WO2021186907A1 - Solid-state imaging device, method for manufacturing same, and electronic instrument - Google Patents

Solid-state imaging device, method for manufacturing same, and electronic instrument Download PDF

Info

Publication number
WO2021186907A1
WO2021186907A1 PCT/JP2021/002886 JP2021002886W WO2021186907A1 WO 2021186907 A1 WO2021186907 A1 WO 2021186907A1 JP 2021002886 W JP2021002886 W JP 2021002886W WO 2021186907 A1 WO2021186907 A1 WO 2021186907A1
Authority
WO
WIPO (PCT)
Prior art keywords
color filter
layer
film
unit
solid
Prior art date
Application number
PCT/JP2021/002886
Other languages
French (fr)
Japanese (ja)
Inventor
祥哲 東宮
山本 篤志
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2021186907A1 publication Critical patent/WO2021186907A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present technology (technology according to the present disclosure) is applied to a solid-state imaging device and a manufacturing method thereof, and an electronic device, particularly to a solid-state imaging device having a color filter, a manufacturing method thereof, and an electronic device provided with the solid-state imaging device. It concerns effective technology.
  • the solid-state image sensor that converts light into an electric signal includes a semiconductor layer provided with a plurality of photoelectric conversion units and a color filter layer arranged on the light incident surface side of the semiconductor layer.
  • the color filter layer includes, for example, a color filter unit having three colors of red (R), green (G), and blue (B).
  • Patent Document 1 discloses a solid-state image sensor in which the shoeing characteristics are improved by providing a separation wall having a refractive index lower than that of the color filter unit between color filter units having different colors. Further, Patent Document 1 also discloses a technique for further improving the light introduction efficiency by providing a flattening layer on the light incident surface side of the color filter layer. This flattening layer is also lower than the refractive index of the color filter portion.
  • the color filter layer is generally made of a resin material having high hygroscopicity. Therefore, there is a concern that deterioration of the color filter layer due to moisture absorption in a high temperature and high humidity environment may cause image deterioration such as stain defects.
  • the purpose of this technology is to provide a solid-state image sensor capable of suppressing image deterioration, a method for manufacturing the same, and an electronic device equipped with the device.
  • the solid-state image sensor is A semiconductor layer provided with a plurality of photoelectric conversion units and A color filter layer provided on the light incident surface side of the semiconductor layer and including a color filter unit of two or more colors, and a color filter layer.
  • a method for manufacturing a solid-state image sensor is described.
  • a color filter film is formed on the semiconductor layer,
  • An inorganic layer having a refractive index higher than that of the color filter film is formed on the color filter film.
  • An etching mask is formed on the above inorganic layer to form an etching mask.
  • the inorganic layer and the color filter film around the etching mask are removed by etching to form a color filter portion whose upper surface is covered with the inorganic layer, and the etching mask is removed by overetching. Including that.
  • a semiconductor layer provided with a plurality of photoelectric conversion units and A color filter layer provided on the light incident surface side of the semiconductor layer and including a color filter unit of two or more colors, and a color filter layer.
  • An inorganic layer arranged on the light incident surface side of the color filter layer and having a refractive index higher than that of the color filter layer, It is equipped with a solid-state image sensor.
  • FIG. 4A It is a process cross-sectional view following FIG. 4A. It is a process cross-sectional view following FIG. 4B. It is a process cross-sectional view following FIG. 4C.
  • FIG. 5A It is a process cross-sectional view following FIG. 5B. It is a process cross-sectional view following FIG. 5C. It is a process cross-sectional view following FIG. 5D. It is a process cross-sectional view following FIG. 5E. It is a process cross-sectional view following FIG. 5F. It is a process cross-sectional view following FIG. 5G. It is a process cross-sectional view following FIG. 5H. It is a process cross-sectional view following FIG. 5I.
  • FIG. 9D It is a schematic cross-sectional view which shows the pixel array part of the solid-state image sensor which concerns on 5th Embodiment of this technique. It is a process sectional view of the manufacturing method of the solid-state image sensor which concerns on 5th Embodiment of this technique. It is a process cross-sectional view following FIG. 11A. It is a process cross-sectional view following FIG. 11B. It is a process cross-sectional view following FIG. 11C. It is a process cross-sectional view following FIG. 11D. It is a process cross-sectional view following FIG. 11E.
  • FIG. 13A It is a figure which shows one schematic configuration example of an electronic device. It is a figure which shows one schematic configuration example of an electronic device. It is a block diagram which shows one schematic configuration example of a vehicle control system. It is explanatory drawing which shows an example of the installation position of the vehicle exterior information detection unit and the image pickup unit. It is a block diagram which shows one schematic configuration example of an endoscopic surgery system. It is a block diagram which shows an example of the functional structure of a camera head and a CCU.
  • the present technology is applied to a solid-state image sensor which is a back-illuminated CMOS (Complementary Metal Oxide Semiconductor) image sensor
  • CMOS Complementary Metal Oxide Semiconductor
  • the semiconductor chip 2 has a rectangular pixel array portion 2A provided in the center in a two-dimensional planar shape, a peripheral portion 2B provided outside the pixel array portion 2A so as to surround the pixel array portion 2A, and the periphery thereof.
  • a pad arranging portion 2C provided so as to surround the peripheral portion 2B is provided on the outside of the portion 2B.
  • the pixel array unit 2A is a light receiving surface that receives light collected by an optical system (not shown). Then, in the pixel array unit 2A, a plurality of pixels 3 are arranged in a matrix in a two-dimensional plane including the X direction and the Y direction.
  • the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, the output circuit 7, the control circuit 8, and the like shown in FIG. 2 are arranged in the peripheral portion 2B.
  • Each pixel 3 of the plurality of pixels 3 includes a photoelectric conversion unit 23 shown in FIG. 3 and a plurality of pixel transistors (not shown).
  • a plurality of pixel transistors for example, four transistors such as a transfer transistor, a reset transistor, a selection transistor, and an amplifier transistor can be adopted. Further, as the plurality of pixel transistors, for example, three transistors excluding the selection transistor may be adopted.
  • the vertical drive circuit 4 is composed of, for example, a shift register.
  • the vertical drive circuit 4 sequentially selects the desired pixel drive wiring 10, supplies a pulse for driving the pixel 3 to the selected pixel drive wiring 10, and drives each pixel 3 in rows. That is, the vertical drive circuit 4 selectively scans each pixel 3 of the pixel array unit 2A in a row-by-row manner in the vertical direction, and the pixel 3 based on the signal charge generated by the photoelectric conversion unit 23 of each pixel 3 according to the amount of received light. Is supplied to the column signal processing circuit 5 through the vertical signal line 11.
  • the column signal processing circuit 5 is arranged for each column of the pixel 3, for example, and performs signal processing such as noise removal for each pixel string for the signal output from the pixel 3 for one row.
  • the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) and AD (Analog Digital) conversion for removing fixed pattern noise peculiar to pixels.
  • the horizontal drive circuit 6 is composed of, for example, a shift register.
  • the horizontal drive circuit 6 sequentially outputs horizontal scanning pulses to the column signal processing circuit 5, thereby sequentially selecting each of the column signal processing circuits 5, and the pixels in which the signal processing is performed from each of the column signal processing circuits 5.
  • the signal is output to the horizontal signal line 12.
  • the output circuit 7 performs signal processing on pixel signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 12 and outputs the signals.
  • the signal processing for example, buffering, black level adjustment, column variation correction, various digital signal processing and the like can be used.
  • the control circuit 8 Based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock signal, the control circuit 8 transmits a clock signal or a control signal that serves as a reference for the operation of the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like. Generate. Then, the control circuit 8 outputs the generated clock signal and control signal to the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like.
  • a plurality of electrode pads 13 are arranged along the respective sides of the four sides in the two-dimensional plane of the semiconductor chip 2 in the pad arrangement portion 2C.
  • the electrode pad 13 is an input / output terminal used when the semiconductor chip 2 is electrically connected to an external device (not shown).
  • the solid-state image sensor 1 (101) takes in the image light (incident light 106) from the subject through the optical lens 102 and forms an image on the image pickup surface.
  • the amount of light of the incident light 106 is converted into an electric signal in pixel units and output as a pixel signal.
  • the semiconductor chip 2 has a semiconductor layer 20 provided with a plurality of photoelectric conversion units 23, and first surfaces S1 and second surfaces S1 and second located opposite to each other in the thickness direction of the semiconductor layer 20. It has a color filter layer 40 which is arranged on the light incident surface side which is the second surface S2 side of the surface S2 and includes a color filter unit of two or more colors. Further, the semiconductor chip 2 has an inorganic layer 50 arranged on the light incident surface side of the color filter layer 40 and having a refractive index higher than that of the color filter layer 40.
  • the semiconductor chip 2 further has a plurality of microlenses 59 (on-chip lens, wafer lens) arranged on the light incident surface side (the side opposite to the semiconductor layer 20 side) of the color filter layer 40.
  • the semiconductor chip 2 includes a multilayer wiring layer 30 arranged on the first surface S1 side of the semiconductor layer 20 and a support substrate 34 arranged on the side opposite to the semiconductor layer 20 side of the multilayer wiring layer 30. Have more.
  • the semiconductor layer 20 is composed of, for example, a p-type semiconductor substrate made of single crystal silicon.
  • Each photoelectric conversion unit 23 of the plurality of photoelectric conversion units 23 is arranged in a matrix in the pixel array unit 2A corresponding to each pixel 3 of the plurality of pixels 3.
  • Each photoelectric conversion unit 23 is partitioned by a separation region 22 provided in the semiconductor layer 20.
  • the separation region 22 extends from the first surface S1 side of the semiconductor layer 20 toward the second surface S2 side, and electrically and optically separates the photoelectric conversion units 23 adjacent to each other.
  • a single-layer structure made of a silicon oxide film or a three-layer structure in which both sides of the metal film are sandwiched between insulating films can be used.
  • a signal charge corresponding to the amount of incident light is generated, and the generated signal charge is accumulated.
  • Each photoelectric conversion unit 23 of the plurality of photoelectric conversion units 23 is configured with a well region 21 composed of, for example, an n-type semiconductor region. Further, although not shown in detail, each photoelectric conversion unit 23 of the plurality of photoelectric conversion units 23 includes, for example, an avalanche photodiode (APD) element as a photoelectric conversion element, and further comprises a pixel transistor. Has been done. That is, in the pixel array unit 2A, a plurality of pixels 3 including the photoelectric conversion unit 23 embedded in the semiconductor layer 20 are arranged in a matrix (two-dimensional matrix).
  • APD avalanche photodiode
  • the multilayer wiring layer 30 is arranged on the first surface S1 side opposite to the light incident surface (second surface S2) side of the semiconductor layer 20, via the interlayer insulating film 31 and the interlayer insulating film 31. It is configured to include the wiring 32 laminated in a plurality of layers. Pixel transistors constituting each pixel 3 are driven via the plurality of layers of wiring 32. Since the multilayer wiring layer 30 is arranged on the side opposite to the light incident surface side (second surface S2 side) of the semiconductor layer 20, the layout of the wiring 32 can be freely set.
  • the color filter layer 40 including the color filter units of two or more colors is not limited to this, and for example, the first color filter unit 41 of red (R), the second color filter unit 42 of green (G), and blue. Includes the third color filter unit 43 of (B).
  • the first to third color filter units 41 to 43 are arranged in a matrix corresponding to each pixel 3 of the plurality of pixels 3, that is, each photoelectric conversion unit 23 of the plurality of photoelectric conversion units 23 in the pixel array unit 2A. It is arranged in a shape.
  • the first to third color filter units 41 to 43 are randomly arranged and are not necessarily the same number.
  • the green (G) second color filter unit 42 is provided more than the red (R) first color filter unit 41 and the blue (B) third color filter unit 43. There is.
  • Each of the red (R) first color filter unit 41, the green (G) second color filter unit 42, and the blue (B) third color filter unit 43 is the incident light that the photoelectric conversion unit 23 wants to receive. It is configured to transmit the specific wavelength of the above and incident light that has been transmitted to the photoelectric conversion unit 23.
  • the inorganic layer 50 is composed of a monolayer film made of a light transmitting film 51, but not limited to this. Then, the inorganic layer 50 selectively selects the color filter unit of a predetermined color among the first to third color filter units 41 to 43, for example, the light incident surface side of the second color filter unit 42 of green (G). Covering. That is, the inorganic layer 50 is not provided on the light incident surface side of each of the first and third color filter portions 41 and 43.
  • the light transmitting film 51 includes, for example, an aluminum oxide (Al 2 O 3 ) film, a hafonium oxide (HfO 2 ) film, and silicon nitride, which have a higher refractive index than the refractive index of the color filter layer 40 including the first to third color filter units 41 to 43. It is composed of any of the (Si 3 N 4) films. Further, the light transmitting film 51 may be configured by laminating any two or more of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film. The light transmitting film 51 also functions as an etching stopper when the green (G) color filter film is etched to form the second color filter portion 42 in the manufacturing process of the solid-state imaging device.
  • Al 2 O 3 aluminum oxide
  • HfO 2 hafonium oxide
  • silicon nitride silicon nitride
  • the aluminum oxide film has a refractive index of, for example, about 1.63.
  • the hafnium oxide film has a refractive index of, for example, about 1.95.
  • the silicon nitride film has a refractive index of, for example, about 2.0.
  • the silicon oxide film has a refractive index of, for example, about 1.45.
  • Each of the red first color filter unit 41, the green second color filter unit 42, and the blue third color filter unit 43 has a refractive index of, for example, about 1.6.
  • Each microlens 59 of the plurality of microlenses 59 is arranged in a matrix corresponding to each pixel 3 of the plurality of pixels 3, that is, each photoelectric conversion unit 23 of the plurality of photoelectric conversion units 23 in the pixel array unit 2A. It is arranged.
  • the microlens 59 collects the irradiation light, and the collected light is efficiently incident on the photoelectric conversion unit 23 of the semiconductor layer 20 via the color filter layer 40.
  • the plurality of microlenses 59 form a microlens array on the light incident surface side of the color filter layer.
  • the microlens 59 is made of a material such as styrene.
  • the support substrate 34 is provided on the surface of the multilayer wiring layer 30 opposite to the side facing the semiconductor layer 20.
  • the support substrate 34 is a substrate for ensuring the strength of the semiconductor layer 20 in the manufacturing stage of the solid-state image sensor 1.
  • silicon Si
  • As the material of the support substrate 34 for example, silicon (Si) can be used.
  • a flattening film 36, a light-shielding film 37, and an adhesive film 38 are laminated in this order between the semiconductor layer 20 and the color filter layer 40 from the semiconductor layer 20 side.
  • the flattening film 36 covers the entire light incident surface side of the semiconductor layer 20 in the pixel array portion 2A so that the light incident surface side of the semiconductor layer 20 becomes a flat surface without unevenness.
  • a silicon oxide (SiO 2 ) film can be used.
  • the light-shielding film 37 has a grid-like plane pattern in which the plane pattern in a plan view opens each of the light-receiving surface sides of the plurality of photoelectric conversion units 23 so that the light of the predetermined pixel 3 does not leak to the adjacent pixel 3. ing.
  • a tungsten (W) film is used as the light-shielding film 37.
  • the adhesive film 38 is arranged between the flattening film 36 and the light-shielding film 37 and the color filter layer 40, and mainly enhances the adhesion between the light-shielding film 37 and the color filter layer 40.
  • a silicon oxide film is used as the adhesive film 38.
  • the solid-state image sensor 1 having the above configuration, light is emitted from the microlens 59 side of the semiconductor chip 2, and the irradiated light is individually transmitted through the microlens 59 and the color filter units 41, 42, 43 and transmitted.
  • a signal charge is generated by photoelectric conversion of light by the photoelectric conversion unit 23.
  • the generated signal charge is output as a pixel signal by the vertical signal line 11 composed of the wiring 32 of the multilayer wiring layer 30 via the pixel transistor formed on the first surface side of the semiconductor layer 20.
  • the distance to the subject is calculated based on the difference between the signal charges generated by the photoelectric conversion unit 23.
  • the solid-state imaging device 1 is an inorganic layer composed of a light transmitting film 51 arranged on the light incident surface side of the color filter layer 40 and having a refractive index higher than that of the color filter layer 40.
  • Has 50 The inorganic layer 50 selectively covers the light incident surface side of the green (G) second color filter unit 42 of the three color filter units 41, 42, and 43.
  • the inorganic layer 50 having a higher refractive index than the color filter layer 40 has a finer film quality than the color filter layer 40, and therefore has a lower moisture permeability than the color filter layer 40.
  • moisture absorption in the second color filter unit 42 covered with the inorganic layer 50 can be suppressed, so that the entire color filter layer 40 is altered by moisture absorption. Can be suppressed. This makes it possible to suppress image deterioration such as stain defects caused by deterioration of the color filter layer 40 due to moisture absorption.
  • the semiconductor layer 20 shown in FIG. 4A is prepared.
  • the semiconductor layer 20 for example, a single crystal silicon substrate is used.
  • a well region 21 composed of an n-type semiconductor region is formed on the first surface S1 side of the semiconductor layer 20.
  • a plurality of photoelectric conversion units 23 are formed on the first surface S1 side of the semiconductor layer 20, each of which is surrounded by a separation region 22 and partitioned.
  • Each of the plurality of photoelectric conversion units 23 is formed by forming a separation region 22, an APD element, a pixel transistor, or the like on the first surface S1 side of the semiconductor layer 20.
  • Form 30 the support substrate 34 is joined to the side of the multilayer wiring layer 30 opposite to the semiconductor layer 20 side.
  • the second surface (light incident surface) S2 side of the semiconductor layer 20 is ground by the CMP method or the like until the separation region 22 is exposed to reduce the thickness of the semiconductor layer 20. do.
  • the flattening film 36, the light-shielding film 37, and the adhesive film 38 are formed in this order on the second surface S2 side of the semiconductor layer 20.
  • the flattening film 36 is formed by forming, for example, a silicon oxide film on the second surface S2 of the semiconductor layer 20 by a CVD method, and then grinding the surface of the silicon oxide film by a CMP method or an etchback method.
  • the light-shielding film 37 is formed by forming a tungsten (W) film on the flattening film 36, for example, as a refractory metal film by a sputtering method, and then turning the tungsten film into a predetermined pattern using a well-known photolithography technique.
  • W tungsten
  • the light-shielding film 37 is formed by a grid-like plane pattern in which the plane pattern in a plan view opens each of the light-receiving surface sides of the plurality of photoelectric conversion units 23.
  • the adhesive film 38 is formed by forming, for example, a silicon oxide film on the entire surface of the flattening film 36 including the light-shielding film 37 by a CVD method.
  • the adhesive film 38 is formed with a film thickness thinner than the thickness of the light-shielding film 37 so that a recess is formed in the region surrounded by the light-shielding film 37.
  • a green (G) color filter film 42A having a green (G) spectral characteristic is applied to the entire surface of the adhesive film 38 on the second surface 2S side of the semiconductor layer 20.
  • a liquid thermosetting resin material is applied to the second surface 2S side of the semiconductor layer 20 by a spin cord method, and then heat treatment is performed to heat the liquid thermosetting resin material. It is formed by curing.
  • a single-layer inorganic layer 50 made of a light transmitting film 51 having a refractive index higher than that of the green color filter film 42A is formed on the entire surface of the green color filter film 42A.
  • the light transmitting film 51 any one of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film having a refractive index higher than that of the green color filter film 42A can be used. Further, the light transmitting film 51 may be configured by laminating any two or more of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film.
  • an etching mask RM1 used as a mask for etching the inorganic layer 50 and the green second color filter film 42A is formed on the inorganic layer 50.
  • the etching mask RM1 is formed by forming a photosensitive resist film on the entire surface of the inorganic layer 50, and then subjecting the photosensitive resist film to a photosensitive treatment, a developing treatment, or the like to process the photosensitive resist film into a predetermined pattern.
  • the etching mask RM1 is formed at a position in which the etching mask RM1 is planarly overlapped with the photoelectric conversion unit 23 that receives light of a green wavelength and performs photoelectric conversion among the plurality of photoelectric conversion units 23.
  • the etching mask RM1 is used as an etching mask, and the inorganic layer 50 and the green color filter film 42A around the etching mask RM1 are sequentially removed by etching, and as shown in FIG. 5F, the upper surface is the inorganic layer 50.
  • a covered green (G) second color filter portion 42 is formed, and as shown in FIG. 5G, overetching is performed to remove the etching mask RM1 on the green second color filter portion 42.
  • Etching is performed by dry etching such as RIE (Reactive Ion Etching) having excellent anisotropy.
  • the second color filter unit 42 is formed so as to be planarly overlapped on the photoelectric conversion unit 23 that receives and converts light having a green wavelength among the plurality of photoelectric conversion units 23.
  • the etching mask RM1 made of the same resin-based material as the green color filter film 42A can be easily removed. Further, since the green color filter film 42A is etched by dry etching using the etching mask RM1, the green second color filter portion 42 having excellent rectangularity can be formed with high accuracy.
  • the photoelectric conversion unit 23 that receives and converts light having a red wavelength is placed so as to be planarly overlapped with the photoelectric conversion unit 23.
  • the red (R) first color filter portion 41 is formed.
  • the first color filter section 41 is formed in the same process as the step of forming the green second color filter section 42 excluding the step of forming the inorganic layer 50. That is, the red first color filter unit 41 forms a red color filter film having red (R) spectral characteristics, forms an etching mask on the red color filter film, and surrounds the etching mask. It is formed by removing the red color filter film by etching.
  • the photoelectric conversion unit 23 that receives and converts light having a blue wavelength is placed so as to be planarly overlapped with the photoelectric conversion unit 23.
  • the blue (B) third color filter portion 43 is formed.
  • the third color filter section 43 is also formed in the same process as the step of forming the green second color filter section 42 excluding the step of forming the inorganic layer 50. That is, the blue (B) third color filter unit 43 forms a blue color filter film having blue spectral characteristics, forms an etching mask on the blue color filter film, and forms a blue color around the etching mask. It is formed by removing the color filter film of the above by etching. By this step, the color filter layer 40 having the first to third color filter portions 41 to 43 is formed.
  • a plurality of microlenses 59 are formed on the light incident surface side of the color filter layer 40.
  • a semiconductor substrate including a semiconductor layer 20, a multilayer wiring layer 30, a flattening film 36, a light-shielding film 37, an adhesive film 38, a microlens, and the like is formed.
  • the solid-state image sensor 1 shown in FIGS. 1 to 3 is almost completed.
  • the solid-state image sensor 1 is formed in each of a plurality of chip forming regions defined by a scribe line (dicing line) on the semiconductor substrate.
  • the semiconductor chip 2 on which the solid-state image sensor 1 is mounted is formed by individually dividing the plurality of chip forming regions along the scribe line.
  • the inorganic layer 50 around the etching mask RM1 and the green (G) color filter film 42A are sequentially removed by etching, and the upper surface is covered with the inorganic layer 50.
  • the inorganic layer 50 functions as an etching stopper, so that the etching mask RM1 made of the same resin material as the second color filter film 42A can be easily removed. can do.
  • the green (G) color filter film 42A is etched by dry etching using the etching mask RM1, the green (G) second color filter portion 42 having excellent rectangularity can be formed with high accuracy. ..
  • the color filter layer 40 with high accuracy can be formed, and the color filter layer 40 has stain defects due to deterioration due to moisture absorption. Image deterioration can be suppressed.
  • the green (G) second color filter In this first embodiment, of the three color (red (R), green (G), blue (B)) color filter units (41, 42, 43), the green (G) second color filter.
  • the present technology is not limited to the configuration of the first embodiment in which the second color filter portion 42 is selectively covered with the inorganic layer 50.
  • the light incident surface side of the red (R) first color filter unit 41 or the light incident surface side of the blue (B) third color filter unit 43 may be selectively covered with the inorganic layer 50.
  • the first color filter unit 41 When the light incident surface side of the first color filter unit 41 is selectively covered with the inorganic layer 50, it is preferable to form the first color filter unit 41 before the second and third color filter units 42 and 43. .. When the light incident surface side of the third color filter unit 43 is selectively covered with the inorganic layer 50, the third color filter unit 43 is formed before the first and second color filter units 41 and 42. Is preferable.
  • the solid-state image sensor 1A according to the second embodiment of the present technology basically has the same configuration as the solid-state image sensor 1 according to the first embodiment described above, and as shown in FIG. 6, the first embodiment It has an inorganic layer 50A instead of the inorganic layer 50 of the above.
  • Other configurations are the same as those in the first embodiment described above.
  • the inorganic layer 50 of the solid-state image sensor 1 according to the first embodiment transmits light higher than the refractive index of the color filter layer 40 including the three-color color filter portions (41, 42, 43). It is composed of a monolayer film made of a film 51.
  • the inorganic layer 50A of the solid-state imaging device 1A according to the second embodiment selectively covers the color filter portion of a predetermined color among the color filter portions of two or more colors.
  • the structure includes a transmitting film 51 and a light transmitting film 55 that covers the light incident surface side of the light transmitting film 51 and covers the light incident surface side of the remaining color filter portions of other colors.
  • the light transmitting film 51 selectively covers the light incident surface side of the green (G) second color filter unit 42. That is, the thickness of the inorganic layer 50A is different between the second color filter unit 42 and the first and third color filter units 41 and 43, and the portion covering the second color filter unit 42 is the first and third colors. It is thicker than the portions that cover the filter portions 41 and 43.
  • the light transmitting film 55 covers the light incident surface side of the light transmitting film 51 on the second color filter unit 42, and the light of each of the red (R) color filter unit 41 and the blue (B) color filter unit 43. It covers the incident surface side. Then, as shown on the right side of FIG.
  • the light transmitting film 55 is provided over the pixel array portion 2A and the peripheral portion 2B, and the outermost peripheral end side surface 40a of the color filter layer 40 is along the outermost periphery. Covering. That is, the inorganic layer 50A covers the entire surface of the color filter layer 40 on the light incident surface side, and also covers the outermost peripheral end side surface 40a of the color filter layer 40.
  • the light transmitting film 55 is made of, for example, an aluminum oxide film, a hafnium oxide film, and a silicon nitride film having a refractive index higher than that of the color filter layer 40 including the first to third color filter portions 41 to 43. It is composed of either. Further, the light transmitting film 55 may be configured by laminating any two or more of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film.
  • the moisture absorption of the entire color filter layer 40 having the first to third color filter units 41 to 43 can be suppressed by the inorganic layer 50A, so that the color due to the moisture absorption can be suppressed.
  • Deterioration of the filter layer 40 can be further suppressed as compared with the first embodiment. This makes it possible to further suppress image deterioration such as stain defects caused by deterioration of the color filter layer 40 due to moisture absorption.
  • the light transmitting film 55 may be configured not to cover the end side surface 40a of the color filter layer 40.
  • the solid-state image sensor 1B according to the third embodiment of the present technology has basically the same configuration as the solid-state image sensor 1 according to the first embodiment described above, and as shown in FIG. 7, the first embodiment It has an inorganic layer 50B instead of the inorganic layer 50 of the above.
  • Other configurations are the same as those in the first embodiment described above.
  • the inorganic layer 50 of the solid-state image sensor 1 according to the first embodiment transmits light higher than the refractive index of the color filter layer 40 including the three-color color filter portions (41, 42, 43). It is composed of a monolayer film made of a film 51.
  • the solid-state image sensor 1B according to the third embodiment is formed from the light transmitting film 55 covering each light incident surface side of all the color filter parts of the two or more color filter parts. It is composed of a single-layer film.
  • the light transmitting film 55 is a red (R) first color filter unit 41, a green (G) second color filter unit 42, and a blue (B) third color filter unit 43, respectively.
  • the light transmitting film 55 also covers the outermost peripheral end side surface 40a of the color filter layer 40 along the outermost circumference, as in the second embodiment. That is, the inorganic layer 50B covers the entire surface of the color filter layer 40 having the color filter portions (41, 42, 43) of three colors on the light incident surface side, and also the outermost peripheral end side surface 40a of the color filter layer 40. Covering.
  • the moisture absorption of the entire color filter layer 40 can be suppressed by the inorganic layer 50B, so that the alteration of the color filter layer 40 due to the moisture absorption is compared with that of the first embodiment. Can be further suppressed. This makes it possible to further suppress image deterioration such as stain defects caused by deterioration of the color filter layer 40 due to moisture absorption.
  • the light transmitting film 55 may be configured not to cover the end side surface 40a of the color filter layer 40.
  • the solid-state image sensor 1C according to the fourth embodiment of the present technology basically has the same configuration as the solid-state image sensor 1 according to the first embodiment described above, and as shown in FIG. 8, the first embodiment It has an inorganic layer 50C instead of the inorganic layer 50 of the above.
  • Other configurations are the same as those in the first embodiment described above.
  • the inorganic layer 50C of the solid-state image sensor 1C has a configuration including light transmitting films 51, 52, and 55. Similar to the first embodiment described above, the light transmitting film 51 selects the light incident surface side of the green (G) second color filter unit 42 from the three color color filter units (41, 42, 43). Covers the target. Then, as described in the first embodiment described above, the light transmitting film 51 also functions as an etching stopper when the green (G) color filter film is etched to form the second color filter portion 42. ..
  • the light transmitting film 52 covers the light incident surface side of the light transmitting film 51 on the second color filter unit 42, and is the first of the red (R) of the remaining two color filter units (41, 43). It covers the light incident surface side of the color filter unit 41.
  • the light transmitting film 52 is also arranged between the red (R) first color filter unit 41 and the blue (B) third color filter unit 43, and the first color filter unit 41 and the first color filter unit 41 and the light transmitting film 52 are arranged between them.
  • Each side surface of the third color filter unit 43 is also covered.
  • the light transmitting film 52 is also arranged between the second color filter unit 42 of green (G) and the third color filter unit 43 of blue (B), and the second color filter unit 42 and the second color filter unit 42 are arranged between them.
  • Each side surface of the third color filter unit 43 is also covered.
  • the light transmitting film 55 includes a light transmitting film 51 on the second color filter unit 42, a light transmitting film 52 on the first color filter unit 41 and the second color filter unit 42, and the remaining third color filter unit 43. It covers each light incident surface side.
  • the light transmitting film 55 is not shown in detail in FIG. 8, referring to FIG. 6, the light transmitting film 55 also includes the outermost peripheral end side surface 40a of the color filter layer 40, as in the second embodiment described above. It covers along the outermost circumference.
  • the inorganic layer 50C covers the entire surface of the color filter layer 40 on the incident surface side, and the first and third color filter units 41 and 43 are located between the first color filter unit 41 and the third color filter unit 43. Each side surface is covered, and each side surface of the second and third color filter units 42 and 43 is also covered between the second color filter unit 42 and the third color filter unit 43.
  • the inorganic layer 50C also covers the outermost peripheral end side surface 40a of the color filter layer 40.
  • the thickness of the inorganic layer 50C is different between the first color filter unit 41, the second color filter unit 42, and the third color filter unit 43.
  • the portion of the inorganic layer 50C that covers the second color filter portion 42 is the thickest, then the portion that covers the first color filter portion 42 is thick, and the portion that covers the third color filter portion 43 is the thinnest.
  • the light transmitting film 52 has a higher refractive index than the refractive index of the color filter layer 40 including the first to third color filter units 41 to 43, for example, an aluminum oxide film, a hafnium oxide film, and silicon nitride. It is composed of any of the membranes. Further, the light transmitting film 52 may be configured by laminating any two or more of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film.
  • the light transmitting film 52 is also arranged between the blue (B) third color filter unit 43 and the photoelectric conversion unit 23.
  • the adhesive film 38 since the adhesive film 38 is provided, the light transmitting film 52 is provided between the third color filter portion 43 and the adhesive film 38. That is, the inorganic layer 50C is arranged on the light incident surface side of the color filter layer 40, and is further arranged on the side opposite to the light incident surface side of the color filter layer 40.
  • the solid-state image sensor 1C according to the fourth embodiment the moisture absorption of the entire color filter layer 40 can be suppressed by the inorganic layer 50C. Therefore, the alteration of the color filter layer 40 due to the moisture absorption is compared with that of the first embodiment. Can be further suppressed. This makes it possible to further suppress image deterioration such as stain defects caused by deterioration of the color filter layer 40 due to moisture absorption.
  • the light transmitting film 55 may be configured not to cover the end side surface 40a of the color filter layer 40.
  • FIGS. 9A to 9E a method of manufacturing the solid-state image sensor 1C according to the fourth embodiment will be described with reference to FIGS. 9A to 9E.
  • the same steps as those shown in FIGS. 4A to 4D and 5A to 5G of the first embodiment are performed, and as shown in FIG. 9A, photoelectric conversion that receives light of a green wavelength and performs photoelectric conversion.
  • a green (G) second color filter portion 42 whose upper surface is covered with a light transmitting film 51 is formed on the portion 23.
  • the etching mask RM1 (see FIG. 5F) on the second color filter unit 42 is removed by overetching.
  • the photoelectric conversion unit 23 that receives and converts light having a red wavelength is placed so as to be planarly overlapped with the photoelectric conversion unit 23.
  • the red (R) first color filter portion 41 is formed.
  • the first color filter section 41 is formed in the same process as the step of forming the green second color filter section 42 excluding the step of forming the light transmitting film 51.
  • the first and second color filter portions 41, 42 cover the entire surface of the semiconductor layer 20 on the second surface S2 side including the light transmission film 51 and the first color filter portion 41.
  • a light transmitting film 52 having a refractive index higher than that of As the light transmitting film 52 any one of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film can be used. These films can be formed by a CVD method or a vapor deposition method. In this step, a light transmitting film 52 is also formed on the photoelectric conversion unit 23 that receives light having a blue wavelength and performs photoelectric conversion.
  • the side surface that is not in contact with the first color filter unit 41 is covered with the light transmitting film 52. Further, of the side surfaces of the first color filter unit 41, although not shown in detail, the side surfaces that are not in contact with the second color filter unit 42 are also covered with the light transmitting film 52.
  • the photoelectric conversion unit 23 that receives and converts light having a blue wavelength is placed so as to be planarly overlapped with the photoelectric conversion unit 23.
  • the blue (B) third color filter portion 43 is formed.
  • the third color filter section 43 is formed in the same process as the step of forming the green second color filter section 42 excluding the step of forming the light transmitting film 51. In this step, the third color filter unit 43 is arranged on the light incident surface side of the photoelectric conversion unit 23 via the light transmitting film 52.
  • the light transmitting film 52 is also arranged between the second color filter unit 42 and the third color filter unit 43, and the light transmitting film 52 is arranged between the second color filter unit 42 and the third color filter unit 43, respectively.
  • the side surface is also covered with the light transmitting film 52.
  • the light transmitting film 52 is also arranged between the first color filter unit 41 and the second color filter unit 42, and the light transmitting film 52 is arranged between the first color filter unit 41 and the third color filter unit 43, respectively.
  • the side surface is also covered with the light transmitting film 52.
  • the first, second, and third color filter units (41, 42, 43) cover the entire surface of the semiconductor layer 20 including the light transmission film 52 and the third color filter unit 43.
  • a light transmitting film 55 having a refractive index higher than that of) is formed.
  • the light transmitting film 55 any of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film can be used. These films can be formed by a CVD method or a vapor deposition method.
  • the inorganic layer 50C including the light transmitting films 51, 52 and 55 is formed.
  • a color filter layer 40 having first to third color filter portions (41, 42, 43) and having an inorganic layer 50C is formed.
  • the outermost peripheral end side surface 40a of the color filter layer 40 is also covered with the light transmitting film along the outermost circumference.
  • the high-precision color filter layer 40 can be formed in the same manner as in the first embodiment described above. Further, image deterioration such as stain defects caused by deterioration of the color filter layer 40 due to moisture absorption can be further suppressed as compared with the first embodiment.
  • the solid-state image sensor 1D according to the fifth embodiment of the present technology has basically the same configuration as the solid-state image sensor 1 according to the first embodiment described above, and as shown in FIG. 10, the first embodiment It has an inorganic layer 50D instead of the inorganic layer 50 of the above.
  • Other configurations are the same as those in the first embodiment described above.
  • the inorganic layer 50D of the solid-state image sensor 1D has a configuration including light transmitting films 51, 52, 54, and 55.
  • the light transmitting film 51 selectively covers the light incident surface side of the green (G) second color filter unit 42 among the three color color filter units (41, 42, 43).
  • the light transmitting film 51 also functions as an etching stopper when the green (G) color filter film is etched to form the second color filter portion 42.
  • the light transmitting film 53 covers the light incident surface side of the light transmitting film 51 on the second color filter unit 42.
  • the light transmitting film 53 is also arranged between the second color filter unit 42 and the first color filter unit 41, and the side surfaces of the second color filter unit 42 and the first color filter unit 41 are located between them. Also covers.
  • the light transmitting film 53 is also arranged between the second color filter unit 42 and the third color filter unit 43, and the side surfaces of the second color filter unit 42 and the third color filter unit 43 are located between them. Also covers.
  • the light transmitting film 53 is also arranged between the first color filter unit 41 and the third color filter unit 43, and the side surfaces of the first color filter unit 41 and the third color filter unit 43 are located between them. Also covers.
  • the light transmitting film 54 covers the light incident surface side of the light transmitting film 53 on the second color filter unit 42 and the light incident surface side of the first color filter unit 41.
  • the light transmitting film 54 is also arranged between the second color filter unit 42 and the third color filter unit 43, and the side surfaces of the second color filter unit 42 and the third color filter unit 43 are located between them. Also covers.
  • the light transmitting film 54 is also arranged between the first color filter unit 41 and the third color filter unit 43, and the side surfaces of the first color filter unit 41 and the third color filter unit 43 are located between them. Also covers.
  • the light transmitting film 55 covers the light incident surface side of the light transmitting film 54 on the second color filter unit 42 and the first color filter unit 41, and the light incident surface side of the third color filter unit 43. Although the light transmitting film 55 is not shown in FIG. 10, referring to FIG. 6, the outermost peripheral end side surface 40a of the color filter layer 40 is also on the outermost circumference, as in the second embodiment described above. Covering along.
  • the inorganic layer 50D covers the entire surface of the color filter layer 40 on the incident surface side, and the second and third color filter units 42 and 43 are located between the second color filter unit 42 and the third color filter unit 43.
  • Each side surface, between the second color filter unit 42 and the first color filter unit 41, each side surface of the second and first color filter units 42 and 41, and the first color filter unit 41 and the third color filter unit The sides of the first and third color filter portions 41 and 43 are also covered with the 43.
  • the thickness of the inorganic layer 50D is different between the first color filter unit 41, the second color filter unit 42, and the third color filter unit 43.
  • the portion of the inorganic layer 50D that covers the second color filter portion 42 is the thickest, then the portion that covers the first color filter portion 42 is thick, and the portion that covers the third color filter portion 43 is the thinnest.
  • the light transmitting films 53 and 54 have a higher refractive index than the refractive index of the color filter layer 40 including the first to third color filter portions 41 to 43, for example, an aluminum oxide film, a hafnium oxide film and the like. It is composed of any of silicon nitride films. Further, the light transmitting films 53 and 54 may be configured by laminating any two or more of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film.
  • the light transmitting film 53 is formed between the red (R) first color filter unit 41 and the photoelectric conversion unit 23, and the blue (b) third color filter unit 43 and the photoelectric conversion unit 23. It is also placed between and. Since the adhesive film 38 is also provided in the fifth embodiment, the light transmitting film 53 is arranged between the first and third color filter portions 41 and 43 and the adhesive film 38. The light transmitting film 54 is also arranged between the third color filter unit 43 and the light transmitting film 53 directly below the third color filter unit 43. That is, the inorganic layer 50D is arranged on the light incident surface side of the color filter layer 40, and is further arranged on the side opposite to the light incident surface side of the color filter layer 40. The light transmitting film 53 also functions as an etching stopper when the red color filter film is etched to form the red (R) first color filter portion 41 in the manufacturing process of the solid-state imaging device 1D.
  • FIGS. 11A to 11F a method of manufacturing the solid-state image sensor 1D according to the fifth embodiment will be described with reference to FIGS. 11A to 11F.
  • the same steps as those shown in FIGS. 4A to 4D and 5A to 5G of the first embodiment are performed, and as shown in FIG. 11A, photoelectric conversion that receives light of a green wavelength and performs photoelectric conversion.
  • a green (G) second color filter portion 42 whose upper surface is covered with a light transmitting film 51 is formed on the portion 23.
  • the etching mask RM1 (see FIG. 5F) on the second color filter unit 42 is removed by overetching.
  • a light transmitting film 53 having a refractive index higher than that of the second color filter unit 42 is formed on the entire surface of the semiconductor layer 20 including the light transmitting film 51.
  • the light transmitting film 53 any of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film can be used. These films can be formed by a CVD method or a vapor deposition method.
  • a light transmitting film 53 is also formed on the photoelectric conversion unit 23 that receives light of a red wavelength and performs photoelectric conversion, and on the photoelectric conversion unit 23 that receives light of a blue wavelength and performs photoelectric conversion. ..
  • the photoelectric conversion unit 23 that receives and converts light having a red wavelength is placed so as to be planarly overlapped with the photoelectric conversion unit 23.
  • the red (R) first color filter portion 41 is formed.
  • the first color filter section 41 is formed in the same process as the step of forming the green second color filter section 42 excluding the step of forming the light transmitting film 51. In this step, the first color filter unit 41 is arranged on the light incident surface side of the photoelectric conversion unit 23 via the light transmitting film 53.
  • the light transmitting film 53 is also arranged between the second color filter unit 42 and the first color filter unit 41, and in the meantime, each of the second color filter unit 42 and the first color filter unit 41 is arranged.
  • the side surface is also covered with the light transmitting film 53.
  • the light transmitting film 53 on the photoelectric conversion unit 23 that receives light having a blue wavelength and performs photoelectric conversion is a red (R) first color obtained by etching a red (R) color fill film. It also functions as an etching mask when forming the filter portion 41.
  • the first and second colors are applied to the entire surface of the semiconductor layer 20 on the second surface S2 side including the light incident surface side of each of the light transmitting film 53 and the first color filter unit 41.
  • a light transmitting film 54 having a refractive index higher than that of the filter portions 41 and 42 is formed.
  • the light transmitting film 54 any of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film can be used. These films can be formed by a CVD method or a vapor deposition method.
  • the photoelectric conversion unit 23 is planar with the photoelectric conversion unit 23 on the light incident surface side of the photoelectric conversion unit 23 that receives and converts light having a blue wavelength.
  • the blue (B) third color filter portion 43 is formed so as to overlap with the above.
  • the third color filter section 43 is formed in the same process as the step of forming the green second color filter section 42 excluding the step of forming the light transmitting film 51. In this step, the third color filter unit 43 is arranged on the light incident surface side of the photoelectric conversion unit 23 via the light transmitting films 53 and 54.
  • the light transmitting films 53 and 54 are also arranged between the second color filter unit 42 and the third color filter unit 43, and the second color filter unit 42 and the third color filter unit 43 are arranged between them.
  • Each side surface is also covered with light transmitting films 53 and 54.
  • the light transmitting film 54 is also arranged between the first color filter unit 41 and the third color filter unit 43, and in the meantime, each of the first color filter unit 41 and the third color filter unit 43 is arranged.
  • the side surface is also covered with the light transmitting film 54.
  • the first to third colors are applied to the entire surface of the semiconductor layer 20 on the second surface S2 side including the light incident surface side of each of the light transmitting film 54 and the third color filter unit 43.
  • a light transmitting film 55 having a refractive index higher than that of the filter portions 41 to 43 is formed.
  • the light transmitting film 55 any of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film can be used. These films can be formed by a CVD method or a vapor deposition method.
  • the outermost peripheral end side surface 40a of the color filter layer 40 is also covered with the light transmitting film 55 along the outermost circumference.
  • the inorganic layer 50D including the light transmitting films 51, 53, 54 and 55 is formed. Further, a color filter layer 40 having first to third color filter portions (41, 42, 43) and having an inorganic layer 50D is formed.
  • the high-precision color filter layer 40 can be formed in the same manner as in the first embodiment described above. Further, image deterioration such as stain defects caused by deterioration of the color filter layer 40 due to moisture absorption can be further suppressed as compared with the first embodiment.
  • the solid-state image sensor 1E according to the sixth embodiment of the present technology has basically the same configuration as the solid-state image sensor 1 according to the first embodiment described above, and as shown in FIG. 12, the first embodiment
  • the inorganic layer 50E is provided in place of the inorganic layer 50 of the above.
  • Other configurations are the same as those in the first embodiment described above.
  • the inorganic layer 50E of the solid-state image sensor 1E according to the sixth embodiment has a configuration including light transmitting films 51 and 57.
  • the light transmitting film 51 selectively covers the light incident surface side of the green (G) second color filter unit 42 among the three color color filter units (41, 42, 43).
  • the light transmitting film 51 also functions as an etching stopper when forming the second color filter portion 42.
  • the light transmitting film 57 is arranged between each of the first to third color filter units 41 to 43 and the photoelectric conversion unit 23.
  • the adhesive film 38 since the adhesive film 38 is provided as in the first embodiment described above, the light transmitting film 57 includes each of the first to third color filter portions 41 to 43 and the adhesive film 38. It is provided between. That is, the inorganic layer 50E is arranged on the light incident surface side of the color filter layer 40, and is further arranged on the side opposite to the light incident surface side of the color filter layer 40.
  • the light transmitting film 57 is made of, for example, an aluminum oxide film, a hafnium oxide film, and a silicon nitride film having a refractive index higher than that of the color filter layer 40 including the first to third color filter portions 41 to 43. It is composed of either. Further, the light transmitting film 57 may be configured by laminating any two or more of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film.
  • a light transmitting film 57 is formed on the entire surface of the semiconductor layer 20 including the adhesive film 38, and then shown in FIG. 13B.
  • the first to third color filter portions 41 to 43 are formed on the light transmitting film 57. That is, the light transmitting film 57 is formed before forming the first to third color filter portions 41 to 43.
  • the green (G) color filter film is etched and the second color filter section 42 is formed.
  • the light transmitting film 57 functions as an etching stopper in the process, etching damage to the adhesive film 38, the flattening film 36, the photoelectric conversion unit 23, etc. directly under each of the first to third color filter units 41 to 43 is caused. It can be suppressed. Therefore, according to the solid-state image sensor 1E according to the sixth embodiment, image deterioration such as stain defects due to deterioration due to moisture absorption of the color filter layer 40 can be suppressed, and the adhesive film 38 and the flattening film 36 can be suppressed. In addition, it is possible to suppress a decrease in the manufacturing yield due to etching damage to the photoelectric conversion unit 23 and the like.
  • this sixth embodiment has described the case where the light transmitting film 57 is applied to the above-mentioned inorganic layer 50 of the first embodiment.
  • the application of the light transmitting film 57 is not limited to the inorganic layer 50 of the first embodiment described above.
  • the light transmitting film 57 can also be applied to the respective inorganic layers 50A to 50D of the second to fifth embodiments described above.
  • the light transmitting film 57 is formed before forming the first to third color filter portions 41 to 43.
  • FIG. 14 is a diagram showing an example of a schematic configuration of an electronic device (for example, a camera) to which the present technology can be applied.
  • the electronic device 100 includes a solid-state image sensor 101, an optical lens 102, a shutter device 103, a drive circuit 104, and a signal processing circuit 105.
  • any one of the solid-state image sensors 1, 1A, 1B, 1C, 1D, and 1E according to the first to sixth embodiments described above is used as the solid-state image sensor 101.
  • the optical lens 102 forms an image of image light (incident light 106) from the subject on the image pickup surface of the solid-state image pickup device 101.
  • the signal charge is accumulated in the solid-state image sensor 101 for a certain period of time.
  • the shutter device 103 controls the light irradiation period and the light blocking period of the solid-state image sensor 101.
  • the drive circuit 104 supplies a drive signal that controls the transfer operation of the solid-state image sensor 101 and the shutter operation of the shutter device 103.
  • the signal transfer of the solid-state image sensor 101 is performed by the drive signal (timing signal) supplied from the drive circuit 104.
  • the signal processing circuit 105 performs various signal processing on the signal (pixel signal) output from the solid-state image sensor 101.
  • the signal-processed video signal is stored in a storage medium such as a memory or output to a monitor.
  • the electronic device 100 to which the solid-state image sensor 1 can be applied is not limited to the camera, but can also be applied to other electronic devices. For example, it may be applied to an imaging device such as a camera module for mobile devices such as mobile phones and tablet terminals.
  • the above is an example of an electronic device to which this technology can be applied.
  • the present technology can be applied to the solid-state image sensor 101 among the configurations described above.
  • the solid-state image sensor 1 of FIG. 1 can be applied to the solid-state image sensor 101.
  • a better photographed image can be obtained.
  • FIG. 15 is a diagram showing an example of a schematic configuration of an image pickup apparatus as an electronic device to which the present technology (technology according to the present disclosure) can be applied.
  • the image pickup device 1000 in FIG. 15 is a video camera, a digital still camera, or the like.
  • the image pickup device 1000 includes a lens group 1001, a solid-state image sensor 1002, a DSP circuit 1003, a frame memory 1004, a display unit 1005, a storage unit 1006, an operation unit 1007, and a power supply unit 1008.
  • the DSP circuit 1003, the frame memory 1004, the display unit 1005, the storage unit 1006, the operation unit 1007, and the power supply unit 1008 are connected to each other via the pass line 1009.
  • the lens group 1001 captures incident light (image light) from the subject and forms an image on the image pickup surface of the solid-state image pickup device 1002.
  • the solid-state image sensor 1002 comprises the solid-state image sensor of the first to sixth embodiments described above.
  • the solid-state image sensor 1002 converts the amount of incident light imaged on the imaging surface by the lens group 1001 into an electric signal on a pixel-by-pixel basis and supplies it to the DSP circuit 1003 as a pixel signal.
  • the DSP circuit 1003 performs predetermined image processing on the pixel signal supplied from the solid-state image sensor 1002, supplies the image signal after the image processing to the frame memory 1004 in frame units, and temporarily stores the image signal.
  • the display unit 1005 is composed of a panel-type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays an image based on a frame-based pixel signal temporarily stored in the frame memory 1004.
  • a panel-type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays an image based on a frame-based pixel signal temporarily stored in the frame memory 1004.
  • the storage unit 1006 is composed of a DVD (Digital Versatile Disk), a flash memory, or the like, and reads and stores a frame-by-frame pixel signal temporarily stored in the frame memory 1004.
  • DVD Digital Versatile Disk
  • flash memory or the like
  • the operation unit 1007 issues operation commands for various functions of the image pickup apparatus 1000 under the operation of the user.
  • the power supply unit 1008 supplies power to the DSP circuit 1003, the frame memory 1004, the display unit 1005, the storage unit 1006, and the operation unit 1007 as appropriate.
  • the electronic device to which this technology is applied may be any device that uses a CMOS image sensor for the image acquisition unit (photoelectric conversion unit), and in addition to the image pickup device 1000, a portable terminal device having an image pickup function, and a CMOS image for the image reading unit.
  • CMOS image sensor for the image acquisition unit (photoelectric conversion unit)
  • the image pickup device 1000 a portable terminal device having an image pickup function
  • CMOS image for the image reading unit.
  • copiers that use sensors.
  • the present technology (the technology according to the present disclosure) is mounted on any kind of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. It may be realized as a device.
  • FIG. 16 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the present technology can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating a braking force of a vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a head lamp, a back lamp, a brake lamp, a winker, or a fog lamp.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver can control the vehicle. It is possible to perform coordinated control for the purpose of automatic driving, etc., which runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs coordinated control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits the output signal of at least one of the audio and the image to the output device capable of visually or audibly notifying the passenger or the outside of the vehicle of the information.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
  • FIG. 17 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has image pickup units 12101, 12102, 12103, 12104, 12105 as the image pickup unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100, for example.
  • the image pickup unit 12101 provided on the front nose and the image pickup section 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100.
  • the imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the images in front acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 17 shows an example of the photographing range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100). By obtaining can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
  • automatic braking control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is used via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104.
  • pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and a pattern matching process for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the above is an example of a vehicle control system to which this technology can be applied.
  • the present technology can be applied to the imaging unit 12031 among the configurations described above.
  • the solid-state image sensors 1, 1A, 1B, 1C, 1D, and 1E according to the first to sixth embodiments described above can be applied to the image pickup unit 12031.
  • FIG. 16 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the present technique can be applied.
  • FIG. 18 shows a surgeon (doctor) 11131 performing surgery on patient 11132 on patient bed 11133 using the endoscopic surgery system 11000.
  • the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as an abdominal tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100.
  • a cart 11200 equipped with various devices for endoscopic surgery.
  • the endoscope 11100 is composed of a lens barrel 11101 in which a region having a predetermined length from the tip is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the base end of the lens barrel 11101.
  • the endoscope 11100 configured as a so-called rigid mirror having a rigid barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible barrel. good.
  • An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101, and is an objective. It is irradiated toward the observation target in the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image pickup element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the image pickup element by the optical system.
  • the observation light is photoelectrically converted by the image sensor, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted as RAW data to the camera control unit (CCU: Camera Control Unit) 11201.
  • CCU Camera Control Unit
  • the CCU11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and comprehensively controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal for displaying an image based on the image signal, such as development processing (demosaic processing).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on the image signal processed by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 is composed of, for example, a light source such as an LED (Light Emitting Diode), and supplies irradiation light to the endoscope 11100 when photographing an operating part or the like.
  • a light source such as an LED (Light Emitting Diode)
  • LED Light Emitting Diode
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and input instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the treatment tool control device 11205 controls the drive of the energy treatment tool 11112 for cauterizing, incising, sealing a blood vessel, or the like of a tissue.
  • the pneumoperitoneum device 11206 uses a gas in the pneumoperitoneum tube 11111 to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the work space of the operator.
  • the recorder 11207 is a device capable of recording various information related to surgery.
  • the printer 11208 is a device capable of printing various information related to surgery in various formats such as texts, images, and graphs.
  • the light source device 11203 that supplies the irradiation light to the endoscope 11100 when photographing the surgical site can be composed of, for example, an LED, a laser light source, or a white light source composed of a combination thereof.
  • a white light source is configured by combining RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • the laser light from each of the RGB laser light sources is irradiated to the observation target in a time-divided manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing to support each of RGB. It is also possible to capture the image in a time-divided manner. According to this method, a color image can be obtained without providing a color filter on the image sensor.
  • the drive of the light source device 11203 may be controlled so as to change the intensity of the output light at predetermined time intervals.
  • the drive of the image sensor of the camera head 11102 in synchronization with the timing of changing the light intensity to acquire an image in a time-divided manner and synthesizing the image, so-called high dynamic without blackout and overexposure. Range images can be generated.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue to irradiate light in a narrow band as compared with the irradiation light (that is, white light) in normal observation, the surface layer of the mucous membrane. So-called narrow band imaging, in which a predetermined tissue such as a blood vessel is photographed with high contrast, is performed.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating with excitation light.
  • the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 may be configured to be capable of supplying narrow band light and / or excitation light corresponding to such special light observation.
  • FIG. 19 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU11201 shown in FIG.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • CCU11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and CCU11201 are communicably connected to each other by a transmission cable 11400.
  • the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101.
  • the observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and incident on the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the image pickup unit 11402 is composed of an image pickup element.
  • the image sensor constituting the image pickup unit 11402 may be one (so-called single plate type) or a plurality (so-called multi-plate type).
  • each image pickup element may generate an image signal corresponding to each of RGB, and a color image may be obtained by synthesizing them.
  • the image pickup unit 11402 may be configured to have a pair of image pickup elements for acquiring image signals for the right eye and the left eye corresponding to 3D (Dimensional) display, respectively.
  • the 3D display enables the operator 11131 to more accurately grasp the depth of the biological tissue in the surgical site.
  • a plurality of lens units 11401 may be provided corresponding to each image pickup element.
  • the imaging unit 11402 does not necessarily have to be provided on the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is composed of an actuator, and the zoom lens and focus lens of the lens unit 11401 are moved by a predetermined distance along the optical axis under the control of the camera head control unit 11405. As a result, the magnification and focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU11201.
  • the communication unit 11404 transmits the image signal obtained from the image pickup unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and / or information to specify the magnification and focus of the captured image, and the like. Contains information about the condition.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of CCU11201 based on the acquired image signal. good.
  • the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
  • the camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102.
  • Image signals and control signals can be transmitted by telecommunications, optical communication, or the like.
  • the image processing unit 11412 performs various image processing on the image signal which is the RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various controls related to the imaging of the surgical site and the like by the endoscope 11100 and the display of the captured image obtained by the imaging of the surgical site and the like. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display an image captured by the surgical unit or the like based on the image signal processed by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image by using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edge of an object included in the captured image to remove surgical tools such as forceps, a specific biological part, bleeding, and mist when using the energy treatment tool 11112. Can be recognized.
  • the control unit 11413 may superimpose and display various surgical support information on the image of the surgical unit by using the recognition result. By superimposing and displaying the surgical support information and presenting it to the surgeon 11131, it is possible to reduce the burden on the surgeon 11131 and to allow the surgeon 11131 to proceed with the surgery reliably.
  • the transmission cable 11400 that connects the camera head 11102 and CCU11201 is an electric signal cable that supports electric signal communication, an optical fiber that supports optical communication, or a composite cable thereof.
  • the communication is performed by wire using the transmission cable 11400, but the communication between the camera head 11102 and the CCU11201 may be performed wirelessly.
  • the above is an example of an endoscopic surgery system to which this technology can be applied.
  • the present technology can be applied to the imaging unit 11402 among the configurations described above.
  • the solid-state image sensors 1, 1A, 1B, 1C, 1D, and 1E according to the first to sixth embodiments described above can be applied to the image pickup unit 10402.
  • this technique By applying this technique to the imaging unit 10402, a clearer surgical site image can be obtained, so that the operator can surely confirm the surgical site.
  • the present technology may be applied to other, for example, a microscopic surgery system.
  • the present technology may have the following configuration.
  • a semiconductor layer provided with a plurality of photoelectric conversion units and A color filter layer arranged on the light incident surface side of the semiconductor layer and including a color filter unit of two or more colors, and a color filter layer.
  • An inorganic layer arranged on the light incident surface side of the color filter layer and having a refractive index higher than that of the color filter layer, Solid-state image sensor.
  • Solid-state image sensor Solid-state image sensor.
  • a color filter film is formed on the semiconductor layer, An inorganic layer having a refractive index higher than that of the color filter film is formed on the color filter film.
  • a method of manufacturing a solid-state image sensor including the above.
  • Solid-state imaging device 2 ... Semiconductor chip 2A ... Pixel array part 2B ... Peripheral part 2C ... Pad arrangement part 3 ... Pixel 4 ... Vertical drive circuit 5 ... Column signal processing circuit 6 ... Horizontal Drive circuit 7 ... Output circuit 8 ... Control circuit 10 ... Pixel drive wiring, 11 ... Vertical signal line 12 ... Horizontal signal line 13 ... Electrode pad 20 ; Semiconductor layer 21 ... n-type well area 22 ... Separation area 23 ... Photoelectric conversion unit 25 ... Flattening film 26 ... Adhesive layer 30 ... Multilayer wiring layer 31 ... Interlayer insulation film 32 ... Wiring 34 ... Support substrate 36 ...

Abstract

The present invention suppresses image degradation. A solid-state imaging device has a plurality of photoelectric conversion units provided in a semiconductor layer, a color filter layer that is positioned on the plurality of photoelectric conversion units and includes two or more colors of color filter units, and an inorganic layer that is positioned at least on the upper surface of the color filter layer and has a higher refractive index than the color filter layer.

Description

固体撮像装置及びその製造方法、並びに電子機器Solid-state image sensor, its manufacturing method, and electronic equipment
 本技術(本開示に係る技術)は、固体撮像装置及びその製造方法、並びに電子機器に関し、特に、カラーフィルタを有する固体撮像装置及びその製造方法、並びに、それを備えた電子機器に適用して有効な技術に関するものである。 The present technology (technology according to the present disclosure) is applied to a solid-state imaging device and a manufacturing method thereof, and an electronic device, particularly to a solid-state imaging device having a color filter, a manufacturing method thereof, and an electronic device provided with the solid-state imaging device. It concerns effective technology.
 光を電気信号に変換する固体撮像装置は、複数の光電変換部が設けられた半導体層と、この半導体層の光入射面側に配置されたカラーフィルタ層とを備えている。カラーフィルタ層は、例えば赤色(R)、緑色(G)及び青色(B)の3色のカラーフィルタ部を含んでいる。 The solid-state image sensor that converts light into an electric signal includes a semiconductor layer provided with a plurality of photoelectric conversion units and a color filter layer arranged on the light incident surface side of the semiconductor layer. The color filter layer includes, for example, a color filter unit having three colors of red (R), green (G), and blue (B).
 特許文献1には、色の異なるカラーフィルタ部の間に、カラーフィルタ部の屈折率よりも低い分離壁を設けることにより、シューディング特性の向上を図った固体撮像素子が開示されている。また、特許文献1には、カラーフィルタ層の光入射面側に平坦化層を設けることにより、光導入効率をより改善する技術も開示されている。この平坦化層も、カラーフィルタ部の屈折率よりも低くなっている。 Patent Document 1 discloses a solid-state image sensor in which the shoeing characteristics are improved by providing a separation wall having a refractive index lower than that of the color filter unit between color filter units having different colors. Further, Patent Document 1 also discloses a technique for further improving the light introduction efficiency by providing a flattening layer on the light incident surface side of the color filter layer. This flattening layer is also lower than the refractive index of the color filter portion.
特開2009-111225号公報Japanese Unexamined Patent Publication No. 2009-11125
 ところで、カラーフィルタ層は、一般的に吸湿性が高い樹脂材料で形成されている。このため、高温高湿環境でカラーフィルタ層の吸湿による変質でシミ不良等の画像劣化を引き起こすことが懸念される。 By the way, the color filter layer is generally made of a resin material having high hygroscopicity. Therefore, there is a concern that deterioration of the color filter layer due to moisture absorption in a high temperature and high humidity environment may cause image deterioration such as stain defects.
 本技術の目的は、画像劣化を抑制することが可能な固体撮像装置及びその製造方法、並びにそれを備えた電子機器を提供することにある。 The purpose of this technology is to provide a solid-state image sensor capable of suppressing image deterioration, a method for manufacturing the same, and an electronic device equipped with the device.
 本技術の一態様に係る固体撮像装置は、
 複数の光電変換部が設けられた半導体層と、
 上記半導体層の光入射面側に設けられ、かつ2色以上のカラーフィルタ部を含むカラーフィルタ層と、
 上記カラーフィルタ層の光入射面側に配置され、かつ上記カラーフィルタ層の屈折率よりも高い無機層と、
 を有する。
The solid-state image sensor according to one aspect of the present technology is
A semiconductor layer provided with a plurality of photoelectric conversion units and
A color filter layer provided on the light incident surface side of the semiconductor layer and including a color filter unit of two or more colors, and a color filter layer.
An inorganic layer arranged on the light incident surface side of the color filter layer and having a refractive index higher than that of the color filter layer,
Have.
 本技術の他の態様に係る固体撮像装置の製造方法は、
 半導体層上にカラーフィルタ膜を形成し、
 上記カラーフィルタ膜上に前記カラーフィルタ膜の屈折率よりも高い無機層を形成し、
 上記無機層上にエッチングマスクを形成し、
 上記エッチングマスクの周囲の上記無機層及び上記カラーフィルタ膜をエッチングにより除去して上面が上記無機層で覆われたカラーフィルタ部を形成すると共に、上記エッチングマスクをオーバーエッチングにより除去する、
 ことを含む。
A method for manufacturing a solid-state image sensor according to another aspect of the present technology is described.
A color filter film is formed on the semiconductor layer,
An inorganic layer having a refractive index higher than that of the color filter film is formed on the color filter film.
An etching mask is formed on the above inorganic layer to form an etching mask.
The inorganic layer and the color filter film around the etching mask are removed by etching to form a color filter portion whose upper surface is covered with the inorganic layer, and the etching mask is removed by overetching.
Including that.
 本技術の他の態様に係る電子機器は、
 複数の光電変換部が設けられた半導体層と、
 上記半導体層の光入射面側に設けられ、かつ2色以上のカラーフィルタ部を含むカラーフィルタ層と、
 上記カラーフィルタ層の光入射面側に配置され、かつ上記カラーフィルタ層の屈折率よりも高い無機層と、
 を有する固体撮像装置を備えている。
Electronic devices related to other aspects of this technology
A semiconductor layer provided with a plurality of photoelectric conversion units and
A color filter layer provided on the light incident surface side of the semiconductor layer and including a color filter unit of two or more colors, and a color filter layer.
An inorganic layer arranged on the light incident surface side of the color filter layer and having a refractive index higher than that of the color filter layer,
It is equipped with a solid-state image sensor.
本技術の第1実施形態に係る固体撮像装置の一構成例を示すチップレイアウト図である。It is a chip layout diagram which shows one configuration example of the solid-state image pickup apparatus which concerns on 1st Embodiment of this technique. 本技術の第1実施形態に係る固体撮像装置の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the solid-state image pickup apparatus which concerns on 1st Embodiment of this technique. 画素アレイ部の断面構造を示す模式的断面図である。It is a schematic cross-sectional view which shows the cross-sectional structure of a pixel array part. 本技術の第1実施形態に係る固体撮像装置の製造方法の工程断面図である。It is a process sectional view of the manufacturing method of the solid-state image sensor which concerns on 1st Embodiment of this technique. 図4Aに引き続く工程断面図である。It is a process cross-sectional view following FIG. 4A. 図4Bに引き続く工程断面図である。It is a process cross-sectional view following FIG. 4B. 図4Cに引き続く工程断面図である。It is a process cross-sectional view following FIG. 4C. 図4Dの一部を拡大した工程断面図である。It is a process cross-sectional view which enlarged a part of FIG. 4D. 図5Aに引き続く工程断面図である。It is a process cross-sectional view following FIG. 5A. 図5Bに引き続く工程断面図である。It is a process cross-sectional view following FIG. 5B. 図5Cに引き続く工程断面図である。It is a process cross-sectional view following FIG. 5C. 図5Dに引き続く工程断面図である。It is a process cross-sectional view following FIG. 5D. 図5Eに引き続く工程断面図である。It is a process cross-sectional view following FIG. 5E. 図5Fに引き続く工程断面図である。It is a process cross-sectional view following FIG. 5F. 図5Gに引き続く工程断面図である。It is a process cross-sectional view following FIG. 5G. 図5Hに引き続く工程断面図である。It is a process cross-sectional view following FIG. 5H. 図5Iに引き続く工程断面図である。It is a process cross-sectional view following FIG. 5I. 本技術の第2実施形態に係る固体撮像装置の画素アレイ部を示す模式的断面図である。It is a schematic cross-sectional view which shows the pixel array part of the solid-state image sensor which concerns on 2nd Embodiment of this technique. 本技術の第3実施形態に係る固体撮像装置の画素アレイ部を示す模式的断面図である。It is a schematic cross-sectional view which shows the pixel array part of the solid-state image sensor which concerns on 3rd Embodiment of this technique. 本技術の第4実施形態に係る固体撮像装置の画素アレイ部を示す模式的断面図である。It is a schematic cross-sectional view which shows the pixel array part of the solid-state image sensor which concerns on 4th Embodiment of this technique. 本技術の第4実施形態に係る固体撮像装置の製造方法の工程断面図である。It is a process sectional view of the manufacturing method of the solid-state image sensor which concerns on 4th Embodiment of this technique. 図9Aに引き続く工程断面図である。It is a process cross-sectional view following FIG. 9A. 図9Bに引き続く工程断面図である。It is a process cross-sectional view following FIG. 9B. 図9Cに引き続く工程断面図である。It is a process cross-sectional view following FIG. 9C. 図9Dに引き続く工程断面図である。It is a process cross-sectional view following FIG. 9D. 本技術の第5実施形態に係る固体撮像装置の画素アレイ部を示す模式的断面図である。It is a schematic cross-sectional view which shows the pixel array part of the solid-state image sensor which concerns on 5th Embodiment of this technique. 本技術の第5実施形態に係る固体撮像装置の製造方法の工程断面図である。It is a process sectional view of the manufacturing method of the solid-state image sensor which concerns on 5th Embodiment of this technique. 図11Aに引き続く工程断面図である。It is a process cross-sectional view following FIG. 11A. 図11Bに引き続く工程断面図である。It is a process cross-sectional view following FIG. 11B. 図11Cに引き続く工程断面図である。It is a process cross-sectional view following FIG. 11C. 図11Dに引き続く工程断面図である。It is a process cross-sectional view following FIG. 11D. 図11Eに引き続く工程断面図である。It is a process cross-sectional view following FIG. 11E. 本技術の第6実施形態に係る固体撮像装置の画素アレイ部を示す模式的断面図である。It is a schematic cross-sectional view which shows the pixel array part of the solid-state image sensor which concerns on 6th Embodiment of this technique. 本技術の第6実施形態に係る固体撮像装置の製造方法の工程断面図である。It is a process sectional view of the manufacturing method of the solid-state image pickup apparatus which concerns on 6th Embodiment of this technique. 図13Aに引き続く工程断面図である。It is a process cross-sectional view following FIG. 13A. 電子機器の概略的な一構成例を示す図である。It is a figure which shows one schematic configuration example of an electronic device. 電子機器の概略的な一構成例を示す図である。It is a figure which shows one schematic configuration example of an electronic device. 車両制御システムの概略的な一構成例を示すブロック図である。It is a block diagram which shows one schematic configuration example of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of the vehicle exterior information detection unit and the image pickup unit. 内視鏡手術システムの概略的な一構成例を示すブロック図である。It is a block diagram which shows one schematic configuration example of an endoscopic surgery system. カメラヘッド及びCCUの機能構成の一例を示すブロック図である。It is a block diagram which shows an example of the functional structure of a camera head and a CCU.
 以下において、図面を参照して本技術の実施形態を説明する。以下の説明で参照する図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。なお、本明細書中に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 Hereinafter, embodiments of the present technology will be described with reference to the drawings. In the description of the drawings referred to in the following description, the same or similar parts are designated by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the plane dimensions, the ratio of the thickness of each layer, etc. are different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following explanation. In addition, it goes without saying that the drawings include parts having different dimensional relationships and ratios from each other. It should be noted that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 (第1実施形態)
 この第1実施形態では、裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである固体撮像装置に本技術を適用した一例について説明する。
 ≪固体撮像装置の構成≫
 まず、固体撮像装置1の平面レイアウトについて説明する。
 図1に示すように、本技術の第1実施形態に係る固体撮像装置1は、平面視したときの二次元平面形状が矩形の半導体チップ2を主体に構成されている。半導体チップ2は、二次元平面形状において、中央に設けられた矩形状の画素アレイ部2Aと、この画素アレイ部2Aの外側に画素アレイ部2Aを囲むようにして設けられた周辺部2Bと、この周辺部2Bの外側に周辺部2Bを囲むようにして設けられたパッド配置部2Cとを備えている。
(First Embodiment)
In this first embodiment, an example in which the present technology is applied to a solid-state image sensor which is a back-illuminated CMOS (Complementary Metal Oxide Semiconductor) image sensor will be described.
≪Structure of solid-state image sensor≫
First, the plane layout of the solid-state image sensor 1 will be described.
As shown in FIG. 1, the solid-state imaging device 1 according to the first embodiment of the present technology is mainly composed of a semiconductor chip 2 having a rectangular two-dimensional planar shape when viewed in a plan view. The semiconductor chip 2 has a rectangular pixel array portion 2A provided in the center in a two-dimensional planar shape, a peripheral portion 2B provided outside the pixel array portion 2A so as to surround the pixel array portion 2A, and the periphery thereof. A pad arranging portion 2C provided so as to surround the peripheral portion 2B is provided on the outside of the portion 2B.
 画素アレイ部2Aは、図示しない光学系により集光される光を受光する受光面である。そして、画素アレイ部2Aには、X方向及びY方向を含む二次元平面において複数の画素3が行列状に配置されている。 The pixel array unit 2A is a light receiving surface that receives light collected by an optical system (not shown). Then, in the pixel array unit 2A, a plurality of pixels 3 are arranged in a matrix in a two-dimensional plane including the X direction and the Y direction.
 周辺部2Bには、図2に示す垂直駆動回路4、カラム信号処理回路5、水平駆動回路6、出力回路7及び制御回路8などが配置されている。 The vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, the output circuit 7, the control circuit 8, and the like shown in FIG. 2 are arranged in the peripheral portion 2B.
 複数の画素3の各々の画素3は、図3に示す光電変換部23と、図示していないが複数の画素トランジスタとを含む。複数の画素トランジスタとしては、例えば、転送トランジスタ、リセットトランジスタ、選択トランジスタ、アンプトランジスタの4つのトランジスタを採用できる。また、複数の画素トランジスタとしては、例えば選択トランジスタを除いた3つのトランジスタを採用してもよい。 Each pixel 3 of the plurality of pixels 3 includes a photoelectric conversion unit 23 shown in FIG. 3 and a plurality of pixel transistors (not shown). As the plurality of pixel transistors, for example, four transistors such as a transfer transistor, a reset transistor, a selection transistor, and an amplifier transistor can be adopted. Further, as the plurality of pixel transistors, for example, three transistors excluding the selection transistor may be adopted.
 垂直駆動回路4は、例えばシフトレジスタによって構成されている。垂直駆動回路4は、所望の画素駆動配線10を順次選択し、選択した画素駆動配線10に画素3を駆動するためのパルスを供給し、各画素3を行単位で駆動する。即ち、垂直駆動回路4は、画素アレイ部2Aの各画素3を行単位で順次垂直方向に選択走査し、各画素3の光電変換部23において受光量に応じて生成した信号電荷に基づく画素3からの画素信号を、垂直信号線11を通してカラム信号処理回路5に供給する。 The vertical drive circuit 4 is composed of, for example, a shift register. The vertical drive circuit 4 sequentially selects the desired pixel drive wiring 10, supplies a pulse for driving the pixel 3 to the selected pixel drive wiring 10, and drives each pixel 3 in rows. That is, the vertical drive circuit 4 selectively scans each pixel 3 of the pixel array unit 2A in a row-by-row manner in the vertical direction, and the pixel 3 based on the signal charge generated by the photoelectric conversion unit 23 of each pixel 3 according to the amount of received light. Is supplied to the column signal processing circuit 5 through the vertical signal line 11.
 カラム信号処理回路5は、例えば画素3の列毎に配置されており、1行分の画素3から出力される信号に対して画素列毎にノイズ除去等の信号処理を行う。例えばカラム信号処理回路5は、画素固有の固定パターンノイズを除去するためのCDS(Correlated Double Sampling:相関2重サンプリング)及びAD(Analog Digital)変換等の信号処理を行う。 The column signal processing circuit 5 is arranged for each column of the pixel 3, for example, and performs signal processing such as noise removal for each pixel string for the signal output from the pixel 3 for one row. For example, the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) and AD (Analog Digital) conversion for removing fixed pattern noise peculiar to pixels.
 水平駆動回路6は、例えばシフトレジスタによって構成されている。水平駆動回路6は、水平走査パルスをカラム信号処理回路5に順次出力することによって、カラム信号処理回路5の各々を順番に選択し、カラム信号処理回路5の各々から信号処理が行われた画素信号を水平信号線12に出力させる。 The horizontal drive circuit 6 is composed of, for example, a shift register. The horizontal drive circuit 6 sequentially outputs horizontal scanning pulses to the column signal processing circuit 5, thereby sequentially selecting each of the column signal processing circuits 5, and the pixels in which the signal processing is performed from each of the column signal processing circuits 5. The signal is output to the horizontal signal line 12.
 出力回路7は、カラム信号処理回路5の各々から水平信号線12を通して順次に供給される画素信号に対し、信号処理を行って出力する。信号処理としては、例えば、バッファリング、黒レベル調整、列ばらつき補正、各種デジタル信号処理等を用いることができる。 The output circuit 7 performs signal processing on pixel signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 12 and outputs the signals. As the signal processing, for example, buffering, black level adjustment, column variation correction, various digital signal processing and the like can be used.
 制御回路8は、垂直同期信号、水平同期信号、及びマスタクロック信号に基づいて、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6等の動作の基準となるクロック信号や制御信号を生成する。そして、制御回路8は、生成したクロック信号や制御信号を、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6等に出力する。 Based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock signal, the control circuit 8 transmits a clock signal or a control signal that serves as a reference for the operation of the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like. Generate. Then, the control circuit 8 outputs the generated clock signal and control signal to the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like.
 図1に示すように、パッド配置部2Cには、半導体チップ2の二次元平面における4つの辺のそれぞれの辺に沿って複数の電極パッド13が配置されている。電極パッド13は、半導体チップ2を図示しない外部装置と電気定的に接続する際に用いられる入出力端子である。 As shown in FIG. 1, a plurality of electrode pads 13 are arranged along the respective sides of the four sides in the two-dimensional plane of the semiconductor chip 2 in the pad arrangement portion 2C. The electrode pad 13 is an input / output terminal used when the semiconductor chip 2 is electrically connected to an external device (not shown).
 この第1実施形態に係る固体撮像装置1(101)は、図14に示すように、光学レンズ102を介して被写体からの像光(入射光106)を取り込み、撮像面上に結像された入射光106の光量を画素単位で電気信号に変換して画素信号として出力する。 As shown in FIG. 14, the solid-state image sensor 1 (101) according to the first embodiment takes in the image light (incident light 106) from the subject through the optical lens 102 and forms an image on the image pickup surface. The amount of light of the incident light 106 is converted into an electric signal in pixel units and output as a pixel signal.
 次に、固体撮像装置1の具体的な構造について説明する。
 図3に示すように、半導体チップ2は、複数の光電変換部23が設けられた半導体層20と、この半導体層20の厚さ方向において互いに反対側に位置する第1の面S1及び第2の面S2のうちの第2の面S2側である光入射面側に配置され、かつ2色以上のカラーフィルタ部を含むカラーフィルタ層40とを有する。
 また、半導体チップ2は、カラーフィルタ層40の光入射面側に配置され、かつカラーフィルタ層40の屈折率よりも高い無機層50を有する。
 また、半導体チップ2は、カラーフィルタ層40の光入射面側(半導体層20側とは反対側)に配置された複数のマイクロレンズ59(オンチップレンズ、ウエハレンズ)を更に有する。
 また、半導体チップ2は、半導体層20の第1の面S1側に配置された多層配線層30と、この多層配線層30の半導体層20側とは反対側に配置された支持基板34とを更に有する。
Next, the specific structure of the solid-state image sensor 1 will be described.
As shown in FIG. 3, the semiconductor chip 2 has a semiconductor layer 20 provided with a plurality of photoelectric conversion units 23, and first surfaces S1 and second surfaces S1 and second located opposite to each other in the thickness direction of the semiconductor layer 20. It has a color filter layer 40 which is arranged on the light incident surface side which is the second surface S2 side of the surface S2 and includes a color filter unit of two or more colors.
Further, the semiconductor chip 2 has an inorganic layer 50 arranged on the light incident surface side of the color filter layer 40 and having a refractive index higher than that of the color filter layer 40.
Further, the semiconductor chip 2 further has a plurality of microlenses 59 (on-chip lens, wafer lens) arranged on the light incident surface side (the side opposite to the semiconductor layer 20 side) of the color filter layer 40.
Further, the semiconductor chip 2 includes a multilayer wiring layer 30 arranged on the first surface S1 side of the semiconductor layer 20 and a support substrate 34 arranged on the side opposite to the semiconductor layer 20 side of the multilayer wiring layer 30. Have more.
 半導体層20は、例えば単結晶シリコンからなるp型の半導体基板で構成されている。複数の光電変換部23の各々の光電変換部23は、画素アレイ部2Aにおいて、複数の画素3の各々の画素3に対応して行列状に配置されている。そして、各光電変換部23は、半導体層20に設けられた分離領域22によって区画されている。分離領域22は、半導体層20の第1の面S1側から第2の面S2側に向かって延伸し、互に隣り合う光電変換部23間を電気的及び光学的に分離している。分離領域22は、例えば酸化シリコン膜からなる単層構造、或いは金属膜の両側を絶縁膜で挟んだ3層構造を用いることができる。光電変換部23では、入射光の光量に応じた信号電荷が生成され、生成された信号電荷が蓄積される。 The semiconductor layer 20 is composed of, for example, a p-type semiconductor substrate made of single crystal silicon. Each photoelectric conversion unit 23 of the plurality of photoelectric conversion units 23 is arranged in a matrix in the pixel array unit 2A corresponding to each pixel 3 of the plurality of pixels 3. Each photoelectric conversion unit 23 is partitioned by a separation region 22 provided in the semiconductor layer 20. The separation region 22 extends from the first surface S1 side of the semiconductor layer 20 toward the second surface S2 side, and electrically and optically separates the photoelectric conversion units 23 adjacent to each other. For the separation region 22, for example, a single-layer structure made of a silicon oxide film or a three-layer structure in which both sides of the metal film are sandwiched between insulating films can be used. In the photoelectric conversion unit 23, a signal charge corresponding to the amount of incident light is generated, and the generated signal charge is accumulated.
 複数の光電変換部23の各々の光電変換部23には、例えばn型の半導体領域からなるウエル領域21が構成されている。また、複数の光電変換部23の各々の光電変換部23には、詳細に図示していないが、光電変換素子として例えばアバランシェホトダイオード(APD:Avalanche Photo Diode)素子が構成され、更に画素トランジスタが構成されている。即ち、画素アレイ部2Aには、半導体層20に埋設された光電変換部23を含む画素3が行列状(二次元マトリクス状)に複数配置されている。 Each photoelectric conversion unit 23 of the plurality of photoelectric conversion units 23 is configured with a well region 21 composed of, for example, an n-type semiconductor region. Further, although not shown in detail, each photoelectric conversion unit 23 of the plurality of photoelectric conversion units 23 includes, for example, an avalanche photodiode (APD) element as a photoelectric conversion element, and further comprises a pixel transistor. Has been done. That is, in the pixel array unit 2A, a plurality of pixels 3 including the photoelectric conversion unit 23 embedded in the semiconductor layer 20 are arranged in a matrix (two-dimensional matrix).
 多層配線層30は、半導体層20の光入射面(第2の面S2)側とは反対側の第1の面S1側に配置されており、層間絶縁膜31と、層間絶縁膜31を介して複数層に積層された配線32とを含んで構成されている。この複数層の配線32を介して各画素3を構成する画素トランジスタが駆動される。多層配線層30は、半導体層20の光入射面側(第2の面S2側)とは反対側に配置されているので、配線32のレイアウトを自由に設定することができる。 The multilayer wiring layer 30 is arranged on the first surface S1 side opposite to the light incident surface (second surface S2) side of the semiconductor layer 20, via the interlayer insulating film 31 and the interlayer insulating film 31. It is configured to include the wiring 32 laminated in a plurality of layers. Pixel transistors constituting each pixel 3 are driven via the plurality of layers of wiring 32. Since the multilayer wiring layer 30 is arranged on the side opposite to the light incident surface side (second surface S2 side) of the semiconductor layer 20, the layout of the wiring 32 can be freely set.
 2色以上のカラーフィルタ部を含むカラーフィルタ層40は、これに限定されないが、例えば、赤色(R)の第1カラーフィルタ部41と、緑色(G)の第2カラーフィルタ部42と、青色(B)の第3カラーフィルタ部43とを含む。この第1~第3カラーフィルタ部41~43は、画素アレイ部2Aにおいて、複数の画素3の各々の画素3、即ち、複数の光電変換部23の各々の光電変換部23に対応して行列状に配置されている。第1~第3カラーフィルタ部41~43は、ランダムに配置されており、必ずしも同数になっていない。この第1実施形態では、例えば、緑色(G)の第2カラーフィルタ部42が赤色(R)の第1カラーフィルタ部41及び青色(B)の第3カラーフィルタ部43よりも多く設けられている。赤色(R)の第1カラーフィルタ部41、緑色(G)の第2カラーフィルタ部42、及び青色(B)の第3カラーフィルタ部43の各々は、光電変換部23に受光させたい入射光の特定の波長を透過し、透過させた入射光を光電変換部23に入射させる構成になっている。 The color filter layer 40 including the color filter units of two or more colors is not limited to this, and for example, the first color filter unit 41 of red (R), the second color filter unit 42 of green (G), and blue. Includes the third color filter unit 43 of (B). The first to third color filter units 41 to 43 are arranged in a matrix corresponding to each pixel 3 of the plurality of pixels 3, that is, each photoelectric conversion unit 23 of the plurality of photoelectric conversion units 23 in the pixel array unit 2A. It is arranged in a shape. The first to third color filter units 41 to 43 are randomly arranged and are not necessarily the same number. In this first embodiment, for example, the green (G) second color filter unit 42 is provided more than the red (R) first color filter unit 41 and the blue (B) third color filter unit 43. There is. Each of the red (R) first color filter unit 41, the green (G) second color filter unit 42, and the blue (B) third color filter unit 43 is the incident light that the photoelectric conversion unit 23 wants to receive. It is configured to transmit the specific wavelength of the above and incident light that has been transmitted to the photoelectric conversion unit 23.
 無機層50は、これに限定されないが、光透過膜51からなる単層膜で構成されている。そして、無機層50は、第1~第3カラーフィルタ部41~43のうちの所定の色のカラーフィルタ部、例えば緑色(G)の第2カラーフィルタ部42の光入射面側を選択的に覆っている。即ち、第1及び第3カラーフィルタ部41及び43の各々の光入射面側には、無機層50が設けられていない。光透過膜51は、第1~第3カラーフィルタ部41~43を含むカラーフィルタ層40の屈折率よりも高い例えば酸化アルミニウム(Al)膜、酸化ハフニウム(HfO)膜及び窒化シリコン(Si)膜の何れかで構成されている。また、光透過膜51としては、酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れか2つ以上を積層した構成としてもよい。この光透過膜51は、固体撮像装置の製造プロセスにおいて、緑色(G)のカラーフィルタ膜をエッチングして第2カラーフィルタ部42を形成するときのエッチングストッパとしても機能する。
 酸化アルミニウム膜は例えば1.63程度の屈折率を有する。酸化ハフニウム膜は例えば1.95程度の屈折率を有する。窒化シリコン膜は例えば2.0程度の屈折率を有する。酸化シリコン膜は例えば1.45程度の屈折率を有する。赤色の第1カラーフィルタ部41、緑色の第2カラーフィルタ部42、及び青色の第3カラーフィルタ部43の各々は、例えば1.6程度の屈折率を有する。
The inorganic layer 50 is composed of a monolayer film made of a light transmitting film 51, but not limited to this. Then, the inorganic layer 50 selectively selects the color filter unit of a predetermined color among the first to third color filter units 41 to 43, for example, the light incident surface side of the second color filter unit 42 of green (G). Covering. That is, the inorganic layer 50 is not provided on the light incident surface side of each of the first and third color filter portions 41 and 43. The light transmitting film 51 includes, for example, an aluminum oxide (Al 2 O 3 ) film, a hafonium oxide (HfO 2 ) film, and silicon nitride, which have a higher refractive index than the refractive index of the color filter layer 40 including the first to third color filter units 41 to 43. It is composed of any of the (Si 3 N 4) films. Further, the light transmitting film 51 may be configured by laminating any two or more of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film. The light transmitting film 51 also functions as an etching stopper when the green (G) color filter film is etched to form the second color filter portion 42 in the manufacturing process of the solid-state imaging device.
The aluminum oxide film has a refractive index of, for example, about 1.63. The hafnium oxide film has a refractive index of, for example, about 1.95. The silicon nitride film has a refractive index of, for example, about 2.0. The silicon oxide film has a refractive index of, for example, about 1.45. Each of the red first color filter unit 41, the green second color filter unit 42, and the blue third color filter unit 43 has a refractive index of, for example, about 1.6.
 複数のマイクロレンズ59の各々のマイクロレンズ59は、画素アレイ部2Aにおいて、複数の画素3の各々の画素3、即ち複数の光電変換部23の各々の光電変換部23に対応して行列状に配置されている。マイクロレンズ59は、照射光を集光し、集光した光を、カラーフィルタ層40を介して半導体層20の光電変換部23に効率よく入射させる。複数のマイクロレンズ59は、カラーフィルタ層の光入射面側においてマイクロレンズアレイを構成している。マイクロレンズ59は、例えばスチレン等の材料で形成されている。 Each microlens 59 of the plurality of microlenses 59 is arranged in a matrix corresponding to each pixel 3 of the plurality of pixels 3, that is, each photoelectric conversion unit 23 of the plurality of photoelectric conversion units 23 in the pixel array unit 2A. It is arranged. The microlens 59 collects the irradiation light, and the collected light is efficiently incident on the photoelectric conversion unit 23 of the semiconductor layer 20 via the color filter layer 40. The plurality of microlenses 59 form a microlens array on the light incident surface side of the color filter layer. The microlens 59 is made of a material such as styrene.
 支持基板34は、多層配線層30の半導体層20に面する側とは反対側の面に設けられている。支持基板34は、固体撮像装置1の製造段階において、半導体層20の強度を確保するための基板である。支持基板34の材料としては、例えば、シリコン(Si)を用いることができる。 The support substrate 34 is provided on the surface of the multilayer wiring layer 30 opposite to the side facing the semiconductor layer 20. The support substrate 34 is a substrate for ensuring the strength of the semiconductor layer 20 in the manufacturing stage of the solid-state image sensor 1. As the material of the support substrate 34, for example, silicon (Si) can be used.
 半導体層20とカラーフィルタ層40との間には、半導体層20側から平坦化膜36、遮光膜37及び接着膜38がこの順で積層されている。
 平坦化膜36は、半導体層20の光入射面側が凹凸のない平坦面となるように、画素アレイ部2Aにおいて、半導体層20の光入射面側全体を覆っている。平坦化膜36としては、例えば酸化シリコン(SiO)膜を用いることができる。
 遮光膜37は、所定の画素3の光が隣の画素3へ漏れ込まないように、平面視の平面パターンが複数の光電変換部23のそれぞれの受光面側を開口する格子状平面パターンになっている。この遮光膜37としては、例えばタングステン(W)膜が用いられている。
A flattening film 36, a light-shielding film 37, and an adhesive film 38 are laminated in this order between the semiconductor layer 20 and the color filter layer 40 from the semiconductor layer 20 side.
The flattening film 36 covers the entire light incident surface side of the semiconductor layer 20 in the pixel array portion 2A so that the light incident surface side of the semiconductor layer 20 becomes a flat surface without unevenness. As the flattening film 36, for example, a silicon oxide (SiO 2 ) film can be used.
The light-shielding film 37 has a grid-like plane pattern in which the plane pattern in a plan view opens each of the light-receiving surface sides of the plurality of photoelectric conversion units 23 so that the light of the predetermined pixel 3 does not leak to the adjacent pixel 3. ing. As the light-shielding film 37, for example, a tungsten (W) film is used.
 接着膜38は、平坦化膜36及び遮光膜37と、カラーフィルタ層40との間に配置され、主に遮光膜37とカラーフィルタ層40との密着性を高めている。接着膜38としては、例えば酸化シリコン膜が用いられている。 The adhesive film 38 is arranged between the flattening film 36 and the light-shielding film 37 and the color filter layer 40, and mainly enhances the adhesion between the light-shielding film 37 and the color filter layer 40. As the adhesive film 38, for example, a silicon oxide film is used.
 以上の構成を有する固体撮像装置1では、光が半導体チップ2のマイクロレンズ59側から照射され、照射された光がマイクロレンズ59及びカラーフィルタ部41,42,43を個別に透過し、透過した光が光電変換部23で光電変換されることで、信号電荷が生成される。そして、生成された信号電荷が、半導体層20の第1の面側に形成された画素トランジスタを介して、多層配線層30の配線32からなる垂直信号線11によって画素信号として出力される。また、光電変換部23で生成された信号電荷間の差に基づき、被写体までの間の距離が算出される。 In the solid-state image sensor 1 having the above configuration, light is emitted from the microlens 59 side of the semiconductor chip 2, and the irradiated light is individually transmitted through the microlens 59 and the color filter units 41, 42, 43 and transmitted. A signal charge is generated by photoelectric conversion of light by the photoelectric conversion unit 23. Then, the generated signal charge is output as a pixel signal by the vertical signal line 11 composed of the wiring 32 of the multilayer wiring layer 30 via the pixel transistor formed on the first surface side of the semiconductor layer 20. Further, the distance to the subject is calculated based on the difference between the signal charges generated by the photoelectric conversion unit 23.
 この第1実施形態に係る固体撮像装置1は、上述したように、カラーフィルタ層40の光入射面側に配置され、かつカラーフィルタ層40の屈折率よりも高い光透過膜51からなる無機層50を有している。そして、無機層50は、3色のカラーフィルタ部41,42,43のうちの緑色(G)の第2カラーフィルタ部42の光入射面側を選択的に覆っている。カラーフィルタ層40よりも屈折率が高い無機層50は、カラーフィルタ層40よりも膜質が緻密であるため、カラーフィルタ層40よりも透湿性が低い。したがって、この第1実施形態に係る固体撮像装置1によれば、無機層50で覆われた第2カラーフィルタ部42での吸湿を抑制することができるので、吸湿によるカラーフィルタ層40全体の変質を抑制することができる。これにより、カラーフィルタ層40の吸湿による変質に起因するシミ不良などの画像劣化を抑制することができる。 As described above, the solid-state imaging device 1 according to the first embodiment is an inorganic layer composed of a light transmitting film 51 arranged on the light incident surface side of the color filter layer 40 and having a refractive index higher than that of the color filter layer 40. Has 50. The inorganic layer 50 selectively covers the light incident surface side of the green (G) second color filter unit 42 of the three color filter units 41, 42, and 43. The inorganic layer 50 having a higher refractive index than the color filter layer 40 has a finer film quality than the color filter layer 40, and therefore has a lower moisture permeability than the color filter layer 40. Therefore, according to the solid-state image sensor 1 according to the first embodiment, moisture absorption in the second color filter unit 42 covered with the inorganic layer 50 can be suppressed, so that the entire color filter layer 40 is altered by moisture absorption. Can be suppressed. This makes it possible to suppress image deterioration such as stain defects caused by deterioration of the color filter layer 40 due to moisture absorption.
 ≪固体撮像装置の製造方法≫
 次に、この第1実施形態に係る固体撮像装置1の製造方法について、図4Aから図4C及び図5Aから図5Jを用いて説明する。
≪Manufacturing method of solid-state image sensor≫
Next, the method of manufacturing the solid-state image sensor 1 according to the first embodiment will be described with reference to FIGS. 4A to 4C and FIGS. 5A to 5J.
 まず、図4Aに示す半導体層20を準備する。半導体層20としては、例えば単結晶シリコン基板を用いる。
 次に、図4Aに示すように、半導体層20の第1の面S1側にn型の半導体領域からなるウエル領域21を形成する。
 次に、図4Bに示すように、半導体層20の第1の面S1側に、各々が分離領域22で周囲を囲まれて区画された複数の光電変換部23を形成する。複数の光電変換部23の各々は、半導体層20の第1の面S1側に分離領域22、APD素子及び画素トランジスタなどを形成することによって形成される。
First, the semiconductor layer 20 shown in FIG. 4A is prepared. As the semiconductor layer 20, for example, a single crystal silicon substrate is used.
Next, as shown in FIG. 4A, a well region 21 composed of an n-type semiconductor region is formed on the first surface S1 side of the semiconductor layer 20.
Next, as shown in FIG. 4B, a plurality of photoelectric conversion units 23 are formed on the first surface S1 side of the semiconductor layer 20, each of which is surrounded by a separation region 22 and partitioned. Each of the plurality of photoelectric conversion units 23 is formed by forming a separation region 22, an APD element, a pixel transistor, or the like on the first surface S1 side of the semiconductor layer 20.
 次に、図4Cに示すように、半導体層20の第1の面S1側に、層間絶縁膜31と、この層間絶縁膜31を介して複数層に積層された配線32とを含む多層配線層30を形成する。
 次に、多層配線層30の半導体層20側とは反対側に支持基板34を接合する。そして、図4D及び図5Aに示すように、半導体層20の第2の面(光入射面)S2側を分離領域22が露出するまでCMP法などにより研削して半導体層20の厚さを薄くする。
Next, as shown in FIG. 4C, a multilayer wiring layer including an interlayer insulating film 31 and wiring 32 laminated in a plurality of layers via the interlayer insulating film 31 on the first surface S1 side of the semiconductor layer 20. Form 30.
Next, the support substrate 34 is joined to the side of the multilayer wiring layer 30 opposite to the semiconductor layer 20 side. Then, as shown in FIGS. 4D and 5A, the second surface (light incident surface) S2 side of the semiconductor layer 20 is ground by the CMP method or the like until the separation region 22 is exposed to reduce the thickness of the semiconductor layer 20. do.
 次に、図5Bに示すように、半導体層20の第2の面S2側に、平坦化膜36、遮光膜37及び接着膜38をこの順で形成する。平坦化膜36は、半導体層20の第2の面S2上に例えば酸化シリコン膜をCVD法で成膜した後、この酸化シリコン膜の表面をCMP法やエッチバック法で研削することによって形成される。遮光膜37は、平坦化膜36上に例えば高融点金属膜としてタングステン(W)膜をスパッタ法で成膜した後、このタングステン膜を周知のフォトリソグラフィ技術を用いて所定のパターンにターンニングすることによって形成される。遮光膜37は、平面視の平面パターンが複数の光電変換部23のそれぞれの受光面側を開口する格子状平面パターンで形成する。接着膜38は、遮光膜37上を含む平坦化膜36上の全面に例えば酸化シリコン膜をCVD法で成膜することによって形成される。接着膜38は、遮光膜37で囲まれた領域に凹部が形成されるように、遮光膜37の厚さよりも薄い膜厚で形成する。 Next, as shown in FIG. 5B, the flattening film 36, the light-shielding film 37, and the adhesive film 38 are formed in this order on the second surface S2 side of the semiconductor layer 20. The flattening film 36 is formed by forming, for example, a silicon oxide film on the second surface S2 of the semiconductor layer 20 by a CVD method, and then grinding the surface of the silicon oxide film by a CMP method or an etchback method. NS. The light-shielding film 37 is formed by forming a tungsten (W) film on the flattening film 36, for example, as a refractory metal film by a sputtering method, and then turning the tungsten film into a predetermined pattern using a well-known photolithography technique. Formed by The light-shielding film 37 is formed by a grid-like plane pattern in which the plane pattern in a plan view opens each of the light-receiving surface sides of the plurality of photoelectric conversion units 23. The adhesive film 38 is formed by forming, for example, a silicon oxide film on the entire surface of the flattening film 36 including the light-shielding film 37 by a CVD method. The adhesive film 38 is formed with a film thickness thinner than the thickness of the light-shielding film 37 so that a recess is formed in the region surrounded by the light-shielding film 37.
 次に、図5Cに示すように、半導体層20の第2の面2S側であって接着膜38上の全面に、緑色(G)の分光特性を有する緑色(G)のカラーフィルタ膜42Aを形成する。緑色のカラーフィルタ膜42Aは、半導体層20の第2の面2S側に液状の熱硬化性樹脂材をスピンコード法により塗布し、その後、熱処理を施して、液状の熱硬化性樹脂材を熱硬化させることによって形成される。 Next, as shown in FIG. 5C, a green (G) color filter film 42A having a green (G) spectral characteristic is applied to the entire surface of the adhesive film 38 on the second surface 2S side of the semiconductor layer 20. Form. In the green color filter film 42A, a liquid thermosetting resin material is applied to the second surface 2S side of the semiconductor layer 20 by a spin cord method, and then heat treatment is performed to heat the liquid thermosetting resin material. It is formed by curing.
 次に、図5Dに示すように、緑色のカラーフィルタ膜42A上の全面に、緑色のカラーフィルタ膜42Aの屈折率よりも高い光透過膜51からなる単層の無機層50を形成する。光透過膜51としては、緑色のカラーフィルタ膜42Aの屈折率よりも高い酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れかを用いることができる。また、光透過膜51としては、酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れか2つ以上を積層した構成としてもよい。 Next, as shown in FIG. 5D, a single-layer inorganic layer 50 made of a light transmitting film 51 having a refractive index higher than that of the green color filter film 42A is formed on the entire surface of the green color filter film 42A. As the light transmitting film 51, any one of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film having a refractive index higher than that of the green color filter film 42A can be used. Further, the light transmitting film 51 may be configured by laminating any two or more of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film.
 次に、図5Eに示すように、無機層50上に、無機層50及び緑色の第2カラーフィルタ膜42Aをエッチングするときのマスクとして使用するエッチングマスクRM1を形成する。エッチングマスクRM1は、無機層50上の全面に感光性レジスト膜を形成し、その後、この感光性レジスト膜に感光処理及び現像処理などを施して所定のパターンに加工することによって形成される。エッチングマスクRM1は、複数の光電変換部23のうち、緑色の波長の光を受光して光電変換する光電変換部23と平面的に重なる位置に形成される。 Next, as shown in FIG. 5E, an etching mask RM1 used as a mask for etching the inorganic layer 50 and the green second color filter film 42A is formed on the inorganic layer 50. The etching mask RM1 is formed by forming a photosensitive resist film on the entire surface of the inorganic layer 50, and then subjecting the photosensitive resist film to a photosensitive treatment, a developing treatment, or the like to process the photosensitive resist film into a predetermined pattern. The etching mask RM1 is formed at a position in which the etching mask RM1 is planarly overlapped with the photoelectric conversion unit 23 that receives light of a green wavelength and performs photoelectric conversion among the plurality of photoelectric conversion units 23.
 次に、エッチングマスクRM1をエッチングマスクとして使用し、エッチングマスクRM1の周囲の無機層50及び緑色のカラーフィルタ膜42Aをエッチングにより順次除去して、図5Fに示すように、上面が無機層50で覆われた緑色(G)の第2カラーフィルタ部42を形成すると共に、図5Gに示すように、オーバーエッチングを施して緑色の第2カラーフィルタ部42上のエッチングマスクRM1を除去する。エッチングは、異方性に優れたRIE(Reactive Ion Etching)などのドライエッチングで行う。第2カラーフィルタ部42は、複数の光電変換部23のうち、緑色の波長の光を受光して光電変換する光電変換部23上に平面的に重なるようにして形成される。
 この工程において、無機層50がエッチングストッパとして機能するので、緑色のカラーフィルタ膜42Aと同じ樹脂系の材料かなるエッチングマスクRM1を容易に除去することができる。また、エッチングマスクRM1を用いたドライエッチングで緑色のカラーフィルタ膜42Aをエッチングするので、矩形性に優れた緑色の第2カラーフィルタ部42を高精度で形成することができる。
Next, the etching mask RM1 is used as an etching mask, and the inorganic layer 50 and the green color filter film 42A around the etching mask RM1 are sequentially removed by etching, and as shown in FIG. 5F, the upper surface is the inorganic layer 50. A covered green (G) second color filter portion 42 is formed, and as shown in FIG. 5G, overetching is performed to remove the etching mask RM1 on the green second color filter portion 42. Etching is performed by dry etching such as RIE (Reactive Ion Etching) having excellent anisotropy. The second color filter unit 42 is formed so as to be planarly overlapped on the photoelectric conversion unit 23 that receives and converts light having a green wavelength among the plurality of photoelectric conversion units 23.
In this step, since the inorganic layer 50 functions as an etching stopper, the etching mask RM1 made of the same resin-based material as the green color filter film 42A can be easily removed. Further, since the green color filter film 42A is etched by dry etching using the etching mask RM1, the green second color filter portion 42 having excellent rectangularity can be formed with high accuracy.
 次に、図5Hに示すように、複数の光電変換部23のうち、赤色の波長の光を受光して光電変換する光電変換部23上に、この光電変換部23と平面的に重なるようにして赤色(R)の第1カラーフィルタ部41を形成する。第1カラーフィルタ部41は、無機層50の形成工程を除いた緑色の第2カラーフィルタ部42の形成工程と同様の工程で形成される。即ち、赤色の第1カラーフィルタ部41は、赤色(R)の分光特性を有する赤色のカラーフィルタ膜を形成し、この赤色のカラーフィルタ膜上にエッチングマスクを形成し、このエッチングマスクの周囲の赤色のカラーフィルタ膜をエッチングにより除去することによって形成される。 Next, as shown in FIG. 5H, among the plurality of photoelectric conversion units 23, the photoelectric conversion unit 23 that receives and converts light having a red wavelength is placed so as to be planarly overlapped with the photoelectric conversion unit 23. The red (R) first color filter portion 41 is formed. The first color filter section 41 is formed in the same process as the step of forming the green second color filter section 42 excluding the step of forming the inorganic layer 50. That is, the red first color filter unit 41 forms a red color filter film having red (R) spectral characteristics, forms an etching mask on the red color filter film, and surrounds the etching mask. It is formed by removing the red color filter film by etching.
 次に、図5Iに示すように、複数の光電変換部23のうち、青色の波長の光を受光して光電変換する光電変換部23上に、この光電変換部23と平面的に重なるようにして青色(B)の第3カラーフィルタ部43を形成する。この第3カラーフィルタ部43も、無機層50の形成工程を除いた緑色の第2カラーフィルタ部42の形成工程と同様の工程で形成される。即ち、青色(B)の第3カラーフィルタ部43は、青色の分光特性を有する青色カラーフィルタ膜を形成し、この青色のカラーフィルタ膜上にエッチングマスクを形成し、このエッチングマスクの周囲の青色のカラーフィルタ膜をエッチングにより除去することによって形成される。この工程により、第1~第3カラーフィルタ部41~43を有するカラーフィルタ層40が形成される。 Next, as shown in FIG. 5I, among the plurality of photoelectric conversion units 23, the photoelectric conversion unit 23 that receives and converts light having a blue wavelength is placed so as to be planarly overlapped with the photoelectric conversion unit 23. The blue (B) third color filter portion 43 is formed. The third color filter section 43 is also formed in the same process as the step of forming the green second color filter section 42 excluding the step of forming the inorganic layer 50. That is, the blue (B) third color filter unit 43 forms a blue color filter film having blue spectral characteristics, forms an etching mask on the blue color filter film, and forms a blue color around the etching mask. It is formed by removing the color filter film of the above by etching. By this step, the color filter layer 40 having the first to third color filter portions 41 to 43 is formed.
 次に、図5Jに示すように、カラーフィルタ層40の光入射面側に複数のマイクロレンズ59を形成する。これにより、半導体層20、多層配線層30、平坦化膜36、遮光膜37、接着膜38及びマイクロレンズ等を含む半導体基体が形成される。また、図1から図3に示す固体撮像装置1がほぼ完成する。固体撮像装置1は、半導体基体にスクライブライン(ダイシングライン)で区画された複数のチップ形成領域の各々に形成される。そして、この複数のチップ形成領域をスクライブラインに沿って個々に分割することにより、固体撮像装置1を搭載した半導体チップ2が形成される。 Next, as shown in FIG. 5J, a plurality of microlenses 59 are formed on the light incident surface side of the color filter layer 40. As a result, a semiconductor substrate including a semiconductor layer 20, a multilayer wiring layer 30, a flattening film 36, a light-shielding film 37, an adhesive film 38, a microlens, and the like is formed. Further, the solid-state image sensor 1 shown in FIGS. 1 to 3 is almost completed. The solid-state image sensor 1 is formed in each of a plurality of chip forming regions defined by a scribe line (dicing line) on the semiconductor substrate. Then, the semiconductor chip 2 on which the solid-state image sensor 1 is mounted is formed by individually dividing the plurality of chip forming regions along the scribe line.
 この第1実施形態に係る固体撮像装置1の製造方法では、エッチングマスクRM1の周囲の無機層50及び緑色(G)のカラーフィルタ膜42Aをエッチングにより順次除去して、上面が無機層50で覆われた緑色(G)の第2カラーフィルタ部42を形成する際、無機層50がエッチングストッパとして機能するので、第2カラーフィルタ膜42Aと同じ樹脂系の材料かなるエッチングマスクRM1を容易に除去することができる。また、エッチングマスクRM1を用いたドライエッチングで緑色(G)のカラーフィルタ膜42Aをエッチングするので、矩形性に優れた緑色(G)の第2カラーフィルタ部42を高精度で形成することができる。したがって、この第1実施形態に係る固体撮像装置1の製造方法によれば、高精度のカラーフィルタ層40を形成することができると共に、カラーフィルタ層40の吸湿による変質に起因するシミ不良などの画像劣化を抑制することができる。 In the method for manufacturing the solid-state imaging device 1 according to the first embodiment, the inorganic layer 50 around the etching mask RM1 and the green (G) color filter film 42A are sequentially removed by etching, and the upper surface is covered with the inorganic layer 50. When the green (G) second color filter portion 42 is formed, the inorganic layer 50 functions as an etching stopper, so that the etching mask RM1 made of the same resin material as the second color filter film 42A can be easily removed. can do. Further, since the green (G) color filter film 42A is etched by dry etching using the etching mask RM1, the green (G) second color filter portion 42 having excellent rectangularity can be formed with high accuracy. .. Therefore, according to the manufacturing method of the solid-state image sensor 1 according to the first embodiment, the color filter layer 40 with high accuracy can be formed, and the color filter layer 40 has stain defects due to deterioration due to moisture absorption. Image deterioration can be suppressed.
 なお、この第1実施形態では、3色(赤色(R)、緑色(G)、青色(B))のカラーフィルタ部(41,42,43)のうち、緑色(G)の第2カラーフィルタ部42の光入射面側を、カラーフィルタ層40の屈折率よりも高い無機層50で選択的に覆った場合について説明した。しかしながら、本技術は、第2カラーフィルタ部42を無機層50で選択的に覆う第1実施形態の構成に限定されない。例えば、赤色(R)の第1カラーフィルタ部41の光入射面側、又は青色(B)の第3カラーフィルタ部43の光入射面側を無機層50で選択的に覆ってもよい。第1カラーフィルタ部41の光入射面側を無機層50で選択的に覆う場合は、第1カラーフィルタ部41を第2及び第3カラーフィルタ部42及び43よりも先に形成することが好ましい。また、第3カラーフィルタ部43の光入射面側を無機層50で選択的に覆う場合は、第3カラーフィルタ部43を第1及び第2カラーフィルタ部41及び42よりも先に形成することが好ましい。 In this first embodiment, of the three color (red (R), green (G), blue (B)) color filter units (41, 42, 43), the green (G) second color filter The case where the light incident surface side of the portion 42 is selectively covered with the inorganic layer 50 having a refractive index higher than that of the color filter layer 40 has been described. However, the present technology is not limited to the configuration of the first embodiment in which the second color filter portion 42 is selectively covered with the inorganic layer 50. For example, the light incident surface side of the red (R) first color filter unit 41 or the light incident surface side of the blue (B) third color filter unit 43 may be selectively covered with the inorganic layer 50. When the light incident surface side of the first color filter unit 41 is selectively covered with the inorganic layer 50, it is preferable to form the first color filter unit 41 before the second and third color filter units 42 and 43. .. When the light incident surface side of the third color filter unit 43 is selectively covered with the inorganic layer 50, the third color filter unit 43 is formed before the first and second color filter units 41 and 42. Is preferable.
 (第2実施形態)
 本技術の第2実施形態に係る固体撮像装置1Aは、基本的に上述の第1実施形態に係る固体撮像装置1と同様の構成になっており、図6に示すように、第1実施形態の無機層50に換えて無機層50Aを有する。その他の構成は、上述の第1実施形態と同様である。
(Second Embodiment)
The solid-state image sensor 1A according to the second embodiment of the present technology basically has the same configuration as the solid-state image sensor 1 according to the first embodiment described above, and as shown in FIG. 6, the first embodiment It has an inorganic layer 50A instead of the inorganic layer 50 of the above. Other configurations are the same as those in the first embodiment described above.
 図3に示すように、第1実施形態に係る固体撮像装置1の無機層50は、3色のカラーフィルタ部(41,42,43)を含むカラーフィルタ層40の屈折率よりも高い光透過膜51からなる単層膜で構成されている。
 これに対し、図6に示すように、第2実施形態に係る固体撮像装置1Aの無機層50Aは、2色以上のカラーフィルタ部のうちの所定の色のカラーフィルタ部を選択的に覆う光透過膜51と、この光透過膜51の光入射面側を覆い、かつ残りの他の色のカラーフィルタ部の光入射面側を覆う光透過膜55とを含む構成になっている。この第2実施形態では、光透過膜51は緑色(G)の第2カラーフィルタ部42の光入射面側を選択的に覆っている。即ち、無機層50Aは、第2カラーフィルタ部42と第1及び第3カラーフィルタ部41,43とで厚さが異なっており、第2カラーフィルタ部42を覆う部分が第1及び第3カラーフィルタ部41,43を覆う部分よりも厚くなっている。
 光透過膜55は、第2カラーフィルタ部42上の光透過膜51の光入射面側を覆い、かつ赤色(R)のカラーフィルタ部41及び青色(B)のカラーフィルタ部43の各々の光入射面側を覆っている。そして、光透過膜55は、図6の右側に示すように、画素アレイ部2A及び周辺部2Bに亘って設けられており、カラーフィルタ層40の最外周の端部側面40aを最外周に沿って覆っている。
 即ち、無機層50Aは、カラーフィルタ層40の光入射面側の全面を覆うと共に、カラーフィルタ層40の最外周の端部側面40aも覆っている。光透過膜55は、光透過膜51と同様に、第1~第3カラーフィルタ部41~43を含むカラーフィルタ層40の屈折率よりも高い例えば酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れかで構成されている。また、光透過膜55としては、酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れか2つ以上を積層した構成としてもよい。
As shown in FIG. 3, the inorganic layer 50 of the solid-state image sensor 1 according to the first embodiment transmits light higher than the refractive index of the color filter layer 40 including the three-color color filter portions (41, 42, 43). It is composed of a monolayer film made of a film 51.
On the other hand, as shown in FIG. 6, the inorganic layer 50A of the solid-state imaging device 1A according to the second embodiment selectively covers the color filter portion of a predetermined color among the color filter portions of two or more colors. The structure includes a transmitting film 51 and a light transmitting film 55 that covers the light incident surface side of the light transmitting film 51 and covers the light incident surface side of the remaining color filter portions of other colors. In this second embodiment, the light transmitting film 51 selectively covers the light incident surface side of the green (G) second color filter unit 42. That is, the thickness of the inorganic layer 50A is different between the second color filter unit 42 and the first and third color filter units 41 and 43, and the portion covering the second color filter unit 42 is the first and third colors. It is thicker than the portions that cover the filter portions 41 and 43.
The light transmitting film 55 covers the light incident surface side of the light transmitting film 51 on the second color filter unit 42, and the light of each of the red (R) color filter unit 41 and the blue (B) color filter unit 43. It covers the incident surface side. Then, as shown on the right side of FIG. 6, the light transmitting film 55 is provided over the pixel array portion 2A and the peripheral portion 2B, and the outermost peripheral end side surface 40a of the color filter layer 40 is along the outermost periphery. Covering.
That is, the inorganic layer 50A covers the entire surface of the color filter layer 40 on the light incident surface side, and also covers the outermost peripheral end side surface 40a of the color filter layer 40. Like the light transmitting film 51, the light transmitting film 55 is made of, for example, an aluminum oxide film, a hafnium oxide film, and a silicon nitride film having a refractive index higher than that of the color filter layer 40 including the first to third color filter portions 41 to 43. It is composed of either. Further, the light transmitting film 55 may be configured by laminating any two or more of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film.
 この第2実施形態に係る固体撮像装置1Aによれば、第1~第3カラーフィルタ部41~43を有するカラーフィルタ層40全体の吸湿を無機層50Aで抑制することができるので、吸湿によるカラーフィルタ層40の変質を第1実施形態と比較して更に抑制することができる。これにより、カラーフィルタ層40の吸湿による変質に起因するシミ不良などの画像劣化を更に抑制することができる。 According to the solid-state image sensor 1A according to the second embodiment, the moisture absorption of the entire color filter layer 40 having the first to third color filter units 41 to 43 can be suppressed by the inorganic layer 50A, so that the color due to the moisture absorption can be suppressed. Deterioration of the filter layer 40 can be further suppressed as compared with the first embodiment. This makes it possible to further suppress image deterioration such as stain defects caused by deterioration of the color filter layer 40 due to moisture absorption.
 なお、赤色(R)の第1カラーフィルタ部41の光入射面側、又は青色(B)の第3カラーフィルタ部43の光入射面側を光透過膜51で選択的に覆うようにしてもよい。
 また、光透過膜55は、カラーフィルタ層40の端部側面40aを覆わない構成としてもよい。
Even if the light incident surface side of the red (R) first color filter unit 41 or the light incident surface side of the blue (B) third color filter unit 43 is selectively covered with the light transmitting film 51. good.
Further, the light transmitting film 55 may be configured not to cover the end side surface 40a of the color filter layer 40.
 (第3実施形態)
 本技術の第3実施形態に係る固体撮像装置1Bは、基本的に上述の第1実施形態に係る固体撮像装置1と同様の構成になっており、図7に示すように、第1実施形態の無機層50に換えて無機層50Bを有する。その他の構成は、上述の第1実施形態と同様である。
(Third Embodiment)
The solid-state image sensor 1B according to the third embodiment of the present technology has basically the same configuration as the solid-state image sensor 1 according to the first embodiment described above, and as shown in FIG. 7, the first embodiment It has an inorganic layer 50B instead of the inorganic layer 50 of the above. Other configurations are the same as those in the first embodiment described above.
 図3に示すように、第1実施形態に係る固体撮像装置1の無機層50は、3色のカラーフィルタ部(41,42,43)を含むカラーフィルタ層40の屈折率よりも高い光透過膜51からなる単層膜で構成されている。
 これに対し、図7に示すように、第3実施形態に係る固体撮像装置1Bは、2色以上のカラーフィルタ部の全てのカラーフィルタ部の各々の光入射面側を覆う光透過膜55からなる単層膜で構成されている。この第3実施形態では、光透過膜55は、赤色(R)の第1カラーフィルタ部41、緑色(G)の第2カラーフィルタ部42及び青色(B)の第3カラーフィルタ部43の各々の光入射面側を覆っている。そして、光透過膜55は、第2実施形態と同様に、カラーフィルタ層40の最外周の端部側面40aも最外周に沿って覆っている。すなわち、無機層50Bは、3色のカラーフィルタ部(41,42,43)を有するカラーフィルタ層40の光入射面側の全面を覆うと共に、カラーフィルタ層40の最外周の端部側面40aも覆っている。
As shown in FIG. 3, the inorganic layer 50 of the solid-state image sensor 1 according to the first embodiment transmits light higher than the refractive index of the color filter layer 40 including the three-color color filter portions (41, 42, 43). It is composed of a monolayer film made of a film 51.
On the other hand, as shown in FIG. 7, the solid-state image sensor 1B according to the third embodiment is formed from the light transmitting film 55 covering each light incident surface side of all the color filter parts of the two or more color filter parts. It is composed of a single-layer film. In this third embodiment, the light transmitting film 55 is a red (R) first color filter unit 41, a green (G) second color filter unit 42, and a blue (B) third color filter unit 43, respectively. It covers the light incident surface side of. The light transmitting film 55 also covers the outermost peripheral end side surface 40a of the color filter layer 40 along the outermost circumference, as in the second embodiment. That is, the inorganic layer 50B covers the entire surface of the color filter layer 40 having the color filter portions (41, 42, 43) of three colors on the light incident surface side, and also the outermost peripheral end side surface 40a of the color filter layer 40. Covering.
 この第3実施形態に係る固体撮像装置1Bによれば、カラーフィルタ層40全体の吸湿を無機層50Bで抑制することができるので、吸湿によるカラーフィルタ層40の変質を第1実施形態と比較して更に抑制することができる。これにより、カラーフィルタ層40の吸湿による変質に起因するシミ不良などの画像劣化を更に抑制することができる。
 なお、光透過膜55は、カラーフィルタ層40の端部側面40aを覆わない構成としてもよい。
According to the solid-state image sensor 1B according to the third embodiment, the moisture absorption of the entire color filter layer 40 can be suppressed by the inorganic layer 50B, so that the alteration of the color filter layer 40 due to the moisture absorption is compared with that of the first embodiment. Can be further suppressed. This makes it possible to further suppress image deterioration such as stain defects caused by deterioration of the color filter layer 40 due to moisture absorption.
The light transmitting film 55 may be configured not to cover the end side surface 40a of the color filter layer 40.
 (第4実施形態)
 ≪固体撮像装置の構成≫
 本技術の第4実施形態に係る固体撮像装置1Cは、基本的に上述の第1実施形態に係る固体撮像装置1と同様の構成になっており、図8に示すように、第1実施形態の無機層50に換えて無機層50Cを有する。その他の構成は、上述の第1実施形態と同様である。
(Fourth Embodiment)
≪Structure of solid-state image sensor≫
The solid-state image sensor 1C according to the fourth embodiment of the present technology basically has the same configuration as the solid-state image sensor 1 according to the first embodiment described above, and as shown in FIG. 8, the first embodiment It has an inorganic layer 50C instead of the inorganic layer 50 of the above. Other configurations are the same as those in the first embodiment described above.
 図8に示すように、第4実施形態に係る固体撮像装置1Cの無機層50Cは、光透過膜51、52及び55を含む構成になっている。
 光透過膜51は、上述の第1実施形態と同様に、3色のカラーフィルタ部(41,42,43)のうち、緑色(G)の第2カラーフィルタ部42の光入射面側を選択的に覆っている。そして、この光透過膜51は、上述の第1実施形態で説明したように、緑色(G)のカラーフィルタ膜をエッチングして第2カラーフィルタ部42を形成するときのエッチングストッパとしても機能する。
 光透過膜52は、第2カラーフィルタ部42上の光透過膜51の光入射面側を覆い、かつ残りの2色のカラーフィルタ部(41,43)のうちの赤色(R)の第1カラーフィルタ部41の光入射面側を覆っている。
 そして、光透過膜52は、赤色(R)の第1カラーフィルタ部41と青色(B)の第3カラーフィルタ部43との間にも配置され、これらの間において第1カラーフィルタ部41及び第3カラーフィルタ部43の各々の側面も覆っている。
 また、光透過膜52は、緑色(G)の第2カラーフィルタ部42と青色(B)の第3カラーフィルタ部43との間にも配置され、これらの間において第2カラーフィルタ部42及び第3カラーフィルタ部43の各々の側面も覆っている。
 光透過膜55は、第2カラーフィルタ部42上の光透過膜51、第1カラーフィルタ部41上及び第2カラーフィルタ部42上の光透過膜52、及び残りの第3カラーフィルタ部43の各々の光入射面側を覆っている。そして、光透過膜55は、図8には詳細に図示していないが、図6を参照すれば、上述の第2実施形態と同様に、カラーフィルタ層40の最外周の端部側面40aも最外周に沿って覆っている。
As shown in FIG. 8, the inorganic layer 50C of the solid-state image sensor 1C according to the fourth embodiment has a configuration including light transmitting films 51, 52, and 55.
Similar to the first embodiment described above, the light transmitting film 51 selects the light incident surface side of the green (G) second color filter unit 42 from the three color color filter units (41, 42, 43). Covers the target. Then, as described in the first embodiment described above, the light transmitting film 51 also functions as an etching stopper when the green (G) color filter film is etched to form the second color filter portion 42. ..
The light transmitting film 52 covers the light incident surface side of the light transmitting film 51 on the second color filter unit 42, and is the first of the red (R) of the remaining two color filter units (41, 43). It covers the light incident surface side of the color filter unit 41.
The light transmitting film 52 is also arranged between the red (R) first color filter unit 41 and the blue (B) third color filter unit 43, and the first color filter unit 41 and the first color filter unit 41 and the light transmitting film 52 are arranged between them. Each side surface of the third color filter unit 43 is also covered.
Further, the light transmitting film 52 is also arranged between the second color filter unit 42 of green (G) and the third color filter unit 43 of blue (B), and the second color filter unit 42 and the second color filter unit 42 are arranged between them. Each side surface of the third color filter unit 43 is also covered.
The light transmitting film 55 includes a light transmitting film 51 on the second color filter unit 42, a light transmitting film 52 on the first color filter unit 41 and the second color filter unit 42, and the remaining third color filter unit 43. It covers each light incident surface side. Although the light transmitting film 55 is not shown in detail in FIG. 8, referring to FIG. 6, the light transmitting film 55 also includes the outermost peripheral end side surface 40a of the color filter layer 40, as in the second embodiment described above. It covers along the outermost circumference.
 即ち、無機層50Cは、カラーフィルタ層40の入射面側の全面を覆うと共に、第1カラーフィルタ部41と第3カラーフィルタ部43との間において第1及び第3カラーフィルタ部41,43の各々の側面を覆い、かつ第2カラーフィルタ部42と第3カラーフィルタ部43との間において第2及び第3カラーフィルタ部42,43の各々の側面も覆っている。また、無機層50Cは、カラーフィルタ層40の最外周の端部側面40aも覆っている。
 無機層50Cは、第1カラーフィルタ部41、第2カラーフィルタ部42及び第3カラーフィルタ部43でそれぞれ膜厚が異なっている。無機層50Cは、第2カラーフィルタ部42を覆う部分が最も厚く、次に第1カラーフィルタ部42を覆う部分が厚く、第3カラーフィルタ部43を覆う部分が最も薄くなっている。
That is, the inorganic layer 50C covers the entire surface of the color filter layer 40 on the incident surface side, and the first and third color filter units 41 and 43 are located between the first color filter unit 41 and the third color filter unit 43. Each side surface is covered, and each side surface of the second and third color filter units 42 and 43 is also covered between the second color filter unit 42 and the third color filter unit 43. The inorganic layer 50C also covers the outermost peripheral end side surface 40a of the color filter layer 40.
The thickness of the inorganic layer 50C is different between the first color filter unit 41, the second color filter unit 42, and the third color filter unit 43. The portion of the inorganic layer 50C that covers the second color filter portion 42 is the thickest, then the portion that covers the first color filter portion 42 is thick, and the portion that covers the third color filter portion 43 is the thinnest.
 光透過膜52は、光透過膜51及び55と同様に、第1~第3カラーフィルタ部41~43を含むカラーフィルタ層40の屈折率よりも高い例えば酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れかで構成されている。また、光透過膜52としては、酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れか2つ以上を積層した構成としてもよい。 Like the light transmitting films 51 and 55, the light transmitting film 52 has a higher refractive index than the refractive index of the color filter layer 40 including the first to third color filter units 41 to 43, for example, an aluminum oxide film, a hafnium oxide film, and silicon nitride. It is composed of any of the membranes. Further, the light transmitting film 52 may be configured by laminating any two or more of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film.
 図8に示すように、光透過膜52は、青色(B)の第3カラーフィルタ部43と光電変換部23との間にも配置されている。この第4実施形態では、接着膜38が設けられているので、光透過膜52は、第3カラーフィルタ部43と接着膜38との間に設けられている。即ち、無機層50Cは、カラーフィルタ層40の光入射面側に配置され、更にカラーフィルタ層40の光入射面側とは反対側にも配置されている。
 この第4実施形態に係る固体撮像装置1Cによれば、カラーフィルタ層40全体の吸湿を無機層50Cで抑制することができるので、吸湿によるカラーフィルタ層40の変質を第1実施形態と比較して更に抑制することができる。これにより、カラーフィルタ層40の吸湿による変質に起因するシミ不良などの画像劣化を更に抑制することができる。
As shown in FIG. 8, the light transmitting film 52 is also arranged between the blue (B) third color filter unit 43 and the photoelectric conversion unit 23. In this fourth embodiment, since the adhesive film 38 is provided, the light transmitting film 52 is provided between the third color filter portion 43 and the adhesive film 38. That is, the inorganic layer 50C is arranged on the light incident surface side of the color filter layer 40, and is further arranged on the side opposite to the light incident surface side of the color filter layer 40.
According to the solid-state image sensor 1C according to the fourth embodiment, the moisture absorption of the entire color filter layer 40 can be suppressed by the inorganic layer 50C. Therefore, the alteration of the color filter layer 40 due to the moisture absorption is compared with that of the first embodiment. Can be further suppressed. This makes it possible to further suppress image deterioration such as stain defects caused by deterioration of the color filter layer 40 due to moisture absorption.
 なお、赤色(R)の第1カラーフィルタ部41の光入射面側、又は青色(B)の第3カラーフィルタ部43の光入射面側を光透過膜51で選択的に覆うようにしてもよい。
 また、光透過膜55は、カラーフィルタ層40の端部側面40aを覆わない構成としてもよい。
Even if the light incident surface side of the red (R) first color filter unit 41 or the light incident surface side of the blue (B) third color filter unit 43 is selectively covered with the light transmitting film 51. good.
Further, the light transmitting film 55 may be configured not to cover the end side surface 40a of the color filter layer 40.
 ≪固体撮像装置の製造方法≫
 次に、この第4実施形態に係る固体撮像装置1Cの製造方法について、図9Aから図9Eを用いて説明する。
 まず、第1実施形態の図4Aから図4D、及び図5Aから5Gに示す工程と同様の工程を施して、図9Aに示すように、緑色の波長の光を受光して光電変換する光電変換部23上に、上面が光透過膜51で覆われた緑色(G)の第2カラーフィルタ部42を形成する。第2カラーフィルタ部42上のエッチングマスクRM1(図5F参照)はオーバーエッチングにより除去されている。
≪Manufacturing method of solid-state image sensor≫
Next, a method of manufacturing the solid-state image sensor 1C according to the fourth embodiment will be described with reference to FIGS. 9A to 9E.
First, the same steps as those shown in FIGS. 4A to 4D and 5A to 5G of the first embodiment are performed, and as shown in FIG. 9A, photoelectric conversion that receives light of a green wavelength and performs photoelectric conversion. A green (G) second color filter portion 42 whose upper surface is covered with a light transmitting film 51 is formed on the portion 23. The etching mask RM1 (see FIG. 5F) on the second color filter unit 42 is removed by overetching.
 次に、図9Bに示すように、複数の光電変換部23のうち、赤色の波長の光を受光して光電変換する光電変換部23上に、この光電変換部23と平面的に重なるようにして赤色(R)の第1カラーフィルタ部41を形成する。第1カラーフィルタ部41は、光透過膜51の形成工程を除いた緑色の第2カラーフィルタ部42の形成工程と同様の工程で形成される。 Next, as shown in FIG. 9B, among the plurality of photoelectric conversion units 23, the photoelectric conversion unit 23 that receives and converts light having a red wavelength is placed so as to be planarly overlapped with the photoelectric conversion unit 23. The red (R) first color filter portion 41 is formed. The first color filter section 41 is formed in the same process as the step of forming the green second color filter section 42 excluding the step of forming the light transmitting film 51.
 次に、図9Cに示すように、光透過膜51上及び第1カラーフィルタ部41上を含む半導体層20の第2の面S2側の全面に、第1及び第2カラーフィルタ部41,42の屈折率よりも高い光透過膜52を形成する。光透過膜52としては、酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れかを用いることができる。これらの膜は、CVD法や蒸着法によって成膜することができる。
 この工程において、青色の波長の光を受光して光電変換する光電変換部23上にも光透過膜52が形成される。また、第2カラーフィルタ部42の側面のうち、第1カラーフィルタ部41と接触していない側面が光透過膜52で覆われる。また、第1カラーフィルタ部41の側面のうち、詳細に図示していないが、第2カラーフィルタ部42と接触していない側面も光透過膜52で覆われる。
Next, as shown in FIG. 9C, the first and second color filter portions 41, 42 cover the entire surface of the semiconductor layer 20 on the second surface S2 side including the light transmission film 51 and the first color filter portion 41. A light transmitting film 52 having a refractive index higher than that of As the light transmitting film 52, any one of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film can be used. These films can be formed by a CVD method or a vapor deposition method.
In this step, a light transmitting film 52 is also formed on the photoelectric conversion unit 23 that receives light having a blue wavelength and performs photoelectric conversion. Further, of the side surfaces of the second color filter unit 42, the side surface that is not in contact with the first color filter unit 41 is covered with the light transmitting film 52. Further, of the side surfaces of the first color filter unit 41, although not shown in detail, the side surfaces that are not in contact with the second color filter unit 42 are also covered with the light transmitting film 52.
 次に、図9Dに示すように、複数の光電変換部23のうち、青色の波長の光を受光して光電変換する光電変換部23上に、この光電変換部23と平面的に重なるようにして青色(B)の第3カラーフィルタ部43を形成する。第3カラーフィルタ部43は、光透過膜51の形成工程を除いた緑色の第2カラーフィルタ部42の形成工程と同様の工程で形成される。
 この工程において、第3カラーフィルタ部43は、光電変換部23の光入射面側に光透過膜52を介して配置される。
 また、この工程において、第2カラーフィルタ部42と第3カラーフィルタ部43との間にも光透過膜52が配置され、この間において第2カラーフィルタ部42及び第3カラーフィルタ部43の各々の側面も光透過膜52で覆われる。
 また、この工程において、第1カラーフィルタ部41と第2カラーフィルタ部42との間にも光透過膜52が配置され、この間において第1カラーフィルタ部41及び第3カラーフィルタ部43の各々の側面も光透過膜52で覆われる。
Next, as shown in FIG. 9D, among the plurality of photoelectric conversion units 23, the photoelectric conversion unit 23 that receives and converts light having a blue wavelength is placed so as to be planarly overlapped with the photoelectric conversion unit 23. The blue (B) third color filter portion 43 is formed. The third color filter section 43 is formed in the same process as the step of forming the green second color filter section 42 excluding the step of forming the light transmitting film 51.
In this step, the third color filter unit 43 is arranged on the light incident surface side of the photoelectric conversion unit 23 via the light transmitting film 52.
Further, in this step, the light transmitting film 52 is also arranged between the second color filter unit 42 and the third color filter unit 43, and the light transmitting film 52 is arranged between the second color filter unit 42 and the third color filter unit 43, respectively. The side surface is also covered with the light transmitting film 52.
Further, in this step, the light transmitting film 52 is also arranged between the first color filter unit 41 and the second color filter unit 42, and the light transmitting film 52 is arranged between the first color filter unit 41 and the third color filter unit 43, respectively. The side surface is also covered with the light transmitting film 52.
 次に、図9Eに示すように、光透過膜52上及び第3カラーフィルタ部43上を含む半導体層20上の全面に、第1、第2及び第3カラーフィルタ部(41,42,43)の屈折率よりも高い光透過膜55を形成する。光透過膜55としては、酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れかを用いることができる。これらの膜は、CVD法や蒸着法によって成膜することができる。
 この工程により、光透過膜51、52及び55を含む無機層50Cが形成される。また、第1~第3カラーフィルタ部(41,42,43)を有し、かつ無機層50Cを有するカラーフィルタ層40が形成される。
 この工程において、カラーフィルタ層40の最外周の端部側面40aも最外周に沿って光透過膜で覆われる。
Next, as shown in FIG. 9E, the first, second, and third color filter units (41, 42, 43) cover the entire surface of the semiconductor layer 20 including the light transmission film 52 and the third color filter unit 43. ), A light transmitting film 55 having a refractive index higher than that of) is formed. As the light transmitting film 55, any of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film can be used. These films can be formed by a CVD method or a vapor deposition method.
By this step, the inorganic layer 50C including the light transmitting films 51, 52 and 55 is formed. Further, a color filter layer 40 having first to third color filter portions (41, 42, 43) and having an inorganic layer 50C is formed.
In this step, the outermost peripheral end side surface 40a of the color filter layer 40 is also covered with the light transmitting film along the outermost circumference.
 次に、カラーフィルタ層40の光入射面側に複数のマイクロレンズ59を形成する。これにより、図8示す固体撮像装置1Cがほぼ完成する。 Next, a plurality of microlenses 59 are formed on the light incident surface side of the color filter layer 40. As a result, the solid-state image sensor 1C shown in FIG. 8 is almost completed.
 この第4実施形態に係る固体撮像装置1Cの製造方法によれば、上述の第1実施形態と同様に、高精度のカラーフィルタ層40を形成することができる。また、カラーフィルタ層40の吸湿による変質に起因するシミ不良などの画像劣化を第1実施形態と比較して更に抑制することができる。 According to the method for manufacturing the solid-state image sensor 1C according to the fourth embodiment, the high-precision color filter layer 40 can be formed in the same manner as in the first embodiment described above. Further, image deterioration such as stain defects caused by deterioration of the color filter layer 40 due to moisture absorption can be further suppressed as compared with the first embodiment.
 (第5実施形態)
 ≪固体撮像装置の構成≫
 本技術の第5実施形態に係る固体撮像装置1Dは、基本的に上述の第1実施形態に係る固体撮像装置1と同様の構成になっており、図10に示すように、第1実施形態の無機層50に換えて無機層50Dを有する。その他の構成は、上述の第1実施形態と同様である。
(Fifth Embodiment)
≪Structure of solid-state image sensor≫
The solid-state image sensor 1D according to the fifth embodiment of the present technology has basically the same configuration as the solid-state image sensor 1 according to the first embodiment described above, and as shown in FIG. 10, the first embodiment It has an inorganic layer 50D instead of the inorganic layer 50 of the above. Other configurations are the same as those in the first embodiment described above.
 図10に示すように、第5実施形態に係る固体撮像装置1Dの無機層50Dは、光透過膜51、52、54及び55を含む構成になっている。
 光透過膜51は、3色のカラーフィルタ部(41,42,43)のうち、緑色(G)の第2カラーフィルタ部42の光入射面側を選択的に覆っている。この光透過膜51は、上述の第1実施形態で説明したように、緑色(G)のカラーフィルタ膜をエッチングして第2カラーフィルタ部42を形成するときのエッチングストッパとしても機能する。
As shown in FIG. 10, the inorganic layer 50D of the solid-state image sensor 1D according to the fifth embodiment has a configuration including light transmitting films 51, 52, 54, and 55.
The light transmitting film 51 selectively covers the light incident surface side of the green (G) second color filter unit 42 among the three color color filter units (41, 42, 43). As described in the first embodiment described above, the light transmitting film 51 also functions as an etching stopper when the green (G) color filter film is etched to form the second color filter portion 42.
 光透過膜53は、第2カラーフィルタ部42上の光透過膜51の光入射面側を覆っている。そして、光透過膜53は、第2カラーフィルタ部42と第1カラーフィルタ部41との間にも配置され、これらの間において第2カラーフィルタ部42及び第1カラーフィルタ部41の各々の側面も覆っている。
 また、光透過膜53は、第2カラーフィルタ部42と第3カラーフィルタ部43との間にも配置され、これらの間において第2カラーフィルタ部42及び第3カラーフィルタ部43の各々の側面も覆っている。
 また、光透過膜53は、第1カラーフィルタ部41と第3カラーフィルタ部43との間にも配置され、これらの間において第1カラーフィルタ部41及び第3カラーフィルタ部43の各々の側面も覆っている。
The light transmitting film 53 covers the light incident surface side of the light transmitting film 51 on the second color filter unit 42. The light transmitting film 53 is also arranged between the second color filter unit 42 and the first color filter unit 41, and the side surfaces of the second color filter unit 42 and the first color filter unit 41 are located between them. Also covers.
Further, the light transmitting film 53 is also arranged between the second color filter unit 42 and the third color filter unit 43, and the side surfaces of the second color filter unit 42 and the third color filter unit 43 are located between them. Also covers.
Further, the light transmitting film 53 is also arranged between the first color filter unit 41 and the third color filter unit 43, and the side surfaces of the first color filter unit 41 and the third color filter unit 43 are located between them. Also covers.
 光透過膜54は、第2カラーフィルタ部42上の光透過膜53の光入射面側、及び第1カラーフィルタ部41の光入射面側を覆っている。
 そして、光透過膜54は、第2カラーフィルタ部42と第3カラーフィルタ部43との間にも配置され、これらの間において第2カラーフィルタ部42及び第3カラーフィルタ部43の各々の側面も覆っている。
 また、光透過膜54は、第1カラーフィルタ部41と第3カラーフィルタ部43との間にも配置され、これらの間において第1カラーフィルタ部41及び第3カラーフィルタ部43の各々の側面も覆っている。
The light transmitting film 54 covers the light incident surface side of the light transmitting film 53 on the second color filter unit 42 and the light incident surface side of the first color filter unit 41.
The light transmitting film 54 is also arranged between the second color filter unit 42 and the third color filter unit 43, and the side surfaces of the second color filter unit 42 and the third color filter unit 43 are located between them. Also covers.
Further, the light transmitting film 54 is also arranged between the first color filter unit 41 and the third color filter unit 43, and the side surfaces of the first color filter unit 41 and the third color filter unit 43 are located between them. Also covers.
 光透過膜55は、第2カラーフィルタ部42上及び第1カラーフィルタ部41上の光透過膜54の光入射面側、及び第3カラーフィルタ部43の光入射面側を覆っている。そして、光透過膜55は、図10に図示していないが、図6を参照すれば、上述の第2実施形態と同様に、カラーフィルタ層40の最外周の端部側面40aも最外周に沿って覆っている。 The light transmitting film 55 covers the light incident surface side of the light transmitting film 54 on the second color filter unit 42 and the first color filter unit 41, and the light incident surface side of the third color filter unit 43. Although the light transmitting film 55 is not shown in FIG. 10, referring to FIG. 6, the outermost peripheral end side surface 40a of the color filter layer 40 is also on the outermost circumference, as in the second embodiment described above. Covering along.
 即ち、無機層50Dは、カラーフィルタ層40の入射面側の全面を覆うと共に、第2カラーフィルタ部42と第3カラーフィルタ部43との間において第2及び第3カラーフィルタ部42及び43の各々の側面、第2カラーフィルタ部42と第1カラーフィルタ部41との間において第2及び第1カラーフィルタ部42及び41の各々の側面、並びに第1カラーフィルタ部41と第3カラーフィルタ部43との間において第1及び第3カラーフィルタ部41及び43の各々の側面も覆っている。
 無機層50Dは、第1カラーフィルタ部41、第2カラーフィルタ部42及び第3カラーフィルタ部43でそれぞれ膜厚が異なっている。無機層50Dは、第2カラーフィルタ部42を覆う部分が最も厚く、次に第1カラーフィルタ部42を覆う部分が厚く、第3カラーフィルタ部43を覆う部分が最も薄くなっている。
That is, the inorganic layer 50D covers the entire surface of the color filter layer 40 on the incident surface side, and the second and third color filter units 42 and 43 are located between the second color filter unit 42 and the third color filter unit 43. Each side surface, between the second color filter unit 42 and the first color filter unit 41, each side surface of the second and first color filter units 42 and 41, and the first color filter unit 41 and the third color filter unit The sides of the first and third color filter portions 41 and 43 are also covered with the 43.
The thickness of the inorganic layer 50D is different between the first color filter unit 41, the second color filter unit 42, and the third color filter unit 43. The portion of the inorganic layer 50D that covers the second color filter portion 42 is the thickest, then the portion that covers the first color filter portion 42 is thick, and the portion that covers the third color filter portion 43 is the thinnest.
 光透過膜53及び54は、光透過膜51及び55と同様に、第1~第3カラーフィルタ部41~43を含むカラーフィルタ層40の屈折率よりも高い例えば酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れかで構成されている。また、光透過膜53及び54としては、酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れか2つ以上を積層した構成としてもよい。 Similar to the light transmitting films 51 and 55, the light transmitting films 53 and 54 have a higher refractive index than the refractive index of the color filter layer 40 including the first to third color filter portions 41 to 43, for example, an aluminum oxide film, a hafnium oxide film and the like. It is composed of any of silicon nitride films. Further, the light transmitting films 53 and 54 may be configured by laminating any two or more of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film.
 図10に示すように、光透過膜53は、赤色(R)の第1カラーフィルタ部41と光電変換部23との間、及び青色(b)の第3カラーフィルタ部43と光電変換部23との間にも配置されている。この第5実施形態でも接着膜38が設けられているので、光透過膜53は、第1及び第3カラーフィルタ部41及び43と接着膜38との間に配置されている。
 光透過膜54は、第3カラーフィルタ部43と、この第3カラーフィルタ部43の直下の光透過膜53との間にも配置されている。
 即ち、無機層50Dは、カラーフィルタ層40の光入射面側に配置され、更にカラーフィルタ層40の光入射面側とは反対側にも配置されている。
 光透過膜53は、固体撮像装置1Dの製造プロセスにおいて、赤色のカラーフィルタ膜をエッチングして赤色(R)の第1カラーフィルタ部41を形成するときのエッチングストッパとしても機能する。
As shown in FIG. 10, the light transmitting film 53 is formed between the red (R) first color filter unit 41 and the photoelectric conversion unit 23, and the blue (b) third color filter unit 43 and the photoelectric conversion unit 23. It is also placed between and. Since the adhesive film 38 is also provided in the fifth embodiment, the light transmitting film 53 is arranged between the first and third color filter portions 41 and 43 and the adhesive film 38.
The light transmitting film 54 is also arranged between the third color filter unit 43 and the light transmitting film 53 directly below the third color filter unit 43.
That is, the inorganic layer 50D is arranged on the light incident surface side of the color filter layer 40, and is further arranged on the side opposite to the light incident surface side of the color filter layer 40.
The light transmitting film 53 also functions as an etching stopper when the red color filter film is etched to form the red (R) first color filter portion 41 in the manufacturing process of the solid-state imaging device 1D.
 ≪固体撮像装置の製造方法≫
 次に、この第5実施形態に係る固体撮像装置1Dの製造方法について、図11Aから図11Fを用いて説明する。
 まず、第1実施形態の図4Aから図4D、及び図5Aから5Gに示す工程と同様の工程を施して、図11Aに示すように、緑色の波長の光を受光して光電変換する光電変換部23上に、上面が光透過膜51で覆われた緑色(G)の第2カラーフィルタ部42を形成する。第2カラーフィルタ部42上のエッチングマスクRM1(図5F参照)はオーバーエッチングにより除去されている。
≪Manufacturing method of solid-state image sensor≫
Next, a method of manufacturing the solid-state image sensor 1D according to the fifth embodiment will be described with reference to FIGS. 11A to 11F.
First, the same steps as those shown in FIGS. 4A to 4D and 5A to 5G of the first embodiment are performed, and as shown in FIG. 11A, photoelectric conversion that receives light of a green wavelength and performs photoelectric conversion. A green (G) second color filter portion 42 whose upper surface is covered with a light transmitting film 51 is formed on the portion 23. The etching mask RM1 (see FIG. 5F) on the second color filter unit 42 is removed by overetching.
 次に、図11Bに示すように、光透過膜51上を含む半導体層20上の全面に、第2カラーフィルタ部42の屈折率よりも高い光透過膜53を形成する。光透過膜53としては、酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れかを用いることができる。これらの膜は、CVD法や蒸着法によって成膜することができる。
 この工程において、赤色の波長の光を受光して光電変換する光電変換部23上、及び青色の波長の光を受光して光電変換する光電変換部23上にも光透過膜53が形成される。
Next, as shown in FIG. 11B, a light transmitting film 53 having a refractive index higher than that of the second color filter unit 42 is formed on the entire surface of the semiconductor layer 20 including the light transmitting film 51. As the light transmitting film 53, any of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film can be used. These films can be formed by a CVD method or a vapor deposition method.
In this step, a light transmitting film 53 is also formed on the photoelectric conversion unit 23 that receives light of a red wavelength and performs photoelectric conversion, and on the photoelectric conversion unit 23 that receives light of a blue wavelength and performs photoelectric conversion. ..
 次に、図11Cに示すように、複数の光電変換部23のうち、赤色の波長の光を受光して光電変換する光電変換部23上に、この光電変換部23と平面的に重なるようにして赤色(R)の第1カラーフィルタ部41を形成する。第1カラーフィルタ部41は、光透過膜51の形成工程を除いた緑色の第2カラーフィルタ部42の形成工程と同様の工程で形成される。
 この工程において、第1カラーフィルタ部41は、光電変換部23の光入射面側に光透過膜53を介して配置される。
 また、この工程において、第2カラーフィルタ部42と第1カラーフィルタ部41との間にも光透過膜53が配置され、この間において第2カラーフィルタ部42及び第1カラーフィルタ部41の各々の側面も光透過膜53で覆われる。
 また、この工程において、青色の波長の光を受光して光電変換する光電変換部23上の光透過膜53は、赤色(R)のカラーフィル膜をエッチングして赤色(R)の第1カラーフィルタ部41を形成するときのエッチングマスクとしても機能する。
Next, as shown in FIG. 11C, among the plurality of photoelectric conversion units 23, the photoelectric conversion unit 23 that receives and converts light having a red wavelength is placed so as to be planarly overlapped with the photoelectric conversion unit 23. The red (R) first color filter portion 41 is formed. The first color filter section 41 is formed in the same process as the step of forming the green second color filter section 42 excluding the step of forming the light transmitting film 51.
In this step, the first color filter unit 41 is arranged on the light incident surface side of the photoelectric conversion unit 23 via the light transmitting film 53.
Further, in this step, the light transmitting film 53 is also arranged between the second color filter unit 42 and the first color filter unit 41, and in the meantime, each of the second color filter unit 42 and the first color filter unit 41 is arranged. The side surface is also covered with the light transmitting film 53.
Further, in this step, the light transmitting film 53 on the photoelectric conversion unit 23 that receives light having a blue wavelength and performs photoelectric conversion is a red (R) first color obtained by etching a red (R) color fill film. It also functions as an etching mask when forming the filter portion 41.
 次に、図11Dに示すように、光透過膜53及び第1カラーフィルタ部41の各々の光入射面側を含む半導体層20の第2の面S2側の全面に、第1及び第2カラーフィルタ部41及び42の屈折率よりも高い光透過膜54を形成する。光透過膜54としては、酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れかを用いることができる。これらの膜は、CVD法や蒸着法によって成膜することができる。 Next, as shown in FIG. 11D, the first and second colors are applied to the entire surface of the semiconductor layer 20 on the second surface S2 side including the light incident surface side of each of the light transmitting film 53 and the first color filter unit 41. A light transmitting film 54 having a refractive index higher than that of the filter portions 41 and 42 is formed. As the light transmitting film 54, any of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film can be used. These films can be formed by a CVD method or a vapor deposition method.
 次に、図11Eに示すように、複数の光電変換部23のうち、青色の波長の光を受光して光電変換する光電変換部23の光入射面側に、この光電変換部23と平面的に重なるようにして青色(B)の第3カラーフィルタ部43を形成する。第3カラーフィルタ部43は、光透過膜51の形成工程を除いた緑色の第2カラーフィルタ部42の形成工程と同様の工程で形成される。
 この工程において、第3カラーフィルタ部43は、光電変換部23の光入射面側に光透過膜53及び54を介して配置される。
 また、この工程において、第2カラーフィルタ部42と第3カラーフィルタ部43との間にも光透過膜53及び54が配置され、この間において第2カラーフィルタ部42及び第3カラーフィルタ部43の各々の側面も光透過膜53及び54で覆われる。
 また、この工程において、第1カラーフィルタ部41と第3カラーフィルタ部43との間にも光透過膜54が配置され、この間において第1カラーフィルタ部41及び第3カラーフィルタ部43の各々の側面も光透過膜54で覆われる。
Next, as shown in FIG. 11E, among the plurality of photoelectric conversion units 23, the photoelectric conversion unit 23 is planar with the photoelectric conversion unit 23 on the light incident surface side of the photoelectric conversion unit 23 that receives and converts light having a blue wavelength. The blue (B) third color filter portion 43 is formed so as to overlap with the above. The third color filter section 43 is formed in the same process as the step of forming the green second color filter section 42 excluding the step of forming the light transmitting film 51.
In this step, the third color filter unit 43 is arranged on the light incident surface side of the photoelectric conversion unit 23 via the light transmitting films 53 and 54.
Further, in this step, the light transmitting films 53 and 54 are also arranged between the second color filter unit 42 and the third color filter unit 43, and the second color filter unit 42 and the third color filter unit 43 are arranged between them. Each side surface is also covered with light transmitting films 53 and 54.
Further, in this step, the light transmitting film 54 is also arranged between the first color filter unit 41 and the third color filter unit 43, and in the meantime, each of the first color filter unit 41 and the third color filter unit 43 is arranged. The side surface is also covered with the light transmitting film 54.
 次に、図11Fに示すように、光透過膜54及び第3カラーフィルタ部43の各々の光入射面側を含む半導体層20の第2の面S2側の全面に、第1~第3カラーフィルタ部41~43の屈折率よりも高い光透過膜55を形成する。光透過膜55としては、酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れかを用いることができる。これらの膜は、CVD法や蒸着法によって成膜することができる。
 この工程において、カラーフィルタ層40の最外周の端部側面40aも最外周に沿って光透過膜55で覆われる。
Next, as shown in FIG. 11F, the first to third colors are applied to the entire surface of the semiconductor layer 20 on the second surface S2 side including the light incident surface side of each of the light transmitting film 54 and the third color filter unit 43. A light transmitting film 55 having a refractive index higher than that of the filter portions 41 to 43 is formed. As the light transmitting film 55, any of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film can be used. These films can be formed by a CVD method or a vapor deposition method.
In this step, the outermost peripheral end side surface 40a of the color filter layer 40 is also covered with the light transmitting film 55 along the outermost circumference.
 この工程により、光透過膜51、53、54及び55を含む無機層50Dが形成される。また、第1~第3カラーフィルタ部(41,42,43)を有し、かつ無機層50Dを有するカラーフィルタ層40が形成される。 By this step, the inorganic layer 50D including the light transmitting films 51, 53, 54 and 55 is formed. Further, a color filter layer 40 having first to third color filter portions (41, 42, 43) and having an inorganic layer 50D is formed.
 次に、カラーフィルタ層40の光入射面側に複数のマイクロレンズ59を形成する。これにより、図10示す固体撮像装置1Dがほぼ完成する。 Next, a plurality of microlenses 59 are formed on the light incident surface side of the color filter layer 40. As a result, the solid-state image sensor 1D shown in FIG. 10 is almost completed.
 この第5実施形態に係る固体撮像装置1Dの製造方法によれば、上述の第1実施形態と同様に、高精度のカラーフィルタ層40を形成することができる。また、カラーフィルタ層40の吸湿による変質に起因するシミ不良などの画像劣化を第1実施形態と比較して更に抑制することができる。 According to the method for manufacturing the solid-state image sensor 1D according to the fifth embodiment, the high-precision color filter layer 40 can be formed in the same manner as in the first embodiment described above. Further, image deterioration such as stain defects caused by deterioration of the color filter layer 40 due to moisture absorption can be further suppressed as compared with the first embodiment.
 (第6実施形態)
 本技術の第6実施形態に係る固体撮像装置1Eは、基本的に上述の第1実施形態に係る固体撮像装置1と同様の構成になっており、図12に示すように、第1実施形態の無機層50に換えて無機層50Eを備えている。その他の構成は、上述の第1実施形態と同様である。
 図12に示すように、第6実施形態に係る固体撮像装置1Eの無機層50Eは、光透過膜51及び57を含む構成になっている。
 光透過膜51は、3色のカラーフィルタ部(41,42,43)のうち、緑色(G)の第2カラーフィルタ部42の光入射面側を選択的に覆っている。この光透過膜51は、上述の第1実施形態で説明したように、第2カラーフィルタ部42を形成する時のエッチングストッパとしても機能する。
(Sixth Embodiment)
The solid-state image sensor 1E according to the sixth embodiment of the present technology has basically the same configuration as the solid-state image sensor 1 according to the first embodiment described above, and as shown in FIG. 12, the first embodiment The inorganic layer 50E is provided in place of the inorganic layer 50 of the above. Other configurations are the same as those in the first embodiment described above.
As shown in FIG. 12, the inorganic layer 50E of the solid-state image sensor 1E according to the sixth embodiment has a configuration including light transmitting films 51 and 57.
The light transmitting film 51 selectively covers the light incident surface side of the green (G) second color filter unit 42 among the three color color filter units (41, 42, 43). As described in the first embodiment described above, the light transmitting film 51 also functions as an etching stopper when forming the second color filter portion 42.
 光透過膜57は、第1~第3カラーフィルタ部41~43の各々と光電変換部23との間に配置されている。この第6実施形態では、上述の第1実施形態と同様に接着膜38が設けられているので、光透過膜57は、第1~第3カラーフィルタ部41~43の各々と接着膜38との間に設けられている。即ち、無機層50Eは、カラーフィルタ層40の光入射面側に配置され、更にカラーフィルタ層40の光入射面側とは反対側にも配置されている。光透過膜57は、光透過膜51と同様に、第1~第3カラーフィルタ部41~43を含むカラーフィルタ層40の屈折率よりも高い例えば酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れかで構成されている。また、光透過膜57としては、酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れか2つ以上を積層した構成としてもよい。 The light transmitting film 57 is arranged between each of the first to third color filter units 41 to 43 and the photoelectric conversion unit 23. In this sixth embodiment, since the adhesive film 38 is provided as in the first embodiment described above, the light transmitting film 57 includes each of the first to third color filter portions 41 to 43 and the adhesive film 38. It is provided between. That is, the inorganic layer 50E is arranged on the light incident surface side of the color filter layer 40, and is further arranged on the side opposite to the light incident surface side of the color filter layer 40. Like the light transmitting film 51, the light transmitting film 57 is made of, for example, an aluminum oxide film, a hafnium oxide film, and a silicon nitride film having a refractive index higher than that of the color filter layer 40 including the first to third color filter portions 41 to 43. It is composed of either. Further, the light transmitting film 57 may be configured by laminating any two or more of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film.
 この第6実施形態に係る固体撮像装置1Eの製造方法では、図13Aに示すように、接着膜38上を含む半導体層20上の全面に光透過膜57を形成し、その後、図13Bに示すように、光透過膜57上に第1~第3カラーフィルタ部41~43を形成する。即ち、第1~第3カラーフィルタ部41~43を形成する前に光透過膜57を形成する。
 このように、第1~第3カラーフィルタ部41~43を形成する前に光透過膜57を形成しておくことにより、緑色(G)のカラーフィルタ膜をエッチングして第2カラーフィルタ部42を形成する工程、赤色(R)のカラーフィルタ膜をエッチングして第1カラーフィルタ部41を形成する工程、及び青色(B)のカラーフィルタ膜をエッチングして第3カラーフィルタ部43を形成する工程において、光透過膜57がエッチングストッパとして機能するので、第1~第3カラーフィルタ部41~43の各々の直下における接着膜38、平坦化膜36及び光電変換部23などへのエッチングダメージを抑制することができる。したがって、この第6実施形態に係る固体撮像装置1Eによれば、カラーフィルタ層40の吸湿による変質に起因するシミ不良などの画像劣化を抑制することができると共に、接着膜38、平坦化膜36及び光電変換部23などへのエッチングダメージに起因する製造歩留まりの低下を抑制することができる。
In the method for manufacturing the solid-state image sensor 1E according to the sixth embodiment, as shown in FIG. 13A, a light transmitting film 57 is formed on the entire surface of the semiconductor layer 20 including the adhesive film 38, and then shown in FIG. 13B. As described above, the first to third color filter portions 41 to 43 are formed on the light transmitting film 57. That is, the light transmitting film 57 is formed before forming the first to third color filter portions 41 to 43.
By forming the light transmitting film 57 before forming the first to third color filter sections 41 to 43 in this way, the green (G) color filter film is etched and the second color filter section 42 is formed. The step of forming the first color filter portion 41 by etching the red (R) color filter film, and the step of etching the blue (B) color filter film to form the third color filter portion 43. Since the light transmitting film 57 functions as an etching stopper in the process, etching damage to the adhesive film 38, the flattening film 36, the photoelectric conversion unit 23, etc. directly under each of the first to third color filter units 41 to 43 is caused. It can be suppressed. Therefore, according to the solid-state image sensor 1E according to the sixth embodiment, image deterioration such as stain defects due to deterioration due to moisture absorption of the color filter layer 40 can be suppressed, and the adhesive film 38 and the flattening film 36 can be suppressed. In addition, it is possible to suppress a decrease in the manufacturing yield due to etching damage to the photoelectric conversion unit 23 and the like.
 なお、この第6実施形態は、光透過膜57を上述の第1実施形態の無機層50に適用した場合について説明した。光透過膜57の適用は、上述の第1実施形態の無機層50に限定されるものではない。例えば、光透過膜57は、上述の第2~第5実施形態のそれぞれの無機層50A~50Dにも適用することができる。この場合、第2~第5実施形態の何れにおいても、第1~第3カラーフィルタ部41~43を形成する前に光透過膜57を形成しておく。 Note that this sixth embodiment has described the case where the light transmitting film 57 is applied to the above-mentioned inorganic layer 50 of the first embodiment. The application of the light transmitting film 57 is not limited to the inorganic layer 50 of the first embodiment described above. For example, the light transmitting film 57 can also be applied to the respective inorganic layers 50A to 50D of the second to fifth embodiments described above. In this case, in any of the second to fifth embodiments, the light transmitting film 57 is formed before forming the first to third color filter portions 41 to 43.
 (電子機器への応用例)
 本技術(本開示に係る技術)は、例えば、デジタルスチルカメラ、デジタルビデオカメラ等の撮像装置、撮像機能を備えた携帯電話機、又は、撮像機能を備えた他の機器といった各種の電子機器に適用されてもよい。
 図14は、本技術が適用され得る電子機器(例えば、カメラ)の概略的な構成の一例を示す図である。
 図14に示すように、電子機器100は、固体撮像装置101と、光学レンズ102と、シャッタ装置103と、駆動回路104と、信号処理回路105とを備えている。この電子機器100では、固体撮像装置101として、上述の第1実施形態から第6実施形態に係る固体撮像装置1、1A、1B、1C、1D及び1Eの何れかを用いている。
(Example of application to electronic devices)
The present technology (technology according to the present disclosure) is applied to various electronic devices such as an image pickup device such as a digital still camera and a digital video camera, a mobile phone having an image pickup function, or another device having an image pickup function. May be done.
FIG. 14 is a diagram showing an example of a schematic configuration of an electronic device (for example, a camera) to which the present technology can be applied.
As shown in FIG. 14, the electronic device 100 includes a solid-state image sensor 101, an optical lens 102, a shutter device 103, a drive circuit 104, and a signal processing circuit 105. In this electronic device 100, any one of the solid- state image sensors 1, 1A, 1B, 1C, 1D, and 1E according to the first to sixth embodiments described above is used as the solid-state image sensor 101.
 光学レンズ102は、被写体からの像光(入射光106)を固体撮像装置101の撮像面上に結像させる。これにより、固体撮像装置101内に一定期間にわたって信号電荷が蓄積される。シャッタ装置103は、固体撮像装置101への光照射期間及び遮光期間を制御する。駆動回路104は、固体撮像装置101の転送動作及びシャッタ装置103のシャッタ動作を制御する駆動信号を供給する。駆動回路104から供給される駆動信号(タイミング信号)により、固体撮像装置101の信号転送を行なう。信号処理回路105は、固体撮像装置101から出力される信号(画素信号)に各種信号処理を行う。信号処理が行われた映像信号は、メモリ等の記憶媒体に記憶され、或いはモニタに出力される。
 なお、固体撮像装置1を適用できる電子機器100としては、カメラに限られるものではなく、他の電子機器にも適用することができる。例えば、携帯電話機やタブレット端末等のモバイル機器向けカメラモジュール等の撮像装置に適用してもよい。
The optical lens 102 forms an image of image light (incident light 106) from the subject on the image pickup surface of the solid-state image pickup device 101. As a result, the signal charge is accumulated in the solid-state image sensor 101 for a certain period of time. The shutter device 103 controls the light irradiation period and the light blocking period of the solid-state image sensor 101. The drive circuit 104 supplies a drive signal that controls the transfer operation of the solid-state image sensor 101 and the shutter operation of the shutter device 103. The signal transfer of the solid-state image sensor 101 is performed by the drive signal (timing signal) supplied from the drive circuit 104. The signal processing circuit 105 performs various signal processing on the signal (pixel signal) output from the solid-state image sensor 101. The signal-processed video signal is stored in a storage medium such as a memory or output to a monitor.
The electronic device 100 to which the solid-state image sensor 1 can be applied is not limited to the camera, but can also be applied to other electronic devices. For example, it may be applied to an imaging device such as a camera module for mobile devices such as mobile phones and tablet terminals.
 以上、本技術が適用され得る電子機器の一例について説明した。本技術は、以上説明した構成のうち、固体撮像装置101に適用され得る。具体的には、図1の固体撮像装置1は、固体撮像装置101に適用できる。固体撮像装置101に本技術を適用することにより、より良好な撮影画像を得ることができる。 The above is an example of an electronic device to which this technology can be applied. The present technology can be applied to the solid-state image sensor 101 among the configurations described above. Specifically, the solid-state image sensor 1 of FIG. 1 can be applied to the solid-state image sensor 101. By applying this technique to the solid-state image sensor 101, a better photographed image can be obtained.
 (電子機器への応用例)
 図15は、本技術(本開示に係る技術)が適用され得る電子機器として撮像装置の概略的な構成の一例を示す図である。
(Example of application to electronic devices)
FIG. 15 is a diagram showing an example of a schematic configuration of an image pickup apparatus as an electronic device to which the present technology (technology according to the present disclosure) can be applied.
 図15の撮像装置1000は、ビデオカメラやデジタルスチルカメラ等である。撮像装置1000は、レンズ群1001、固体撮像素子1002、DSP回路1003、フレームメモリ1004、表示部1005、記憶部1006、操作部1007、及び電源部1008からなる。DSP回路1003、フレームメモリ1004、表示部1005、記憶部1006、操作部1007、及び電源部1008は、パスライン1009を介して相互に接続されている。 The image pickup device 1000 in FIG. 15 is a video camera, a digital still camera, or the like. The image pickup device 1000 includes a lens group 1001, a solid-state image sensor 1002, a DSP circuit 1003, a frame memory 1004, a display unit 1005, a storage unit 1006, an operation unit 1007, and a power supply unit 1008. The DSP circuit 1003, the frame memory 1004, the display unit 1005, the storage unit 1006, the operation unit 1007, and the power supply unit 1008 are connected to each other via the pass line 1009.
 レンズ群1001は、被写体からの入射光(像光)を取り込んで固体撮像素子1002の撮像面上に結像する。固体撮像素子1002は、上述の第1~第6実施形態の固体撮像装置からなる。固体撮像素子1002は、レンズ群1001によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号としてDSP回路1003に供給する。 The lens group 1001 captures incident light (image light) from the subject and forms an image on the image pickup surface of the solid-state image pickup device 1002. The solid-state image sensor 1002 comprises the solid-state image sensor of the first to sixth embodiments described above. The solid-state image sensor 1002 converts the amount of incident light imaged on the imaging surface by the lens group 1001 into an electric signal on a pixel-by-pixel basis and supplies it to the DSP circuit 1003 as a pixel signal.
 DSP回路1003は、固体撮像素子1002から供給される画素信号に対して所定の画像処理を行い、画像処理後の画像信号をフレーム単位でフレームメモリ1004に供給し、一時的に記憶させる。 The DSP circuit 1003 performs predetermined image processing on the pixel signal supplied from the solid-state image sensor 1002, supplies the image signal after the image processing to the frame memory 1004 in frame units, and temporarily stores the image signal.
 表示部1005は、例えば、液晶パネルや有機EL(Electro Luminescence)パネル等のパネル型表示装置からなり、フレームメモリ1004に一時的に記憶されたフレーム単位の画素信号に基づいて、画像を表示する。 The display unit 1005 is composed of a panel-type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays an image based on a frame-based pixel signal temporarily stored in the frame memory 1004.
 記憶部1006は、DVD(Digital Versatile Disk)、フラッシュメモリ等からなり、フレームメモリ1004に一時的に記憶されたフレーム単位の画素信号を読み出し、記憶する。 The storage unit 1006 is composed of a DVD (Digital Versatile Disk), a flash memory, or the like, and reads and stores a frame-by-frame pixel signal temporarily stored in the frame memory 1004.
 操作部1007は、ユーザによる操作の下に、撮像装置1000が持つ様々な機能について操作指令を発する。電源部1008は、電源を、DSP回路1003、フレームメモリ1004、表示部1005、記憶部1006、及び操作部1007に対して適宜供給する。 The operation unit 1007 issues operation commands for various functions of the image pickup apparatus 1000 under the operation of the user. The power supply unit 1008 supplies power to the DSP circuit 1003, the frame memory 1004, the display unit 1005, the storage unit 1006, and the operation unit 1007 as appropriate.
 本技術を適用する電子機器は、画像取込部(光電変換部)にCMOSイメージセンサを用いる装置であればよく、撮像装置1000のほか、撮像機能を有する携帯端末装置、画像読取部にCMOSイメージセンサを用いる複写機などがある。 The electronic device to which this technology is applied may be any device that uses a CMOS image sensor for the image acquisition unit (photoelectric conversion unit), and in addition to the image pickup device 1000, a portable terminal device having an image pickup function, and a CMOS image for the image reading unit. There are copiers that use sensors.
 (移動体への応用例)
 本技術(本開示に係る技術)は、例えば、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
(Example of application to mobile)
The present technology (the technology according to the present disclosure) is mounted on any kind of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. It may be realized as a device.
 図16は、本技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 16 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the present technology can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図15に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001. In the example shown in FIG. 15, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050. Further, as a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating a braking force of a vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a head lamp, a back lamp, a brake lamp, a winker, or a fog lamp. In this case, the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches. The body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030. The vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received. The image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects the in-vehicle information. For example, a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, and the drive system control unit. A control command can be output to 12010. For example, the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver can control the vehicle. It is possible to perform coordinated control for the purpose of automatic driving, etc., which runs autonomously without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Further, the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs coordinated control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図16の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio image output unit 12052 transmits the output signal of at least one of the audio and the image to the output device capable of visually or audibly notifying the passenger or the outside of the vehicle of the information. In the example of FIG. 16, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices. The display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
 図17は、撮像部12031の設置位置の例を示す図である。
 図17では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
FIG. 17 is a diagram showing an example of the installation position of the imaging unit 12031.
In FIG. 17, the vehicle 12100 has image pickup units 12101, 12102, 12103, 12104, 12105 as the image pickup unit 12031.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100, for example. The image pickup unit 12101 provided on the front nose and the image pickup section 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100. The imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100. The images in front acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図17には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 17 shows an example of the photographing range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103. The imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or an image pickup element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100). By obtaining can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is used via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104. Such pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and a pattern matching process for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine. When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian. The display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
 以上、本技術が適用され得る車両制御システムの一例について説明した。本技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、上述の第1実施形態から第6実施形態に係る固体撮像装置1,1A,1B,1C,1D,1Eは、撮像部12031に適用できる。撮像部12031に本技術を適用することにより、より良好な撮影画像を得ることができるため、ドライバの疲労を軽減することが可能になる。 The above is an example of a vehicle control system to which this technology can be applied. The present technology can be applied to the imaging unit 12031 among the configurations described above. Specifically, the solid- state image sensors 1, 1A, 1B, 1C, 1D, and 1E according to the first to sixth embodiments described above can be applied to the image pickup unit 12031. By applying this technology to the image pickup unit 12031, it is possible to obtain a better photographed image, and thus it is possible to reduce driver fatigue.
 (内視鏡手術システムへの応用例)
 本技術(本開示に係る技術)は、例えば、内視鏡手術システムに適用されてもよい。
 図16は、本技術が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図18では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
(Example of application to endoscopic surgery system)
The present technology (the technology according to the present disclosure) may be applied to, for example, an endoscopic surgery system.
FIG. 16 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the present technique can be applied.
FIG. 18 shows a surgeon (doctor) 11131 performing surgery on patient 11132 on patient bed 11133 using the endoscopic surgery system 11000. As shown, the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as an abdominal tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100. , A cart 11200 equipped with various devices for endoscopic surgery.
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。 The endoscope 11100 is composed of a lens barrel 11101 in which a region having a predetermined length from the tip is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the base end of the lens barrel 11101. In the illustrated example, the endoscope 11100 configured as a so-called rigid mirror having a rigid barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible barrel. good.
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101. A light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101, and is an objective. It is irradiated toward the observation target in the body cavity of the patient 11132 through the lens. The endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。 An optical system and an image pickup element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the image pickup element by the optical system. The observation light is photoelectrically converted by the image sensor, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated. The image signal is transmitted as RAW data to the camera control unit (CCU: Camera Control Unit) 11201.
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。 The CCU11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and comprehensively controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal for displaying an image based on the image signal, such as development processing (demosaic processing).
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。 The display device 11202 displays an image based on the image signal processed by the CCU 11201 under the control of the CCU 11201.
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。 The light source device 11203 is composed of, for example, a light source such as an LED (Light Emitting Diode), and supplies irradiation light to the endoscope 11100 when photographing an operating part or the like.
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。 The input device 11204 is an input interface for the endoscopic surgery system 11000. The user can input various information and input instructions to the endoscopic surgery system 11000 via the input device 11204. For example, the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment tool control device 11205 controls the drive of the energy treatment tool 11112 for cauterizing, incising, sealing a blood vessel, or the like of a tissue. The pneumoperitoneum device 11206 uses a gas in the pneumoperitoneum tube 11111 to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the work space of the operator. To send. The recorder 11207 is a device capable of recording various information related to surgery. The printer 11208 is a device capable of printing various information related to surgery in various formats such as texts, images, and graphs.
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。 The light source device 11203 that supplies the irradiation light to the endoscope 11100 when photographing the surgical site can be composed of, for example, an LED, a laser light source, or a white light source composed of a combination thereof. When a white light source is configured by combining RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out. Further, in this case, the laser light from each of the RGB laser light sources is irradiated to the observation target in a time-divided manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing to support each of RGB. It is also possible to capture the image in a time-divided manner. According to this method, a color image can be obtained without providing a color filter on the image sensor.
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 Further, the drive of the light source device 11203 may be controlled so as to change the intensity of the output light at predetermined time intervals. By controlling the drive of the image sensor of the camera head 11102 in synchronization with the timing of changing the light intensity to acquire an image in a time-divided manner and synthesizing the image, so-called high dynamic without blackout and overexposure. Range images can be generated.
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 Further, the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation. In special light observation, for example, by utilizing the wavelength dependence of light absorption in body tissue to irradiate light in a narrow band as compared with the irradiation light (that is, white light) in normal observation, the surface layer of the mucous membrane. So-called narrow band imaging, in which a predetermined tissue such as a blood vessel is photographed with high contrast, is performed. Alternatively, in the special light observation, fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating with excitation light. In fluorescence observation, the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent. The light source device 11203 may be configured to be capable of supplying narrow band light and / or excitation light corresponding to such special light observation.
 図19は、図16に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。 FIG. 19 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU11201 shown in FIG.
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。 The camera head 11102 includes a lens unit 11401, an imaging unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405. CCU11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413. The camera head 11102 and CCU11201 are communicably connected to each other by a transmission cable 11400.
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。 The lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. The observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and incident on the lens unit 11401. The lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。 The image pickup unit 11402 is composed of an image pickup element. The image sensor constituting the image pickup unit 11402 may be one (so-called single plate type) or a plurality (so-called multi-plate type). When the image pickup unit 11402 is composed of a multi-plate type, for example, each image pickup element may generate an image signal corresponding to each of RGB, and a color image may be obtained by synthesizing them. Alternatively, the image pickup unit 11402 may be configured to have a pair of image pickup elements for acquiring image signals for the right eye and the left eye corresponding to 3D (Dimensional) display, respectively. The 3D display enables the operator 11131 to more accurately grasp the depth of the biological tissue in the surgical site. When the image pickup unit 11402 is composed of a multi-plate type, a plurality of lens units 11401 may be provided corresponding to each image pickup element.
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。 Further, the imaging unit 11402 does not necessarily have to be provided on the camera head 11102. For example, the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。 The drive unit 11403 is composed of an actuator, and the zoom lens and focus lens of the lens unit 11401 are moved by a predetermined distance along the optical axis under the control of the camera head control unit 11405. As a result, the magnification and focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。 The communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU11201. The communication unit 11404 transmits the image signal obtained from the image pickup unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。 Further, the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405. The control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and / or information to specify the magnification and focus of the captured image, and the like. Contains information about the condition.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。 The imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of CCU11201 based on the acquired image signal. good. In the latter case, the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。 The camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。 The communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102. The communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。 Further, the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102. Image signals and control signals can be transmitted by telecommunications, optical communication, or the like.
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。 The image processing unit 11412 performs various image processing on the image signal which is the RAW data transmitted from the camera head 11102.
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。 The control unit 11413 performs various controls related to the imaging of the surgical site and the like by the endoscope 11100 and the display of the captured image obtained by the imaging of the surgical site and the like. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。 Further, the control unit 11413 causes the display device 11202 to display an image captured by the surgical unit or the like based on the image signal processed by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image by using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edge of an object included in the captured image to remove surgical tools such as forceps, a specific biological part, bleeding, and mist when using the energy treatment tool 11112. Can be recognized. When displaying the captured image on the display device 11202, the control unit 11413 may superimpose and display various surgical support information on the image of the surgical unit by using the recognition result. By superimposing and displaying the surgical support information and presenting it to the surgeon 11131, it is possible to reduce the burden on the surgeon 11131 and to allow the surgeon 11131 to proceed with the surgery reliably.
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 The transmission cable 11400 that connects the camera head 11102 and CCU11201 is an electric signal cable that supports electric signal communication, an optical fiber that supports optical communication, or a composite cable thereof.
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。 Here, in the illustrated example, the communication is performed by wire using the transmission cable 11400, but the communication between the camera head 11102 and the CCU11201 may be performed wirelessly.
 以上、本技術が適用され得る内視鏡手術システムの一例について説明した。本技術は、以上説明した構成のうち、撮像部11402に適用され得る。具体的には、上述の第1実施形態から第6実施形態に係る固体撮像装置1,1A,1B,1C,1D,1Eは、撮像部10402に適用することができる。撮像部10402に本技術を適用することにより、より鮮明な術部画像を得ることができるため、術者が術部を確実に確認することが可能になる。 The above is an example of an endoscopic surgery system to which this technology can be applied. The present technology can be applied to the imaging unit 11402 among the configurations described above. Specifically, the solid- state image sensors 1, 1A, 1B, 1C, 1D, and 1E according to the first to sixth embodiments described above can be applied to the image pickup unit 10402. By applying this technique to the imaging unit 10402, a clearer surgical site image can be obtained, so that the operator can surely confirm the surgical site.
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。 Although the endoscopic surgery system has been described here as an example, the present technology may be applied to other, for example, a microscopic surgery system.
 なお、本技術は、以下のような構成としてもよい。
(1)
 複数の光電変換部が設けられた半導体層と、
 前記半導体層の光入射面側に配置され、かつ2色以上のカラーフィルタ部を含むカラーフィルタ層と、
 前記カラーフィルタ層の光入射面側に配置され、かつカラーフィルタ層の屈折率よりも高い無機層と、
 を有する固体撮像装置。
(2)
 前記無機層は、前記2色以上のカラーフィルタ部のうちの所定の色のカラーフィルタ部の光入射面側を選択的に覆っている、上記(1)に記載の固体撮像装置。
(3)
 前記無機層は、前記2色以上のカラーフィルタ部の全ての色のカラーフィルタ部の光入射面側を覆っている、上記(1)に記載の固体撮像装置。
(4)
 前記無機層は、前記2色以上のカラーフィルタ部のうちの第1の色のカラーフィルタ部と、前記第1の色のカラーフィルタとは異なる第2の色のカラーフィルタ部とで厚みが異なっている、上記(1)に記載の固体撮像装置。
(5)
 前記無機層は、前記2色以上のカラーフィルタ部のうちの色が異なる前記カラーフィルタ部の間にも配置されている、上記(1)に記載の固体撮像装置。
(6)
 前記無機層は、前記カラーフィルタ層の端部側面も覆っている、上記(1)に記載の固体撮像装置。
(7)
 前記無機層は、前記カラーフィルタ層の前記光入射面側とは反対側にも配置されている、上記(1)から(6)の何れかに記載の固体撮像装置。
(8)
 前記カラーフィルタ層の光入射面側に配置された複数のマイクロレンズを更に有する、上記(1)から(7)の何れらに記載の固体撮像装置。
(9)
 前記無機層は、酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れかで形成されている、上記(1)から(8)の何れかに記載の固体撮像装置。
(10)
 半導体層上にカラーフィルタ膜を形成し、
 前記カラーフィルタ膜上に前記カラーフィルタ膜の屈折率よりも高い無機層を形成し、
 前記無機層上にエッチングマスクを形成する工程と、
 前記エッチングマスクの周囲の前記無機層及び前記カラーフィルタ膜をエッチングにより除去して上面が前記無機層で覆われたカラーフィルタ部を形成すると共に、前記エッチングマスクをオーバーエッチングにより除去する、
 ことを含む固体撮像装置の製造方法。
(11)
 複数の光電変換部が設けられた半導体層と、
 前記半導体層の光入射面側に設けられ、かつ2色以上のカラーフィルタ部を含むカラーフィルタ層と、
 前記カラーフィルタ層の光入射面側に配置され、かつカラーフィルタ層の屈折率よりも高い無機層と、
 を有する固体撮像装置を備えている電子機器。
The present technology may have the following configuration.
(1)
A semiconductor layer provided with a plurality of photoelectric conversion units and
A color filter layer arranged on the light incident surface side of the semiconductor layer and including a color filter unit of two or more colors, and a color filter layer.
An inorganic layer arranged on the light incident surface side of the color filter layer and having a refractive index higher than that of the color filter layer,
Solid-state image sensor.
(2)
The solid-state image sensor according to (1) above, wherein the inorganic layer selectively covers the light incident surface side of the color filter unit of a predetermined color among the color filter units of two or more colors.
(3)
The solid-state image sensor according to (1) above, wherein the inorganic layer covers the light incident surface side of the color filter portions of all colors of the color filter portions of two or more colors.
(4)
The thickness of the inorganic layer differs between the color filter portion of the first color of the two or more color filter portions and the color filter portion of the second color different from the color filter of the first color. The solid-state imaging device according to (1) above.
(5)
The solid-state image sensor according to (1) above, wherein the inorganic layer is also arranged between the color filter units having different colors among the two or more color filter units.
(6)
The solid-state image sensor according to (1) above, wherein the inorganic layer also covers the end side surface of the color filter layer.
(7)
The solid-state image sensor according to any one of (1) to (6) above, wherein the inorganic layer is also arranged on a side of the color filter layer opposite to the light incident surface side.
(8)
The solid-state image sensor according to any one of (1) to (7) above, further comprising a plurality of microlenses arranged on the light incident surface side of the color filter layer.
(9)
The solid-state imaging device according to any one of (1) to (8) above, wherein the inorganic layer is formed of any of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film.
(10)
A color filter film is formed on the semiconductor layer,
An inorganic layer having a refractive index higher than that of the color filter film is formed on the color filter film.
The step of forming an etching mask on the inorganic layer and
The inorganic layer and the color filter film around the etching mask are removed by etching to form a color filter portion whose upper surface is covered with the inorganic layer, and the etching mask is removed by overetching.
A method of manufacturing a solid-state image sensor including the above.
(11)
A semiconductor layer provided with a plurality of photoelectric conversion units and
A color filter layer provided on the light incident surface side of the semiconductor layer and including a color filter unit having two or more colors, and a color filter layer.
An inorganic layer arranged on the light incident surface side of the color filter layer and having a refractive index higher than that of the color filter layer,
An electronic device equipped with a solid-state image sensor.
 本技術の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本技術が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本技術の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。 The scope of the present technology is not limited to the exemplary embodiments illustrated and described, but also includes all embodiments that provide an effect equal to that of the present technology. Furthermore, the scope of the present invention is not limited to the combination of the features of the invention defined by the claims, but may be defined by any desired combination of the specific features of all the disclosed features.
 1,1A,1B,1C,1D,1E…固体撮像装置
 2…半導体チップ
 2A…画素アレイ部
 2B…周辺部
 2C…パッド配置部
 3…画素
 4…垂直駆動回路
 5…カラム信号処理回路
 6…水平駆動回路
 7…出力回路
 8…制御回路
 10…画素駆動配線、
 11…垂直信号線
 12…水平信号線
 13…電極パッド
 20…半導体層
 21…n型のウエル領域
 22…分離領域
 23…光電変換部
 25…平坦化膜
 26…接着層
 30…多層配線層
 31…層間絶縁膜
 32…配線
 34…支持基板
 36…平坦化膜
 37…遮光膜
 38…接着膜
 40…カラーフィルタ層
 41…赤色(R)の第1カラーフィルタ部
 42…緑(G)色の第2カラーフィルタ部
 43…青色(B)の第3カラーフィルタ部
 50,50A,50B,50C,50D,50E…無機層
 51,52,53,54,55,57…光透過膜
 59…マイクロレンズ
1,1A, 1B, 1C, 1D, 1E ... Solid-state imaging device 2 ... Semiconductor chip 2A ... Pixel array part 2B ... Peripheral part 2C ... Pad arrangement part 3 ... Pixel 4 ... Vertical drive circuit 5 ... Column signal processing circuit 6 ... Horizontal Drive circuit 7 ... Output circuit 8 ... Control circuit 10 ... Pixel drive wiring,
11 ... Vertical signal line 12 ... Horizontal signal line 13 ... Electrode pad 20 ... Semiconductor layer 21 ... n-type well area 22 ... Separation area 23 ... Photoelectric conversion unit 25 ... Flattening film 26 ... Adhesive layer 30 ... Multilayer wiring layer 31 ... Interlayer insulation film 32 ... Wiring 34 ... Support substrate 36 ... Flattening film 37 ... Light-shielding film 38 ... Adhesive film 40 ... Color filter layer 41 ... Red (R) first color filter part 42 ... Green (G) color second Color filter unit 43 ... Blue (B) third color filter unit 50, 50A, 50B, 50C, 50D, 50E ... Inorganic layer 51, 52, 53, 54, 55, 57 ... Light transmitting film 59 ... Micro lens

Claims (11)

  1.  複数の光電変換部が設けられた半導体層と、
     前記半導体層の光入射面側に配置され、かつ2色以上のカラーフィルタ部を含むカラーフィルタ層と、
     前記カラーフィルタ層の光入射面側に配置され、かつカラーフィルタ層の屈折率よりも高い無機層と、
     を有する固体撮像装置。
    A semiconductor layer provided with a plurality of photoelectric conversion units and
    A color filter layer arranged on the light incident surface side of the semiconductor layer and including a color filter unit of two or more colors, and a color filter layer.
    An inorganic layer arranged on the light incident surface side of the color filter layer and having a refractive index higher than that of the color filter layer,
    Solid-state image sensor.
  2.  前記無機層は、前記2色以上のカラーフィルタ部のうちの所定の色のカラーフィルタ部の光入射面側を選択的に覆っている、請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, wherein the inorganic layer selectively covers the light incident surface side of the color filter unit of a predetermined color among the color filter units of two or more colors.
  3.  前記無機層は、前記2色以上のカラーフィルタ部の全ての色のカラーフィルタ部の光入射面側を覆っている、請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, wherein the inorganic layer covers the light incident surface side of the color filter portions of all colors of the color filter portions of two or more colors.
  4.  前記無機層は、前記2色以上のカラーフィルタ部のうちの第1の色のカラーフィルタ部と、前記第1の色のカラーフィルタとは異なる第2の色のカラーフィルタ部とで厚みが異なっている、請求項1に記載の固体撮像装置。 The thickness of the inorganic layer differs between the color filter portion of the first color of the two or more color filter portions and the color filter portion of the second color different from the color filter of the first color. The solid-state imaging device according to claim 1.
  5.  前記無機層は、前記2色以上のカラーフィルタ部のうちの色が異なる前記カラーフィルタ部の間にも配置されている、請求項1に記載の固体撮像装置。 The solid-state image sensor according to claim 1, wherein the inorganic layer is also arranged between the color filter units having different colors among the two or more color filter units.
  6.  前記無機層は、前記カラーフィルタ層の端部側面も覆っている、請求項1に記載の固体撮像装置。 The solid-state image sensor according to claim 1, wherein the inorganic layer also covers the end side surface of the color filter layer.
  7.  前記無機層は、前記カラーフィルタ層の光入射面側とは反対側にも配置されている、請求項1に記載の固体撮像装置。 The solid-state image sensor according to claim 1, wherein the inorganic layer is also arranged on a side opposite to the light incident surface side of the color filter layer.
  8.  前記カラーフィルタ層の光入射面側に配置された複数のマイクロレンズを更に有する、請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, further comprising a plurality of microlenses arranged on the light incident surface side of the color filter layer.
  9.  前記無機層は、酸化アルミニウム膜、酸化ハフニウム膜及び窒化シリコン膜の何れかで形成されている、請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, wherein the inorganic layer is formed of any of an aluminum oxide film, a hafnium oxide film, and a silicon nitride film.
  10.  半導体層上にカラーフィルタ膜を形成し、
     前記カラーフィルタ膜上に前記カラーフィルタ膜の屈折率よりも高い無機層を形成し、
     前記無機層上にエッチングマスクを形成する工程と、
     前記エッチングマスクの周囲の前記無機層及び前記カラーフィルタ膜をエッチングにより除去して上面が前記無機層で覆われたカラーフィルタ部を形成すると共に、前記エッチングマスクをオーバーエッチングにより除去する、
     ことを含む固体撮像装置の製造方法。
    A color filter film is formed on the semiconductor layer,
    An inorganic layer having a refractive index higher than that of the color filter film is formed on the color filter film.
    The step of forming an etching mask on the inorganic layer and
    The inorganic layer and the color filter film around the etching mask are removed by etching to form a color filter portion whose upper surface is covered with the inorganic layer, and the etching mask is removed by overetching.
    A method of manufacturing a solid-state image sensor including the above.
  11.  複数の光電変換部が設けられた半導体層と、
     前記半導体層の光入射面側に設けられ、かつ2色以上のカラーフィルタ部を含むカラーフィルタ層と、
     前記カラーフィルタ層の光入射面側に配置され、かつカラーフィルタ層の屈折率よりも高い無機層と、
     を有する固体撮像装置を備えている電子機器。
    A semiconductor layer provided with a plurality of photoelectric conversion units and
    A color filter layer provided on the light incident surface side of the semiconductor layer and including a color filter unit having two or more colors, and a color filter layer.
    An inorganic layer arranged on the light incident surface side of the color filter layer and having a refractive index higher than that of the color filter layer,
    An electronic device equipped with a solid-state image sensor.
PCT/JP2021/002886 2020-03-16 2021-01-27 Solid-state imaging device, method for manufacturing same, and electronic instrument WO2021186907A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020045505A JP2021150325A (en) 2020-03-16 2020-03-16 Solid-state imaging device, manufacturing method thereof, and electronic apparatus
JP2020-045505 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021186907A1 true WO2021186907A1 (en) 2021-09-23

Family

ID=77771176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002886 WO2021186907A1 (en) 2020-03-16 2021-01-27 Solid-state imaging device, method for manufacturing same, and electronic instrument

Country Status (2)

Country Link
JP (1) JP2021150325A (en)
WO (1) WO2021186907A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024040889A (en) * 2022-09-13 2024-03-26 ソニーセミコンダクタソリューションズ株式会社 Photodetector and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008299248A (en) * 2007-06-04 2008-12-11 Panasonic Corp Multilayer interference filter and solid-state image pickup apparatus
JP2015015295A (en) * 2013-07-03 2015-01-22 ソニー株式会社 Solid imaging apparatus and manufacturing method thereof and electronic apparatus
JP2019160830A (en) * 2018-03-07 2019-09-19 ソニーセミコンダクタソリューションズ株式会社 Imaging element and manufacturing method thereof
JP2019200279A (en) * 2018-05-15 2019-11-21 凸版印刷株式会社 Solid state image sensor and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008299248A (en) * 2007-06-04 2008-12-11 Panasonic Corp Multilayer interference filter and solid-state image pickup apparatus
JP2015015295A (en) * 2013-07-03 2015-01-22 ソニー株式会社 Solid imaging apparatus and manufacturing method thereof and electronic apparatus
JP2019160830A (en) * 2018-03-07 2019-09-19 ソニーセミコンダクタソリューションズ株式会社 Imaging element and manufacturing method thereof
JP2019200279A (en) * 2018-05-15 2019-11-21 凸版印刷株式会社 Solid state image sensor and method for manufacturing the same

Also Published As

Publication number Publication date
JP2021150325A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
US11362122B2 (en) Solid-state imaging element and imaging apparatus
US20220066309A1 (en) Imaging device and electronic apparatus
WO2021131318A1 (en) Solid-state imaging device and electronic apparatus
WO2021241019A1 (en) Imaging element and imaging device
WO2020137203A1 (en) Imaging element and imaging device
JP2018195719A (en) Image sensor and method for manufacturing image sensor
WO2020137285A1 (en) Imaging element and method for manufacturing imaging element
WO2021124975A1 (en) Solid-state imaging device and electronic instrument
WO2022009693A1 (en) Solid-state imaging device and method for manufacturing same
US20230103730A1 (en) Solid-state imaging device
WO2021106383A1 (en) Imaging device and electronic apparatus
WO2021186907A1 (en) Solid-state imaging device, method for manufacturing same, and electronic instrument
WO2022131034A1 (en) Imaging device
WO2022091576A1 (en) Solid-state imaging device and electronic apparatus
WO2022009674A1 (en) Semiconductor package and method for producing semiconductor package
WO2021045139A1 (en) Imaging element and imaging device
WO2019176302A1 (en) Imaging element and method for manufacturing imaging element
WO2022130987A1 (en) Solid-state imaging device and method for manufacturing same
WO2021140958A1 (en) Imaging element, manufacturing method, and electronic device
WO2024029408A1 (en) Imaging device
WO2023012989A1 (en) Imaging device
WO2023067935A1 (en) Imaging device
WO2023013393A1 (en) Imaging device
US20240079427A1 (en) Imaging apparatus and manufacturing method of imaging apparatus
WO2022138097A1 (en) Solid-state imaging device and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770703

Country of ref document: EP

Kind code of ref document: A1