巻線
 121ce 巻き終わり部分
 121d  追加巻線
 121de 終端部分
 121ds 始端部分
 122   渡り線
 122a  戻り渡り線
 123   第1引出し線
 124   第2引出し線
 131   U相の巻線群
 132   V相の巻線群
 133   W相の巻線群
 160   インバータ装置
 201   スター結線の中性点
 A1    ステータの周方向
 A2    最初の巻線の巻き方向
 CL1   ハウジングの長手方向の中心線(ステータコアの中心線)
 Na    最初の巻線の巻き数
 Nb    他の巻線の巻き数
 R1    インバータ装置側
 R2    圧縮機構側
 
Reference Signs List 10, 200 electric compressor 20 housing 20a inner peripheral surface 21 bottom wall 21a outer wall surface 22 opening 50 compression mechanism 100 motor 102 rotor 103 stator 103a first end 103b second end 110 stator core assembly 111 stator core 111c teeth 120 conducting wire 121 winding 121a first winding 121as winding start portion 121ae winding end portion 121b other winding 121bs winding start portion 121be winding end portion 121c last winding 121ce winding end portion 121d additional winding 121de end portion 121ds start portion 122 transition Wire 122a Return connecting wire 123 First lead wire 124 Second lead wire 131 U-phase winding group 132 V-phase winding group 133 W-phase winding group 160 Inverter device 201 Neutral point of star connection A1 Circumference of stator Direction A2 Winding direction of first winding CL1 Longitudinal centerline of housing (centerline of stator core)
Na Number of turns of first winding Nb Number of turns of other windings R1 Inverter device side R2 Compression mechanism side

Claims (9)

  1.  気体を圧縮する圧縮機構(50)と、
     前記圧縮機構(50)を駆動するモータ(100)と、
     前記モータ(100)に駆動電力を供給するインバータ装置(160)と、
     有底筒状の部材であって、内部に前記モータ(100)を格納するハウジング(20)と、を有し、
     前記圧縮機構(50)は、少なくともその一部が、前記ハウジング(20)の内部の開口部(22)側に設けられ、
     前記インバータ装置(160)は、前記ハウジング(20)の底壁(21)の外壁面(21a)に設けられている電動圧縮機(10;200)において、
     前記モータ(100)は、前記ハウジング(20)の長手方向を回転中心とするロータ(102)と、前記ロータ(102)の径方向外側に配置されて前記ハウジング(20)の内周面(20a)に固定されている環状のステータ(103)とを備え、
     前記ステータ(103)は、周方向(A1)に等ピッチで配列されている複数のティース(111c)が形成されたステータコア(111)と、前記複数のティース(111c)に巻かれている複数の導線(120)と、を有し、
     前記複数の導線(120)は、前記複数のティース(111c)に集中巻きにより個別に巻かれている複数の巻線(121)と、前記複数の巻線(121)同士を接続する複数の渡り線(122)と、前記導線(120)の巻き始めから引き出される第1引出し線(123)と、前記導線(120)の巻き終わりから引き出される第2引出し線(124)とを含み、
     前記第1及び第2引出し線(123,124)は、前記ステータ(103)の、前記インバータ装置(160)側に位置する第1端部(103a)から引き出され、
     前記第1及び第2引出し線(123,124)の少なくとも一方は、前記インバータ装置(160)に接続されており、
     前記複数の渡り線(122)は、前記ステータ(103)の、前記圧縮機構(50)側に位置する第2端部(103b)に、全て配置されている、ことを特徴とする電動圧縮機。
    a compression mechanism (50) for compressing gas;
    a motor (100) that drives the compression mechanism (50);
    an inverter device (160) that supplies driving power to the motor (100);
    a bottomed cylindrical member having a housing (20) for housing the motor (100) therein;
    At least part of the compression mechanism (50) is provided on the opening (22) side inside the housing (20),
    The inverter device (160) is provided in the electric compressor (10; 200) provided on the outer wall surface (21a) of the bottom wall (21) of the housing (20),
    The motor (100) includes a rotor (102) whose center of rotation is the longitudinal direction of the housing (20), and an inner peripheral surface (20a) of the housing (20) arranged radially outside the rotor (102). ), an annular stator (103) fixed to the
    The stator (103) includes a stator core (111) formed with a plurality of teeth (111c) arranged at equal pitches in the circumferential direction (A1), and a plurality of teeth (111c) wound around the plurality of teeth (111c). a conductor (120);
    The plurality of conducting wires (120) are composed of a plurality of windings (121) individually wound around the plurality of teeth (111c) by concentrated winding and a plurality of jumpers connecting the plurality of windings (121). A wire (122), a first lead wire (123) drawn from the winding start of the conductor (120), and a second lead wire (124) drawn from the winding end of the conductor (120),
    The first and second lead lines (123, 124) are led out from a first end (103a) of the stator (103) located on the inverter device (160) side,
    At least one of the first and second lead lines (123, 124) is connected to the inverter device (160),
    The electric compressor, wherein the plurality of connecting wires (122) are all arranged at a second end (103b) of the stator (103) located on the side of the compression mechanism (50). .
  2.  前記複数の導線(120)は、三相交流用の複数の巻線群(131~133)を構成し、
     前記複数の巻線群(131~133)のそれぞれにおいて、前記複数の巻線(121)は、前記複数の渡り線(122)を介して直列に接続しており、
     前記複数の巻線群(131~133)のそれぞれにおいて、前記複数の巻線(121)の、少なくとも1つの巻き数(Na)が他の巻き数(Nb)と異なることで、前記ステータ(103)に対して、前記複数の渡り線(122)の全てが前記第1及び第2引出し線(123,124)とは反対側に位置している、ことを特徴とする請求項1に記載の電動圧縮機。
    The plurality of conducting wires (120) constitute a plurality of winding groups (131 to 133) for three-phase alternating current,
    In each of the plurality of winding groups (131 to 133), the plurality of windings (121) are connected in series via the plurality of connecting wires (122),
    In each of the plurality of winding groups (131 to 133), the stator (103 ), all of the plurality of connecting wires (122) are located on the opposite side of the first and second lead wires (123, 124). electric compressor.
  3.  前記複数の巻線群(131~133)のそれぞれにおいて、最初の巻線(121a)の巻き数(Na)が、他の巻線(121b)の巻き数(Nb)よりも半巻き少なく設定されることで、前記複数の巻線(121)の、1つの巻き数(Na)が他の巻き数(Nb)と異なっている、ことを特徴とする請求項2に記載の電動圧縮機。 In each of the plurality of winding groups (131 to 133), the number of turns (Na) of the first winding (121a) is set to be half less than the number of turns (Nb) of the other windings (121b). The electric compressor according to claim 2, wherein the number of turns (Na) of one of the plurality of windings (121) is different from the number of turns (Nb) of the other windings (121).
  4.  前記複数の渡り線(122)は、前記他の巻線(121b)から、前記最初の巻線(121a)が巻かれている前記ティース(111c)へ戻る、戻り渡り線(122a)を含み、
     前記戻り渡り線(122a)には、前記最初の巻線(121a)が巻かれている前記ティース(111c)に対して半周のみ沿いつつ通る追加巻線(121d)が連続しており、
     前記追加巻線(121d)は、前記最初の巻線(121a)が巻かれている前記ティース(111c)に対し、前記戻り渡り線(122a)から前記第2引出し線(124)まで、且つ、前記最初の巻線(121a)の巻き方向(A2)と同じ方向へ延びている、ことを特徴とする請求項3に記載の電動圧縮機。
    The plurality of crossover wires (122) include a return crossover wire (122a) returning from the other winding (121b) to the teeth (111c) around which the first winding (121a) is wound,
    The return crossover wire (122a) is continuous with an additional winding (121d) passing along only half the circumference of the teeth (111c) around which the first winding (121a) is wound,
    The additional winding (121d) extends from the return crossover wire (122a) to the second lead wire (124) with respect to the teeth (111c) around which the first winding (121a) is wound, and The electric compressor according to claim 3, characterized in that it extends in the same direction as the winding direction (A2) of the first winding (121a).
  5.  前記追加巻線(121d)の終端部分(121de)は、前記ステータ(103)の前記第1端部(103a)に固定されている、ことを特徴とする請求項4に記載の電動圧縮機。 The electric compressor according to claim 4, wherein the end portion (121de) of the additional winding (121d) is fixed to the first end (103a) of the stator (103).
  6.  前記複数の巻線群(131~133)の、それぞれの前記最初の巻線(121a)は、前記ステータ(103)の周方向(A1)へ順に隣り合って整列しており、
     前記複数の巻線群(131~133)の、それぞれの前記第1及び第2引出し線(123,124)は、前記ステータ(103)の周方向(A1)へ順に隣り合って整列している、ことを特徴とする請求項3~5のいずれか1項に記載の電動圧縮機。
    The first windings (121a) of the plurality of winding groups (131 to 133) are arranged side by side in order in the circumferential direction (A1) of the stator (103),
    The first and second lead wires (123, 124) of the plurality of winding groups (131 to 133) are arranged side by side in order in the circumferential direction (A1) of the stator (103). The electric compressor according to any one of claims 3 to 5, characterized by:
  7.  前記複数の巻線群(131~133)の、全ての前記第1及び第2引出し線(123,124)は、デルタ結線されている、ことを特徴とする請求項6に記載の電動圧縮機。 The electric compressor according to claim 6, wherein all the first and second lead wires (123, 124) of the plurality of winding groups (131-133) are delta-connected. .
  8.  前記複数の巻線群(131~133)の、全ての前記第1及び第2引出し線(123,124)は、スター結線されている、ことを特徴とする請求項6に記載の電動圧縮機。 The electric compressor according to claim 6, wherein all the first and second lead wires (123, 124) of the plurality of winding groups (131 to 133) are star-connected. .
  9.  全ての前記第2引出し線(124)同士は、前記ステータ(103)に固定されることなく、互いに半田固定または溶着固定によって一体化されている、ことを特徴とする請求項8に記載の電動圧縮機。 9. The electric motor according to claim 8, characterized in that all the second lead wires (124) are not fixed to the stator (103) but are integrated with each other by soldering or welding. compressor.
PCT/JP2022/036205 2021-09-29 2022-09-28 Electric compressor WO2023054485A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023551610A JPWO2023054485A1 (en) 2021-09-29 2022-09-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-159179 2021-09-29
JP2021159179 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054485A1 true WO2023054485A1 (en) 2023-04-06

Family

ID=85782858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036205 WO2023054485A1 (en) 2021-09-29 2022-09-28 Electric compressor

Country Status (2)

Country Link
JP (1) JPWO2023054485A1 (en)
WO (1) WO2023054485A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218696A (en) * 2001-01-19 2002-08-02 Fujitsu General Ltd Electric motor
JP2016214042A (en) * 2015-05-13 2016-12-15 株式会社マキタ Electric tool
WO2017073199A1 (en) * 2015-10-28 2017-05-04 三菱電機株式会社 Rotating electric machine
JP2020070732A (en) * 2018-10-30 2020-05-07 株式会社ヴァレオジャパン Motor compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218696A (en) * 2001-01-19 2002-08-02 Fujitsu General Ltd Electric motor
JP2016214042A (en) * 2015-05-13 2016-12-15 株式会社マキタ Electric tool
WO2017073199A1 (en) * 2015-10-28 2017-05-04 三菱電機株式会社 Rotating electric machine
JP2020070732A (en) * 2018-10-30 2020-05-07 株式会社ヴァレオジャパン Motor compressor

Also Published As

Publication number Publication date
JPWO2023054485A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
US9698644B2 (en) Electric compressor for vehicle
EP3079236B1 (en) Compressor
US20140127056A1 (en) Phase winding and connection methods for three phase dynamoelectric machines
CN102738917B (en) Electric motor and motor-driven compressor using same
JP7285097B2 (en) Open wound motors, compressors, and refrigeration cycle equipment
US9853514B2 (en) Interphase insulating sheets with voids at annular portions for rotating electric machine, rotating electric machine, and electric compressor for vehicle
JP5529073B2 (en) Stator, motor and compressor
JP6987235B2 (en) A stator and a motor equipped with the stator
US8405274B2 (en) Motor stator and phase coil preform
WO2023054485A1 (en) Electric compressor
JP3763462B2 (en) Self-starting synchronous motor and compressor using the same
JP6739529B2 (en) Stator of rotating electric machine, rotating electric machine and compressor
WO2021019751A1 (en) Electric motor, compressor, refrigeration circuit device, and manufacturing method for electric motor
JP6102684B2 (en) Rotating electric machine stator and in-vehicle electric compressor provided with the rotating electric machine stator
CN113454881B (en) Stator, motor and compressor
JP2016073137A (en) Stator and motor
JP7325608B2 (en) Electric motor stator &amp; compressor
JP2015091140A (en) Stator for rotary electric machine, and on-vehicle motor compressor with the stator for rotary electric machine
EP4064527A1 (en) Motor, compressor, and refrigeration cycle apparatus
JP7279301B2 (en) 3-phase motor and compressor
KR20200107205A (en) Rotary compressor
JP2023072428A (en) electric motor and rotary compressor
JP2023088076A (en) Motor-driven compressor
KR100937428B1 (en) Motor
JP2015091142A (en) Stator for rotary electric machine, and on-vehicle motor compressor with the stator for rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876351

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551610

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE