WO2020059569A1 - Optical element, optical element array, lens group, electronic device, and method for manufacturing optical element - Google Patents

Optical element, optical element array, lens group, electronic device, and method for manufacturing optical element Download PDF

Info

Publication number
WO2020059569A1
WO2020059569A1 PCT/JP2019/035448 JP2019035448W WO2020059569A1 WO 2020059569 A1 WO2020059569 A1 WO 2020059569A1 JP 2019035448 W JP2019035448 W JP 2019035448W WO 2020059569 A1 WO2020059569 A1 WO 2020059569A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical element
step structure
light
substrate
Prior art date
Application number
PCT/JP2019/035448
Other languages
French (fr)
Japanese (ja)
Inventor
康寛 鹿浜
建治 竹尾
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019148765A external-priority patent/JP2020052395A/en
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/273,543 priority Critical patent/US20210202560A1/en
Publication of WO2020059569A1 publication Critical patent/WO2020059569A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present technology relates to an optical element, an optical element array, a lens group, an electronic device, and a method for manufacturing an optical element.
  • Patent Document 1 a lens including a substrate having a plurality of base patterns and a coating layer that covers each upper surface of the base patterns and transmits light.
  • the lens described in Patent Literature 1 is formed on the upper surface of each underlying pattern by forming a lens forming pattern layer on the upper surface of each underlying pattern and then thermally reflowing the lens forming pattern layer.
  • An object of the present disclosure is to provide an optical element, an optical element array, a lens group, an electronic device, and a method of manufacturing an optical element, which have a high degree of freedom in design.
  • An optical element includes: (a) a substrate in which a step structure having a step surface having a height different from that of one surface is formed on one surface; and (b) a step structure and one surface around the step structure. And a coating layer that continuously covers and transmits or reflects light.
  • the optical element array according to the present disclosure includes: (a) a substrate having a plurality of step structures regularly arranged in a two-dimensional array; and (b) a plurality of step structures and the surface of the substrate around them. A portion that covers continuously and covers each step structure includes a coating layer that transmits or reflects light.
  • the optical element array according to the present disclosure includes (a) a plurality of first lenses arranged regularly in a two-dimensional array, and (b) an annular element having different heights with respect to one surface.
  • the lens group according to the present disclosure includes (a) a first lens, and (b) light before passing through the first lens or light after passing through the first lens, and the aberration caused by the first lens is reduced.
  • a second lens to be corrected comprising: (c) a substrate having a step structure having an annular step surface having a height different from that of one surface on one surface; A step structure and a coating layer that continuously covers one surface around the step structure and transmits light.
  • the electronic device of the present disclosure includes: (a) a substrate having a plurality of step structures having a plurality of steps regularly arranged in a two-dimensional array; A solid-state imaging device including a microlens array having a covering layer in which each of the portions that cover and cover each step structure has a lens shape; and (b) image light from a subject is captured on an imaging surface of the solid-state imaging device. (C) a signal processing circuit that performs signal processing on a signal output from the solid-state imaging device.
  • the method of manufacturing an optical element according to the present disclosure includes: (a) a step of forming a step structure on a substrate; (b) a step of applying a coating liquid to a substrate on which the step structure is formed; Drying the coating liquid so that a coating layer that continuously covers the surface of the surrounding substrate and transmits or reflects light is formed.
  • the method for manufacturing an optical element according to the present disclosure includes: (a) a step of forming a plurality of step structures regularly arranged in a two-dimensional array on a substrate; and (b) a substrate on which a plurality of step structures are formed.
  • each of the step structures includes an annular concave portion for forming a lens into which light before passing through the color filter or light after passing therethrough is incident, and (e) a plurality of step structures on the substrate.
  • the width and diameter of each of the plurality of annular concave portions are adjusted according to the wavelength range of light transmitted by the color filter corresponding to the annular concave portions.
  • FIG. 1 is a diagram illustrating an overall configuration of a solid-state imaging device according to a first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a cross-sectional configuration of a pixel region when cut along a line A 1 -A 1 in FIG. 1. It is a figure which expands and shows the planar structure of a wafer lens. It is a figure which expands and shows the planar structure of a wafer lens. It is a figure which expands and shows the planar structure of a wafer lens. It is a figure which expands and shows the planar structure of a wafer lens. It is a figure which expands and shows the step surface structure of a board
  • FIG. 10C is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element when cut along line A 2 -A 2 in FIG. 9B.
  • FIG. 10C is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element when cut along line A 2 -A 2 in FIG. 9B.
  • FIG. 9B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 9A.
  • FIG. 10B is a diagram illustrating the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element when cut along line A 3 -A 3 in FIG. 10B.
  • FIG. 10C is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 10A.
  • FIG. 10A is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 10A.
  • FIG. 12B is a diagram illustrating the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element when cut along line A 4 -A 4 in FIG. 11B.
  • FIG. 11B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 11A.
  • FIG. 13 is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element when cut along line A 5 -A 5 in FIG. 12B.
  • FIG. 11B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element when cut along line A 5 -A 5 in FIG. 12B.
  • FIG. 12B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 12A.
  • FIG. 14B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, which is a cross-sectional view of the optical element taken along line A 6 -A 6 in FIG. 13B.
  • FIG. 13C is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 13A.
  • FIG. 13A is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 13A.
  • FIG. 15B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element taken along line A 7 -A 7 in FIG. 14B.
  • FIG. 14C is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 14A.
  • FIG. 15B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element taken along line A 8 -A 8 in FIG. 15B.
  • FIG. 15C is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 15A.
  • FIG. 17B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, which is a cross-sectional view of the optical element taken along line A 9 -A 9 in FIG. 16B.
  • FIG. 16B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 16A.
  • FIG. 17B is a diagram illustrating the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element when cut along a line A 10 -A 10 in FIG. 17B.
  • FIG. 17C is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 17A.
  • FIG. 19B is a view showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, which is a cross-sectional view of the optical element taken along line A 11 -A 11 in FIG. 18B.
  • FIG. 18B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 18A.
  • FIG. 19B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the modification, and is a cross-sectional view of the optical element taken along line A 12 -A 12 of FIG. 19B.
  • FIG. 19B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the modification, and is a plan view of the optical element in FIG. FIG.
  • FIG. 21B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, which is a cross-sectional view of the optical element taken along line A 13 -A 13 of FIG. 21B.
  • FIG. 21B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 21A.
  • FIG. 22C is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 22A.
  • FIG. 24 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, which is a cross-sectional view of the optical element taken along line A 15 -A 15 in FIG. 23B.
  • FIG. 23C is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 23A.
  • FIG. 25 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, which is a cross-sectional view of the optical element taken along line A 16 -A 16 in FIG. 24B.
  • FIG. 24B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 24A.
  • FIG. 25 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, which is a cross-sectional view of the optical element taken along line A 16 -A 16 in FIG. 24B.
  • FIG. 24B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment,
  • FIG. 26 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a cross-sectional view of the optical element taken along line A 17 -A 17 in FIG. 25B.
  • FIG. 25C is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 25A.
  • FIG. 27 is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a cross-sectional view of the optical element when cut along line A 18 -A 18 in FIG. 26B.
  • FIG. 26B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 26A.
  • FIG. 28 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and a cross-sectional view of the optical element taken along line A 19 -A 19 in FIG. 27B.
  • FIG. 27B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 27A.
  • FIG. 28 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and a cross-sectional view of the optical element taken along line A 19 -A 19 in FIG. 27B.
  • FIG. 27B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging
  • FIG. 29 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, which is a cross-sectional view of the optical element taken along line A 20 -A 20 of FIG. 28B.
  • FIG. 29 is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 28B.
  • FIG. 29 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and a cross-sectional view of the optical element taken along line A 21 -A 21 of FIG. 29B.
  • FIG. 29B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 29A.
  • FIG. 31B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a cross-sectional view of the optical element taken along line A 22 -A 22 of FIG. 30B.
  • FIG. 30B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 30A.
  • FIG. 31B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a cross-sectional view of the optical element taken along line A 22 -A 22 of FIG. 30B.
  • FIG. 30B is a diagram illustrating a flow of a manufacturing process of the optical element in the
  • FIG. 13 is an enlarged view illustrating a planar configuration of a wafer lens in a solid-state imaging device according to a third embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating a light condensing state of a correction lens arranged in a pixel corresponding to a color filter that transmits red wavelength light.
  • FIG. 3 is a diagram illustrating a light condensing state of a correction lens arranged in a pixel having a color filter that transmits light of a green wavelength.
  • FIG. 3 is a diagram illustrating a light condensing state of a correction lens disposed in a pixel having a color filter that transmits light of a blue wavelength.
  • FIG. 3 is a diagram illustrating a light condensing state of a correction lens arranged in a pixel corresponding to a color filter that transmits red wavelength light.
  • FIG. 3 is a diagram illustrating a light condensing state of a correction lens arranged in a pixel having
  • FIG. 34 is a cross-sectional view of a case where a correction lens arranged in a pixel having a color filter that transmits red wavelength light is cut along a line A 23 -A 23 in FIG. 33B.
  • FIG. 33B is a plan view of a correction lens arranged in a pixel having a color filter transmitting red light of FIG. 33A.
  • FIG. 34B is a cross-sectional view of the case where the correction lens arranged in the pixel having the color filter transmitting the light of the green wavelength is cut along line A 24 -A 24 in FIG. 33B.
  • FIG. 33B is a plan view of a correction lens arranged in a pixel having a color filter that transmits light of a green wavelength in FIG. 33A.
  • FIG. 33B is a plan view of a correction lens arranged in a pixel having a color filter that transmits light of a green wavelength in FIG. 33A.
  • FIG. 35B is a cross-sectional view of the case where the correction lens arranged in the pixel having the color filter transmitting the light of the blue wavelength is cut along the line A 25 -A 25 in FIG. 35B.
  • FIG. 35B is a plan view of a correction lens arranged in a pixel having a color filter that transmits light of a blue wavelength in FIG. 35A. It is a figure which expands and shows the step surface structure of a board
  • FIG. 38 is a cross-sectional view of the optical element in a solid-state imaging device according to the third embodiment, showing a flow of a manufacturing process thereof, taken along line A 26 -A 26 in FIG. 37B.
  • FIG. 37B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 37A.
  • FIG. 39 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, which is a cross-sectional view of the optical element taken along line A 27 -A 27 in FIG. 38B.
  • FIG. 39A is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 38A.
  • FIG. 39 is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 38A.
  • FIG. 40 is a cross-sectional view of the optical element in the solid-state imaging device according to the third embodiment, showing the flow of the manufacturing process thereof, which is cut along the line A 28 -A 28 in FIG. 39B.
  • FIG. 39A is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 39A.
  • FIG. 41 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, which is a cross-sectional view of the optical element taken along line A 29 -A 29 in FIG. 40B.
  • FIG. 39A is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 39A.
  • FIG. 41 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment
  • FIG. 40B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and a plan view of the optical element in FIG. 40A.
  • FIG. 42B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, which is a cross-sectional view of the optical element taken along line A 30 -A 30 of FIG. 41B.
  • FIG. 41B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 41A.
  • FIG. 43 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, which is a cross-sectional view of the optical element taken along the line A 31 -A 31 in FIG. 42B.
  • FIG. 42B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 42A.
  • FIG. 43 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, which is a cross-sectional view of the optical element taken along the line A 32 -A 32 in FIG. 43B.
  • FIG. 42B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 42A.
  • FIG. 43 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging
  • FIG. 43B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 43A.
  • FIG. 45A is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a cross-sectional view of the optical element taken along line A 33 -A 33 of FIG. 44B.
  • FIG. 45B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 44A.
  • FIG. 45A is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 44A.
  • FIG. 9 is a diagram illustrating a cross-sectional configuration of a pixel region of a solid-state imaging device according to a modification. It is a figure showing the section composition of the reflector of the optical element concerning a modification.
  • the correction lens of the solid-state imaging device according to the modification is a sectional view taken broken at A 34 -A 34 line in FIG 47B.
  • FIG. 47B is a plan view of the correction lens of FIG. 47A.
  • the wafer lens of the solid-state imaging device according to the modification is a sectional view taken broken at A 35 -A 35 line in FIG 48B.
  • FIG. 48B is a plan view of a lens arranged in a pixel corresponding to a color filter that transmits light of a red wavelength in FIG. 48A.
  • FIG. 48B is a plan view of a lens arranged in a pixel corresponding to a color filter that transmits light of a red wavelength in FIG. 48A.
  • FIG. 3 is a diagram illustrating a light condensing state by a lens group configured in a pixel corresponding to a color filter that transmits light of a red wavelength.
  • FIG. 4 is a diagram illustrating a light condensing state by a lens group configured in a pixel corresponding to a color filter that transmits light of a green wavelength.
  • FIG. 4 is a diagram illustrating a light condensing state by a lens group configured in a pixel corresponding to a color filter that transmits light of a blue wavelength.
  • FIG. 3 is a diagram illustrating a light condensing state by a lens group configured in a pixel corresponding to a color filter that transmits light of a red wavelength.
  • FIG. 4 is a diagram illustrating a light condensing state by a lens group configured in a pixel corresponding to a color filter that transmits light of a green wavelength.
  • FIG. 4 is a diagram illustrating a light condensing state by a lens group configured in a pixel corresponding to a color filter that transmits light of a blue wavelength.
  • FIG. 3 is a diagram illustrating a light condensing state by a lens group configured in a pixel corresponding to a color filter that transmits light of a red wavelength.
  • FIG. 4 is a diagram illustrating a light condensing state by
  • FIG. 13 is a schematic configuration diagram of an electronic device according to a fourth embodiment of the present disclosure. It is a block diagram showing an example of a schematic structure of a vehicle control system. It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part. It is a figure showing an example of the schematic structure of an endoscope operation system.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration of a camera head and a CCU.
  • an example of an optical element, an optical element array, a lens group, an electronic device, and a method of manufacturing an optical element according to an embodiment of the present disclosure will be described with reference to FIGS. Embodiments of the present disclosure will be described in the following order. Note that the present disclosure is not limited to the following examples. In addition, the effects described in this specification are illustrative and not limited, and other effects may be provided.
  • Solid-state imaging device 1-1 Overall configuration of solid-state imaging device 1-2 Configuration of main part 1-3 Manufacturing method of wafer lens 2.
  • Second embodiment solid-state imaging device 2-1 Configuration of main part 2-2 Manufacturing method of wafer lens
  • Third embodiment solid-state imaging device 3-1 Configuration of main part 3-2 Manufacturing method of correction lens 3-3 Modified example 4.
  • Fourth embodiment electronic device Application example to mobile object 6. Example of application to endoscopic surgery system
  • FIG. 1 is a schematic configuration diagram illustrating the entire solid-state imaging device according to the first embodiment of the present disclosure.
  • the solid-state imaging device 1 in FIG. 1 is a back-illuminated CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the solid-state imaging device 1 (101) captures image light (incident light 106) from a subject via an optical lens 102, and determines the amount of incident light 106 imaged on the imaging surface as a pixel. It is converted into an electric signal in units and output as a pixel signal.
  • the solid-state imaging device 1 according to the first embodiment includes a substrate 2, a pixel region 3, a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, and an output circuit 7. And a control circuit 8.
  • the pixel region 3 has a plurality of pixels 9 regularly arranged on the substrate 2 in a two-dimensional array.
  • the pixel 9 includes the photoelectric conversion unit 23 illustrated in FIG. 2 and a plurality of pixel transistors (not illustrated).
  • the plurality of pixel transistors for example, four transistors of a transfer transistor, a reset transistor, a selection transistor, and an amplifier transistor can be adopted. Further, for example, three transistors excluding the selection transistor may be employed.
  • the vertical drive circuit 4 is configured by, for example, a shift register, selects a desired pixel drive line 10, supplies a pulse for driving the pixel 9 to the selected pixel drive line 10, and controls each pixel 9 in a row unit. Drive. That is, the vertical drive circuit 4 selectively scans each pixel 9 in the pixel region 3 sequentially in the vertical direction on a row-by-row basis, and generates a pixel signal based on the signal charge generated in the photoelectric conversion unit 23 of each pixel 9 according to the amount of received light. , To the column signal processing circuit 5 through the vertical signal line 11.
  • the column signal processing circuit 5 is arranged, for example, for each column of the pixels 9 and performs signal processing such as noise removal on the signals output from the pixels 9 for one row for each pixel column.
  • the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) and AD (Analog Digital) conversion for removing pixel-specific fixed pattern noise.
  • the horizontal driving circuit 6 is configured by, for example, a shift register, sequentially outputs horizontal scanning pulses to the column signal processing circuit 5, selects each of the column signal processing circuits 5 in order, and, from each of the column signal processing circuits 5, The pixel signal subjected to the signal processing is output to the horizontal signal line 12.
  • the output circuit 7 performs signal processing on pixel signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 12 and outputs the processed signal.
  • the signal processing for example, buffering, black level adjustment, column variation correction, various digital signal processing, and the like can be used.
  • the control circuit 8 generates a clock signal and a control signal, which serve as references for the operations of the vertical drive circuit 4, the column signal processing circuit 5, and the horizontal drive circuit 6, based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock signal. Generate. Then, the control circuit 8 outputs the generated clock signal and control signal to the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like.
  • FIG. 2 is a diagram illustrating a cross-sectional configuration of the pixel region 3 of the solid-state imaging device 1 according to the first embodiment.
  • CMOS solid-state imaging device a back-illuminated CMOS image sensor (CMOS solid-state imaging device) is used as the solid-state imaging device 1.
  • the solid-state imaging device 1 includes a light-receiving layer 17 in which a substrate 2, a fixed charge film 13, an insulating film 14, a light-shielding film 15, and a planarizing film 16 are stacked in this order. Have. On the surface of the light receiving layer 17 on the side of the flattening film 16 (hereinafter also referred to as “back surface S1”), a light collecting layer 20 formed by laminating a color filter 18 and a wafer lens 19 (optical element) in this order is formed. Have been.
  • the wafer lens 19 is also called an on-chip lens or a micro lens.
  • a wiring layer 21 and a support substrate 22 are stacked in this order on the surface of the light receiving layer 17 on the substrate 2 side (hereinafter also referred to as “surface S2”). Since the back surface S1 of the light receiving layer 17 and the back surface of the flattening film 16 are the same surface, the back surface of the flattening film 16 is also referred to as “back surface S1” in the following description. Further, since the surface S2 of the light receiving layer 17 and the surface of the substrate 2 are the same surface, in the following description, the surface of the substrate 2 is also referred to as “surface S2”.
  • the substrate 2 is formed of, for example, a semiconductor substrate made of silicon (Si), and forms a pixel region 3 as shown in FIG.
  • the pixel region 3 includes a plurality of photoelectric conversion units 23 formed on the substrate 2, that is, a plurality of pixels 9 including the plurality of photoelectric conversion units 23 embedded in the substrate 2. , Are arranged in a two-dimensional array.
  • the photoelectric conversion unit 23 signal charges corresponding to the amount of incident light are generated, and the generated signal charges are accumulated.
  • the fixed charge film 13 continuously covers the entire rear surface S3 side (entire light receiving surface side) of the substrate 2.
  • the insulating film 14 continuously covers the entire back surface S4 side (the entire light receiving surface side) of the fixed charge film 13.
  • the light-shielding film 15 is formed in a lattice shape on a part of the insulating film 14 on the back surface S5 side (a part on the light-receiving surface side) so as to open each light-receiving surface of the plurality of photoelectric conversion units 23. I have.
  • the flattening film 16 continuously covers the entire back surface S5 side (the entire light receiving surface side) of the insulating film 14 including the light shielding film 15 so that the back surface S1 of the light receiving layer 17 becomes a flat surface without unevenness. ing.
  • the color filters 18 are formed on the back surface S1 side (light receiving surface side) of the flattening film 16 so as to correspond to each pixel 9.
  • the color filters 18 form a color filter array regularly arranged in a two-dimensional array. Each of the color filters 18 is formed so as to transmit a specific wavelength such as red, green, and blue. Then, the color filter 18 transmits light of a specific wavelength and makes the transmitted light incident on the photoelectric conversion unit 23 of the substrate 2.
  • the wafer lens 19 is formed on the back surface S6 side (light receiving surface side) of the color filter 18 so as to correspond to each pixel 9.
  • the wafer lenses 19 form a microlens array 24 (optical element array) regularly arranged in a two-dimensional array.
  • the wafer lens 19 condenses the image light (incident light 106) from the subject shown in FIG. 52, and transmits the condensed incident light 106 to the photoelectric conversion unit 23 after passing through the color filter 18.
  • FIG. 3A an example is shown in which one wafer lens 19 is formed so as to correspond to one pixel 9, but another configuration can be adopted.
  • FIGS. 3B, 3C, and 3D a configuration in which one wafer lens 19 is formed so as to correspond to a plurality of pixels 9 such as 2 ⁇ 1 pixel, 1 ⁇ 2 pixel, and 2 ⁇ 2 pixel. Good.
  • the wafer lens 19 includes a substrate 25 and a coating layer 26.
  • the substrate 25 is formed on the back surface S6 side (light receiving surface side) of the color filter 18 and includes a plurality of step structures 27 which are convex portions formed on the back surface S7 side (light receiving surface side) of the substrate 25. It is configured.
  • Each of the step structures 27 is formed corresponding to each pixel 9 and has one or more step surfaces 28.
  • a surface parallel to the back surface S7 of the substrate 25 can be adopted.
  • FIG. 4 illustrates a case where the number of steps on the step surface 28 of the step structure 27 is one.
  • the number of steps on the step surface 28 of the step structure 27 may be two or more as shown in FIGS. 5A and 5B.
  • the step structure 27 includes side surfaces 29 and 30, a vertical surface perpendicular to the back surface S7 (surface on the light receiving surface side) of the substrate 25, and a normal direction of the back surface S7. At least one of an inclined surface and a curved surface inclined with respect to.
  • the side surface 29 is a surface on which the back surface S7 of the substrate 25 and the step surface 28 are continuous.
  • the side surface 30 is a surface on which the two step surfaces 28 are continuous.
  • FIG. 5A illustrates a case where the number of steps of the step surface 28 of the step structure 27 is two, the side surface 29 is a vertical surface, and the side surface 30 is a curved surface.
  • the number of steps of the step surface 28 of the step structure 27 is four, the side surface 29 is a vertical surface, the lowermost side surface 30 is a vertical surface, the middle side surface 30 is a curved surface, and the uppermost side surface 30 is a curved surface.
  • An example is shown.
  • FIG. 6A illustrates a case where the number of steps of the step surface 28 is one and the side surface 29 is an inclined surface.
  • FIG. 6B illustrates a case where the number of steps of the step surface 28 is one and the side surface 29 is a curved surface.
  • the angle of inclination of the inclined surface is preferably in the range of 0 degree or more and 60 degrees or less with respect to the normal direction of the back surface S7 (the light receiving surface side) of the substrate 25. In particular, the range of 15 degrees or more and 60 degrees or less is more preferable.
  • the ratio of the width W to the height H of the step structure 27 shown in FIG. 4 is preferably in the range of 1:10 to 10: 1. In particular, the range of 1: 5 to 5: 1 is more preferable.
  • the width W for example, when the step structure 27 is circular in plan view, the diameter of the bottom surface of the step structure 27 can be adopted. When the step structure 27 has a rectangular shape, the short side width of the bottom surface of the step structure 27 can be adopted.
  • the width W of the step structure 27 is set to be equal to or less than the pitch p of the step structure 27 (for example, 50 ⁇ m or less).
  • FIG. 7A illustrates a case where the planar shape of the step structure 27 is a circular shape.
  • FIG. 7B illustrates a case where the planar shape of the step structure 27 is a triangular shape.
  • FIG. 7C illustrates a case where the planar shape of the step structure 27 is rectangular.
  • FIG. 7D illustrates a case where the planar shape of the step structure 27 is a hexagonal shape.
  • FIG. 7E illustrates a case where the planar shape of the step structure 27 is an elliptical shape.
  • the ratio (aspect ratio) between the long side L and the short side S of the elliptical shape shown in FIG. 3B is preferably 1 or more and 5 or less. .
  • FIGS. 8A and 8B illustrate a case where the step surfaces 28 are arranged such that the outer periphery of each step surface 28 forms a plurality of concentric circles in plan view.
  • FIGS. 8C and 8D illustrate a case where the step surfaces 28 are arranged such that the outer periphery of each step surface 28 forms a plurality of concentric rectangles in plan view.
  • step surfaces 28 are arranged so that the outer peripheries of the step surfaces 28 are concentric in plan view, but the outer peripheries of the step surfaces 28 are separated from each other.
  • the configuration may be such that the step surfaces 28 are arranged such that the center point of the outer periphery of each step surface 28 is shifted in plan view.
  • a material that transmits light and has a refractive index of about 1.5 can be used as a material of the substrate 25, for example.
  • a resin used as a resin lens material such as a styrene resin or an acrylic resin, or an inorganic material such as silicon oxide (SiO 2 ) or silicon nitride (Si 3 N 4 ) having a refractive index close to 1.5.
  • Materials can be adopted.
  • the styrene-based resin for example, polystyrene, AS resin, and ABS resin can be adopted.
  • the acrylic resin for example, poly (meth) acrylonitrile, polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate, polyacrylamide can be employed.
  • the coating layer 26 is formed on the back surface S7 side (light receiving surface side) of the substrate 25, and continuously covers the step structure 27 and the back surface S7 (surface on the light receiving surface side) of the substrate 25 around the step structure 27. doing. That is, the coating layer 26 is configured to cover the entire back surface S7, that is, the entire surface having the step structure 27.
  • the upper surface of the portion covering the step structure 27 is formed in a curved shape of a convex lens. As described above, in the first embodiment, the entire surface having the step structure 27 is covered with the covering layer 26, and the portion of the covering layer 26 covering the step structure 27 is formed in a lens shape (convex lens shape). Therefore, a convex microlens is formed by the step structure 27 and the covering layer 26.
  • the material of the coating layer 26 for example, a material that transmits light and has a difference from the refractive index of the material of the substrate 25 within ⁇ 10% of the refractive index of the material of the substrate 25 can be used. .
  • the wiring layer 21 is formed on the surface S2 side of the substrate 2 and includes a plurality of wirings (three layers in FIG. 2) of wirings 32 via an interlayer insulating film 31.
  • the pixel transistors constituting each pixel 9 are driven via a plurality of layers of wirings 32 formed in the wiring layer 21.
  • the support substrate 22 is formed on the surface of the wiring layer 21 opposite to the surface facing the substrate 2.
  • the support substrate 22 is a substrate for ensuring the strength of the substrate 2 at the stage of manufacturing the solid-state imaging device 1.
  • silicon (Si) can be used as a material of the support substrate 22.
  • the solid-state imaging device 1 having the above configuration, light is irradiated from the back surface side of the substrate 2 (the back surface S1 side of the light receiving layer 17), and the irradiated light is transmitted through the wafer lens 19 and the color filter 18 and transmitted. Are photoelectrically converted by the photoelectric conversion unit 23, thereby generating signal charges. Then, the generated signal charge is output as a pixel signal on the vertical signal line 11 shown in FIG. 1 formed by the wiring 32 via the pixel transistor formed on the surface S2 side of the substrate 2.
  • FIGS. 9A to 18B illustrate a case where the number of steps on the step surface 28 of the step structure 27 of the substrate 25 is three. First, as shown in FIGS.
  • a photoresist film 33 is applied to the entire back surface S8 of the substrate 25. Subsequently, as shown in FIGS. 10A and 10B, the photoresist film 33 is exposed, and as shown in FIGS. 11A and 11B, the photoresist film 33 is developed. Subsequently, as shown in FIGS. 12A and 12B, the back surface S8 of the substrate 25 is etched using the developed photoresist film 33 as an etching mask, and the third (uppermost) step surface of the step structure 27 is formed. 28c is formed. Subsequently, as shown in FIGS. 13A and 13B, the photoresist film 33 is slimmed, and as shown in FIGS.
  • the third step is formed using the slimmed photoresist film 33 as an etching mask.
  • the surface 28c is etched to form the first (lowest) step surface 28a of the step structure 27.
  • slimming and etching are repeated to form a step surface 28b of the second step (intermediate portion) of the step structure 27, and a step structure 27 having three step surfaces 28a, 28b and 28c.
  • the photoresist film 33 is removed from the back surface S8 of the substrate 25.
  • a plurality of step structures 27 having three step surfaces 28a, 28b, 28c regularly arranged in a two-dimensional array are formed on the back surface S7 of the substrate 25.
  • the coating liquid 34 for forming the coating layer 26 is formed so as to cover the entire back surface S7 of the substrate 25, that is, the entire surface having the step structure 27, and to make the liquid level horizontal. Is applied.
  • the thickness of the layer composed of the coating liquid 34 is the thickest at the portion corresponding to the portion where the step structure 27 is not formed, and the second thickest at the portion corresponding to the first step surface 28 a of the step structure 27.
  • the portion of the step structure 27 corresponding to the second step surface 28b is the third thickest, and the portion of the step structure 27 corresponding to the third step surface 28c is the thinnest.
  • the coating liquid 34 for example, a coating liquid obtained by dissolving a solute such as a styrene resin or an acrylic resin in a solvent can be used.
  • a method of applying the coating liquid 34 for example, a spin coating method can be adopted.
  • the applied coating liquid 34 is dried.
  • the solvent volatilizes, and the thickness of the layer composed of the coating liquid 34 decreases.
  • the surface of the coating liquid 34 is flat and the film thickness is uniformly reduced.
  • the solute concentration of the coating liquid 34 in the convex portion locally increases due to the step structure 27 of the substrate 25.
  • the evaporation rate of the solvent of the coating liquid 34 is reduced in the convex portions, and the surface of the coating liquid 34 in the concave portions is concave.
  • the amount of decrease in the thickness of the layer increases as the thickness of the layer increases. That is, the portion corresponding to the portion where the step structure 27 is not formed has the largest reduction amount, and the portion corresponding to the first step surface 28a of the step structure 27 has the second largest reduction amount. The portion corresponding to the step surface 28b of the step has the third largest reduction amount, and the portion corresponding to the third step surface 28c of the step structure 27 has the smallest reduction amount. As a result, a convex lens-shaped coating layer 26 is formed in a portion covering the step structure 27. Subsequently, as shown in FIGS.
  • the convex lens-shaped coating layer 26 so that the formed coating layer 26 (coating film) becomes a permanent film.
  • the coating layer 26 is cured, and the wafer lens 19 shown in FIG. 4 is completed.
  • the lens height LH shown in FIG. Further, the lens diameter LR is not less than the width W of the step structure 27 and not more than the pitch p of the step structure 27.
  • a resist receding method can be used.
  • the photoresist film 33 is also gradually etched using an etching gas mixed with O 2 gas or the like. Then, the photoresist film 33 is gradually reduced, and the region to be etched on the substrate 25 is gradually increased. As a result, a portion where the etching time changes continuously can be formed on the substrate 25, and inclined surfaces can be formed on the side surfaces 29 and 30.
  • the side surface 29 of the step structure 27 has an inclined surface or a curved surface inclined with respect to the normal direction of the back surface S7 (surface on the light receiving surface side) of the substrate 25. I did it. Therefore, the upper surface of the coating layer 26 can be formed into a smooth curved surface, and the wafer lens 19 having a large curvature can be formed. Therefore, the CMOS image sensor can be made suitable for further miniaturization. It should be noted that the effects described in this specification are merely examples and are not limited, and may have other effects.
  • a step of forming the step structure 27 on the substrate 25 a step of applying a coating liquid 34 to the substrate 25 having the step structure 27 formed thereon, Drying the coating liquid 34 so as to continuously cover the surface (the back surface S7) of the surrounding substrate 25 and form the coating layer 26 that transmits light. Therefore, since a curved surface can be formed only by the application operation, the existing equipment can be used and the cost can be suppressed. Therefore, it is possible to provide a method for manufacturing an optical element capable of reducing the manufacturing cost.
  • the surface of the coating layer 26 can have a gentle curvature according to the shape of the step structure 27, and the surface of the coating layer 26 can be controlled with high controllability. Can be changed. Further, the step structure 27 can be designed so that the desired shape of the wafer lens 19 is realized by using the simulation of the application and drying of the application liquid 34.
  • the lens formation pattern layer is thermally reflowed to form a lens.
  • a curved surface structure is formed using surface tension, only a convex shape can be formed, and a concave shape cannot be formed.
  • the degree of freedom in design can be improved.
  • the shape of the optical element depends on the structure of the step (shape / height), the control of the drying process of the drying speed, and the coating material such as pitch, width, number of steps, inclination angle, curvature, coating liquid drying speed, diffusion coefficient, concentration, etc. It can be controlled by adjusting the physical properties. Therefore, a curved surface having a desired curvature distribution can be formed. In addition, for example, by forming a step structure or the like for each pixel 9, a curved surface can be formed for each pixel 9.
  • the material of the lens forming pattern layer requires resolution and thermal reflow properties to enable formation of a pattern in addition to photosensitivity.
  • the photoresist film 33 does not need to have a resolution and a thermal reflow property, and the material of the photoresist film 33 is less restricted.
  • the substrate needs to have heat resistance in order to heat the lens forming pattern layer.
  • a liquid member corresponding to a lens shape is dropped on the opening region to form a lens.
  • the substrate needs to be hydrophilic.
  • the substrate 25 does not need to have heat resistance or hydrophilicity, and the material of the substrate 25 of the wafer lens 19 (optical element) is less restricted.
  • FIG. 20 is a sectional configuration diagram of a main part of the solid-state imaging device 1 according to the second embodiment. 20, parts corresponding to those in FIG. 4 are denoted by the same reference numerals, and redundant description will be omitted.
  • the solid-state imaging device 1 of the second embodiment differs from the first embodiment in the configuration of the wafer lens 19.
  • the step structure 27 is a concave portion formed in the depth direction from the back surface S7 side of the substrate 25.
  • the coating layer 26 is configured to continuously cover the bottom surface and the inner wall surface of the concave portion, and the back surface S7 of the substrate 25 around the concave portion.
  • the upper surface of the portion that covers the bottom surface and the inner wall surface of the concave portion is formed into a curved surface of the concave lens.
  • FIGS. 21A to 30B illustrate a case where the number of steps on the step surface 28 of the step structure 27 of the substrate 25 is three. First, as shown in FIGS.
  • a photoresist film 33 is applied to the entire back surface S7 of the substrate 25. Subsequently, as shown in FIGS. 22A and 22B, the photoresist film 33 is exposed, and as shown in FIGS. 23A and 23B, the photoresist film 33 is developed. Subsequently, as shown in FIGS. 24A and 24B, the back surface S7 of the substrate 25 is etched using the developed photoresist film 33 as an etching mask, and the third (lowest) step surface of the step structure 27 is formed. 28f is formed. Subsequently, as shown in FIGS. 25A and 25B, the photoresist film 33 is slimmed, and as shown in FIGS.
  • step structure 27 using the slimmed photoresist film 33 as an etching mask, Is etched to form a second step surface (intermediate portion) 28 e of the step structure 27. Subsequently, slimming and etching are repeated to form the first (uppermost) step surface 28d of the step structure 27, and to form the step structure 27 having three step surfaces 28d, 28e and 28f. Subsequently, as shown in FIGS. 27A and 27B, the photoresist film 33 is removed from the back surface S7 of the substrate 25. As a result, a plurality of step structures 27 having three step surfaces 28d, 28e, and 28f regularly arranged in a two-dimensional array are formed on the back surface S7 of the substrate 25.
  • the coating liquid 34 for forming the coating layer 26 is formed so as to cover the entire back surface S7 of the substrate 25, that is, the entire surface having the step structure 27, and to make the liquid level horizontal. Is applied.
  • the thickness of the layer made of the coating liquid 34 is the thickest at the portion corresponding to the third step surface 28f of the step structure 27, and the second thickest at the portion corresponding to the second step surface 28e of the step structure 27.
  • the portion corresponding to the first step surface 28d of the step structure 27 is the third thickest, and the portion corresponding to the portion where the step structure 27 is not formed is the thinnest.
  • the coating liquid 34 for example, a coating liquid obtained by dissolving a styrene resin or an acrylic resin in an appropriate solvent can be used.
  • a method of applying the coating liquid 34 for example, a spin coating method can be adopted.
  • the applied coating liquid 34 is dried.
  • the solvent volatilizes, and the thickness of the layer composed of the coating liquid 34 decreases.
  • the surface of the coating liquid 34 is flat and the film thickness is uniformly reduced.
  • the concentration of the solute in the coating liquid 34 in the concave portion locally decreases due to the step structure 27 of the substrate 25.
  • the evaporation rate of the solvent of the coating liquid 34 is increased in the concave portions, and the surface of the coating liquid 34 in the concave portions is concave.
  • the amount of decrease in the thickness of the layer increases as the thickness of the layer increases. That is, the portion corresponding to the third step surface 28f of the step structure 27 has the largest reduction amount, and the portion corresponding to the second step surface 28e of the step structure 27 has the second largest reduction amount. The portion corresponding to the step surface 28d of the first step 27 has the third largest reduction amount, and the portion corresponding to the portion where the step structure 27 is not formed has the smallest reduction amount. As a result, a concave lens-like coating layer 26 is formed in a portion covering the step structure 27. Subsequently, as shown in FIGS.
  • the concave lens-shaped coating layer 26 so that the formed coating layer 26 (coating film) becomes a permanent film.
  • the coating layer 26 is cured, and the wafer lens 19 shown in FIG. 20 is completed.
  • the lens height LH shown in FIG. Further, the lens diameter LR is not less than the width W of the step structure 27 and not more than the pitch p of the step structure 27.
  • FIG. 31 is a diagram illustrating a cross-sectional configuration of a pixel region 3 according to the third embodiment.
  • portions corresponding to FIG. 2 are denoted by the same reference numerals, and redundant description will be omitted.
  • the solid-state imaging device 1 combines a spherical lens-shaped wafer lens 19 having a large curvature at the center and a correction lens 35 having a gentle curvature at the outer periphery.
  • the first embodiment is different from the first embodiment in that a complex aspheric lens having a large curvature at the center and a gentle curvature at the outer periphery is realized by forming a lens group having a large curvature. That is, the correction lens 35 is configured to receive the light transmitted through the wafer lens 19.
  • the correction lens 35 is formed in the flattening film 16 between the insulating film 14 and the color filter 18 so as to correspond to each pixel 9.
  • the correction lens 35 forms a correction lens array (optical element array) regularly arranged in a two-dimensional array.
  • the correction lens 35 is optically designed to correct the aberration caused by the wafer lens 19.
  • Examples of the aberration caused by the wafer lens 19 include Seidel's five aberrations (spherical aberration, astigmatism, coma aberration, field curvature aberration, distortion), chromatic aberration (magnification chromatic aberration, axial chromatic aberration), and the like.
  • the wafer lens 19 is a lens that causes chromatic aberration of magnification
  • the light by the wafer lens 19 is changed for each color (wavelength range) included in the incident light.
  • the imaging positions are different positions in a plane orthogonal to the optical axis.
  • the wafer lens 19 is a lens that causes axial chromatic aberration
  • the wafer lens 19 is changed for each color (wavelength range) included in the incident light.
  • the imaging positions are different positions on the optical axis.
  • FIG. 32A illustrates a state in which light 53 is collected by a correction lens 35 (hereinafter, also referred to as a “red correction lens”) arranged in a pixel 9 having a color filter 18 that transmits light of a red wavelength.
  • a correction lens 35 hereinafter, also referred to as a “red correction lens”
  • FIG. 32B illustrates a state in which the light 53 is collected by a correction lens 35 (hereinafter, also referred to as a “green correction lens”) disposed in the pixel 9 having the color filter 18 that transmits light of a green wavelength.
  • FIG. 32C illustrates a state in which the light 53 is collected by a correction lens 35 (hereinafter, also referred to as a “blue correction lens”) disposed in the pixel 9 having the color filter 18 that transmits light of a blue wavelength.
  • the inter-pixel light blocking area between the photoelectric conversion units 23 can be reduced, and the photoelectric conversion unit 23 can be enlarged.
  • the sensitivity of the unit 23 can be improved.
  • a correction lens in plan view A lens having an annular concave portion 36 along the outer peripheral portion of the lens 35 can be used.
  • 33A and 33B illustrate a red correction lens
  • FIGS. 34A and 34B illustrate a green correction lens
  • FIGS. 35A and 35B illustrate a blue correction lens.
  • the width of the annular concave portion 36 is, for example, in the order of the width of the annular concave portion 36 of the red correction lens ⁇ the width of the annular concave portion 36 of the green correction lens ⁇ the width of the annular concave portion 36 of the blue correction lens.
  • the diameter of the annular concave portion 36 is, for example, in the order of the diameter of the annular concave portion 36 of the blue correction lens ⁇ the diameter of the annular concave portion 36 of the green correction lens ⁇ the diameter of the annular concave portion 36 of the blue correction lens.
  • the diameter of the annular recess 36 for example, an average value of the inner diameter and the outer diameter of the annular recess 36 can be used.
  • a thermal reflow method can be adopted as a method of forming the wafer lens 19.
  • the thermal reflow method when the wafer lens 19 is formed into a spherical lens, the step structure 27 of the wafer lens 19 can be formed in a relatively simple shape, so that the labor required for forming the step structure 27 can be reduced. Thus, the manufacturing cost of the wafer lens 19 can be reduced.
  • FIG. 36 is a diagram illustrating a cross-sectional configuration of the correction lens 35.
  • the correction lens 35 includes a substrate 37 and a cover layer 38.
  • the substrate 37 is formed on the back surface S10 side (the surface on the color filter 18 side) of the portion 16a of the planarization film 16 on the insulating film 14 side, and like the substrate 25 of the second embodiment, the back surface of the substrate 37 It is configured to include a plurality of step structures 39 which are concave portions formed in the depth direction from the S11 (the surface on the color filter 18 side) side.
  • Each of the step structures 39 is formed corresponding to each pixel 9 and has one or more step surfaces 40.
  • the step surface 40 for example, a surface having a different height from the back surface S11 of the substrate 37 can be used.
  • a surface parallel to the back surface S11 of the substrate 37 can be used.
  • FIG. 36 illustrates a case where the number of steps on the step surface 40 of the step structure 27 is one.
  • other structures and materials of the substrate 37 for example, those similar to the structures and materials of the substrate 25 of the first and second embodiments can be adopted.
  • the step structure 39 of the substrate 37 may be, for example, a plan view.
  • An annular concave portion along the outer peripheral portion of the correction lens 35 can be used. That is, a plurality of step structures 39 having annular step surfaces 40 having different heights with respect to the back surface S11 may be formed on the back surface S11 of the substrate 37.
  • reference numeral “39” is also given to the annular concave portion of the step structure 39.
  • the width is preferably in the order of the width of the annular concave portion 39 corresponding to the red correction lens ⁇ the width of the annular concave portion 39 corresponding to the green correction lens ⁇ the width of the annular concave portion 39 corresponding to the blue correction lens.
  • the diameter of the annular concave portion 39 of the substrate 37 is, for example, the diameter of the annular concave portion 39 corresponding to the blue correction lens ⁇ the diameter of the annular concave portion 39 corresponding to the green correction lens ⁇ the blue correction lens. It is preferable that the diameter of the corresponding annular concave portion 39 be in order.
  • the diameter of the annular recess 39 for example, an average value of the inner diameter and the outer diameter of the annular recess 39 can be adopted. Further, it is preferable that the depth of the annular concave portion 39 of the substrate 37 is the same for all the annular concave portions 39.
  • the coating layer 38 is formed on the back surface S11 side of the substrate 37 (the portion 16b side of the flattening film 16 on the color filter 18 side), and like the coating layers 26 of the first and second embodiments, the step structure 39 and The back surface S11 of the substrate 37 around the step structure 39 is continuously covered. That is, the coating layer 38 is configured to cover the entire back surface S11, that is, the entire surface having the step structure 39.
  • the upper surface of the portion covering the step structure 39 is formed in a curved shape on the outer peripheral portion of the aspherical lens.
  • the material of the coating layer 38 for example, a material that transmits light and has a difference from the refractive index of the material of the substrate 37 within ⁇ 10% of the refractive index of the material of the substrate 37 can be used. .
  • FIGS. 37A to 44B illustrate a case where the correction lens 35 is a lens having the annular concave portion 36 shown in FIGS. 33A and 33B. First, as shown in FIGS.
  • a photoresist film 41 is applied to the entire back surface S11 of the substrate 37. Subsequently, as shown in FIGS. 38A and 38B, the photoresist film 41 is exposed, and as shown in FIGS. 39A and 39B, the photoresist film 41 is developed.
  • the rear surface S11 of the substrate 37 is etched using the developed photoresist film 41 as an etching mask, and the light after passing through the color filter 18 is incident.
  • a plurality of concave step structures 39 are formed.
  • the photoresist film 41 that is, the etching mask of the back surface S11 is removed from the back surface S11 of the substrate 37.
  • a plurality of annular recessed step structures 39 regularly arranged in a two-dimensional array on the back surface S11 of the substrate 37 are formed.
  • the coating liquid for forming the coating layer 38 is formed so as to cover the entire back surface S11 of the substrate 37, that is, the entire surface having the step structure 39, and to make the liquid level horizontal. 42 is applied.
  • the thickness of the layer made of the coating liquid 42 is the thickest at the portion corresponding to the step surface 40 (the bottom surface of the annular concave portion) of the step structure 39, and the thinnest at the portion corresponding to the portion where the step structure 39 is not formed.
  • the coating liquid 42 for example, similarly to the coating liquids 34 of the first and second embodiments, a coating liquid obtained by dissolving a styrene-based resin or an acrylic resin in an appropriate solvent can be employed.
  • a spin coating method can be adopted as a method of applying the coating liquid 42.
  • the applied coating liquid 42 is dried.
  • the solvent volatilizes, and the thickness of the layer composed of the coating liquid 42 decreases.
  • the surface of the coating liquid 42 is flat and the film thickness is uniformly reduced.
  • the solute concentration of the coating liquid 42 in the concave portion locally decreases due to the step structure 39 of the substrate 37.
  • the evaporation speed of the solvent of the coating liquid 42 is increased in the concave portions, and the surface of the coating liquid 42 in the concave portions is concave. Due to this phenomenon, the amount of decrease in the layer thickness increases as the layer thickness increases.
  • the portion corresponding to the step surface 40 (the bottom surface of the annular concave portion) of the step structure 39 has the largest reduction amount, and the portion corresponding to the portion where the step structure 39 is not formed has the smallest reduction amount.
  • a lens-shaped coating layer 38 having an annular concave portion in a portion covering the step structure 39 is formed.
  • UV curing or baking is performed on the concave lens-shaped coating layer 38 so that the formed coating layer 38 becomes a permanent film.
  • the coating layer 38 is cured, and the correction lens 35 shown in FIGS. 33A and 33B is completed.
  • the correction lens 35 is a lens for correcting chromatic aberration, that is, when the correction lens 35 is a lens having the annular concave portion 36 shown in FIGS. 33A, 33B, 34A, 34B, 35A, and 35B. It is preferable to design the width and diameter of the annular recess 39 of the substrate 37 according to the shape of the annular recess 36. That is, in the above-described step of forming the plurality of step structures 39 (annular concave portions 39) on the substrate 37, as shown in FIGS. 33A, 34A, and 35A, light transmitted by the color filter 18 corresponding to the annular concave portions 39 is transmitted.
  • the width and the diameter of the annular concave portion 39 are adjusted according to the wavelength range (color). Specifically, first, the position where the curvature is formed by the annular concave portion 36 of the correction lens 35 and the magnitude of the curvature are designed so as to correct the chromatic aberration caused by the wafer lens 19. Subsequently, optimization is performed using the width and the diameter (position) of the annular concave portion 39 as parameters so that the shape of the correction lens 35 having the designed curvature is realized using the simulation of the application and drying of the application liquid 42. . At this time, it is preferable that the depth of the annular concave portion 39 of the substrate 37 be the same for all the annular concave portions 39. Accordingly, all the annular concave portions 39 of the substrate 37 can be formed simultaneously in one process flow while the shape of the correction lens 35 is different for each wavelength range (color) of light transmitted by the color filter 18. it can.
  • the step structure 39 and the surrounding back surface S11 are provided with a covering layer 38 that continuously covers and transmits light. Therefore, various shapes can be realized by the shape of the step structure 39, and the correction lens 35 having a high degree of design freedom can be provided.
  • correction lens 35 in a broad sense, “second lens”.
  • the correction lens 35 includes a substrate 37 having a step structure 39 having an annular step surface 40 having a height different from that of the back surface S11 on one surface (back surface S11), a step structure 39, and a back surface S11 around the step structure 39. And a coating layer 38 that continuously covers and transmits light. Therefore, a lens having the same optical performance as a complicated aspherical lens can be realized relatively easily.
  • the correction lens 35 (second lens) is a lens that corrects chromatic aberration caused by the wafer lens 19 (first lens). Therefore, it is possible to prevent the sensitivity of the photoelectric conversion unit 23 corresponding to the wafer lens 19 from lowering, and to prevent the occurrence of color mixture in the photoelectric conversion unit 23 around the photoelectric conversion unit 23.
  • a step of forming a plurality of step structures 39 regularly arranged in a two-dimensional array on a substrate 37 and a step of forming a plurality of step structures 39 on the substrate 37 A step of applying a coating liquid 42 to the coating liquid 37 and drying the coating liquid 42 so as to form a coating layer 38 that continuously covers the plurality of step structures 39 and the surrounding surface of the substrate 37 and transmits light.
  • Each of the step structures 39 includes an annular concave portion 39 for forming a lens into which the light transmitted through the color filter 18 is incident.
  • the width and diameter of each of the plurality of annular recesses 39 are determined according to the wavelength range (color) of light transmitted by the color filter 18 corresponding to the annular recess 39. I adjusted it. Therefore, the depth of the annular concave portions 39 of the substrate 37 can be made the same, and all the annular concave portions 39 can be formed simultaneously by one process flow.
  • the lens formation pattern layer is thermally reflowed to form a lens.
  • the surface of the coating layer 38 can have a gentle curvature according to the shape of the step structure 39, and the surface of the coating layer 38 can be controlled. Can be changed highly.
  • the step structure 39 can be designed so that the desired shape of the correction lens 35 is realized by using the simulation of the application and drying of the application liquid 42.
  • the optical element of the present disclosure is used for the wafer lens 19 has been described.
  • the present invention can be applied to the inner lens 43 formed on the film 16.
  • the present invention can be applied to a reflector 44 used for a display device or the like.
  • a reflector layer 45 reflection layer
  • a light emitting layer 46 that emits light
  • an interlayer film 47 that forms a flat surface without unevenness, and display are desired.
  • the color filters 48 formed corresponding to the wavelength of light are stacked in this order is illustrated.
  • the reflected light 49 reflected by the reflector 44 is indicated by an arrow.
  • the present disclosure is not limited to a solid-state imaging device that detects a distribution of the amount of incident visible light and captures an image as in the solid-state imaging devices 1 according to the first and second embodiments. Absent.
  • the present invention can be applied to a solid-state imaging device that captures, as an image, a distribution of an incident amount of infrared rays, X-rays, particles, and the like.
  • the present invention can be applied to all solid-state imaging devices (physical quantity distribution detecting devices) such as a fingerprint detection sensor that detects distribution of other physical quantities such as pressure and capacitance and captures an image as an image.
  • the pixels 9 in the pixel region 3 are sequentially scanned in units of rows to read pixel signals from the pixels 9. It is not limited to a solid-state imaging device.
  • the present invention is also applicable to an XY address type solid-state imaging device in which an arbitrary pixel 9 is selected in pixel units and a signal is read from the selected pixel 9 in pixel units.
  • the case where the correction lens 35 is disposed in the flattening film 16 has been described as an example.
  • the correction lens 35 is disposed on the light receiving surface side of the wafer lens 19.
  • the light before passing through the wafer lens 19 may be incident on the correction lens 35.
  • an annular concave portion is formed as the step structure 39 of the substrate 37 forming the correction lens 35 has been described. As shown in FIGS. 47A and 47B, an annular convex portion may be formed.
  • an aspheric lens is realized by forming a lens group in which the wafer lens 19 and the correction lens 35 are combined.
  • the aspherical lens-shaped wafer lens 19 is formed by combining the manufacturing methods of the optical elements of the first, second and third embodiments. Is also good.
  • 48A and 48B on the back surface S7 of the substrate 25 forming the wafer lens 19, a step structure 27 (a “first step structure” in a broad sense) that is a concave portion and an annular shape surrounding the periphery of the step structure 27 are provided.
  • a step structure 39 (in a broad sense, a “second step structure”) which is an annular concave portion having a step surface 40 is formed is illustrated.
  • 49A and 49B on the back surface S7 of the substrate 25 constituting the wafer lens 19, a step structure 27 (first step structure) as a convex portion and an annular step surface surrounding the periphery of the step structure 27 are provided.
  • a step structure 39 (a second step surface) which is an annular convex portion having a step 40 is formed is illustrated.
  • the coating layer 26 continuously covers the step structure 27, the step structure 39, and the back surface S7 around them, and transmits light.
  • FIG. 50A exemplifies a state in which light 53 is collected by a lens group formed in the pixel 9 corresponding to the color filter 18 that transmits red wavelength light.
  • FIG. 50A exemplifies a state in which light 53 is collected by a lens group formed in the pixel 9 corresponding to the color filter 18 that transmits red wavelength light.
  • FIG. 50B illustrates a state in which the light 53 is collected by a lens group configured in the pixel 9 corresponding to the color filter 18 that transmits light of a green wavelength.
  • FIG. 50C illustrates a state in which the light 53 is collected by a lens group configured in the pixel 9 corresponding to the color filter 18 that transmits light of a blue wavelength.
  • a lens provided with an inner lens 51 between the wafer lens 19 and the correction lens 35, and a combination of the wafer lens 19, the inner lens 51, and the correction lens 35 A group may be formed.
  • FIG. 51A illustrates a state in which the light 53 is collected by a lens group formed in the pixel 9 corresponding to the color filter 18 that transmits light of a red wavelength.
  • FIG. 51B illustrates a state in which the light 53 is collected by a lens group configured in the pixel 9 corresponding to the color filter 18 that transmits green wavelength light.
  • FIG. 51C illustrates a state in which the light 53 is collected by a lens group configured in the pixel 9 corresponding to the color filter 18 that transmits light of a blue wavelength.
  • the correction lens 35 is designed so that almost all of the light that has entered the wafer lens 19 through the lens group enters the photoelectric conversion unit 23 corresponding to the lens group.
  • a correction lens 35 for correcting chromatic aberration caused by the wafer lens 19 is provided.
  • the configuration may be such that the wafer lens 19 is formed so as to correspond to only some of the wafer lenses 19.
  • the correction lens 35 May be formed so as to correspond only to the wafer lens 19.
  • the correction lens 35 is configured so that the light-collecting rate of the aspheric lens realized by combining the wafer lens 19 and the correction lens 35 is increased.
  • the light-collecting rate of the aspherical lens may be reduced.
  • the amount of infrared light received is larger than that of the other photoelectric conversion units 23 due to variations in the light blocking performance of the filter. Pixel 9 may result.
  • the correction lens 35 is configured so that the condensing rate of the infrared light in the aspherical lens is lowered, even if the pixel 9 that receives a large amount of infrared light is generated, the photoelectric corresponding to the pixel 9 is generated. The amount of incident infrared light on the converter 23 can be reduced.
  • FIG. 52 is a schematic configuration diagram of an electronic device 100 according to the fourth embodiment of the present disclosure.
  • the electronic device 100 according to the fourth embodiment includes a solid-state imaging device 101, an optical lens 102, a shutter device 103, a drive circuit 104, and a signal processing circuit 105.
  • the electronic device 100 according to the fourth embodiment shows an embodiment in which the solid-state imaging device 1 according to the first embodiment of the present disclosure is used as an electronic device (for example, a camera) as the solid-state imaging device 101.
  • the optical lens 102 forms image light (incident light 106) from a subject on the imaging surface of the solid-state imaging device 101. As a result, signal charges are accumulated in the solid-state imaging device 101 for a certain period.
  • the shutter device 103 controls a light irradiation period and a light blocking period to the solid-state imaging device 101.
  • the drive circuit 104 supplies a drive signal for controlling the transfer operation of the solid-state imaging device 101 and the shutter operation of the shutter device 103.
  • the signal transfer of the solid-state imaging device 101 is performed by a drive signal (timing signal) supplied from the drive circuit 104.
  • the signal processing circuit 105 performs various signal processing on a signal (pixel signal) output from the solid-state imaging device 101.
  • the video signal on which the signal processing has been performed is stored in a storage medium such as a memory or output to a monitor.
  • the electronic device 100 to which the solid-state imaging device 1 can be applied is not limited to a camera, but can be applied to other electronic devices.
  • the present invention may be applied to an imaging device such as a camera module for a mobile device such as a mobile phone or a tablet terminal.
  • the solid-state imaging device 101 according to the first embodiment is used for an electronic device as the solid-state imaging device 101, but another configuration may be used.
  • the solid-state imaging device 1 according to the second embodiment, the solid-state imaging device 1 according to the third embodiment, and the solid-state imaging device 1 according to the modification may be used in an electronic device.
  • the technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on any type of moving object such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
  • FIG. 53 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a moving object control system to which the technology according to the present disclosure can be applied.
  • Vehicle control system 12000 includes a plurality of electronic control units connected via communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an inside information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio / video output unit 12052, and a vehicle-mounted network I / F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generating device for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting driving force to wheels, and a steering angle of the vehicle. It functions as a control mechanism such as a steering mechanism for adjusting and a braking device for generating a braking force of the vehicle.
  • the body control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a head lamp, a back lamp, a brake lamp, a blinker, and a fog lamp.
  • a radio wave or various switch signals transmitted from a portable device replacing the key may be input to the body control unit 12020.
  • the body control unit 12020 receives the input of these radio waves or signals and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
  • Out-of-vehicle information detection unit 12030 detects information external to the vehicle on which vehicle control system 12000 is mounted.
  • an imaging unit 12031 is connected to the outside-of-vehicle information detection unit 12030.
  • the out-of-vehicle information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle, and receives the captured image.
  • the out-of-vehicle information detection unit 12030 may perform an object detection process or a distance detection process of a person, a vehicle, an obstacle, a sign, a character on a road surface, or the like based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of received light.
  • the imaging unit 12031 can output an electric signal as an image or can output the information as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects information in the vehicle.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver status detection unit 12041 that detects the status of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 determines the degree of driver fatigue or concentration based on the detection information input from the driver state detection unit 12041. The calculation may be performed, or it may be determined whether the driver has fallen asleep.
  • the microcomputer 12051 calculates a control target value of the driving force generation device, the steering mechanism or the braking device based on the information on the inside and outside of the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, and the drive system control unit A control command can be output to 12010.
  • the microcomputer 12051 implements functions of ADAS (Advanced Driver Assistance System) including vehicle collision avoidance or impact mitigation, following running based on the following distance, vehicle speed maintaining running, vehicle collision warning, vehicle lane departure warning, and the like. Cooperative control for the purpose.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generation device, the steering mechanism, the braking device, and the like based on the information about the surroundings of the vehicle obtained by the outside information detection unit 12030 or the inside information detection unit 12040, so that the driver 120 It is possible to perform cooperative control for automatic driving or the like in which the vehicle travels autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on information on the outside of the vehicle acquired by the outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamp in accordance with the position of the preceding vehicle or the oncoming vehicle detected by the outside-of-vehicle information detection unit 12030, and performs cooperative control for the purpose of preventing glare such as switching a high beam to a low beam. It can be carried out.
  • the sound image output unit 12052 transmits at least one of a sound signal and an image signal to an output device capable of visually or audibly notifying a passenger of the vehicle or the outside of the vehicle of information.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
  • FIG. 54 is a diagram illustrating an example of an installation position of the imaging unit 12031.
  • the vehicle 12100 includes imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door of the vehicle 12100, and an upper portion of a windshield in the vehicle interior.
  • the imaging unit 12101 provided on the front nose and the imaging unit 12105 provided above the windshield in the passenger compartment mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirror mainly acquire images of the side of the vehicle 12100.
  • the imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100.
  • the forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, and the like.
  • FIG. 54 shows an example of the imaging range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates 13 shows an imaging range of an imaging unit 12104 provided in a rear bumper or a back door.
  • a bird's-eye view image of the vehicle 12100 viewed from above is obtained by superimposing image data captured by the imaging units 12101 to 12104.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements or an imaging element having pixels for detecting a phase difference.
  • the microcomputer 12051 calculates a distance to each three-dimensional object in the imaging ranges 12111 to 12114 and a temporal change of the distance (relative speed with respect to the vehicle 12100). , It is possible to extract, as a preceding vehicle, a three-dimensional object that travels at a predetermined speed (for example, 0 km / h or more) in a direction substantially the same as that of the vehicle 12100, which is the closest three-dimensional object on the traveling path of the vehicle 12100 it can.
  • a predetermined speed for example, 0 km / h or more
  • microcomputer 12051 can set an inter-vehicle distance to be secured before the preceding vehicle and perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
  • the microcomputer 12051 converts the three-dimensional object data relating to the three-dimensional object into other three-dimensional objects such as a motorcycle, a normal vehicle, a large vehicle, a pedestrian, a telephone pole, and the like based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines a collision risk indicating a risk of collision with each obstacle, and when the collision risk is equal to or more than the set value and there is a possibility of collision, via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver through forced driving and avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
  • driving assistance for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared light.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian exists in the captured images of the imaging units 12101 to 12104. The recognition of such a pedestrian is performed by, for example, extracting a feature point in an image captured by the imaging units 12101 to 12104 as an infrared camera, and performing a pattern matching process on a series of feature points indicating the outline of the object to determine whether the object is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular contour for emphasis to the recognized pedestrian.
  • the display unit 12062 is controlled so that is superimposed. Further, the sound image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 or the like among the configurations described above.
  • the solid-state imaging device 1 in FIG. 1 can be applied to the imaging unit 12031.
  • Example of application to endoscopic surgery system The technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 55 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology (the present technology) according to the present disclosure may be applied.
  • FIG. 55 shows a state in which an operator (doctor) 11131 is performing an operation on a patient 11132 on a patient bed 11133 using the endoscopic operation system 11000.
  • the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as an insufflation tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100. And a cart 11200 on which various devices for endoscopic surgery are mounted.
  • the endoscope 11100 includes a lens barrel 11101 having a predetermined length from the distal end inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • the endoscope 11100 which is configured as a so-called rigid endoscope having a hard lens barrel 11101 is illustrated.
  • the endoscope 11100 may be configured as a so-called flexible endoscope having a soft lens barrel. Good.
  • An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the distal end of the lens barrel by a light guide that extends inside the lens barrel 11101, and the objective The light is radiated toward the observation target in the body cavity of the patient 11132 via the lens.
  • the endoscope 11100 may be a direct view scope, a perspective view scope, or a side view scope.
  • An optical system and an image sensor are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the image sensor by the optical system.
  • the observation light is photoelectrically converted by the imaging element, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted as raw data to a camera control unit (CCU: ⁇ Camera ⁇ Control ⁇ Unit) 11201.
  • the $ CCU 11201 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and controls the operations of the endoscope 11100 and the display device 11202 overall. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal for displaying an image based on the image signal, such as a development process (demosaicing process).
  • a development process demosaicing process
  • the display device 11202 displays an image based on an image signal on which image processing has been performed by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 includes a light source such as an LED (Light Emitting Diode), for example, and supplies the endoscope 11100 with irradiation light when imaging an operation part or the like.
  • a light source such as an LED (Light Emitting Diode), for example, and supplies the endoscope 11100 with irradiation light when imaging an operation part or the like.
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and input instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction or the like to change imaging conditions (type of irradiation light, magnification, focal length, and the like) by the endoscope 11100.
  • the treatment instrument control device 11205 controls the driving of the energy treatment instrument 11112 for cauterizing, incising a tissue, sealing a blood vessel, and the like.
  • the insufflation device 11206 is used to inflate the body cavity of the patient 11132 for the purpose of securing the visual field by the endoscope 11100 and securing the working space of the operator.
  • the recorder 11207 is a device that can record various types of information related to surgery.
  • the printer 11208 is a device capable of printing various types of information on surgery in various formats such as text, images, and graphs.
  • the light source device 11203 that supplies the endoscope 11100 with irradiation light at the time of imaging the operation site can be configured by, for example, a white light source including an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of the RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. It can be carried out.
  • the laser light from each of the RGB laser light sources is radiated to the observation target in a time-division manner, and the driving of the image pickup device of the camera head 11102 is controlled in synchronization with the irradiation timing. It is also possible to capture the image obtained in a time-division manner. According to this method, a color image can be obtained without providing a color filter in the image sensor.
  • the driving of the light source device 11203 may be controlled so as to change the intensity of output light at predetermined time intervals.
  • the driving of the image sensor of the camera head 11102 in synchronization with the timing of the change of the light intensity, an image is acquired in a time-division manner, and the image is synthesized, so that a high dynamic image without so-called blackout and whiteout is obtained. An image of the range can be generated.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of the absorption of light in the body tissue, by irradiating light in a narrower band than the irradiation light (ie, white light) at the time of normal observation, the surface of the mucous membrane is exposed.
  • a so-called narrow-band light observation (Narrow / Band / Imaging) for photographing a predetermined tissue such as a blood vessel with high contrast is performed.
  • fluorescence observation in which an image is obtained by fluorescence generated by irradiating excitation light may be performed.
  • body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and Irradiation with excitation light corresponding to the fluorescence wavelength of the reagent can be performed to obtain a fluorescence image.
  • the light source device 11203 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
  • FIG. 56 is a block diagram showing an example of a functional configuration of the camera head 11102 and the CCU 11201 shown in FIG.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • the CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and the CCU 11201 are communicably connected to each other by a transmission cable 11400.
  • the lens unit 11401 is an optical system provided at a connection with the lens barrel 11101. Observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102, and enters the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the imaging unit 11402 includes an imaging element.
  • the number of imaging elements constituting the imaging unit 11402 may be one (so-called single-panel type) or plural (so-called multi-panel type).
  • an image signal corresponding to each of RGB may be generated by each image sensor, and a color image may be obtained by combining the image signals.
  • the imaging unit 11402 may be configured to include a pair of imaging elements for acquiring right-eye and left-eye image signals corresponding to 3D (Dimensional) display. By performing the 3D display, the operator 11131 can more accurately grasp the depth of the living tissue in the operative part.
  • a plurality of lens units 11401 may be provided for each imaging element.
  • the imaging unit 11402 does not necessarily have to be provided in the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405.
  • the magnification and the focus of the image captured by the imaging unit 11402 can be appropriately adjusted.
  • the communication unit 11404 is configured by a communication device for transmitting and receiving various information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information indicating that the frame rate of the captured image is specified, information that specifies the exposure value at the time of imaging, and / or information that specifies the magnification and focus of the captured image. Contains information about the condition.
  • the above-described imaging conditions such as the frame rate, the exposure value, the magnification, and the focus may be appropriately designated by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good.
  • the endoscope 11100 has a so-called AE (Auto Exposure) function, an AF (Auto Focus) function, and an AWB (Auto White Balance) function.
  • the camera head control unit 11405 controls the driving of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured by a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102.
  • the image signal and the control signal can be transmitted by electric communication, optical communication, or the like.
  • the image processing unit 11412 performs various types of image processing on an image signal that is RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various kinds of control related to imaging of the operation section and the like by the endoscope 11100 and display of a captured image obtained by imaging the operation section and the like. For example, the control unit 11413 generates a control signal for controlling driving of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display a captured image showing the operative part or the like based on the image signal subjected to the image processing by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects a shape, a color, or the like of an edge of an object included in the captured image, and thereby detects a surgical tool such as forceps, a specific living body site, bleeding, a mist when using the energy treatment tool 11112, and the like. Can be recognized.
  • the control unit 11413 may use the recognition result to superimpose and display various types of surgery support information on the image of the operative site.
  • the burden on the operator 11131 can be reduced, and the operator 11131 can reliably perform the operation.
  • the transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
  • the communication is performed by wire using the transmission cable 11400, but the communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be applied to, for example, the endoscope 11100, the imaging unit 11402 of the camera head 11102, and the like among the configurations described above.
  • the solid-state imaging device 1 in FIG. 1 can be applied to the imaging unit 10402.
  • the endoscopic surgery system has been described as an example, but the technology according to the present disclosure may be applied to, for example, a microscopic surgery system or the like.
  • the present technology may have the following configurations.
  • An optical element comprising: the step structure; and a coating layer that continuously covers the one surface around the step structure and transmits or reflects light.
  • the step structure has, as a side surface that connects the one surface and the step surface, an inclined surface or a curved surface inclined with respect to a normal direction of the one surface.
  • the step structure has two or more steps.
  • the step structure is parallel to the normal direction of the one surface, as a side surface connecting the one surface and the step surface, and a side surface connecting the two step surfaces in a two-step relationship.
  • the optical element according to (3) further including at least one of a vertical surface, and an inclined surface and a curved surface inclined with respect to a normal direction of the one surface.
  • the optical element according to (2) or (4) wherein an inclination angle of the inclined surface is 0 degree or more and 60 degrees or less with respect to a normal direction of the one surface.
  • (6) The optical element according to any one of (1) to (5), wherein a ratio of a width of the step structure to a height of the step structure is 1:10 to 10: 1.
  • the step structure has a convex portion, The coating layer continuously covers the upper surface and the side wall surface of the convex portion, and the one surface around the convex portion, and transmits or reflects light.
  • the step structure has a concave portion, The coating layer continuously covers the bottom surface and the inner wall surface of the concave portion, and the one surface around the concave portion, and transmits or reflects light.
  • the step structure includes a first step structure, and a second step structure having an annular step surface surrounding the periphery of the first step structure, The coating layer continuously covers the first step structure, the second step structure, and the one surface around the first step structure and the second step structure, and transmits light.
  • the optical element according to any one of the above.
  • An optical element array comprising: (16) The optical element array according to (15), wherein the second lens is a lens that corrects chromatic aberration caused by the first lens.
  • the second lens is A substrate having a step structure having an annular step surface having a height different from the one surface on one surface;
  • a lens group comprising: the step structure; and a coating layer that continuously covers the one surface around the step structure and transmits light.
  • the lens group according to (17), wherein the second lens is a lens that corrects chromatic aberration caused by the first lens.
  • a solid-state imaging device comprising a microlens array having a covering layer each having a lens-like portion, An optical lens that forms image light from a subject on an imaging surface of the solid-state imaging device,
  • An electronic device comprising: a signal processing circuit that performs signal processing on a signal output from the solid-state imaging device. (20) Forming a step structure on the substrate; Applying a coating liquid to the substrate on which the step structure is formed, Drying the coating liquid so as to form a coating layer that continuously covers the step structure and the surface of the substrate around the step structure and transmits or reflects light.
  • each of the step structures includes an annular concave portion for forming a lens on which light before transmission through the color filter or light after transmission is incident,
  • the width and the diameter of each of the plurality of annular concave portions are adjusted according to a wavelength range of light transmitted by a color filter corresponding to the annular concave portion.
  • SYMBOLS 1 Solid-state imaging device, 2 ... Substrate, 3 ... Pixel area, 4 ... Vertical drive circuit, 5 ... Column signal processing circuit, 6 ... Horizontal drive circuit, 7 ... Output circuit, 8 ... Control circuit, 9 ... Pixel, 10 ...
  • Pixel drive wiring 11 vertical signal line, 12 horizontal signal line, 13 fixed charge film, 14 insulating film, 15 light shielding film, 16 flattening film, 17 light receiving layer, 18 color filter, 19 Wafer lens, 20: condensing layer, 21: wiring layer, 22: supporting substrate, 23: photoelectric conversion unit, 24: microlens array, 25: substrate, 26: coating layer, 27: step structure, 28, 28a, 28b , 28c, 28d, 28e, 28f: step surface, 29: side surface, 30: side surface, 31: interlayer insulating film, 32: wiring, 33: photoresist film, 34: coating liquid, 35: correction lens, 36: annular concave portion , 37 ... substrate, 38 ...
  • step structure 39 Annular recess (step structure), 40 step surface, 41 photoresist film, 42 coating liquid, 43 inner lens, 44 reflector, 45 reflector layer, 46 light emitting layer, 47 interlayer film, 48 color Filter 49, reflected light, 50, 51 inner lens, 100 electronic device, 101 solid-state imaging device, 102 optical lens, 103 shutter device, 104 drive circuit, 105 signal processing circuit, 106 incident light

Abstract

The present invention comprises: a substrate in which a stepped structure is formed on one surface thereof, the stepped structure having stepped surfaces having a different height than the one surface; and a coating layer for continuously covering the stepped structure and the one surface on the periphery of the stepped structure, and transmitting or reflecting light.

Description

光学素子、光学素子アレイ、レンズ群、電子機器、及び光学素子の製造方法Optical element, optical element array, lens group, electronic device, and method for manufacturing optical element
 本技術は、光学素子、光学素子アレイ、レンズ群、電子機器、及び光学素子の製造方法に関する。 技術 The present technology relates to an optical element, an optical element array, a lens group, an electronic device, and a method for manufacturing an optical element.
 従来、複数の下地パターンを有する基板と、下地パターンの上面それぞれを覆い且つ光を透過する被覆層とを備えるレンズが提案されている(例えば特許文献1参照)。特許文献1に記載のレンズは、各下地パターンの上面にレンズ形成パターン層を形成した後、レンズ形成パターン層を熱リフローさせることで、各下地パターンの上面に形成される。 Conventionally, there has been proposed a lens including a substrate having a plurality of base patterns and a coating layer that covers each upper surface of the base patterns and transmits light (for example, see Patent Document 1). The lens described in Patent Literature 1 is formed on the upper surface of each underlying pattern by forming a lens forming pattern layer on the upper surface of each underlying pattern and then thermally reflowing the lens forming pattern layer.
特開2000-307090号公報JP 2000-307090 A
 しかしながら、特許文献1に記載のレンズでは、下地パターンの上面、つまり、平面上に表面張力を利用して曲面構造を形成するようになっているため、設計の自由度が低い。
 本開示は、設計の自由度が高い光学素子、光学素子アレイ、レンズ群、電子機器、及び光学素子の製造方法を提供することを目的とする。
However, in the lens described in Patent Literature 1, a curved surface structure is formed using surface tension on the upper surface of a base pattern, that is, on a flat surface, so that the degree of freedom in design is low.
An object of the present disclosure is to provide an optical element, an optical element array, a lens group, an electronic device, and a method of manufacturing an optical element, which have a high degree of freedom in design.
 本開示の光学素子は、(a)一方の面に、その一方の面に対する高さが異なる段差面を有する段差構造が形成された基板と、(b)段差構造及びその周囲の一方の面を連続して覆い且つ光を透過又は反射する被覆層とを備える。
 また、本開示の光学素子アレイは、(a)2次元アレイ状に規則的に配列された複数の段差構造を有する基板と、(b)複数の段差構造及びそれらの周囲の前記基板の面を連続して覆い且つ各段差構造を覆っている部分それぞれが光を透過又は反射する被覆層とを備える。
 また、本開示の光学素子アレイは、(a)2次元アレイ状に規則的に配列された複数の第1のレンズと、(b)一方の面に、一方の面に対する高さが異なる環状の段差面を有する複数の段差構造が形成された基板、並びに段差構造及びその周囲の一方の面を連続して覆い且つ光を透過する被覆層を含んで構成され、第1のレンズを通過する前の光又は通過した後の光が入射され、第1のレンズに起因する収差を補正する複数の第2のレンズとを備える。
 また、本開示のレンズ群は、(a)第1のレンズと、(b)第1のレンズを透過する前の光又は透過した後の光が入射され、第1のレンズに起因する収差を補正する第2のレンズとを備え、第2のレンズは、(c)一方の面に、一方の面に対する高さが異なる環状の段差面を有する段差構造が形成された基板と、(d)段差構造及びその周囲の一方の面を連続して覆い且つ光を透過する被覆層とを備える。
An optical element according to an embodiment of the present disclosure includes: (a) a substrate in which a step structure having a step surface having a height different from that of one surface is formed on one surface; and (b) a step structure and one surface around the step structure. And a coating layer that continuously covers and transmits or reflects light.
In addition, the optical element array according to the present disclosure includes: (a) a substrate having a plurality of step structures regularly arranged in a two-dimensional array; and (b) a plurality of step structures and the surface of the substrate around them. A portion that covers continuously and covers each step structure includes a coating layer that transmits or reflects light.
Further, the optical element array according to the present disclosure includes (a) a plurality of first lenses arranged regularly in a two-dimensional array, and (b) an annular element having different heights with respect to one surface. A substrate on which a plurality of step structures having a step surface are formed, and a coating layer that continuously covers the step structure and one surface around the step structure and transmits light, and includes a coating layer that passes through the first lens. And a plurality of second lenses for correcting the aberration caused by the first lens.
Further, the lens group according to the present disclosure includes (a) a first lens, and (b) light before passing through the first lens or light after passing through the first lens, and the aberration caused by the first lens is reduced. A second lens to be corrected, the second lens comprising: (c) a substrate having a step structure having an annular step surface having a height different from that of one surface on one surface; A step structure and a coating layer that continuously covers one surface around the step structure and transmits light.
 また、本開示の電子機器は、(a)2次元アレイ状に規則的に配列された複数段の段差構造を複数有する基板、及び複数の段差構造及びそれらの周囲の基板の面を連続して覆い、且つ各段差構造を覆っている部分それぞれがレンズ状である被覆層を有しているマイクロレンズアレイを備える固体撮像装置と、(b)被写体からの像光を固体撮像装置の撮像面上に結像させる光学レンズと、(c)固体撮像装置から出力される信号に信号処理を行う信号処理回路とを備える。
 また、本開示の光学素子の製造方法は、(a)基板に段差構造を形成する工程と、(b)段差構造が形成された基板に塗布液を塗布する工程と、(c)段差構造及びその周囲の基板の面を連続して覆い且つ光を透過又は反射する被覆層が形成されるように、塗布液を乾燥させる工程と、を含む。
 また、本開示の光学素子の製造方法は、(a)基板に2次元アレイ状に規則的に配列された複数の段差構造を形成する工程と、(b)複数の段差構造が形成された基板に塗布液を塗布する工程と、(c)複数の段差構造及びその周囲の基板の面を連続して覆い且つ光を透過する被覆層が形成されるように、塗布液を乾燥させる工程と、を含み、(d)段差構造のそれぞれは、カラーフィルタを透過する前の光又透過した後の光が入射されるレンズを形成するための環状凹部を含み、(e)基板に複数の段差構造を形成する工程では、複数の環状凹部のそれぞれの幅及び直径を、環状凹部に対応するカラーフィルタが透過させる光の波長域に応じて調節する。
Further, the electronic device of the present disclosure includes: (a) a substrate having a plurality of step structures having a plurality of steps regularly arranged in a two-dimensional array; A solid-state imaging device including a microlens array having a covering layer in which each of the portions that cover and cover each step structure has a lens shape; and (b) image light from a subject is captured on an imaging surface of the solid-state imaging device. (C) a signal processing circuit that performs signal processing on a signal output from the solid-state imaging device.
Further, the method of manufacturing an optical element according to the present disclosure includes: (a) a step of forming a step structure on a substrate; (b) a step of applying a coating liquid to a substrate on which the step structure is formed; Drying the coating liquid so that a coating layer that continuously covers the surface of the surrounding substrate and transmits or reflects light is formed.
Further, the method for manufacturing an optical element according to the present disclosure includes: (a) a step of forming a plurality of step structures regularly arranged in a two-dimensional array on a substrate; and (b) a substrate on which a plurality of step structures are formed. (C) drying the coating liquid so as to form a coating layer that continuously covers the plurality of step structures and the surface of the substrate around the step structure and transmits light. (D) each of the step structures includes an annular concave portion for forming a lens into which light before passing through the color filter or light after passing therethrough is incident, and (e) a plurality of step structures on the substrate. In the step of forming, the width and diameter of each of the plurality of annular concave portions are adjusted according to the wavelength range of light transmitted by the color filter corresponding to the annular concave portions.
本開示の第1の実施形態に係る固体撮像装置の全体構成を示す図である。1 is a diagram illustrating an overall configuration of a solid-state imaging device according to a first embodiment of the present disclosure. 図1のA1-A1線で破断した場合の、画素領域の断面構成を示す図である。FIG. 2 is a diagram illustrating a cross-sectional configuration of a pixel region when cut along a line A 1 -A 1 in FIG. 1. ウエハレンズの平面構成を拡大して示す図である。It is a figure which expands and shows the planar structure of a wafer lens. ウエハレンズの平面構成を拡大して示す図である。It is a figure which expands and shows the planar structure of a wafer lens. ウエハレンズの平面構成を拡大して示す図である。It is a figure which expands and shows the planar structure of a wafer lens. ウエハレンズの平面構成を拡大して示す図である。It is a figure which expands and shows the planar structure of a wafer lens. 基板の段面構成を拡大して示す図である。It is a figure which expands and shows the step surface structure of a board | substrate. 段差構造を拡大して示す図である。It is a figure which expands and shows a step structure. 段差構造を拡大して示す図である。It is a figure which expands and shows a step structure. 変形例に係る固体撮像装置における段差構造を拡大して示す図である。It is a figure which expands and shows the step structure in the solid-state imaging device concerning a modification. 変形例に係る固体撮像装置における段差構造を拡大して示す図である。It is a figure which expands and shows the step structure in the solid-state imaging device concerning a modification. 段差構造を拡大して示す図である。It is a figure which expands and shows a step structure. 段差構造を拡大して示す図である。It is a figure which expands and shows a step structure. 段差構造を拡大して示す図である。It is a figure which expands and shows a step structure. 段差構造を拡大して示す図である。It is a figure which expands and shows a step structure. 段差構造を拡大して示す図である。It is a figure which expands and shows a step structure. 段差構造を拡大して示す図であり、段差面が同心の円形状である段差構造の側面図である。It is a figure which expands and shows a step structure, and is a side view of the step structure whose step surface is a concentric circular shape. 段差構造を拡大して示す図であり、図8Aの段差構造の平面図である。It is a figure which expands and shows a step structure, and is a top view of the step structure of FIG. 8A. 段差構造を拡大して示す図であり、段差面が同心の矩形状である段差構造の側面図である。It is a figure which expands and shows a step structure, and is a side view of the step structure which a step surface is a concentric rectangular shape. 段差構造を拡大して示す図であり、図8Cの段差構造の平面図である。It is a figure which expands and shows a step structure, and is a top view of the step structure of FIG. 8C. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図9BのA2-A2線で破断した場合の光学素子の断面図である。FIG. 10C is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element when cut along line A 2 -A 2 in FIG. 9B. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図9Aの光学素子の平面図である。FIG. 9B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 9A. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図10BのA3-A3線で破断した場合の光学素子の断面図である。FIG. 10B is a diagram illustrating the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element when cut along line A 3 -A 3 in FIG. 10B. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図10Aの光学素子の平面図である。FIG. 10C is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 10A. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図11BのA4-A4線で破断した場合の光学素子の断面図である。FIG. 12B is a diagram illustrating the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element when cut along line A 4 -A 4 in FIG. 11B. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図11Aの光学素子の平面図である。FIG. 11B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 11A. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図12BのA5-A5線で破断した場合の光学素子の断面図である。FIG. 13 is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element when cut along line A 5 -A 5 in FIG. 12B. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図12Aの光学素子の平面図である。FIG. 12B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 12A. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図13BのA6-A6線で破断した場合の光学素子の断面図である。FIG. 14B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, which is a cross-sectional view of the optical element taken along line A 6 -A 6 in FIG. 13B. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図13Aの光学素子の平面図である。FIG. 13C is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 13A. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図14BのA7-A7線で破断した場合の光学素子の断面図である。FIG. 15B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element taken along line A 7 -A 7 in FIG. 14B. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図14Aの光学素子の平面図である。FIG. 14C is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 14A. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図15BのA8-A8線で破断した場合の光学素子の断面図である。FIG. 15B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element taken along line A 8 -A 8 in FIG. 15B. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図15Aの光学素子の平面図である。FIG. 15C is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 15A. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図16BのA9-A9線で破断した場合の光学素子の断面図である。FIG. 17B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, which is a cross-sectional view of the optical element taken along line A 9 -A 9 in FIG. 16B. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図16Aの光学素子の平面図である。FIG. 16B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 16A. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図17BのA10-A10線で破断した場合の光学素子の断面図である。FIG. 17B is a diagram illustrating the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a cross-sectional view of the optical element when cut along a line A 10 -A 10 in FIG. 17B. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図17Aの光学素子の平面図である。FIG. 17C is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 17A. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図18BのA11-A11線で破断した場合の光学素子の断面図である。FIG. 19B is a view showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, which is a cross-sectional view of the optical element taken along line A 11 -A 11 in FIG. 18B. 第1の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図18Aの光学素子の平面図である。FIG. 18B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the first embodiment, and is a plan view of the optical element in FIG. 18A. 変形例に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図19BのA12-A12線で破断した場合の光学素子の断面図である。FIG. 19B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the modification, and is a cross-sectional view of the optical element taken along line A 12 -A 12 of FIG. 19B. 変形例に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図19Aの光学素子の平面図である。FIG. 19B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the modification, and is a plan view of the optical element in FIG. 本開示の第2の実施形態に係る固体撮像装置におけるウエハレンズの平面構成を拡大して示す図である。FIG. 7 is an enlarged view illustrating a planar configuration of a wafer lens in a solid-state imaging device according to a second embodiment of the present disclosure. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図21BのA13-A13線で破断した場合の光学素子の断面図である。FIG. 21B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, which is a cross-sectional view of the optical element taken along line A 13 -A 13 of FIG. 21B. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図21Aの光学素子の平面図である。FIG. 21B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 21A. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図22BのA14-A14線で破断した場合の光学素子の断面図である。It is a diagram showing the flow of a manufacturing process of the optical element in the solid-state imaging device according to a second embodiment, a cross-sectional view of an optical element in the case of breaks at A 14 -A 14 line in FIG 22B. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図22Aの光学素子の平面図である。FIG. 22C is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 22A. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図23BのA15-A15線で破断した場合の光学素子の断面図である。FIG. 24 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, which is a cross-sectional view of the optical element taken along line A 15 -A 15 in FIG. 23B. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図23Aの光学素子の平面図である。FIG. 23C is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 23A. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図24BのA16-A16線で破断した場合の光学素子の断面図である。FIG. 25 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, which is a cross-sectional view of the optical element taken along line A 16 -A 16 in FIG. 24B. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図24Aの光学素子の平面図である。FIG. 24B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 24A. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図25BのA17-A17線で破断した場合の光学素子の断面図である。FIG. 26 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a cross-sectional view of the optical element taken along line A 17 -A 17 in FIG. 25B. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図25Aの光学素子の平面図である。FIG. 25C is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 25A. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図26BのA18-A18線で破断した場合の光学素子の断面図である。FIG. 27 is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a cross-sectional view of the optical element when cut along line A 18 -A 18 in FIG. 26B. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図26Aの光学素子の平面図である。FIG. 26B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 26A. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図27BのA19-A19線で破断した場合の光学素子の断面図である。FIG. 28 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and a cross-sectional view of the optical element taken along line A 19 -A 19 in FIG. 27B. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図27Aの光学素子の平面図である。FIG. 27B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 27A. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図28BのA20-A20線で破断した場合の光学素子の断面図である。FIG. 29 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, which is a cross-sectional view of the optical element taken along line A 20 -A 20 of FIG. 28B. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図28Bの光学素子の平面図である。FIG. 29 is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 28B. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図29BのA21-A21線で破断した場合の光学素子の断面図である。FIG. 29 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and a cross-sectional view of the optical element taken along line A 21 -A 21 of FIG. 29B. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図29Aの光学素子の平面図である。FIG. 29B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 29A. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図30BのA22-A22線で破断した場合の光学素子の断面図である。FIG. 31B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a cross-sectional view of the optical element taken along line A 22 -A 22 of FIG. 30B. 第2の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図30Aの光学素子の平面図である。FIG. 30B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the second embodiment, and is a plan view of the optical element in FIG. 30A. 本開示の第3の実施形態に係る固体撮像装置におけるウエハレンズの平面構成を拡大して示す図である。FIG. 13 is an enlarged view illustrating a planar configuration of a wafer lens in a solid-state imaging device according to a third embodiment of the present disclosure. 赤色の波長の光を透過させるカラーフィルタに対応する画素に配置された補正レンズによる光の集光状態を示す図である。FIG. 3 is a diagram illustrating a light condensing state of a correction lens arranged in a pixel corresponding to a color filter that transmits red wavelength light. 緑色の波長の光を透過させるカラーフィルタを有する画素に配置された補正レンズによる光の集光状態を示す図である。FIG. 3 is a diagram illustrating a light condensing state of a correction lens arranged in a pixel having a color filter that transmits light of a green wavelength. 青色の波長の光を透過させるカラーフィルタを有する画素に配置された補正レンズによる光の集光状態を示す図である。FIG. 3 is a diagram illustrating a light condensing state of a correction lens disposed in a pixel having a color filter that transmits light of a blue wavelength. 赤色の波長の光を透過させるカラーフィルタを有する画素に配置された補正レンズを図33BのA23-A23線で破断した場合の断面図である。FIG. 34 is a cross-sectional view of a case where a correction lens arranged in a pixel having a color filter that transmits red wavelength light is cut along a line A 23 -A 23 in FIG. 33B. 図33Aの赤色の波長の光を透過させるカラーフィルタを有する画素に配置された補正レンズの平面図である。FIG. 33B is a plan view of a correction lens arranged in a pixel having a color filter transmitting red light of FIG. 33A. 緑色の波長の光を透過させるカラーフィルタを有する画素に配置された補正レンズを図33BのA24-A24線で破断した場合の断面図である。FIG. 34B is a cross-sectional view of the case where the correction lens arranged in the pixel having the color filter transmitting the light of the green wavelength is cut along line A 24 -A 24 in FIG. 33B. 図33Aの緑色の波長の光を透過させるカラーフィルタを有する画素に配置された補正レンズの平面図である。FIG. 33B is a plan view of a correction lens arranged in a pixel having a color filter that transmits light of a green wavelength in FIG. 33A. 青色の波長の光を透過させるカラーフィルタを有する画素に配置された補正レンズを図35BのA25-A25線で破断した場合の断面図である。FIG. 35B is a cross-sectional view of the case where the correction lens arranged in the pixel having the color filter transmitting the light of the blue wavelength is cut along the line A 25 -A 25 in FIG. 35B. 図35Aの青色の波長の光を透過させるカラーフィルタを有する画素に配置された補正レンズの平面図である。FIG. 35B is a plan view of a correction lens arranged in a pixel having a color filter that transmits light of a blue wavelength in FIG. 35A. 基板の段面構成を拡大して示す図である。It is a figure which expands and shows the step surface structure of a board | substrate. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図37BのA26-A26線で破断した場合の光学素子の断面図である。FIG. 38 is a cross-sectional view of the optical element in a solid-state imaging device according to the third embodiment, showing a flow of a manufacturing process thereof, taken along line A 26 -A 26 in FIG. 37B. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図37Aの光学素子の平面図である。FIG. 37B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 37A. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図38BのA27-A27線で破断した場合の光学素子の断面図である。FIG. 39 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, which is a cross-sectional view of the optical element taken along line A 27 -A 27 in FIG. 38B. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図38Aの光学素子の平面図である。FIG. 39A is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 38A. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図39BのA28-A28線で破断した場合の光学素子の断面図である。FIG. 40 is a cross-sectional view of the optical element in the solid-state imaging device according to the third embodiment, showing the flow of the manufacturing process thereof, which is cut along the line A 28 -A 28 in FIG. 39B. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図39Aの光学素子の平面図である。FIG. 39A is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 39A. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図40BのA29-A29線で破断した場合の光学素子の断面図である。FIG. 41 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, which is a cross-sectional view of the optical element taken along line A 29 -A 29 in FIG. 40B. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図40Aの光学素子の平面図である。FIG. 40B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and a plan view of the optical element in FIG. 40A. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図41BのA30-A30線で破断した場合の光学素子の断面図である。FIG. 42B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, which is a cross-sectional view of the optical element taken along line A 30 -A 30 of FIG. 41B. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図41Aの光学素子の平面図である。FIG. 41B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 41A. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図42BのA31-A31線で破断した場合の光学素子の断面図である。FIG. 43 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, which is a cross-sectional view of the optical element taken along the line A 31 -A 31 in FIG. 42B. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図42Aの光学素子の平面図である。FIG. 42B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 42A. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図43BのA32-A32線で破断した場合の光学素子の断面図である。FIG. 43 is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, which is a cross-sectional view of the optical element taken along the line A 32 -A 32 in FIG. 43B. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図43Aの光学素子の平面図である。FIG. 43B is a diagram illustrating a flow of a manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 43A. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図44BのA33-A33線で破断した場合の光学素子の断面図である。FIG. 45A is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a cross-sectional view of the optical element taken along line A 33 -A 33 of FIG. 44B. 第3の実施形態に係る固体撮像装置における光学素子の製造工程の流れを示す図であり、図44Aの光学素子の平面図である。FIG. 45B is a diagram showing the flow of the manufacturing process of the optical element in the solid-state imaging device according to the third embodiment, and is a plan view of the optical element in FIG. 44A. 変形例に係る固体撮像装置の画素領域の断面構成を示す図である。FIG. 9 is a diagram illustrating a cross-sectional configuration of a pixel region of a solid-state imaging device according to a modification. 変形例に係る光学素子のリフレクタの断面構成を示す図である。It is a figure showing the section composition of the reflector of the optical element concerning a modification. 変形例に係る固体撮像装置の補正レンズを図47BのA34-A34線で破断した場合の断面図である。The correction lens of the solid-state imaging device according to the modification is a sectional view taken broken at A 34 -A 34 line in FIG 47B. 図47Aの補正レンズの平面図である。FIG. 47B is a plan view of the correction lens of FIG. 47A. 変形例に係る固体撮像装置のウエハレンズを図48BのA35-A35線で破断した場合の断面図である。The wafer lens of the solid-state imaging device according to the modification is a sectional view taken broken at A 35 -A 35 line in FIG 48B. 図48Aの赤色の波長の光を透過させるカラーフィルタに対応する画素に配置されたレンズの平面図である。FIG. 48B is a plan view of a lens arranged in a pixel corresponding to a color filter that transmits light of a red wavelength in FIG. 48A. 変形例に係る固体撮像装置のウエハレンズを図48BのA36-A36線で破断した場合の断面図である。The wafer lens of the solid-state imaging device according to the modification is a sectional view taken broken at A 36 -A 36 line in FIG 48B. 図48Aの赤色の波長の光を透過させるカラーフィルタに対応する画素に配置されたレンズの平面図である。FIG. 48B is a plan view of a lens arranged in a pixel corresponding to a color filter that transmits light of a red wavelength in FIG. 48A. 赤色の波長の光を透過させるカラーフィルタに対応する画素に構成されたレンズ群による光の集光状態を示す図である。FIG. 3 is a diagram illustrating a light condensing state by a lens group configured in a pixel corresponding to a color filter that transmits light of a red wavelength. 緑色の波長の光を透過させるカラーフィルタに対応する画素に構成されたレンズ群による光の集光状態を示す図である。FIG. 4 is a diagram illustrating a light condensing state by a lens group configured in a pixel corresponding to a color filter that transmits light of a green wavelength. 青色の波長の光を透過させるカラーフィルタに対応する画素に構成されたレンズ群による光の集光状態を示す図である。FIG. 4 is a diagram illustrating a light condensing state by a lens group configured in a pixel corresponding to a color filter that transmits light of a blue wavelength. 赤色の波長の光を透過させるカラーフィルタに対応する画素に構成されたレンズ群による光の集光状態を示す図である。FIG. 3 is a diagram illustrating a light condensing state by a lens group configured in a pixel corresponding to a color filter that transmits light of a red wavelength. 緑色の波長の光を透過させるカラーフィルタに対応する画素に構成されたレンズ群による光の集光状態を示す図である。FIG. 4 is a diagram illustrating a light condensing state by a lens group configured in a pixel corresponding to a color filter that transmits light of a green wavelength. 青色の波長の光を透過させるカラーフィルタに対応する画素に構成されたレンズ群による光の集光状態を示す図である。FIG. 4 is a diagram illustrating a light condensing state by a lens group configured in a pixel corresponding to a color filter that transmits light of a blue wavelength. 本開示の第4の実施形態に係る電子機器の概略構成図である。FIG. 13 is a schematic configuration diagram of an electronic device according to a fourth embodiment of the present disclosure. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram showing an example of a schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part. 内視鏡手術システムの概略的な構成の一例を示す図である。It is a figure showing an example of the schematic structure of an endoscope operation system. カメラヘッド及びCCUの機能構成の一例を示すブロック図である。FIG. 3 is a block diagram illustrating an example of a functional configuration of a camera head and a CCU.
 以下に、本開示の実施形態に係る光学素子、光学素子アレイ、レンズ群、電子機器、及び光学素子の製造方法の一例を、図1~図56を参照しながら説明する。本開示の実施形態は以下の順序で説明する。なお、本開示は以下の例に限定されるものではない。また、本明細書に記載された効果は例示であって限定されるものではなく、また他の効果があってもよい。 Hereinafter, an example of an optical element, an optical element array, a lens group, an electronic device, and a method of manufacturing an optical element according to an embodiment of the present disclosure will be described with reference to FIGS. Embodiments of the present disclosure will be described in the following order. Note that the present disclosure is not limited to the following examples. In addition, the effects described in this specification are illustrative and not limited, and other effects may be provided.
1.第1の実施形態:固体撮像装置
 1-1 固体撮像装置の全体の構成
 1-2 要部の構成
 1-3 ウエハレンズの製造方法
2.第2の実施形態:固体撮像装置
 2-1 要部の構成
 2-2 ウエハレンズの製造方法
3.第3の実施形態:固体撮像装置
 3-1 要部の構成
 3-2 補正レンズの製造方法
 3-3 変形例
4.第4の実施形態:電子機器
5.移動体への応用例
6.内視鏡手術システムへの応用例
1. 1. First embodiment: solid-state imaging device 1-1 Overall configuration of solid-state imaging device 1-2 Configuration of main part 1-3 Manufacturing method of wafer lens 2. Second embodiment: solid-state imaging device 2-1 Configuration of main part 2-2 Manufacturing method of wafer lens Third embodiment: solid-state imaging device 3-1 Configuration of main part 3-2 Manufacturing method of correction lens 3-3 Modified example 4. 4. Fourth embodiment: electronic device Application example to mobile object 6. Example of application to endoscopic surgery system
〈1.第1の実施形態〉
[1-1 固体撮像装置の全体の構成]
 本開示の第1の実施形態に係る固体撮像装置について説明する。図1は、本開示の第1の実施形態に係る固体撮像装置の全体を示す概略構成図である。
 図1の固体撮像装置1は、裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。図52に示すように、固体撮像装置1(101)は、光学レンズ102を介して被写体からの像光(入射光106)を取り込み、撮像面上に結像された入射光106の光量を画素単位で電気信号に変換して画素信号として出力する。
 図1に示すように、第1の実施形態の固体撮像装置1は、基板2と、画素領域3と、垂直駆動回路4と、カラム信号処理回路5と、水平駆動回路6と、出力回路7と、制御回路8とを備えている。
<1. First Embodiment>
[1-1 Overall Configuration of Solid-State Imaging Device]
A solid-state imaging device according to a first embodiment of the present disclosure will be described. FIG. 1 is a schematic configuration diagram illustrating the entire solid-state imaging device according to the first embodiment of the present disclosure.
The solid-state imaging device 1 in FIG. 1 is a back-illuminated CMOS (Complementary Metal Oxide Semiconductor) image sensor. As shown in FIG. 52, the solid-state imaging device 1 (101) captures image light (incident light 106) from a subject via an optical lens 102, and determines the amount of incident light 106 imaged on the imaging surface as a pixel. It is converted into an electric signal in units and output as a pixel signal.
As shown in FIG. 1, the solid-state imaging device 1 according to the first embodiment includes a substrate 2, a pixel region 3, a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, and an output circuit 7. And a control circuit 8.
 画素領域3は、基板2上に、2次元アレイ状に規則的に配列された複数の画素9を有している。画素9は、図2に示した光電変換部23と、複数の画素トランジスタ(不図示)とを有している。複数の画素トランジスタとしては、例えば、転送トランジスタ、リセットトランジスタ、選択トランジスタ、アンプトランジスタの4つのトランジスタを採用できる。また、例えば、選択トランジスタを除いた3つのトランジスタを採用してもよい。 The pixel region 3 has a plurality of pixels 9 regularly arranged on the substrate 2 in a two-dimensional array. The pixel 9 includes the photoelectric conversion unit 23 illustrated in FIG. 2 and a plurality of pixel transistors (not illustrated). As the plurality of pixel transistors, for example, four transistors of a transfer transistor, a reset transistor, a selection transistor, and an amplifier transistor can be adopted. Further, for example, three transistors excluding the selection transistor may be employed.
 垂直駆動回路4は、例えば、シフトレジスタによって構成され、所望の画素駆動配線10を選択し、選択した画素駆動配線10に画素9を駆動するためのパルスを供給し、各画素9を行単位で駆動する。即ち、垂直駆動回路4は、画素領域3の各画素9を行単位で順次垂直方向に選択走査し、各画素9の光電変換部23において受光量に応じて生成した信号電荷に基づく画素信号を、垂直信号線11を通してカラム信号処理回路5に供給する。 The vertical drive circuit 4 is configured by, for example, a shift register, selects a desired pixel drive line 10, supplies a pulse for driving the pixel 9 to the selected pixel drive line 10, and controls each pixel 9 in a row unit. Drive. That is, the vertical drive circuit 4 selectively scans each pixel 9 in the pixel region 3 sequentially in the vertical direction on a row-by-row basis, and generates a pixel signal based on the signal charge generated in the photoelectric conversion unit 23 of each pixel 9 according to the amount of received light. , To the column signal processing circuit 5 through the vertical signal line 11.
 カラム信号処理回路5は、例えば、画素9の列毎に配置されており、1行分の画素9から出力される信号に対して画素列毎にノイズ除去等の信号処理を行う。例えばカラム信号処理回路5は画素固有の固定パターンノイズを除去するためのCDS(Correlated Double Sampling:相関2重サンプリング)及びAD(Analog Digital)変換等の信号処理を行う。
 水平駆動回路6は、例えば、シフトレジスタによって構成され、水平走査パルスをカラム信号処理回路5に順次出して、カラム信号処理回路5の各々を順番に選択し、カラム信号処理回路5の各々から、信号処理が行われた画素信号を水平信号線12に出力させる。
The column signal processing circuit 5 is arranged, for example, for each column of the pixels 9 and performs signal processing such as noise removal on the signals output from the pixels 9 for one row for each pixel column. For example, the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) and AD (Analog Digital) conversion for removing pixel-specific fixed pattern noise.
The horizontal driving circuit 6 is configured by, for example, a shift register, sequentially outputs horizontal scanning pulses to the column signal processing circuit 5, selects each of the column signal processing circuits 5 in order, and, from each of the column signal processing circuits 5, The pixel signal subjected to the signal processing is output to the horizontal signal line 12.
 出力回路7は、カラム信号処理回路5の各々から水平信号線12を通して、順次に供給される画素信号に対し信号処理を行って出力する。信号処理としては、例えば、バファリング、黒レベル調整、列ばらつき補正、各種デジタル信号処理等を用いることができる。
 制御回路8は、垂直同期信号、水平同期信号、及びマスタクロック信号に基づいて、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6等の動作の基準となるクロック信号や制御信号を生成する。そして、制御回路8は、生成したクロック信号や制御信号を、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6等に出力する。
The output circuit 7 performs signal processing on pixel signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 12 and outputs the processed signal. As the signal processing, for example, buffering, black level adjustment, column variation correction, various digital signal processing, and the like can be used.
The control circuit 8 generates a clock signal and a control signal, which serve as references for the operations of the vertical drive circuit 4, the column signal processing circuit 5, and the horizontal drive circuit 6, based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock signal. Generate. Then, the control circuit 8 outputs the generated clock signal and control signal to the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like.
[1-2 要部の構成]
 次に、図1の固体撮像装置1の詳細構造について説明する。図2は、第1の実施形態の固体撮像装置1の画素領域3の断面構成を示す図である。図2では、固体撮像装置1として、裏面照射型のCMOSイメージセンサ(CMOS型固体撮像装置)を用いている。
[1-2 Configuration of Main Part]
Next, a detailed structure of the solid-state imaging device 1 of FIG. 1 will be described. FIG. 2 is a diagram illustrating a cross-sectional configuration of the pixel region 3 of the solid-state imaging device 1 according to the first embodiment. In FIG. 2, a back-illuminated CMOS image sensor (CMOS solid-state imaging device) is used as the solid-state imaging device 1.
 図2に示すように、第1の実施形態の固体撮像装置1は、基板2、固定電荷膜13、絶縁膜14、遮光膜15及び平坦化膜16がこの順に積層されてなる受光層17を備えている。また、受光層17の平坦化膜16側の面(以下、「裏面S1」とも呼ぶ)には、カラーフィルタ18及びウエハレンズ19(光学素子)がこの順に積層されてなる集光層20が形成されている。ここで、ウエハレンズ19は、オンチップレンズ、マイクロレンズとも呼ばれるものである。さらに、受光層17の基板2側の面(以下「表面S2」とも呼ぶ)には、配線層21及び支持基板22がこの順に積層されている。なお、受光層17の裏面S1と平坦化膜16の裏面とは同一の面であるため、以下の記載では、平坦化膜16の裏面についても「裏面S1」と表す。また、受光層17の表面S2と基板2の表面とは同一の面であるため、以下の記載では、基板2の表面についても「表面S2」と表す。 As shown in FIG. 2, the solid-state imaging device 1 according to the first embodiment includes a light-receiving layer 17 in which a substrate 2, a fixed charge film 13, an insulating film 14, a light-shielding film 15, and a planarizing film 16 are stacked in this order. Have. On the surface of the light receiving layer 17 on the side of the flattening film 16 (hereinafter also referred to as “back surface S1”), a light collecting layer 20 formed by laminating a color filter 18 and a wafer lens 19 (optical element) in this order is formed. Have been. Here, the wafer lens 19 is also called an on-chip lens or a micro lens. Further, a wiring layer 21 and a support substrate 22 are stacked in this order on the surface of the light receiving layer 17 on the substrate 2 side (hereinafter also referred to as “surface S2”). Since the back surface S1 of the light receiving layer 17 and the back surface of the flattening film 16 are the same surface, the back surface of the flattening film 16 is also referred to as “back surface S1” in the following description. Further, since the surface S2 of the light receiving layer 17 and the surface of the substrate 2 are the same surface, in the following description, the surface of the substrate 2 is also referred to as “surface S2”.
 基板2は、例えば、シリコン(Si)からなる半導体基板によって構成され、図1に示すように、画素領域3を形成している。画素領域3には、図2に示すように基板2に形成された複数の光電変換部23、つまり、基板2に埋設された複数の光電変換部23を含んで構成される複数の画素9が、二次元アレイ状に配置されている。光電変換部23では、入射された光の光量に応じた信号電荷が生成され、生成された信号電荷が蓄積される。 The substrate 2 is formed of, for example, a semiconductor substrate made of silicon (Si), and forms a pixel region 3 as shown in FIG. As shown in FIG. 2, the pixel region 3 includes a plurality of photoelectric conversion units 23 formed on the substrate 2, that is, a plurality of pixels 9 including the plurality of photoelectric conversion units 23 embedded in the substrate 2. , Are arranged in a two-dimensional array. In the photoelectric conversion unit 23, signal charges corresponding to the amount of incident light are generated, and the generated signal charges are accumulated.
 固定電荷膜13は、基板2の裏面S3側全体(受光面側全体)を連続的に被覆している。また、絶縁膜14は、固定電荷膜13の裏面S4側全体(受光面側全体)を連続的に被覆している。また、遮光膜15は、絶縁膜14の裏面S5側の一部(受光面側の一部)に、複数の光電変換部23のそれぞれの受光面を開口するように、格子状に形成されている。さらに、平坦化膜16は、受光層17の裏面S1が凹凸がない平坦面となるように、遮光膜15を含む絶縁膜14の裏面S5側全体(受光面側全体)を連続的に被覆している。
 カラーフィルタ18は、平坦化膜16の裏面S1側(受光面側)に、各画素9に対応して形成されている。これにより、カラーフィルタ18は、2次元アレイ状に規則的に配列されてなるカラーフィルタアレイを形成している。カラーフィルタ18のそれぞれは、赤、緑、青等の特定の波長を透過するように形成されている。そして、カラーフィルタ18は、特定の波長の光を透過させ、透過させた光を基板2の光電変換部23に入射させる。
The fixed charge film 13 continuously covers the entire rear surface S3 side (entire light receiving surface side) of the substrate 2. The insulating film 14 continuously covers the entire back surface S4 side (the entire light receiving surface side) of the fixed charge film 13. The light-shielding film 15 is formed in a lattice shape on a part of the insulating film 14 on the back surface S5 side (a part on the light-receiving surface side) so as to open each light-receiving surface of the plurality of photoelectric conversion units 23. I have. Further, the flattening film 16 continuously covers the entire back surface S5 side (the entire light receiving surface side) of the insulating film 14 including the light shielding film 15 so that the back surface S1 of the light receiving layer 17 becomes a flat surface without unevenness. ing.
The color filters 18 are formed on the back surface S1 side (light receiving surface side) of the flattening film 16 so as to correspond to each pixel 9. Thus, the color filters 18 form a color filter array regularly arranged in a two-dimensional array. Each of the color filters 18 is formed so as to transmit a specific wavelength such as red, green, and blue. Then, the color filter 18 transmits light of a specific wavelength and makes the transmitted light incident on the photoelectric conversion unit 23 of the substrate 2.
 ウエハレンズ19は、カラーフィルタ18の裏面S6側(受光面側)に、各画素9に対応して形成されている。これにより、ウエハレンズ19は、2次元アレイ状に規則的に配列されてなるマイクロレンズアレイ24(光学素子アレイ)を形成している。ウエハレンズ19は、図52に示した被写体からの像光(入射光106)を集光し、集光した入射光106を、カラーフィルタ18を透過させてから、光電変換部23に入射させる。
 なお、第1の実施形態では、図3Aに示すように、一つのウエハレンズ19を一つの画素9に対応させて形成する例を示したが、他の構成を採用することもできる。例えば、図3B、図3C、図3Dに示すように、一つのウエハレンズ19を2×1画素、1×2画素、2×2画素等の、複数画素9に対応させて形成する構成としてもよい。
The wafer lens 19 is formed on the back surface S6 side (light receiving surface side) of the color filter 18 so as to correspond to each pixel 9. Thus, the wafer lenses 19 form a microlens array 24 (optical element array) regularly arranged in a two-dimensional array. The wafer lens 19 condenses the image light (incident light 106) from the subject shown in FIG. 52, and transmits the condensed incident light 106 to the photoelectric conversion unit 23 after passing through the color filter 18.
In the first embodiment, as shown in FIG. 3A, an example is shown in which one wafer lens 19 is formed so as to correspond to one pixel 9, but another configuration can be adopted. For example, as shown in FIGS. 3B, 3C, and 3D, a configuration in which one wafer lens 19 is formed so as to correspond to a plurality of pixels 9 such as 2 × 1 pixel, 1 × 2 pixel, and 2 × 2 pixel. Good.
 図4に示すように、ウエハレンズ19は、基板25と、被覆層26とを備えている。
 基板25は、カラーフィルタ18の裏面S6側(受光面側)に形成されており、基板25の裏面S7側(受光面側)に形成された凸状部である複数の段差構造27を含んで構成されている。段差構造27のそれぞれは、各画素9に対応して形成され、一段以上の段差面28を有している。段差面28としては、例えば、基板25の裏面S7に対し、高さが異なる面を用いることができる。例えば、基板25の裏面S7と平行な面を採用できる。図4では、段差構造27の段差面28の段数が、一段である場合を例示している。
As shown in FIG. 4, the wafer lens 19 includes a substrate 25 and a coating layer 26.
The substrate 25 is formed on the back surface S6 side (light receiving surface side) of the color filter 18 and includes a plurality of step structures 27 which are convex portions formed on the back surface S7 side (light receiving surface side) of the substrate 25. It is configured. Each of the step structures 27 is formed corresponding to each pixel 9 and has one or more step surfaces 28. As the step surface 28, for example, a surface having a different height from the back surface S7 of the substrate 25 can be used. For example, a surface parallel to the back surface S7 of the substrate 25 can be adopted. FIG. 4 illustrates a case where the number of steps on the step surface 28 of the step structure 27 is one.
 段差構造27の段差面28の段数としては、図5A及び図5Bに示すように、二段以上としてもよい。二段以上の段差面28を有する場合、段差構造27としては、側面29、30として、基板25の裏面S7(受光面側の面)に対して垂直な垂直面、並びに裏面S7の法線方向に対して傾斜した傾斜面及び曲面の少なくとも何れかを用いることができる。側面29は、基板25の裏面S7と段差面28とを連続させる面である。また、側面30は、2つの段差面28、28を連続させる面である。図5Aでは、段差構造27の段差面28の段数が二段、側面29が垂直面、側面30が曲面である場合を例示している。また、図5Bでは、段差構造27の段差面28の段数が四段、側面29が垂直面、最下部の側面30が垂直面、中間部の側面30が曲面、最上部の側面30が曲面である場合を例示している。段差面28の段数を二段以上とすることで、被覆層26の上面を滑らかな曲面状に形成することができ、大きな曲率を持ったウエハレンズ19を容易に形成できる。 The number of steps on the step surface 28 of the step structure 27 may be two or more as shown in FIGS. 5A and 5B. When there are two or more step surfaces 28, the step structure 27 includes side surfaces 29 and 30, a vertical surface perpendicular to the back surface S7 (surface on the light receiving surface side) of the substrate 25, and a normal direction of the back surface S7. At least one of an inclined surface and a curved surface inclined with respect to. The side surface 29 is a surface on which the back surface S7 of the substrate 25 and the step surface 28 are continuous. The side surface 30 is a surface on which the two step surfaces 28 are continuous. FIG. 5A illustrates a case where the number of steps of the step surface 28 of the step structure 27 is two, the side surface 29 is a vertical surface, and the side surface 30 is a curved surface. In FIG. 5B, the number of steps of the step surface 28 of the step structure 27 is four, the side surface 29 is a vertical surface, the lowermost side surface 30 is a vertical surface, the middle side surface 30 is a curved surface, and the uppermost side surface 30 is a curved surface. An example is shown. By setting the number of steps of the step surface 28 to two or more, the upper surface of the coating layer 26 can be formed into a smooth curved surface, and the wafer lens 19 having a large curvature can be easily formed.
 なお、段差構造27の段差面28の段数が一段であったとしても、図6A及び図6Bに示すように、段差構造27の側面29として、基板25の裏面S7(受光面側の面)の法線方向に対して傾斜した傾斜面や曲面を用いることで、被覆層26の上面を滑らかな曲面状に形成することができ、大きな曲率を持ったウエハレンズ19を形成することができる。図6Aでは、段差面28の段数が一段、側面29が傾斜面である場合を例示している。また図6Bでは、段差面28の段数が一段、側面29が曲面である場合を例示している。
 傾斜面の傾斜角は、基板25の裏面S7(受光面側の面)の法線方向に対して、0度以上60度以下の範囲が好ましい。特に15度以上60度以下の範囲がより好ましい。また、図4に示した段差構造27の幅Wと高さHの比率は1:10~10:1の範囲が好ましい。特に1:5~5:1の範囲がより好ましい。幅Wとしては、例えば、平面視において、段差構造27が円形状である場合には、段差構造27の底面の直径を採用できる。また、段差構造27が矩形状である場合には、段差構造27の底面の短辺幅を採用できる。また段差構造27の幅Wは、段差構造27のピッチp以下(例えば50μm以下)とする。
6A and 6B, even if the number of steps on the step surface 28 of the step structure 27 is one, as the side surface 29 of the step structure 27, the back surface S7 (the surface on the light receiving surface side) of the substrate 25 is used. By using an inclined surface or a curved surface inclined with respect to the normal direction, the upper surface of the coating layer 26 can be formed into a smooth curved surface, and the wafer lens 19 having a large curvature can be formed. FIG. 6A illustrates a case where the number of steps of the step surface 28 is one and the side surface 29 is an inclined surface. FIG. 6B illustrates a case where the number of steps of the step surface 28 is one and the side surface 29 is a curved surface.
The angle of inclination of the inclined surface is preferably in the range of 0 degree or more and 60 degrees or less with respect to the normal direction of the back surface S7 (the light receiving surface side) of the substrate 25. In particular, the range of 15 degrees or more and 60 degrees or less is more preferable. The ratio of the width W to the height H of the step structure 27 shown in FIG. 4 is preferably in the range of 1:10 to 10: 1. In particular, the range of 1: 5 to 5: 1 is more preferable. As the width W, for example, when the step structure 27 is circular in plan view, the diameter of the bottom surface of the step structure 27 can be adopted. When the step structure 27 has a rectangular shape, the short side width of the bottom surface of the step structure 27 can be adopted. The width W of the step structure 27 is set to be equal to or less than the pitch p of the step structure 27 (for example, 50 μm or less).
 また、段差構造27の平面形状は、図7A、図7B、図7C、図7D及び図7Eに示すように、各画素9の形状や、1つのウエハレンズ19を複数画素9に対応させた場合における複数画素9のレイアウト等に応じて、円形状、多角形状、楕円形状等を用いることができる。多角形状としては、例えば、角部が角ばっているものだけでなく、角部が丸まっているものであってもよい。図7Aでは、段差構造27の平面形状が円形状である場合を例示している。また、図7Bでは、段差構造27の平面形状が三角形状である場合を例示している。さらに、図7Cでは、段差構造27の平面形状が矩形状である場合を例示している。また、図7Dでは、段差構造27の平面形状が六角形状である場合を例示している。さらに、図7Eでは、段差構造27の平面形状が楕円形状である場合を例示している。ここで、段差構造27の平面形状として、楕円形状を用いる場合、図3Bに示した楕円形状の長辺Lと短辺Sとの比率(アスペクト比)は、1以上5以下とすることが好ましい。 7A, FIG. 7B, FIG. 7C, FIG. 7D, and FIG. 7E. A circular shape, a polygonal shape, an elliptical shape, or the like can be used according to the layout of the plurality of pixels 9 in. As the polygonal shape, for example, not only those having corners that are rounded, but also those having rounded corners may be used. FIG. 7A illustrates a case where the planar shape of the step structure 27 is a circular shape. FIG. 7B illustrates a case where the planar shape of the step structure 27 is a triangular shape. Further, FIG. 7C illustrates a case where the planar shape of the step structure 27 is rectangular. FIG. 7D illustrates a case where the planar shape of the step structure 27 is a hexagonal shape. Further, FIG. 7E illustrates a case where the planar shape of the step structure 27 is an elliptical shape. Here, when an elliptical shape is used as the planar shape of the step structure 27, the ratio (aspect ratio) between the long side L and the short side S of the elliptical shape shown in FIG. 3B is preferably 1 or more and 5 or less. .
 また、図8A及び図8Cに示すように、段差構造27の段差面28の段数が二段以上である場合には、図8B及び図8Dに示すように、平面視において、各段差面28の外周が互いに離間するように各段差面28を配置するのが好ましい。図8A及び図8Bでは、平面視において、各段差面28の外周が複数の同心円を形成するように各段差面28を配置した場合を例示している。また図8C及び図8Dでは、平面視において、各段差面28の外周が複数の同心の矩形を形成するように各段差面28を配置した場合を例示している。
 なお、図8A~図8Dでは、平面視において、各段差面28の外周が同心となるように各段差面28を配置する例を示したが、各段差面28の外周が互いに離間するように各段差面28が配置されていれば、他の構成を採用してもよい。例えば、平面視において、各段差面28の外周の中心点がずれるように各段差面28を配置する構成としてもよい。
8A and FIG. 8C, when the number of steps of the step surface 28 of the step structure 27 is two or more, as shown in FIG. 8B and FIG. It is preferable to arrange the step surfaces 28 so that the outer circumferences are separated from each other. FIGS. 8A and 8B illustrate a case where the step surfaces 28 are arranged such that the outer periphery of each step surface 28 forms a plurality of concentric circles in plan view. 8C and 8D illustrate a case where the step surfaces 28 are arranged such that the outer periphery of each step surface 28 forms a plurality of concentric rectangles in plan view.
8A to 8D show an example in which the step surfaces 28 are arranged so that the outer peripheries of the step surfaces 28 are concentric in plan view, but the outer peripheries of the step surfaces 28 are separated from each other. As long as each step surface 28 is arranged, another configuration may be adopted. For example, the configuration may be such that the step surfaces 28 are arranged such that the center point of the outer periphery of each step surface 28 is shifted in plan view.
 また、基板25の材料としては、例えば、光を透過するとともに、屈折率が1.5程度のものを用いることができる。例えば、スチレン系樹脂、アクリル系樹脂等の樹脂製レンズの材料として用いられる樹脂や、シリコン酸化物(SiO2)、シリコン窒化物(Si3N4)等の屈折率が1.5に近い無機材料を採用できる。スチレン系樹脂としては、例えば、ポリスチレン、AS樹脂、ABS樹脂を採用できる。また、アクリル系樹脂としては、例えば、ポリ(メタ)アクリロニトリル、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート、ポリアクリルアミドを採用できる。 Further, as a material of the substrate 25, for example, a material that transmits light and has a refractive index of about 1.5 can be used. For example, a resin used as a resin lens material such as a styrene resin or an acrylic resin, or an inorganic material such as silicon oxide (SiO 2 ) or silicon nitride (Si 3 N 4 ) having a refractive index close to 1.5. Materials can be adopted. As the styrene-based resin, for example, polystyrene, AS resin, and ABS resin can be adopted. Further, as the acrylic resin, for example, poly (meth) acrylonitrile, polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate, polyacrylamide can be employed.
 被覆層26は、基板25の裏面S7側(受光面側)に形成されており、段差構造27、及び段差構造27の周囲の基板25の裏面S7(受光面側の面)を連続して被覆している。即ち被覆層26は、裏面S7全体、つまり段差構造27を有する面全体を覆うように構成されている。段差構造27を覆う部分の上面は、凸レンズの曲面状に形成されている。
 このように、第1の実施形態では、段差構造27を有する面全体を被覆層26で覆うとともに、被覆層26のうちの、段差構造27を覆う部分がレンズ状(凸レンズ状)に形成されているため、段差構造27と被覆層26とで凸状のマイクロレンズが形成される。
The coating layer 26 is formed on the back surface S7 side (light receiving surface side) of the substrate 25, and continuously covers the step structure 27 and the back surface S7 (surface on the light receiving surface side) of the substrate 25 around the step structure 27. doing. That is, the coating layer 26 is configured to cover the entire back surface S7, that is, the entire surface having the step structure 27. The upper surface of the portion covering the step structure 27 is formed in a curved shape of a convex lens.
As described above, in the first embodiment, the entire surface having the step structure 27 is covered with the covering layer 26, and the portion of the covering layer 26 covering the step structure 27 is formed in a lens shape (convex lens shape). Therefore, a convex microlens is formed by the step structure 27 and the covering layer 26.
 また、被覆層26の材料としては、例えば、光を透過するとともに、基板25の材料の屈折率との差が、基板25の材料の屈折率の±10%以内であるものを用いることができる。特に、屈折率の差の低減を考慮すると、基板25の材料と同じものを用いるのが好適である。入射光の被覆層26の屈折率と基板25の屈折率との差を小さくすることで、被覆層26と基板25との界面における入射光の散乱や反射を抑制することができる。 Further, as the material of the coating layer 26, for example, a material that transmits light and has a difference from the refractive index of the material of the substrate 25 within ± 10% of the refractive index of the material of the substrate 25 can be used. . In particular, in consideration of the reduction in the difference in the refractive index, it is preferable to use the same material as the material of the substrate 25. By reducing the difference between the refractive index of the coating layer 26 of the incident light and the refractive index of the substrate 25, scattering and reflection of the incident light at the interface between the coating layer 26 and the substrate 25 can be suppressed.
 配線層21は、基板2の表面S2側に形成されており、層間絶縁膜31を介して、複数層(図2では3層)に積層された配線32を含んで構成されている。配線層21に形成された複数層の配線32を介して、各画素9を構成する画素トランジスタが駆動される。
 支持基板22は、配線層21の基板2に面する側とは反対側の面に形成されている。支持基板22は、固体撮像装置1の製造段階において、基板2の強度を確保するための基板である。支持基板22の材料としては、例えば、シリコン(Si)を用いることができる。
The wiring layer 21 is formed on the surface S2 side of the substrate 2 and includes a plurality of wirings (three layers in FIG. 2) of wirings 32 via an interlayer insulating film 31. The pixel transistors constituting each pixel 9 are driven via a plurality of layers of wirings 32 formed in the wiring layer 21.
The support substrate 22 is formed on the surface of the wiring layer 21 opposite to the surface facing the substrate 2. The support substrate 22 is a substrate for ensuring the strength of the substrate 2 at the stage of manufacturing the solid-state imaging device 1. As a material of the support substrate 22, for example, silicon (Si) can be used.
 以上の構成を有する固体撮像装置1では、基板2の裏面側(受光層17の裏面S1側)から光が照射され、照射された光がウエハレンズ19及びカラーフィルタ18を透過し、透過した光が光電変換部23で光電変換されることで、信号電荷が生成される。そして、生成された信号電荷が、基板2の表面S2側に形成された画素トランジスタを介して、配線32で形成された図1に示した垂直信号線11で画素信号として出力される。 In the solid-state imaging device 1 having the above configuration, light is irradiated from the back surface side of the substrate 2 (the back surface S1 side of the light receiving layer 17), and the irradiated light is transmitted through the wafer lens 19 and the color filter 18 and transmitted. Are photoelectrically converted by the photoelectric conversion unit 23, thereby generating signal charges. Then, the generated signal charge is output as a pixel signal on the vertical signal line 11 shown in FIG. 1 formed by the wiring 32 via the pixel transistor formed on the surface S2 side of the substrate 2.
[1-3 ウエハレンズの製造方法]
 次に、第1の実施形態の固体撮像装置1のウエハレンズ19(第1の実施形態の光学素子)の製造方法について説明する。図9A、図9B、図10A、図10B、図11A、図11B、図12A、図12B、図13A、図13B、図14A、図14B、図15A、図15B、図16A、図16B、図17A、図17B、図18A、及び図18Bは、第1の実施形態の光学素子の製造工程を示す平面図及び断面図である。図9A~図18Bでは、基板25の段差構造27の段差面28の段数が三段である場合を例示している。
 まず、図9A及び図9Bに示すように、基板25の裏面S8全体に、フォトレジスト膜33を塗布する。続いて、図10A及び図10Bに示すように、フォトレジスト膜33を露光し、図11A及び図11Bに示すように、フォトレジスト膜33を現像する。
 続いて、図12A及び図12Bに示すように、現像されたフォトレジスト膜33をエッチングマスクとして用いて、基板25の裏面S8をエッチングし、段差構造27の三段目(最上部)の段差面28cを形成する。続いて、図13A及び図13Bに示すように、フォトレジスト膜33をスリミングし、図14A及び図14Bに示すように、スリミングされたフォトレジスト膜33をエッチングマスクとして用いて、三段目の段差面28cをエッチングし、段差構造27の一段目(最下部)の段差面28aを形成する。続いて、スリミングとエッチングとを繰り返し、段差構造27の二段目(中間部)の段差面28bを形成し、三段の段差面28a、28b及び28cを有する段差構造27を形成する。
 続いて、図15A及び図15Bに示すように、基板25の裏面S8からフォトレジスト膜33を除去する。この結果、基板25の裏面S7に、2次元アレイ状に規則的に配列された三段の段差面28a、28b、28cを有する段差構造27が複数形成される。
[1-3 Manufacturing method of wafer lens]
Next, a method of manufacturing the wafer lens 19 (the optical element of the first embodiment) of the solid-state imaging device 1 of the first embodiment will be described. 9A, 9B, 10A, 10B, 11A, 11B, 12A, 12B, 13A, 13B, 14A, 14B, 15A, 15B, 16A, 16B, and 17A. 17B, FIG. 18A, and FIG. 18B are a plan view and a cross-sectional view illustrating a manufacturing process of the optical element of the first embodiment. FIGS. 9A to 18B illustrate a case where the number of steps on the step surface 28 of the step structure 27 of the substrate 25 is three.
First, as shown in FIGS. 9A and 9B, a photoresist film 33 is applied to the entire back surface S8 of the substrate 25. Subsequently, as shown in FIGS. 10A and 10B, the photoresist film 33 is exposed, and as shown in FIGS. 11A and 11B, the photoresist film 33 is developed.
Subsequently, as shown in FIGS. 12A and 12B, the back surface S8 of the substrate 25 is etched using the developed photoresist film 33 as an etching mask, and the third (uppermost) step surface of the step structure 27 is formed. 28c is formed. Subsequently, as shown in FIGS. 13A and 13B, the photoresist film 33 is slimmed, and as shown in FIGS. 14A and 14B, the third step is formed using the slimmed photoresist film 33 as an etching mask. The surface 28c is etched to form the first (lowest) step surface 28a of the step structure 27. Subsequently, slimming and etching are repeated to form a step surface 28b of the second step (intermediate portion) of the step structure 27, and a step structure 27 having three step surfaces 28a, 28b and 28c.
Subsequently, as shown in FIGS. 15A and 15B, the photoresist film 33 is removed from the back surface S8 of the substrate 25. As a result, a plurality of step structures 27 having three step surfaces 28a, 28b, 28c regularly arranged in a two-dimensional array are formed on the back surface S7 of the substrate 25.
 続いて、図16A及び図16Bに示すように、基板25の裏面S7全体、つまり段差構造27を有する面全体を覆うとともに、液面が水平となるように、被覆層26形成用の塗布液34を塗布する。塗布液34からなる層の厚さは、段差構造27が形成されていない部分に対応する箇所が最も厚く、段差構造27の一段目の段差面28aに対応する箇所が二番目に厚く、段差構造27の二段目の段差面28bに対応する箇所が三番目に厚く、段差構造27の三段目の段差面28cに対応する箇所が最も薄くなる。塗布液34としては、例えば、スチレン系樹脂、アクリル系樹脂等の溶質を溶媒に溶解してなる塗工液を採用できる。塗布液34の塗布方法としては、例えば、スピンコート法を採用できる。 Subsequently, as shown in FIGS. 16A and 16B, the coating liquid 34 for forming the coating layer 26 is formed so as to cover the entire back surface S7 of the substrate 25, that is, the entire surface having the step structure 27, and to make the liquid level horizontal. Is applied. The thickness of the layer composed of the coating liquid 34 is the thickest at the portion corresponding to the portion where the step structure 27 is not formed, and the second thickest at the portion corresponding to the first step surface 28 a of the step structure 27. The portion of the step structure 27 corresponding to the second step surface 28b is the third thickest, and the portion of the step structure 27 corresponding to the third step surface 28c is the thinnest. As the coating liquid 34, for example, a coating liquid obtained by dissolving a solute such as a styrene resin or an acrylic resin in a solvent can be used. As a method of applying the coating liquid 34, for example, a spin coating method can be adopted.
 続いて、図17A及び図17Bに示すように、塗布した塗布液34を乾燥させる。その際、溶媒が揮発し、塗布液34からなる層の厚さが減少する。具体的には、塗布液34の乾燥の初期段階では、塗布液34の表面は、平坦で膜厚が均一に減少する。しかしながら、塗布液34の乾燥が進行すると、基板25の段差構造27により、凸部の塗布液34は、局所的に溶質濃度が高くなる。その結果、凸部では塗布液34の溶媒の蒸発速度が遅くなり、凹部の塗布液34の表面が凹む。この現象によって、層の厚さの減少量は、層の厚さが厚い箇所ほど大きくなる。即ち、段差構造27が形成されていない部分に対応する箇所が最も減少量が大きく、段差構造27の一段目の段差面28aに対応する箇所が二番目に減少量が大きく、段差構造27の二段目の段差面28bに対応する箇所が三番目に減少量が大きく、段差構造27の三段目の段差面28cに対応する箇所が最も減少量が小さい。この結果、段差構造27を覆う部分に凸レンズ状の被覆層26が形成される。
 続いて、図18A及び図18Bに示すように、形成された被覆層26(塗布膜)が永久膜となるように、凸レンズ状の被覆層26にUVキュアやベークを行う。この結果、被覆層26が硬化され、図4に示したウエハレンズ19が完成される。完成したウエハレンズ19では、図4に示したレンズ高さLHが段差構造27の高さH以下となる。また、レンズ直径LRが段差構造27の幅W以上で且つ段差構造27のピッチp以下となる。
Subsequently, as shown in FIGS. 17A and 17B, the applied coating liquid 34 is dried. At that time, the solvent volatilizes, and the thickness of the layer composed of the coating liquid 34 decreases. Specifically, at the initial stage of drying the coating liquid 34, the surface of the coating liquid 34 is flat and the film thickness is uniformly reduced. However, when the drying of the coating liquid 34 proceeds, the solute concentration of the coating liquid 34 in the convex portion locally increases due to the step structure 27 of the substrate 25. As a result, the evaporation rate of the solvent of the coating liquid 34 is reduced in the convex portions, and the surface of the coating liquid 34 in the concave portions is concave. Due to this phenomenon, the amount of decrease in the thickness of the layer increases as the thickness of the layer increases. That is, the portion corresponding to the portion where the step structure 27 is not formed has the largest reduction amount, and the portion corresponding to the first step surface 28a of the step structure 27 has the second largest reduction amount. The portion corresponding to the step surface 28b of the step has the third largest reduction amount, and the portion corresponding to the third step surface 28c of the step structure 27 has the smallest reduction amount. As a result, a convex lens-shaped coating layer 26 is formed in a portion covering the step structure 27.
Subsequently, as shown in FIGS. 18A and 18B, UV curing or baking is performed on the convex lens-shaped coating layer 26 so that the formed coating layer 26 (coating film) becomes a permanent film. As a result, the coating layer 26 is cured, and the wafer lens 19 shown in FIG. 4 is completed. In the completed wafer lens 19, the lens height LH shown in FIG. Further, the lens diameter LR is not less than the width W of the step structure 27 and not more than the pitch p of the step structure 27.
 なお、側面29、30を傾斜面とする場合には、例えば、レジスト後退法を用いることができる。レジスト後退法では、図19A及び図19Bに示すように、基板25をエッチングする際に、O2ガス等を混入したエッチングガスを用いてフォトレジスト膜33も徐々にエッチングする。そして、フォトレジスト膜33を徐々に小さくし、基板25におけるエッチングされる領域を徐々に広くする。この結果、基板25に、エッチングを受ける時間が連続的に変化する部分を形成でき、側面29、30に傾斜面を形成できる。 When the side surfaces 29 and 30 are inclined surfaces, for example, a resist receding method can be used. In the resist receding method, as shown in FIGS. 19A and 19B, when etching the substrate 25, the photoresist film 33 is also gradually etched using an etching gas mixed with O 2 gas or the like. Then, the photoresist film 33 is gradually reduced, and the region to be etched on the substrate 25 is gradually increased. As a result, a portion where the etching time changes continuously can be formed on the substrate 25, and inclined surfaces can be formed on the side surfaces 29 and 30.
 以上説明したように、第1の実施形態のウエハレンズ19(光学素子)では、一方の面(裏面S7)に、裏面S7に対する高さが異なる段差面28を有する段差構造27が形成された基板25を備えるようにした。また、段差構造27及びその周囲の裏面S7を連続して覆い且つ光を透過する被覆層26を備えるようにした。それゆえ、段差構造27の形状によって多様な形状を実現でき、設計の自由度が高いウエハレンズ19を提供できる。
 また、第1の実施形態のウエハレンズ19(光学素子)では、段差面28の段数を二段以上とした。または、段差面28の段数が一段である場合には、段差構造27の側面29として、基板25の裏面S7(受光面側の面)の法線方向に対して傾斜した傾斜面又は曲面を有するようにした。それゆえ、被覆層26の上面を滑らかな曲面状に形成することができ、大きな曲率を持ったウエハレンズ19を形成することができる。それゆえ、CMOSイメージセンサのさらなる微細画素化を進めるために好適なものとすることができる。
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものでは無く、また他の効果があってもよい。
As described above, in the wafer lens 19 (optical element) of the first embodiment, the substrate in which the step structure 27 having the step surface 28 having a height different from the back surface S7 is formed on one surface (back surface S7). 25. Further, the step structure 27 and the surrounding back surface S7 are provided with a covering layer 26 that continuously covers and transmits light. Therefore, various shapes can be realized by the shape of the step structure 27, and the wafer lens 19 with high design flexibility can be provided.
Further, in the wafer lens 19 (optical element) of the first embodiment, the number of steps of the step surface 28 is two or more. Alternatively, when the number of steps of the step surface 28 is one, the side surface 29 of the step structure 27 has an inclined surface or a curved surface inclined with respect to the normal direction of the back surface S7 (surface on the light receiving surface side) of the substrate 25. I did it. Therefore, the upper surface of the coating layer 26 can be formed into a smooth curved surface, and the wafer lens 19 having a large curvature can be formed. Therefore, the CMOS image sensor can be made suitable for further miniaturization.
It should be noted that the effects described in this specification are merely examples and are not limited, and may have other effects.
 また、第1の実施形態の光学素子の製造方法では、基板25に段差構造27を形成する工程と、段差構造27が形成された基板25に塗布液34を塗布する工程と、段差構造27及びその周囲の基板25の面(裏面S7)を連続して覆い、且つ光を透過する被覆層26が形成されるように、塗布液34を乾燥させる工程と、を含むようにした。それゆえ、塗布する操作のみで曲面を形成できるので、既存の設備を用いることができ、コストを抑制できる。そのため、製造コストを低減可能な光学素子の製造方法を提供できる。
 また、第1の実施形態の光学素子の製造方法では、段差構造27の形状に応じて、被覆層26の表面に緩やかな曲率部分を持たせることができ、被覆層26の表面を制御性高く変化させることができる。また、塗布液34の塗布・乾燥のシミュレーションを用いることで、所望のウエハレンズ19の形状が実現されるように、段差構造27を設計できる。
Further, in the method for manufacturing an optical element according to the first embodiment, a step of forming the step structure 27 on the substrate 25, a step of applying a coating liquid 34 to the substrate 25 having the step structure 27 formed thereon, Drying the coating liquid 34 so as to continuously cover the surface (the back surface S7) of the surrounding substrate 25 and form the coating layer 26 that transmits light. Therefore, since a curved surface can be formed only by the application operation, the existing equipment can be used and the cost can be suppressed. Therefore, it is possible to provide a method for manufacturing an optical element capable of reducing the manufacturing cost.
In the method for manufacturing an optical element according to the first embodiment, the surface of the coating layer 26 can have a gentle curvature according to the shape of the step structure 27, and the surface of the coating layer 26 can be controlled with high controllability. Can be changed. Further, the step structure 27 can be designed so that the desired shape of the wafer lens 19 is realized by using the simulation of the application and drying of the application liquid 34.
 ちなみに、例えば、特許文献1に記載されていているように、各段差構造の上面のそれぞれにレンズ形成パターン層を形成した後、レンズ形成パターン層を熱リフローさせることで、レンズを形成する熱リフロー法では、表面張力を利用して曲面構造を形成するため、凸形状しか形成できず、凹形状を形成できないため、設計の自由度が低くなる。
 これに対し、第1の実施形態の光学素子の製造方法では、段差構造27の形状によって、凸形状及び凹形状の何れも形成できるので、設計の自由度を向上できる。光学素子の形状は、段差の構造(形状・高さ)、乾燥速度の乾燥プロセスの制御、ピッチ・幅・段数・傾斜角・曲率・塗布液の乾燥速度・拡散係数・濃度等の塗布材料の物性値を調節することで制御できる。そのため、所望の曲率分布を持った曲面を形成できる。また、例えば、画素9毎に段差の構造等を作り分けることで、画素9毎に曲面を作り分けることができる。
Incidentally, as described in Patent Document 1, for example, after forming a lens formation pattern layer on each of the upper surfaces of the step structures, the lens formation pattern layer is thermally reflowed to form a lens. According to the method, since a curved surface structure is formed using surface tension, only a convex shape can be formed, and a concave shape cannot be formed.
On the other hand, in the method of manufacturing the optical element according to the first embodiment, since both the convex shape and the concave shape can be formed depending on the shape of the step structure 27, the degree of freedom in design can be improved. The shape of the optical element depends on the structure of the step (shape / height), the control of the drying process of the drying speed, and the coating material such as pitch, width, number of steps, inclination angle, curvature, coating liquid drying speed, diffusion coefficient, concentration, etc. It can be controlled by adjusting the physical properties. Therefore, a curved surface having a desired curvature distribution can be formed. In addition, for example, by forming a step structure or the like for each pixel 9, a curved surface can be formed for each pixel 9.
 また、例えば、熱リフロー法では、レンズ形成パターン層の材料には、感光性に加え、パターンを形成可能とする解像性や熱リフロー性が必要になるため、材料の制約が多い。
 これに対し、第1の実施形態の光学素子の製造方法では、フォトレジスト膜33に解像性や熱リフロー性が必要なく、フォトレジスト膜33の材料への制約が少なくて済む。
In addition, for example, in the thermal reflow method, the material of the lens forming pattern layer requires resolution and thermal reflow properties to enable formation of a pattern in addition to photosensitivity.
On the other hand, in the method for manufacturing an optical element according to the first embodiment, the photoresist film 33 does not need to have a resolution and a thermal reflow property, and the material of the photoresist film 33 is less restricted.
 また、例えば、熱リフロー法では、レンズ形成パターン層を加熱するため、基板に耐熱性が必要であった。さらに、例えば、特開2005-349708号公報に記載されているように、基板上に開口領域を有する撥水性膜を形成した後、開口領域にレンズ形状に応じた液状部材を滴下させて、レンズを形成する方法では、基板に親水性が必要であった。
 これに対し、第1の実施形態の光学素子の製造方法では、基板25に耐熱性や親水性が必要なく、ウエハレンズ19(光学素子)の基板25の材料への制約が少なくて済む。
Further, for example, in the thermal reflow method, the substrate needs to have heat resistance in order to heat the lens forming pattern layer. Further, for example, as described in JP-A-2005-349708, after forming a water-repellent film having an opening region on a substrate, a liquid member corresponding to a lens shape is dropped on the opening region to form a lens. In the method of forming the substrate, the substrate needs to be hydrophilic.
On the other hand, in the method for manufacturing an optical element according to the first embodiment, the substrate 25 does not need to have heat resistance or hydrophilicity, and the material of the substrate 25 of the wafer lens 19 (optical element) is less restricted.
〈2.第2の実施形態:固体撮像装置〉
[2-1 要部の構成]
 次に、本開示の第2の実施形態に係る固体撮像装置について説明する。第2の実施形態の固体撮像装置の全体構成及び画素領域3の断面構成は、図1、図2と同様であるから図示を省略する。図20は、第2の実施形態の固体撮像装置1の要部の断面構成図である。図20において、図4に対応する部分には、同一符号を付し重複説明を省略する。
<2. Second embodiment: solid-state imaging device>
[2-1 Configuration of Main Part]
Next, a solid-state imaging device according to a second embodiment of the present disclosure will be described. The overall configuration of the solid-state imaging device according to the second embodiment and the cross-sectional configuration of the pixel region 3 are the same as those in FIGS. FIG. 20 is a sectional configuration diagram of a main part of the solid-state imaging device 1 according to the second embodiment. 20, parts corresponding to those in FIG. 4 are denoted by the same reference numerals, and redundant description will be omitted.
 第2の実施形態の固体撮像装置1は、ウエハレンズ19の構成が第1の実施形態と異なっている。第2の実施形態では、図20に示すように、段差構造27が基板25の裏面S7側から深さ方向に形成された凹状部となっている。また、被覆層26は、凹状部の底面及び内壁面、及び凹状部の周囲の基板25の裏面S7を連続して覆うように構成されている。凹状部の底面及び内壁面を覆う部分の上面は、凹レンズの曲面状に形成されている。 固体 The solid-state imaging device 1 of the second embodiment differs from the first embodiment in the configuration of the wafer lens 19. In the second embodiment, as shown in FIG. 20, the step structure 27 is a concave portion formed in the depth direction from the back surface S7 side of the substrate 25. The coating layer 26 is configured to continuously cover the bottom surface and the inner wall surface of the concave portion, and the back surface S7 of the substrate 25 around the concave portion. The upper surface of the portion that covers the bottom surface and the inner wall surface of the concave portion is formed into a curved surface of the concave lens.
[2-2 ウエハレンズの製造方法]
 次に、第2の実施形態の固体撮像装置1のウエハレンズ19(第2の実施形態の光学素子)の製造方法について説明する。図21A、図21B、図22A、図22B、図23A、図23B、図24A、図24B、図25A、図25B、図26A、図26B、図27A、図27B、図28A、図28B、図29A、図29B、図30A、及び図30Bは、第2の実施形態の光学素子の製造工程を示す平面図及び断面図である。図21A~図30Bでは、基板25の段差構造27の段差面28の段数が三段である場合を例示している。
 まず、図21A及び図21Bに示すように、基板25の裏面S7全体に、フォトレジスト膜33を塗布する。続いて、図22A及び図22Bに示すように、フォトレジスト膜33を露光し、図23A及び図23Bに示すように、フォトレジスト膜33を現像する。
 続いて、図24A及び図24Bに示すように、現像されたフォトレジスト膜33をエッチングマスクとして用いて、基板25の裏面S7をエッチングし、段差構造27の三段目(最下部)の段差面28fを形成する。続いて、図25A及び図25Bに示すように、フォトレジスト膜33をスリミングし、図26A及び図26Bに示すように、スリミングされたフォトレジスト膜33をエッチングマスクとして用いて、基板25の裏面S7をエッチングし、段差構造27の二段目(中間部)の段差面28eを形成する。続いて、スリミングとエッチングとを繰り返し、段差構造27の一段目(最上部)の段差面28dを形成し、三段の段差面28d、28e及び28fを有する段差構造27を形成する。
 続いて、図27A及び図27Bに示すように、基板25の裏面S7からフォトレジスト膜33を除去する。この結果、基板25の裏面S7に、2次元アレイ状に規則的に配列された三段の段差面28d、28e、28fを有する段差構造27が複数形成される。
[2-2 Manufacturing method of wafer lens]
Next, a method of manufacturing the wafer lens 19 (the optical element of the second embodiment) of the solid-state imaging device 1 of the second embodiment will be described. 21A, 21B, 22A, 22B, 23A, 23B, 24A, 24B, 25A, 25B, 26A, 26B, 27A, 27B, 28A, 28B, 29A. 29B, FIG. 30A, and FIG. 30B are a plan view and a cross-sectional view illustrating a manufacturing process of the optical element of the second embodiment. FIGS. 21A to 30B illustrate a case where the number of steps on the step surface 28 of the step structure 27 of the substrate 25 is three.
First, as shown in FIGS. 21A and 21B, a photoresist film 33 is applied to the entire back surface S7 of the substrate 25. Subsequently, as shown in FIGS. 22A and 22B, the photoresist film 33 is exposed, and as shown in FIGS. 23A and 23B, the photoresist film 33 is developed.
Subsequently, as shown in FIGS. 24A and 24B, the back surface S7 of the substrate 25 is etched using the developed photoresist film 33 as an etching mask, and the third (lowest) step surface of the step structure 27 is formed. 28f is formed. Subsequently, as shown in FIGS. 25A and 25B, the photoresist film 33 is slimmed, and as shown in FIGS. 26A and 26B, using the slimmed photoresist film 33 as an etching mask, Is etched to form a second step surface (intermediate portion) 28 e of the step structure 27. Subsequently, slimming and etching are repeated to form the first (uppermost) step surface 28d of the step structure 27, and to form the step structure 27 having three step surfaces 28d, 28e and 28f.
Subsequently, as shown in FIGS. 27A and 27B, the photoresist film 33 is removed from the back surface S7 of the substrate 25. As a result, a plurality of step structures 27 having three step surfaces 28d, 28e, and 28f regularly arranged in a two-dimensional array are formed on the back surface S7 of the substrate 25.
 続いて、図28A及び図28Bに示すように、基板25の裏面S7全体、つまり段差構造27を有する面全体を覆うとともに、液面が水平となるように、被覆層26形成用の塗布液34を塗布する。塗布液34からなる層の厚さは、段差構造27の三段目の段差面28fに対応する箇所が最も厚く、段差構造27の二段目の段差面28eに対応する箇所が二番目に厚く、段差構造27の一段目の段差面28dに対応する箇所が三番目に厚く、段差構造27が形成されていない部分に対応する箇所が最も薄くなる。塗布液34としては、例えば、スチレン系樹脂、アクリル系樹脂を適当な溶媒中に溶解してなる塗工液を採用できる。塗布液34の塗布方法としては、例えば、スピンコート法を採用できる。 Subsequently, as shown in FIGS. 28A and 28B, the coating liquid 34 for forming the coating layer 26 is formed so as to cover the entire back surface S7 of the substrate 25, that is, the entire surface having the step structure 27, and to make the liquid level horizontal. Is applied. The thickness of the layer made of the coating liquid 34 is the thickest at the portion corresponding to the third step surface 28f of the step structure 27, and the second thickest at the portion corresponding to the second step surface 28e of the step structure 27. The portion corresponding to the first step surface 28d of the step structure 27 is the third thickest, and the portion corresponding to the portion where the step structure 27 is not formed is the thinnest. As the coating liquid 34, for example, a coating liquid obtained by dissolving a styrene resin or an acrylic resin in an appropriate solvent can be used. As a method of applying the coating liquid 34, for example, a spin coating method can be adopted.
 続いて、図29A及び図29Bに示すように、塗布した塗布液34を乾燥させる。その際、溶媒が揮発し、塗布液34からなる層の厚さが減少する。具体的には、塗布液34の乾燥の初期段階では、塗布液34の表面は、平坦で膜厚が均一に減少する。しかしながら、塗布液34の乾燥が進行すると、基板25の段差構造27により、凹部の塗布液34は、局所的に溶質濃度が低くなる。その結果、凹部では塗布液34の溶媒の蒸発速度が速くなり、凹部の塗布液34の表面が凹む。この現象によって、層の厚さの減少量は、層の厚さが厚い箇所ほど大きくなる。即ち、段差構造27の三段目の段差面28fに対応する箇所が最も減少量が大きく、段差構造27の二段目の段差面28eに対応する箇所が二番目に減少量が大きく、段差構造27の一段目の段差面28dに対応する箇所が三番目に減少量が大きく、段差構造27が形成されていない部分に対応する箇所が最も減少量が小さい。この結果、段差構造27を覆う部分に凹レンズ状の被覆層26が形成される。
 続いて、図30A及び図30Bに示すように、形成された被覆層26(塗布膜)が永久膜となるように、凹レンズ状の被覆層26にUVキュアやベークを行う。この結果、被覆層26が硬化され、図20に示したウエハレンズ19が完成される。完成したウエハレンズ19では、図20に示したレンズ高さLHが段差構造27の高さ以下となる。またレンズ直径LRが段差構造27の幅W以上で且つ段差構造27のピッチp以下となる。
Subsequently, as shown in FIGS. 29A and 29B, the applied coating liquid 34 is dried. At that time, the solvent volatilizes, and the thickness of the layer composed of the coating liquid 34 decreases. Specifically, at the initial stage of drying the coating liquid 34, the surface of the coating liquid 34 is flat and the film thickness is uniformly reduced. However, as the drying of the coating liquid 34 progresses, the concentration of the solute in the coating liquid 34 in the concave portion locally decreases due to the step structure 27 of the substrate 25. As a result, the evaporation rate of the solvent of the coating liquid 34 is increased in the concave portions, and the surface of the coating liquid 34 in the concave portions is concave. Due to this phenomenon, the amount of decrease in the thickness of the layer increases as the thickness of the layer increases. That is, the portion corresponding to the third step surface 28f of the step structure 27 has the largest reduction amount, and the portion corresponding to the second step surface 28e of the step structure 27 has the second largest reduction amount. The portion corresponding to the step surface 28d of the first step 27 has the third largest reduction amount, and the portion corresponding to the portion where the step structure 27 is not formed has the smallest reduction amount. As a result, a concave lens-like coating layer 26 is formed in a portion covering the step structure 27.
Subsequently, as shown in FIGS. 30A and 30B, UV curing or baking is performed on the concave lens-shaped coating layer 26 so that the formed coating layer 26 (coating film) becomes a permanent film. As a result, the coating layer 26 is cured, and the wafer lens 19 shown in FIG. 20 is completed. In the completed wafer lens 19, the lens height LH shown in FIG. Further, the lens diameter LR is not less than the width W of the step structure 27 and not more than the pitch p of the step structure 27.
 以上説明したように、第2の実施形態のウエハレンズ19(光学素子)では、一方の面(裏面S7)に、裏面S7に対する高さが異なる段差面28を有する段差構造27が形成された基板25を備えるようにした。また、段差構造27及びその周囲の裏面S7を連続して覆い且つ光を透過する被覆層26を備えるようにした。それゆえ、段差構造27の形状によって多様な形状を実現でき、設計の自由度が高いウエハレンズ19を提供できる。 As described above, in the wafer lens 19 (optical element) of the second embodiment, the substrate in which the step structure 27 having the step surface 28 having a height different from the back surface S7 is formed on one surface (back surface S7). 25. Further, the step structure 27 and the surrounding back surface S7 are provided with a covering layer 26 that continuously covers and transmits light. Therefore, various shapes can be realized by the shape of the step structure 27, and the wafer lens 19 with high design flexibility can be provided.
〈3.第3の実施形態:固体撮像装置〉
[3-1 要部の構成]
 次に、本開示の第3の実施形態に係る固体撮像装置について説明する。第3の実施形態の固体撮像装置の全体構成は、図1と同様であるから図示を省略する。図31は、第3の実施形態の画素領域3の断面構成を示す図である。図31において、図2に対応する部分には、同一符号を付し重複説明を省略する。
<3. Third embodiment: solid-state imaging device>
[3-1 Configuration of Main Part]
Next, a solid-state imaging device according to a third embodiment of the present disclosure will be described. The overall configuration of the solid-state imaging device according to the third embodiment is the same as that in FIG. FIG. 31 is a diagram illustrating a cross-sectional configuration of a pixel region 3 according to the third embodiment. In FIG. 31, portions corresponding to FIG. 2 are denoted by the same reference numerals, and redundant description will be omitted.
 第3の実施形態の固体撮像装置1は、図31に示すように、中心部分に大きな曲率を持つ球面レンズ状のウエハレンズ19と、外周部に緩やかな曲率を持った補正レンズ35とを組み合わせたレンズ群とすることで、中心部に大きな曲率を持ち外周部に緩やかな曲率を持った複雑な非球面レンズを実現する点が、第1の実施形態と異なっている。即ち、補正レンズ35は、ウエハレンズ19を透過した後の光が入射される構成となっている。
 補正レンズ35は、絶縁膜14とカラーフィルタ18との間の平坦化膜16内に、各画素9に対応して形成されている。これにより、補正レンズ35は、2次元アレイ状に規則的に配列されてなる補正レンズアレイ(光学素子アレイ)を形成している。補正レンズ35は、ウエハレンズ19に起因する収差を補正するように光学設計される。ウエハレンズ19に起因する収差としては、例えば、ザイデル五収差(球面収差、非点収差、コマ収差、像面湾曲収差、歪曲収差)、色収差(倍率色収差、軸上色収差)等が挙げられる。
As shown in FIG. 31, the solid-state imaging device 1 according to the third embodiment combines a spherical lens-shaped wafer lens 19 having a large curvature at the center and a correction lens 35 having a gentle curvature at the outer periphery. The first embodiment is different from the first embodiment in that a complex aspheric lens having a large curvature at the center and a gentle curvature at the outer periphery is realized by forming a lens group having a large curvature. That is, the correction lens 35 is configured to receive the light transmitted through the wafer lens 19.
The correction lens 35 is formed in the flattening film 16 between the insulating film 14 and the color filter 18 so as to correspond to each pixel 9. Thus, the correction lens 35 forms a correction lens array (optical element array) regularly arranged in a two-dimensional array. The correction lens 35 is optically designed to correct the aberration caused by the wafer lens 19. Examples of the aberration caused by the wafer lens 19 include Seidel's five aberrations (spherical aberration, astigmatism, coma aberration, field curvature aberration, distortion), chromatic aberration (magnification chromatic aberration, axial chromatic aberration), and the like.
 ここで、ウエハレンズ19が倍率色収差を生じるレンズである場合、ウエハレンズ19に光軸と斜めに光が入射すると、入射した光に含まれる色(波長域)毎に、ウエハレンズ19による光の結像位置が、光軸と直交する面内の異なる位置となる。また、ウエハレンズ19が軸上色収差を生じるレンズである場合、ウエハレンズ19に光軸と平行に光が入射すると、入射した光に含まれる色(波長域)毎に、ウエハレンズ19による光の結像位置が、光軸上の異なる位置となる。それゆえ、ウエハレンズ19に対応するカラーフィルタ18が透過させる光の波長域(色)によっては、ウエハレンズ19による光の一部が、ウエハレンズ19に対応する光電変換部23から外れ、その光電変換部23周囲の遮光膜15や他の光電変換部23に入射する可能性がある。そして、光の一部が遮光膜15に入射すると、ウエハレンズ19に対応する光電変換部23の感度が低下する可能性がある。また、光の一部が他の光電変換部23に入射すると、ウエハレンズ19に対応する光電変換部23の感度の低下に加え、他の光電変換部23で混色が発生する可能性がある。 Here, in the case where the wafer lens 19 is a lens that causes chromatic aberration of magnification, when light enters the wafer lens 19 obliquely with respect to the optical axis, the light by the wafer lens 19 is changed for each color (wavelength range) included in the incident light. The imaging positions are different positions in a plane orthogonal to the optical axis. When the wafer lens 19 is a lens that causes axial chromatic aberration, when light enters the wafer lens 19 in parallel with the optical axis, the light by the wafer lens 19 is changed for each color (wavelength range) included in the incident light. The imaging positions are different positions on the optical axis. Therefore, depending on the wavelength range (color) of the light transmitted by the color filter 18 corresponding to the wafer lens 19, a part of the light from the wafer lens 19 deviates from the photoelectric conversion unit 23 corresponding to the wafer lens 19, and the photoelectric There is a possibility that the light may enter the light-shielding film 15 around the conversion unit 23 or another photoelectric conversion unit 23. When a part of the light enters the light shielding film 15, the sensitivity of the photoelectric conversion unit 23 corresponding to the wafer lens 19 may be reduced. Further, when a part of the light is incident on another photoelectric conversion unit 23, in addition to the decrease in the sensitivity of the photoelectric conversion unit 23 corresponding to the wafer lens 19, there is a possibility that color mixing may occur in the other photoelectric conversion unit 23.
 したがって、補正レンズ35を色収差の補正用のレンズとする場合、図32A、図32B及び図32Cに示すようにウエハレンズ19に入射した光のほぼ全てが、そのウエハレンズ19に対応する光電変換部23に入射するように、補正レンズ35を設計する。即ち、補正レンズ35は、ウエハレンズ19と補正レンズ35とを組み合わせて実現される非球面レンズの集光率や結像点の精度が上がるように構成する。図32Aは、赤色の波長の光を透過させるカラーフィルタ18を有する画素9に配置された補正レンズ35(以下「赤色補正レンズ」とも呼ぶ)による光53の集光状態を例示している。図32Bは、緑色の波長の光を透過させるカラーフィルタ18を有する画素9に配置された補正レンズ35(以下「緑色補正レンズ」とも呼ぶ)による光53の集光状態を例示している。図32Cは、青色の波長の光を透過させるカラーフィルタ18を有する画素9に配置された補正レンズ35(以下「青色補正レンズ」とも呼ぶ)による光53の集光状態を例示している。
 ウエハレンズ19に起因する色収差を補正することで、光電変換部23の感度の低下を防止でき、また混色の発生を防止できる。また、ウエハレンズ19に入射した光のほぼ全てが光電変換部23に入射するため、光電変換部23間の画素間遮光領域を縮小でき、光電変換部23を大型化することができ、光電変換部23の感度を向上することもできる。
Therefore, when the correction lens 35 is a lens for correcting chromatic aberration, almost all of the light incident on the wafer lens 19 is, as shown in FIG. 32A, FIG. 32B, and FIG. The correction lens 35 is designed to be incident on the lens 23. That is, the correction lens 35 is configured so that the accuracy of the light collection rate and the imaging point of the aspherical lens realized by combining the wafer lens 19 and the correction lens 35 is increased. FIG. 32A illustrates a state in which light 53 is collected by a correction lens 35 (hereinafter, also referred to as a “red correction lens”) arranged in a pixel 9 having a color filter 18 that transmits light of a red wavelength. FIG. 32B illustrates a state in which the light 53 is collected by a correction lens 35 (hereinafter, also referred to as a “green correction lens”) disposed in the pixel 9 having the color filter 18 that transmits light of a green wavelength. FIG. 32C illustrates a state in which the light 53 is collected by a correction lens 35 (hereinafter, also referred to as a “blue correction lens”) disposed in the pixel 9 having the color filter 18 that transmits light of a blue wavelength.
By correcting the chromatic aberration caused by the wafer lens 19, the sensitivity of the photoelectric conversion unit 23 can be prevented from lowering, and the occurrence of color mixing can be prevented. Also, since almost all of the light incident on the wafer lens 19 is incident on the photoelectric conversion unit 23, the inter-pixel light blocking area between the photoelectric conversion units 23 can be reduced, and the photoelectric conversion unit 23 can be enlarged. The sensitivity of the unit 23 can be improved.
 また、倍率色収差や軸上色収差等の色収差を補正する補正レンズ35としては、例えば、図33A、図33B、図34A、図34B、図35A及び図35Bに示すように、平面視において、補正レンズ35の外周部に沿う円環状の環状凹部36を有するレンズを用いることができる。図33A及び図33Bは赤色補正レンズを例示し、図34A及び図34Bは緑色補正レンズを例示し、図35A及び図35Bは青色補正レンズを例示している。
 また、環状凹部36の幅は、例えば、赤色補正レンズの環状凹部36の幅<緑色補正レンズの環状凹部36の幅<青色補正レンズの環状凹部36の幅、の順とする。また、環状凹部36の直径は、例えば、青色補正レンズの環状凹部36の直径<緑色補正レンズの環状凹部36の直径<青色補正レンズの環状凹部36の直径、の順とする。環状凹部36の直径としては、例えば、環状凹部36の内径と外径との平均値を用いることができる。
As the correction lens 35 for correcting chromatic aberration such as chromatic aberration of magnification and axial chromatic aberration, for example, as shown in FIGS. 33A, 33B, 34A, 34B, 35A, and 35B, a correction lens in plan view A lens having an annular concave portion 36 along the outer peripheral portion of the lens 35 can be used. 33A and 33B illustrate a red correction lens, FIGS. 34A and 34B illustrate a green correction lens, and FIGS. 35A and 35B illustrate a blue correction lens.
The width of the annular concave portion 36 is, for example, in the order of the width of the annular concave portion 36 of the red correction lens <the width of the annular concave portion 36 of the green correction lens <the width of the annular concave portion 36 of the blue correction lens. The diameter of the annular concave portion 36 is, for example, in the order of the diameter of the annular concave portion 36 of the blue correction lens <the diameter of the annular concave portion 36 of the green correction lens <the diameter of the annular concave portion 36 of the blue correction lens. As the diameter of the annular recess 36, for example, an average value of the inner diameter and the outer diameter of the annular recess 36 can be used.
 なお、第3の実施形態では、ウエハレンズ19の形成方法としては、熱リフロー法を採用することもできる。熱リフロー法を採用することで、ウエハレンズ19を球面レンズとする際に、ウエハレンズ19の段差構造27の形状が比較的簡単な形状で済むため、段差構造27の形成にかかる手間を軽減でき、ウエハレンズ19の製造コストを低減できる。 In the third embodiment, as a method of forming the wafer lens 19, a thermal reflow method can be adopted. By adopting the thermal reflow method, when the wafer lens 19 is formed into a spherical lens, the step structure 27 of the wafer lens 19 can be formed in a relatively simple shape, so that the labor required for forming the step structure 27 can be reduced. Thus, the manufacturing cost of the wafer lens 19 can be reduced.
 次に、図31の補正レンズ35の詳細構造について説明する。図36は、補正レンズ35の断面構成を示す図である。
 図36に示すように、補正レンズ35は、基板37と、被覆層38とを備えている。
 基板37は、平坦化膜16の絶縁膜14側の部分16aの裏面S10側(カラーフィルタ18側の面)に形成されており、第2の実施形態の基板25と同様に、基板37の裏面S11(カラーフィルタ18側の面)側から深さ方向に形成された凹状部である複数の段差構造39を含んで構成されている。段差構造39のそれぞれは、各画素9に対応して形成され、一段以上の段差面40を有している。段差面40としては、例えば、基板37の裏面S11に対し、高さが異なる面を用いることができる。例えば、基板37の裏面S11と平行な面を用いることができる。図36では、段差構造27の段差面40の段数が、一段である場合を例示している。また、基板37のその他の構造や材料としては、例えば、第1及び第2の実施形態の基板25の構造や材料と同様のものを採用できる。
Next, the detailed structure of the correction lens 35 in FIG. 31 will be described. FIG. 36 is a diagram illustrating a cross-sectional configuration of the correction lens 35.
As shown in FIG. 36, the correction lens 35 includes a substrate 37 and a cover layer 38.
The substrate 37 is formed on the back surface S10 side (the surface on the color filter 18 side) of the portion 16a of the planarization film 16 on the insulating film 14 side, and like the substrate 25 of the second embodiment, the back surface of the substrate 37 It is configured to include a plurality of step structures 39 which are concave portions formed in the depth direction from the S11 (the surface on the color filter 18 side) side. Each of the step structures 39 is formed corresponding to each pixel 9 and has one or more step surfaces 40. As the step surface 40, for example, a surface having a different height from the back surface S11 of the substrate 37 can be used. For example, a surface parallel to the back surface S11 of the substrate 37 can be used. FIG. 36 illustrates a case where the number of steps on the step surface 40 of the step structure 27 is one. Further, as other structures and materials of the substrate 37, for example, those similar to the structures and materials of the substrate 25 of the first and second embodiments can be adopted.
 なお、補正レンズ35を図33A、図33B、図34A、図34B、図35A及び図35Bに示した環状凹部36を有するレンズとする場合、基板37の段差構造39としては、例えば、平面視において、補正レンズ35の外周部に沿う円環状の環状凹部を用いることができる。即ち、基板37の裏面S11には、裏面S11に対する高さが異なる環状の段差面40を有する複数の段差構造39を形成するようにしてもよい。以下の記載では、段差構造39が有する円環状の環状凹部についても符号「39」を付す。また、例えば、図33A、図33B、図34A、図34B、図35A及び図35Bに示した順番となるように補正レンズ35の環状凹部36の幅を調整する場合、基板37の環状凹部39の幅は、赤色補正レンズに対応する環状凹部39の幅<緑色補正レンズに対応する環状凹部39の幅<青色補正レンズに対応する環状凹部39の幅、の順とするのが好ましい。
 また、このようなレンズとする場合、基板37の環状凹部39の直径は、例えば、青色補正レンズに対応する環状凹部39の直径<緑色補正レンズに対応する環状凹部39の直径<青色補正レンズに対応する環状凹部39の直径、の順とするのが好ましい。環状凹部39の直径としては、例えば、環状凹部39の内径と外径との平均値を採用できる。また、基板37の環状凹部39の深さは、すべての環状凹部39で同一とするのが好ましい。
When the correction lens 35 is a lens having the annular concave portion 36 shown in FIGS. 33A, 33B, 34A, 34B, 35A, and 35B, the step structure 39 of the substrate 37 may be, for example, a plan view. An annular concave portion along the outer peripheral portion of the correction lens 35 can be used. That is, a plurality of step structures 39 having annular step surfaces 40 having different heights with respect to the back surface S11 may be formed on the back surface S11 of the substrate 37. In the following description, reference numeral “39” is also given to the annular concave portion of the step structure 39. Further, for example, when the width of the annular concave portion 36 of the correction lens 35 is adjusted so as to be in the order shown in FIGS. 33A, 33B, 34A, 34B, 35A, and 35B, The width is preferably in the order of the width of the annular concave portion 39 corresponding to the red correction lens <the width of the annular concave portion 39 corresponding to the green correction lens <the width of the annular concave portion 39 corresponding to the blue correction lens.
In the case of such a lens, the diameter of the annular concave portion 39 of the substrate 37 is, for example, the diameter of the annular concave portion 39 corresponding to the blue correction lens <the diameter of the annular concave portion 39 corresponding to the green correction lens <the blue correction lens. It is preferable that the diameter of the corresponding annular concave portion 39 be in order. As the diameter of the annular recess 39, for example, an average value of the inner diameter and the outer diameter of the annular recess 39 can be adopted. Further, it is preferable that the depth of the annular concave portion 39 of the substrate 37 is the same for all the annular concave portions 39.
 被覆層38は、基板37の裏面S11側(平坦化膜16のカラーフィルタ18側の部分16b側)に形成され、第1及び第2の実施形態の被覆層26と同様に、段差構造39及び段差構造39の周囲の基板37の裏面S11を連続して被覆している。即ち、被覆層38は、裏面S11全体、つまり段差構造39を有する面全体を覆うように構成されている。段差構造39を覆う部分の上面は、非球面レンズの外周部の曲面状に形成されている。
 また、被覆層38の材料としては、例えば、光を透過するとともに、基板37の材料の屈折率との差が、基板37の材料の屈折率の±10%以内であるものを用いることができる。特に、屈折率の差の低減を考慮すると、基板37の材料と同じものを用いるのが好適である。入射光の被覆層38の屈折率と基板37の屈折率との差を小さくすることで、被覆層38と基板37との界面における入射光の散乱や反射を抑制することができる。
The coating layer 38 is formed on the back surface S11 side of the substrate 37 (the portion 16b side of the flattening film 16 on the color filter 18 side), and like the coating layers 26 of the first and second embodiments, the step structure 39 and The back surface S11 of the substrate 37 around the step structure 39 is continuously covered. That is, the coating layer 38 is configured to cover the entire back surface S11, that is, the entire surface having the step structure 39. The upper surface of the portion covering the step structure 39 is formed in a curved shape on the outer peripheral portion of the aspherical lens.
Further, as the material of the coating layer 38, for example, a material that transmits light and has a difference from the refractive index of the material of the substrate 37 within ± 10% of the refractive index of the material of the substrate 37 can be used. . In particular, in consideration of the reduction in the difference in the refractive index, it is preferable to use the same material as the material of the substrate 37. By reducing the difference between the refractive index of the coating layer 38 of the incident light and the refractive index of the substrate 37, scattering and reflection of the incident light at the interface between the coating layer 38 and the substrate 37 can be suppressed.
[3-2 補正レンズの製造方法]
 次に、第2の実施形態の固体撮像装置1の補正レンズ35(第3の実施形態の光学素子)の製造方法について説明する。図37A、図37B、図38A、図38B、図39A、図39B、図40A、図40B、図41A、図41B、図42A、図42B、図43A、図43B、図44A、及び図44Bは、第2の実施形態の光学素子の製造工程を示す平面図及び断面図である。図37A~図44Bでは、補正レンズ35を図33A及び図33Bに示した環状凹部36を有するレンズとする場合を例示している。
 まず、図37A及び図37Bに示すように、基板37の裏面S11全体に、フォトレジスト膜41を塗布する。続いて、図38A及び図38Bに示すように、フォトレジスト膜41を露光し、図39A及び図39Bに示すように、フォトレジスト膜41を現像する。
[3-2 Manufacturing method of correction lens]
Next, a method for manufacturing the correction lens 35 (the optical element according to the third embodiment) of the solid-state imaging device 1 according to the second embodiment will be described. FIGS. 37A, 37B, 38A, 38B, 39A, 39B, 40A, 40B, 41A, 41B, 42A, 42B, 43A, 43B, 43A, 44A, and 44B. It is a top view and a sectional view showing a manufacturing process of an optical element of a second embodiment. FIGS. 37A to 44B illustrate a case where the correction lens 35 is a lens having the annular concave portion 36 shown in FIGS. 33A and 33B.
First, as shown in FIGS. 37A and 37B, a photoresist film 41 is applied to the entire back surface S11 of the substrate 37. Subsequently, as shown in FIGS. 38A and 38B, the photoresist film 41 is exposed, and as shown in FIGS. 39A and 39B, the photoresist film 41 is developed.
 続いて、図40A及び図40Bに示すように、現像されたフォトレジスト膜41をエッチングマスクとして用いて、基板37の裏面S11をエッチングし、カラーフィルタ18を透過した後の光が入射される環状凹部状の段差構造39を複数形成する。続いて、図41A及び図41Bに示すように、基板37の裏面S11からフォトレジスト膜41、つまり、裏面S11のエッチングマスクを除去する。この結果、基板37の裏面S11に2次元アレイ状に規則的に配列された環状凹部状の段差構造39が複数形成される。 Subsequently, as shown in FIG. 40A and FIG. 40B, the rear surface S11 of the substrate 37 is etched using the developed photoresist film 41 as an etching mask, and the light after passing through the color filter 18 is incident. A plurality of concave step structures 39 are formed. Subsequently, as shown in FIGS. 41A and 41B, the photoresist film 41, that is, the etching mask of the back surface S11 is removed from the back surface S11 of the substrate 37. As a result, a plurality of annular recessed step structures 39 regularly arranged in a two-dimensional array on the back surface S11 of the substrate 37 are formed.
 続いて、図42A及び図42Bに示すように、基板37の裏面S11全体、つまり、段差構造39を有する面全体を覆うとともに、液面が水平となるように、被覆層38形成用の塗布液42を塗布する。塗布液42からなる層の厚さは、段差構造39の段差面40(環状凹部の底面)に対応する箇所が最も厚く、段差構造39が形成されていない部分に対応する箇所が最も薄くなる。塗布液42としては、例えば、第1及び第2の実施形態の塗布液34と同様に、スチレン系樹脂、アクリル系樹脂を適当な溶媒中に溶解してなる塗工液を採用できる。塗布液42の塗布方法としては、例えばスピンコート法を採用できる。 Subsequently, as shown in FIGS. 42A and 42B, the coating liquid for forming the coating layer 38 is formed so as to cover the entire back surface S11 of the substrate 37, that is, the entire surface having the step structure 39, and to make the liquid level horizontal. 42 is applied. The thickness of the layer made of the coating liquid 42 is the thickest at the portion corresponding to the step surface 40 (the bottom surface of the annular concave portion) of the step structure 39, and the thinnest at the portion corresponding to the portion where the step structure 39 is not formed. As the coating liquid 42, for example, similarly to the coating liquids 34 of the first and second embodiments, a coating liquid obtained by dissolving a styrene-based resin or an acrylic resin in an appropriate solvent can be employed. As a method of applying the coating liquid 42, for example, a spin coating method can be adopted.
 続いて、図43A及び図43Bに示すように、塗布した塗布液42を乾燥させる。その際、溶媒が揮発し、塗布液42からなる層の厚さが減少する。具体的には、塗布液42の乾燥の初期段階では、塗布液42の表面は、平坦で膜厚が均一に減少する。しかし、塗布液42の乾燥が進行すると、基板37の段差構造39により、凹部の塗布液42は、局所的に溶質濃度が低くなる。その結果、凹部では塗布液42の溶媒の蒸発速度が速くなり、凹部の塗布液42の表面が凹む。この現象によって、層の厚さの減少量は層の厚さが厚い箇所ほど大きくなる。即ち、段差構造39の段差面40(環状凹部の底面)に対応する箇所が最も減少量が大きく、段差構造39が形成されていない部分に対応する箇所が最も減少量が小さい。この結果、段差構造39を覆う部分に環状凹部を有するレンズ状の被覆層38が形成される。続いて、図44A及び図44Bに示すように、形成された被覆層38が永久膜となるように、凹レンズ状の被覆層38にUVキュアやベークを行う。この結果、被覆層38が硬化され、図33A及び図33Bに示した補正レンズ35が完成される。 Next, as shown in FIGS. 43A and 43B, the applied coating liquid 42 is dried. At that time, the solvent volatilizes, and the thickness of the layer composed of the coating liquid 42 decreases. Specifically, at the initial stage of drying the coating liquid 42, the surface of the coating liquid 42 is flat and the film thickness is uniformly reduced. However, as the drying of the coating liquid 42 proceeds, the solute concentration of the coating liquid 42 in the concave portion locally decreases due to the step structure 39 of the substrate 37. As a result, the evaporation speed of the solvent of the coating liquid 42 is increased in the concave portions, and the surface of the coating liquid 42 in the concave portions is concave. Due to this phenomenon, the amount of decrease in the layer thickness increases as the layer thickness increases. That is, the portion corresponding to the step surface 40 (the bottom surface of the annular concave portion) of the step structure 39 has the largest reduction amount, and the portion corresponding to the portion where the step structure 39 is not formed has the smallest reduction amount. As a result, a lens-shaped coating layer 38 having an annular concave portion in a portion covering the step structure 39 is formed. Subsequently, as shown in FIGS. 44A and 44B, UV curing or baking is performed on the concave lens-shaped coating layer 38 so that the formed coating layer 38 becomes a permanent film. As a result, the coating layer 38 is cured, and the correction lens 35 shown in FIGS. 33A and 33B is completed.
 なお、補正レンズ35を色収差を補正するレンズとする場合、つまり、補正レンズ35を図33A、図33B、図34A、図34B、図35A及び図35Bに示した環状凹部36を有するレンズとする場合、環状凹部36の形状に応じて、基板37の環状凹部39の幅及び直径を設計するのが好ましい。即ち、上記した、基板37に複数の段差構造39(環状凹部39)を形成する工程において、図33A、図34A及び図35Aに示すように、環状凹部39に対応するカラーフィルタ18が透過させる光の波長域(色)に応じて環状凹部39の幅及び直径を調節する。具体的には、まず、ウエハレンズ19に起因する色収差を補正するように、補正レンズ35の環状凹部36によって曲率を付ける位置やその曲率の大きさを設計する。続いて、塗布液42の塗布・乾燥のシミュレーションを用いて、設計した曲率を有する補正レンズ35の形状が実現されるように、環状凹部39の幅及び直径(位置)をパラメータとして最適化を行う。その際、基板37の環状凹部39の深さは、すべての環状凹部39で同一とするのが好ましい。これにより、カラーフィルタ18が透過させる光の波長域(色)毎に補正レンズ35の形状が異なったものとしつつ、基板37のすべての環状凹部39を一回のプロセスフローで同時に形成することができる。 When the correction lens 35 is a lens for correcting chromatic aberration, that is, when the correction lens 35 is a lens having the annular concave portion 36 shown in FIGS. 33A, 33B, 34A, 34B, 35A, and 35B. It is preferable to design the width and diameter of the annular recess 39 of the substrate 37 according to the shape of the annular recess 36. That is, in the above-described step of forming the plurality of step structures 39 (annular concave portions 39) on the substrate 37, as shown in FIGS. 33A, 34A, and 35A, light transmitted by the color filter 18 corresponding to the annular concave portions 39 is transmitted. The width and the diameter of the annular concave portion 39 are adjusted according to the wavelength range (color). Specifically, first, the position where the curvature is formed by the annular concave portion 36 of the correction lens 35 and the magnitude of the curvature are designed so as to correct the chromatic aberration caused by the wafer lens 19. Subsequently, optimization is performed using the width and the diameter (position) of the annular concave portion 39 as parameters so that the shape of the correction lens 35 having the designed curvature is realized using the simulation of the application and drying of the application liquid 42. . At this time, it is preferable that the depth of the annular concave portion 39 of the substrate 37 be the same for all the annular concave portions 39. Accordingly, all the annular concave portions 39 of the substrate 37 can be formed simultaneously in one process flow while the shape of the correction lens 35 is different for each wavelength range (color) of light transmitted by the color filter 18. it can.
 以上説明したように、第3の実施形態の補正レンズ35(光学素子)では、一方の面(裏面S11)に、裏面S11に対する高さが異なる段差面40を有する段差構造39が形成された基板37を備えるようにした。また、段差構造39及びその周囲の裏面S11を連続して覆い且つ光を透過する被覆層38を備えるようにした。それゆえ、段差構造39の形状によって多様な形状を実現でき設計の自由度が高い補正レンズ35を提供できる。 As described above, in the correction lens 35 (optical element) of the third embodiment, the substrate in which the step structure 39 having the step surface 40 having a height different from the rear surface S11 is formed on one surface (the rear surface S11). 37. In addition, the step structure 39 and the surrounding back surface S11 are provided with a covering layer 38 that continuously covers and transmits light. Therefore, various shapes can be realized by the shape of the step structure 39, and the correction lens 35 having a high degree of design freedom can be provided.
 また、第3の実施形態のレンズ群では、ウエハレンズ19(広義には「第1のレンズ」)と、ウエハレンズ19を透過した後の光が入射され、ウエハレンズ19に起因する収差を補正する補正レンズ35(広義には「第2のレンズ」)とを備えるようにした。そして、補正レンズ35が、一方の面(裏面S11)に、裏面S11に対する高さが異なる環状の段差面40を有する段差構造39が形成された基板37と、段差構造39及びその周囲の裏面S11を連続して覆い且つ光を透過する被覆層38とを備えるようにした。それゆえ、複雑な非球面レンズと同等の光学性能を持ったレンズを比較的容易に実現できる。 Further, in the lens group of the third embodiment, the light after passing through the wafer lens 19 (the “first lens” in a broad sense) and the wafer lens 19 is incident, and the aberration caused by the wafer lens 19 is corrected. Correction lens 35 (in a broad sense, “second lens”). The correction lens 35 includes a substrate 37 having a step structure 39 having an annular step surface 40 having a height different from that of the back surface S11 on one surface (back surface S11), a step structure 39, and a back surface S11 around the step structure 39. And a coating layer 38 that continuously covers and transmits light. Therefore, a lens having the same optical performance as a complicated aspherical lens can be realized relatively easily.
 また、第3の実施形態のレンズ群では、補正レンズ35(第2のレンズ)を、ウエハレンズ19(第1のレンズ)に起因する色収差を補正するレンズとした。それゆえ、ウエハレンズ19に対応する光電変換部23の感度の低下を防止することができ、また、その光電変換部23の周囲の光電変換部23における混色の発生を防止することができる。 In the lens group according to the third embodiment, the correction lens 35 (second lens) is a lens that corrects chromatic aberration caused by the wafer lens 19 (first lens). Therefore, it is possible to prevent the sensitivity of the photoelectric conversion unit 23 corresponding to the wafer lens 19 from lowering, and to prevent the occurrence of color mixture in the photoelectric conversion unit 23 around the photoelectric conversion unit 23.
 また、第3の実施形態の光学素子の製造方法では、基板37に2次元アレイ状に規則的に配列された複数の段差構造39を形成する工程と、複数の段差構造39が形成された基板37に塗布液42を塗布する工程と、複数の段差構造39及びその周囲の基板37の面を連続して覆い且つ光を透過する被覆層38が形成されるように、塗布液42を乾燥させる工程と、を含むようにした。そして、段差構造39のそれぞれは、カラーフィルタ18を透過した後の光が入射されるレンズを形成するための環状凹部39を含むようにした。また、基板37に複数の段差構造39を形成する工程では、複数の環状凹部39のそれぞれの幅及び直径を、環状凹部39に対応するカラーフィルタ18が透過させる光の波長域(色)に応じて調節するようにした。それゆえ、基板37の環状凹部39の深さを同一とすることができ、すべての環状凹部39を一回のプロセスフローで同時に形成できる。 In the method for manufacturing an optical element according to the third embodiment, a step of forming a plurality of step structures 39 regularly arranged in a two-dimensional array on a substrate 37 and a step of forming a plurality of step structures 39 on the substrate 37 A step of applying a coating liquid 42 to the coating liquid 37 and drying the coating liquid 42 so as to form a coating layer 38 that continuously covers the plurality of step structures 39 and the surrounding surface of the substrate 37 and transmits light. And a process. Each of the step structures 39 includes an annular concave portion 39 for forming a lens into which the light transmitted through the color filter 18 is incident. In the step of forming the plurality of step structures 39 on the substrate 37, the width and diameter of each of the plurality of annular recesses 39 are determined according to the wavelength range (color) of light transmitted by the color filter 18 corresponding to the annular recess 39. I adjusted it. Therefore, the depth of the annular concave portions 39 of the substrate 37 can be made the same, and all the annular concave portions 39 can be formed simultaneously by one process flow.
 ちなみに、例えば、特許文献1に記載されていているように、各段差構造の上面のそれぞれにレンズ形成パターン層を形成した後、レンズ形成パターン層を熱リフローさせることで、レンズを形成する熱リフロー法では、表面張力を利用して曲面構造を形成するため、レンズに緩やかな曲率部分を持たせることが難しく、収差補正レンズを形成できない。
 これに対し、第3の実施形態の光学素子の製造方法では、段差構造39の形状に応じて、被覆層38の表面に緩やかな曲率部分を持たせることができ、被覆層38の表面を制御性高く変化させることができる。また塗布液42の塗布・乾燥のシミュレーションを用いることで、所望の補正レンズ35の形状が実現されるように段差構造39を設計できる。
Incidentally, as described in Patent Document 1, for example, after forming a lens formation pattern layer on each of the upper surfaces of the step structures, the lens formation pattern layer is thermally reflowed to form a lens. According to the method, since a curved surface structure is formed using surface tension, it is difficult to provide a lens with a gentle curvature, and an aberration correction lens cannot be formed.
On the other hand, in the method of manufacturing an optical element according to the third embodiment, the surface of the coating layer 38 can have a gentle curvature according to the shape of the step structure 39, and the surface of the coating layer 38 can be controlled. Can be changed highly. Further, the step structure 39 can be designed so that the desired shape of the correction lens 35 is realized by using the simulation of the application and drying of the application liquid 42.
[3-3 変形例]
(1)第1及び第2の実施形態に係る固体撮像装置1では、本開示の光学素子を、ウエハレンズ19に用いる場合を例に説明したが、例えば、図45に示すように、平坦化膜16に形成されるインナーレンズ43に適用することもできる。また、例えば、図46に示すように、ディスプレイデバイス等に用いられるリフレクタ44に適用することもできる。図46では、凹レンズ状の被覆層26の表面S9に、光を反射するリフレクタ層45(反射層)、光を発する発光層46、凹凸がない平坦面を形成する層間膜47、及び表示させたい光の波長に対応して形成されたカラーフィルタ48がこの順に積層された場合を例示している。図46では、リフレクタ44で反射された反射光49を矢印で示している。
[3-3 Modification]
(1) In the solid-state imaging device 1 according to the first and second embodiments, an example in which the optical element of the present disclosure is used for the wafer lens 19 has been described. For example, as shown in FIG. The present invention can be applied to the inner lens 43 formed on the film 16. For example, as shown in FIG. 46, the present invention can be applied to a reflector 44 used for a display device or the like. In FIG. 46, on the surface S9 of the concave lens-shaped coating layer 26, a reflector layer 45 (reflection layer) that reflects light, a light emitting layer 46 that emits light, an interlayer film 47 that forms a flat surface without unevenness, and display are desired. The case where the color filters 48 formed corresponding to the wavelength of light are stacked in this order is illustrated. In FIG. 46, the reflected light 49 reflected by the reflector 44 is indicated by an arrow.
(2)また、本開示は、第1及び第2の実施形態に係る固体撮像装置1のように、可視光の入射光量の分布を検知して画像として撮像する固体撮像装置に限られるものではない。例えば、赤外線やX線、粒子等の入射量の分布を画像として撮像する固体撮像装置にも適用可能である。また、圧力や静電容量等、他の物理量の分布を検知して画像として撮像する指紋検出センサ等の固体撮像装置(物理量分布検知装置)全般にも適用可能である。 (2) The present disclosure is not limited to a solid-state imaging device that detects a distribution of the amount of incident visible light and captures an image as in the solid-state imaging devices 1 according to the first and second embodiments. Absent. For example, the present invention can be applied to a solid-state imaging device that captures, as an image, a distribution of an incident amount of infrared rays, X-rays, particles, and the like. Further, the present invention can be applied to all solid-state imaging devices (physical quantity distribution detecting devices) such as a fingerprint detection sensor that detects distribution of other physical quantities such as pressure and capacitance and captures an image as an image.
(3)また、本開示は、第1及び第2の実施形態に係る固体撮像装置1のように、画素領域3の各画素9を行単位で順に走査して各画素9から画素信号を読み出す固体撮像装置に限られるものではない。例えば、画素単位で任意の画素9を選択し、選択した画素9から画素単位で信号を読み出すX-Yアドレス型の固体撮像装置に対しても適用可能である。 (3) In the present disclosure, as in the solid-state imaging devices 1 according to the first and second embodiments, the pixels 9 in the pixel region 3 are sequentially scanned in units of rows to read pixel signals from the pixels 9. It is not limited to a solid-state imaging device. For example, the present invention is also applicable to an XY address type solid-state imaging device in which an arbitrary pixel 9 is selected in pixel units and a signal is read from the selected pixel 9 in pixel units.
(4)また、第3の実施形態に係る固体撮像装置1では、補正レンズ35を、平坦化膜16内に配置する場合を例に説明したが、例えば、ウエハレンズ19の受光面側に配置し、ウエハレンズ19を透過する前の光が補正レンズ35に入射される構成としてもよい。
(5)また、第3の実施形態に係る固体撮像装置1では、補正レンズ35を構成する基板37の段差構造39として、円環状の環状凹部を形成する場合を例に説明したが、例えば、図47A及び図47Bに示すように、円環状の環状凸部を形成するようにしてもよい。
(4) In the solid-state imaging device 1 according to the third embodiment, the case where the correction lens 35 is disposed in the flattening film 16 has been described as an example. For example, the correction lens 35 is disposed on the light receiving surface side of the wafer lens 19. Alternatively, the light before passing through the wafer lens 19 may be incident on the correction lens 35.
(5) In the solid-state imaging device 1 according to the third embodiment, an example in which an annular concave portion is formed as the step structure 39 of the substrate 37 forming the correction lens 35 has been described. As shown in FIGS. 47A and 47B, an annular convex portion may be formed.
(6)また、第3の実施形態に係る固体撮像装置1では、ウエハレンズ19と補正レンズ35とを組み合わせたレンズ群とすることで、非球面レンズを実現する場合を例に説明したが、例えば図48A、図48B、図49A及び図49Bに示すように、第1、第2及び第3の実施形態の光学素子の製造方法を組み合わせて、非球面レンズ状のウエハレンズ19を形成してもよい。図48A及び図48Bでは、ウエハレンズ19を構成する基板25の裏面S7に、凹状部である段差構造27(広義には「第1の段差構造」)と、段差構造27の周囲を囲む環状の段差面40を有する環状凹部である段差構造39(広義には「第2の段差構造」)とを形成した場合を例示している。また、図49A及び図49Bでは、ウエハレンズ19を構成する基板25の裏面S7に、凸状部である段差構造27(第1の段差構造)と、段差構造27の周囲を囲む環状の段差面40を有する環状凸部である段差構造39(第2の段差面)とを形成した場合を例示している。その際被覆層26は、段差構造27、段差構造39及びそれらの周囲の裏面S7を連続して覆い且つ光を透過する。 (6) Also, in the solid-state imaging device 1 according to the third embodiment, an example has been described in which an aspheric lens is realized by forming a lens group in which the wafer lens 19 and the correction lens 35 are combined. For example, as shown in FIG. 48A, FIG. 48B, FIG. 49A and FIG. 49B, the aspherical lens-shaped wafer lens 19 is formed by combining the manufacturing methods of the optical elements of the first, second and third embodiments. Is also good. 48A and 48B, on the back surface S7 of the substrate 25 forming the wafer lens 19, a step structure 27 (a “first step structure” in a broad sense) that is a concave portion and an annular shape surrounding the periphery of the step structure 27 are provided. The case where a step structure 39 (in a broad sense, a “second step structure”) which is an annular concave portion having a step surface 40 is formed is illustrated. 49A and 49B, on the back surface S7 of the substrate 25 constituting the wafer lens 19, a step structure 27 (first step structure) as a convex portion and an annular step surface surrounding the periphery of the step structure 27 are provided. The case where a step structure 39 (a second step surface) which is an annular convex portion having a step 40 is formed is illustrated. At that time, the coating layer 26 continuously covers the step structure 27, the step structure 39, and the back surface S7 around them, and transmits light.
(7)また、第3の実施形態に係る固体撮像装置1では、ウエハレンズ19と補正レンズ35とを組み合わせてレンズ群を構成する例を示したが、例えば、ウエハレンズ19と補正レンズ35とに加えて、インナーレンズも組み合わせてレンズ群を構成するようにしてもよい。具体的には、図50A、図50B及び図50Cに示すように、補正レンズ35と光電変換部23との間にインナーレンズ50を備えるようにし、ウエハレンズ19と補正レンズ35とインナーレンズ50とを組み合わせたレンズ群を構成してもよい。図50Aは、赤色の波長の光を透過させるカラーフィルタ18に対応する画素9に構成されたレンズ群による光53の集光状態を例示している。また、図50Bは、緑色の波長の光を透過させるカラーフィルタ18に対応する画素9に構成されたレンズ群による光53の集光状態を例示している。また、図50Cは、青色の波長の光を透過させるカラーフィルタ18に対応する画素9に構成されたレンズ群による光53の集光状態を例示している。
 また、例えば、図51A、図51B及び図51Cに示すように、ウエハレンズ19と補正レンズ35との間にインナーレンズ51を備え、ウエハレンズ19とインナーレンズ51と補正レンズ35とを組み合わせたレンズ群を構成してもよい。図51Aは、赤色の波長の光を透過させるカラーフィルタ18に対応する画素9に構成されたレンズ群による光53の集光状態を例示している。また、図51Bは、緑色の波長の光を透過させるカラーフィルタ18に対応する画素9に構成されたレンズ群による光53の集光状態を例示している。また、図51Cは、青色の波長の光を透過させるカラーフィルタ18に対応する画素9に構成されたレンズ群による光53の集光状態を例示している。このようなレンズ群とした場合、レンズ群を介することで、ウエハレンズ19に入射した光のほぼ全てが、レンズ群に対応する光電変換部23に入射するように補正レンズ35を設計する。
(7) In the solid-state imaging device 1 according to the third embodiment, an example has been described in which the lens group is configured by combining the wafer lens 19 and the correction lens 35. In addition, an inner lens may be combined to form a lens group. Specifically, as shown in FIGS. 50A, 50B, and 50C, an inner lens 50 is provided between the correction lens 35 and the photoelectric conversion unit 23, and the wafer lens 19, the correction lens 35, and the inner lens 50 May be combined to form a lens group. FIG. 50A exemplifies a state in which light 53 is collected by a lens group formed in the pixel 9 corresponding to the color filter 18 that transmits red wavelength light. FIG. 50B illustrates a state in which the light 53 is collected by a lens group configured in the pixel 9 corresponding to the color filter 18 that transmits light of a green wavelength. FIG. 50C illustrates a state in which the light 53 is collected by a lens group configured in the pixel 9 corresponding to the color filter 18 that transmits light of a blue wavelength.
Also, for example, as shown in FIGS. 51A, 51B and 51C, a lens provided with an inner lens 51 between the wafer lens 19 and the correction lens 35, and a combination of the wafer lens 19, the inner lens 51, and the correction lens 35 A group may be formed. FIG. 51A illustrates a state in which the light 53 is collected by a lens group formed in the pixel 9 corresponding to the color filter 18 that transmits light of a red wavelength. FIG. 51B illustrates a state in which the light 53 is collected by a lens group configured in the pixel 9 corresponding to the color filter 18 that transmits green wavelength light. FIG. 51C illustrates a state in which the light 53 is collected by a lens group configured in the pixel 9 corresponding to the color filter 18 that transmits light of a blue wavelength. In the case of such a lens group, the correction lens 35 is designed so that almost all of the light that has entered the wafer lens 19 through the lens group enters the photoelectric conversion unit 23 corresponding to the lens group.
(8)また、第3の実施形態に係る固体撮像装置1では、図31、図32A、図32B及び図32Cに示すように、ウエハレンズ19に起因する色収差を補正するための補正レンズ35を、すべてのウエハレンズ19それぞれに対応させて形成する例を示したが、例えば、一部のウエハレンズ19にのみ対応させて形成する構成としてもよい。例えば、青色の波長の光を透過させるカラーフィルタ18に対応するウエハレンズ19による光の結像位置が、ウエハレンズ19に対応する光電変換部23の中央部から最も外れる場合には、補正レンズ35を、そのウエハレンズ19にのみ対応させて形成してもよい。 (8) In the solid-state imaging device 1 according to the third embodiment, as shown in FIGS. 31, 32A, 32B, and 32C, a correction lens 35 for correcting chromatic aberration caused by the wafer lens 19 is provided. Although the example in which the wafer lens 19 is formed so as to correspond to each of the wafer lenses 19 has been described, for example, the configuration may be such that the wafer lens 19 is formed so as to correspond to only some of the wafer lenses 19. For example, when the light image formation position of the wafer lens 19 corresponding to the color filter 18 transmitting the light of the blue wavelength is most deviated from the center of the photoelectric conversion unit 23 corresponding to the wafer lens 19, the correction lens 35 May be formed so as to correspond only to the wafer lens 19.
(9)また、第3の実施形態に係る固体撮像装置1では、補正レンズ35を、ウエハレンズ19と補正レンズ35とを組み合わせて実現される非球面レンズの集光率が上がるように構成する場合を例に説明したが、例えば、非球面レンズの集光率が下がるように構成してもよい。例えば、複数の画素9のそれぞれに対応させて、赤外光を遮光するフィルタを設けた場合、フィルタの遮光性能のばらつきによって、他の光電変換部23に比べ、赤外光の受光量が多い画素9を生じる可能性がある。これに対し、非球面レンズにおける赤外光の集光率が下がるように補正レンズ35を構成することで、赤外光の受光量が多い画素9を生じても、その画素9に対応する光電変換部23への赤外光の入射量を低減できる。 (9) In the solid-state imaging device 1 according to the third embodiment, the correction lens 35 is configured so that the light-collecting rate of the aspheric lens realized by combining the wafer lens 19 and the correction lens 35 is increased. Although the case has been described as an example, for example, the light-collecting rate of the aspherical lens may be reduced. For example, when a filter that blocks infrared light is provided in correspondence with each of the plurality of pixels 9, the amount of infrared light received is larger than that of the other photoelectric conversion units 23 due to variations in the light blocking performance of the filter. Pixel 9 may result. On the other hand, if the correction lens 35 is configured so that the condensing rate of the infrared light in the aspherical lens is lowered, even if the pixel 9 that receives a large amount of infrared light is generated, the photoelectric corresponding to the pixel 9 is generated. The amount of incident infrared light on the converter 23 can be reduced.
〈4.第4の実施形態:電子機器〉
 次に、本開示の第4の実施形態に係る電子機器について説明する。図52は、本開示の第4の実施形態に係る電子機器100の概略構成図である。
<4. Fourth embodiment: electronic device>
Next, an electronic device according to a fourth embodiment of the present disclosure will be described. FIG. 52 is a schematic configuration diagram of an electronic device 100 according to the fourth embodiment of the present disclosure.
 第4の実施形態に係る電子機器100は、固体撮像装置101と、光学レンズ102と、シャッタ装置103と、駆動回路104と、信号処理回路105とを備えている。第4の実施形態の電子機器100は、固体撮像装置101として、本開示の第1の実施形態に係る固体撮像装置1を電子機器(例えば、カメラ)に用いた場合の実施形態を示す。 The electronic device 100 according to the fourth embodiment includes a solid-state imaging device 101, an optical lens 102, a shutter device 103, a drive circuit 104, and a signal processing circuit 105. The electronic device 100 according to the fourth embodiment shows an embodiment in which the solid-state imaging device 1 according to the first embodiment of the present disclosure is used as an electronic device (for example, a camera) as the solid-state imaging device 101.
 光学レンズ102は、被写体からの像光(入射光106)を固体撮像装置101の撮像面上に結像させる。これにより、固体撮像装置101内に一定期間にわたって信号電荷が蓄積される。シャッタ装置103は、固体撮像装置101への光照射期間及び遮光期間を制御する。駆動回路104は、固体撮像装置101の転送動作及びシャッタ装置103のシャッタ動作を制御する駆動信号を供給する。駆動回路104から供給される駆動信号(タイミング信号)により、固体撮像装置101の信号転送を行なう。信号処理回路105は、固体撮像装置101から出力される信号(画素信号)に各種信号処理を行う。信号処理が行われた映像信号は、メモリ等の記憶媒体に記憶され、或いはモニタに出力される。 The optical lens 102 forms image light (incident light 106) from a subject on the imaging surface of the solid-state imaging device 101. As a result, signal charges are accumulated in the solid-state imaging device 101 for a certain period. The shutter device 103 controls a light irradiation period and a light blocking period to the solid-state imaging device 101. The drive circuit 104 supplies a drive signal for controlling the transfer operation of the solid-state imaging device 101 and the shutter operation of the shutter device 103. The signal transfer of the solid-state imaging device 101 is performed by a drive signal (timing signal) supplied from the drive circuit 104. The signal processing circuit 105 performs various signal processing on a signal (pixel signal) output from the solid-state imaging device 101. The video signal on which the signal processing has been performed is stored in a storage medium such as a memory or output to a monitor.
 なお、固体撮像装置1を適用できる電子機器100としては、カメラに限られるものではなく、他の電子機器にも適用することができる。例えば、携帯電話機やタブレット端末等のモバイル機器向けカメラモジュール等の撮像装置に適用してもよい。
 また、第4の実施形態では、固体撮像装置101として、第1の実施形態に係る固体撮像装置1を電子機器に用いる構成としたが、他の構成としてもよい。例えば、第2の実施形態に係る固体撮像装置1や、第3の実施形態に係る固体撮像装置1、変形例に係る固体撮像装置1を電子機器に用いてもよい。
The electronic device 100 to which the solid-state imaging device 1 can be applied is not limited to a camera, but can be applied to other electronic devices. For example, the present invention may be applied to an imaging device such as a camera module for a mobile device such as a mobile phone or a tablet terminal.
Further, in the fourth embodiment, the solid-state imaging device 101 according to the first embodiment is used for an electronic device as the solid-state imaging device 101, but another configuration may be used. For example, the solid-state imaging device 1 according to the second embodiment, the solid-state imaging device 1 according to the third embodiment, and the solid-state imaging device 1 according to the modification may be used in an electronic device.
〈5.移動体への応用例〉
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<5. Example of application to moving objects>
The technology (the present technology) according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure is realized as a device mounted on any type of moving object such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
 図53は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 53 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a moving object control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図53に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 Vehicle control system 12000 includes a plurality of electronic control units connected via communication network 12001. In the example shown in FIG. 53, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an inside information detection unit 12040, and an integrated control unit 12050. In addition, as a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio / video output unit 12052, and a vehicle-mounted network I / F (interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the driving system control unit 12010 includes a driving force generating device for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting driving force to wheels, and a steering angle of the vehicle. It functions as a control mechanism such as a steering mechanism for adjusting and a braking device for generating a braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a head lamp, a back lamp, a brake lamp, a blinker, and a fog lamp. In this case, a radio wave or various switch signals transmitted from a portable device replacing the key may be input to the body control unit 12020. The body control unit 12020 receives the input of these radio waves or signals and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 外 Out-of-vehicle information detection unit 12030 detects information external to the vehicle on which vehicle control system 12000 is mounted. For example, an imaging unit 12031 is connected to the outside-of-vehicle information detection unit 12030. The out-of-vehicle information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle, and receives the captured image. The out-of-vehicle information detection unit 12030 may perform an object detection process or a distance detection process of a person, a vehicle, an obstacle, a sign, a character on a road surface, or the like based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of received light. The imaging unit 12031 can output an electric signal as an image or can output the information as distance measurement information. The light received by the imaging unit 12031 may be visible light or non-visible light such as infrared light.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects information in the vehicle. The in-vehicle information detection unit 12040 is connected to, for example, a driver status detection unit 12041 that detects the status of the driver. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 determines the degree of driver fatigue or concentration based on the detection information input from the driver state detection unit 12041. The calculation may be performed, or it may be determined whether the driver has fallen asleep.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates a control target value of the driving force generation device, the steering mechanism or the braking device based on the information on the inside and outside of the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, and the drive system control unit A control command can be output to 12010. For example, the microcomputer 12051 implements functions of ADAS (Advanced Driver Assistance System) including vehicle collision avoidance or impact mitigation, following running based on the following distance, vehicle speed maintaining running, vehicle collision warning, vehicle lane departure warning, and the like. Cooperative control for the purpose.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generation device, the steering mechanism, the braking device, and the like based on the information about the surroundings of the vehicle obtained by the outside information detection unit 12030 or the inside information detection unit 12040, so that the driver 120 It is possible to perform cooperative control for automatic driving or the like in which the vehicle travels autonomously without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 マ イ ク ロ Also, the microcomputer 12051 can output a control command to the body system control unit 12020 based on information on the outside of the vehicle acquired by the outside information detection unit 12030. For example, the microcomputer 12051 controls the headlamp in accordance with the position of the preceding vehicle or the oncoming vehicle detected by the outside-of-vehicle information detection unit 12030, and performs cooperative control for the purpose of preventing glare such as switching a high beam to a low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図53の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The sound image output unit 12052 transmits at least one of a sound signal and an image signal to an output device capable of visually or audibly notifying a passenger of the vehicle or the outside of the vehicle of information. In the example of FIG. 53, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
 図54は、撮像部12031の設置位置の例を示す図である。 FIG. 54 is a diagram illustrating an example of an installation position of the imaging unit 12031.
 図54では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 54, the vehicle 12100 includes imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door of the vehicle 12100, and an upper portion of a windshield in the vehicle interior. The imaging unit 12101 provided on the front nose and the imaging unit 12105 provided above the windshield in the passenger compartment mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 provided in the side mirror mainly acquire images of the side of the vehicle 12100. The imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100. The forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, and the like.
 なお、図54には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 FIG. 54 shows an example of the imaging range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and the imaging range 12114 indicates 13 shows an imaging range of an imaging unit 12104 provided in a rear bumper or a back door. For example, a bird's-eye view image of the vehicle 12100 viewed from above is obtained by superimposing image data captured by the imaging units 12101 to 12104.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements or an imaging element having pixels for detecting a phase difference.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 calculates a distance to each three-dimensional object in the imaging ranges 12111 to 12114 and a temporal change of the distance (relative speed with respect to the vehicle 12100). , It is possible to extract, as a preceding vehicle, a three-dimensional object that travels at a predetermined speed (for example, 0 km / h or more) in a direction substantially the same as that of the vehicle 12100, which is the closest three-dimensional object on the traveling path of the vehicle 12100 it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured before the preceding vehicle and perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts the three-dimensional object data relating to the three-dimensional object into other three-dimensional objects such as a motorcycle, a normal vehicle, a large vehicle, a pedestrian, a telephone pole, and the like based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines a collision risk indicating a risk of collision with each obstacle, and when the collision risk is equal to or more than the set value and there is a possibility of collision, via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver through forced driving and avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared light. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian exists in the captured images of the imaging units 12101 to 12104. The recognition of such a pedestrian is performed by, for example, extracting a feature point in an image captured by the imaging units 12101 to 12104 as an infrared camera, and performing a pattern matching process on a series of feature points indicating the outline of the object to determine whether the object is a pedestrian. Is performed according to a procedure for determining When the microcomputer 12051 determines that a pedestrian is present in the images captured by the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a rectangular contour for emphasis to the recognized pedestrian. The display unit 12062 is controlled so that is superimposed. Further, the sound image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031等に適用され得る。具体的には、図1の固体撮像装置1は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、より見やすい撮影画像を得ることができるため、ドライバの疲労を軽減することが可能になる。 As described above, an example of the vehicle control system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to the imaging unit 12031 or the like among the configurations described above. Specifically, the solid-state imaging device 1 in FIG. 1 can be applied to the imaging unit 12031. By applying the technology according to the present disclosure to the imaging unit 12031, a captured image that is more easily viewable can be obtained, so that driver fatigue can be reduced.
〈6.内視鏡手術システムへの応用例〉
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
<6. Example of application to endoscopic surgery system>
The technology (the present technology) according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
 図55は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 FIG. 55 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology (the present technology) according to the present disclosure may be applied.
 図55では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。 FIG. 55 shows a state in which an operator (doctor) 11131 is performing an operation on a patient 11132 on a patient bed 11133 using the endoscopic operation system 11000. As shown, the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as an insufflation tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100. And a cart 11200 on which various devices for endoscopic surgery are mounted.
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。 The endoscope 11100 includes a lens barrel 11101 having a predetermined length from the distal end inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101. In the illustrated example, the endoscope 11100 which is configured as a so-called rigid endoscope having a hard lens barrel 11101 is illustrated. However, the endoscope 11100 may be configured as a so-called flexible endoscope having a soft lens barrel. Good.
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 開口 An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101. A light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the distal end of the lens barrel by a light guide that extends inside the lens barrel 11101, and the objective The light is radiated toward the observation target in the body cavity of the patient 11132 via the lens. In addition, the endoscope 11100 may be a direct view scope, a perspective view scope, or a side view scope.
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。 光学 An optical system and an image sensor are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the image sensor by the optical system. The observation light is photoelectrically converted by the imaging element, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated. The image signal is transmitted as raw data to a camera control unit (CCU: \ Camera \ Control \ Unit) 11201.
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。 The $ CCU 11201 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and controls the operations of the endoscope 11100 and the display device 11202 overall. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal for displaying an image based on the image signal, such as a development process (demosaicing process).
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。 The display device 11202 displays an image based on an image signal on which image processing has been performed by the CCU 11201 under the control of the CCU 11201.
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。 The light source device 11203 includes a light source such as an LED (Light Emitting Diode), for example, and supplies the endoscope 11100 with irradiation light when imaging an operation part or the like.
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。 The input device 11204 is an input interface for the endoscopic surgery system 11000. The user can input various information and input instructions to the endoscopic surgery system 11000 via the input device 11204. For example, the user inputs an instruction or the like to change imaging conditions (type of irradiation light, magnification, focal length, and the like) by the endoscope 11100.
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment instrument control device 11205 controls the driving of the energy treatment instrument 11112 for cauterizing, incising a tissue, sealing a blood vessel, and the like. The insufflation device 11206 is used to inflate the body cavity of the patient 11132 for the purpose of securing the visual field by the endoscope 11100 and securing the working space of the operator. Send. The recorder 11207 is a device that can record various types of information related to surgery. The printer 11208 is a device capable of printing various types of information on surgery in various formats such as text, images, and graphs.
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。 The light source device 11203 that supplies the endoscope 11100 with irradiation light at the time of imaging the operation site can be configured by, for example, a white light source including an LED, a laser light source, or a combination thereof. When a white light source is configured by a combination of the RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. It can be carried out. In this case, the laser light from each of the RGB laser light sources is radiated to the observation target in a time-division manner, and the driving of the image pickup device of the camera head 11102 is controlled in synchronization with the irradiation timing. It is also possible to capture the image obtained in a time-division manner. According to this method, a color image can be obtained without providing a color filter in the image sensor.
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 The driving of the light source device 11203 may be controlled so as to change the intensity of output light at predetermined time intervals. By controlling the driving of the image sensor of the camera head 11102 in synchronization with the timing of the change of the light intensity, an image is acquired in a time-division manner, and the image is synthesized, so that a high dynamic image without so-called blackout and whiteout is obtained. An image of the range can be generated.
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 The light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation. In the special light observation, for example, by utilizing the wavelength dependence of the absorption of light in the body tissue, by irradiating light in a narrower band than the irradiation light (ie, white light) at the time of normal observation, the surface of the mucous membrane is exposed. A so-called narrow-band light observation (Narrow / Band / Imaging) for photographing a predetermined tissue such as a blood vessel with high contrast is performed. Alternatively, in the special light observation, fluorescence observation in which an image is obtained by fluorescence generated by irradiating excitation light may be performed. In fluorescence observation, body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and Irradiation with excitation light corresponding to the fluorescence wavelength of the reagent can be performed to obtain a fluorescence image. The light source device 11203 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
 図56は、図55に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。 FIG. 56 is a block diagram showing an example of a functional configuration of the camera head 11102 and the CCU 11201 shown in FIG.
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。 The camera head 11102 includes a lens unit 11401, an imaging unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405. The CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413. The camera head 11102 and the CCU 11201 are communicably connected to each other by a transmission cable 11400.
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。 The lens unit 11401 is an optical system provided at a connection with the lens barrel 11101. Observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102, and enters the lens unit 11401. The lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。 The imaging unit 11402 includes an imaging element. The number of imaging elements constituting the imaging unit 11402 may be one (so-called single-panel type) or plural (so-called multi-panel type). When the imaging unit 11402 is configured as a multi-panel type, for example, an image signal corresponding to each of RGB may be generated by each image sensor, and a color image may be obtained by combining the image signals. Alternatively, the imaging unit 11402 may be configured to include a pair of imaging elements for acquiring right-eye and left-eye image signals corresponding to 3D (Dimensional) display. By performing the 3D display, the operator 11131 can more accurately grasp the depth of the living tissue in the operative part. Note that when the imaging unit 11402 is configured as a multi-plate system, a plurality of lens units 11401 may be provided for each imaging element.
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。 撮 像 In addition, the imaging unit 11402 does not necessarily have to be provided in the camera head 11102. For example, the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。 The drive unit 11403 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Thus, the magnification and the focus of the image captured by the imaging unit 11402 can be appropriately adjusted.
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。 The communication unit 11404 is configured by a communication device for transmitting and receiving various information to and from the CCU 11201. The communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。 The communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405. The control signal includes, for example, information indicating that the frame rate of the captured image is specified, information that specifies the exposure value at the time of imaging, and / or information that specifies the magnification and focus of the captured image. Contains information about the condition.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。 Note that the above-described imaging conditions such as the frame rate, the exposure value, the magnification, and the focus may be appropriately designated by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good. In the latter case, the endoscope 11100 has a so-called AE (Auto Exposure) function, an AF (Auto Focus) function, and an AWB (Auto White Balance) function.
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。 The camera head control unit 11405 controls the driving of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。 The communication unit 11411 is configured by a communication device for transmitting and receiving various information to and from the camera head 11102. The communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。 (4) The communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102. The image signal and the control signal can be transmitted by electric communication, optical communication, or the like.
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。 The image processing unit 11412 performs various types of image processing on an image signal that is RAW data transmitted from the camera head 11102.
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。 The control unit 11413 performs various kinds of control related to imaging of the operation section and the like by the endoscope 11100 and display of a captured image obtained by imaging the operation section and the like. For example, the control unit 11413 generates a control signal for controlling driving of the camera head 11102.
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。 制 御 Also, the control unit 11413 causes the display device 11202 to display a captured image showing the operative part or the like based on the image signal subjected to the image processing by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects a shape, a color, or the like of an edge of an object included in the captured image, and thereby detects a surgical tool such as forceps, a specific living body site, bleeding, a mist when using the energy treatment tool 11112, and the like. Can be recognized. When displaying the captured image on the display device 11202, the control unit 11413 may use the recognition result to superimpose and display various types of surgery support information on the image of the operative site. By superimposing the operation support information and presenting it to the operator 11131, the burden on the operator 11131 can be reduced, and the operator 11131 can reliably perform the operation.
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 The transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。 Here, in the illustrated example, the communication is performed by wire using the transmission cable 11400, but the communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、内視鏡11100や、カメラヘッド11102の撮像部11402等に適用され得る。具体的には、図1の固体撮像装置1は、撮像部10402に適用することができる。撮像部11402に本開示に係る技術を適用することにより、より鮮明な術部画像を得ることができるため、術者が術部を確実に確認することが可能になる。 As described above, an example of the endoscopic surgery system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to, for example, the endoscope 11100, the imaging unit 11402 of the camera head 11102, and the like among the configurations described above. Specifically, the solid-state imaging device 1 in FIG. 1 can be applied to the imaging unit 10402. By applying the technology according to the present disclosure to the imaging unit 11402, a clearer operation part image can be obtained, so that the operator can surely confirm the operation part.
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。 Here, the endoscopic surgery system has been described as an example, but the technology according to the present disclosure may be applied to, for example, a microscopic surgery system or the like.
 なお、本技術は、以下のような構成を取ることができる。
(1)
 一方の面に、当該一方の面に対する高さが異なる段差面を有する段差構造が形成された基板と、
 前記段差構造及びその周囲の前記一方の面を連続して覆い且つ光を透過又は反射する被覆層とを備える
 光学素子。
(2)
 前記段差構造は、前記一方の面と前記段差面とを連続させる側面として、前記一方の面の法線方向に対して傾斜した傾斜面又は曲面を有する
 前記(1)に記載の光学素子。
(3)
 前記段差構造は、二段以上の前記段差面を有する
 前記(1)に記載の光学素子。
(4)
 前記段差構造は、前記一方の面と前記段差面とを連続させる側面、及び前記二段の関係にある二つの前記段差面を連続させる側面として、前記一方の面の法線方向に対して平行な垂直面、並びに前記一方の面の法線方向に対して傾斜した傾斜面及び曲面の少なくとも何れかを有する
 前記(3)に記載の光学素子。
(5)
 前記傾斜面の傾斜角は、前記一方の面の法線方向に対して0度以上60度以下である
 前記(2)または(4)に記載の光学素子。
(6)
 前記段差構造の幅と前記段差構造の高さとの比率は1:10~10:1である
 前記(1)から(5)の何れかに記載の光学素子。
(7)
 前記段差構造は、平面視において、円形状、多角形状、及び楕円形状の少なくとも何れかである
 前記(1)から(6)の何れかに記載の光学素子。
(8)
 前記楕円形状のアスペクト比は、1以上5以下である
 前記(7)に記載の光学素子。
(9)
 前記段差構造の各段差面の外周は、平面視において、互いに離間している
 前記(3)に記載の光学素子。
(10)
 前記基板の材料の屈折率と前記被覆層の材料の屈折率との差は、前記基板の材料の屈折率の±10%以内である
 前記(1)から(9)の何れかに記載の光学素子。
(11)
 前記段差構造は、凸状部を形成しており、
 前記被覆層は、前記凸状部の上面及び側壁面、並びに前記凸状部の周囲の前記一方の面を連続して覆い且つ光を透過又は反射する
 前記(1)から(10)の何れかに記載の光学素子。
(12)
 前記段差構造は、凹状部を形成しており、
 前記被覆層は、前記凹状部の底面及び内側壁面、並びに前記凹状部の周囲の前記一方の面を連続して覆い且つ光を透過又は反射する
 前記(1)から(10)の何れかに記載の光学素子。
(13)
 前記段差構造は、第1の段差構造と、前記第1の段差構造の周囲を囲む環状の段差面を有する第2の段差構造とを備え、
 前記被覆層は、前記第1の段差構造、前記第2の段差構造及びそれらの周囲の前記一方の面を連続して覆い且つ光を透過する
 前記(1)から(5)及び(10)の何れかに記載の光学素子。
(14)
 2次元アレイ状に規則的に配列された複数の段差構造を有する基板と、
 前記複数の段差構造及びそれらの周囲の前記基板の面を連続して覆い、且つ各段差構造を覆っている部分それぞれが光を透過又は反射する被覆層とを備える
 光学素子アレイ。
(15)
 2次元アレイ状に規則的に配列された複数の第1のレンズと、
 一方の面に、当該一方の面に対する高さが異なる環状の段差面を有する複数の段差構造が形成された基板、並びに前記段差構造及びその周囲の前記一方の面を連続して覆い且つ光を透過する被覆層を含んで構成され、前記第1のレンズを通過する前の光又は通過した後の光が入射され、前記第1のレンズに起因する収差を補正する複数の第2のレンズとを備える
 光学素子アレイ。
(16)
 前記第2のレンズは、前記第1のレンズに起因する色収差を補正するレンズである
 前記(15)に記載の光学素子アレイ。
(17)
 第1のレンズと、
 前記第1のレンズを透過する前の光又は透過した後の光が入射され、前記第1のレンズに起因する収差を補正する第2のレンズとを備え、
 前記第2のレンズは、
 一方の面に、当該一方の面に対する高さが異なる環状の段差面を有する段差構造が形成された基板と、
 前記段差構造及びその周囲の前記一方の面を連続して覆い且つ光を透過する被覆層とを備える
 レンズ群。
(18)
 前記第2のレンズは、前記第1のレンズに起因する色収差を補正するレンズである
 前記(17)に記載のレンズ群。
(19)
 2次元アレイ状に規則的に配列された複数段の段差構造を複数有する基板、及び前記複数段の段差構造及びそれらの周囲の前記基板の面を連続して覆い、且つ各段差構造を覆っている部分それぞれがレンズ状である被覆層を有しているマイクロレンズアレイを備える固体撮像装置と、
 被写体からの像光を前記固体撮像装置の撮像面上に結像させる光学レンズと、
 前記固体撮像装置から出力される信号に信号処理を行う信号処理回路とを備える
 電子機器。
(20)
 基板に段差構造を形成する工程と、
 前記段差構造が形成された前記基板に塗布液を塗布する工程と、
 前記段差構造及びその周囲の前記基板の面を連続して覆い且つ光を透過又は反射する被覆層が形成されるように、前記塗布液を乾燥させる工程と、を含む
 光学素子の製造方法。
(21)
 基板に2次元アレイ状に規則的に配列された複数の段差構造を形成する工程と、
 複数の前記段差構造が形成された前記基板に塗布液を塗布する工程と、
 複数の前記段差構造及びその周囲の前記基板の面を連続して覆い且つ光を透過する被覆層が形成されるように、前記塗布液を乾燥させる工程と、を含み、
 前記段差構造のそれぞれは、カラーフィルタを透過する前の光又透過した後の光が入射されるレンズを形成するための環状凹部を含み、
 前記基板に複数の前記段差構造を形成する工程では、複数の前記環状凹部のそれぞれの幅及び直径を、前記環状凹部に対応するカラーフィルタが透過させる光の波長域に応じて調節する
 光学素子の製造方法。
Note that the present technology may have the following configurations.
(1)
A substrate on which a step structure having a step surface having a height different from that of the one surface is formed on one surface;
An optical element comprising: the step structure; and a coating layer that continuously covers the one surface around the step structure and transmits or reflects light.
(2)
The optical element according to (1), wherein the step structure has, as a side surface that connects the one surface and the step surface, an inclined surface or a curved surface inclined with respect to a normal direction of the one surface.
(3)
The optical element according to (1), wherein the step structure has two or more steps.
(4)
The step structure is parallel to the normal direction of the one surface, as a side surface connecting the one surface and the step surface, and a side surface connecting the two step surfaces in a two-step relationship. The optical element according to (3), further including at least one of a vertical surface, and an inclined surface and a curved surface inclined with respect to a normal direction of the one surface.
(5)
The optical element according to (2) or (4), wherein an inclination angle of the inclined surface is 0 degree or more and 60 degrees or less with respect to a normal direction of the one surface.
(6)
The optical element according to any one of (1) to (5), wherein a ratio of a width of the step structure to a height of the step structure is 1:10 to 10: 1.
(7)
The optical element according to any one of (1) to (6), wherein the step structure has at least one of a circular shape, a polygonal shape, and an elliptical shape in a plan view.
(8)
The optical element according to (7), wherein an aspect ratio of the elliptical shape is 1 or more and 5 or less.
(9)
The optical element according to (3), wherein outer peripheries of the step surfaces of the step structure are separated from each other in a plan view.
(10)
The optical device according to any one of (1) to (9), wherein the difference between the refractive index of the material of the substrate and the refractive index of the material of the coating layer is within ± 10% of the refractive index of the material of the substrate. element.
(11)
The step structure has a convex portion,
The coating layer continuously covers the upper surface and the side wall surface of the convex portion, and the one surface around the convex portion, and transmits or reflects light. (1) to (10) An optical element according to item 1.
(12)
The step structure has a concave portion,
The coating layer continuously covers the bottom surface and the inner wall surface of the concave portion, and the one surface around the concave portion, and transmits or reflects light. (1) to (10). Optical element.
(13)
The step structure includes a first step structure, and a second step structure having an annular step surface surrounding the periphery of the first step structure,
The coating layer continuously covers the first step structure, the second step structure, and the one surface around the first step structure and the second step structure, and transmits light. (1) to (5) and (10) The optical element according to any one of the above.
(14)
A substrate having a plurality of step structures regularly arranged in a two-dimensional array;
An optical element array comprising: a plurality of step structures; and a coating layer that continuously covers surfaces of the substrate around the step structures and a portion that covers each step structure transmits or reflects light.
(15)
A plurality of first lenses regularly arranged in a two-dimensional array;
On one surface, a substrate on which a plurality of step structures having annular step surfaces having different heights with respect to the one surface is formed, and the step structure and the surrounding one surface are continuously covered and light is covered. A plurality of second lenses configured to include a transmitting coating layer, to which light before passing through the first lens or light after passing through the first lens is incident, and to correct aberration caused by the first lens; An optical element array comprising:
(16)
The optical element array according to (15), wherein the second lens is a lens that corrects chromatic aberration caused by the first lens.
(17)
A first lens;
A second lens that receives light before passing through the first lens or light after passing through the first lens, and corrects aberration caused by the first lens;
The second lens is
A substrate having a step structure having an annular step surface having a height different from the one surface on one surface;
A lens group comprising: the step structure; and a coating layer that continuously covers the one surface around the step structure and transmits light.
(18)
The lens group according to (17), wherein the second lens is a lens that corrects chromatic aberration caused by the first lens.
(19)
A substrate having a plurality of step structures having a plurality of steps regularly arranged in a two-dimensional array, and continuously covering the plurality of step structures and the surface of the substrate around them; and covering each step structure. A solid-state imaging device comprising a microlens array having a covering layer each having a lens-like portion,
An optical lens that forms image light from a subject on an imaging surface of the solid-state imaging device,
An electronic device comprising: a signal processing circuit that performs signal processing on a signal output from the solid-state imaging device.
(20)
Forming a step structure on the substrate;
Applying a coating liquid to the substrate on which the step structure is formed,
Drying the coating liquid so as to form a coating layer that continuously covers the step structure and the surface of the substrate around the step structure and transmits or reflects light.
(21)
Forming a plurality of step structures regularly arranged in a two-dimensional array on the substrate;
Applying a coating liquid to the substrate on which the plurality of step structures are formed,
Drying the coating liquid so as to form a coating layer that continuously covers surfaces of the plurality of step structures and the periphery of the substrate and transmits light,
Each of the step structures includes an annular concave portion for forming a lens on which light before transmission through the color filter or light after transmission is incident,
In the step of forming the plurality of step structures on the substrate, the width and the diameter of each of the plurality of annular concave portions are adjusted according to a wavelength range of light transmitted by a color filter corresponding to the annular concave portion. Production method.
 1…固体撮像装置、2…基板、3…画素領域、4…垂直駆動回路、5…カラム信号処理回路、6…水平駆動回路、7…出力回路、8…制御回路、9…画素、10…画素駆動配線、11…垂直信号線、12…水平信号線、13…固定電荷膜、14…絶縁膜、15…遮光膜、16…平坦化膜、17…受光層、18…カラーフィルタ、19…ウエハレンズ、20…集光層、21…配線層、22…支持基板、23…光電変換部、24…マイクロレンズアレイ、25…基板、26…被覆層、27…段差構造、28、28a、28b、28c、28d、28e、28f…段差面、29…側面、30…側面、31…層間絶縁膜、32…配線、33…フォトレジスト膜、34…塗布液、35…補正レンズ、36…環状凹部、37…基板、38…被覆層、39…環状凹部(段差構造)、40…段差面、41…フォトレジスト膜、42…塗布液、43…インナーレンズ、44…リフレクタ、45…リフレクタ層、46…発光層、47…層間膜、48…カラーフィルタ、49…反射光、50、51…インナーレンズ、100…電子機器、101…固体撮像装置、102…光学レンズ、103…シャッタ装置、104…駆動回路、105…信号処理回路、106…入射光 DESCRIPTION OF SYMBOLS 1 ... Solid-state imaging device, 2 ... Substrate, 3 ... Pixel area, 4 ... Vertical drive circuit, 5 ... Column signal processing circuit, 6 ... Horizontal drive circuit, 7 ... Output circuit, 8 ... Control circuit, 9 ... Pixel, 10 ... Pixel drive wiring, 11 vertical signal line, 12 horizontal signal line, 13 fixed charge film, 14 insulating film, 15 light shielding film, 16 flattening film, 17 light receiving layer, 18 color filter, 19 Wafer lens, 20: condensing layer, 21: wiring layer, 22: supporting substrate, 23: photoelectric conversion unit, 24: microlens array, 25: substrate, 26: coating layer, 27: step structure, 28, 28a, 28b , 28c, 28d, 28e, 28f: step surface, 29: side surface, 30: side surface, 31: interlayer insulating film, 32: wiring, 33: photoresist film, 34: coating liquid, 35: correction lens, 36: annular concave portion , 37 ... substrate, 38 ... coating layer, 39 Annular recess (step structure), 40 step surface, 41 photoresist film, 42 coating liquid, 43 inner lens, 44 reflector, 45 reflector layer, 46 light emitting layer, 47 interlayer film, 48 color Filter 49, reflected light, 50, 51 inner lens, 100 electronic device, 101 solid-state imaging device, 102 optical lens, 103 shutter device, 104 drive circuit, 105 signal processing circuit, 106 incident light

Claims (21)

  1.  一方の面に、当該一方の面に対する高さが異なる段差面を有する段差構造が形成された基板と、
     前記段差構造及びその周囲の前記一方の面を連続して覆い且つ光を透過又は反射する被覆層とを備える
     光学素子。
    A substrate on which a step structure having a step surface having a height different from that of the one surface is formed on one surface;
    An optical element comprising: the step structure; and a coating layer that continuously covers the one surface around the step structure and transmits or reflects light.
  2.  前記段差構造は、前記一方の面と前記段差面とを連続させる側面として、前記一方の面の法線方向に対して傾斜した傾斜面又は曲面を有する
     請求項1に記載の光学素子。
    The optical element according to claim 1, wherein the step structure has, as a side surface that connects the one surface and the step surface, an inclined surface or a curved surface that is inclined with respect to a normal direction of the one surface.
  3.  前記段差構造は、二段以上の前記段差面を有する
     請求項1に記載の光学素子。
    The optical element according to claim 1, wherein the step structure has two or more steps.
  4.  前記段差構造は、前記一方の面と前記段差面とを連続させる側面、及び前記二段の関係にある二つの前記段差面を連続させる側面として、前記一方の面の法線方向に対して平行な垂直面、並びに前記一方の面の法線方向に対して傾斜した傾斜面及び曲面の少なくとも何れかを有する
     請求項3に記載の光学素子。
    The step structure is parallel to the normal direction of the one surface, as a side surface connecting the one surface and the step surface, and a side surface connecting the two step surfaces in a two-step relationship. The optical element according to claim 3, further comprising at least one of a vertical surface, and an inclined surface and a curved surface inclined with respect to a normal direction of the one surface.
  5.  前記傾斜面の傾斜角は、前記一方の面の法線方向に対して0度以上60度以下である
     請求項4に記載の光学素子。
    The optical element according to claim 4, wherein an inclination angle of the inclined surface is equal to or greater than 0 degrees and equal to or less than 60 degrees with respect to a normal direction of the one surface.
  6.  前記段差構造の幅と高さとの比率は1:10~10:1である
     請求項1に記載の光学素子。
    The optical element according to claim 1, wherein a ratio between the width and the height of the step structure is 1:10 to 10: 1.
  7.  前記段差構造は、平面視において、円形状、多角形状、及び楕円形状の少なくとも何れかである
     請求項1に記載の光学素子。
    The optical element according to claim 1, wherein the step structure has at least one of a circular shape, a polygonal shape, and an elliptical shape in a plan view.
  8.  前記楕円形状のアスペクト比は、1以上5以下である
     請求項7に記載の光学素子。
    The optical element according to claim 7, wherein an aspect ratio of the elliptical shape is 1 or more and 5 or less.
  9.  前記段差構造の各段差面の外周は、平面視において、互いに離間している
     請求項3に記載の光学素子。
    The optical element according to claim 3, wherein outer peripheries of the step surfaces of the step structure are separated from each other in a plan view.
  10.  前記基板の材料の屈折率と前記被覆層の材料の屈折率との差は、前記基板の材料の屈折率の±10%以内である
     請求項1に記載の光学素子。
    The optical element according to claim 1, wherein the difference between the refractive index of the material of the substrate and the refractive index of the material of the coating layer is within ± 10% of the refractive index of the material of the substrate.
  11.  前記段差構造は、凸状部を形成しており、
     前記被覆層は、前記凸状部の上面及び側壁面、並びに前記凸状部の周囲の前記一方の面を連続して覆い且つ光を透過又は反射する
     請求項1に記載の光学素子。
    The step structure has a convex portion,
    The optical element according to claim 1, wherein the coating layer continuously covers an upper surface and a side wall surface of the convex portion and the one surface around the convex portion, and transmits or reflects light.
  12.  前記段差構造は、凹状部を形成しており、
     前記被覆層は、前記凹状部の底面及び内側壁面、並びに前記凹状部の周囲の前記一方の面を連続して覆い且つ光を透過又は反射する
     請求項1に記載の光学素子。
    The step structure has a concave portion,
    The optical element according to claim 1, wherein the coating layer continuously covers a bottom surface and an inner wall surface of the concave portion and the one surface around the concave portion, and transmits or reflects light.
  13.  前記段差構造は、第1の段差構造と、前記第1の段差構造の周囲を囲む環状の段差面を有する第2の段差構造とを備え、
     前記被覆層は、前記第1の段差構造、前記第2の段差構造及びそれらの周囲の前記一方の面を連続して覆い且つ光を透過する
     請求項1に記載の光学素子。
    The step structure includes a first step structure, and a second step structure having an annular step surface surrounding the periphery of the first step structure,
    The optical element according to claim 1, wherein the covering layer continuously covers the first step structure, the second step structure, and the one surface around the first step structure, and transmits light.
  14.  2次元アレイ状に規則的に配列された複数の段差構造を有する基板と、
     前記複数の段差構造及びそれらの周囲の前記基板の面を連続して覆い、且つ各段差構造を覆っている部分それぞれが光を透過又は反射する被覆層とを備える
     光学素子アレイ。
    A substrate having a plurality of step structures regularly arranged in a two-dimensional array;
    An optical element array comprising: a plurality of step structures; and a coating layer that continuously covers surfaces of the substrate around the step structures and a portion that covers each step structure transmits or reflects light.
  15.  2次元アレイ状に規則的に配列された複数の第1のレンズと、
     一方の面に、当該一方の面に対する高さが異なる環状の段差面を有する複数の段差構造が形成された基板、並びに前記段差構造及びその周囲の前記一方の面を連続して覆い且つ光を透過する被覆層を含んで構成され、前記第1のレンズを通過する前の光又は通過した後の光が入射され、前記第1のレンズに起因する収差を補正する複数の第2のレンズとを備える
     光学素子アレイ。
    A plurality of first lenses regularly arranged in a two-dimensional array;
    On one surface, a substrate on which a plurality of step structures having annular step surfaces having different heights with respect to the one surface is formed, and the step structure and the surrounding one surface are continuously covered and light is covered. A plurality of second lenses configured to include a transmitting coating layer, to which light before passing through the first lens or light after passing through the first lens is incident, and to correct aberration caused by the first lens; An optical element array comprising:
  16.  前記第2のレンズは、前記第1のレンズに起因する色収差を補正するレンズである
     請求項15に記載の光学素子アレイ。
    The optical element array according to claim 15, wherein the second lens is a lens that corrects chromatic aberration caused by the first lens.
  17.  第1のレンズと、
     前記第1のレンズを透過する前の光又は透過した後の光が入射され、前記第1のレンズに起因する収差を補正する第2のレンズとを備え、
     前記第2のレンズは、
     一方の面に、当該一方の面に対する高さが異なる環状の段差面を有する段差構造が形成された基板と、
     前記段差構造及びその周囲の前記一方の面を連続して覆い且つ光を透過する被覆層とを備える
     レンズ群。
    A first lens;
    A second lens that receives light before passing through the first lens or light after passing through the first lens, and corrects aberration caused by the first lens;
    The second lens is
    A substrate having a step structure having an annular step surface having a height different from the one surface on one surface;
    A lens group comprising: the step structure; and a coating layer that continuously covers the one surface around the step structure and transmits light.
  18.  前記第2のレンズは、前記第1のレンズに起因する色収差を補正するレンズである
     請求項17に記載のレンズ群。
    The lens group according to claim 17, wherein the second lens is a lens that corrects chromatic aberration caused by the first lens.
  19.  2次元アレイ状に規則的に配列された複数段の段差構造を複数有する基板、及び前記複数段の段差構造及びそれらの周囲の前記基板の面を連続して覆い、且つ各段差構造を覆っている部分それぞれがレンズ状である被覆層を有しているマイクロレンズアレイを備える固体撮像装置と、
     被写体からの像光を前記固体撮像装置の撮像面上に結像させる光学レンズと、
     前記固体撮像装置から出力される信号に信号処理を行う信号処理回路とを備える
     電子機器。
    A substrate having a plurality of step structures having a plurality of steps regularly arranged in a two-dimensional array, and continuously covering the plurality of step structures and the surface of the substrate around them; and covering each step structure. A solid-state imaging device comprising a microlens array having a covering layer each having a lens-like portion,
    An optical lens that forms image light from a subject on an imaging surface of the solid-state imaging device,
    An electronic device comprising: a signal processing circuit that performs signal processing on a signal output from the solid-state imaging device.
  20.  基板に段差構造を形成する工程と、
     前記段差構造が形成された前記基板に塗布液を塗布する工程と、
     前記段差構造及びその周囲の前記基板の面を連続して覆い且つ光を透過又は反射する被覆層が形成されるように、前記塗布液を乾燥させる工程と、を含む
     光学素子の製造方法。
    Forming a step structure on the substrate;
    Applying a coating liquid to the substrate on which the step structure is formed,
    Drying the coating liquid so that a coating layer that continuously covers the step structure and the surrounding surface of the substrate and transmits or reflects light is formed.
  21.  基板に2次元アレイ状に規則的に配列された複数の段差構造を形成する工程と、
     複数の前記段差構造が形成された前記基板に塗布液を塗布する工程と、
     複数の前記段差構造及びその周囲の前記基板の面を連続して覆い且つ光を透過する被覆層が形成されるように、前記塗布液を乾燥させる工程と、を含み、
     前記段差構造のそれぞれは、カラーフィルタを透過する前の光又透過した後の光が入射されるレンズを形成するための環状凹部を含み、
     前記基板に複数の前記段差構造を形成する工程では、複数の前記環状凹部のそれぞれの幅及び直径を、前記環状凹部に対応するカラーフィルタが透過させる光の波長域に応じて調節する
     光学素子の製造方法。
    Forming a plurality of step structures regularly arranged in a two-dimensional array on the substrate;
    Applying a coating liquid to the substrate on which the plurality of step structures are formed,
    Drying the coating liquid so as to form a coating layer that continuously covers surfaces of the plurality of step structures and the periphery of the substrate and transmits light,
    Each of the step structures includes an annular concave portion for forming a lens on which light before transmission through the color filter or light after transmission is incident,
    In the step of forming the plurality of step structures on the substrate, the width and diameter of each of the plurality of annular recesses are adjusted according to the wavelength range of light transmitted by the color filter corresponding to the annular recess. Production method.
PCT/JP2019/035448 2018-09-19 2019-09-10 Optical element, optical element array, lens group, electronic device, and method for manufacturing optical element WO2020059569A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/273,543 US20210202560A1 (en) 2018-09-19 2019-09-10 Optical element, optical element array, lens group, electronic apparatus, and method of producing optical element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-174754 2018-09-19
JP2018174754 2018-09-19
JP2019-148765 2019-08-14
JP2019148765A JP2020052395A (en) 2018-09-19 2019-08-14 Optical element, optical element array, lens group, electronic device, and method of manufacturing optical element

Publications (1)

Publication Number Publication Date
WO2020059569A1 true WO2020059569A1 (en) 2020-03-26

Family

ID=69887445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035448 WO2020059569A1 (en) 2018-09-19 2019-09-10 Optical element, optical element array, lens group, electronic device, and method for manufacturing optical element

Country Status (1)

Country Link
WO (1) WO2020059569A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190168A (en) * 1989-12-19 1991-08-20 Matsushita Electron Corp Manufacture of solid-state image sensing device
JPH03218067A (en) * 1990-01-23 1991-09-25 Dainippon Printing Co Ltd Manufacture of microlens for solid-state image sensing element
JP2003229553A (en) * 2002-02-05 2003-08-15 Sharp Corp Semiconductor device and its manufacturing method
JP2006145627A (en) * 2004-11-16 2006-06-08 Sanyo Electric Co Ltd Method of manufacturing micro lens, and method of manufacturing solid state image sensor
JP2007048967A (en) * 2005-08-10 2007-02-22 Sanyo Electric Co Ltd Solid-state image sensing device, manufacturing method thereof and lens array
WO2014141991A1 (en) * 2013-03-15 2014-09-18 ソニー株式会社 Solid-state image-pickup device, method for producing same, and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190168A (en) * 1989-12-19 1991-08-20 Matsushita Electron Corp Manufacture of solid-state image sensing device
JPH03218067A (en) * 1990-01-23 1991-09-25 Dainippon Printing Co Ltd Manufacture of microlens for solid-state image sensing element
JP2003229553A (en) * 2002-02-05 2003-08-15 Sharp Corp Semiconductor device and its manufacturing method
JP2006145627A (en) * 2004-11-16 2006-06-08 Sanyo Electric Co Ltd Method of manufacturing micro lens, and method of manufacturing solid state image sensor
JP2007048967A (en) * 2005-08-10 2007-02-22 Sanyo Electric Co Ltd Solid-state image sensing device, manufacturing method thereof and lens array
WO2014141991A1 (en) * 2013-03-15 2014-09-18 ソニー株式会社 Solid-state image-pickup device, method for producing same, and electronic equipment

Similar Documents

Publication Publication Date Title
JP7439214B2 (en) Solid-state image sensor and electronic equipment
JP2019046960A (en) Solid-state imaging apparatus and electronic device
WO2020149207A1 (en) Imaging device and electronic equipment
US20230008784A1 (en) Solid-state imaging device and electronic device
WO2021241019A1 (en) Imaging element and imaging device
WO2019207978A1 (en) Image capture element and method of manufacturing image capture element
WO2020137203A1 (en) Imaging element and imaging device
WO2019220861A1 (en) Solid-state imaging element and method for manufacturing solid-state imaging element
WO2021079572A1 (en) Imaging device
WO2022064853A1 (en) Solid-state imaging device and electronic apparatus
WO2022009693A1 (en) Solid-state imaging device and method for manufacturing same
US20230103730A1 (en) Solid-state imaging device
WO2022091576A1 (en) Solid-state imaging device and electronic apparatus
WO2022009674A1 (en) Semiconductor package and method for producing semiconductor package
WO2021186907A1 (en) Solid-state imaging device, method for manufacturing same, and electronic instrument
US20230117904A1 (en) Sensor package, method of manufacturing the same, and imaging device
WO2020059569A1 (en) Optical element, optical element array, lens group, electronic device, and method for manufacturing optical element
JP2020052395A (en) Optical element, optical element array, lens group, electronic device, and method of manufacturing optical element
WO2019176302A1 (en) Imaging element and method for manufacturing imaging element
WO2023112479A1 (en) Light-receiving device and electronic apparatus
JP7316340B2 (en) Solid-state imaging device and electronic equipment
WO2024084880A1 (en) Solid-state imaging device and electronic device
WO2024057806A1 (en) Imaging device and electronic apparatus
WO2023013394A1 (en) Imaging device
WO2021140958A1 (en) Imaging element, manufacturing method, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862504

Country of ref document: EP

Kind code of ref document: A1