WO2014141991A1 - Solid-state image-pickup device, method for producing same, and electronic equipment - Google Patents

Solid-state image-pickup device, method for producing same, and electronic equipment Download PDF

Info

Publication number
WO2014141991A1
WO2014141991A1 PCT/JP2014/055739 JP2014055739W WO2014141991A1 WO 2014141991 A1 WO2014141991 A1 WO 2014141991A1 JP 2014055739 W JP2014055739 W JP 2014055739W WO 2014141991 A1 WO2014141991 A1 WO 2014141991A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
state imaging
imaging device
microlens
pixel
Prior art date
Application number
PCT/JP2014/055739
Other languages
French (fr)
Japanese (ja)
Inventor
納土 晋一郎
大塚 洋一
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2015505430A priority Critical patent/JP6314969B2/en
Priority to KR1020157020185A priority patent/KR102210008B1/en
Priority to US14/773,157 priority patent/US9985066B2/en
Priority to CN201480005896.0A priority patent/CN105308746B/en
Publication of WO2014141991A1 publication Critical patent/WO2014141991A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets

Definitions

  • the present technology relates to a solid-state imaging device, a manufacturing method thereof, and an electronic device, and in particular, a solid-state imaging device capable of improving both oblique incident light characteristics of imaging pixels and AF characteristics of phase difference detection pixels and
  • the present invention relates to a manufacturing method and an electronic device.
  • the condensing structure can be reduced in height compared to the front-illuminated solid-state imaging device, and excellent oblique incident light characteristics can be obtained. It is known that it can be realized.
  • phase difference detection pixel a solid-state imaging device that performs phase difference detection by providing a phase difference detection pixel in which a part of the photoelectric conversion unit is shielded from light in a normal imaging pixel.
  • the phase difference detection pixel it is necessary to increase the distance between the microlens and the light-shielding film, that is, to increase the height of the light-collecting structure in order to align the light collection point with the light-shielding film.
  • phase difference detection pixel when a phase difference detection pixel is provided in a back-illuminated solid-state imaging device, a low profile is required to obtain the oblique incident light characteristic of the imaging pixel, while to obtain the AF characteristic of the phase difference detection pixel. There is a trade-off that heightening is required.
  • Patent Document 1 an image pickup device in which the light receiving element of the phase difference detection pixel is formed low while the height of the microlens is aligned between the image pickup pixel and the phase difference detection pixel.
  • Patent Document 2 an imaging distance of the phase difference detection pixel is secured by providing a step in the micro lens of the phase difference detection pixel.
  • Patent Document 1 since the film thickness of the Si substrate is different between the imaging pixel and the phase difference detection pixel, it is necessary to separate the potential design and the ion implantation process between the imaging pixel and the phase difference detection pixel. In addition, the interface state is disturbed due to etching damage when the light receiving element is dug, which may affect the characteristics in the dark.
  • Patent Document 2 does not disclose a specific method for providing a step in the microlens of the phase difference detection pixel, and vignetting occurs due to reflection at a wall portion formed by the step. Degradation of the oblique incident light characteristics of the imaging pixels is inevitable.
  • the present technology has been made in view of such a situation, and makes it possible to improve both the oblique incident light characteristic of the imaging pixel and the AF characteristic of the phase difference detection pixel.
  • a solid-state imaging device is a solid-state imaging device having a plurality of imaging pixels arranged two-dimensionally in a matrix and phase difference detection pixels arranged scattered in the imaging pixels. , A first microlens formed for each imaging pixel, a planarization film having a refractive index lower than that of the first microlens formed on the first microlens, and a phase difference detection pixel A second microlens formed only on the planarizing film.
  • the first microlens can be formed also on the phase difference detection pixel.
  • the refractive index of the planarizing film can be 1.5 or less, and the refractive index of the first and second microlenses can be 1.4 or more.
  • the second microlens may have the same composition as the planarizing film.
  • the planarization film may be made by adding fluorine or hollow silica to an acrylic resin or a siloxane resin.
  • the first and second microlenses can be made of an organic material such as a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, or a siloxane resin.
  • the first and second microlenses are made of an organic / inorganic hybrid material in which TiO fine particles are dispersed in a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, a siloxane resin, or a polyimide resin.
  • a styrene resin an acrylic resin, a styrene-acrylic copolymer resin, a siloxane resin, or a polyimide resin.
  • the first and second microlenses can be made of an SiN-based or SiON-based inorganic material.
  • a light shielding wall can be formed at a boundary portion between the phase difference pixel and the imaging pixel in the planarization film.
  • the gap on the light receiving surface side can be sealed with seal glass and seal resin.
  • a planarizing film having a refractive index lower than that of the first and second microlenses is further formed on the second microlens, and the gap on the planarizing film is sealed with the sealing glass and the sealing resin. It can be stopped.
  • the gap on the second microlens is sealed with the sealing glass and the sealing resin, and the refractive index of the second microlens is sufficiently higher than the refractive index of the sealing resin. Can do.
  • the second microlens may be formed by sealing the sealing resin having a higher refractive index than the planarizing film in a recess formed on the planarizing film.
  • the sealing resin can be made of acrylic resin, silicone resin, or epoxy resin.
  • a method of manufacturing a solid-state imaging device includes a plurality of imaging pixels that are two-dimensionally arranged in a matrix, and phase difference detection pixels that are scattered and arranged in the imaging pixels.
  • a first microlens is formed for each of the imaging pixels, and a planarizing film having a refractive index lower than that of the first microlens is formed on the first microlens. Forming a second microlens only on the planarizing film of the phase difference detection pixel.
  • An electronic apparatus is a solid-state imaging device having a plurality of imaging pixels arranged two-dimensionally in a matrix and phase difference detection pixels arranged scattered in the imaging pixels, A first microlens formed for each imaging pixel; a planarization film having a refractive index lower than that of the first microlens formed on the first microlens; and the phase difference detection pixel.
  • a solid-state imaging device including a second microlens formed only on a planarizing film, a signal processing circuit that processes an output signal output from the solid-state imaging device, and incident light is incident on the solid-state imaging device And a lens.
  • the signal processing circuit can correct shading that occurs in the imaging pixels arranged in the vicinity of the phase difference pixels.
  • the signal processing circuit can correct the shading using a shading function, which is obtained in advance and represents a degree of shading corresponding to the arrangement of the imaging pixels to be subjected to shading correction.
  • the shading function can be obtained according to a lens parameter of the lens unit.
  • the signal processing circuit can correct the shading by using the output of the imaging pixel of the same color closest to the imaging pixel to be subjected to shading correction.
  • the first microlens Is formed for each imaging pixel, a planarizing film having a lower refractive index than the first microlens is formed on the first microlens, and a second microlens is formed only on the planarizing film of the phase difference detection pixel. Is done.
  • both the oblique incident light characteristic of the imaging pixel and the AF characteristic of the phase difference detection pixel can be improved.
  • FIG. 2 It is a block diagram which shows the schematic structural example of the solid-state imaging device to which this technique is applied. It is sectional drawing which shows the structural example of the solid-state imaging device of 1st Embodiment of this technique. It is a figure which shows the example of the shape of a light shielding film.
  • 3 is a flowchart illustrating a manufacturing process of the solid-state imaging device in FIG. 2. It is a figure explaining the manufacturing process of a solid-state imaging device. It is a figure explaining the manufacturing process of a solid-state imaging device. It is a figure explaining the manufacturing process of a solid-state imaging device. It is a figure explaining the manufacturing process of a solid-state imaging device. It is sectional drawing which shows the modification of a solid-state imaging device. It is sectional drawing which shows the modification of a solid-state imaging device.
  • FIG. 11 It is sectional drawing which shows the modification of a solid-state imaging device. It is sectional drawing which shows the structural example of the solid-state imaging device of 2nd Embodiment of this technique.
  • 12 is a flowchart illustrating a manufacturing process for the solid-state imaging device in FIG. 11. It is sectional drawing which shows the structural example of the solid-state imaging device of 3rd Embodiment of this technique. It is a flowchart explaining the manufacturing process of the solid-state imaging device of FIG. It is sectional drawing which shows the modification of a solid-state imaging device. It is sectional drawing which shows the modification of a solid-state imaging device. It is sectional drawing which shows the modification of a solid-state imaging device. It is sectional drawing which shows the modification of a solid-state imaging device. It is sectional drawing which shows the modification of a solid-state imaging device. It is sectional drawing which shows the modification of a solid-state imaging device.
  • FIG. 1 illustrates a schematic configuration example of an example of a complementary metal oxide semiconductor (CMOS) solid-state imaging device applied to each embodiment of the present technology.
  • CMOS complementary metal oxide semiconductor
  • the solid-state imaging device 1 includes a pixel region (so-called imaging region) in which pixels 2 including a plurality of photoelectric conversion elements are regularly arranged in a two-dimensional manner on a semiconductor substrate 11 (for example, a silicon substrate). 3 and a peripheral circuit portion.
  • the pixel 2 includes a photoelectric conversion element (for example, a photodiode) and a plurality of pixel transistors (so-called MOS transistors).
  • the plurality of pixel transistors can be constituted by three transistors, for example, a transfer transistor, a reset transistor, and an amplifying transistor, and can further be constituted by four transistors by adding a selection transistor. Since the equivalent circuit of each pixel 2 (unit pixel) is the same as a general one, detailed description thereof is omitted here.
  • the pixel 2 can have a shared pixel structure.
  • the pixel sharing structure includes a plurality of photodiodes, a plurality of transfer transistors, one shared floating diffusion, and one other pixel transistor that is shared.
  • the peripheral circuit section includes a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, and a control circuit 8.
  • the control circuit 8 receives data for instructing an input clock, an operation mode, and the like, and outputs data such as internal information of the solid-state imaging device 1. Specifically, the control circuit 8 is based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock, and the clock signal or the reference signal for the operations of the vertical drive circuit 4, the column signal processing circuit 5, and the horizontal drive circuit 6 Generate a control signal. The control circuit 8 inputs these signals to the vertical drive circuit 4, the column signal processing circuit 5, and the horizontal drive circuit 6.
  • the vertical drive circuit 4 is composed of, for example, a shift register, selects a pixel drive wiring, supplies a pulse for driving the pixel 2 to the selected pixel drive wiring, and drives the pixels 2 in units of rows. Specifically, the vertical drive circuit 4 selectively scans each pixel 2 in the pixel region 3 sequentially in the vertical direction in units of rows, and generates the signal according to the amount of light received by the photoelectric conversion element of each pixel 2 through the vertical signal line 9. A pixel signal based on the signal charge is supplied to the column signal processing circuit 5.
  • the column signal processing circuit 5 is disposed, for example, for each column of the pixels 2 and performs signal processing such as noise removal on the signal output from the pixels 2 for one row for each pixel column. Specifically, the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) for removing fixed pattern noise specific to the pixel 2, signal amplification, A / D (Analog / Digital) conversion, and the like. .
  • a horizontal selection switch (not shown) is provided connected to the horizontal signal line 10.
  • the horizontal drive circuit 6 is constituted by, for example, a shift register, and sequentially outputs horizontal scanning pulses to select each of the column signal processing circuits 5 in order, and the pixel signal is output from each of the column signal processing circuits 5 to the horizontal signal line. 10 to output.
  • the output circuit 7 performs signal processing on the signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 10 and outputs the signals.
  • the output circuit 7 may perform only buffering, or may perform black level adjustment, column variation correction, various digital signal processing, and the like.
  • the input / output terminal 12 is provided for exchanging signals with the outside.
  • FIG. 2 shows a configuration example of the first embodiment of the solid-state imaging device of the present technology.
  • the solid-state imaging device according to each embodiment of the present technology is configured as a backside illumination type CMOS solid-state imaging device.
  • a pixel region (so-called imaging region) in which a plurality of pixels are arranged on a semiconductor substrate 21 made of silicon, and a peripheral circuit unit (Not shown).
  • the unit pixel 22 (hereinafter simply referred to as the pixel 22) includes a photodiode PD which is a photoelectric conversion unit and a plurality of pixel transistors Tr.
  • the photodiode PD is formed so as to cover the entire area of the semiconductor substrate 21 in the thickness direction, and the first conductivity type (n-type in this example) semiconductor region 25 and the second conductivity type (p in this example) facing both the front and back surfaces of the substrate.
  • the p-type semiconductor regions facing both the front and back surfaces of the substrate also serve as hole charge accumulation regions for dark current suppression.
  • the pixel 22 including the photodiode PD and the pixel transistor Tr includes an imaging pixel 23 that generates a signal for generating an image based on the received subject light, and AF (Auto-Focus) (phase difference AF) of a phase difference detection method.
  • the phase difference detection pixel 24 generates a signal for performing the above.
  • the phase difference detection pixels 24 are scattered and arranged in a plurality of imaging pixels 23 that are two-dimensionally arranged in a matrix. Specifically, the phase difference detection pixels 24 are regularly arranged in a specific pattern by replacing a part of predetermined imaging pixels 23 among the plurality of imaging pixels 23 arranged in a two-dimensional matrix. Has been.
  • Each pixel 22 (imaging pixel 23 and phase difference detection pixel 24) is separated by an element isolation region 27.
  • the element isolation region 27 is formed of a p-type semiconductor region and is grounded, for example.
  • an n-type source region and a drain region (not shown) are formed in a p-type semiconductor well region 28 formed on the substrate surface 21a side of the semiconductor substrate 21, and a gate insulating film is formed on the substrate surface between the two regions.
  • a gate electrode 29 is formed through the structure.
  • a plurality of pixel transistors are represented by a single pixel transistor Tr and are schematically represented by a gate electrode 29.
  • a so-called multilayer wiring layer 33 is formed, in which a plurality of layers of wirings 32 are arranged via an interlayer insulating film 31. Since no light is incident on the multilayer wiring layer 33 side, the layout of the wiring 32 is freely set.
  • An insulating layer is formed on the substrate back surface 21b which becomes the light receiving surface 34 of the photodiode PD.
  • This insulating layer is formed of an antireflection film 36 in this example.
  • the antireflection film 36 is formed of a plurality of layers having different refractive indexes.
  • the antireflection film 36 is formed of two layers of a hafnium oxide (HfO 2) film 38 and a silicon oxide film 37.
  • a light shielding film 39 is formed at the pixel boundary on the antireflection film 36.
  • the light-shielding film 39 may be any material that shields light, and is a metal, for example, aluminum (Al), tungsten (W), or copper (as a material that has a strong light-shielding property and can be precisely processed by fine processing, for example, etching. It is preferable to form a Cu) film.
  • the light shielding film 39 has a shape as shown in FIG. As shown in FIG. 3, the light shielding film 39 has a grid-like region that suppresses flare caused by light mixture of pixels or light having a large incident angle at pixel boundaries. Further, the light shielding film 39 covers the outside of the pixel area, and the OPB (Optical Black) clamp area 39b for detecting a black level that is a reference for dark output, and light from different exit pupils in the phase difference detection pixel 24 And a separation part 39p for separating the.
  • OPB Optical Black
  • the left half of the photodiode PD is shielded from light by the separation unit 39p.
  • These regions in the light shielding film 39 do not need to be formed at the same time, and may be formed separately.
  • the width of the grid-like region may be reduced.
  • a planarizing film 41 is formed on the antireflection film 36 including the light shielding film 39, and a color filter 42 is formed on the planarizing film 41 for each pixel 22.
  • the planarization film 41 is formed, for example, by spin-coating an organic material such as resin.
  • the flattening film 41 is formed in order to avoid unevenness generated in the spin coating process when forming the color filter 42. However, the flattening film 41 is not formed if the unevenness is within an allowable range. Also good.
  • the planarizing film 41 may be formed by depositing an inorganic film such as SiO2 and planarizing by CMP (Chemical-Mechanical-Polishing).
  • the color filter 42 is formed by, for example, spin coating a pigment or a dye.
  • a Bayer color filter is used as the color filter 42, but other color filters may be used.
  • a micro lens 43 is formed for each pixel 22.
  • the microlens 43 is made of a material having a refractive index of 1.4 or more, and is made of an organic material such as a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, or a siloxane resin.
  • the refractive index of the styrene resin is about 1.6
  • the refractive index of the acrylic resin is about 1.5
  • the refractive index of the styrene-acrylic copolymer resin is about 1.5 to 1.6
  • the refractive index of the siloxane resin is about 1.45.
  • the microlens 43 may be formed of the above-described styrene resin, acrylic resin, styrene-acrylic copolymer resin, siloxane resin, or an organic / inorganic hybrid material in which TiO fine particles are dispersed in a polyimide resin. Good.
  • the microlens 43 may be formed of an SiN-based or SiON-based inorganic material.
  • the refractive index of SiN is about 1.9 to 2.0, and the refractive index of SiON is about 1.45 to 1.9.
  • a low n planarization film 44 is formed on the microlens 43.
  • “low n” means a low refractive index.
  • the low n planarization film 44 is formed of a material lower than the refractive index of the microlens 43 (material having a refractive index of 1.5 or less), and is formed by adding fluorine or hollow silica to, for example, an acrylic resin or a siloxane resin. Is done. In this case, the refractive index of the low n planarization film 44 is about 1.2 to 1.45.
  • the low n planarization film 44 may be formed by depositing an inorganic film such as SiO 2 and planarizing by CMP. In this case, the refractive index of the low n planarization film 44 is about 1.45.
  • the microlens 45 on the layer is formed of a material having a refractive index of 1.4 or more, like the microlens 43, and is made of an organic material such as a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, or a siloxane resin. It is formed.
  • the on-layer microlens 45 may be formed of these organic materials, an organic / inorganic hybrid material in which TiO fine particles are dispersed in a polyimide resin, or an SiN-based or SiON-based inorganic material. Also good.
  • FIG. 4 is a flowchart for explaining the manufacturing process of the solid-state imaging device 20, and FIGS. 5 to 7 show cross-sectional views of the solid-state imaging device 20 in the manufacturing process.
  • step S11 the photodiode PD corresponding to each pixel 22 separated by the element isolation region 27 by the p-type semiconductor region is formed in the region where the pixel region of the semiconductor substrate 21 is to be formed.
  • step S12 a plurality of pixel transistors Tr are formed in a p-type semiconductor well region 28 formed in a region corresponding to each pixel 22 on the substrate surface 21a.
  • step S13 a multilayer wiring layer 33 in which a plurality of wirings 32 are arranged via an interlayer insulating film 31 is formed on the substrate surface 21a.
  • step S14 as shown in FIG. 5A, an antireflection film 36 is formed on the substrate back surface 21b serving as a light receiving surface, and a light shielding film material layer 39a is further formed on the antireflection film 36.
  • step S15 a resist mask is selectively formed on the light shielding film material layer 39a by lithography.
  • This resist mask is formed in a shape as shown in FIG.
  • the light shielding film material layer 39a is selectively removed by etching through the resist mask to form the light shielding film 39.
  • Etching can be wet etching or dry etching. When dry etching is used, the fine line width of the light shielding film 39 can be obtained with high accuracy.
  • step S16 as shown in FIG. 6A, a planarizing film 41 is formed on the antireflection film 36 including the light shielding film 39.
  • step S 17 for example, a Bayer array color filter 42 is formed on the planarizing film 41 for each pixel 22.
  • step S18 the micro lens 43 is formed on the color filter 42 for each pixel 22.
  • a photoresist for example, a photosensitive material mainly composed of a novolak resin is patterned by lithography. The patterned photoresist is heat-treated at a temperature higher than the thermal softening point to form a lens shape. Then, using the photoresist formed in the lens shape as a mask, the microlens 43 is formed for all the pixels 22 by pattern-transferring the lens shape to the underlying lens material using dry etching.
  • step S19 as shown in FIG. 7A, a low n planarization film 44 is formed on the microlens 43.
  • step S20 the upper microlens 45 is formed only on the low n planarization film 44 of the phase difference detection pixel 24, as shown in FIG. 7B.
  • the on-layer microlens 45 is formed in the same manner as the method in which the microlens 43 is formed in step S17.
  • microlens 43 and the layered microlens 45 are not limited to the above-described method.
  • a lens material made of a photosensitive resin is formed, and prebake, exposure, development, and bleaching exposure processes are performed.
  • a method of performing a heat treatment at a temperature higher than the thermal softening point of the lens material after sequentially performing may be used.
  • the layer thickness of the entire solid-state imaging device 20 and the curvature of the microlens are adjusted so that the condensing point matches the light shielding film 39. Is called.
  • the layer thickness of the entire solid-state imaging device 20 is adjusted by, for example, the film thickness of the low n planarization film 44, the film thickness of the lens material of the microlens 43 and the on-layer microlens 45, and the etching amount of the lens material.
  • the curvature of the microlens is adjusted by lithography resist film thickness, reflow, dry etching conditions (gas type, processing time, power, etc.) at the time of lens formation. Further, the microlens 43 and the layered microlens 45 are formed in a lens shape so that the curvature is constant from any direction so that the condensing points are aligned. Specifically, by finding the lithography reticle shape (square, octagon, circle) suitable for the pixel size, its dimensions, reflow temperature, and dry etching conditions, the lens shape that makes the curvature constant from any direction A microlens 43 and a layered microlens 45 are formed.
  • the light reflected by the difference in refractive index with air at the wall portion formed by the step may affect adjacent pixels.
  • the imaging pixel is reduced in height and the phase difference detection pixel is increased in height. It is difficult to eliminate the trade-off that is required.
  • the microlens 43 or the layer An antireflection film may be formed on the surface of the upper microlens 45.
  • an oxide film is formed conformally on the surface of the upper microlens 45, or SiON is formed conformally on the surface of the microlens 43.
  • the thickness of the antireflection film is determined in consideration of interference of incident light.
  • FIG. 8 shows a modification of the first embodiment of the solid-state imaging device of the present technology.
  • phase difference detection pixel it is required that the condensing point matches the light shielding film, but in the case of condensing through a plurality of lenses as in the phase difference detection pixel 24 of FIG. There is a risk of affecting the light collection characteristics.
  • phase difference detection pixel 61 of FIG. 8 since the light is condensed only by the upper microlens 45, the light condensing characteristic is not affected by variations in lens formation, and the accuracy of the phase difference AF is not affected. Can be improved.
  • the phase difference detection pixel 61 has a light condensing power lower than that of the phase difference detection pixel 24, but this can be improved by increasing the height of the upper microlens 45 or increasing the curvature of the upper microlens 45. Can do.
  • the phase difference detection pixel 24 has a higher condensing power than the phase difference detection pixel 61, so that the layer thickness of the entire solid-state imaging device can be kept low.
  • FIG. 9 shows another modification of the first embodiment of the solid-state imaging device of the present technology.
  • the solid-state imaging device 70 of FIG. 9 has a configuration in which an upper microlens 72 is formed on the low n planarization film 44 of the phase difference detection pixel 71.
  • the upper microlens 72 has the same composition as the low n planarization film 44.
  • the upper microlens 72 forms a lens shape by lithography and reflow on the low n planarization film 44, and uses dry etching to form the low n planarization film 44 serving as a base. It is formed by pattern transfer of the lens shape.
  • Such a configuration can reduce the step of applying the lens material of the on-layer microlens.
  • FIG. 10 shows still another modification of the first embodiment of the solid-state imaging device of the present technology.
  • the solid-state imaging device 80 in FIG. 10 is formed on the low n planarization film 44 of the phase difference detection pixel 81 in the same manner as the solid-state imaging device 70 in FIG.
  • the lens 72 is formed.
  • FIG. 11 illustrates a configuration example of the second embodiment of the solid-state imaging device of the present technology.
  • 11 has a configuration in which a light shielding wall 102 is formed at a boundary portion between the imaging pixel 23 and the phase difference detection pixel 101 in the low n planarization film 44.
  • the light shielding wall 102 is formed, for example, by embedding a light shielding material in a groove formed so as to surround a portion of the phase difference detection pixel 101 in the low n planarization film 44.
  • processing in steps S111 to S119 and S121 in the flowchart in FIG. 12 is the same as the processing in steps S11 to S20 in the flowchart in FIG.
  • the light shielding wall 102 is formed around the phase difference detection pixel 101 in the low n planarization film 44 in step S120.
  • a groove pattern is formed by lithography so as to surround the phase difference detection pixel 101 in the low n planarization film 44, and transferred to the base using dry etching.
  • the low n planarization film 44 may be formed of a photosensitive material, and the groove pattern may be formed by pattern exposure. In this case, the dry etching process can be reduced.
  • a light shielding material containing carbon black is embedded in the groove pattern by spin coating and flattened by etch back to form the light shielding wall 102.
  • the trade-off that the reduction in the height of the imaging pixel and the increase in the height of the phase difference detection pixel are required is eliminated. It is possible to suppress the color mixture from the imaging pixels around the phase difference detection pixel while realizing the configuration.
  • the solid-state imaging device 100 of FIG. 11 may be configured such that the microlens 43 is not formed in the phase difference detection pixel 101, or is configured to include the upper microlens 72 instead of the upper microlens 45. You may make it.
  • CSP chip size package
  • a CSP structure having no cavity by filling the cavity with resin (hereinafter referred to as a cavityless CSP structure) has been proposed.
  • the present technology is applied to a solid-state imaging device having a cavityless CSP structure.
  • the configuration of the solid-state imaging device according to the first embodiment having a cavityless CSP structure will be described.
  • the solid-state imaging device according to the second embodiment can of course have a cavityless CSP structure. .
  • FIG. 13 illustrates a configuration example of the third embodiment of the solid-state imaging device of the present technology.
  • the low n planarization film 201 is formed on the low n planarization film 44 including the upper microlens 45.
  • the low n planarization film 201 is formed of a material having a refractive index lower than that of the microlens 43 and the upper microlens 45.
  • an acrylic resin or a siloxane resin is made of fluorine or hollow. It is formed by adding silica.
  • the refractive index of the low n planarization film 201 is about 1.2 to 1.45.
  • the low n planarization film 201 may be formed by depositing an inorganic film such as SiO 2 and planarizing by CMP. In this case, the refractive index of the low n planarization film 201 is about 1.45.
  • the low n planarization film 201 and the low n planarization film 44 may be formed of the same material or different materials.
  • a seal resin 202 is formed on the low n planarization film 201.
  • the seal resin 202 is formed of an acrylic resin, a silicone resin, an epoxy resin, or the like.
  • a seal glass 203 is formed on the seal resin 202.
  • the solid-state imaging device 200 has a cavityless CSP structure in which the cavity on the light receiving surface side is sealed with the sealing resin 202 and the sealing glass 203.
  • steps S211 to S220 in the flowchart of FIG. 14 is the same as the processing of steps S11 to S20 of the flowchart of FIG.
  • the low n planarization film 201 is formed on the low n planarization film 44 including the upper microlens 45 in step S221.
  • step S222 the cavity is sealed with the sealing resin 202. Specifically, the cavity is sealed by forming the sealing resin 202 on the low n planarization film 201 and further forming the sealing glass 203 thereon.
  • the trade-off that the reduction in the height of the imaging pixel and the increase in the height of the phase difference detection pixel are required is eliminated. It is possible to obtain the effect of the cavityless CSP structure while realizing the configuration.
  • FIG. 15 illustrates a modification of the third embodiment of the solid-state imaging device of the present technology.
  • solid-state imaging device 210 in FIG. 15 components having the same functions as those provided in the solid-state imaging device 200 in FIG. 13 are denoted by the same names and the same reference numerals, and description thereof is omitted as appropriate. It shall be.
  • the solid-state imaging device 210 shown in FIG. 15 is configured such that the microlens 43 is not formed on the phase difference detection pixel 61.
  • the focusing characteristics are not affected by variations in lens formation, and the accuracy of the phase difference AF is improved. Can be improved.
  • FIG. 16 illustrates another modification of the third embodiment of the solid-state imaging device of the present technology.
  • the low n planarization film 201 is not formed on the low n planarization film 44 including the upper microlens 45, and the seal resin 202 is formed.
  • a seal glass 203 is formed on the seal resin 202. In this case, the process of step S221 is skipped in the flowchart of FIG.
  • the on-layer microlens 45 is formed of a material having a refractive index higher than that of the sealing resin 202 (generally about 1.5), for example, an SiN-based or SiON-based inorganic material.
  • the refractive index of SiN is about 1.9 to 2.0
  • the refractive index of SiON is about 1.45 to 1.9.
  • the process of forming the low n planarization film 201 can be reduced.
  • FIG. 17 shows still another modification of the third embodiment of the solid-state imaging device of the present technology.
  • the 17 is configured such that the micro lens 43 is not formed in the phase difference detection pixel 61.
  • the accuracy of the phase difference AF can be improved, and the process of forming the low n planarization film 201 can be reduced.
  • FIG. 18 illustrates still another modification of the third embodiment of the solid-state imaging device of the present technology.
  • the solid-state imaging device 240 shown in FIG. 18 has a configuration in which a phase-difference detection pixel 241 is formed with a downwardly convex upper-layer microlens 242.
  • the upper microlens 242 is formed by sealing a sealing resin having a higher refractive index than that of the low n planarization film 44 in a recess formed in the low n planarization film 44 of the phase difference detection pixel 241.
  • step S270 a recess is formed on the low n planarization film 44 in step S270.
  • a convex lens is formed with a resist on the low n planarization film 44 of the phase difference detection pixel 241, and the etching rate is higher than that of the convex lens.
  • a recess is formed on the low n planarization film 44 by planarizing with a slow material and proceeding with etching.
  • the method of forming the recess is not limited to the above-described method, and for example, a pinhole may be formed with a resist, and the recess may be formed by isotropic wet etching, or by anisotropic dry etching, A rectangular opening may be formed on the low n planarization film 44, and a lens-shaped recess may be formed by reflow.
  • step S271 the cavity is sealed with the sealing resin 202. Specifically, by forming the sealing resin 202 on the low n planarization film 201 and further forming the sealing glass 203 thereon, the downwardly convex layered microlens 242 is formed and the cavity is formed. Sealed.
  • the process of applying the lens material of the on-layer microlens can be reduced.
  • FIG. 20 shows still another modification of the third embodiment of the solid-state imaging device of the present technology.
  • components having the same functions as those provided in the solid-state imaging device 240 of FIG. 18 are denoted by the same names and the same reference numerals, and description thereof will be omitted as appropriate. It shall be.
  • the 20 is configured such that the microlens 43 is not formed on the phase difference detection pixel 251.
  • the light collection characteristics are not affected by variations in lens formation, and the accuracy of the phase difference AF is improved. Can be improved.
  • CMOS solid-state imaging device In the above, the configuration in which the present technology is applied to a back-illuminated CMOS solid-state imaging device has been described. However, the technology is applied to a solid-state imaging device such as a front-illuminated CMOS solid-state imaging device or a CCD (Charge-Coupled Device) solid-state imaging device. You may make it do.
  • a solid-state imaging device such as a front-illuminated CMOS solid-state imaging device or a CCD (Charge-Coupled Device) solid-state imaging device. You may make it do.
  • CCD Charge-Coupled Device
  • the imaging apparatus refers to a camera system such as a digital still camera or a digital video camera, or an electronic apparatus having an imaging function such as a mobile phone.
  • a module-like form mounted on an electronic device that is, a camera module is used as an imaging device.
  • a solid-state imaging device 301 As the solid-state imaging device 301, the solid-state imaging device according to the first to third embodiments of the present technology described above is provided.
  • the optical lens 302 forms image light (incident light) from the subject on the imaging surface of the solid-state imaging device 301. As a result, signal charges are accumulated in the solid-state imaging device 301 for a certain period.
  • the shutter device 303 controls the light irradiation period and the light shielding period for the solid-state imaging device 301.
  • the drive circuit 304 supplies a drive signal for controlling the signal transfer operation of the solid-state imaging device 301 and the shutter operation of the shutter device 303.
  • the solid-state imaging device 301 performs signal transfer according to a drive signal (timing signal) supplied from the drive circuit 304.
  • the signal processing circuit 305 performs various signal processing on the signal output from the solid-state imaging device 301.
  • the video signal subjected to the signal processing is stored in a storage medium such as a memory or output to a monitor.
  • the solid-state imaging device 20 of the first embodiment as shown in FIG. A part of the light L is taken into the phase difference detection pixel 24 as the light L ′, so that shading occurs in the imaging pixel 23.
  • the signal processing circuit 305 of the electronic device 300 performs processing for correcting shading generated in the imaging pixel 23 adjacent to the phase difference detection pixel 24 on the signal output from the solid-state imaging device 301.
  • the signal output from the solid-state imaging device shows different image height dependence at imaging pixels around the phase difference detection pixel. This also depends on the relative position of the imaging pixel with respect to the phase difference detection pixel.
  • a shading function G (x, y, i) representing the degree of shading corresponding to the arrangement of the imaging pixels to be subjected to shading correction is obtained in advance from the signal (pixel value).
  • x and y are coordinates indicating the two-dimensional arrangement of the imaging pixels in the pixel region
  • i indicates the relative position of the imaging pixel with respect to the phase difference detection pixel.
  • the shading function G (x, y, i) is obtained for each lens parameter (lens type, zoom value, F value, etc.) of the optical lens 302 and is made into a database.
  • lens parameter lens parameter
  • the shading function G (x, y, i) is obtained for each lens parameter (lens type, zoom value, F value, etc.) of the optical lens 302 and is made into a database.
  • the signal processing circuit 305 reads the corresponding shading function G (x, y, i) based on the lens parameters of the optical lens 302, and performs the shading function G on the signal output from the solid-state imaging device 301 by actual imaging. Shading is corrected by rebating with (x, y, i).
  • the shading function G (x, y, i) may be obtained as a model function corresponding to the lens parameter instead of being obtained for each lens parameter.
  • the solid-state imaging device of the present technology it is possible to reduce shading that occurs in the imaging pixels adjacent to the upper microlens.
  • the signal processing circuit 305 corrects shading using the output of the imaging pixel of the same color closest to the imaging pixel to be subjected to shading correction without using the shading function G (x, y, i). It may be.
  • a solid-state imaging device having a plurality of imaging pixels arranged two-dimensionally in a matrix and phase difference detection pixels arranged scattered in the imaging pixels, A first microlens formed for each imaging pixel; A planarizing film formed on the first microlens and having a refractive index lower than that of the first microlens; A solid-state imaging device comprising: a second microlens formed only on the planarizing film of the phase difference detection pixel.
  • the first and second microlenses are made of an organic material such as a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, or a siloxane resin.
  • Imaging device Imaging device.
  • the first and second microlenses are made of an organic / inorganic hybrid material in which TiO fine particles are dispersed in a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, a siloxane resin, or a polyimide resin.
  • the solid-state imaging device according to any one of 1) to (5).
  • the solid-state imaging device according to any one of (1) to (5), wherein the first and second microlenses are made of an SiN-based or SiON-based inorganic material.
  • the solid-state imaging device according to any one of (1) to (8), wherein a light-shielding wall is formed at a boundary portion between the phase difference pixel and the imaging pixel in the planarizing film.
  • the solid-state imaging device according to any one of (1) to (9), wherein a gap on the light-receiving surface side is sealed with a seal glass and a seal resin.
  • a planarizing film having a lower refractive index than the first and second microlenses is formed on the second microlens,
  • the gap on the second microlens is sealed by the seal glass and the seal resin;
  • the second microlens is formed by sealing the sealing resin having a refractive index higher than that of the planarization film in a recess formed on the planarization film. apparatus.
  • the solid-state imaging device according to any one of (10) to (13), wherein the seal resin is made of an acrylic resin, a silicone resin, or an epoxy resin.
  • a solid-state imaging device having a plurality of imaging pixels arranged two-dimensionally in a matrix and phase difference detection pixels arranged scattered in the imaging pixels, A first microlens formed for each imaging pixel; A planarizing film formed on the first microlens and having a refractive index lower than that of the first microlens; A solid-state imaging device comprising: a second microlens formed only on the planarization film of the phase difference detection pixel; A signal processing circuit for processing an output signal output from the solid-state imaging device; An electronic device comprising: a lens that makes incident light incident on the solid-state imaging device. (17) The electronic device according to (16), wherein the signal processing circuit corrects shading generated in the imaging pixel disposed in the vicinity of the phase difference pixel.
  • solid-state imaging device 23 imaging pixels, 24 phase difference detection pixels, 43 microlenses, 44 low n flattened film, 45 upper microlenses, 60 solid-state imaging devices, 61 phase difference detection pixels, 70 solid-state imaging devices, 71st position Phase detection pixel, 72 layer microlens, 80 solid-state imaging device, 81 phase difference detection pixel, 100 solid-state imaging device, 101 phase difference detection pixel, 102 shading wall, 200 solid-state imaging device, 201 low n flattening film, 202 seal Resin, 203 seal glass, 210 solid-state imaging device, 220 solid-state imaging device, 230 solid-state imaging device, 240 solid-state imaging device, 241 phase difference detection pixel, 242 layer upper microlens, 250 solid-state imaging device, 251 phase difference detection pixel 300 electronics, 301 solid-state imaging device, 305 a signal processing circuit

Abstract

The present technique pertains to a solid-state image-pickup device configured so that oblique incidence light properties of image pickup pixels and AF properties of phase difference detection pixels can be made excellent, to a method for producing the same, and to electronic equipment. A solid-state image-pickup device includes: a plurality of image pickup pixels arranged two-dimensionally in matrix; and phase difference detection pixels that are scattered among the image pickup pixels. The solid-state image-pickup device further includes: first microlenses that are formed so as to correspond to the image pickup pixels, respectively; a flattening film that is formed on the first microlenses and has a refractive index lower than that of the first microlenses; and second microlenses that are formed on the flattening film, only at positions above the phase difference detection pixels. The present technique can be applied to, for example, a CMOS solid-state image-pickup device.

Description

固体撮像装置およびその製造方法、並びに電子機器Solid-state imaging device, manufacturing method thereof, and electronic apparatus
 本技術は、固体撮像装置およびその製造方法、並びに電子機器に関し、特に、撮像画素の斜入射光特性と位相差検出画素のAF特性のいずれも良好にすることができるようにする固体撮像装置およびその製造方法、並びに電子機器に関する。 The present technology relates to a solid-state imaging device, a manufacturing method thereof, and an electronic device, and in particular, a solid-state imaging device capable of improving both oblique incident light characteristics of imaging pixels and AF characteristics of phase difference detection pixels and The present invention relates to a manufacturing method and an electronic device.
 裏面照射型の固体撮像装置は、受光面の反対側に配線層が形成されるので、表面照射型の固体撮像装置より集光構造を低背化することができ、良好な斜入射光特性を実現できることで知られている。 Since the back-illuminated solid-state imaging device has a wiring layer on the opposite side of the light-receiving surface, the condensing structure can be reduced in height compared to the front-illuminated solid-state imaging device, and excellent oblique incident light characteristics can be obtained. It is known that it can be realized.
 また、通常の撮像画素の中に、光電変換部の一部が遮光された位相差検出画素を設けることで位相差検出を行う固体撮像装置が知られている。位相差検出画素においては、遮光膜に集光ポイントを合わせるために、マイクロレンズと遮光膜との距離を大きくする、すなわち集光構造を高背化する必要がある。 Also, a solid-state imaging device that performs phase difference detection by providing a phase difference detection pixel in which a part of the photoelectric conversion unit is shielded from light in a normal imaging pixel is known. In the phase difference detection pixel, it is necessary to increase the distance between the microlens and the light-shielding film, that is, to increase the height of the light-collecting structure in order to align the light collection point with the light-shielding film.
 ここで、裏面照射型の固体撮像装置に位相差検出画素を設ける場合、撮像画素の斜入射光特性を得るために低背化が求められる一方、位相差検出画素のAF特性を得るためには高背化が求められるといったトレードオフが生じる。 Here, when a phase difference detection pixel is provided in a back-illuminated solid-state imaging device, a low profile is required to obtain the oblique incident light characteristic of the imaging pixel, while to obtain the AF characteristic of the phase difference detection pixel. There is a trade-off that heightening is required.
 このトレードオフを解消するために、撮像画素と位相差検出画素とでマイクロレンズの高さを揃えたまま、位相差検出画素の受光素子を低く形成するようにした撮像素子が提案されている(特許文献1参照)。また、位相差検出画素のマイクロレンズに段差を設けることで、位相差検出画素の結像距離を確保することが開示されている(特許文献2参照)。 In order to eliminate this trade-off, there has been proposed an image pickup device in which the light receiving element of the phase difference detection pixel is formed low while the height of the microlens is aligned between the image pickup pixel and the phase difference detection pixel ( Patent Document 1). In addition, it is disclosed that an imaging distance of the phase difference detection pixel is secured by providing a step in the micro lens of the phase difference detection pixel (see Patent Document 2).
特開2008-71920号公報JP 2008-71920 A 特開2007-281296号公報JP 2007-281296 A
 しかしながら、特許文献1の構造では、撮像画素と位相差検出画素とでSi基板の膜厚が異なるため、撮像画素と位相差検出画素とで、ポテンシャル設計やイオンインプラント工程を分ける必要があった。また、受光素子を掘り込む際のエッチングのダメージにより界面準位が乱れ、暗時の特性に影響を及ぼす恐れがあった。 However, in the structure of Patent Document 1, since the film thickness of the Si substrate is different between the imaging pixel and the phase difference detection pixel, it is necessary to separate the potential design and the ion implantation process between the imaging pixel and the phase difference detection pixel. In addition, the interface state is disturbed due to etching damage when the light receiving element is dug, which may affect the characteristics in the dark.
 また、特許文献2には、位相差検出画素のマイクロレンズに段差を設けるための具体的な手法は開示されておらず、また、段差によって形成される壁部での反射によりケラレが発生するため、撮像画素の斜入射光特性の劣化は避けられなかった。 Further, Patent Document 2 does not disclose a specific method for providing a step in the microlens of the phase difference detection pixel, and vignetting occurs due to reflection at a wall portion formed by the step. Degradation of the oblique incident light characteristics of the imaging pixels is inevitable.
 本技術は、このような状況に鑑みてなされたものであり、撮像画素の斜入射光特性と位相差検出画素のAF特性のいずれも良好にすることができるようにするものである。 The present technology has been made in view of such a situation, and makes it possible to improve both the oblique incident light characteristic of the imaging pixel and the AF characteristic of the phase difference detection pixel.
 本技術の一側面の固体撮像装置は、行列状に2次元配置された複数の撮像画素と、前記撮像画素の中に散在して配置された位相差検出画素とを有する固体撮像装置であって、前記撮像画素毎に形成された第1のマイクロレンズと、前記第1のマイクロレンズ上に形成された、前記第1のマイクロレンズより屈折率の低い平坦化膜と、前記位相差検出画素の前記平坦化膜上のみに形成された第2のマイクロレンズとを備える。 A solid-state imaging device according to an aspect of the present technology is a solid-state imaging device having a plurality of imaging pixels arranged two-dimensionally in a matrix and phase difference detection pixels arranged scattered in the imaging pixels. , A first microlens formed for each imaging pixel, a planarization film having a refractive index lower than that of the first microlens formed on the first microlens, and a phase difference detection pixel A second microlens formed only on the planarizing film.
 前記位相差検出画素にも、前記第1のマイクロレンズが形成されるようにすることができる。 The first microlens can be formed also on the phase difference detection pixel.
 前記平坦化膜の屈折率は1.5以下とされ、かつ、前記第1および第2のマイクロレンズの屈折率は1.4以上とされるようにすることができる。 The refractive index of the planarizing film can be 1.5 or less, and the refractive index of the first and second microlenses can be 1.4 or more.
 前記第2のマイクロレンズは、前記平坦化膜と同一の組成であるようにすることができる。 The second microlens may have the same composition as the planarizing film.
 前記平坦化膜は、アクリル系樹脂またはシロキサン系樹脂に、フッ素または中空シリカが添加されてなるようにすることができる。 The planarization film may be made by adding fluorine or hollow silica to an acrylic resin or a siloxane resin.
 前記第1および第2のマイクロレンズは、スチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、またはシロキサン系樹脂の有機材料よりなるようにすることができる。 The first and second microlenses can be made of an organic material such as a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, or a siloxane resin.
 前記第1および第2のマイクロレンズは、スチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、シロキサン系樹脂、またはポリイミド樹脂中にTiO微粒子を分散させた有機・無機ハイブリッド材料からなるようにすることができる。 The first and second microlenses are made of an organic / inorganic hybrid material in which TiO fine particles are dispersed in a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, a siloxane resin, or a polyimide resin. Can be.
 前記第1および第2のマイクロレンズは、SiN系またはSiON系の無機材料からなるようにすることができる。 The first and second microlenses can be made of an SiN-based or SiON-based inorganic material.
 前記平坦化膜における前記位相差画素と前記撮像画素との境界部分に、遮光壁が形成されるようにすることができる。 A light shielding wall can be formed at a boundary portion between the phase difference pixel and the imaging pixel in the planarization film.
 受光面側の空隙が、シールガラスおよびシール樹脂によって封止されているようにすることができる。 The gap on the light receiving surface side can be sealed with seal glass and seal resin.
 前記第2のマイクロレンズ上にさらに、前記第1および第2のマイクロレンズより屈折率の低い平坦化膜が形成され、前記平坦化膜上の前記空隙が、前記シールガラスおよび前記シール樹脂によって封止されているようにすることができる。 A planarizing film having a refractive index lower than that of the first and second microlenses is further formed on the second microlens, and the gap on the planarizing film is sealed with the sealing glass and the sealing resin. It can be stopped.
 前記第2のマイクロレンズ上の前記空隙が、前記シールガラスおよび前記シール樹脂によって封止されており、前記第2のマイクロレンズの屈折率は、前記シール樹脂の屈折率より十分高いようにすることができる。 The gap on the second microlens is sealed with the sealing glass and the sealing resin, and the refractive index of the second microlens is sufficiently higher than the refractive index of the sealing resin. Can do.
 前記第2のマイクロレンズは、前記平坦化膜上に形成された凹部に、前記平坦化膜より高い屈折率の前記シール樹脂が封止されることによって形成されるようにすることができる。 The second microlens may be formed by sealing the sealing resin having a higher refractive index than the planarizing film in a recess formed on the planarizing film.
 前記シール樹脂は、アクリル系樹脂、シリコーン系樹脂、またはエポキシ系樹脂よりなるようにすることができる。 The sealing resin can be made of acrylic resin, silicone resin, or epoxy resin.
 本技術の一側面の固体撮像装置の製造方法は、行列状に2次元配置された複数の撮像画素と、前記撮像画素の中に散在して配置された位相差検出画素とを有する固体撮像装置の製造方法であって、前記撮像画素毎に第1のマイクロレンズを形成し、前記第1のマイクロレンズ上に、前記第1のマイクロレンズより屈折率の低い平坦化膜を形成し、前記位相差検出画素の前記平坦化膜上のみに第2のマイクロレンズを形成するステップを含む。 A method of manufacturing a solid-state imaging device according to one aspect of the present technology includes a plurality of imaging pixels that are two-dimensionally arranged in a matrix, and phase difference detection pixels that are scattered and arranged in the imaging pixels. A first microlens is formed for each of the imaging pixels, and a planarizing film having a refractive index lower than that of the first microlens is formed on the first microlens. Forming a second microlens only on the planarizing film of the phase difference detection pixel.
 本技術の一側面の電子機器は、行列状に2次元配置された複数の撮像画素と、前記撮像画素の中に散在して配置された位相差検出画素とを有する固体撮像装置であって、前記撮像画素毎に形成された第1のマイクロレンズと、前記第1のマイクロレンズ上に形成された、前記第1のマイクロレンズより屈折率の低い平坦化膜と、前記位相差検出画素の前記平坦化膜上のみに形成された第2のマイクロレンズとを備える固体撮像装置と、前記固体撮像装置から出力される出力信号を処理する信号処理回路と、入射光を前記固体撮像装置に入射するレンズとを備える。 An electronic apparatus according to an aspect of the present technology is a solid-state imaging device having a plurality of imaging pixels arranged two-dimensionally in a matrix and phase difference detection pixels arranged scattered in the imaging pixels, A first microlens formed for each imaging pixel; a planarization film having a refractive index lower than that of the first microlens formed on the first microlens; and the phase difference detection pixel. A solid-state imaging device including a second microlens formed only on a planarizing film, a signal processing circuit that processes an output signal output from the solid-state imaging device, and incident light is incident on the solid-state imaging device And a lens.
 前記信号処理回路には、前記位相差画素の近傍に配置されている前記撮像画素において生じるシェーディングを補正させることができる。 The signal processing circuit can correct shading that occurs in the imaging pixels arranged in the vicinity of the phase difference pixels.
 前記信号処理回路には、予め求められた、シェーディング補正の対象となる前記撮像画素の配置に対応したシェーディングの度合を表すシェーディング関数を用いて、前記シェーディングを補正させることができる。 The signal processing circuit can correct the shading using a shading function, which is obtained in advance and represents a degree of shading corresponding to the arrangement of the imaging pixels to be subjected to shading correction.
 前記シェーディング関数は、前記レンズ部のレンズパラメータに応じて求められるようにすることができる。 The shading function can be obtained according to a lens parameter of the lens unit.
 前記信号処理回路には、シェーディング補正の対象となる前記撮像画素に最も近接する同色の前記撮像画素の出力を用いて、前記シェーディングを補正させることができる。 The signal processing circuit can correct the shading by using the output of the imaging pixel of the same color closest to the imaging pixel to be subjected to shading correction.
 本技術の一側面においては、行列状に2次元配置された複数の撮像画素と、撮像画素の中に散在して配置された位相差検出画素とを有する固体撮像装置において、第1のマイクロレンズが撮像画素毎に形成され、第1のマイクロレンズより屈折率の低い平坦化膜が第1のマイクロレンズ上に形成され、第2のマイクロレンズが位相差検出画素の平坦化膜上のみに形成される。 In one aspect of the present technology, in a solid-state imaging device having a plurality of imaging pixels arranged two-dimensionally in a matrix and phase difference detection pixels arranged scattered in the imaging pixels, the first microlens Is formed for each imaging pixel, a planarizing film having a lower refractive index than the first microlens is formed on the first microlens, and a second microlens is formed only on the planarizing film of the phase difference detection pixel. Is done.
 本技術の一側面によれば、撮像画素の斜入射光特性と位相差検出画素のAF特性のいずれも良好にすることが可能となる。 According to one aspect of the present technology, both the oblique incident light characteristic of the imaging pixel and the AF characteristic of the phase difference detection pixel can be improved.
本技術を適用した固体撮像装置の概略構成例を示すブロック図である。It is a block diagram which shows the schematic structural example of the solid-state imaging device to which this technique is applied. 本技術の第1の実施の形態の固体撮像装置の構成例を示す断面図である。It is sectional drawing which shows the structural example of the solid-state imaging device of 1st Embodiment of this technique. 遮光膜の形状の例を示す図である。It is a figure which shows the example of the shape of a light shielding film. 図2の固体撮像装置の製造処理について説明するフローチャートである。3 is a flowchart illustrating a manufacturing process of the solid-state imaging device in FIG. 2. 固体撮像装置の製造工程について説明する図である。It is a figure explaining the manufacturing process of a solid-state imaging device. 固体撮像装置の製造工程について説明する図である。It is a figure explaining the manufacturing process of a solid-state imaging device. 固体撮像装置の製造工程について説明する図である。It is a figure explaining the manufacturing process of a solid-state imaging device. 固体撮像装置の変形例を示す断面図である。It is sectional drawing which shows the modification of a solid-state imaging device. 固体撮像装置の変形例を示す断面図である。It is sectional drawing which shows the modification of a solid-state imaging device. 固体撮像装置の変形例を示す断面図である。It is sectional drawing which shows the modification of a solid-state imaging device. 本技術の第2の実施の形態の固体撮像装置の構成例を示す断面図である。It is sectional drawing which shows the structural example of the solid-state imaging device of 2nd Embodiment of this technique. 図11の固体撮像装置の製造処理について説明するフローチャートである。12 is a flowchart illustrating a manufacturing process for the solid-state imaging device in FIG. 11. 本技術の第3の実施の形態の固体撮像装置の構成例を示す断面図である。It is sectional drawing which shows the structural example of the solid-state imaging device of 3rd Embodiment of this technique. 図13の固体撮像装置の製造処理について説明するフローチャートである。It is a flowchart explaining the manufacturing process of the solid-state imaging device of FIG. 固体撮像装置の変形例を示す断面図である。It is sectional drawing which shows the modification of a solid-state imaging device. 固体撮像装置の変形例を示す断面図である。It is sectional drawing which shows the modification of a solid-state imaging device. 固体撮像装置の変形例を示す断面図である。It is sectional drawing which shows the modification of a solid-state imaging device. 固体撮像装置の変形例を示す断面図である。It is sectional drawing which shows the modification of a solid-state imaging device. 図18の固体撮像装置の製造処理について説明するフローチャートである。It is a flowchart explaining the manufacturing process of the solid-state imaging device of FIG. 固体撮像装置の変形例を示す断面図である。It is sectional drawing which shows the modification of a solid-state imaging device. 本技術の第4の実施の形態の電子機器の構成例を示すブロック図である。It is a block diagram showing an example of composition of electronic equipment of a 4th embodiment of this art. シェーディングについて説明する図である。It is a figure explaining a shading.
 以下、本技術の実施の形態について図を参照して説明する。なお、説明は以下の順序で行う。
 1.固体撮像装置の概略構成例
 2.第1の実施の形態(本技術の基本的な固体撮像装置の例)
 3.第2の実施の形態(画素境界に遮光壁を備える固体撮像装置の例)
 4.第3の実施の形態(キャビティレスCSP構造の固体撮像装置の例)
 5.第4の実施の形態(本技術の固体撮像装置を備える電子機器の例)
Hereinafter, embodiments of the present technology will be described with reference to the drawings. The description will be given in the following order.
1. 1. Schematic configuration example of solid-state imaging device First embodiment (example of basic solid-state imaging device of the present technology)
3. Second embodiment (an example of a solid-state imaging device having a light-shielding wall at a pixel boundary)
4). Third Embodiment (Example of Solid-State Imaging Device with Cavityless CSP Structure)
5. Fourth embodiment (an example of an electronic apparatus including a solid-state imaging device of the present technology)
<1.固体撮像装置の概略構成例>
 図1は、本技術の各実施の形態に適用されるCMOS(Complementary Metal Oxide Semiconductor)固体撮像装置の一例の概略構成例を示している。
<1. Schematic configuration example of solid-state imaging device>
FIG. 1 illustrates a schematic configuration example of an example of a complementary metal oxide semiconductor (CMOS) solid-state imaging device applied to each embodiment of the present technology.
 図1に示されるように、固体撮像装置1は、半導体基板11(例えばシリコン基板)に複数の光電変換素子を含む画素2が規則的に2次元的に配列された画素領域(いわゆる撮像領域)3と、周辺回路部とを有して構成される。 As shown in FIG. 1, the solid-state imaging device 1 includes a pixel region (so-called imaging region) in which pixels 2 including a plurality of photoelectric conversion elements are regularly arranged in a two-dimensional manner on a semiconductor substrate 11 (for example, a silicon substrate). 3 and a peripheral circuit portion.
 画素2は、光電変換素子(例えばフォトダイオード)と、複数の画素トランジスタ(いわゆるMOSトランジスタ)を有してなる。複数の画素トランジスタは、例えば、転送トランジスタ、リセットトランジスタ、および増幅トランジスタの3つのトランジスタで構成することができ、さらに選択トランジスタを追加して4つのトランジスタで構成することもできる。各画素2(単位画素)の等価回路は一般的なものと同様であるので、ここでは詳細な説明は省略する。 The pixel 2 includes a photoelectric conversion element (for example, a photodiode) and a plurality of pixel transistors (so-called MOS transistors). The plurality of pixel transistors can be constituted by three transistors, for example, a transfer transistor, a reset transistor, and an amplifying transistor, and can further be constituted by four transistors by adding a selection transistor. Since the equivalent circuit of each pixel 2 (unit pixel) is the same as a general one, detailed description thereof is omitted here.
 また、画素2は、共有画素構造とすることもできる。画素共有構造は、複数のフォトダイオード、複数の転送トランジスタ、共有される1つのフローティングディフュージョン、および、共有される1つずつの他の画素トランジスタから構成される。 Also, the pixel 2 can have a shared pixel structure. The pixel sharing structure includes a plurality of photodiodes, a plurality of transfer transistors, one shared floating diffusion, and one other pixel transistor that is shared.
 周辺回路部は、垂直駆動回路4、カラム信号処理回路5、水平駆動回路6、出力回路7、および制御回路8から構成される。 The peripheral circuit section includes a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, and a control circuit 8.
 制御回路8は、入力クロックや、動作モード等を指令するデータを受け取り、また、固体撮像装置1の内部情報等のデータを出力する。具体的には、制御回路8は、垂直同期信号、水平同期信号、およびマスタクロックに基づいて、垂直駆動回路4、カラム信号処理回路5、および水平駆動回路6の動作の基準となるクロック信号や制御信号を生成する。そして、制御回路8は、これらの信号を垂直駆動回路4、カラム信号処理回路5、および水平駆動回路6に入力する。 The control circuit 8 receives data for instructing an input clock, an operation mode, and the like, and outputs data such as internal information of the solid-state imaging device 1. Specifically, the control circuit 8 is based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock, and the clock signal or the reference signal for the operations of the vertical drive circuit 4, the column signal processing circuit 5, and the horizontal drive circuit 6 Generate a control signal. The control circuit 8 inputs these signals to the vertical drive circuit 4, the column signal processing circuit 5, and the horizontal drive circuit 6.
 垂直駆動回路4は、例えばシフトレジスタによって構成され、画素駆動配線を選択し、選択された画素駆動配線に画素2を駆動するためのパルスを供給し、行単位で画素2を駆動する。具体的には、垂直駆動回路4は、画素領域3の各画素2を行単位で順次垂直方向に選択走査し、垂直信号線9を通して各画素2の光電変換素子において受光量に応じて生成した信号電荷に基づいた画素信号をカラム信号処理回路5に供給する。 The vertical drive circuit 4 is composed of, for example, a shift register, selects a pixel drive wiring, supplies a pulse for driving the pixel 2 to the selected pixel drive wiring, and drives the pixels 2 in units of rows. Specifically, the vertical drive circuit 4 selectively scans each pixel 2 in the pixel region 3 sequentially in the vertical direction in units of rows, and generates the signal according to the amount of light received by the photoelectric conversion element of each pixel 2 through the vertical signal line 9. A pixel signal based on the signal charge is supplied to the column signal processing circuit 5.
 カラム信号処理回路5は、画素2の例えば列毎に配置されており、1行分の画素2から出力される信号を画素列毎にノイズ除去等の信号処理を行う。具体的には、カラム信号処理回路5は、画素2固有の固定パターンノイズを除去するためのCDS(Correlated Double Sampling)や、信号増幅、A/D(Analog/Digital)変換等の信号処理を行う。カラム信号処理回路5の出力段には、水平選択スイッチ(図示せず)が水平信号線10との間に接続されて設けられる。 The column signal processing circuit 5 is disposed, for example, for each column of the pixels 2 and performs signal processing such as noise removal on the signal output from the pixels 2 for one row for each pixel column. Specifically, the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) for removing fixed pattern noise specific to the pixel 2, signal amplification, A / D (Analog / Digital) conversion, and the like. . At the output stage of the column signal processing circuit 5, a horizontal selection switch (not shown) is provided connected to the horizontal signal line 10.
 水平駆動回路6は、例えばシフトレジスタによって構成され、水平走査パルスを順次出力することによって、カラム信号処理回路5の各々を順番に選択し、カラム信号処理回路5の各々から画素信号を水平信号線10に出力させる。 The horizontal drive circuit 6 is constituted by, for example, a shift register, and sequentially outputs horizontal scanning pulses to select each of the column signal processing circuits 5 in order, and the pixel signal is output from each of the column signal processing circuits 5 to the horizontal signal line. 10 to output.
 出力回路7は、カラム信号処理回路5の各々から水平信号線10を通して順次に供給される信号に対し、信号処理を行って出力する。出力回路7は、例えば、バッファリングだけを行う場合もあるし、黒レベル調整、列ばらつき補正、各種デジタル信号処理等を行う場合もある。 The output circuit 7 performs signal processing on the signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 10 and outputs the signals. For example, the output circuit 7 may perform only buffering, or may perform black level adjustment, column variation correction, various digital signal processing, and the like.
 入出力端子12は、外部と信号のやりとりをするために設けられる。 The input / output terminal 12 is provided for exchanging signals with the outside.
<2.第1の実施の形態>
[固体撮像装置の構成]
 図2は、本技術の固体撮像装置の第1の実施の形態の構成例を示している。本技術の各実施の形態の固体撮像装置は、裏面照射型のCMOS固体撮像装置として構成される。
<2. First Embodiment>
[Configuration of solid-state imaging device]
FIG. 2 shows a configuration example of the first embodiment of the solid-state imaging device of the present technology. The solid-state imaging device according to each embodiment of the present technology is configured as a backside illumination type CMOS solid-state imaging device.
 第1の実施の形態の固体撮像装置20においては、例えばシリコンからなる半導体基板21に複数の画素が配列された画素領域(いわゆる撮像領域)と、画素領域の周辺に配置された周辺回路部(図示せず)とが形成される。 In the solid-state imaging device 20 according to the first embodiment, for example, a pixel region (so-called imaging region) in which a plurality of pixels are arranged on a semiconductor substrate 21 made of silicon, and a peripheral circuit unit ( (Not shown).
 単位画素22(以下、単に画素22という)は、光電変換部であるフォトダイオードPDと複数の画素トランジスタTrとから構成される。フォトダイオードPDは、半導体基板21の厚み方向の全域にわたるように形成され、第1導電型(本例ではn型)半導体領域25と、基板の表裏両面に臨む第2導電型(本例ではp型)半導体領域26とによるpn接合型のフォトダイオードとして構成される。基板の表裏両面に臨むp型半導体領域は、暗電流抑制のための正孔電荷蓄積領域を兼ねている。 The unit pixel 22 (hereinafter simply referred to as the pixel 22) includes a photodiode PD which is a photoelectric conversion unit and a plurality of pixel transistors Tr. The photodiode PD is formed so as to cover the entire area of the semiconductor substrate 21 in the thickness direction, and the first conductivity type (n-type in this example) semiconductor region 25 and the second conductivity type (p in this example) facing both the front and back surfaces of the substrate. A pn junction type photodiode with the semiconductor region 26. The p-type semiconductor regions facing both the front and back surfaces of the substrate also serve as hole charge accumulation regions for dark current suppression.
 フォトダイオードPDおよび画素トランジスタTrからなる画素22は、受光した被写体光に基づいて画像を生成するための信号を生成する撮像画素23と、位相差検出方式のAF(Auto Focus)(位相差AF)を行うための信号を生成する位相差検出画素24とに区別される。 The pixel 22 including the photodiode PD and the pixel transistor Tr includes an imaging pixel 23 that generates a signal for generating an image based on the received subject light, and AF (Auto-Focus) (phase difference AF) of a phase difference detection method. The phase difference detection pixel 24 generates a signal for performing the above.
 位相差検出画素24は、行列状に2次元配置された複数の撮像画素23の中に散在して配置される。具体的には、位相差検出画素24は、行列状に2次元配置される複数の撮像画素23の中の所定の撮像画素23の一部が置き換えられることで、特定のパターンで規則的に配置されている。 The phase difference detection pixels 24 are scattered and arranged in a plurality of imaging pixels 23 that are two-dimensionally arranged in a matrix. Specifically, the phase difference detection pixels 24 are regularly arranged in a specific pattern by replacing a part of predetermined imaging pixels 23 among the plurality of imaging pixels 23 arranged in a two-dimensional matrix. Has been.
 画素22(撮像画素23および位相差検出画素24)はそれぞれ、素子分離領域27により分離されている。素子分離領域27は、p型半導体領域で形成され、例えば接地されている。画素トランジスタTrは、半導体基板21の基板表面21a側に形成したp型半導体ウェル領域28に、図示せぬn型のソース領域およびドレイン領域を形成し、さらに両領域間の基板表面にゲート絶縁膜を介してゲート電極29を形成して構成される。図2においては、複数の画素トランジスタを1つの画素トランジスタTrにより代表して示すとともに、ゲート電極29により模式的に表している。 Each pixel 22 (imaging pixel 23 and phase difference detection pixel 24) is separated by an element isolation region 27. The element isolation region 27 is formed of a p-type semiconductor region and is grounded, for example. In the pixel transistor Tr, an n-type source region and a drain region (not shown) are formed in a p-type semiconductor well region 28 formed on the substrate surface 21a side of the semiconductor substrate 21, and a gate insulating film is formed on the substrate surface between the two regions. A gate electrode 29 is formed through the structure. In FIG. 2, a plurality of pixel transistors are represented by a single pixel transistor Tr and are schematically represented by a gate electrode 29.
 半導体基板21の基板表面21a上には、層間絶縁膜31を介して複数層の配線32が配置されてなる、いわゆる多層配線層33が形成される。多層配線層33側には光が入射されないので、配線32のレイアウトは自由に設定される。 On the substrate surface 21 a of the semiconductor substrate 21, a so-called multilayer wiring layer 33 is formed, in which a plurality of layers of wirings 32 are arranged via an interlayer insulating film 31. Since no light is incident on the multilayer wiring layer 33 side, the layout of the wiring 32 is freely set.
 フォトダイオードPDの受光面34となる基板裏面21b上には、絶縁層が形成される。この絶縁層は、本例では反射防止膜36で形成される。反射防止膜36は、屈折率の異なる複数層の膜で形成され、本例ではハフニウム酸化(HfO2)膜38とシリコン酸化膜37の2層の膜で形成される。 An insulating layer is formed on the substrate back surface 21b which becomes the light receiving surface 34 of the photodiode PD. This insulating layer is formed of an antireflection film 36 in this example. The antireflection film 36 is formed of a plurality of layers having different refractive indexes. In this example, the antireflection film 36 is formed of two layers of a hafnium oxide (HfO 2) film 38 and a silicon oxide film 37.
 反射防止膜36上の画素境界には、遮光膜39が形成される。遮光膜39は、光を遮光する材料であればよく、遮光性が強く、かつ微細加工、例えばエッチングで精度よく加工できる材料として、金属、例えばアルミニウム(Al)、タングステン(W)、または銅(Cu)の膜で形成することが好ましい。 A light shielding film 39 is formed at the pixel boundary on the antireflection film 36. The light-shielding film 39 may be any material that shields light, and is a metal, for example, aluminum (Al), tungsten (W), or copper (as a material that has a strong light-shielding property and can be precisely processed by fine processing, for example, etching. It is preferable to form a Cu) film.
 遮光膜39は、その一部の平面形状として、図3に示されるような形状を有する。図3に示されるように、遮光膜39は、画素境界で画素同士の混色や入射角の大きい光によるフレアを抑制する格子状の領域を有する。さらに、遮光膜39は、画素領域の外側を覆い、暗時出力の基準となる黒レベルを検出するためのOPB(Optical Black)クランプ領域39bと、位相差検出画素24において異なる射出瞳からの光を分離させるための分離部39pとを有する。 The light shielding film 39 has a shape as shown in FIG. As shown in FIG. 3, the light shielding film 39 has a grid-like region that suppresses flare caused by light mixture of pixels or light having a large incident angle at pixel boundaries. Further, the light shielding film 39 covers the outside of the pixel area, and the OPB (Optical Black) clamp area 39b for detecting a black level that is a reference for dark output, and light from different exit pupils in the phase difference detection pixel 24 And a separation part 39p for separating the.
 なお、図2に示されるように、位相差検出画素24は、分離部39pによってフォトダイオードPDの左側半分が遮光されている。 Note that, as shown in FIG. 2, in the phase difference detection pixel 24, the left half of the photodiode PD is shielded from light by the separation unit 39p.
 これら遮光膜39における各領域は、同時に形成される必要はなく、別個に形成されるようにしてもよい。また、例えば混色やフレアの抑制より、感度の向上を優先して図る場合には、格子状の領域の幅を小さくするようにしてもよい。 These regions in the light shielding film 39 do not need to be formed at the same time, and may be formed separately. In addition, for example, when priority is given to improvement in sensitivity over suppression of color mixing and flare, the width of the grid-like region may be reduced.
 遮光膜39を含む反射防止膜36上には、平坦化膜41が形成され、平坦化膜41上には、画素22毎にカラーフィルタ42が形成される。 A planarizing film 41 is formed on the antireflection film 36 including the light shielding film 39, and a color filter 42 is formed on the planarizing film 41 for each pixel 22.
 平坦化膜41は、例えば、樹脂などの有機材料を回転塗布することによって形成される。平坦化膜41は、カラーフィルタ42を形成する際の回転塗布の工程で発生するムラを回避するために形成されるが、そのムラが許容できる範囲であれば、平坦化膜41は形成されなくともよい。また、平坦化膜41は、例えばSiO2等の無機膜を成膜して、CMP(Chemical Mechanical Polishing)により平坦化することで形成されてもよい。 The planarization film 41 is formed, for example, by spin-coating an organic material such as resin. The flattening film 41 is formed in order to avoid unevenness generated in the spin coating process when forming the color filter 42. However, the flattening film 41 is not formed if the unevenness is within an allowable range. Also good. Further, the planarizing film 41 may be formed by depositing an inorganic film such as SiO2 and planarizing by CMP (Chemical-Mechanical-Polishing).
 カラーフィルタ42は、例えば顔料や染料を回転塗布することによって形成される。カラーフィルタ42としては、例えばベイヤ配列のカラーフィルタが用いられるが、その他の配列のカラーフィルタが用いられるようにしてもよい。 The color filter 42 is formed by, for example, spin coating a pigment or a dye. For example, a Bayer color filter is used as the color filter 42, but other color filters may be used.
 カラーフィルタ42上には、画素22毎にマイクロレンズ43が形成される。 On the color filter 42, a micro lens 43 is formed for each pixel 22.
 マイクロレンズ43は、屈折率が1.4以上の材料で形成され、例えばスチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、またはシロキサン系樹脂等の有機材料で形成される。スチレン系樹脂の屈折率は1.6程度、アクリル系樹脂の屈折率は1.5程度、スチレン-アクリル共重合系樹脂の屈折率は1.5乃至1.6程度、シロキサン系樹脂の屈折率は1.45程度とされる。 The microlens 43 is made of a material having a refractive index of 1.4 or more, and is made of an organic material such as a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, or a siloxane resin. The refractive index of the styrene resin is about 1.6, the refractive index of the acrylic resin is about 1.5, the refractive index of the styrene-acrylic copolymer resin is about 1.5 to 1.6, and the refractive index of the siloxane resin is about 1.45.
 また、マイクロレンズ43は、上述したスチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、シロキサン系樹脂や、ポリイミド樹脂中にTiO微粒子を分散させた有機・無機ハイブリッド材料で形成されてもよい。 The microlens 43 may be formed of the above-described styrene resin, acrylic resin, styrene-acrylic copolymer resin, siloxane resin, or an organic / inorganic hybrid material in which TiO fine particles are dispersed in a polyimide resin. Good.
 さらに、マイクロレンズ43は、SiN系またはSiON系の無機材料で形成されてもよい。SiNの屈折率は1.9乃至2.0程度、SiONの屈折率は1.45乃至1.9程度とされる。 Furthermore, the microlens 43 may be formed of an SiN-based or SiON-based inorganic material. The refractive index of SiN is about 1.9 to 2.0, and the refractive index of SiON is about 1.45 to 1.9.
 マイクロレンズ43上には、低n平坦化膜44が形成される。ここで、「低n」は低屈折率を意味する。低n平坦化膜44は、マイクロレンズ43の屈折率より低い材料(屈折率1.5以下の材料)で形成され、例えばアクリル系樹脂またはシロキサン系樹脂に、フッ素または中空シリカが添加されることで形成される。この場合、低n平坦化膜44の屈折率は1.2乃至1.45程度とされる。 A low n planarization film 44 is formed on the microlens 43. Here, “low n” means a low refractive index. The low n planarization film 44 is formed of a material lower than the refractive index of the microlens 43 (material having a refractive index of 1.5 or less), and is formed by adding fluorine or hollow silica to, for example, an acrylic resin or a siloxane resin. Is done. In this case, the refractive index of the low n planarization film 44 is about 1.2 to 1.45.
 また、低n平坦化膜44は、例えばSiO2等の無機膜を成膜して、CMPにより平坦化することで形成されてもよい。この場合、低n平坦化膜44の屈折率は1.45程度とされる。 The low n planarization film 44 may be formed by depositing an inorganic film such as SiO 2 and planarizing by CMP. In this case, the refractive index of the low n planarization film 44 is about 1.45.
 そして、位相差検出画素24の低n平坦化膜44上のみに、層上マイクロレンズ45が形成される。層上マイクロレンズ45は、マイクロレンズ43と同様、屈折率が1.4以上の材料で形成され、例えばスチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、またはシロキサン系樹脂等の有機材料で形成される。また、層上マイクロレンズ45は、これらの有機材料や、ポリイミド樹脂中にTiO微粒子を分散させた有機・無機ハイブリッド材料で形成されてもよいし、SiN系またはSiON系の無機材料で形成されてもよい。 Then, the upper microlens 45 is formed only on the low n planarization film 44 of the phase difference detection pixel 24. The microlens 45 on the layer is formed of a material having a refractive index of 1.4 or more, like the microlens 43, and is made of an organic material such as a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, or a siloxane resin. It is formed. The on-layer microlens 45 may be formed of these organic materials, an organic / inorganic hybrid material in which TiO fine particles are dispersed in a polyimide resin, or an SiN-based or SiON-based inorganic material. Also good.
[固体撮像装置の製造処理の流れ]
 次に、図4乃至図7を参照して、図2の固体撮像装置20の製造処理について説明する。図4は、固体撮像装置20の製造処理について説明するフローチャートであり、図5乃至図7は、製造工程における固体撮像装置20の断面図を示している。
[Flow of manufacturing process of solid-state imaging device]
Next, a manufacturing process of the solid-state imaging device 20 in FIG. 2 will be described with reference to FIGS. FIG. 4 is a flowchart for explaining the manufacturing process of the solid-state imaging device 20, and FIGS. 5 to 7 show cross-sectional views of the solid-state imaging device 20 in the manufacturing process.
 まず、ステップS11において、半導体基板21の画素領域を形成すべき領域に、p型半導体領域による素子分離領域27で分離した各画素22に対応したフォトダイオードPDを形成する。 First, in step S11, the photodiode PD corresponding to each pixel 22 separated by the element isolation region 27 by the p-type semiconductor region is formed in the region where the pixel region of the semiconductor substrate 21 is to be formed.
 ステップS12において、基板表面21aの各画素22に対応する領域に形成されたp型半導体ウェル領域28に、各複数の画素トランジスタTrを形成する。 In step S12, a plurality of pixel transistors Tr are formed in a p-type semiconductor well region 28 formed in a region corresponding to each pixel 22 on the substrate surface 21a.
 ステップS13において、基板表面21aの上部に、層間絶縁膜31を介して複数層の配線32を配置した多層配線層33を形成する。 In step S13, a multilayer wiring layer 33 in which a plurality of wirings 32 are arranged via an interlayer insulating film 31 is formed on the substrate surface 21a.
 ステップS14において、図5のAに示されるように、受光面となる基板裏面21b上に反射防止膜36を形成し、さらに、反射防止膜36上に遮光膜材料層39aを形成する。 In step S14, as shown in FIG. 5A, an antireflection film 36 is formed on the substrate back surface 21b serving as a light receiving surface, and a light shielding film material layer 39a is further formed on the antireflection film 36.
 ステップS15において、リソグラフィにより、遮光膜材料層39a上に選択的にレジストマスクを形成する。このレジストマスクは、図3に示されるような形状に形成される。そして、図5のBに示されるように、レジストマスクを介して遮光膜材料層39aを選択的にエッチング除去して、遮光膜39を形成する。エッチングは、ウェットエッチングまたはドライエッチングを用いることができる。ドライエッチングを用いた場合には、遮光膜39の微細線幅が精度よく得られる。 In step S15, a resist mask is selectively formed on the light shielding film material layer 39a by lithography. This resist mask is formed in a shape as shown in FIG. Then, as shown in FIG. 5B, the light shielding film material layer 39a is selectively removed by etching through the resist mask to form the light shielding film 39. Etching can be wet etching or dry etching. When dry etching is used, the fine line width of the light shielding film 39 can be obtained with high accuracy.
 ステップS16において、図6のAに示されるように、遮光膜39を含む反射防止膜36上に平坦化膜41を形成する。 In step S16, as shown in FIG. 6A, a planarizing film 41 is formed on the antireflection film 36 including the light shielding film 39.
 ステップS17において、平坦化膜41上に、画素22毎に例えばベイヤ配列のカラーフィルタ42を形成する。 In step S 17, for example, a Bayer array color filter 42 is formed on the planarizing film 41 for each pixel 22.
 ステップS18において、図6のBに示されるように、画素22毎のカラーフィルタ42上にマイクロレンズ43を形成する。具体的には、フォトレジスト、例えばノボラック樹脂を主成分とした感光性材料を、リソグラフィによりパターニングする。パターニングされたフォトレジストに対して熱軟化点より高い温度の熱処理を施し、レンズ形状を形成する。そして、レンズ形状に形成されたフォトレジストをマスクとし、ドライエッチングを用いて、下地となるレンズ材料にレンズ形状をパターン転写することで、全ての画素22についてマイクロレンズ43が形成される。 In step S18, as shown in FIG. 6B, the micro lens 43 is formed on the color filter 42 for each pixel 22. Specifically, a photoresist, for example, a photosensitive material mainly composed of a novolak resin is patterned by lithography. The patterned photoresist is heat-treated at a temperature higher than the thermal softening point to form a lens shape. Then, using the photoresist formed in the lens shape as a mask, the microlens 43 is formed for all the pixels 22 by pattern-transferring the lens shape to the underlying lens material using dry etching.
 ステップS19において、図7のAに示されるように、マイクロレンズ43上に、低n平坦化膜44を形成する。 In step S19, as shown in FIG. 7A, a low n planarization film 44 is formed on the microlens 43.
 そして、ステップS20において、図7のBに示されるように、位相差検出画素24の低n平坦化膜44上のみに、層上マイクロレンズ45を形成する。層上マイクロレンズ45は、ステップS17においてマイクロレンズ43が形成された手法と同様にして形成される。 In step S20, the upper microlens 45 is formed only on the low n planarization film 44 of the phase difference detection pixel 24, as shown in FIG. 7B. The on-layer microlens 45 is formed in the same manner as the method in which the microlens 43 is formed in step S17.
 なお、マイクロレンズ43および層上マイクロレンズ45の形成には、上述した手法に限らず、例えば、感光性樹脂からなるレンズ材料を成膜し、プリベーク、露光、現像、ブリーチング露光の各処理を順次行った後に、レンズ材料の熱軟化点より高い温度の熱処理を施す手法を用いるようにしてもよい。 The formation of the microlens 43 and the layered microlens 45 is not limited to the above-described method. For example, a lens material made of a photosensitive resin is formed, and prebake, exposure, development, and bleaching exposure processes are performed. A method of performing a heat treatment at a temperature higher than the thermal softening point of the lens material after sequentially performing may be used.
 以上の処理においては、位相差検出画素24の分離性を良くするため、集光ポイントが遮光膜39に合うように、固体撮像装置20全体の層厚の調整やマイクロレンズの曲率の調整が行われる。 In the above processing, in order to improve the separability of the phase difference detection pixels 24, the layer thickness of the entire solid-state imaging device 20 and the curvature of the microlens are adjusted so that the condensing point matches the light shielding film 39. Is called.
 固体撮像装置20全体の層厚は、例えば低n平坦化膜44の膜厚や、マイクロレンズ43および層上マイクロレンズ45のレンズ材料の膜厚、およびレンズ材料のエッチング量により調整される。 The layer thickness of the entire solid-state imaging device 20 is adjusted by, for example, the film thickness of the low n planarization film 44, the film thickness of the lens material of the microlens 43 and the on-layer microlens 45, and the etching amount of the lens material.
 マイクロレンズの曲率は、レンズ形成の際のリソグラフィのレジスト膜厚やリフロー、ドライエッチング条件(ガス種、処理時間、パワー等)等により調整される。また、マイクロレンズ43および層上マイクロレンズ45は、集光ポイントが揃うように、どの方向からみても曲率一定となるようなレンズ形状に形成される。具体的には、画素サイズに適したリソグラフィのレチクル形状(四角形、八角形、円形)やその寸法、リフロー温度、ドライエッチング条件を見出すことによって、どの方向からみても曲率一定となるようなレンズ形状マイクロレンズ43および層上マイクロレンズ45が形成される。 The curvature of the microlens is adjusted by lithography resist film thickness, reflow, dry etching conditions (gas type, processing time, power, etc.) at the time of lens formation. Further, the microlens 43 and the layered microlens 45 are formed in a lens shape so that the curvature is constant from any direction so that the condensing points are aligned. Specifically, by finding the lithography reticle shape (square, octagon, circle) suitable for the pixel size, its dimensions, reflow temperature, and dry etching conditions, the lens shape that makes the curvature constant from any direction A microlens 43 and a layered microlens 45 are formed.
 ここで、特許文献2に開示されている、位相差検出画素のマイクロレンズに段差を設ける構成において、例えば、この段差をマイクロレンズより先に形成することを考えた場合、レンズ形成のリソグラフィにおいて、レジスト塗布の際に段差に起因するムラが発生したり、異なる高さに対するリソグラフィのフォーカス制御が容易でなくなることにより、レンズ形状がつぶれてしまう恐れがある。また、この段差をマイクロレンズより後に形成することを考えた場合、位相差検出画素をレジストによりマスクし、撮像画素をエッチングして低くすることが考えられるが、過剰なエッチングによりレンズ形状がつぶれてしまう恐れがある。 Here, in the configuration in which a step is provided in the microlens of the phase difference detection pixel disclosed in Patent Document 2, for example, when considering forming this step before the microlens, in lithography for lens formation, When the resist is applied, unevenness due to a level difference occurs, or the focus control of lithography with respect to different heights becomes difficult, so that the lens shape may be crushed. If this step is formed after the microlens, the phase difference detection pixel may be masked with a resist, and the imaging pixel may be etched to make it lower, but the lens shape is crushed by excessive etching. There is a risk.
 さらに、特許文献2に開示されている構成の組立て工程を考えた場合、段差に起因してBGRテープを貼れなかったり、そのテープを剥す際に段差を備えた構造が破損する恐れがある。 Furthermore, when considering the assembly process of the configuration disclosed in Patent Document 2, there is a risk that the BGR tape cannot be applied due to the step, or the structure with the step is damaged when the tape is peeled off.
 また、段差によって形成される壁部分で、空気との屈折率の差によって反射した光が、隣接画素に影響を及ぼす恐れもある。 Also, the light reflected by the difference in refractive index with air at the wall portion formed by the step may affect adjacent pixels.
 このように、特許文献2に開示されている構成では、撮像素子と位相差検出画素とを有する裏面照射型の固体撮像装置において、撮像画素の低背化と位相差検出画素の高背化とが求められるといったトレードオフを解消することは難しい。 As described above, in the configuration disclosed in Patent Document 2, in the back-illuminated solid-state imaging device having the imaging element and the phase difference detection pixel, the imaging pixel is reduced in height and the phase difference detection pixel is increased in height. It is difficult to eliminate the trade-off that is required.
 一方、以上の処理によれば、レンズ形成のリソグラフィにおいてムラが発生したり、リソグラフィのデフォーカスや過剰なエッチングによりレンズ形状がつぶれてしまう恐れはなく、また、段差のための壁部分が形成されることはないので、隣接画素に影響を及ぼす恐れもなく、撮像画素の低背化と位相差検出画素の高背化とが求められるといったトレードオフを解消する構成を実現でき、撮像画素の斜入射光特性と位相差検出画素のAF特性のいずれも良好にすることが可能となる。 On the other hand, according to the above processing, there is no risk of unevenness in the lens forming lithography, or the lens shape may be crushed due to lithography defocusing or excessive etching, and a wall portion for a step is formed. Therefore, it is possible to realize a configuration that eliminates the trade-off of reducing the height of the imaging pixel and increasing the height of the phase difference detection pixel without fear of affecting adjacent pixels. Both the incident light characteristic and the AF characteristic of the phase difference detection pixel can be improved.
 なお、屈折率の違う界面、具体的には、マイクロレンズ43と低n平坦化膜44との界面や、層上マイクロレンズ45と空気との界面における反射を抑えるために、マイクロレンズ43や層上マイクロレンズ45の表面に反射防止膜を形成するようにしてもよい。 In order to suppress reflection at an interface having a different refractive index, specifically, an interface between the microlens 43 and the low n planarization film 44 or an interface between the upper microlens 45 and the air, the microlens 43 or the layer An antireflection film may be formed on the surface of the upper microlens 45.
 具体的には、層上マイクロレンズ45の表面に、コンフォーマルに酸化膜を形成したり、マイクロレンズ43の表面に、コンフォーマルにSiONを形成する。なお、反射防止膜の膜厚は、入射する光の干渉を考慮して決定される。 Specifically, an oxide film is formed conformally on the surface of the upper microlens 45, or SiON is formed conformally on the surface of the microlens 43. Note that the thickness of the antireflection film is determined in consideration of interference of incident light.
 以下においては、本実施の形態の変形例について説明する。 In the following, modifications of the present embodiment will be described.
[変形例1]
 図8は、本技術の固体撮像装置の第1の実施の形態の変形例を示している。
[Modification 1]
FIG. 8 shows a modification of the first embodiment of the solid-state imaging device of the present technology.
 なお、図8の固体撮像装置60において、図2の固体撮像装置20に設けられたものと同様の機能を備える構成については、同一名称および同一符号を付するものとし、その説明は、適宜省略するものとする。 In addition, in the solid-state imaging device 60 of FIG. 8, about the structure provided with the function similar to what was provided in the solid-state imaging device 20 of FIG. 2, the same name and the same code | symbol shall be attached | subjected, and the description is abbreviate | omitted suitably. It shall be.
 図8の固体撮像装置60は、位相差検出画素61にマイクロレンズ43を形成しない構成とされる。 8 is configured such that the micro lens 43 is not formed on the phase difference detection pixel 61.
 位相差検出画素においては、集光ポイントが遮光膜に合うことが求められるが、図2の位相差検出画素24のように、複数のレンズを介した集光の場合、レンズ形成におけるばらつきが、その集光特性に影響を与える恐れがある。 In the phase difference detection pixel, it is required that the condensing point matches the light shielding film, but in the case of condensing through a plurality of lenses as in the phase difference detection pixel 24 of FIG. There is a risk of affecting the light collection characteristics.
 これに対して、図8の位相差検出画素61においては、層上マイクロレンズ45のみによって集光されるので、集光特性がレンズ形成におけるばらつきの影響を受けることはなく、位相差AFの精度を向上させることができる。なお、位相差検出画素61は、位相差検出画素24より集光パワーが落ちるが、層上マイクロレンズ45を高背化したり、層上マイクロレンズ45の曲率を上げることで、これを改善することができる。逆に、位相差検出画素24は、位相差検出画素61より集光パワーが高いので、固体撮像装置全体の層厚を低く抑えることができる。 On the other hand, in the phase difference detection pixel 61 of FIG. 8, since the light is condensed only by the upper microlens 45, the light condensing characteristic is not affected by variations in lens formation, and the accuracy of the phase difference AF is not affected. Can be improved. The phase difference detection pixel 61 has a light condensing power lower than that of the phase difference detection pixel 24, but this can be improved by increasing the height of the upper microlens 45 or increasing the curvature of the upper microlens 45. Can do. On the contrary, the phase difference detection pixel 24 has a higher condensing power than the phase difference detection pixel 61, so that the layer thickness of the entire solid-state imaging device can be kept low.
[変形例2]
 図9は、本技術の固体撮像装置の第1の実施の形態の他の変形例を示している。
[Modification 2]
FIG. 9 shows another modification of the first embodiment of the solid-state imaging device of the present technology.
 なお、図9の固体撮像装置70において、図2の固体撮像装置20に設けられたものと同様の機能を備える構成については、同一名称および同一符号を付するものとし、その説明は、適宜省略するものとする。 In addition, in the solid-state imaging device 70 of FIG. 9, about the structure provided with the function similar to what was provided in the solid-state imaging device 20 of FIG. 2, the same name and the same code | symbol shall be attached | subjected, and the description is abbreviate | omitted suitably. It shall be.
 図9の固体撮像装置70は、位相差検出画素71の低n平坦化膜44上に、層上マイクロレンズ72を形成した構成とされる。 The solid-state imaging device 70 of FIG. 9 has a configuration in which an upper microlens 72 is formed on the low n planarization film 44 of the phase difference detection pixel 71.
 層上マイクロレンズ72は、低n平坦化膜44と同一の組成である。層上マイクロレンズ72は、図4のフローチャートのステップS20において、低n平坦化膜44に対してリソグラフィとリフローによりレンズ形状を形成し、ドライエッチングを用いて、下地となる低n平坦化膜44にレンズ形状をパターン転写することで形成される。 The upper microlens 72 has the same composition as the low n planarization film 44. In step S20 in the flowchart of FIG. 4, the upper microlens 72 forms a lens shape by lithography and reflow on the low n planarization film 44, and uses dry etching to form the low n planarization film 44 serving as a base. It is formed by pattern transfer of the lens shape.
 このような構成により、層上マイクロレンズのレンズ材料を塗布する工程を削減することできる。 Such a configuration can reduce the step of applying the lens material of the on-layer microlens.
[変形例3]
 図10は、本技術の固体撮像装置の第1実施の形態のさらに他の変形例を示している。
[Modification 3]
FIG. 10 shows still another modification of the first embodiment of the solid-state imaging device of the present technology.
 なお、図10の固体撮像装置80において、図8の固体撮像装置60に設けられたものと同様の機能を備える構成については、同一名称および同一符号を付するものとし、その説明は、適宜省略するものとする。 In the solid-state imaging device 80 in FIG. 10, configurations having the same functions as those provided in the solid-state imaging device 60 in FIG. 8 are given the same names and the same reference numerals, and descriptions thereof are omitted as appropriate. It shall be.
 図10の固体撮像装置80は、位相差検出画素81の低n平坦化膜44上に、図9の固体撮像装置70と同様にして、低n平坦化膜44と同一の組成の層上マイクロレンズ72を形成した構成とされる。 The solid-state imaging device 80 in FIG. 10 is formed on the low n planarization film 44 of the phase difference detection pixel 81 in the same manner as the solid-state imaging device 70 in FIG. The lens 72 is formed.
 このような構成により、位相差AFの精度を向上させることができるとともに、層上マイクロレンズのレンズ材料を塗布する工程を削減することできる。 With such a configuration, it is possible to improve the accuracy of the phase difference AF and reduce the step of applying the lens material of the on-layer microlens.
<3.第2の実施の形態>
[固体撮像装置の構成]
 図11は、本技術の固体撮像装置の第2の実施の形態の構成例を示している。
<3. Second Embodiment>
[Configuration of solid-state imaging device]
FIG. 11 illustrates a configuration example of the second embodiment of the solid-state imaging device of the present technology.
 なお、図11の固体撮像装置100において、図2の固体撮像装置20に設けられたものと同様の機能を備える構成については、同一名称および同一符号を付するものとし、その説明は、適宜省略するものとする。 In the solid-state imaging device 100 of FIG. 11, components having the same functions as those provided in the solid-state imaging device 20 of FIG. 2 are denoted by the same names and the same reference numerals, and description thereof is omitted as appropriate. It shall be.
 図11の固体撮像装置100は、低n平坦化膜44における撮像画素23と位相差検出画素101との境界部分に、遮光壁102を形成した構成とされる。 11 has a configuration in which a light shielding wall 102 is formed at a boundary portion between the imaging pixel 23 and the phase difference detection pixel 101 in the low n planarization film 44.
 遮光壁102は、例えば、低n平坦化膜44における位相差検出画素101の部分を囲うように形成された溝に、遮光材料を埋め込むことによって形成される。 The light shielding wall 102 is formed, for example, by embedding a light shielding material in a groove formed so as to surround a portion of the phase difference detection pixel 101 in the low n planarization film 44.
[固体撮像装置の製造処理の流れ]
 次に、図12のフローチャートを参照して、固体撮像装置100の製造処理について説明する。
[Flow of manufacturing process of solid-state imaging device]
Next, the manufacturing process of the solid-state imaging device 100 will be described with reference to the flowchart of FIG.
 なお、図12のフローチャートのステップS111乃至S119,S121の処理は、図4のフローチャートのステップS11乃至S20の処理と同様であるので、その説明は省略する。 Note that the processing in steps S111 to S119 and S121 in the flowchart in FIG. 12 is the same as the processing in steps S11 to S20 in the flowchart in FIG.
 すなわち、ステップS119において、低n平坦化膜44が形成された後、ステップS120において、低n平坦化膜44における位相差検出画素101の周囲に遮光壁102を形成する。 That is, after the low n planarization film 44 is formed in step S119, the light shielding wall 102 is formed around the phase difference detection pixel 101 in the low n planarization film 44 in step S120.
 具体的には、リソグラフィにより、低n平坦化膜44における位相差検出画素101を囲うように溝パターンを形成し、ドライエッチングを用いて下地に転写する。なお、低n平坦化膜44を感光性材料により形成するようにして、パターン露光することで溝パターンを形成するようにしてもよい。この場合、ドライエッチングの工程を削減することができる。 Specifically, a groove pattern is formed by lithography so as to surround the phase difference detection pixel 101 in the low n planarization film 44, and transferred to the base using dry etching. Note that the low n planarization film 44 may be formed of a photosensitive material, and the groove pattern may be formed by pattern exposure. In this case, the dry etching process can be reduced.
 そして、例えばカーボンブラックを含む遮光材料を、回転塗布によって溝パターンに埋め込み、エッチバックにより平坦化を行うことで、遮光壁102が形成される。 Then, for example, a light shielding material containing carbon black is embedded in the groove pattern by spin coating and flattened by etch back to form the light shielding wall 102.
 以上の処理によれば、撮像素子と位相差検出画素とを有する裏面照射型の固体撮像装置において、撮像画素の低背化と位相差検出画素の高背化とが求められるといったトレードオフを解消する構成を実現しつつ、位相差検出画素周辺の撮像画素からの混色を抑制することが可能となる。 According to the above processing, in the back-illuminated solid-state imaging device having the imaging element and the phase difference detection pixel, the trade-off that the reduction in the height of the imaging pixel and the increase in the height of the phase difference detection pixel are required is eliminated. It is possible to suppress the color mixture from the imaging pixels around the phase difference detection pixel while realizing the configuration.
 なお、図11の固体撮像装置100を、位相差検出画素101にマイクロレンズ43を形成しない構成とするようにしてもよいし、層上マイクロレンズ45に代えて、層上マイクロレンズ72を備える構成とするようにしてもよい。 Note that the solid-state imaging device 100 of FIG. 11 may be configured such that the microlens 43 is not formed in the phase difference detection pixel 101, or is configured to include the upper microlens 72 instead of the upper microlens 45. You may make it.
 ところで、近年、CMOS固体撮像装置等の光学センサの簡易なパッケージ技術として、チップサイズパッケージ(CSP)構造が提案されている。しかしながら、このCSP構造において、シールガラスとチップ(光学センサ)との間に空隙(以下、キャビティという)が存在すると、リフロー等の熱プロセスを通した際、熱応力によりチップが反ってしまう恐れがあった。 Incidentally, in recent years, a chip size package (CSP) structure has been proposed as a simple packaging technology for optical sensors such as CMOS solid-state imaging devices. However, in this CSP structure, if there is a gap (hereinafter referred to as a cavity) between the seal glass and the chip (optical sensor), the chip may be warped due to thermal stress during a thermal process such as reflow. there were.
 これに対して、キャビティを樹脂で充填することでキャビティを持たないCSP構造(以下、キャビティレスCSP構造という)が提案されている。 On the other hand, a CSP structure having no cavity by filling the cavity with resin (hereinafter referred to as a cavityless CSP structure) has been proposed.
 そこで、以下においては、キャビティレスCSP構造の固体撮像装置に、本技術を適用した構成について説明する。なお、以下においては、第1の実施の形態の固体撮像装置をキャビティレスCSP構造とした構成について説明するが、第2の実施の形態の固体撮像装置をキャビティレスCSP構造とすることももちろんできる。 Therefore, in the following, a configuration in which the present technology is applied to a solid-state imaging device having a cavityless CSP structure will be described. In the following, the configuration of the solid-state imaging device according to the first embodiment having a cavityless CSP structure will be described. However, the solid-state imaging device according to the second embodiment can of course have a cavityless CSP structure. .
<4.第3の実施の形態>
[固体撮像装置の構成]
 図13は、本技術の固体撮像装置の第3の実施の形態の構成例を示している。
<4. Third Embodiment>
[Configuration of solid-state imaging device]
FIG. 13 illustrates a configuration example of the third embodiment of the solid-state imaging device of the present technology.
 なお、図13の固体撮像装置200において、図2の固体撮像装置20に設けられたものと同様の機能を備える構成については、同一名称および同一符号を付するものとし、その説明は、適宜省略するものとする。 In the solid-state imaging device 200 of FIG. 13, components having the same functions as those provided in the solid-state imaging device 20 of FIG. 2 are denoted by the same names and the same reference numerals, and the description thereof is omitted as appropriate. It shall be.
 図13の固体撮像装置200においては、層上マイクロレンズ45を含む低n平坦化膜44上に、低n平坦化膜201が形成される。 In the solid-state imaging device 200 of FIG. 13, the low n planarization film 201 is formed on the low n planarization film 44 including the upper microlens 45.
 低n平坦化膜201は、低n平坦化膜44と同様に、マイクロレンズ43および層上マイクロレンズ45の屈折率より低い材料で形成され、例えばアクリル系樹脂またはシロキサン系樹脂に、フッ素または中空シリカが添加されることで形成される。この場合、低n平坦化膜201の屈折率は1.2乃至1.45程度とされる。 Similarly to the low n planarization film 44, the low n planarization film 201 is formed of a material having a refractive index lower than that of the microlens 43 and the upper microlens 45. For example, an acrylic resin or a siloxane resin is made of fluorine or hollow. It is formed by adding silica. In this case, the refractive index of the low n planarization film 201 is about 1.2 to 1.45.
 また、低n平坦化膜201は、例えばSiO2等の無機膜を成膜して、CMPにより平坦化することで形成されてもよい。この場合、低n平坦化膜201の屈折率は1.45程度とされる。 The low n planarization film 201 may be formed by depositing an inorganic film such as SiO 2 and planarizing by CMP. In this case, the refractive index of the low n planarization film 201 is about 1.45.
 なお、低n平坦化膜201と低n平坦化膜44とは同一の材料により形成されてもよいし、異なる材料により形成されてもよい。 Note that the low n planarization film 201 and the low n planarization film 44 may be formed of the same material or different materials.
 低n平坦化膜201の上には、シール樹脂202が形成される。シール樹脂202は、アクリル系樹脂、シリコーン系樹脂、またはエポキシ系樹脂等により形成される。そして、シール樹脂202の上には、シールガラス203が形成される。 A seal resin 202 is formed on the low n planarization film 201. The seal resin 202 is formed of an acrylic resin, a silicone resin, an epoxy resin, or the like. A seal glass 203 is formed on the seal resin 202.
 このように、固体撮像装置200は、受光面側のキャビティがシール樹脂202およびシールガラス203によって封止された、キャビティレスCSP構造をとる。 As described above, the solid-state imaging device 200 has a cavityless CSP structure in which the cavity on the light receiving surface side is sealed with the sealing resin 202 and the sealing glass 203.
[固体撮像装置の製造処理の流れ]
 次に、図14のフローチャートを参照して、固体撮像装置200の製造処理について説明する。
[Flow of manufacturing process of solid-state imaging device]
Next, a manufacturing process of the solid-state imaging device 200 will be described with reference to the flowchart of FIG.
 なお、図14のフローチャートのステップS211乃至S220の処理は、図4のフローチャートのステップS11乃至S20の処理と同様であるので、その説明は省略する。 Note that the processing of steps S211 to S220 in the flowchart of FIG. 14 is the same as the processing of steps S11 to S20 of the flowchart of FIG.
 すなわち、ステップS220において、層上マイクロレンズ45が形成された後、ステップS221において、層上マイクロレンズ45を含む低n平坦化膜44上に、低n平坦化膜201を形成する。 That is, after the upper microlens 45 is formed in step S220, the low n planarization film 201 is formed on the low n planarization film 44 including the upper microlens 45 in step S221.
 そして、ステップS222において、シール樹脂202でキャビティを封止する。具体的には、低n平坦化膜201上にシール樹脂202を形成し、さらにその上にシールガラス203を形成することで、キャビティが封止される。 In step S222, the cavity is sealed with the sealing resin 202. Specifically, the cavity is sealed by forming the sealing resin 202 on the low n planarization film 201 and further forming the sealing glass 203 thereon.
 以上の処理によれば、撮像素子と位相差検出画素とを有する裏面照射型の固体撮像装置において、撮像画素の低背化と位相差検出画素の高背化とが求められるといったトレードオフを解消する構成を実現しつつ、キャビティレスCSP構造による効果を得ることが可能となる。 According to the above processing, in the back-illuminated solid-state imaging device having the imaging element and the phase difference detection pixel, the trade-off that the reduction in the height of the imaging pixel and the increase in the height of the phase difference detection pixel are required is eliminated. It is possible to obtain the effect of the cavityless CSP structure while realizing the configuration.
 以下においては、本実施の形態の変形例について説明する。 In the following, modifications of the present embodiment will be described.
[変形例1]
 図15は、本技術の固体撮像装置の第3の実施の形態の変形例を示している。
[Modification 1]
FIG. 15 illustrates a modification of the third embodiment of the solid-state imaging device of the present technology.
 なお、図15の固体撮像装置210において、図13の固体撮像装置200に設けられたものと同様の機能を備える構成については、同一名称および同一符号を付するものとし、その説明は、適宜省略するものとする。 In the solid-state imaging device 210 in FIG. 15, components having the same functions as those provided in the solid-state imaging device 200 in FIG. 13 are denoted by the same names and the same reference numerals, and description thereof is omitted as appropriate. It shall be.
 図15の固体撮像装置210は、位相差検出画素61にマイクロレンズ43を形成しない構成とされる。 15 is configured such that the microlens 43 is not formed on the phase difference detection pixel 61. The solid-state imaging device 210 shown in FIG.
 このような構成により、図15の固体撮像装置210においては、図8の位相差検出画素61と同様に、集光特性がレンズ形成におけるばらつきの影響を受けることはなく、位相差AFの精度を向上させることができる。 With such a configuration, in the solid-state imaging device 210 of FIG. 15, as with the phase difference detection pixel 61 of FIG. 8, the focusing characteristics are not affected by variations in lens formation, and the accuracy of the phase difference AF is improved. Can be improved.
[変形例2]
 図16は、本技術の固体撮像装置の第3の実施の形態の他の変形例を示している。
[Modification 2]
FIG. 16 illustrates another modification of the third embodiment of the solid-state imaging device of the present technology.
 なお、図16の固体撮像装置220において、図13の固体撮像装置200に設けられたものと同様の機能を備える構成については、同一名称および同一符号を付するものとし、その説明は、適宜省略するものとする。 In the solid-state imaging device 220 in FIG. 16, components having the same functions as those provided in the solid-state imaging device 200 in FIG. 13 are given the same name and the same reference numerals, and the description thereof is omitted as appropriate. It shall be.
 図16の固体撮像装置220においては、層上マイクロレンズ45を含む低n平坦化膜44上に、低n平坦化膜201は形成されず、シール樹脂202が形成される。そして、シール樹脂202の上には、シールガラス203が形成される。この場合、図14のフローチャートにおいて、ステップS221の処理はスキップされる。 In the solid-state imaging device 220 in FIG. 16, the low n planarization film 201 is not formed on the low n planarization film 44 including the upper microlens 45, and the seal resin 202 is formed. A seal glass 203 is formed on the seal resin 202. In this case, the process of step S221 is skipped in the flowchart of FIG.
 本例では、層上マイクロレンズ45は、シール樹脂202の屈折率(一般的には1.5程度)より高い屈折率の材料、例えば、SiN系またはSiON系の無機材料で形成される。上述したように、SiNの屈折率は1.9乃至2.0程度、SiONの屈折率は1.45乃至1.9程度とされる。 In this example, the on-layer microlens 45 is formed of a material having a refractive index higher than that of the sealing resin 202 (generally about 1.5), for example, an SiN-based or SiON-based inorganic material. As described above, the refractive index of SiN is about 1.9 to 2.0, and the refractive index of SiON is about 1.45 to 1.9.
 このような構成により、低n平坦化膜201を形成する工程を削減することができる。 With such a configuration, the process of forming the low n planarization film 201 can be reduced.
[変形例3]
 図17は、本技術の固体撮像装置の第3の実施の形態のさらに他の変形例を示している。
[Modification 3]
FIG. 17 shows still another modification of the third embodiment of the solid-state imaging device of the present technology.
 なお、図17の固体撮像装置230において、図16の固体撮像装置220に設けられたものと同様の機能を備える構成については、同一名称および同一符号を付するものとし、その説明は、適宜省略するものとする。 In the solid-state imaging device 230 in FIG. 17, configurations having the same functions as those provided in the solid-state imaging device 220 in FIG. 16 are denoted by the same names and the same reference numerals, and description thereof will be omitted as appropriate. It shall be.
 図17の固体撮像装置230は、位相差検出画素61にマイクロレンズ43を形成しない構成とされる。 17 is configured such that the micro lens 43 is not formed in the phase difference detection pixel 61.
 このような構成により、位相差AFの精度を向上させることができるとともに、低n平坦化膜201を形成する工程を削減することができる。 With such a configuration, the accuracy of the phase difference AF can be improved, and the process of forming the low n planarization film 201 can be reduced.
[変形例4]
 図18は、本技術の固体撮像装置の第3の実施の形態のさらに他の変形例を示している。
[Modification 4]
FIG. 18 illustrates still another modification of the third embodiment of the solid-state imaging device of the present technology.
 なお、図18の固体撮像装置240において、図16の固体撮像装置220に設けられたものと同様の機能を備える構成については、同一名称および同一符号を付するものとし、その説明は、適宜省略するものとする。 In the solid-state imaging device 240 in FIG. 18, configurations having the same functions as those provided in the solid-state imaging device 220 in FIG. 16 are denoted by the same names and the same reference numerals, and description thereof is omitted as appropriate. It shall be.
 図18の固体撮像装置240は、位相差検出画素241に、下凸形状の層上マイクロレンズ242を形成した構成とされる。 The solid-state imaging device 240 shown in FIG. 18 has a configuration in which a phase-difference detection pixel 241 is formed with a downwardly convex upper-layer microlens 242.
 層上マイクロレンズ242は、位相差検出画素241の低n平坦化膜44に形成された凹部に、低n平坦化膜44より高い屈折率のシール樹脂が封止されることによって形成される。 The upper microlens 242 is formed by sealing a sealing resin having a higher refractive index than that of the low n planarization film 44 in a recess formed in the low n planarization film 44 of the phase difference detection pixel 241.
[固体撮像装置の製造処理の流れ]
 次に、図19のフローチャートを参照して、固体撮像装置240の製造処理について説明する。
[Flow of manufacturing process of solid-state imaging device]
Next, the manufacturing process of the solid-state imaging device 240 will be described with reference to the flowchart of FIG.
 なお、図19のフローチャートのステップS261乃至S269の処理は、図14のフローチャートのステップS211乃至S219の処理と同様であるので、その説明は省略する。 Note that the processing in steps S261 through S269 in the flowchart in FIG. 19 is the same as the processing in steps S211 through S219 in the flowchart in FIG.
 すなわち、ステップS269において、低n平坦化膜44が形成された後、ステップS270において、低n平坦化膜44上に凹部を形成する。 That is, after the low n planarization film 44 is formed in step S269, a recess is formed on the low n planarization film 44 in step S270.
 具体的には、例えば特許第4705499号公報等に開示されている手法を用いて、位相差検出画素241の低n平坦化膜44上に、レジストで凸レンズを形成し、この凸レンズよりエッチレートの遅い材料により平坦化し、エッチングを進めることによって、低n平坦化膜44上に凹部が形成される。 Specifically, for example, using a method disclosed in Japanese Patent No. 4705499, a convex lens is formed with a resist on the low n planarization film 44 of the phase difference detection pixel 241, and the etching rate is higher than that of the convex lens. A recess is formed on the low n planarization film 44 by planarizing with a slow material and proceeding with etching.
 なお、凹部を形成する手法は、上述した手法に限らず、例えば、レジストでピンホールを形成し、等方性ウェットエッチングにより凹部を形成するようにしてもよいし、異方性ドライエッチングにより、低n平坦化膜44上に矩形の開口を形成し、リフローによりレンズ形状の凹部を形成するようにしてもよい。 Note that the method of forming the recess is not limited to the above-described method, and for example, a pinhole may be formed with a resist, and the recess may be formed by isotropic wet etching, or by anisotropic dry etching, A rectangular opening may be formed on the low n planarization film 44, and a lens-shaped recess may be formed by reflow.
 そして、ステップS271において、シール樹脂202でキャビティを封止する。具体的には、低n平坦化膜201上にシール樹脂202を形成し、さらにその上にシールガラス203を形成することで、下凸形状の層上マイクロレンズ242が形成されるとともに、キャビティが封止される。 In step S271, the cavity is sealed with the sealing resin 202. Specifically, by forming the sealing resin 202 on the low n planarization film 201 and further forming the sealing glass 203 thereon, the downwardly convex layered microlens 242 is formed and the cavity is formed. Sealed.
 以上の処理によれば、層上マイクロレンズのレンズ材料を塗布する工程を削減することできる。 According to the above processing, the process of applying the lens material of the on-layer microlens can be reduced.
[変形例5]
 図20は、本技術の固体撮像装置の第3の実施の形態のさらに他の変形例を示している。
[Modification 5]
FIG. 20 shows still another modification of the third embodiment of the solid-state imaging device of the present technology.
 なお、図20の固体撮像装置250において、図18の固体撮像装置240に設けられたものと同様の機能を備える構成については、同一名称および同一符号を付するものとし、その説明は、適宜省略するものとする。 In the solid-state imaging device 250 of FIG. 20, components having the same functions as those provided in the solid-state imaging device 240 of FIG. 18 are denoted by the same names and the same reference numerals, and description thereof will be omitted as appropriate. It shall be.
 図20の固体撮像装置250は、位相差検出画素251にマイクロレンズ43を形成しない構成とされる。 20 is configured such that the microlens 43 is not formed on the phase difference detection pixel 251.
 このような構成により、図20の固体撮像装置250においては、図8の位相差検出画素61と同様に、集光特性がレンズ形成におけるばらつきの影響を受けることはなく、位相差AFの精度を向上させることができる。 With such a configuration, in the solid-state imaging device 250 of FIG. 20, as with the phase difference detection pixel 61 of FIG. 8, the light collection characteristics are not affected by variations in lens formation, and the accuracy of the phase difference AF is improved. Can be improved.
 以上においては、本技術を、裏面照射型のCMOS固体撮像装置に適用した構成について説明してきたが、表面照射型のCMOS固体撮像装置やCCD(Charge Coupled Device)固体撮像装置といった固体撮像装置に適用するようにしてもよい。 In the above, the configuration in which the present technology is applied to a back-illuminated CMOS solid-state imaging device has been described. However, the technology is applied to a solid-state imaging device such as a front-illuminated CMOS solid-state imaging device or a CCD (Charge-Coupled Device) solid-state imaging device. You may make it do.
 なお、本技術は、固体撮像装置への適用に限られるものではなく、撮像装置にも適用可能である。ここで、撮像装置とは、デジタルスチルカメラやデジタルビデオカメラ等のカメラシステムや、携帯電話機等の撮像機能を有する電子機器のことをいう。なお、電子機器に搭載されるモジュール状の形態、すなわちカメラモジュールを撮像装置とする場合もある。 In addition, this technique is not restricted to application to a solid-state imaging device, It can apply also to an imaging device. Here, the imaging apparatus refers to a camera system such as a digital still camera or a digital video camera, or an electronic apparatus having an imaging function such as a mobile phone. In some cases, a module-like form mounted on an electronic device, that is, a camera module is used as an imaging device.
<5.第4の実施の形態>
[電子機器の構成例]
 ここで、図21を参照して、本技術の第4の実施の形態の電子機器の構成例について説明する。
<5. Fourth Embodiment>
[Configuration example of electronic equipment]
Here, with reference to FIG. 21, the structural example of the electronic device of the 4th Embodiment of this technique is demonstrated.
 図21に示される電子機器300は、固体撮像装置301、光学レンズ302、シャッタ装置303、駆動回路304、および信号処理回路305を備えている。固体撮像装置301としては、上述した本技術の第1乃至第3の実施の形態の固体撮像装置が設けられる。 21 is provided with a solid-state imaging device 301, an optical lens 302, a shutter device 303, a drive circuit 304, and a signal processing circuit 305. As the solid-state imaging device 301, the solid-state imaging device according to the first to third embodiments of the present technology described above is provided.
 光学レンズ302は、被写体からの像光(入射光)を固体撮像装置301の撮像面上に結像させる。これにより、固体撮像装置301内に一定期間信号電荷が蓄積される。シャッタ装置303は、固体撮像装置301に対する光照射期間および遮光期間を制御する。 The optical lens 302 forms image light (incident light) from the subject on the imaging surface of the solid-state imaging device 301. As a result, signal charges are accumulated in the solid-state imaging device 301 for a certain period. The shutter device 303 controls the light irradiation period and the light shielding period for the solid-state imaging device 301.
 駆動回路304は、固体撮像装置301の信号転送動作およびシャッタ装置303のシャッタ動作を制御する駆動信号を供給する。駆動回路304から供給される駆動信号(タイミング信号)により、固体撮像装置301は信号転送を行う。信号処理回路305は、固体撮像装置301から出力された信号に対して各種の信号処理を行う。信号処理が行われた映像信号は、メモリなどの記憶媒体に記憶されたり、モニタに出力される。 The drive circuit 304 supplies a drive signal for controlling the signal transfer operation of the solid-state imaging device 301 and the shutter operation of the shutter device 303. The solid-state imaging device 301 performs signal transfer according to a drive signal (timing signal) supplied from the drive circuit 304. The signal processing circuit 305 performs various signal processing on the signal output from the solid-state imaging device 301. The video signal subjected to the signal processing is stored in a storage medium such as a memory or output to a monitor.
 ところで、本技術の固体撮像装置、例えば第1の実施の形態の固体撮像装置20においては、図22に示されるように、層上マイクロレンズ45によって、本来であれば隣接する撮像画素23に入射光Lの一部が、光L’として位相差検出画素24に取り込まれることで、撮像画素23においてシェーディングが生じてしまう。 By the way, in the solid-state imaging device of the present technology, for example, the solid-state imaging device 20 of the first embodiment, as shown in FIG. A part of the light L is taken into the phase difference detection pixel 24 as the light L ′, so that shading occurs in the imaging pixel 23.
 そこで、電子機器300の信号処理回路305は、固体撮像装置301から出力された信号に対して、位相差検出画素24に隣接する撮像画素23において生じるシェーディングを補正する処理を行う。 Therefore, the signal processing circuit 305 of the electronic device 300 performs processing for correcting shading generated in the imaging pixel 23 adjacent to the phase difference detection pixel 24 on the signal output from the solid-state imaging device 301.
 本技術の固体撮像装置を備える電子機器によって均一な被写体を撮像した場合、固体撮像装置から出力された信号は、位相差検出画素周辺の撮像画素で異なる像高依存を示す。また、このことは、位相差検出画素に対する撮像画素の相対位置にも依存する。 When a uniform subject is imaged by an electronic device including the solid-state imaging device of the present technology, the signal output from the solid-state imaging device shows different image height dependence at imaging pixels around the phase difference detection pixel. This also depends on the relative position of the imaging pixel with respect to the phase difference detection pixel.
 そこで、その信号(画素値)から、シェーディング補正の対象となる撮像画素の配置に対応したシェーディングの度合を表すシェーディング関数G(x,y,i)を予め求めるようにする。ここで、x,yは、画素領域における撮像画素の2次元配置を示す座標であり、iは、位相差検出画素に対する撮像画素の相対位置を示している。 Therefore, a shading function G (x, y, i) representing the degree of shading corresponding to the arrangement of the imaging pixels to be subjected to shading correction is obtained in advance from the signal (pixel value). Here, x and y are coordinates indicating the two-dimensional arrangement of the imaging pixels in the pixel region, and i indicates the relative position of the imaging pixel with respect to the phase difference detection pixel.
 シェーディング関数G(x,y,i)は、光学レンズ302のレンズパラメータ(レンズ種類、ズーム値、F値等)毎に求められ、データベース化されるようにする。ここで、画素領域の対称性を考慮し、多項式近似等を用いてシェーディング関数G(x,y,i)を簡略化することにより、データベース化に必要とされるメモリ容量を削減するようにしてもよい。 The shading function G (x, y, i) is obtained for each lens parameter (lens type, zoom value, F value, etc.) of the optical lens 302 and is made into a database. Here, considering the symmetry of the pixel area, simplify the shading function G (x, y, i) using polynomial approximation, etc., so as to reduce the memory capacity required for creating a database. Also good.
 信号処理回路305は、光学レンズ302のレンズパラメータに基づいて、対応するシェーディング関数G(x,y,i)を読み出し、実際の撮像により固体撮像装置301から出力された信号に対してシェーディング関数G(x,y,i)による割戻しを行うことで、シェーディングを補正する。 The signal processing circuit 305 reads the corresponding shading function G (x, y, i) based on the lens parameters of the optical lens 302, and performs the shading function G on the signal output from the solid-state imaging device 301 by actual imaging. Shading is corrected by rebating with (x, y, i).
 なお、シェーディング関数G(x,y,i)をレンズパラメータ毎に求めるのではなく、レンズパラメータに応じたモデル関数として求めるようにしてもよい。 Note that the shading function G (x, y, i) may be obtained as a model function corresponding to the lens parameter instead of being obtained for each lens parameter.
 以上の構成によれば、本技術の固体撮像装置において、層上マイクロレンズに隣接する撮像画素で生じるシェーディングを低減することが可能となる。 According to the above configuration, in the solid-state imaging device of the present technology, it is possible to reduce shading that occurs in the imaging pixels adjacent to the upper microlens.
 なお、信号処理回路305は、シェーディング関数G(x,y,i)を用いずに、シェーディング補正の対象となる撮像画素に最も近接する同色の撮像画素の出力を用いて、シェーディングを補正するようにしてもよい。 Note that the signal processing circuit 305 corrects shading using the output of the imaging pixel of the same color closest to the imaging pixel to be subjected to shading correction without using the shading function G (x, y, i). It may be.
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Note that the embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
 さらに、本技術は以下のような構成をとることができる。
(1)
 行列状に2次元配置された複数の撮像画素と、前記撮像画素の中に散在して配置された位相差検出画素とを有する固体撮像装置であって、
 前記撮像画素毎に形成された第1のマイクロレンズと、
 前記第1のマイクロレンズ上に形成された、前記第1のマイクロレンズより屈折率の低い平坦化膜と、
 前記位相差検出画素の前記平坦化膜上のみに形成された第2のマイクロレンズと
 を備える固体撮像装置。
(2)
 前記位相差検出画素にも、前記第1のマイクロレンズが形成される
 (1)に記載の固体撮像装置。
(3)
 前記平坦化膜の屈折率は1.5以下とされ、かつ、前記第1および第2のマイクロレンズの屈折率は1.4以上とされる
 (1)または(2)に記載の固体撮像装置。
(4)
 前記第2のマイクロレンズは、前記平坦化膜と同一の組成である
 (1)乃至(3)のいずれかに記載の固体撮像装置。
(5)
 前記平坦化膜は、アクリル系樹脂またはシロキサン系樹脂に、フッ素または中空シリカが添加されてなる
 (1)乃至(4)のいずれかに記載の固体撮像装置。
(6)
 前記第1および第2のマイクロレンズは、スチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、またはシロキサン系樹脂の有機材料よりなる
 (1)乃至(5)のいずれかに記載の固体撮像装置。
(7)
 前記第1および第2のマイクロレンズは、スチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、シロキサン系樹脂、またはポリイミド樹脂中にTiO微粒子を分散させた有機・無機ハイブリッド材料からなる
 (1)乃至(5)のいずれかに記載の固体撮像装置。
(8)
 前記第1および第2のマイクロレンズは、SiN系またはSiON系の無機材料からなる
 (1)乃至(5)のいずれかに記載の固体撮像装置。
(9)
 前記平坦化膜における前記位相差画素と前記撮像画素との境界部分に、遮光壁が形成された
 (1)乃至(8)のいずれかに記載の固体撮像装置。
(10)
 受光面側の空隙が、シールガラスおよびシール樹脂によって封止されている
 (1)乃至(9)のいずれかに記載の固体撮像装置。
(11)
 前記第2のマイクロレンズ上にさらに、前記第1および第2のマイクロレンズより屈折率の低い平坦化膜が形成され、
 前記平坦化膜上の前記空隙が、前記シールガラスおよび前記シール樹脂によって封止されている
 (10)に記載の固体撮像装置。
(12)
 前記第2のマイクロレンズ上の前記空隙が、前記シールガラスおよび前記シール樹脂によって封止されており、
 前記第2のマイクロレンズの屈折率は、前記シール樹脂の屈折率より十分高い
 (10)に記載の固体撮像装置。
(13)
 前記第2のマイクロレンズは、前記平坦化膜上に形成された凹部に、前記平坦化膜より高い屈折率の前記シール樹脂が封止されることによって形成される
 (10)に記載の固体撮像装置。
(14)
 前記シール樹脂は、アクリル系樹脂、シリコーン系樹脂、またはエポキシ系樹脂よりなる
 (10)乃至(13)のいずれかに記載の固体撮像装置。
(15)
 行列状に2次元配置された複数の撮像画素と、前記撮像画素の中に散在して配置された位相差検出画素とを有する固体撮像装置の製造方法であって、
 前記撮像画素毎に第1のマイクロレンズを形成し、
 前記第1のマイクロレンズ上に、前記第1のマイクロレンズより屈折率の低い平坦化膜を形成し、
 前記位相差検出画素の前記平坦化膜上のみに第2のマイクロレンズを形成する
 ステップを含む固体撮像装置の製造方法。
(16)
 行列状に2次元配置された複数の撮像画素と、前記撮像画素の中に散在して配置された位相差検出画素とを有する固体撮像装置であって、
 前記撮像画素毎に形成された第1のマイクロレンズと、
 前記第1のマイクロレンズ上に形成された、前記第1のマイクロレンズより屈折率の低い平坦化膜と、
 前記位相差検出画素の前記平坦化膜上のみに形成された第2のマイクロレンズと
 を備える固体撮像装置と、
 前記固体撮像装置から出力される出力信号を処理する信号処理回路と、
 入射光を前記固体撮像装置に入射するレンズと
 を備える電子機器。
(17)
 前記信号処理回路は、前記位相差画素の近傍に配置されている前記撮像画素において生じるシェーディングを補正する
 (16)に記載の電子機器。
(18)
 前記信号処理回路は、予め求められた、シェーディング補正の対象となる前記撮像画素の配置に対応したシェーディングの度合を表すシェーディング関数を用いて、前記シェーディングを補正する
 (17)に記載の電子機器。
(19)
 前記シェーディング関数は、前記レンズ部のレンズパラメータに応じて求められる
 (18)に記載の電子機器。
(20)
 前記信号処理回路は、シェーディング補正の対象となる前記撮像画素に最も近接する同色の前記撮像画素の出力を用いて、前記シェーディングを補正する
 (17)に記載の電子機器。
Furthermore, this technique can take the following structures.
(1)
A solid-state imaging device having a plurality of imaging pixels arranged two-dimensionally in a matrix and phase difference detection pixels arranged scattered in the imaging pixels,
A first microlens formed for each imaging pixel;
A planarizing film formed on the first microlens and having a refractive index lower than that of the first microlens;
A solid-state imaging device comprising: a second microlens formed only on the planarizing film of the phase difference detection pixel.
(2)
The solid-state imaging device according to (1), wherein the first microlens is also formed in the phase difference detection pixel.
(3)
The solid-state imaging device according to (1) or (2), wherein the planarization film has a refractive index of 1.5 or less, and the first and second microlenses have a refractive index of 1.4 or more.
(4)
The solid-state imaging device according to any one of (1) to (3), wherein the second microlens has the same composition as the planarization film.
(5)
The solid-state imaging device according to any one of (1) to (4), wherein the planarizing film is made by adding fluorine or hollow silica to an acrylic resin or a siloxane resin.
(6)
The first and second microlenses are made of an organic material such as a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, or a siloxane resin. (1) to (5) Imaging device.
(7)
The first and second microlenses are made of an organic / inorganic hybrid material in which TiO fine particles are dispersed in a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, a siloxane resin, or a polyimide resin. The solid-state imaging device according to any one of 1) to (5).
(8)
The solid-state imaging device according to any one of (1) to (5), wherein the first and second microlenses are made of an SiN-based or SiON-based inorganic material.
(9)
The solid-state imaging device according to any one of (1) to (8), wherein a light-shielding wall is formed at a boundary portion between the phase difference pixel and the imaging pixel in the planarizing film.
(10)
The solid-state imaging device according to any one of (1) to (9), wherein a gap on the light-receiving surface side is sealed with a seal glass and a seal resin.
(11)
Further, a planarizing film having a lower refractive index than the first and second microlenses is formed on the second microlens,
The solid-state imaging device according to (10), wherein the gap on the planarizing film is sealed with the seal glass and the seal resin.
(12)
The gap on the second microlens is sealed by the seal glass and the seal resin;
The solid-state imaging device according to (10), wherein a refractive index of the second microlens is sufficiently higher than a refractive index of the seal resin.
(13)
The solid-state imaging according to (10), wherein the second microlens is formed by sealing the sealing resin having a refractive index higher than that of the planarization film in a recess formed on the planarization film. apparatus.
(14)
The solid-state imaging device according to any one of (10) to (13), wherein the seal resin is made of an acrylic resin, a silicone resin, or an epoxy resin.
(15)
A method for manufacturing a solid-state imaging device having a plurality of imaging pixels arranged two-dimensionally in a matrix and phase difference detection pixels arranged scattered in the imaging pixels,
Forming a first microlens for each imaging pixel;
A planarizing film having a refractive index lower than that of the first microlens is formed on the first microlens,
A method of manufacturing a solid-state imaging device, comprising: forming a second microlens only on the planarizing film of the phase difference detection pixel.
(16)
A solid-state imaging device having a plurality of imaging pixels arranged two-dimensionally in a matrix and phase difference detection pixels arranged scattered in the imaging pixels,
A first microlens formed for each imaging pixel;
A planarizing film formed on the first microlens and having a refractive index lower than that of the first microlens;
A solid-state imaging device comprising: a second microlens formed only on the planarization film of the phase difference detection pixel;
A signal processing circuit for processing an output signal output from the solid-state imaging device;
An electronic device comprising: a lens that makes incident light incident on the solid-state imaging device.
(17)
The electronic device according to (16), wherein the signal processing circuit corrects shading generated in the imaging pixel disposed in the vicinity of the phase difference pixel.
(18)
The electronic device according to (17), wherein the signal processing circuit corrects the shading using a shading function that is obtained in advance and represents a degree of shading corresponding to an arrangement of the imaging pixels to be subjected to shading correction.
(19)
The electronic device according to (18), wherein the shading function is obtained according to a lens parameter of the lens unit.
(20)
The electronic device according to (17), wherein the signal processing circuit corrects the shading using an output of the imaging pixel of the same color that is closest to the imaging pixel to be subjected to shading correction.
 20 固体撮像装置, 23 撮像画素, 24 位相差検出画素, 43 マイクロレンズ, 44 低n平坦化膜, 45 層上マイクロレンズ, 60 固体撮像装置, 61 位相差検出画素, 70 固体撮像装置, 71 位相差検出画素, 72 層上マイクロレンズ, 80 固体撮像装置, 81 位相差検出画素, 100 固体撮像装置, 101 位相差検出画素, 102 遮光壁, 200 固体撮像装置, 201 低n平坦化膜, 202 シール樹脂, 203 シールガラス, 210 固体撮像装置, 220 固体撮像装置, 230 固体撮像装置, 240 固体撮像装置, 241 位相差検出画素, 242 層上マイクロレンズ, 250 固体撮像装置, 251 位相差検出画素, 300 電子機器, 301 固体撮像装置, 305 信号処理回路 20 solid-state imaging device, 23 imaging pixels, 24 phase difference detection pixels, 43 microlenses, 44 low n flattened film, 45 upper microlenses, 60 solid-state imaging devices, 61 phase difference detection pixels, 70 solid-state imaging devices, 71st position Phase detection pixel, 72 layer microlens, 80 solid-state imaging device, 81 phase difference detection pixel, 100 solid-state imaging device, 101 phase difference detection pixel, 102 shading wall, 200 solid-state imaging device, 201 low n flattening film, 202 seal Resin, 203 seal glass, 210 solid-state imaging device, 220 solid-state imaging device, 230 solid-state imaging device, 240 solid-state imaging device, 241 phase difference detection pixel, 242 layer upper microlens, 250 solid-state imaging device, 251 phase difference detection pixel 300 electronics, 301 solid-state imaging device, 305 a signal processing circuit

Claims (20)

  1.  行列状に2次元配置された複数の撮像画素と、前記撮像画素の中に散在して配置された位相差検出画素とを有する固体撮像装置であって、
     前記撮像画素毎に形成された第1のマイクロレンズと、
     前記第1のマイクロレンズ上に形成された、前記第1のマイクロレンズより屈折率の低い平坦化膜と、
     前記位相差検出画素の前記平坦化膜上のみに形成された第2のマイクロレンズと
     を備える固体撮像装置。
    A solid-state imaging device having a plurality of imaging pixels arranged two-dimensionally in a matrix and phase difference detection pixels arranged scattered in the imaging pixels,
    A first microlens formed for each imaging pixel;
    A planarizing film formed on the first microlens and having a refractive index lower than that of the first microlens;
    A solid-state imaging device comprising: a second microlens formed only on the planarizing film of the phase difference detection pixel.
  2.  前記位相差検出画素にも、前記第1のマイクロレンズが形成される
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the first microlens is also formed in the phase difference detection pixel.
  3.  前記平坦化膜の屈折率は1.5以下とされ、かつ、前記第1および第2のマイクロレンズの屈折率は1.4以上とされる
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein a refractive index of the planarizing film is 1.5 or less, and a refractive index of the first and second microlenses is 1.4 or more.
  4.  前記第2のマイクロレンズは、前記平坦化膜と同一の組成である
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the second microlens has the same composition as the planarization film.
  5.  前記平坦化膜は、アクリル系樹脂またはシロキサン系樹脂に、フッ素または中空シリカが添加されてなる
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the planarizing film is made by adding fluorine or hollow silica to an acrylic resin or a siloxane resin.
  6.  前記第1および第2のマイクロレンズは、スチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、またはシロキサン系樹脂の有機材料よりなる
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the first and second microlenses are made of an organic material such as a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, or a siloxane resin.
  7.  前記第1および第2のマイクロレンズは、スチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、シロキサン系樹脂、またはポリイミド樹脂中にTiO微粒子を分散させた有機・無機ハイブリッド材料からなる
     請求項1に記載の固体撮像装置。
    The first and second microlenses are made of an organic / inorganic hybrid material in which TiO fine particles are dispersed in a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, a siloxane resin, or a polyimide resin. Item 2. The solid-state imaging device according to Item 1.
  8.  前記第1および第2のマイクロレンズは、SiN系またはSiON系の無機材料からなる
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the first and second microlenses are made of an SiN-based or SiON-based inorganic material.
  9.  前記平坦化膜における前記位相差画素と前記撮像画素との境界部分に、遮光壁が形成された
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein a light shielding wall is formed at a boundary portion between the phase difference pixel and the imaging pixel in the planarizing film.
  10.  受光面側の空隙が、シールガラスおよびシール樹脂によって封止されている
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the gap on the light receiving surface side is sealed with seal glass and seal resin.
  11.  前記第2のマイクロレンズ上にさらに、前記第1および第2のマイクロレンズより屈折率の低い平坦化膜が形成され、
     前記平坦化膜上の前記空隙が、前記シールガラスおよび前記シール樹脂によって封止されている
     請求項10に記載の固体撮像装置。
    Further, a planarizing film having a lower refractive index than the first and second microlenses is formed on the second microlens,
    The solid-state imaging device according to claim 10, wherein the gap on the planarizing film is sealed with the seal glass and the seal resin.
  12.  前記第2のマイクロレンズ上の前記空隙が、前記シールガラスおよび前記シール樹脂によって封止されており、
     前記第2のマイクロレンズの屈折率は、前記シール樹脂の屈折率より十分高い
     請求項10に記載の固体撮像装置。
    The gap on the second microlens is sealed by the seal glass and the seal resin;
    The solid-state imaging device according to claim 10, wherein a refractive index of the second microlens is sufficiently higher than a refractive index of the seal resin.
  13.  前記第2のマイクロレンズは、前記平坦化膜上に形成された凹部に、前記平坦化膜より高い屈折率の前記シール樹脂が封止されることによって形成される
     請求項10に記載の固体撮像装置。
    The solid-state imaging according to claim 10, wherein the second microlens is formed by sealing the sealing resin having a refractive index higher than that of the planarizing film in a recess formed on the planarizing film. apparatus.
  14.  前記シール樹脂は、アクリル系樹脂、シリコーン系樹脂、またはエポキシ系樹脂よりなる
     請求項10に記載の固体撮像装置。
    The solid-state imaging device according to claim 10, wherein the seal resin is made of an acrylic resin, a silicone resin, or an epoxy resin.
  15.  行列状に2次元配置された複数の撮像画素と、前記撮像画素の中に散在して配置された位相差検出画素とを有する固体撮像装置の製造方法であって、
     前記撮像画素毎に第1のマイクロレンズを形成し、
     前記第1のマイクロレンズ上に、前記第1のマイクロレンズより屈折率の低い平坦化膜を形成し、
     前記位相差検出画素の前記平坦化膜上のみに第2のマイクロレンズを形成する
     ステップを含む固体撮像装置の製造方法。
    A method for manufacturing a solid-state imaging device having a plurality of imaging pixels arranged two-dimensionally in a matrix and phase difference detection pixels arranged scattered in the imaging pixels,
    Forming a first microlens for each imaging pixel;
    A planarizing film having a refractive index lower than that of the first microlens is formed on the first microlens,
    A method of manufacturing a solid-state imaging device, comprising: forming a second microlens only on the planarizing film of the phase difference detection pixel.
  16.  行列状に2次元配置された複数の撮像画素と、前記撮像画素の中に散在して配置された位相差検出画素とを有する固体撮像装置であって、
     前記撮像画素毎に形成された第1のマイクロレンズと、
     前記第1のマイクロレンズ上に形成された、前記第1のマイクロレンズより屈折率の低い平坦化膜と、
     前記位相差検出画素の前記平坦化膜上のみに形成された第2のマイクロレンズと
     を備える固体撮像装置と、
     前記固体撮像装置から出力される出力信号を処理する信号処理回路と、
     入射光を前記固体撮像装置に入射するレンズと
     を備える電子機器。
    A solid-state imaging device having a plurality of imaging pixels arranged two-dimensionally in a matrix and phase difference detection pixels arranged scattered in the imaging pixels,
    A first microlens formed for each imaging pixel;
    A planarizing film formed on the first microlens and having a refractive index lower than that of the first microlens;
    A solid-state imaging device comprising: a second microlens formed only on the planarization film of the phase difference detection pixel;
    A signal processing circuit for processing an output signal output from the solid-state imaging device;
    An electronic device comprising: a lens that makes incident light incident on the solid-state imaging device.
  17.  前記信号処理回路は、前記位相差画素の近傍に配置されている前記撮像画素において生じるシェーディングを補正する
     請求項16に記載の電子機器。
    The electronic apparatus according to claim 16, wherein the signal processing circuit corrects shading that occurs in the imaging pixel disposed in the vicinity of the phase difference pixel.
  18.  前記信号処理回路は、予め求められた、シェーディング補正の対象となる前記撮像画素の配置に対応したシェーディングの度合を表すシェーディング関数を用いて、前記シェーディングを補正する
     請求項17に記載の電子機器。
    The electronic apparatus according to claim 17, wherein the signal processing circuit corrects the shading using a shading function that is obtained in advance and represents a degree of shading corresponding to an arrangement of the imaging pixels to be subjected to shading correction.
  19.  前記シェーディング関数は、前記レンズ部のレンズパラメータに応じて求められる
     請求項18に記載の電子機器。
    The electronic device according to claim 18, wherein the shading function is obtained according to a lens parameter of the lens unit.
  20.  前記信号処理回路は、シェーディング補正の対象となる前記撮像画素に最も近接する同色の前記撮像画素の出力を用いて、前記シェーディングを補正する
     請求項17に記載の電子機器。
    The electronic device according to claim 17, wherein the signal processing circuit corrects the shading using an output of the imaging pixel of the same color that is closest to the imaging pixel to be subjected to shading correction.
PCT/JP2014/055739 2013-03-15 2014-03-06 Solid-state image-pickup device, method for producing same, and electronic equipment WO2014141991A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015505430A JP6314969B2 (en) 2013-03-15 2014-03-06 Solid-state imaging device, manufacturing method thereof, and electronic apparatus
KR1020157020185A KR102210008B1 (en) 2013-03-15 2014-03-06 Solid-state imaging-pickup device, method for producing same, and electronic equipment
US14/773,157 US9985066B2 (en) 2013-03-15 2014-03-06 Solid-state imaging device, method for manufacturing same, and electronic device
CN201480005896.0A CN105308746B (en) 2013-03-15 2014-03-06 Solid imaging element and its manufacturing method and electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-054248 2013-03-15
JP2013054248 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014141991A1 true WO2014141991A1 (en) 2014-09-18

Family

ID=51536655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055739 WO2014141991A1 (en) 2013-03-15 2014-03-06 Solid-state image-pickup device, method for producing same, and electronic equipment

Country Status (6)

Country Link
US (1) US9985066B2 (en)
JP (1) JP6314969B2 (en)
KR (1) KR102210008B1 (en)
CN (2) CN110957338A (en)
TW (1) TWI636557B (en)
WO (1) WO2014141991A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078147A (en) * 2014-11-05 2017-08-18 索尼半导体解决方案公司 Solid-state image pickup, the manufacture method of solid-state image pickup and electronic installation
WO2019171787A1 (en) * 2018-03-07 2019-09-12 ソニーセミコンダクタソリューションズ株式会社 Imaging element and method for producing imaging element
WO2020059569A1 (en) * 2018-09-19 2020-03-26 ソニーセミコンダクタソリューションズ株式会社 Optical element, optical element array, lens group, electronic device, and method for manufacturing optical element
JP2020167435A (en) * 2015-01-13 2020-10-08 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and electronic apparatus
WO2024057735A1 (en) * 2022-09-13 2024-03-21 ソニーセミコンダクタソリューションズ株式会社 Light detection device and electronic apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026675A (en) * 2013-07-25 2015-02-05 ソニー株式会社 Solid state image sensor, manufacturing method thereof and electronic apparatus
KR102268712B1 (en) 2014-06-23 2021-06-28 삼성전자주식회사 Auto-focus image sensor and digital image processing device having the sensor
US9608023B1 (en) * 2016-05-02 2017-03-28 Omnivision Technologies, Inc. Edge reflection reduction
JP7007088B2 (en) * 2016-12-07 2022-01-24 ソニーセミコンダクタソリューションズ株式会社 Light receiving elements, image sensors and electronic devices
KR102490821B1 (en) * 2018-01-23 2023-01-19 삼성전자주식회사 Image sensor and manufacturing method thereof
KR20190012812A (en) * 2017-07-28 2019-02-11 에스케이하이닉스 주식회사 Image sensor having phase difference detection pixel
US10665627B2 (en) 2017-11-15 2020-05-26 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device and method for forming the image sensor device having a first lens and a second lens over the first lens
US10880467B2 (en) * 2018-06-25 2020-12-29 Omnivision Technologies, Inc. Image sensors with phase detection auto-focus pixels
US11121160B2 (en) 2018-10-17 2021-09-14 Canon Kabushiki Kaisha Photoelectric conversion apparatus and equipment comprising a light shielding part in a light receiving region and a light shielding film in a light shielded region
US11244978B2 (en) 2018-10-17 2022-02-08 Canon Kabushiki Kaisha Photoelectric conversion apparatus and equipment including the same
US11462580B2 (en) * 2019-06-27 2022-10-04 Semiconductor Components Industries, Llc Image sensor packages and related methods
KR20210047687A (en) 2019-10-22 2021-04-30 삼성전자주식회사 Image sensors including phase detection pixel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158109A (en) * 2005-12-06 2007-06-21 Nikon Corp Solid-state imaging device having generation function of focal detection signal, and electronic camera
JP2009021415A (en) * 2007-07-12 2009-01-29 Panasonic Corp Solid-state imaging apparatus and manufacturing method thereof
JP2010245202A (en) * 2009-04-03 2010-10-28 Panasonic Corp Solid-state image pickup device and method of manufacturing the same
JP2012175461A (en) * 2011-02-22 2012-09-10 Sony Corp Imaging apparatus and camera module
JP2013509092A (en) * 2009-10-20 2013-03-07 アップル インコーポレイテッド System and method for detection and correction of defective pixels in an image sensor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016841A (en) 2003-06-26 2005-01-20 Daikin Ind Ltd Air cleaner
JP2005116841A (en) * 2003-10-08 2005-04-28 Sharp Corp Solid state image pickup device and its manufacturing method
JP4915126B2 (en) 2006-04-10 2012-04-11 株式会社ニコン Solid-state imaging device and electronic camera
JP4946294B2 (en) 2006-09-14 2012-06-06 ソニー株式会社 Imaging device and imaging apparatus
JP2009017058A (en) * 2007-07-02 2009-01-22 Canon Inc Image processing unit, imaging apparatus, image processing method, and storage medium
JP2009064839A (en) * 2007-09-04 2009-03-26 Panasonic Corp Optical device and method for fabricating the same
KR101776955B1 (en) * 2009-02-10 2017-09-08 소니 주식회사 Solid-state imaging device, method of manufacturing the same, and electronic apparatus
JP5629995B2 (en) * 2009-09-07 2014-11-26 株式会社ニコン Imaging device and imaging apparatus
US8102460B2 (en) 2009-11-20 2012-01-24 Fujifilm Corporation Solid-state imaging device
WO2012026292A1 (en) * 2010-08-24 2012-03-01 富士フイルム株式会社 Solid-state imaging device
JP5682437B2 (en) * 2010-09-07 2015-03-11 ソニー株式会社 Solid-state imaging device, solid-state imaging device, imaging apparatus, and polarizing element manufacturing method
JP5741012B2 (en) * 2011-01-26 2015-07-01 ソニー株式会社 Method for manufacturing solid-state imaging device
JP2013012506A (en) * 2011-06-28 2013-01-17 Sony Corp Solid state imaging device manufacturing method, solid state imaging device, electronic apparatus manufacturing method and electronic apparatus
JP2013038164A (en) * 2011-08-05 2013-02-21 Sony Corp Solid state image pickup device and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158109A (en) * 2005-12-06 2007-06-21 Nikon Corp Solid-state imaging device having generation function of focal detection signal, and electronic camera
JP2009021415A (en) * 2007-07-12 2009-01-29 Panasonic Corp Solid-state imaging apparatus and manufacturing method thereof
JP2010245202A (en) * 2009-04-03 2010-10-28 Panasonic Corp Solid-state image pickup device and method of manufacturing the same
JP2013509092A (en) * 2009-10-20 2013-03-07 アップル インコーポレイテッド System and method for detection and correction of defective pixels in an image sensor
JP2012175461A (en) * 2011-02-22 2012-09-10 Sony Corp Imaging apparatus and camera module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078147A (en) * 2014-11-05 2017-08-18 索尼半导体解决方案公司 Solid-state image pickup, the manufacture method of solid-state image pickup and electronic installation
JP2020167435A (en) * 2015-01-13 2020-10-08 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and electronic apparatus
US11482561B2 (en) 2015-01-13 2022-10-25 Sony Semiconductor Solutions Corporation Solid-state imaging device, manufacturing method thereof, and electronic apparatus
JP7171652B2 (en) 2015-01-13 2022-11-15 ソニーセミコンダクタソリューションズ株式会社 Solid-state image sensor and electronic equipment
WO2019171787A1 (en) * 2018-03-07 2019-09-12 ソニーセミコンダクタソリューションズ株式会社 Imaging element and method for producing imaging element
WO2020059569A1 (en) * 2018-09-19 2020-03-26 ソニーセミコンダクタソリューションズ株式会社 Optical element, optical element array, lens group, electronic device, and method for manufacturing optical element
WO2024057735A1 (en) * 2022-09-13 2024-03-21 ソニーセミコンダクタソリューションズ株式会社 Light detection device and electronic apparatus

Also Published As

Publication number Publication date
TW201436186A (en) 2014-09-16
KR20150130974A (en) 2015-11-24
CN105308746A (en) 2016-02-03
JP6314969B2 (en) 2018-04-25
US9985066B2 (en) 2018-05-29
TWI636557B (en) 2018-09-21
US20160013233A1 (en) 2016-01-14
CN105308746B (en) 2019-10-22
KR102210008B1 (en) 2021-01-29
CN110957338A (en) 2020-04-03
JPWO2014141991A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6314969B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
JP7171652B2 (en) Solid-state image sensor and electronic equipment
US10818722B2 (en) Solid-state imaging device, method of manufacturing a solid-state imaging device, and electronic apparatus
US10204948B2 (en) Solid-state imaging device, solid-state imaging device manufacturing method, electronic device, and lens array
KR102383190B1 (en) Solid-state image-capturing device and production method thereof, and electronic appliance
JP2022027813A (en) Solid-state image sensor, method of manufacturing the same, and electronic device
CN105378926B (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
JP2014089432A (en) Solid-state imaging device, microlens forming method of solid-state imaging device and electronic apparatus
US20160027840A1 (en) Solid-state imaging device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480005896.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505430

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157020185

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14773157

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14762517

Country of ref document: EP

Kind code of ref document: A1