JP2010245202A - Solid-state image pickup device and method of manufacturing the same - Google Patents

Solid-state image pickup device and method of manufacturing the same Download PDF

Info

Publication number
JP2010245202A
JP2010245202A JP2009090578A JP2009090578A JP2010245202A JP 2010245202 A JP2010245202 A JP 2010245202A JP 2009090578 A JP2009090578 A JP 2009090578A JP 2009090578 A JP2009090578 A JP 2009090578A JP 2010245202 A JP2010245202 A JP 2010245202A
Authority
JP
Japan
Prior art keywords
center
lens
imaging region
light
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009090578A
Other languages
Japanese (ja)
Inventor
Noboru Kokusenya
昇 国仙谷
Toshihiro Kuriyama
俊寛 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009090578A priority Critical patent/JP2010245202A/en
Publication of JP2010245202A publication Critical patent/JP2010245202A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state image pickup device which is improved in uniformity of sensitivity in an imaging plane and in smear characteristics. <P>SOLUTION: An in-layer lower convex lens 6 on a light receiving portion 1 positioned in the center of the imaging plane is in a shape which is symmetrical about an axis passing a lens lowest point such that the axis is aligned with the center of an opening 16 of a light shielding film 4. An in-layer lower convex lens 6 on a light receiving portion 1 positioned closer to a periphery of the image plane than the center of the imaging plane has a lens lowest point shifted from the center of the opening 16 of the light shielding film 4 toward the periphery of the imaging plane, and the amount of shifting of the axis is larger as each light receiving portion 1 is farther away from the center of the imaging plane. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は固体撮像装置およびその製造方法に関し、特に感度の面内均一性、低スミアを実現する構造に関する。   The present invention relates to a solid-state imaging device and a manufacturing method thereof, and more particularly to a structure that realizes in-plane uniformity of sensitivity and low smear.

近年、固体撮像装置は、デジタルビデオカメラ(ムービー)やデジタルスチルカメラ、たとえば、携帯電話用、監視用、医療用および車載用のカメラなど、その用途に広がりを見せている。用途が拡大するにつれ、光学系を含むシステムの小型化の要望は強くなり、固体撮像装置の小型化の要望も強い。固体撮像装置の代表としてCCD(Charge Coupled Device)を挙げて説明する。   In recent years, solid-state imaging devices have been used in a wide range of applications such as digital video cameras (movies) and digital still cameras, such as mobile phones, surveillance cameras, medical cameras, and in-vehicle cameras. As the application expands, there is a strong demand for downsizing a system including an optical system, and there is a strong demand for downsizing of a solid-state imaging device. A CCD (Charge Coupled Device) will be described as a representative of the solid-state imaging device.

光学系が小型化されると、レンズや絞りからCCDまでの物理的距離が縮まり、入射光はCCDチップの周辺では中心に比べて大きな入射角度を持つことになる。それにより周辺領域では入射光がフォトダイオード上部にある遮光膜により「けられ」が発生し、撮像領域面内で感度の不均一やスミアの悪化が顕在化してきた。   When the optical system is miniaturized, the physical distance from the lens or diaphragm to the CCD is reduced, and incident light has a larger incident angle around the CCD chip than at the center. As a result, incident light is “erased” by the light-shielding film above the photodiode in the peripheral region, and nonuniform sensitivity and smear deterioration have become apparent in the imaging region plane.

図13は従来の固体撮像装置の撮像領域の概略断面図である。基板S内にフォトダイオードなどの受光部1が形成され、基板S上にゲート絶縁膜2を介して転送ゲート3(その下に図示しない垂直転送路(垂直CCDまたはVCCDとも言う)が形成されている)、受光部1の上方に開口部16を持った遮光膜4、層内上凸レンズ7、図示しないトップレンズなどが形成されている。13は固体撮像装置の上方に設けられた絞りである。   FIG. 13 is a schematic cross-sectional view of an imaging region of a conventional solid-state imaging device. A light receiving portion 1 such as a photodiode is formed in the substrate S, and a transfer gate 3 (a vertical transfer path (not shown) (also referred to as a vertical CCD or VCCD) not shown) is formed on the substrate S through a gate insulating film 2. The light-shielding film 4 having the opening 16 above the light-receiving portion 1, the in-layer upward convex lens 7, the top lens (not shown), and the like are formed. A diaphragm 13 is provided above the solid-state imaging device.

このような固体撮像装置に対して、入射光は絞り13から撮像面の全面に照射されるが、撮像領域中心では層内上凸レンズ7を通じて受光部1に垂直に入射する一方で、撮像領域周辺に行くほど受光部1の中心線となす角が大きくなる。撮像領域内での位置に関わらず開口部16と中心線を合わせて層内上凸レンズ7を設けたのでは、撮像領域周辺の受光部1には光はごく一部しか入射しない。   In such a solid-state imaging device, incident light is irradiated from the diaphragm 13 to the entire surface of the imaging surface. At the center of the imaging region, the light enters the light receiving unit 1 vertically through the in-layer upper convex lens 7, while the periphery of the imaging region. The angle formed with the center line of the light-receiving unit 1 increases as the distance from increases. Regardless of the position in the imaging region, if the upper convex lens 7 is provided with the opening 16 aligned with the center line, only a small amount of light is incident on the light receiving unit 1 around the imaging region.

そこで、たとえば特許文献1において、撮像領域中心からの受光部1の距離が大きいほど、その上に形成する層内上凸レンズ7を撮像領域中心寄りに大きくずらす、いわゆるスケーリングの技術を適用することが提案されている。かかる層内上凸レンズ7を通して各位置の受光部1に入射させることで撮像面内での感度の均一性を改善させるものである。図示しないトップレンズにもスケーリング技術が使用される場合もある。   Therefore, for example, in Patent Document 1, as the distance of the light receiving unit 1 from the center of the imaging region is larger, a so-called scaling technique that shifts the in-layer upward convex lens 7 formed thereon closer to the center of the imaging region can be applied. Proposed. By making the light incident on the light receiving unit 1 at each position through the intra-layer upper convex lens 7, the uniformity of sensitivity within the imaging surface is improved. A scaling technique may be used for a top lens (not shown).

特開平10−229180JP-A-10-229180

上記した固体撮像装置では、スケーリングの技術の適用によって特に撮像領域周辺のフォトダイオードで入射効果が大きくなるものの、その集光される位置は開口部16の中心よりも外側、すなわち垂直転送路寄りになるため、いわゆるスミアの悪化が問題となる。   In the above-described solid-state imaging device, although the incident effect is increased particularly in the photodiode around the imaging region by application of the scaling technique, the focused position is outside the center of the opening 16, that is, closer to the vertical transfer path. Therefore, so-called smear deterioration becomes a problem.

本発明は、上記問題に鑑み、撮像面内での感度の均一性およびスミア特性が向上した固体撮像装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a solid-state imaging device having improved sensitivity uniformity and smear characteristics in an imaging plane.

上記の目的を達成するため、本発明の固体撮像装置は、光電変換する複数の受光部と、前記複数の受光部が形成された基板の撮像領域を覆い各受光部の上方で開口した遮光膜と、前記遮光膜の各開口部の上方に形成された下に凸型のレンズとを少なくとも備えた固体撮像装置において、撮像領域の中心に位置する前記受光部上の前記下に凸型のレンズは、レンズ最下点を通る軸が前記遮光膜の開口部の中心に一致していて前記軸を中心とした対称な形状をしており、撮像領域の中心よりも周辺寄りに位置する前記受光部上の前記下に凸型のレンズは、レンズ最下点が前記遮光膜の開口部の中心から前記撮像領域の周辺寄りにずれていて、且つそのずれ量は各受光部が前記撮像領域の中心から離れるにしたがって大きいことを特徴とする。   In order to achieve the above object, a solid-state imaging device of the present invention includes a plurality of light-receiving portions that perform photoelectric conversion, and a light-shielding film that covers an imaging region of a substrate on which the plurality of light-receiving portions are formed and that is opened above each light-receiving portion. And a downwardly convex lens on the light receiving portion located at the center of the imaging region in a solid-state imaging device comprising at least a convex lens below the respective openings of the light shielding film The axis of light passing through the lens bottom point coincides with the center of the opening of the light-shielding film, has a symmetrical shape with the axis as the center, and is positioned closer to the periphery than the center of the imaging region. In the downward convex lens on the part, the lowest point of the lens is shifted from the center of the opening of the light shielding film toward the periphery of the imaging region, and the amount of the shift is determined by each light receiving unit in the imaging region. It is characterized by being larger as it gets away from the center.

また上記の固体撮像装置において、前記下に凸型のレンズの各々の上方に上に凸型のレンズが形成されており、前記上に凸型のレンズはレンズ最上点を通る軸を中心とした対称な形状であることを特徴とする。   Further, in the above solid-state imaging device, a convex lens is formed above each of the bottom convex lenses, and the top convex lens is centered on an axis passing through the lens top point. It is characterized by a symmetrical shape.

また上記の固体撮像装置において、前記下に凸型のレンズの各々の上方に上に凸型のレンズが形成されており、前記上に凸型のレンズはレンズ最上点を通る軸を中心とした対称な形状であり、撮像領域の中心に位置する前記受光部上の前記上に凸型のレンズは、前記レンズ最上点が前記遮光膜の開口部の中心に一致しており、撮像領域の中心よりも周辺寄りに位置する前記受光部上の前記上に凸型のレンズは、前記レンズ最上点が前記遮光膜の開口部の中心から前記撮像領域の中心寄りにずれていて、そのずれ量は各受光部が前記撮像領域の中心から離れるにしたがって大きいことを特徴とする。   Further, in the above solid-state imaging device, a convex lens is formed above each of the bottom convex lenses, and the top convex lens is centered on an axis passing through the lens top point. The upwardly convex lens on the light receiving unit located in the center of the imaging region has a symmetrical shape, and the uppermost point of the lens coincides with the center of the opening of the light shielding film, and the center of the imaging region In the upward convex lens on the light receiving unit located closer to the periphery, the uppermost point of the lens is shifted from the center of the opening of the light shielding film toward the center of the imaging region, and the amount of shift is Each of the light receiving portions is larger as the distance from the center of the imaging region increases.

また上記の固体撮像装置において、前記下に凸型のレンズの各々の上方に上に凸型のレンズが形成されており、撮像領域の中心に位置する前記受光部上の前記上に凸型のレンズは、レンズ最上点を通る軸が前記遮光膜の開口部の中心に一致していて前記軸を中心とした対称な形状をしており、撮像領域の中心よりも周辺寄りに位置する前記受光部上の前記上に凸型のレンズは、レンズ最上点が前記遮光膜の開口部の中心から前記撮像領域の中心寄りにずれていて、且つそのずれ量は各受光部が前記撮像領域の中心から離れるにしたがって大きいことを特徴とする。   Further, in the solid-state imaging device, a convex lens is formed above each of the convex lenses below, and the convex lens on the light receiving unit located at the center of the imaging region. The lens has a symmetrical shape with the axis passing through the lens top point coincident with the center of the opening of the light-shielding film and is centered on the axis, and is located closer to the periphery than the center of the imaging region. In the upwardly convex lens on the part, the uppermost point of the lens is shifted from the center of the opening of the light shielding film toward the center of the imaging region, and the amount of shift is determined by each light receiving unit at the center of the imaging region. It is characterized by being larger as it gets away from.

さらに、前記下に凸型のレンズの各々の上方にカラーフィルターおよびトップレンズが形成されていることを特徴とする。撮像領域の中心に位置する前記受光部上の前記トップレンズは、そのレンズ最上点が前記遮光膜の開口部の中心に一致しており、撮像領域の中心よりも周辺寄りに位置する前記受光部上の前記トップレンズは、そのレンズ最上点が前記遮光膜の開口部の中心から前記撮像領域の中心寄りにずれていて、且つそのずれ量は各受光部が前記撮像領域の中心から離れるにしたがって大きいことを特徴とする。   Further, a color filter and a top lens are formed above each of the lower convex lenses. The top lens on the light receiving unit located at the center of the imaging region has the lens uppermost point coincident with the center of the opening of the light shielding film, and is located closer to the periphery than the center of the imaging region The top lens of the upper lens has its lens top point shifted from the center of the opening of the light shielding film toward the center of the imaging region, and the amount of shift is as each light receiving unit moves away from the center of the imaging region. It is large.

本発明の固体撮像装置の製造方法は、基板の撮像領域に複数の受光部を形成する工程と、前記複数の受光部の各々の上方が開口された遮光膜を基板上に形成する形成する工程と、前記複数の受光部の各々の上方が凹形状となる第1の絶縁膜を前記遮光膜上に形成する工程と、前記第1の絶縁膜よりも屈折率の高い第2の絶縁膜を前記第1の絶縁膜上に形成する工程とを有しており、前記第1の絶縁膜を形成する工程は、該第1の絶縁膜を、前記撮像領域の中心では前記凹形状の最下点が前記遮光膜の開口部の中心に位置し、前記撮像領域の中心よりも周辺寄りに位置する前記凹形状の最下点が前記遮光膜の開口部の中心よりも撮像領域外側にずれるように形成することを特徴とする。   The method for manufacturing a solid-state imaging device according to the present invention includes a step of forming a plurality of light receiving portions in an imaging region of a substrate, and a step of forming on the substrate a light shielding film having an opening above each of the plurality of light receiving portions. Forming a first insulating film having a concave shape above each of the plurality of light receiving portions on the light shielding film, and a second insulating film having a refractive index higher than that of the first insulating film. Forming the first insulating film on the first insulating film, and the step of forming the first insulating film comprises forming the first insulating film at the bottom of the concave shape at the center of the imaging region. The point is located at the center of the opening of the light shielding film, and the concave lowest point located closer to the periphery than the center of the imaging region is shifted to the outside of the imaging region from the center of the opening of the light shielding film. It is characterized by forming in.

また上記の固体撮像装置の製造方法において、前記第1の絶縁膜を形成する工程は、前記遮光膜上にその表面形状に沿う凹形状部を持ったフロー性絶縁膜を形成する工程と、前記撮像領域の中心よりも周辺寄りに位置する前記凹形状部における前記撮像領域の周辺寄りの各一部を除去する工程と、前記フロー性絶縁膜をフローさせる工程とからなることを特徴とする。   In the method of manufacturing the solid-state imaging device, the step of forming the first insulating film includes a step of forming a flowable insulating film having a concave portion along the surface shape on the light shielding film, The method includes a step of removing each portion of the concave shape portion located nearer to the periphery than the center of the imaging region, and a step of flowing the flowable insulating film.

前記第1の絶縁膜を形成する工程は、前記遮光膜上にその表面形状に沿う凹形状部を持った第1のフロー性絶縁膜を形成する工程と、前記撮像領域の中心よりも周辺寄りに位置する前記凹形状部上であって前記撮像領域の中心寄りの箇所に第2のフロー性絶縁膜を形成する工程と、前記第1のフロー性絶縁膜及び第2のフロー性絶縁膜をフローさせる工程とからなることを特徴とする。   The step of forming the first insulating film includes a step of forming a first flowable insulating film having a concave portion along the surface shape on the light shielding film, and a step closer to the periphery than the center of the imaging region. Forming a second flow insulating film on the concave portion located at a position near the center of the imaging region; and the first flow insulating film and the second flow insulating film. And a flow process.

前記第1の絶縁膜を形成する工程の前に、前記撮像領域の中心よりも周辺寄りに位置する各受光部について、該受光部よりも前記撮像領域中心側の前記遮光膜上に凸状パターンを形成する工程をさらに備えていることを特徴とする。   Before the step of forming the first insulating film, a convex pattern is formed on the light-shielding film closer to the center of the imaging region than the light-receiving unit for each light-receiving unit located closer to the periphery than the center of the imaging region. The method further comprises the step of forming

前記遮光膜を形成する工程の前に、前記撮像領域の中心よりも周辺寄りに位置する各受光部について、該受光部よりも前記撮像領域中心側の前記基板上に凸状パターンを形成する工程をさらに備えていることを特徴とする。   Before the step of forming the light shielding film, a step of forming a convex pattern on the substrate closer to the center of the imaging region than the light receiving unit for each light receiving unit located closer to the periphery than the center of the imaging region Is further provided.

本発明によれば、下に凸型の層内レンズの形状を撮像領域内の位置に応じて最適な形状にしたので、撮像領域の周辺でも入射光を開口部の中心付近に集光することができ、撮像面内での感度の均一性およびスミア特性の向上を実現できる。   According to the present invention, the shape of the downwardly convex intralayer lens is made optimal in accordance with the position in the imaging region, so that incident light is condensed near the center of the opening even in the vicinity of the imaging region. Thus, it is possible to realize uniformity of sensitivity in the imaging surface and improvement of smear characteristics.

本発明の第1の実施形態に係る固体撮像装置の断面図Sectional drawing of the solid-state imaging device concerning the 1st Embodiment of this invention 本発明の第2の実施形態に係る固体撮像装置の断面図Sectional drawing of the solid-state imaging device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る固体撮像装置の断面図Sectional drawing of the solid-state imaging device which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る固体撮像装置の断面図Sectional drawing of the solid-state imaging device which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る固体撮像装置の断面図Sectional drawing of the solid-state imaging device concerning the 5th Embodiment of this invention 本発明の第6の実施形態に係る固体撮像装置の断面図Sectional drawing of the solid-state imaging device concerning the 6th Embodiment of this invention 本発明の固体撮像装置の第1の製造方法を示す工程断面図Process sectional drawing which shows the 1st manufacturing method of the solid-state imaging device of this invention 図7の製造方法における絶縁膜の一部除去を示す模式図Schematic showing partial removal of the insulating film in the manufacturing method of FIG. 図7の製造方法の変形例を示す断面図Sectional drawing which shows the modification of the manufacturing method of FIG. 本発明の固体撮像装置の第2の製造方法を示す工程断面図Process sectional drawing which shows the 2nd manufacturing method of the solid-state imaging device of this invention 本発明の固体撮像装置の第3の製造方法を示す工程断面図Process sectional drawing which shows the 3rd manufacturing method of the solid-state imaging device of this invention 本発明の固体撮像装置の第4の製造方法を示す工程断面図Process sectional drawing which shows the 4th manufacturing method of the solid-state imaging device of this invention 従来の固体撮像装置の断面図Sectional view of a conventional solid-state imaging device

以下、本発明の実施の形態を図面を参照しながら説明する。各図において先の図13に示したものと同じ構成要素には図13と同じ符号を付している。
図1は本発明の第1の実施形態の固体撮像装置の概略の断面図である。シリコン基板Sにフォトダイオード(PD)よりなる複数の受光部1が形成されており、互いの間に垂直CCD部(図示せず)が形成され、垂直CCD部に接続した水平CCD部(図示せず)が配置されている。
Embodiments of the present invention will be described below with reference to the drawings. In each figure, the same components as those shown in FIG. 13 are given the same reference numerals as those in FIG.
FIG. 1 is a schematic sectional view of a solid-state imaging device according to a first embodiment of the present invention. A plurality of light receiving portions 1 made of photodiodes (PD) are formed on a silicon substrate S, a vertical CCD portion (not shown) is formed between them, and a horizontal CCD portion (not shown) connected to the vertical CCD portion. ) Is arranged.

シリコン基板S上には、ゲート絶縁膜2が形成され、該ゲート絶縁膜2により垂直CCD部から分離して転送ゲート3が形成され、各受光部1の上に開口部16を持った遮光膜4が形成されている。遮光膜4は転送ゲート3を覆ってその下の垂直CCD部へ不要な光が入射することを防止する。   A gate insulating film 2 is formed on the silicon substrate S, and a transfer gate 3 is formed by being separated from the vertical CCD portion by the gate insulating film 2. A light shielding film having an opening 16 on each light receiving portion 1. 4 is formed. The light shielding film 4 covers the transfer gate 3 and prevents unnecessary light from entering the vertical CCD portion below the transfer gate 3.

遮光膜4上および開口部16内には光透過性の絶縁膜5が形成されており、絶縁膜5上であって受光部1および開口部16の上方には下に凸型のレンズ6(以下、層内下凸レンズ6という)と層内上凸レンズ7とが形成されている。   A light-transmitting insulating film 5 is formed on the light-shielding film 4 and in the opening 16, and on the insulating film 5 and above the light-receiving part 1 and the opening 16, a convex lens 6 ( Hereinafter, the in-layer downward convex lens 6) and the in-layer upward convex lens 7 are formed.

他の構成要素および領域については図示を省略しているが、層内上凸レンズ7の上方には、反射率の調整やレンズの位置調整のための中間層、カラーフィルター、マイクロレンズなどが形成されている(後述する図2参照)。この固体撮像装置の上方にカメラシステムのレンズ(図示省略)や絞り13が配置されている。   Although other components and regions are not shown, an intermediate layer, a color filter, a microlens, and the like for adjusting the reflectance and the lens position are formed above the intra-layer upper convex lens 7. (See FIG. 2 described later). A lens (not shown) and a diaphragm 13 of the camera system are disposed above the solid-state imaging device.

したがって、外部からの光は絞り13で集光され、マイクロレンズにより取り込まれ、カラーフィルターおよび中間層を透過した後、層内上凸レンズ7および層内下凸レンズ6でさらに集光されて受光部1に到達し、この受光部1で光電変換により電荷が蓄積される。   Accordingly, the light from the outside is condensed by the diaphragm 13, taken in by the microlens, transmitted through the color filter and the intermediate layer, and further condensed by the in-layer upper convex lens 7 and the in-layer lower convex lens 6 to be received by the light receiving unit 1. The charge is accumulated by photoelectric conversion in the light receiving unit 1.

各受光部1に蓄積された電荷は、転送ゲート3に与えられる電位によって読み出しゲート(図示せず)を通じて垂直CCD部に転送され、さらに転送ゲート3に順次与えられる電位によって水平CCD部へと転送され、この水平CCD部において所定方向に転送されアンプ部より出力されて、画像信号として処理される。   The electric charge accumulated in each light receiving portion 1 is transferred to the vertical CCD portion through a readout gate (not shown) by a potential applied to the transfer gate 3, and further transferred to the horizontal CCD portion by a potential sequentially applied to the transfer gate 3. In the horizontal CCD unit, the data is transferred in a predetermined direction, output from the amplifier unit, and processed as an image signal.

この際に、絞り13を通して入射してくる入射光は固体撮像装置の撮像面の全面に照射されるが、既述したように、撮像領域中心では受光部1の受光面に垂直な方向に入射する一方で、撮像領域中心から離れるほど受光部1の受光面に対する垂線となす角度が大きくなる。   At this time, incident light incident through the diaphragm 13 is irradiated on the entire imaging surface of the solid-state imaging device. However, as described above, the incident light is incident in a direction perpendicular to the light receiving surface of the light receiving unit 1 at the center of the imaging region. On the other hand, the angle formed with the perpendicular to the light receiving surface of the light receiving unit 1 increases as the distance from the center of the imaging region increases.

このため、絞り13の中心の直下(通常は撮像領域中心なので以降は撮像領域中心という)に存在する受光部1に対しては、層内上凸レンズ7、層内下凸レンズ6は、半球をはじめとする球の一部の形状などの滑らかで点対称型の形状(以下、半球状という)に、且つ開口部16中心に頂点、最下点を合わせて形成されている。なお撮像領域や開口部16の「中心」は中心もしくは中心付近を意味するものとする。   For this reason, with respect to the light receiving unit 1 existing directly below the center of the stop 13 (usually referred to as the center of the imaging region since it is the center of the imaging region), the in-layer upward convex lens 7 and the in-layer downward convex lens 6 include hemispheres Are formed in a smooth and point-symmetrical shape (hereinafter referred to as a hemispherical shape) such as a shape of a part of the sphere, and with the apex and the lowest point at the center of the opening 16. Note that the “center” of the imaging region and the opening 16 means the center or the vicinity of the center.

一方、撮像領域中心よりも周辺寄りの各受光部1に対しては、層内下凸レンズ6はその最下点を通る軸(受光面に垂直な方向の軸)が開口部16中心からずれた形状に形成されている。ずれ量は撮像領域中心から遠いものほど大きい。   On the other hand, for each light receiving part 1 closer to the periphery than the center of the imaging region, the axis passing through the lowest point of the in-layer lower convex lens 6 (axis in the direction perpendicular to the light receiving surface) is shifted from the center of the opening 16. It is formed into a shape. The amount of deviation increases as the distance from the center of the imaging region increases.

たとえば図中の右端の受光部1に対しては、開口部16を幅0.6umとし、層内下凸レンズ6をその最下点を通る軸が開口部16中心より0.2umだけ撮像領域端部寄りにずれた形状に形成してある。このずれ量は50nm〜300nm程度が適当である。層内上凸レンズ7は既述したスケーリング技術を用いてその頂点が開口部16の中心よりも撮像領域中心寄りとなるように位置をずらしてある。   For example, for the right-side light receiving unit 1 in the figure, the opening 16 has a width of 0.6 μm, and the axis passing through the lowest point of the in-layer convex lens 6 is 0.2 μm from the center of the opening 16. It is formed in a shape shifted toward the part. The amount of deviation is appropriately about 50 nm to 300 nm. The in-layer upward convex lens 7 is shifted in position by using the scaling technique described above so that its apex is closer to the center of the imaging region than the center of the opening 16.

このような構造としたことにより、入射光は層内上凸レンズ7によって開口部16の中心寄りに集光された後に、さらに層内下凸レンズ6によって開口部16の中心寄りに集光されることになり、撮像領域中心だけでなく撮像領域周辺においても開口部16のより中心付近に集光される。よって、撮像面内での感度の均一性を改善し、さらにスミアの面内ばらつきを抑制することができる。   By adopting such a structure, incident light is condensed near the center of the opening 16 by the in-layer upper convex lens 7 and then condensed near the center of the opening 16 by the in-layer lower convex lens 6. Therefore, the light is condensed near the center of the opening 16 not only at the center of the imaging area but also around the imaging area. Therefore, it is possible to improve the uniformity of sensitivity in the imaging surface and further suppress the in-plane variation of smear.

ただし本発明の特徴は、撮像領域中心よりも周辺寄りの受光部1に対しては、層内下凸レンズ6をその最下点が開口部16の中心からずれた形状に形成することで開口部16の中心寄りに集光する点に存するのであり、層内下凸レンズ6のみによって開口部16の中心付近に所望程度に集光できるのであれば、層内上凸レンズ7は必ずしも必要ではない。   However, a feature of the present invention is that, for the light receiving unit 1 closer to the periphery than the center of the imaging region, the in-layer lower convex lens 6 is formed in a shape in which its lowest point is shifted from the center of the opening 16 In this case, the in-layer upper convex lens 7 is not necessarily required as long as the light can be condensed near the center of the opening 16 only by the in-layer lower convex lens 6.

図2に示した本発明の第2の実施形態の固体撮像装置では、図1に示した固体撮像装置に比べて、各層内上凸レンズ7の上方にカラーフィルター17と上凸型のトップレンズ18とを中間層19を介して設けており、この上凸型のトップレンズ18をスケーリング技術を用いて形成している。   In the solid-state imaging device according to the second embodiment of the present invention shown in FIG. 2, a color filter 17 and an upper-convex top lens 18 are provided above the upper convex lens 7 in each layer as compared with the solid-state imaging device shown in FIG. Are provided via an intermediate layer 19, and this upwardly convex top lens 18 is formed using a scaling technique.

図3に示した本発明の第3の実施形態の固体撮像装置では、図2に示した固体撮像装置に比べてさらに、トップレンズ18を、撮像領域中心のものについては半球状とし、撮像領域中心よりも周辺寄りのものについては最上点が開口部16の中心からずれるようにレンズ曲率を変えて形成してある。ずれ量は撮像領域中心から遠いものほど大きい。   In the solid-state imaging device according to the third embodiment of the present invention shown in FIG. 3, the top lens 18 is hemispherical for the center of the imaging region as compared with the solid-state imaging device shown in FIG. The lens closer to the periphery than the center is formed by changing the lens curvature so that the uppermost point is shifted from the center of the opening 16. The amount of deviation increases as the distance from the center of the imaging region increases.

図4に示した本発明の第4の実施形態の固体撮像装置では、図1に示した固体撮像装置に比べて、撮像領域中心よりも周辺寄りの各受光部1については、層内上凸レンズ7はその最上点が開口部16の中心からずれた形状、すなわち曲率が変化した形状(または曲率がレンズ表面で変化した形状)に形成されている。ずれ量は撮像領域中心から遠いものほど大きい。   In the solid-state imaging device according to the fourth embodiment of the present invention shown in FIG. 4, each light receiving unit 1 closer to the periphery than the center of the imaging region is compared with the solid-state imaging device shown in FIG. 1. 7 is formed in a shape in which the uppermost point is shifted from the center of the opening 16, that is, a shape in which the curvature is changed (or a shape in which the curvature is changed on the lens surface). The amount of deviation increases as the distance from the center of the imaging region increases.

図5に示した本発明の第5の実施形態の固体撮像装置では、図4に示した固体撮像装置に比べてさらに、各層内上凸レンズ7の上方にカラーフィルター17と半球状の上凸型のトップレンズ18とを中間層19を介して設けており、この上凸型のトップレンズ18をスケーリング技術を用いて形成している。   In the solid-state imaging device according to the fifth embodiment of the present invention shown in FIG. 5, the color filter 17 and the hemispherical upward convex type are provided above the upper convex lens 7 in each layer as compared with the solid-state imaging device shown in FIG. 4. The top lens 18 is provided via an intermediate layer 19, and the top convex top lens 18 is formed using a scaling technique.

図6に示した本発明の第6の実施形態の固体撮像装置では、図5に示した固体撮像装置に比べてさらに、トップレンズ18を、撮像領域中心のものについては半球状とし、撮像領域中心よりも周辺寄りのものについては最上点が開口部16の中心からずれるようにレンズ曲率を変えて形成してある。ずれ量は撮像領域中心から遠いものほど大きい。   In the solid-state imaging device according to the sixth embodiment of the present invention shown in FIG. 6, the top lens 18 is hemispherical with respect to the center of the imaging region, as compared with the solid-state imaging device shown in FIG. 5. The lens closer to the periphery than the center is formed by changing the lens curvature so that the uppermost point is shifted from the center of the opening 16. The amount of deviation increases as the distance from the center of the imaging region increases.

以上のような層内上凸レンズ7やトップレンズ18を備えることにより、撮像領域周辺でも開口部16のさらに中心付近に集光される。
カラーフィルター17に関しては、RGBの原色でも補色を用いたものでもよく、そのカメラシステムの用途に応じて選択可能である。
By providing the in-layer upward convex lens 7 and the top lens 18 as described above, the light is condensed near the center of the opening 16 even around the imaging region.
The color filter 17 may be an RGB primary color or a complementary color, and can be selected according to the application of the camera system.

次に、本発明に係る固体撮像装置の製造方法について説明する。
図7は本発明の固体撮像装置の第1の製造方法を示す。図7(a)に示すように、シリコン基板Sに、イオン注入や場合によっては熱拡散技術等を用いて受光部1や転送路12等の所望の不純物拡散層を形成し、次いで熱酸化やCVD(Chemical Vapor Deposition)法によりゲート絶縁膜2を堆積させる。このゲート絶縁膜2は酸化膜単層でも酸化膜とチッ化膜等からなる2層以上の積層膜でもよい。
Next, a method for manufacturing a solid-state imaging device according to the present invention will be described.
FIG. 7 shows a first manufacturing method of the solid-state imaging device of the present invention. As shown in FIG. 7A, a desired impurity diffusion layer such as the light receiving portion 1 and the transfer path 12 is formed on the silicon substrate S by using ion implantation or a thermal diffusion technique in some cases, and then thermal oxidation or A gate insulating film 2 is deposited by a CVD (Chemical Vapor Deposition) method. The gate insulating film 2 may be a single oxide film or a laminated film of two or more layers including an oxide film and a nitride film.

その後、転送ゲート3となる膜をCVD法により堆積させ、フォトリソグラフィーとエッチングプロセス等によりパターニングする。次いで転送ゲート3を覆い受光部1の上に開口部16を持つように、W等からなる遮光膜4を熱酸化やCVD法、エッチング技術により形成する。さらに、NSG等の絶縁膜を50nm〜250nm堆積した後、BPSG(Boro-Phospho-Silicate-Glass)等のフロー性のある絶縁膜5を堆積させる。この絶縁膜5は転送ゲート3の厚みに拠って開口部16の上に凹部5aを持つものとなる。   Thereafter, a film to be the transfer gate 3 is deposited by a CVD method and patterned by photolithography, an etching process, and the like. Next, a light shielding film 4 made of W or the like is formed by thermal oxidation, CVD, or etching technique so as to cover the transfer gate 3 and have the opening 16 on the light receiving portion 1. Further, after an insulating film such as NSG is deposited to 50 nm to 250 nm, a flowable insulating film 5 such as BPSG (Boro-Phospho-Silicate-Glass) is deposited. The insulating film 5 has a recess 5 a on the opening 16 depending on the thickness of the transfer gate 3.

図7(b)に示すように、絶縁膜5の上にレジスト8を塗布し、該レジスト8を受光部1の周辺部に対応する一部を抜いた形状にパターニングし、該レジスト8をマスクとしてエッチング技術により絶縁膜5の内の少なくとも一部を除去する。   As shown in FIG. 7B, a resist 8 is applied on the insulating film 5, the resist 8 is patterned into a shape corresponding to the peripheral portion of the light receiving portion 1, and the resist 8 is masked. As a result, at least a part of the insulating film 5 is removed by an etching technique.

図7(c)に示すように、レジスト8を除去したうえで、絶縁膜5を600℃〜800℃でフローさせることにより、凹部5aのなかでも前記除去部分とその周囲部分が特に窪んだ所望の形状、言い換えると最下点が開口部16の中心からずれた形状を得る。   As shown in FIG. 7C, the resist 8 is removed and the insulating film 5 is allowed to flow at 600 ° C. to 800 ° C., so that the removed portion and the surrounding portion are particularly depressed in the recess 5a. In other words, a shape in which the lowest point is shifted from the center of the opening 16 is obtained.

図7(d)に示すように、絶縁膜5の上に、BPSGよりも屈折率の大きい物質、例えば窒素酸化シリコンや窒化シリコン(n=1.5〜2.2程度)からなる第1の屈折率の高い絶縁膜9を堆積させ、その上部をエッチバック技術やCMP技術により平坦化する。この絶縁膜9の凸状部分が上述の層内下凸レンズ6となる。   As shown in FIG. 7D, on the insulating film 5, a material having a higher refractive index than that of BPSG, such as silicon oxide or silicon nitride (n = 1.5 to 2.2), has a first high refractive index. An insulating film 9 is deposited, and the upper portion thereof is planarized by an etch back technique or a CMP technique. The convex portion of the insulating film 9 becomes the above-mentioned lower convex lens 6 in the layer.

さらに、図7(e)に示すように、例えば窒素酸化シリコンや窒化シリコン(n=1.5〜2.2程度)等の第2の屈折率の高い絶縁膜10を堆積し、エッチバック技術で上に凸型に形成する。この絶縁膜10の凸状部分が上述の層内上凸レンズ7となる。   Further, as shown in FIG. 7E, a second high-refractive-index insulating film 10 such as, for example, silicon oxide or silicon nitride (n = 1.5 to 2.2) is deposited, and is projected upward by an etch back technique. Form into a mold. The convex portion of the insulating film 10 becomes the above-mentioned upper convex lens 7 in the layer.

図8(a)(b)に、先に図7(b)で説明した絶縁膜5の一部除去を模式的に示す。撮像領域における受光部1の位置に応じてその各々の上方にある層内下凸レンズ6の形状を変えるために、レジスト8の打ち抜き部分、それによる絶縁膜5の除去部分(破線で示す)を、撮像領域中心から遠いものほど開口部16中心からのずれ量が大きくなるように設ける。   FIGS. 8A and 8B schematically show partial removal of the insulating film 5 described above with reference to FIG. In order to change the shape of the in-layer lower convex lens 6 above each of the light receiving portions 1 in the imaging region, a punched portion of the resist 8 and a removed portion of the insulating film 5 (shown by a broken line) thereby are formed. The distance from the center of the aperture 16 is increased as the distance from the center of the imaging region increases.

図7(d)(e)の工程に代えて、図9(a)に示すように、フローさせた絶縁膜5の上に、BPSGよりも屈折率の大きい物質、例えば窒素酸化シリコンや窒化シリコン(n=1.5〜2)からなる絶縁膜9を、上述の層内上凸レンズ7の最上点と同等以上まで厚く堆積し、これをエッチバック技術で図9(b)に示すような上に凸型に形成してもよい。上述の層内下凸レンズ6と層内上凸レンズ7とが一度に一体に形成されることとなる。   In place of the steps of FIGS. 7D and 7E, as shown in FIG. 9A, a material having a refractive index higher than that of BPSG, such as silicon oxide or silicon nitride, is formed on the flowed insulating film 5. An insulating film 9 made of (n = 1.5-2) is deposited to a thickness equal to or greater than the uppermost point of the above-mentioned intra-layer upward convex lens 7, and this is convex upward as shown in FIG. It may be formed into a mold. The in-layer lower convex lens 6 and the in-layer upper convex lens 7 are integrally formed at a time.

なお、層内下凸レンズ6および層内上凸レンズ7は単層であるとして図示し説明したが、これに限られるものではなく、屈折率の異なる複数の層で構成してもよい。
図10は本発明の固体撮像装置の第2の製造方法を示す。図10(a)に示すように、シリコン基板Sに、受光部1や転送路12等の所望の不純物拡散層を形成し、ゲート絶縁膜2を堆積させた後、転送ゲート3と開口部16を持った遮光膜4とを形成する。さらにその上にフロー性のある絶縁膜5を堆積させる。ここまでは先に図7(a)を用いて説明したのと同様である。
The in-layer lower convex lens 6 and the in-layer upper convex lens 7 have been illustrated and described as being a single layer, but the present invention is not limited to this and may be composed of a plurality of layers having different refractive indexes.
FIG. 10 shows a second manufacturing method of the solid-state imaging device of the present invention. As shown in FIG. 10A, after forming a desired impurity diffusion layer such as the light receiving unit 1 and the transfer path 12 on the silicon substrate S and depositing the gate insulating film 2, the transfer gate 3 and the opening 16 are formed. And a light shielding film 4 having Further, a flowable insulating film 5 is deposited thereon. The process up to this point is the same as described above with reference to FIG.

次に、絶縁膜5の上にレジスト14を塗布し、グレースケーリングマスクと呼ばれる一部の領域の光透過率を変化させてあるマスク11を用いて露光し、現像することにより、図示したように厚みが部分的に異なるレジストパターンを形成する。   Next, a resist 14 is applied on the insulating film 5, exposed and developed using a mask 11 that changes the light transmittance of a partial region called a gray scaling mask, and developed as shown in the figure. Resist patterns having partially different thicknesses are formed.

その後に、このレジスト14と絶縁膜5との選択比が0.7〜1.0になるようにエッチングし、レジスト14を除去したうえで、絶縁膜5を600℃〜800℃でリフローさせる。このことにより、図10(b)に示すような、絶縁膜5の凹部5aのなかでも一部が特に窪み、最下点が開口部16の中心からずれた形状を得る。   Thereafter, etching is performed so that the selection ratio between the resist 14 and the insulating film 5 is 0.7 to 1.0, and the resist 14 is removed, and then the insulating film 5 is reflowed at 600 ° C. to 800 ° C. As a result, as shown in FIG. 10B, a part of the recess 5 a of the insulating film 5 is particularly depressed, and the lowest point is shifted from the center of the opening 16.

その後に、図10(c)に示すような、絶縁膜9からなる層内下凸レンズ6と絶縁膜10からなる層内上凸レンズ7とを、先に図7(d)(e)を用いて説明したのと同様にして順次に形成するか、あるいは、図10(d)に示すような、絶縁膜9からなる層内下凸レンズ6および層内上凸レンズ7を、先に図9(a)(b)を用いて説明したのと同様にして一度に一体に形成する。   Thereafter, as shown in FIG. 10C, an in-layer lower convex lens 6 made of the insulating film 9 and an in-layer upper convex lens 7 made of the insulating film 10 are previously used with reference to FIGS. 7D and 7E. In the same manner as described above, the in-layer lower convex lens 6 and the intra-layer upper convex lens 7 made of the insulating film 9 as shown in FIG. In the same manner as described with reference to (b), they are integrally formed at one time.

図11は本発明の固体撮像装置の第3の製造方法を示す。図11(a)に示すように、シリコン基板Sに、受光部1や転送路12等の所望の不純物拡散層を形成し、ゲート絶縁膜2を堆積させた後、転送ゲート3と開口部16を持った遮光膜4とを形成する。ここまでは先に図7(a)を用いて説明したのと同様である。   FIG. 11 shows a third manufacturing method of the solid-state imaging device of the present invention. As shown in FIG. 11A, after forming a desired impurity diffusion layer such as the light receiving portion 1 and the transfer path 12 on the silicon substrate S and depositing the gate insulating film 2, the transfer gate 3 and the opening 16 are formed. And a light shielding film 4 having The process up to this point is the same as described above with reference to FIG.

次に、図示したように、絶縁膜15を堆積し、該絶縁膜15にレジスト(図示せず)を塗布し、該レジストをマスク11を用いて所望の形状・膜厚にパターニングし、パターニング後のレジストをマスクとして、図11(b)に示すように、絶縁膜15を転送ゲート3上の一部分にのみ残るようにエッチング技術によりパターニングする。   Next, as shown in the figure, an insulating film 15 is deposited, a resist (not shown) is applied to the insulating film 15, and the resist is patterned into a desired shape and film thickness using the mask 11, and after patterning As shown in FIG. 11B, the insulating film 15 is patterned by an etching technique so as to remain only on a part of the transfer gate 3 as shown in FIG.

次に、NSG等の絶縁膜を50nm〜250nm堆積し、さらにBPSG(Boro-Phospho-Silicate-Glass)等のフロー性のある絶縁膜5を堆積し、この絶縁膜5を600℃〜800℃でフローさせることにより、図示したような、絶縁膜5の凹部5aの最下点が開口部16の中心からずれた形状を得る。この形状は、開口部16の周囲の絶縁膜5の高さが絶縁膜15により異なることにより形成される。   Next, an insulating film such as NSG is deposited to 50 nm to 250 nm, and a flowable insulating film 5 such as BPSG (Boro-Phospho-Silicate-Glass) is further deposited, and this insulating film 5 is deposited at 600 ° C. to 800 ° C. By flowing, a shape in which the lowest point of the recess 5a of the insulating film 5 is shifted from the center of the opening 16 as shown in the drawing is obtained. This shape is formed by the height of the insulating film 5 around the opening 16 being different depending on the insulating film 15.

その後に、図11(c)に示すような、絶縁膜9からなる層内下凸レンズ6と絶縁膜10からなる層内上凸レンズ7とを、先に図7(d)(e)を用いて説明したのと同様にして順次に形成するか、あるいは、図11(d)に示すような、絶縁膜9からなる層内下凸レンズ6および層内上凸レンズ7を、先に図9(a)(b)を用いて説明したのと同様にして一度に一体に形成する。   Thereafter, as shown in FIG. 11C, the in-layer lower convex lens 6 made of the insulating film 9 and the inner upper convex lens 7 made of the insulating film 10 are previously used with reference to FIGS. 7D and 7E. In the same manner as described above, the in-layer lower convex lens 6 and the intra-layer upper convex lens 7 made of the insulating film 9 as shown in FIG. In the same manner as described with reference to (b), they are integrally formed at one time.

図12(a)(b)(c)は本発明の固体撮像装置の第4の製造方法を示す。転送ゲート3上の一部分にのみ残す絶縁膜15を、転送ゲート3と遮光膜4の間に形成している。このようにする場合は、絶縁膜15としてHTOや熱酸化膜等を形成してもよく、使用可能な物質の選択肢が増加するので、プロセスが容易になる。   12A, 12B, and 12C show a fourth manufacturing method of the solid-state imaging device of the present invention. An insulating film 15 that remains only in a part on the transfer gate 3 is formed between the transfer gate 3 and the light shielding film 4. In this case, HTO, a thermal oxide film, or the like may be formed as the insulating film 15, and the choice of usable materials increases, so that the process becomes easy.

さらには、上述の絶縁膜15の堆積およびパターニングを行わずに、フロー性のある絶縁膜5に先だって堆積するNSG等を上記膜厚よりも厚く(例えば100nm〜800nm)堆積し、このNSG等を転送ゲート3上の一部分のみが厚くなるようにエッチングするなどして、その上に形成する絶縁膜5の開口部16周囲での高さを異ならせてもよい。   Furthermore, without depositing and patterning the insulating film 15, the NSG or the like deposited prior to the flowable insulating film 5 is deposited thicker than the above film thickness (for example, 100 nm to 800 nm). The height around the opening 16 of the insulating film 5 formed thereon may be varied by etching so that only a part on the transfer gate 3 is thickened.

以上説明したように、本発明は、固体撮像装置の感度および均一性の向上、スミア特性の向上等に有用である。   As described above, the present invention is useful for improving the sensitivity and uniformity of a solid-state imaging device, improving smear characteristics, and the like.

1 受光部
2 ゲート絶縁膜
3 転送ゲート
4 遮光膜
5 フロー性のある絶縁膜
6 層内下凸レンズ
7 層内上凸レンズ
9 絶縁膜
10 絶縁膜
11 マスク
12 転送路
13 絞り
14 レジスト
15 絶縁膜
16 開口部
17 カラーフィルター
18 トップレンズ
S シリコン基板
DESCRIPTION OF SYMBOLS 1 Light-receiving part 2 Gate insulating film 3 Transfer gate 4 Light-shielding film 5 Flowing insulating film 6 In-layer lower convex lens 7 In-layer upper convex lens 9 Insulating film 10 Insulating film 11 Mask 12 Transfer path 13 Aperture 14 Resist 15 Insulating film 16 Opening Part 17 Color filter 18 Top lens S Silicon substrate

Claims (11)

光電変換する複数の受光部と、前記複数の受光部が形成された基板の撮像領域を覆い各受光部の上方で開口した遮光膜と、前記遮光膜の各開口部の上方に形成された下に凸型のレンズとを少なくとも備えた固体撮像装置において、
撮像領域の中心に位置する前記受光部上の前記下に凸型のレンズは、レンズ最下点を通る軸が前記遮光膜の開口部の中心に一致していて前記軸を中心とした対称な形状をしており、撮像領域の中心よりも周辺寄りに位置する前記受光部上の前記下に凸型のレンズは、レンズ最下点が前記遮光膜の開口部の中心から前記撮像領域の周辺寄りにずれていて、且つそのずれ量は各受光部が前記撮像領域の中心から離れるにしたがって大きいことを特徴とする固体撮像装置。
A plurality of light-receiving portions that perform photoelectric conversion, a light-shielding film that covers an imaging region of the substrate on which the plurality of light-receiving portions are formed, and that is open above each light-receiving portion; In a solid-state imaging device including at least a convex lens,
The downward convex lens on the light receiving unit located at the center of the imaging region is symmetrical with respect to the axis so that the axis passing through the lens lowest point coincides with the center of the opening of the light shielding film. The bottom convex lens on the light receiving unit, which has a shape and is located closer to the periphery than the center of the imaging region, has the lowest lens point from the center of the opening of the light shielding film to the periphery of the imaging region A solid-state image pickup device, wherein the solid-state image pickup device is shifted toward the side, and the amount of shift is larger as each light receiving unit is moved away from the center of the image pickup region.
前記下に凸型のレンズの各々の上方に上に凸型のレンズが形成されており、前記上に凸型のレンズはレンズ最上点を通る軸を中心とした対称な形状であることを特徴とする請求項1記載の固体撮像装置。   An upward convex lens is formed above each of the downward convex lenses, and the upward convex lens has a symmetrical shape centered on an axis passing through the uppermost point of the lens. The solid-state imaging device according to claim 1. 前記下に凸型のレンズの各々の上方に上に凸型のレンズが形成されており、前記上に凸型のレンズはレンズ最上点を通る軸を中心とした対称な形状であり、撮像領域の中心に位置する前記受光部上の前記上に凸型のレンズは、前記レンズ最上点が前記遮光膜の開口部の中心に一致しており、撮像領域の中心よりも周辺寄りに位置する前記受光部上の前記上に凸型のレンズは、前記レンズ最上点が前記遮光膜の開口部の中心から前記撮像領域の中心寄りにずれていて、そのずれ量は各受光部が前記撮像領域の中心から離れるにしたがって大きいことを特徴とする請求項1記載の固体撮像装置。   An upward convex lens is formed above each of the downward convex lenses, and the upward convex lens has a symmetrical shape centered on an axis passing through the uppermost point of the lens. In the upwardly convex lens on the light receiving portion located at the center of the light receiving portion, the lens uppermost point coincides with the center of the opening of the light shielding film, and is located closer to the periphery than the center of the imaging region. In the upward convex lens on the light receiving unit, the uppermost point of the lens is shifted from the center of the opening of the light shielding film toward the center of the imaging region. The solid-state imaging device according to claim 1, wherein the solid-state imaging device increases as the distance from the center increases. 前記下に凸型のレンズの各々の上方に上に凸型のレンズが形成されており、撮像領域の中心に位置する前記受光部上の前記上に凸型のレンズは、レンズ最上点を通る軸が前記遮光膜の開口部の中心に一致していて前記軸を中心とした対称な形状をしており、撮像領域の中心よりも周辺寄りに位置する前記受光部上の前記上に凸型のレンズは、レンズ最上点が前記遮光膜の開口部の中心から前記撮像領域の中心寄りにずれていて、且つそのずれ量は各受光部が前記撮像領域の中心から離れるにしたがって大きいことを特徴とする請求項1記載の固体撮像装置。   An upward convex lens is formed above each of the downward convex lenses, and the upward convex lens on the light receiving portion located at the center of the imaging region passes through the lens top point. The axis coincides with the center of the opening of the light-shielding film, has a symmetrical shape with the axis as the center, and is convex upward on the light-receiving unit located closer to the periphery than the center of the imaging region In this lens, the uppermost point of the lens is shifted from the center of the opening of the light shielding film toward the center of the imaging region, and the amount of shift increases as each light receiving unit moves away from the center of the imaging region. The solid-state imaging device according to claim 1. 前記下に凸型のレンズの各々の上方にカラーフィルターおよびトップレンズが形成されていることを特徴とする請求項1から請求項4のいずれかに記載の固体撮像装置。   5. The solid-state imaging device according to claim 1, wherein a color filter and a top lens are formed above each of the lower convex lenses. 6. 撮像領域の中心に位置する前記受光部上の前記トップレンズは、そのレンズ最上点が前記遮光膜の開口部の中心に一致しており、撮像領域の中心よりも周辺寄りに位置する前記受光部上の前記トップレンズは、そのレンズ最上点が前記遮光膜の開口部の中心から前記撮像領域の中心寄りにずれていて、且つそのずれ量は各受光部が前記撮像領域の中心から離れるにしたがって大きいことを特徴とする請求項5記載の固体撮像装置。   The top lens on the light receiving unit located at the center of the imaging region has the lens uppermost point coincident with the center of the opening of the light shielding film, and is located closer to the periphery than the center of the imaging region The top lens of the upper lens has its lens top point shifted from the center of the opening of the light shielding film toward the center of the imaging region, and the amount of shift is as each light receiving unit moves away from the center of the imaging region. 6. The solid-state imaging device according to claim 5, wherein the solid-state imaging device is large. 基板の撮像領域に複数の受光部を形成する工程と、前記複数の受光部の各々の上方が開口された遮光膜を基板上に形成する形成する工程と、前記複数の受光部の各々の上方が凹形状となる第1の絶縁膜を前記遮光膜上に形成する工程と、前記第1の絶縁膜よりも屈折率の高い第2の絶縁膜を前記第1の絶縁膜上に形成する工程とを有しており、
前記第1の絶縁膜を形成する工程は、該第1の絶縁膜を、前記撮像領域の中心では前記凹形状の最下点が前記遮光膜の開口部の中心に位置し、前記撮像領域の中心よりも周辺寄りに位置する前記凹形状の最下点が前記遮光膜の開口部の中心よりも撮像領域外側にずれるように形成することを特徴とする固体撮像装置の製造方法。
Forming a plurality of light receiving portions in an imaging region of the substrate; forming a light shielding film having an opening above each of the plurality of light receiving portions on the substrate; and above each of the plurality of light receiving portions. Forming a first insulating film having a concave shape on the light shielding film, and forming a second insulating film having a refractive index higher than that of the first insulating film on the first insulating film. And
In the step of forming the first insulating film, the lowermost point of the concave shape is positioned at the center of the opening of the light shielding film at the center of the imaging region. A manufacturing method of a solid-state imaging device, characterized in that the lowest point of the concave shape located closer to the periphery than the center is formed so as to be shifted to the outside of the imaging region from the center of the opening of the light shielding film.
前記第1の絶縁膜を形成する工程は、前記遮光膜上にその表面形状に沿う凹形状部を持ったフロー性絶縁膜を形成する工程と、前記撮像領域の中心よりも周辺寄りに位置する前記凹形状部における前記撮像領域の周辺寄りの各一部を除去する工程と、前記フロー性絶縁膜をフローさせる工程とからなることを特徴とする請求項7に記載の固体撮像装置の製造方法。   The step of forming the first insulating film is positioned closer to the periphery than the center of the imaging region, and the step of forming a flowable insulating film having a concave portion along the surface shape on the light shielding film. The method for manufacturing a solid-state imaging device according to claim 7, comprising a step of removing each part of the concave shape portion near the periphery of the imaging region and a step of flowing the flowable insulating film. . 前記第1の絶縁膜を形成する工程は、前記遮光膜上にその表面形状に沿う凹形状部を持った第1のフロー性絶縁膜を形成する工程と、前記撮像領域の中心よりも周辺寄りに位置する前記凹形状部上であって前記撮像領域の中心寄りの箇所に第2のフロー性絶縁膜を形成する工程と、前記第1のフロー性絶縁膜及び第2のフロー性絶縁膜をフローさせる工程とからなることを特徴とする請求項7に記載の固体撮像装置の製造方法。   The step of forming the first insulating film includes a step of forming a first flowable insulating film having a concave portion along the surface shape on the light shielding film, and a step closer to the periphery than the center of the imaging region. Forming a second flow insulating film on the concave portion located at a position near the center of the imaging region; and the first flow insulating film and the second flow insulating film. The method of manufacturing a solid-state imaging device according to claim 7, further comprising a flow step. 前記第1の絶縁膜を形成する工程の前に、前記撮像領域の中心よりも周辺寄りに位置する各受光部について、該受光部よりも前記撮像領域中心側の前記遮光膜上に凸状パターンを形成する工程をさらに備えていることを特徴とする請求項7に記載の固体撮像装置の製造方法。   Before the step of forming the first insulating film, a convex pattern is formed on the light-shielding film closer to the center of the imaging region than the light-receiving unit for each light-receiving unit located closer to the periphery than the center of the imaging region. The method of manufacturing a solid-state image pickup device according to claim 7, further comprising a step of forming. 前記遮光膜を形成する工程の前に、前記撮像領域の中心よりも周辺寄りに位置する各受光部について、該受光部よりも前記撮像領域中心側の前記基板上に凸状パターンを形成する工程をさらに備えていることを特徴とする請求項7に記載の固体撮像装置の製造方法。   Before the step of forming the light shielding film, a step of forming a convex pattern on the substrate closer to the center of the imaging region than the light receiving unit for each light receiving unit located closer to the periphery than the center of the imaging region The solid-state imaging device manufacturing method according to claim 7, further comprising:
JP2009090578A 2009-04-03 2009-04-03 Solid-state image pickup device and method of manufacturing the same Pending JP2010245202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090578A JP2010245202A (en) 2009-04-03 2009-04-03 Solid-state image pickup device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090578A JP2010245202A (en) 2009-04-03 2009-04-03 Solid-state image pickup device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010245202A true JP2010245202A (en) 2010-10-28

Family

ID=43097913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090578A Pending JP2010245202A (en) 2009-04-03 2009-04-03 Solid-state image pickup device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010245202A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141991A1 (en) * 2013-03-15 2014-09-18 ソニー株式会社 Solid-state image-pickup device, method for producing same, and electronic equipment
US9274254B2 (en) 2013-10-09 2016-03-01 Canon Kabushiki Kaisha Optical element array, photoelectric conversion apparatus, and image pickup system
US9285510B2 (en) 2013-06-28 2016-03-15 Canon Kabushiki Kaisha Optical element array and solid-state imaging device including the array
JP2016149417A (en) * 2015-02-10 2016-08-18 キヤノン株式会社 Solid-state imaging device, manufacturing method thereof, and imaging system
JP2020126978A (en) * 2019-02-06 2020-08-20 キヤノン株式会社 Imaging element and imaging device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141991A1 (en) * 2013-03-15 2014-09-18 ソニー株式会社 Solid-state image-pickup device, method for producing same, and electronic equipment
KR20150130974A (en) * 2013-03-15 2015-11-24 소니 주식회사 Solid-state imaging-pickup device, method for producing same, and electronic equipment
CN105308746A (en) * 2013-03-15 2016-02-03 索尼公司 Solid-state image-pickup device, method for producing same and electronic equipment
JPWO2014141991A1 (en) * 2013-03-15 2017-02-16 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and electronic apparatus
US9985066B2 (en) 2013-03-15 2018-05-29 Sony Corporation Solid-state imaging device, method for manufacturing same, and electronic device
KR102210008B1 (en) * 2013-03-15 2021-01-29 소니 주식회사 Solid-state imaging-pickup device, method for producing same, and electronic equipment
US9285510B2 (en) 2013-06-28 2016-03-15 Canon Kabushiki Kaisha Optical element array and solid-state imaging device including the array
US9274254B2 (en) 2013-10-09 2016-03-01 Canon Kabushiki Kaisha Optical element array, photoelectric conversion apparatus, and image pickup system
JP2016149417A (en) * 2015-02-10 2016-08-18 キヤノン株式会社 Solid-state imaging device, manufacturing method thereof, and imaging system
JP2020126978A (en) * 2019-02-06 2020-08-20 キヤノン株式会社 Imaging element and imaging device
JP7352359B2 (en) 2019-02-06 2023-09-28 キヤノン株式会社 Image sensor and imaging device

Similar Documents

Publication Publication Date Title
JP4310283B2 (en) Solid-state imaging device and camera using the same
US7524770B2 (en) Methods of forming image sensor microlens structures
JP5556122B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic apparatus
US7777260B2 (en) Solid-state imaging device
JP5487686B2 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
US20090250594A1 (en) Solid-state image sensor and manufacturing method thereof
US20100230583A1 (en) Solid state image pickup device, method of manufacturing the same, image pickup device, and electronic device
JP2012204354A (en) Solid state imaging device, manufacturing method thereof and electronic apparatus
JP2009088415A (en) Solid-state imaging device, method of manufacturing the same, and camera
JP2009021379A (en) Solid-state imaging apparatus and camera equipped with the same, and manufacturing method of solid-state imaging apparatus
JP2007181209A (en) Image sensor and manufacturing method thereof
US20190157332A1 (en) Back-side Illumination CMOS Image Sensor and Forming Method Thereof
KR102626696B1 (en) Solid-state imaging device and method of manufacturing the same
JP2004047682A (en) Solid-state image pickup device
CN111883548A (en) Method of forming microlens in imaging system, image sensor, and microlens
JP5759148B2 (en) Lens manufacturing method and solid-state imaging device manufacturing method
JP2010245202A (en) Solid-state image pickup device and method of manufacturing the same
JP2006121065A (en) Solid-state imaging device
US20110284979A1 (en) Solid-state imaging device and method of manufacturing same
JP2014022649A (en) Solid-state image sensor, imaging device, and electronic apparatus
JP2009124053A (en) Photoelectric converter and method of manufacturing the same
WO2012090417A1 (en) Solid-state image capturing element, manufacturing method therefor, and electronic information device
JP2007287818A (en) Solid imaging device and its manufacturing method
JP2008016559A (en) Solid-state imaging apparatus
JP2009267000A (en) Solid-state image pickup element