WO2020059276A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2020059276A1
WO2020059276A1 PCT/JP2019/028238 JP2019028238W WO2020059276A1 WO 2020059276 A1 WO2020059276 A1 WO 2020059276A1 JP 2019028238 W JP2019028238 W JP 2019028238W WO 2020059276 A1 WO2020059276 A1 WO 2020059276A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
control
artificial intelligence
learning
value
Prior art date
Application number
PCT/JP2019/028238
Other languages
English (en)
French (fr)
Inventor
中川 慎二
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020059276A1 publication Critical patent/WO2020059276A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a control device using artificial intelligence, and more particularly to a technology for detecting an abnormality thereof.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-297904
  • the output signal of each control device is controlled by the control system switching device according to the plant state, each control device and the normal / abnormal state of the input signal to the control device, and the manual operation of the operator. Is determined. "(See paragraph [0009]).
  • Patent Document 1 does not determine whether the control device is normal or abnormal in consideration of information at the time of learning artificial intelligence applied to the control device.
  • a typical example of the invention disclosed in the present application is as follows. That is, a control device using artificial intelligence. The operation of the control device depends on whether a control parameter including at least one of an input value, an internal calculation value, and an output value of the control device is within a predetermined range.
  • an abnormal operation of a control device using artificial intelligence can be prevented.
  • FIG. 6 is an overall view of a control device according to the first to seventh embodiments.
  • FIG. 8 is a system configuration diagram of a control device (learning side) in Embodiments 1 to 7.
  • FIG. 9 is a system configuration diagram of a control device (execution side) in Embodiments 1 to 7.
  • FIG. 6 is a diagram illustrating a control device and a control target according to the first and fifth embodiments.
  • FIG. 9 is a diagram illustrating a process of a learning unit of a control unit using artificial intelligence in Examples 1 to 4.
  • FIG. 14 is a diagram illustrating a process of a predetermined range determination unit (learning process) based on information at the time of learning of control using artificial intelligence in Examples 1 to 4.
  • FIG. 11 is a diagram illustrating a process of a control unit using artificial intelligence in Examples 1 to 5.
  • FIG. 9 is a diagram illustrating a process of a determination unit (execution process) of an operation state of control using artificial intelligence in Examples 1 to 4.
  • FIG. 9 is a diagram illustrating a control device and a control target according to a second embodiment.
  • FIG. 13 is a diagram illustrating a control device and a control target according to a third embodiment.
  • FIG. 14 is a diagram illustrating a control device and a control target according to a fourth embodiment.
  • FIG. 21 is a diagram illustrating a process of a learning unit of a control unit using artificial intelligence according to a fifth embodiment.
  • FIG. 21 is a diagram illustrating a process of a predetermined range determination unit (learning process) based on information at the time of learning of control using artificial intelligence in a fifth embodiment.
  • FIG. 21 is a diagram illustrating a process of a determination unit (execution process) of an operation state of control using artificial intelligence in a fifth embodiment.
  • FIG. 14 is a diagram illustrating a control device and a control target according to the sixth and seventh embodiments.
  • FIG. 21 is a diagram illustrating a process of a learning unit of a control unit using artificial intelligence in Examples 6 and 7.
  • FIG. 21 is a diagram illustrating a process of a predetermined range determination unit (learning process) based on information at the time of learning of control using artificial intelligence in a sixth embodiment.
  • FIG. 18 is a diagram illustrating a process of a control unit using artificial intelligence in Examples 6 and 7.
  • FIG. 20 is a diagram illustrating a process of a determination unit (execution process) of an operation state of control using artificial intelligence in a sixth embodiment.
  • FIG. 18 is a diagram illustrating a process of a predetermined range determination unit (learning process) based on information at the time of learning of control using artificial intelligence in the seventh embodiment.
  • FIG. 21 is a diagram illustrating a process of a determination unit (execution process) of an operation state of control using artificial intelligence in a seventh embodiment.
  • Example 1 In the present embodiment, depending on whether or not a parameter (for example, an input value, an internally calculated value, and an output value) related to control of the control device using artificial intelligence is within a predetermined range (for example, a range where there is a past record).
  • a determination unit that determines whether the operation state of the control device is normal or abnormal (whether or not to perform the processing of the control device); and learns a value of a performance parameter (for example, a weight coefficient) that determines the performance of the control device.
  • a determining unit that determines the predetermined range based on parameters related to control of the control device at the time.
  • the predetermined range is defined by at least one of an upper limit value and a lower limit value for each of the parameters related to the control.
  • a control device for controlling the temperature of the plant is exemplified.
  • the present invention relates to a control device for an automatic driving vehicle, a control device for a robot, and a control device for a flying object such as a drone. It can be applied to various uses such as.
  • FIG. 1 is a diagram showing the entirety of a control device (learning side) 1 and a control device (execution side) 2.
  • the control device (learning side) 1 has a predetermined range determining unit (learning process) 3 based on information at the time of learning, and the control device (executing side) 2 determines an operation state of control using artificial intelligence.
  • the predetermined range determination unit (learning process) 3 based on information at the time of learning executes a control using artificial intelligence based on information at the time of learning of artificial intelligence (input / internal calculation value / output at learning).
  • the range for judging the operation state (normal / abnormal) is determined.
  • the operation state determination unit (execution processing) 4 of the control using the artificial intelligence determines whether the input / internal calculation value / output at the time of execution of the control using the artificial intelligence is within the predetermined range or not. (Normal / abnormal).
  • FIG. 2 is a system configuration diagram of the control device (learning side) 1.
  • the control device (learning side) 1 has a storage device 11, a CPU 12, a ROM 13, a RAM 14, a data bus 15, an input circuit 16, an input / output port 17, and an output circuit 18 as hardware.
  • the input circuit 16 processes a signal input from the outside.
  • the external signal input to the input circuit 16 is, for example, a signal from a sensor installed or connected to the control device (learning side) 1 or the like. Alternatively, it is a signal from a sensor installed or connected to the control device (execution side) 2 or the like.
  • a signal input from the outside becomes an input signal via the input circuit 16 and is sent to the input / output port 17.
  • Each input signal sent to the input / output port is stored in the RAM 14 or the storage device 11 via the data bus 15.
  • the ROM 13 and / or the storage device 11 store a program for executing processing described later, and the program is executed by the CPU 12. At that time, the calculation is performed using the values stored in the RAM 14 and / or the storage device 11 as appropriate.
  • Information (value) to be sent out of the operation result is sent to the input / output port 17 via the data bus 15 and sent to the output circuit 18 as an output signal.
  • the output circuit 18 outputs an output signal to the outside.
  • the output signal output to the outside is information on the above-described predetermined range.
  • part of the processing performed by the CPU 12 executing the program may be executed by another arithmetic device (for example, hardware such as an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit)).
  • another arithmetic device for example, hardware such as an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit)
  • FIG. 3 is a system configuration diagram of the control device (execution side) 2.
  • the control device (execution side) 2 has a storage device 21, a CPU 22, a ROM 23, a RAM 24, a data bus 25, an input circuit 26, an input / output port 27, an output circuit 28, and a communication circuit (reception) 29 as hardware.
  • the input circuit 26 processes a signal input from the outside.
  • the external signal input to the input circuit 16 is, for example, a signal from a sensor installed or connected to the control device (execution side) 2 or the like.
  • the communication circuit (reception) 29 processes a signal input from the outside.
  • the external signal input to the communication circuit (reception) 29 is, for example, information on the above-described predetermined range transmitted from the control device (learning side) 1.
  • a signal input from the outside becomes an input signal through the input circuit 16 and is sent to the input / output port 27.
  • Each input signal sent to the input / output port is stored in the RAM 24 or the storage device 21 via the data bus 25.
  • the ROM 23 and / or the storage device 21 store a program for executing processing described later, and the program is executed by the CPU 22. At this time, the calculation is performed using the values stored in the RAM 24 and / or the storage device 21 as appropriate.
  • Information (value) to be sent out of the operation result is sent to the input / output port 27 via the data bus 25 and sent to the output circuit 28 as an output signal.
  • the output circuit 28 outputs an output signal to the outside.
  • the output signal output to the outside is, for example, an actuator signal for causing the control target to perform a desired movement.
  • a part of the processing performed by the CPU 22 executing the program may be executed by another arithmetic device (for example, hardware such as an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit)).
  • another arithmetic device for example, hardware such as an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit)
  • FIG. 4 is a diagram showing a control device (learning side) 1, a control device (execution side) 2, and a plant 7 exemplified as an object controlled by the control device (execution side) 2.
  • the learning section 5 of the control means using artificial intelligence learns the parameter values of the control means 6 using artificial intelligence.
  • the predetermined range determination unit (learning process) 3 based on information at the time of learning of control using artificial intelligence sets a predetermined range for determining whether the operation state of the control means 6 using artificial intelligence is normal or abnormal. decide.
  • the operation state determination unit (execution processing) 3 of the control using the artificial intelligence determines whether the operation state of the control unit 6 using the artificial intelligence is normal or abnormal using the determined predetermined range.
  • the control means 6 using artificial intelligence calculates an operation amount for controlling the temperature of the plant 7 (for example, a target valve opening for adjusting the steam temperature).
  • the learning unit 5 of the control unit using artificial intelligence learns parameter values of the control unit using artificial intelligence.
  • the parameter value of the artificial intelligence 51 is learned using the parameter value updater 52.
  • an inverse model of the control target is used as an example.
  • deep learning is used as artificial intelligence.
  • the input 1 to the input Na at the time of learning and the outputs 1 to Nc at the time of the learning are used as the teacher signals, and the deep learning is performed by the stochastic gradient descent method by the error back propagation method. Is determined (updated).
  • the values calculated inside the artificial intelligence during the learning (in the case of deep learning, the output values of each unit of the intermediate layer, etc.) are set to the internal calculation values 1 to Nb at the time of learning.
  • inputs 1 to Na are individual input information, and are values that change in each control cycle, and may be described as inputs 1 (k) to Na (k) (k: 1, 2, 3, ).
  • output 1 to output Nc and internal operation value 1 to internal operation value Nb are similarly expressed as output 1 (k) to output Nc (k) and internal operation value 1 (k) to internal operation value Nb (k). May be.
  • the predetermined range determination unit (learning process) 3 based on information at the time of learning of control using artificial intelligence sets a predetermined range for determining whether the operation state of the control means 6 using artificial intelligence is normal or abnormal. decide. Specifically, the following calculation is performed as shown in FIG. The following is obtained from the inputs 1 to Na at the time of learning (31).
  • U_U_1 is the maximum value of input value 1
  • U_L_1 is the minimum value of input value 1 U_U_2 for the maximum value of input value 2
  • U_L_2 is the minimum value of input value 2 ...
  • U_U_Na is the maximum value of the input value Na
  • U_L_Na is the minimum value of the input value Na
  • the following is obtained from the internal operation values 1 to Nb at the time of learning (32).
  • the maximum value of internal operation value 1 is I_U_1
  • the minimum value of internal operation value 1 is I_L_1
  • the maximum value of internal operation value 2 is I_U_2
  • the minimum value of internal operation value 2 is I_L_2
  • I_U_Nb is the maximum value of the internal operation value Nb
  • the minimum value of the internal operation value Nb is I_L_Nb
  • the following is obtained from outputs 1 to Nc during learning (33).
  • the maximum value of output value 1 is Y_U_1
  • the minimum value of output value 1 is Y_L_1
  • the maximum value of output value 2 is Y_U_2
  • the minimum value of output value 2 is Y_L_2 ...
  • the maximum value of the output value Nc is Y_U_Nc
  • the minimum value of the output value Nc is Y_L_Nc
  • Control means using artificial intelligence calculates an operation amount for controlling the temperature of the plant 7 (for example, a target valve opening for adjusting the steam temperature).
  • the artificial intelligence 61 that has been learned by the learning unit 5 of the control means using artificial intelligence is used.
  • an inverse model of the control target may be used as an example.
  • the artificial intelligence for example, deep learning can be considered.
  • the operation state determining unit (execution processing) 4 of the control using artificial intelligence determines a predetermined range determined by the predetermined range determination unit (learning processing) 3 based on information at the time of learning of control using artificial intelligence.
  • the operation state determining unit (execution processing) 4 of the control using artificial intelligence determines a predetermined range determined by the predetermined range determination unit (learning processing) 3 based on information at the time of learning of control using artificial intelligence.
  • the predetermined range is defined by an upper limit and a lower limit, but depending on the type of parameter, it may be defined by either the upper limit or the lower limit.
  • I_L_Nb Internal operation value Nb ⁇ I_U_Nb Y_L_1 ⁇ output value 1 ⁇ Y_U_1 Y_L_2 ⁇ Output value 2 ⁇ Y_U_2 ... Y_L_Nb ⁇ output value Nb ⁇ Y_U_Nb
  • control is stopped, fail-safe processing is performed, or parameters (input values, internal calculation values, output values) related to control of the control device 2 are limited to the above-described ranges. , May be controlled.
  • whether the operation state of the control device 2 using the artificial intelligence is normal or abnormal depends on whether the parameter relating to the control of the control device 2 using the artificial intelligence is within a predetermined range. It is determined whether or not the processing of the control device 2 used is to be performed. Further, the predetermined range is determined based on a parameter relating to control of the control device 1 using the artificial intelligence during learning of a value of a performance parameter (weight coefficient) for determining the performance of the control device 2 using the artificial intelligence.
  • the reliability of the control system of the plant 7 can be improved. Further, for example, when an internal operation value and / or an output value that is not included in the data at the time of learning is obtained, the adoption of the internal operation value and / or the output value of a region (space) extrapolated by artificial intelligence is required. This can be prevented (for example, the temperature does not become inappropriate), and the reliability of the control system of the plant 7 can be improved.
  • Example 2 In the present embodiment, depending on whether or not a parameter (for example, an input value, an internally calculated value, and an output value) related to control of the control device using artificial intelligence is within a predetermined range (for example, a range where there is a past record).
  • a determining unit that determines whether the operation state of the control device is normal or abnormal (whether or not to perform the processing of the control device); and a value of a performance parameter (weight coefficient) that determines the performance of the control device during learning.
  • FIG. 3 shows an embodiment including a determining unit that determines the predetermined range based on parameters related to control of the control device.
  • the predetermined range is defined by at least one of an upper limit value and a lower limit value for each of the parameters related to the control.
  • the control device is a device for controlling an automatic driving vehicle.
  • FIG. 1 shows a configuration of a control device (learning side) 1 and a control device (execution side) 2 according to the second embodiment, which are the same as those in the first embodiment, and will not be described in detail.
  • FIG. 2 shows the system configuration of the control device (learning side) 1 of the second embodiment, which is the same as that of the first embodiment, and will not be described in detail.
  • FIG. 3 shows a system configuration of the control device (execution side) 2 of the second embodiment, which is the same as that of the first embodiment, and thus will not be described in detail.
  • FIG. 9 is a diagram illustrating a control device (learning side) 1, a control device (execution side) 2, and an automatic driving vehicle 8 exemplified as objects controlled by the control device (execution side) 2 according to the second embodiment.
  • the learning section 5 of the control means using artificial intelligence learns the parameter values of the control means 6 using artificial intelligence.
  • the predetermined range determination unit (learning process) 3 based on information at the time of learning of control using artificial intelligence sets a predetermined range for determining whether the operation state of the control means 6 using artificial intelligence is normal or abnormal. decide.
  • the operation state determination unit (execution processing) 3 of the control using the artificial intelligence determines whether the operation state of the control unit 6 using the artificial intelligence is normal or abnormal using the determined predetermined range.
  • the control means 6 using artificial intelligence calculates an operation amount (for example, a target speed, a target rotation angular speed, etc.) for controlling the automatic driving vehicle 8.
  • ⁇ Learning unit of control means using artificial intelligence learns parameter values of the control unit using artificial intelligence. Specifically, this is shown in FIG. 5 and is the same as that of the first embodiment, and thus will not be described in detail.
  • the predetermined range determination unit (learning process) 3 based on information at the time of learning of control using artificial intelligence sets a predetermined range for determining whether the operation state of the control means 6 using artificial intelligence is normal or abnormal. decide. Specifically, this is shown in FIG. 6 and is the same as that of the first embodiment, and thus will not be described in detail.
  • Control means using artificial intelligence calculates an operation amount (for example, a target speed, a target rotation angular speed, etc.) for controlling the automatic driving vehicle 8.
  • an operation amount for example, a target speed, a target rotation angular speed, etc.
  • the artificial intelligence 61 that has been learned by the learning unit 5 of the control means using artificial intelligence is used.
  • an inverse model of the control target may be used as an example.
  • the artificial intelligence for example, deep learning can be considered.
  • the operation state determining unit (execution processing) 4 of the control using artificial intelligence determines a predetermined range determined by the predetermined range determination unit (learning processing) 3 based on information at the time of learning of control using artificial intelligence. To determine whether the operation state of the control means 6 using artificial intelligence is normal or abnormal. Specifically, this is shown in FIG. 8 and is the same as that of the first embodiment, and thus will not be described in detail.
  • whether the operation state of the control device 2 using the artificial intelligence is normal or abnormal depends on whether the parameter relating to the control of the control device 2 using the artificial intelligence is within a predetermined range. It is determined whether or not the processing of the control device 2 used is to be performed. Further, the predetermined range is determined based on a parameter relating to control of the control device 1 using the artificial intelligence during learning of a value of a performance parameter (weight coefficient) for determining the performance of the control device 2 using the artificial intelligence.
  • an input value that is not in the data at the time of learning (teacher data) is determined to be abnormal
  • the possibility of abnormal operation of the control device 2 using artificial intelligence can be prevented beforehand (for example, inappropriate vehicle speed or rotation For example, the angular velocity does not increase), and the reliability and safety of the control system of the self-driving vehicle 8 can be improved.
  • the adoption of the internal operation value and / or the output value of a region (space) extrapolated by artificial intelligence is required. It is possible to prevent such a situation (for example, the vehicle speed or the rotational angular speed does not become inappropriate), thereby improving the reliability and safety of the control system of the self-driving vehicle 8.
  • Example 3 In the present embodiment, depending on whether or not a parameter (for example, an input value, an internally calculated value, and an output value) related to control of the control device using artificial intelligence is within a predetermined range (for example, a range where there is a past record).
  • a determining unit that determines whether the operation state of the control device is normal or abnormal (whether or not to perform the processing of the control device); and a value of a performance parameter (weight coefficient) that determines the performance of the control device during learning.
  • FIG. 3 shows an embodiment including a determining unit that determines the predetermined range based on parameters related to control of the control device.
  • the predetermined range is defined by at least one of an upper limit value and a lower limit value for each of the parameters related to the control.
  • the control device is a device for controlling a robot.
  • FIG. 1 shows a configuration of a control device (learning side) 1 and a control device (execution side) 2 of the third embodiment, which are the same as those of the first embodiment, and will not be described in detail.
  • FIG. 2 shows the system configuration of the control device (learning side) 1 of the third embodiment, which is the same as that of the first embodiment, and will not be described in detail.
  • FIG. 3 shows the system configuration of the control device (execution side) 2 of the third embodiment, which is the same as that of the first embodiment, and will not be described in detail.
  • FIG. 10 is a diagram illustrating a control device (learning side) 1, a control device (execution side) 2, and a robot 9 exemplified as objects to be controlled by the control device (execution side) 2 according to the third embodiment.
  • the learning section 5 of the control means using artificial intelligence learns the parameter values of the control means 6 using artificial intelligence.
  • the predetermined range determination unit (learning process) 3 based on information at the time of learning of control using artificial intelligence sets a predetermined range for determining whether the operation state of the control means 6 using artificial intelligence is normal or abnormal. decide.
  • the operation state determination unit (execution processing) 3 of the control using the artificial intelligence determines whether the operation state of the control unit 6 using the artificial intelligence is normal or abnormal using the determined predetermined range.
  • the control means 6 using artificial intelligence calculates an operation amount (for example, an angle, a speed, and a torque) for controlling the robot 9.
  • ⁇ Learning unit of control means using artificial intelligence learns parameter values of the control unit using artificial intelligence. Specifically, this is shown in FIG. 5 and is the same as that of the first embodiment, and thus will not be described in detail.
  • the predetermined range determination unit (learning process) 3 based on information at the time of learning of control using artificial intelligence sets a predetermined range for determining whether the operation state of the control means 6 using artificial intelligence is normal or abnormal. decide. Specifically, this is shown in FIG. 6 and is the same as that of the first embodiment, and thus will not be described in detail.
  • Control means using artificial intelligence calculates an operation amount (for example, an angle, a speed, a torque, etc.) for controlling the robot 9.
  • an operation amount for example, an angle, a speed, a torque, etc.
  • the artificial intelligence 61 that has been learned by the learning unit 5 of the control means using artificial intelligence is used.
  • an inverse model of the control target may be used as an example.
  • the artificial intelligence for example, deep learning can be considered.
  • the operation state determining unit (execution processing) 4 of the control using artificial intelligence determines a predetermined range determined by the predetermined range determination unit (learning processing) 3 based on information at the time of learning of control using artificial intelligence. To determine whether the operation state of the control means 6 using artificial intelligence is normal or abnormal. Specifically, this is shown in FIG. 8 and is the same as that of the first embodiment, and thus will not be described in detail.
  • whether the operation state of the control device 2 using the artificial intelligence is normal or abnormal depends on whether the parameter relating to the control of the control device 2 using the artificial intelligence is within a predetermined range. It is determined whether or not the processing of the control device 2 used is to be performed. Further, the predetermined range is determined based on a parameter relating to control of the control device 1 using the artificial intelligence during learning of a value of a performance parameter (weight coefficient) for determining the performance of the control device 2 using the artificial intelligence.
  • an input value that is not in the data at the time of learning (teacher data) is determined to be abnormal, the possibility of abnormal operation of the control device 2 using artificial intelligence can be prevented beforehand (for example, inappropriate angle, speed, etc.). , No torque, etc.), the reliability of the control system of the robot 9 can be improved. Further, for example, when an internal operation value and / or an output value that is not included in the data at the time of learning is obtained, the adoption of the internal operation value and / or the output value of a region (space) extrapolated by artificial intelligence is required. (For example, an inappropriate angle, speed, torque, or the like is not caused), and the reliability of the control system of the robot 9 can be improved.
  • Example 4 In the present embodiment, depending on whether or not a parameter (for example, an input value, an internally calculated value, and an output value) related to control of the control device using artificial intelligence is within a predetermined range (for example, a range where there is a past record).
  • a determining unit that determines whether the operation state of the control device is normal or abnormal (whether or not to perform the processing of the control device); and a value of a performance parameter (weight coefficient) that determines the performance of the control device during learning.
  • FIG. 3 shows an embodiment including a determining unit that determines the predetermined range based on parameters related to control of the control device.
  • the predetermined range is defined by at least one of an upper limit value and a lower limit value for each of the parameters related to the control.
  • the control device is a device for controlling a flying object such as a drone.
  • FIG. 1 shows a configuration of a control device (learning side) 1 and a control device (execution side) 2 of the fourth embodiment, which are the same as those of the first embodiment, and will not be described in detail.
  • FIG. 2 shows the system configuration of the control device (learning side) 1 of the fourth embodiment, which is the same as that of the first embodiment, and thus will not be described in detail.
  • FIG. 3 shows the system configuration of the control device (execution side) 2 of the fourth embodiment, which is the same as that of the first embodiment, and will not be described in detail.
  • FIG. 11 is a diagram illustrating a control device (learning side) 1, a control device (execution side) 2, and a drone 10 exemplified as objects to be controlled by the control device (execution side) 2 according to the fourth embodiment.
  • the learning section 5 of the control means using artificial intelligence learns the parameter values of the control means 6 using artificial intelligence.
  • the predetermined range determination unit (learning process) 3 based on information at the time of learning of control using artificial intelligence sets a predetermined range for determining whether the operation state of the control means 6 using artificial intelligence is normal or abnormal. decide.
  • the operation state determination unit (execution processing) 3 of the control using the artificial intelligence determines whether the operation state of the control unit 6 using the artificial intelligence is normal or abnormal using the determined predetermined range.
  • the control means 6 using artificial intelligence calculates an operation amount (for example, a rotation speed of each rotor) for controlling the drone 10.
  • ⁇ Learning unit of control means using artificial intelligence learns parameter values of the control unit using artificial intelligence. Specifically, this is shown in FIG. 5 and is the same as that of the first embodiment, and thus will not be described in detail.
  • the predetermined range determination unit (learning process) 3 based on information at the time of learning of control using artificial intelligence sets a predetermined range for determining whether the operation state of the control means 6 using artificial intelligence is normal or abnormal. decide. Specifically, this is shown in FIG. 6 and is the same as that of the first embodiment, and thus will not be described in detail.
  • Control means using artificial intelligence calculates an operation amount (for example, a rotation speed of each rotor) for controlling the drone 10.
  • an operation amount for example, a rotation speed of each rotor
  • the artificial intelligence 61 that has been learned by the learning unit 5 of the control means using artificial intelligence is used.
  • an inverse model of the control target may be used as an example.
  • the artificial intelligence for example, deep learning can be considered.
  • the operation state determining unit (execution processing) 4 of the control using artificial intelligence determines a predetermined range determined by the predetermined range determination unit (learning processing) 3 based on information at the time of learning of control using artificial intelligence. To determine whether the operation state of the control means 6 using artificial intelligence is normal or abnormal. Specifically, this is shown in FIG. 8 and is the same as that of the first embodiment, and thus will not be described in detail.
  • whether the operation state of the control device 2 using the artificial intelligence is normal or abnormal depends on whether the parameter relating to the control of the control device 2 using the artificial intelligence is within a predetermined range. It is determined whether or not the processing of the control device 2 used is to be performed. Further, the predetermined range is determined based on a parameter relating to control of the control device 1 using the artificial intelligence during learning of a value of a performance parameter (weight coefficient) for determining the performance of the control device 2 using the artificial intelligence.
  • the reliability of the control system of the drone 10 can be improved. Further, for example, when an internal operation value and / or an output value that is not included in the data at the time of learning is obtained, the adoption of the internal operation value and / or the output value of a region (space) extrapolated by artificial intelligence is required. It is possible to prevent such a situation (for example, the rotation speed of each rotor does not become inappropriate), thereby improving the reliability of the control system of the drone 10.
  • Example 5 In the present embodiment, depending on whether or not a parameter (for example, an input value, an internally calculated value, and an output value) related to control of the control device using artificial intelligence is within a predetermined range (for example, a range where there is a past record).
  • a determining unit that determines whether the operation state of the control device is normal or abnormal (whether or not to perform the processing of the control device); and a value of a performance parameter (weight coefficient) that determines the performance of the control device during learning.
  • FIG. 3 shows an embodiment including a determining unit that determines the predetermined range based on parameters related to control of the control device.
  • the predetermined range defines a vector in which a vector composed of the parameters related to the control is distributed.
  • the control device is a device that controls at least the temperature of the plant, but may be a device that controls another device.
  • FIG. 1 shows a configuration of a control device (learning side) 1 and a control device (execution side) 2 according to the fifth embodiment, which are the same as those in the first embodiment, and thus will not be described in detail.
  • FIG. 2 shows the system configuration of the control device (learning side) 1 of the fifth embodiment, which is the same as that of the first embodiment, and will not be described in detail.
  • FIG. 3 shows the system configuration of the control device (execution side) 2 of the fifth embodiment, which is the same as that of the first embodiment, and will not be described in detail.
  • FIG. 4 illustrates a control device (learning side) 1, a control device (execution side) 2, and a plant 7 controlled by the control device (execution side) 2 according to the fifth embodiment. , Will not be described in detail.
  • the learning unit 5 of the control unit using artificial intelligence learns parameter values of the control unit using artificial intelligence.
  • the parameter value of the artificial intelligence 51 is learned using the parameter value updater 53.
  • an inverse model of the control target is used as an example.
  • deep learning is used as artificial intelligence.
  • the parameter value of the deep learning is determined by the stochastic gradient descent method by the back propagation method using the input 1 at the time of learning and the output 1 at the time of learning, which are the teacher signals ( Update.
  • the value calculated inside the artificial intelligence during learning (in the case of deep learning, the output value of a unit in the middle layer, etc.) is set to the internally calculated value 1 during learning.
  • the input 1 is a value that changes in the control cycle, and may be expressed as input 1 (k) (k: 1, 2, 3,).
  • the output 1 and the internal operation value 1 may also be referred to as an output 1 (k) and an internal operation value 1 (k).
  • Predetermined range determination unit processing at learning based on information at the time of learning of control using artificial intelligence (FIG. 13)>
  • the predetermined range determination unit (learning process) 3 based on information at the time of learning of control using artificial intelligence sets a predetermined range for determining whether the operation state of the control means 6 using artificial intelligence is normal or abnormal. decide. Specifically, the following calculation is performed as shown in FIG. -Update (determine) the following values so that the input 1 during learning, the internal operation value 1 during learning, and the output 1 during learning all fall within the range.
  • Input 1 axis during learning U_L_1, U_U_1 Axis of internal operation value 1 during learning: I_L_1, I_U_1
  • Output 1 axis during learning: Y_L_1, Y_U_1 U_L_1, U_U_1, I_L_1, I_U_1, Y_L_1, Y_U_1 are parameters for defining a space surrounded by the following vectors V1 to V8.
  • V1 [U_L_1, I_L_1, Y_L_1]
  • V2 [U_L_1, I_U_1, Y_L_1]
  • V3 [U_L_1, I_L_1, Y_U_1]
  • V4 [U_L_1, I_U_1, Y_U_1]
  • V5 [U_U_1, I_L_1, Y_L_1]
  • V6 [U_U_1, 1_L_1, Y_U_1]
  • V7 [U_U_1, 1_U_1, Y_L_1]
  • V8 [U_U_1, I_U_1, Y_U_1]
  • the parameter value is such that input 1 during learning, internal operation value 1 during learning, and output 1 during learning are all set.
  • the value may be set as small as possible.
  • Control means using artificial intelligence calculates an operation amount for controlling the temperature of the plant 7 (for example, a target valve opening for adjusting the steam temperature). Specifically, this is shown in FIG. 7 and is the same as that of the first embodiment, and thus will not be described in detail.
  • the operation state determining unit (execution processing) 4 of the control using artificial intelligence determines a predetermined range determined by the predetermined range determination unit (learning processing) 3 based on information at the time of learning of control using artificial intelligence.
  • the operation state determining unit (execution processing) 4 of the control using artificial intelligence determines a predetermined range determined by the predetermined range determination unit (learning processing) 3 based on information at the time of learning of control using artificial intelligence.
  • V1 [U_L_1, I_L_1, Y_L_1]
  • V2 [U_L_1, I_U_1, Y_L_1]
  • V3 [U_L_1, I_L_1, Y_U_1]
  • V4 [U_L_1, I_U_1, Y_U_1]
  • V5 [U_U_1, I_L_1, Y_L_1]
  • V6 [U_U_1, 1_L_1, Y_U_1]
  • V7 [U_U_1, 1_U_1, Y_L_1]
  • V8 [U_U_1, I_U_1, Y_U_1]
  • control may be performed by stopping the control, performing a fail-safe process, or limiting the parameters related to the control of the control device 2 within the above-described range.
  • whether the operation state of the control device 2 using the artificial intelligence is normal or abnormal depends on whether the parameter relating to the control of the control device 2 using the artificial intelligence is within a predetermined range. It is determined whether or not the processing of the control device 2 used is to be performed. Further, the predetermined range is determined based on a parameter relating to control of the control device 1 using the artificial intelligence during learning of a value of a performance parameter (weight coefficient) for determining the performance of the control device 2 using the artificial intelligence.
  • the predetermined range defines a vector in which a vector composed of parameters related to control of the control device using the artificial intelligence is distributed. Since the abnormality of the control device is determined based on whether or not there is a parameter related to control inside the vector space, the process is relatively simple.
  • the reliability of the control system of the plant 7 can be improved. Further, for example, when an internal operation value and / or an output value that is not included in the data at the time of learning is obtained, the adoption of the internal operation value and / or the output value of a region (space) extrapolated by artificial intelligence is required. This can be prevented (for example, the temperature does not become inappropriate), and the reliability of the control system of the plant 7 can be improved.
  • Example 6 In the present embodiment, depending on whether or not a parameter (for example, an input value, an internally calculated value, and an output value) related to control of the control device using artificial intelligence is within a predetermined range (for example, a range where there is a past record).
  • a determining unit that determines whether the operation state of the control device is normal or abnormal (whether or not to perform the processing of the control device); and a value of a performance parameter (weight coefficient) that determines the performance of the control device during learning.
  • FIG. 3 shows an embodiment including a determining unit that determines the predetermined range based on parameters related to control of the control device.
  • the predetermined range divides a space in which a vector composed of parameters related to the control of the control device is distributed, and defines the divided space by a vector.
  • the control device is a device that controls at least the temperature of the plant, but may be a device that controls another device.
  • FIG. 1 shows a configuration of a control device (learning side) 1 and a control device (execution side) 2 according to the fifth embodiment, which are the same as those in the first embodiment, and thus will not be described in detail.
  • FIG. 2 shows the system configuration of the control device (learning side) 1 of the fifth embodiment, which is the same as that of the first embodiment, and will not be described in detail.
  • FIG. 3 shows the system configuration of the control device (execution side) 2 of the fifth embodiment, which is the same as that of the first embodiment, and will not be described in detail.
  • FIG. 15 is a diagram illustrating a control device (learning side) 1, a control device (execution side) 2, and a plant 7 exemplified as an object controlled by the control device (execution side) 2 according to the sixth embodiment.
  • the learning section 5 of the control means using artificial intelligence learns the parameter values of the control means 6 using artificial intelligence.
  • the predetermined range determination unit (learning process) 3 based on information at the time of learning of control using artificial intelligence sets a predetermined range for determining whether the operation state of the control means 6 using artificial intelligence is normal or abnormal. decide.
  • the operation state determination unit (execution processing) 3 of the control using the artificial intelligence determines whether the operation state of the control unit 6 using the artificial intelligence is normal or abnormal using the determined predetermined range.
  • the control means 6 using artificial intelligence calculates an operation amount for controlling the temperature of the plant 7 (for example, a target valve opening for adjusting the steam temperature).
  • the learning unit 5 of the control unit using artificial intelligence learns parameter values of the control unit using artificial intelligence.
  • the parameter value of the artificial intelligence 54 is learned using the parameter value updating unit 55.
  • an inverse model of the control target is used as an example.
  • deep learning is used as artificial intelligence.
  • the parameter value of the deep learning is determined by the stochastic gradient descent method by the error back propagation method using the input 1 at the time of learning and the output 1 at the time of learning as the teacher signals ( Update.
  • the input 1 is a value that changes in the control cycle, and may be represented as input 1 (k) (k: 1, 2, 3,). Similarly, output 1 may be similarly described as output 1 (k).
  • Predetermined range determination unit processing at learning based on information at the time of learning of control using artificial intelligence (FIG. 17)>
  • the predetermined range determination unit (learning process) 3 based on information at the time of learning of control using artificial intelligence sets a predetermined range for determining whether the operation state of the control means 6 using artificial intelligence is normal or abnormal. decide. Specifically, the determination may be made by the processing shown in FIG. i) Base clustering-Data is divided (clustered) by the k-means method. ii) Definition of predetermined range-Each division range is defined by the minimum value and the maximum value of each dimension of data belonging to each division range.
  • Control means using artificial intelligence calculates an operation amount for controlling the temperature of the plant 7 (for example, a target valve opening for adjusting the steam temperature).
  • the artificial intelligence 62 learned by the learning unit 5 of the control unit using artificial intelligence is used.
  • an inverse model of the control target may be used as an example.
  • the artificial intelligence for example, deep learning can be considered.
  • control is stopped, fail-safe processing is performed, or parameters (input values, internal calculation values, output values) related to control of the control device 2 are limited to the above-described ranges. , May be controlled.
  • whether the operation state of the control device 2 using the artificial intelligence is normal or abnormal depends on whether the parameter relating to the control of the control device 2 using the artificial intelligence is within a predetermined range. It is determined whether or not the processing of the control device 2 used is to be performed. Further, the predetermined range is determined based on a parameter relating to control of the control device 1 using the artificial intelligence during learning of a value of a performance parameter (weight coefficient) for determining the performance of the control device 2 using the artificial intelligence.
  • the predetermined range divides a space in which a vector composed of parameters related to control of the control device using the artificial intelligence is distributed, and defines the divided space by a vector. Since the abnormality of the control device is determined based on whether or not there is a parameter relating to control inside the divided vector space, the expressivity of the space is improved, and relatively simple processing can be performed at the same time.
  • the reliability of the control system of the plant 7 can be improved. Further, for example, when an internal operation value and / or an output value that is not included in the data at the time of learning is obtained, the adoption of the internal operation value and / or the output value of a region (space) extrapolated by artificial intelligence is required. This can be prevented (for example, the temperature does not become inappropriate), and the reliability of the control system of the plant 7 can be improved.
  • Example 7 In the present embodiment, depending on whether or not a parameter (for example, an input value, an internally calculated value, and an output value) related to control of the control device using artificial intelligence is within a predetermined range (for example, a range where there is a past record).
  • a determining unit that determines whether the operation state of the control device is normal or abnormal (whether or not to perform the processing of the control device); and a value of a performance parameter (weight coefficient) that determines the performance of the control device during learning.
  • FIG. 3 shows an embodiment including a determining unit that determines the predetermined range based on parameters related to control of the control device.
  • the predetermined range is defined by approximating, by a function, a space in which vectors composed of parameters related to the control of the control device are distributed.
  • the control device is a device that controls at least the temperature of the plant, but may be a device that controls another device.
  • FIG. 1 shows a configuration of a control device (learning side) 1 and a control device (execution side) 2 according to the fifth embodiment, which are the same as those in the first embodiment, and thus will not be described in detail.
  • FIG. 2 shows the system configuration of the control device (learning side) 1 of the fifth embodiment, which is the same as that of the first embodiment, and will not be described in detail.
  • FIG. 3 shows the system configuration of the control device (execution side) 2 of the fifth embodiment, which is the same as that of the first embodiment, and will not be described in detail.
  • FIG. 15 shows the control device (learning side) 1, the control device (execution side) 2, and the plant 7 controlled by the control device (execution side) 2. do not do.
  • the learning unit 5 of the control unit using artificial intelligence learns parameter values of the control unit using artificial intelligence. Specifically, this is shown in FIG. 5 and is the same as that of the first embodiment, and thus will not be described in detail.
  • Predetermined range determining unit based on information at the time of learning of control using artificial intelligence (FIG. 20)>
  • the predetermined range determination unit (learning process) 3 based on information at the time of learning of control using artificial intelligence sets a predetermined range for determining whether the operation state of the control means 6 using artificial intelligence is normal or abnormal. decide. Specifically, as shown in FIG. 20, a predetermined range is determined by applying an SVM (kernel model). The SVM generates a function corresponding to a curve surrounding the data. When the vector [U, Y] is substituted into the function (SVM), if the vector does not exist within the predetermined range, the value of the SVM (kernel model) becomes negative.
  • SVM kernel model
  • Control means using artificial intelligence calculates an operation amount for controlling the temperature of the plant 7 (for example, a target valve opening for adjusting the steam temperature). Specifically, this is shown in FIG. 18 and is the same as that of the first embodiment, and thus will not be described in detail.
  • control is stopped, fail-safe processing is performed, or parameters (input values, internal calculation values, output values) related to control of the control device 2 are limited to the above-described ranges. , May be controlled.
  • whether the operation state of the control device 2 using the artificial intelligence is normal or abnormal depends on whether the parameter relating to the control of the control device 2 using the artificial intelligence is within a predetermined range. It is determined whether or not the processing of the control device 2 used is to be performed. Further, the predetermined range is determined based on a parameter relating to control of the control device 1 using the artificial intelligence during learning of a value of a performance parameter (weight coefficient) for determining the performance of the control device 2 using the artificial intelligence.
  • the predetermined range is defined by approximating, by a function, a space in which vectors composed of parameters related to control of the control device using the artificial intelligence are distributed. Since the abnormality of the control device is determined based on the output value of the function, the explanation of the abnormality determination is improved, and both relatively simple processes can be performed.
  • the reliability of the control system of the plant 7 can be improved. Further, for example, when an internal operation value and / or an output value that is not included in the data at the time of learning is obtained, the adoption of the internal operation value and / or the output value of a region (space) extrapolated by artificial intelligence is required. This can be prevented (for example, the temperature does not become inappropriate), and the reliability of the control system of the plant 7 can be improved.
  • the predetermined range determination unit (learning process) 3 based on the information at the time of learning determines at least one of the input value, the internal calculation value, and the output value of the control device 1. Whether the operation state of the control device 1 is normal or abnormal (whether or not to perform the processing of the control device) is determined by whether or not the parameter relating to the control including the two is within a predetermined range (for example, a range having a past record).
  • the determination unit (run-time processing) 4 for determining and controlling the operation state of the control using artificial intelligence relates to the control of the control device at the time of learning the value of a performance parameter (for example, a weighting factor) that determines the performance of the control device 1.
  • the predetermined range is determined on the basis of the parameter, it is possible to determine normal or abnormal based on information at the time of learning. Therefore, for example, since an input value not included in the data at the time of learning is determined to be abnormal, the possibility of abnormal operation of the control device 2 using artificial intelligence can be prevented beforehand (for example, the temperature does not become inappropriate). The reliability of the control system of the plant 7 can be improved. Further, for example, when an internal operation value and / or an output value that is not included in the data at the time of learning is obtained, the adoption of the internal operation value and / or the output value of a region (space) extrapolated by artificial intelligence is required. This can be prevented (for example, the temperature does not become inappropriate), and the reliability of the control system of the plant 7 can be improved.
  • control parameters can be defined simply and easily.
  • a predetermined range is defined by an area in a space where vectors composed of parameters related to control are distributed, it is possible to determine whether the parameters related to control satisfy predetermined conditions by determining whether the parameter is inside the vector space. It becomes convenient.
  • a predetermined range is defined by a plurality of regions combined in a space in which vectors composed of parameters related to control are distributed, whether the parameter related to control satisfies a predetermined condition is inside a plurality of divided vector spaces. It is possible to judge whether or not it is possible, and the expressiveness of the space is improved, so that relatively simple processing can be compatible.
  • a predetermined range is defined by a region approximated by a function in a space in which vectors composed of parameters related to control are distributed, whether a parameter related to control satisfies a predetermined condition is defined inside a vector space approximated by a function. It can be determined by whether or not there is, and the process becomes relatively simple.
  • the present invention is not limited to the embodiments described above, but includes various modifications and equivalent configurations within the spirit of the appended claims.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described above.
  • a part of the configuration of one embodiment may be replaced with the configuration of another embodiment.
  • the configuration of one embodiment may be added to the configuration of another embodiment.
  • a part of the configuration of each embodiment may be added, deleted, or replaced with another configuration.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be partially or entirely realized by hardware, for example, by designing an integrated circuit, or the like.
  • the program may be implemented by software by interpreting and executing the program.
  • Information such as a program, a table, and a file for realizing each function can be stored in a memory, a hard disk, a storage device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • SSD Solid State Drive
  • control lines and information lines indicate those which are considered necessary for the description, and do not necessarily indicate all the control lines and information lines necessary for mounting. In practice, it can be considered that almost all components are interconnected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Feedback Control In General (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

人工知能を用いた制御装置であって、前記制御装置の入力値、内部演算値、及び出力値の少なくとも一つを含む制御パラメータが所定範囲にあるか否かによって、前記制御装置の動作状態が正常か異常かを判定する判定部と、前記制御装置の性能を決定する性能パラメータの値を学習時の制御装置の制御パラメータに基づいて、前記所定範囲を決定する決定部とを、備えることを特徴とする。

Description

制御装置 参照による取り込み
 本出願は、平成30年(2018年)9月19日に出願された日本出願である特願2018-174508の優先権を主張し、その内容を参照することにより、本出願に取り込む。
 本発明は、人工知能を用いた制御装置に関し、特に、その異常を検知する技術に関する。
 本技術分野の背景技術として、特開平5-297904(特許文献1)がある。この文献には、「プラント状態,各制御装置及びそれらへの入力信号の正・異常状態また運転員の手動による要求に従い、制御方式切換装置により各制御装置のどの出力信号を給水調節弁の制御に使用するのか決定を行う。」と記載されている(段落[0009]参照)。
 しかしながら、前述した特許文献1に記載された先行技術は、制御装置に適用されている人工知能の学習時の情報を考慮して、制御装置の正常又は異常を判定していない。
 本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、人工知能を用いた制御装置であって、前記制御装置の入力値、内部演算値、及び出力値の少なくとも一つを含む制御パラメータが所定範囲にあるか否かによって、前記制御装置の動作状態が正常か異常かを判定する判定部と、前記制御装置の性能を決定する性能パラメータの値を学習時の制御装置の制御パラメータに基づいて、前記所定範囲を決定する決定部とを、備えることを特徴とする。
 本発明の一態様によれば、人工知能を用いた制御装置の異常動作を未然に防止できる。前述した以外の課題、構成及び効果は、以下の実施例の説明によって明らかにされる。
実施例1~7における制御装置の全体図である。 実施例1~7における制御装置(学習側)のシステム構成図である。 実施例1~7における制御装置(実行側)のシステム構成図である。 実施例1、5における制御装置と制御対象を示す図である。 実施例1~4における人工知能を用いた制御手段の学習部の処理を示す図である。 実施例1~4における人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)部の処理を示す図である。 実施例1~5における人工知能を用いた制御手段の処理を示す図である。 実施例1~4における人工知能を用いた制御の動作状態の判定部(実行時処理)部の処理を示す図である。 実施例2における制御装置と制御対象を示す図である。 実施例3における制御装置と制御対象を示す図である。 実施例4における制御装置と制御対象を示す図である。 実施例5における人工知能を用いた制御手段の学習部の処理を示す図である。 実施例5における人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)部の処理を示す図である。 実施例5における人工知能を用いた制御の動作状態の判定部(実行時処理)部の処理を示す図である。 実施例6、7における制御装置と制御対象を示す図である。 実施例6、7における人工知能を用いた制御手段の学習部の処理を示す図である。 実施例6における人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)部の処理を示す図である。 実施例6、7における人工知能を用いた制御手段の処理を示す図である。 実施例6における人工知能を用いた制御の動作状態の判定部(実行時処理)部の処理を示す図である。 実施例7における人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)部の処理を示す図である。 実施例7における人工知能を用いた制御の動作状態の判定部(実行時処理)部の処理を示す図である。
 以下、本発明の実施例を図面を用いて説明する。
 [実施例1]
 本実施例においては、人工知能を用いた制御装置の制御に関するパラメータ(例えば、入力値、内部演算値、出力値)が所定範囲(例えば、過去に実績がある範囲)にあるか否かによって、前記制御装置の動作状態が正常か異常か(前記制御装置の処理を行うか否か)を判定する判定部と、前記制御装置の性能を決定する性能パラメータ(例えば、重み係数)の値を学習時の制御装置の制御に関するパラメータに基づいて前記所定範囲を決定する決定部とを備える形態を示す。
 特に、前記所定範囲は、前記制御に関するパラメータの各々について上限値及び下限値の少なくとも一つで規定する。
 また、実施例1では、プラントの温度を制御する制御装置を例示するが、後述するように、本発明は自動運転車の制御装置や、ロボットの制御装置や、ドローンなどの飛行体の制御装置などの様々な用途に適用できる。
 図1は、制御装置(学習側)1及び制御装置(実行側)2の全体を表す図である。
 制御装置(学習側)1は、学習時の情報に基づいた所定範囲決定部(学習時処理)3を有し、制御装置(実行側)2は、人工知能を用いた制御の動作状態の判定部(実行時処理)4を有する。学習時の情報に基づいた所定範囲決定部(学習時処理)3は、人工知能の学習時の情報(学習時の入力/内部演算値/出力)に基づいて、人工知能を用いた制御実行時の動作状態(正常/異常)を判定するための範囲を決定する。人工知能を用いた制御の動作状態の判定部(実行時処理)4は、人工知能を用いた制御実行時の入力/内部演算値/出力が前記所定範囲にあるか否かで、動作状態(正常/異常)を判定する。
 図2は、制御装置(学習側)1のシステム構成図である。
 制御装置(学習側)1は、ハードウェアとして、記憶装置11、CPU12、ROM13、RAM14、データバス15、入力回路16、入出力ポート17及び出力回路18を有する。入力回路16は、外部から入力された信号を処理する。入力回路16に入力される外部からの信号とは、例えば、制御装置(学習側)1に設置又は接続されているセンサからの信号等である。又は、制御装置(実行側)2に設置又は接続されているセンサからの信号等である。外部から入力される信号は、入力回路16を経て、入力信号となり入出力ポート17へ送られる。入出力ポートに送られた各入力信号は、データバス15を経て、RAM14又は記憶装置11に格納される。ROM13及び/又は記憶装置11は、後述する処理を実行するためのプログラムを格納しており、該プログラムはCPU12で実行される。その際、RAM14及び/又は記憶装置11に格納された値を、適宜、用いて演算を行う。演算結果のうち外部へ送り出す情報(値)は、データバス15を経て入出力ポート17に送られ、出力信号として出力回路18に送られる。出力回路18は、出力信号を外部に出力する。外部へ出力される出力信号は、前述の所定範囲に関する情報などである。
 なお、CPU12がプログラムを実行して行う処理の一部を、他の演算装置(例えば、FPGA(Field Programable Gate Array)やASIC(Application Specific Integrated Circuit)などのハードウェア)で実行してもよい。
 図3は、制御装置(実行側)2のシステム構成図である。
 制御装置(実行側)2は、ハードウェアとして、記憶装置21、CPU22、ROM23、RAM24、データバス25、入力回路26、入出力ポート27、出力回路28及び通信回路(受信)29を有する。入力回路26は、外部から入力された信号を処理する。入力回路16に入力される外部からの信号とは、例えば、制御装置(実行側)2に設置又は接続されているセンサからの信号等である。通信回路(受信)29は、外部から入力された信号を処理する。通信回路(受信)29に入力される外部から信号とは、例えば、制御装置(学習側)1から送信される前述の所定範囲に関する情報等である。外部から入力される信号は、入力回路16を経て、入力信号となり入出力ポート27へ送られる。入出力ポートに送られた各入力信号は、データバス25を経て、RAM24又は記憶装置21に格納される。ROM23及び/又は記憶装置21は、後述する処理を実行するためのプログラムを格納しており、該プログラムはCPU22で実行される。その際、RAM24及び/又は記憶装置21に格納された値を、適宜、用いて演算を行う。演算結果のうち外部へ送り出す情報(値)は、データバス25を経て入出力ポート27に送られ、出力信号として出力回路28に送られる。出力回路28は、出力信号を外部に出力する。外部へ出力される出力信号は、制御対象に所望の動きをさせるためのアクチュエータ信号などである。
 なお、CPU22がプログラムを実行して行う処理の一部を、他の演算装置(例えば、FPGA(Field Programable Gate Array)やASIC(Application Specific Integrated Circuit)などのハードウェア)で実行してもよい。
 図4は、制御装置(学習側)1、制御装置(実行側)2及び制御装置(実行側)2によって制御される対象として例示するプラント7を示す図である。
 人工知能を用いた制御手段の学習部5は、人工知能を用いた制御手段6のパラメータ値を学習する。人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3は、人工知能を用いた制御手段6の動作状態が正常か異常かを判定するための所定範囲を決定する。人工知能を用いた制御の動作状態の判定部(実行時処理)3は、前記決定された所定範囲を用いて、人工知能を用いた制御手段6の動作状態が正常か異常かを判定する。人工知能を用いた制御手段6は、プラント7の温度を制御するための操作量(例えば、蒸気温度を調節するための目標バルブ開度など)を演算する。
 以下、実施例1の各処理の詳細を説明する。
 <人工知能を用いた制御手段の学習部(図5)>
 人工知能を用いた制御手段の学習部5は、人工知能を用いた制御手段のパラメータ値を学習する。具体的には、図5に示すように、パラメータ値更新器52を用いて、人工知能51のパラメータ値を学習する。人工知能を制御手段として用いる場合、制御対象の逆モデルとすることが一例として用いられる。また、人工知能として、例えば、深層学習が用いられる。深層学習のパラメータ値の更新方法としては、教師信号である学習時の入力1~入力Na及び学習時の出力1~出力Ncを用いて、誤差逆伝搬法による確率的勾配降下法で、深層学習のパラメータ値を決定(更新)する。学習中に人工知能の内部で演算される値(深層学習の場合は中間層の各ユニットの出力値など)は、学習時の内部演算値1~内部演算値Nbとする。
 なお、入力1~入力Naは、個別の入力情報であり、それぞれ制御周期で変化していく値であり、入力1(k)~入力Na(k)と表記してもよい(k:1,2,3,・・・)。同じく、出力1~出力Nc及び内部演算値1~内部演算値Nbも同様に、出力1(k)~出力Nc(k)及び内部演算値1(k)~内部演算値Nb(k)と表記してもよい。
 <人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)(図6)>
 人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3は、人工知能を用いた制御手段6の動作状態が正常か異常かを判定するための所定範囲を決定する。具体的には、図6に示すように、以下の演算を行う。
・学習時の入力1~入力Naから下記を求める(31)。
 入力値1の最大値をU_U_1
 入力値1の最小値をU_L_1
 入力値2の最大値をU_U_2
 入力値2の最小値をU_L_2
   ・・・
 入力値Naの最大値をU_U_Na
 入力値Naの最小値をU_L_Na

・学習時の内部演算値1~内部演算値Nbから下記を求める(32)。
 内部演算値1の最大値をI_U_1
 内部演算値1の最小値をI_L_1
 内部演算値2の最大値をI_U_2
 内部演算値2の最小値をI_L_2
   ・・・
 内部演算値Nbの最大値をI_U_Nb
 内部演算値Nbの最小値をI_L_Nb

・学習時の出力1~出力Ncから下記を求める(33)。
 出力値1の最大値をY_U_1
 出力値1の最小値をY_L_1
 出力値2の最大値をY_U_2
 出力値2の最小値をY_L_2
   ・・・
 出力値Ncの最大値をY_U_Nc
 出力値Ncの最小値をY_L_Nc
 <人工知能を用いた制御手段(図7)>
 人工知能を用いた制御手段6は、プラント7の温度を制御するための操作量(例えば、蒸気温度を調節するための目標バルブ開度など)を演算する。具体的には、図7に示すように、人工知能を用いた制御手段の学習部5で学習済みの人工知能61を用いる。前述したように、人工知能を制御手段として用いる場合、制御対象の逆モデルとすることが一例として考えられる。また、人工知能として、例えば、深層学習が考えられる。
 <人工知能を用いた制御の動作状態の判定部(実行時処理)(図8)>
 人工知能を用いた制御の動作状態の判定部(実行時処理)4は、人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3が決定した所定範囲を用いて、人工知能を用いた制御手段6の動作状態が正常か異常かを判定する。具体的には、図8に示すように、下記の全ての条件が成立する場合に、動作状態が正常であると判定し、異常フラグf_anomaly=0を出力する。一方、いずれか一つの条件が成立しない場合に、動作状態が異常であると判定して、異常フラグf_anomaly=1を出力する。なお、下記では、所定範囲を上限値及び下限値で規定したが、パラメータの種類によっては、上限値又は下限値のいずれかで規定してもよい。
 U_L_1 ≦ 入力値1 ≦ U_U_1
 U_L_2 ≦ 入力値2 ≦ U_U_2
   ・・・
 U_L_Na ≦ 入力値Na ≦U_U_Na
 
 I_L_1 ≦ 内部演算値1 ≦I_U_1
 I_L_2 ≦ 内部演算値2 ≦I_U_2
   ・・・
 I_L_Nb ≦ 内部演算値Nb ≦I_U_Nb
 
 Y_L_1 ≦ 出力値1 ≦ Y_U_1
 Y_L_2 ≦ 出力値2 ≦ Y_U_2
   ・・・
 Y_L_Nb ≦ 出力値Nb ≦Y_U_Nb
 f_anomaly=1のときの対応策として、制御を停止する、フェールセーフ処理を行う、又は、制御装置2の制御に関するパラメータ(入力値、内部演算値、出力値)を前述した範囲内に制限して、制御してもよい。
 本実施例によれば、人工知能を用いた制御装置2の制御に関するパラメータが所定範囲にあるか否かによって、当該人工知能を用いた制御装置2の動作状態が正常か異常か(人工知能を用いた制御装置2の処理を行うか否か)を判定する。また、当該人工知能を用いた制御装置2の性能を決定する性能パラメータ(重み係数)の値を学習中の人工知能を用いた制御装置1の制御に関するパラメータに基づいて当該所定範囲を決定する。
 従って、学習時のデータ(教師データ)にはない入力値を異常と判定するので、人工知能を用いた制御装置2の異常動作の可能性を未然に防止でき(例えば、不適切な温度にならないなど)、プラント7の制御システムの信頼性を向上できる。また、例えば、学習時のデータにはない内部演算値及び/又は出力値が得られたとき、人工知能によって外挿された領域(空間)の内部演算値及び/又は出力値の採用を未然に防止でき(例えば、不適切な温度にならないなど)、プラント7の制御システムの信頼性を向上できる。
 [実施例2]
 本実施例においては、人工知能を用いた制御装置の制御に関するパラメータ(例えば、入力値、内部演算値、出力値)が所定範囲(例えば、過去に実績がある範囲)にあるか否かによって、前記制御装置の動作状態が正常か異常か(前記制御装置の処理を行うか否か)を判定する判定部と、前記制御装置の性能を決定する性能パラメータ(重み係数)の値を学習時の制御装置の制御に関するパラメータに基づいて前記所定範囲を決定する決定部とを備える形態を示す。
 特に、前記所定範囲は、前記制御に関するパラメータの各々について上限値及び下限値の少なくとも一つで規定する。
 また、前記制御装置は、自動運転車を制御する装置である。
 図1は、実施例2の制御装置(学習側)1と制御装置(実行側)2の構成を示しており、実施例1と同じであるので、詳述しない。図2は、実施例2の制御装置(学習側)1のシステム構成を示しており、実施例1と同じであるので、詳述しない。図3は、実施例2の制御装置(実行側)2のシステム構成を示しており、実施例1と同じであるので、詳述しない。
 図9は、実施例2の制御装置(学習側)1、制御装置(実行側)2及び制御装置(実行側)2によって制御される対象として例示する自動運転車8を示す図である。
 人工知能を用いた制御手段の学習部5は、人工知能を用いた制御手段6のパラメータ値を学習する。人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3は、人工知能を用いた制御手段6の動作状態が正常か異常かを判定するための所定範囲を決定する。人工知能を用いた制御の動作状態の判定部(実行時処理)3は、前記決定された所定範囲を用いて、人工知能を用いた制御手段6の動作状態が正常か異常かを判定する。人工知能を用いた制御手段6では、自動運転車8を制御するための操作量(例えば、目標速度、目標回転角速度など)を演算する。
 以下、実施例2の各処理の詳細を説明する。
 <人工知能を用いた制御手段の学習部(図5)>
 人工知能を用いた制御手段の学習部5は、人工知能を用いた制御手段のパラメータ値を学習する。具体的には、図5に示されており、実施例1と同じであるので、詳述しない。
 <人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)(図6)>
 人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3は、人工知能を用いた制御手段6の動作状態が正常か異常かを判定するための所定範囲を決定する。具体的には、図6に示されており、実施例1と同じであるので、詳述しない。
 <人工知能を用いた制御手段(図7)>
 人工知能を用いた制御手段6は、自動運転車8を制御するための操作量(例えば、目標速度、目標回転角速度など)を演算する。具体的には、図7に示すように、人工知能を用いた制御手段の学習部5で学習済みの人工知能61を用いる。前述したように、人工知能を制御手段として用いる場合、制御対象の逆モデルとすることが一例として考えられる。また、人工知能として、例えば、深層学習が考えられる。
 <人工知能を用いた制御の動作状態の判定部(実行時処理)(図8)>
 人工知能を用いた制御の動作状態の判定部(実行時処理)4は、人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3が決定した所定範囲を用いて、人工知能を用いた制御手段6の動作状態が正常か異常かを判定する。具体的には、図8に示されており、実施例1と同じであるので、詳述しない。
 本実施例によれば、人工知能を用いた制御装置2の制御に関するパラメータが所定範囲にあるか否かによって、当該人工知能を用いた制御装置2の動作状態が正常か異常か(人工知能を用いた制御装置2の処理を行うか否か)を判定する。また、当該人工知能を用いた制御装置2の性能を決定する性能パラメータ(重み係数)の値を学習中の人工知能を用いた制御装置1の制御に関するパラメータに基づいて当該所定範囲を決定する。
 従って、学習時のデータ(教師データ)にはない入力値を異常と判定するので、人工知能を用いた制御装置2の異常動作の可能性を未然に防止でき(例えば、不適切な車速や回転角速度にならないなど)、自動運転車8の制御システムの信頼性及び安全性を向上できる。また、例えば、学習時のデータにはない内部演算値及び/又は出力値が得られたとき、人工知能によって外挿された領域(空間)の内部演算値及び/又は出力値の採用を未然に防止でき(例えば、不適切な車速や回転角速度にならないなど)、自動運転車8の制御システムの信頼性及び安全性を向上できる。
 [実施例3]
 本実施例においては、人工知能を用いた制御装置の制御に関するパラメータ(例えば、入力値、内部演算値、出力値)が所定範囲(例えば、過去に実績がある範囲)にあるか否かによって、前記制御装置の動作状態が正常か異常か(前記制御装置の処理を行うか否か)を判定する判定部と、前記制御装置の性能を決定する性能パラメータ(重み係数)の値を学習時の制御装置の制御に関するパラメータに基づいて前記所定範囲を決定する決定部とを備える形態を示す。
 特に、前記所定範囲は、前記制御に関するパラメータの各々について上限値及び下限値の少なくとも一つで規定する。
 また、前記制御装置は、ロボットを制御する装置である。
 図1は、実施例3の制御装置(学習側)1と制御装置(実行側)2の構成を示しており、実施例1と同じであるので、詳述しない。図2は、実施例3の制御装置(学習側)1のシステム構成を示しており、実施例1と同じであるので、詳述しない。図3は、実施例3の制御装置(実行側)2のシステム構成を示しており、実施例1と同じであるので、詳述しない。
 図10は、実施例3の制御装置(学習側)1、制御装置(実行側)2及び制御装置(実行側)2によって制御される対象として例示するロボット9を示す図である。
 人工知能を用いた制御手段の学習部5は、人工知能を用いた制御手段6のパラメータ値を学習する。人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3は、人工知能を用いた制御手段6の動作状態が正常か異常かを判定するための所定範囲を決定する。人工知能を用いた制御の動作状態の判定部(実行時処理)3は、前記決定された所定範囲を用いて、人工知能を用いた制御手段6の動作状態が正常か異常かを判定する。人工知能を用いた制御手段6では、ロボット9を制御するための操作量(例えば、角度、速度、トルクなど)を演算する。
 以下、実施例3の各処理の詳細を説明する。
 <人工知能を用いた制御手段の学習部(図5)>
 人工知能を用いた制御手段の学習部5は、人工知能を用いた制御手段のパラメータ値を学習する。具体的には、図5に示されており、実施例1と同じであるので、詳述しない。
 <人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)(図6)>
 人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3は、人工知能を用いた制御手段6の動作状態が正常か異常かを判定するための所定範囲を決定する。具体的には、図6に示されており、実施例1と同じであるので、詳述しない。
 <人工知能を用いた制御手段(図7)>
 人工知能を用いた制御手段6は、ロボット9を制御するための操作量(例えば、角度、速度、トルクなど)を演算する。具体的には、図7に示すように、人工知能を用いた制御手段の学習部5で学習済みの人工知能61を用いる。前述したように、人工知能を制御手段として用いる場合、制御対象の逆モデルとすることが一例として考えられる。また、人工知能として、例えば、深層学習が考えられる。
 <人工知能を用いた制御の動作状態の判定部(実行時処理)(図8)>
 人工知能を用いた制御の動作状態の判定部(実行時処理)4は、人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3が決定した所定範囲を用いて、人工知能を用いた制御手段6の動作状態が正常か異常かを判定する。具体的には、図8に示されており、実施例1と同じであるので、詳述しない。
 本実施例によれば、人工知能を用いた制御装置2の制御に関するパラメータが所定範囲にあるか否かによって、当該人工知能を用いた制御装置2の動作状態が正常か異常か(人工知能を用いた制御装置2の処理を行うか否か)を判定する。また、当該人工知能を用いた制御装置2の性能を決定する性能パラメータ(重み係数)の値を学習中の人工知能を用いた制御装置1の制御に関するパラメータに基づいて当該所定範囲を決定する。
 従って、学習時のデータ(教師データ)にはない入力値を異常と判定するので、人工知能を用いた制御装置2の異常動作の可能性を未然に防止でき(例えば、不適切な角度、速度、トルクにならないなど)、ロボット9の制御システムの信頼性を向上できる。また、例えば、学習時のデータにはない内部演算値及び/又は出力値が得られたとき、人工知能によって外挿された領域(空間)の内部演算値及び/又は出力値の採用を未然に防止でき(例えば、不適切な角度、速度、トルクなどにならないなど)、ロボット9の制御システムの信頼性を向上できる。
 [実施例4]
 本実施例においては、人工知能を用いた制御装置の制御に関するパラメータ(例えば、入力値、内部演算値、出力値)が所定範囲(例えば、過去に実績がある範囲)にあるか否かによって、前記制御装置の動作状態が正常か異常か(前記制御装置の処理を行うか否か)を判定する判定部と、前記制御装置の性能を決定する性能パラメータ(重み係数)の値を学習時の制御装置の制御に関するパラメータに基づいて前記所定範囲を決定する決定部とを備える形態を示す。
 特に、前記所定範囲は、前記制御に関するパラメータの各々について上限値及び下限値の少なくとも一つで規定する。
 また、前記制御装置は、ドローンなど飛行体を制御する装置である。
 図1は、実施例4の制御装置(学習側)1と制御装置(実行側)2の構成を示しており、実施例1と同じであるので、詳述しない。図2は、実施例4の制御装置(学習側)1のシステム構成を示しており、実施例1と同じであるので、詳述しない。図3は、実施例4の制御装置(実行側)2のシステム構成を示しており、実施例1と同じであるので、詳述しない。
 図11は、実施例4の制御装置(学習側)1、制御装置(実行側)2及び制御装置(実行側)2によって制御される対象として例示するドローン10を示す図である。
 人工知能を用いた制御手段の学習部5は、人工知能を用いた制御手段6のパラメータ値を学習する。人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3は、人工知能を用いた制御手段6の動作状態が正常か異常かを判定するための所定範囲を決定する。人工知能を用いた制御の動作状態の判定部(実行時処理)3は、前記決定された所定範囲を用いて、人工知能を用いた制御手段6の動作状態が正常か異常かを判定する。人工知能を用いた制御手段6は、ドローン10を制御するための操作量(例えば、各ロータの回転速度など)を演算する。
 以下、実施例4の各処理の詳細を説明する。
 <人工知能を用いた制御手段の学習部(図5)>
 人工知能を用いた制御手段の学習部5は、人工知能を用いた制御手段のパラメータ値を学習する。具体的には、図5に示されており、実施例1と同じであるので、詳述しない。
 <人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)>
 人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3は、人工知能を用いた制御手段6の動作状態が正常か異常かを判定するための所定範囲を決定する。具体的には、図6に示されており、実施例1と同じであるので、詳述しない。
 <人工知能を用いた制御手段(図7)>
 人工知能を用いた制御手段6は、ドローン10を制御するための操作量(例えば、各ロータの回転速度など)を演算する。具体的には、図7に示すように、人工知能を用いた制御手段の学習部5で学習済みの人工知能61を用いる。前述したように、人工知能を制御手段として用いる場合、制御対象の逆モデルとすることが一例として考えられる。また、人工知能として、例えば、深層学習が考えられる。
 <人工知能を用いた制御の動作状態の判定部(実行時処理)(図8)>
 人工知能を用いた制御の動作状態の判定部(実行時処理)4は、人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3が決定した所定範囲を用いて、人工知能を用いた制御手段6の動作状態が正常か異常かを判定する。具体的には、図8に示されており、実施例1と同じであるので、詳述しない。
 本実施例によれば、人工知能を用いた制御装置2の制御に関するパラメータが所定範囲にあるか否かによって、当該人工知能を用いた制御装置2の動作状態が正常か異常か(人工知能を用いた制御装置2の処理を行うか否か)を判定する。また、当該人工知能を用いた制御装置2の性能を決定する性能パラメータ(重み係数)の値を学習中の人工知能を用いた制御装置1の制御に関するパラメータに基づいて当該所定範囲を決定する。
 従って、学習時のデータ(教師データ)にはない入力値を異常と判定するので、人工知能を用いた制御装置2の異常動作の可能性を未然に防止でき(不適切な各ロータの回転速度にならないなど)、ドローン10の制御システムの信頼性を向上できる。また、例えば、学習時のデータにはない内部演算値及び/又は出力値が得られたとき、人工知能によって外挿された領域(空間)の内部演算値及び/又は出力値の採用を未然に防止でき(不適切な各ロータの回転速度にならないなど)、ドローン10の制御システムの信頼性を向上できる。
 [実施例5]
 本実施例においては、人工知能を用いた制御装置の制御に関するパラメータ(例えば、入力値、内部演算値、出力値)が所定範囲(例えば、過去に実績がある範囲)にあるか否かによって、前記制御装置の動作状態が正常か異常か(前記制御装置の処理を行うか否か)を判定する判定部と、前記制御装置の性能を決定する性能パラメータ(重み係数)の値を学習時の制御装置の制御に関するパラメータに基づいて前記所定範囲を決定する決定部とを備える形態を示す。
 特に、前記所定範囲は、前記制御に関するパラメータで構成されるベクトルが分布する空間をベクトルで規定する。
 また、前記制御装置は、少なくともプラントの温度を制御する装置であるが、他のものを制御する装置でもよい。
 図1は、実施例5の制御装置(学習側)1と制御装置(実行側)2の構成を示しており、実施例1と同じであるので、詳述しない。図2は、実施例5の制御装置(学習側)1のシステム構成を示しており、実施例1と同じであるので、詳述しない。図3は、実施例5の制御装置(実行側)2のシステム構成を示しており、実施例1と同じであるので、詳述しない。
 図4は、実施例5の制御装置(学習側)1、制御装置(実行側)2及び制御装置(実行側)2によって制御されるプラント7を示しており、実施例1と同じであるので、詳述しない。
 以下、実施例5の各処理の詳細を説明する。
 <人工知能を用いた制御手段の学習部(図12)>
 人工知能を用いた制御手段の学習部5は、人工知能を用いた制御手段のパラメータ値を学習する。具体的には、図5に示すように、パラメータ値更新器53を用いて、人工知能51のパラメータ値を学習する。人工知能を制御手段として用いる場合、制御対象の逆モデルとすることが一例として用いられる。また、人工知能として、例えば、深層学習が用いられる。深層学習のパラメータ値の更新方法としては、教師信号である学習時の入力1及び学習時の出力1を用いて、誤差逆伝搬法による確率的勾配降下法で、深層学習のパラメータ値を決定(更新)する。学習中に人工知能の内部で演算される値(深層学習の場合は中間層のユニットの出力値など)は、学習時の内部演算値1とする。
 なお、入力1は、制御周期で変化する値であり、入力1(k)と表記してもよい(k:1,2,3,・・・)。同じく、出力1及び内部演算値1も同様に、出力1(k)及び内部演算値1(k)と表記してもよい。
 <人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)(図13)>
 人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3は、人工知能を用いた制御手段6の動作状態が正常か異常かを判定するための所定範囲を決定する。具体的には、図13に示すように、以下の演算を行う。
・学習時の入力1、学習時の内部演算値1、学習時の出力1のすべてが範囲内となるように、 下記の値を更新(決定)する。
 学習時の入力1の軸:U_L_1, U_U_1
 学習時の内部演算値1の軸:I_L_1, I_U_1
 学習時の出力1の軸:Y_L_1, Y_U_1
U_L_1, U_U_1, I_L_1, I_U_1, Y_L_1,  Y_U_1は、下記のベクトルV1~V8で囲われる空間を規定するためのパラメータである。
 V1=[U_L_1, I_L_1, Y_L_1]
 V2=[U_L_1, I_U_1, Y_L_1]
 V3=[U_L_1, I_L_1, Y_U_1]
 V4=[U_L_1, I_U_1, Y_U_1]
 V5=[U_U_1, I_L_1, Y_L_1]
 V6=[U_U_1, 1_L_1, Y_U_1]
 V7=[U_U_1, 1_U_1, Y_L_1]
 V8=[U_U_1, I_U_1, Y_U_1]
 前述した空間を規定するパラメータの値を大きくすると、後述する異常判定精度が悪化するので、パラメータの値は、学習時の入力1、学習時の内部演算値1、学習時の出力1のすべてが範囲内となる条件を満たす値のうち、極力小さい値とするとよい。
 <人工知能を用いた制御手段(図7)>
 人工知能を用いた制御手段6は、プラント7の温度を制御するための操作量(例えば、蒸気温度を調節するための目標バルブ開度など)を演算する。具体的には、図7に示されており、実施例1と同じであるので、詳述しない。
 <人工知能を用いた制御の動作状態の判定部(実行時処理)(図14)>
 人工知能を用いた制御の動作状態の判定部(実行時処理)4は、人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3が決定した所定範囲を用いて、人工知能を用いた制御手段6の動作状態が正常か異常かを判定する。具体的には、図14に示すように、下記の条件a)が成立する場合に、動作状態が正常であると判定し、異常フラグf_anomaly=0を出力する。一方、条件a)が成立しない場合に、動作状態が異常であると判定して、異常フラグf_anomaly=1を出力する。
 条件a)下記のベクトルV1~V8で囲われる空間にベクトルP=[U_1, I_1, Y_1]が存在しない。
 V1=[U_L_1, I_L_1, Y_L_1]
 V2=[U_L_1, I_U_1, Y_L_1]
 V3=[U_L_1, I_L_1, Y_U_1]
 V4=[U_L_1, I_U_1, Y_U_1]
 V5=[U_U_1, I_L_1, Y_L_1]
 V6=[U_U_1, 1_L_1, Y_U_1]
 V7=[U_U_1, 1_U_1, Y_L_1]
 V8=[U_U_1, I_U_1, Y_U_1]
 f_anomaly=1のときの対応策として、制御を停止する、フェールセーフ処理を行う、又は、制御装置2の制御に関するパラメータを前述した範囲内に制限して、制御してもよい。
 なお、本実施例では三次元としているが、本実施例における処理はN次元まで拡張可能である。
 本実施例によれば、人工知能を用いた制御装置2の制御に関するパラメータが所定範囲にあるか否かによって、当該人工知能を用いた制御装置2の動作状態が正常か異常か(人工知能を用いた制御装置2の処理を行うか否か)を判定する。また、当該人工知能を用いた制御装置2の性能を決定する性能パラメータ(重み係数)の値を学習中の人工知能を用いた制御装置1の制御に関するパラメータに基づいて当該所定範囲を決定する。
 特に、実施例5において、所定範囲は、当該人工知能を用いた制御装置の制御に関するパラメータで構成されるベクトルが分布する空間をベクトルで規定する。ベクトル空間の内側に制御に関するパラメータがあるか否かで、制御装置の異常を判断するので、処理が比較的簡便になる。
 従って、学習時のデータ(教師データ)にはない入力値を異常と判定するので、人工知能を用いた制御装置2の異常動作の可能性を未然に防止でき(例えば、不適切な温度にならないなど)、プラント7の制御システムの信頼性を向上できる。また、例えば、学習時のデータにはない内部演算値及び/又は出力値が得られたとき、人工知能によって外挿された領域(空間)の内部演算値及び/又は出力値の採用を未然に防止でき(例えば、不適切な温度にならないなど)、プラント7の制御システムの信頼性を向上できる。
 [実施例6]
 本実施例においては、人工知能を用いた制御装置の制御に関するパラメータ(例えば、入力値、内部演算値、出力値)が所定範囲(例えば、過去に実績がある範囲)にあるか否かによって、前記制御装置の動作状態が正常か異常か(前記制御装置の処理を行うか否か)を判定する判定部と、前記制御装置の性能を決定する性能パラメータ(重み係数)の値を学習時の制御装置の制御に関するパラメータに基づいて前記所定範囲を決定する決定部とを備える形態を示す。
 特に、実施例5において、前記所定範囲は、前記制御装置の制御に関するパラメータで構成されるベクトルが分布する空間を分割し、分割した空間をベクトルで規定する。
 また、前記制御装置は、少なくともプラントの温度を制御する装置であるが、他のものを制御する装置でもよい。
 図1は、実施例5の制御装置(学習側)1と制御装置(実行側)2の構成を示しており、実施例1と同じであるので、詳述しない。図2は、実施例5の制御装置(学習側)1のシステム構成を示しており、実施例1と同じであるので、詳述しない。図3は、実施例5の制御装置(実行側)2のシステム構成を示しており、実施例1と同じであるので、詳述しない。
 図15は、実施例6の制御装置(学習側)1、制御装置(実行側)2及び制御装置(実行側)2によって制御される対象として例示するプラント7を示す図である。
 人工知能を用いた制御手段の学習部5は、人工知能を用いた制御手段6のパラメータ値を学習する。人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3は、人工知能を用いた制御手段6の動作状態が正常か異常かを判定するための所定範囲を決定する。人工知能を用いた制御の動作状態の判定部(実行時処理)3は、前記決定された所定範囲を用いて、人工知能を用いた制御手段6の動作状態が正常か異常かを判定する。人工知能を用いた制御手段6は、プラント7の温度を制御するための操作量(例えば、蒸気温度を調節するための目標バルブ開度など)を演算する。
 以下、実施例6の各処理の詳細を説明する。
 <人工知能を用いた制御手段の学習部(図16)>
 人工知能を用いた制御手段の学習部5は、人工知能を用いた制御手段のパラメータ値を学習する。具体的には、図16に示すように、パラメータ値更新器55を用いて、人工知能54のパラメータ値を学習する。人工知能を制御手段として用いる場合、制御対象の逆モデルとすることが一例として用いられる。また、人工知能として、例えば、深層学習が用いられる。深層学習のパラメータ値の更新方法としては、教師信号である学習時の入力1と学習時の出力1を用いて、誤差逆伝搬法による確率的勾配降下法で、深層学習のパラメータ値を決定(更新)する。
 なお、入力1は、制御周期で変化していく値であり、入力1(k)と表記されてもよい(k:1,2,3,・・・)。同じく、出力1も同様に、出力1(k)と表記してもよい。
 <人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)(図17)>
 人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3は、人工知能を用いた制御手段6の動作状態が正常か異常かを判定するための所定範囲を決定する。具体的には、図17に示す処理で決定するとよい。
i)ベースクラスタリング
 ・k-means法によってデータを分割(クラスタリング)する。
ii)所定範囲の規定
 ・各分割範囲に属するデータの各次元の最小値と最大値で各分割範囲を規定する。
 ・範囲1:ベクトルR1a, R1b, R1c, R1dを頂点とする直方体で囲われる範囲
 ・範囲2:ベクトルR2a, R2b, R2c, R2dを頂点とする直方体で囲われる範囲
 ・範囲3:ベクトルR3a, R3b, R3c, R3dを頂点とする直方体で囲われる範囲
 ・範囲4:ベクトルR4a, R4b, R4c, R4dを頂点とする直方体で囲われる範囲
 <人工知能を用いた制御手段(図18)>
 人工知能を用いた制御手段6は、プラント7の温度を制御するための操作量(例えば、蒸気温度を調節するための目標バルブ開度など)を演算する。具体的には、図18に示すように、人工知能を用いた制御手段の学習部5で学習済みの人工知能62を用いる。前述したように、人工知能を制御手段として用いる場合、制御対象の逆モデルとすることが一例として考えられる。また、人工知能として、例えば、深層学習が考えられる。
 <人工知能を用いた制御の動作状態の判定部(実行時処理)(図19)>
 人工知能を用いた制御の動作状態の判定部(実行時処理)4は、人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3が決定した所定範囲を用いて、人工知能を用いた制御手段6の動作状態が正常か異常かを判定する。具体的には、図19に示すように、ベクトル[U_1, Y_1]が、範囲1~範囲4のいずれかの内部にも存在している場合に、制御に関するパラメータが所定範囲内にあると判定して、異常フラグf_anomaly=0を出力する。一方、ベクトル[U_1, Y_1]が、範囲1~範囲4のいずれの内部にも存在していないとき、制御に関するパラメータが所定範囲内にないと判定して、異常フラグf_anomaly=1を出力する。
 f_anomaly=1のときの対応策として、制御を停止する、フェールセーフ処理を行う、又は、制御装置2の制御に関するパラメータ(入力値、内部演算値、出力値)を前述した範囲内に制限して、制御してもよい。
 なお、本実施例では二次元としているが、本実施例における処理はN次元まで拡張可能である。
 本実施例によれば、人工知能を用いた制御装置2の制御に関するパラメータが所定範囲にあるか否かによって、当該人工知能を用いた制御装置2の動作状態が正常か異常か(人工知能を用いた制御装置2の処理を行うか否か)を判定する。また、当該人工知能を用いた制御装置2の性能を決定する性能パラメータ(重み係数)の値を学習中の人工知能を用いた制御装置1の制御に関するパラメータに基づいて当該所定範囲を決定する。
 特に、実施例6において、所定範囲は、当該人工知能を用いた制御装置の制御に関するパラメータで構成されるベクトルが分布する空間を分割し、分割された空間をベクトルで規定する。分割されたベクトル空間の内側に制御に関するパラメータがあるか否かで、制御装置の異常を判断するので、空間の表現性が向上し、比較的簡便な処理の両立が可能となる。
 従って、学習時のデータ(教師データ)にはない入力値を異常と判定するので、人工知能を用いた制御装置2の異常動作の可能性を未然に防止でき(例えば、不適切な温度にならないなど)、プラント7の制御システムの信頼性を向上できる。また、例えば、学習時のデータにはない内部演算値及び/又は出力値が得られたとき、人工知能によって外挿された領域(空間)の内部演算値及び/又は出力値の採用を未然に防止でき(例えば、不適切な温度にならないなど)、プラント7の制御システムの信頼性を向上できる。
 [実施例7]
 本実施例においては、人工知能を用いた制御装置の制御に関するパラメータ(例えば、入力値、内部演算値、出力値)が所定範囲(例えば、過去に実績がある範囲)にあるか否かによって、前記制御装置の動作状態が正常か異常か(前記制御装置の処理を行うか否か)を判定する判定部と、前記制御装置の性能を決定する性能パラメータ(重み係数)の値を学習時の制御装置の制御に関するパラメータに基づいて前記所定範囲を決定する決定部とを備える形態を示す。
 特に、前記所定範囲は、前記制御装置の制御に関するパラメータで構成されるベクトルが分布する空間を関数で近似して規定する。
 また、前記制御装置は、少なくともプラントの温度を制御する装置であるが、他のものを制御する装置でもよい。
 図1は、実施例5の制御装置(学習側)1と制御装置(実行側)2の構成を示しており、実施例1と同じであるので、詳述しない。図2は、実施例5の制御装置(学習側)1のシステム構成を示しており、実施例1と同じであるので、詳述しない。図3は、実施例5の制御装置(実行側)2のシステム構成を示しており、実施例1と同じであるので、詳述しない。
 図15は、制御装置(学習側)1、制御装置(実行側)2及び制御装置(実行側)2によって制御されるプラント7を示しているが、実施例6と同じであるので、詳述しない。
 以下、実施例7の各処理の詳細を説明する。
 <人工知能を用いた制御手段の学習部(図16)>
 人工知能を用いた制御手段の学習部5は、人工知能を用いた制御手段のパラメータ値を学習する。具体的には、図5に示されており、実施例1と同じであるので、詳述しない。
 <人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)(図20)>
 人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3は、人工知能を用いた制御手段6の動作状態が正常か異常かを判定するための所定範囲を決定する。具体的には、図20に示すように、SVM(カーネルモデル)を適用して、所定範囲を決定する。SVMは、データを囲うな曲線に相当する関数を生成する。当該関数(SVM)にベクトル[U, Y]を代入したとき、当該ベクトルが当該所定範囲内に存在しない場合に、SVM(カーネルモデル)の値が負になる。SVMについては、多くの文献があるので、ここではこれ以上の詳述はしない。
 <人工知能を用いた制御手段(図18)>
 人工知能を用いた制御手段6は、プラント7の温度を制御するための操作量(例えば、蒸気温度を調節するための目標バルブ開度など)を演算する。具体的には、図18に示されており、実施例1と同じなので、詳述しない。
 <人工知能を用いた制御の動作状態の判定部(実行時処理)(図21)>
 人工知能を用いた制御の動作状態の判定部(実行時処理)4は、人工知能を用いた制御の学習時の情報に基づいた所定範囲決定部(学習時処理)3が決定した所定範囲を用いて、人工知能を用いた制御手段6の動作状態が正常か異常かを判定する。具体的には、図21に示すように、ベクトル[U_1, Y_1]が所定範囲内に存在する場合に、SVM(カーネルモデル)の値が正の値になり、制御に関するパラメータが所定範囲内にあると判定して、f_anomaly=0を出力する。一方、ベクトル[U_1, Y_1]が、所定の範囲の内部に存在しない場合に、SVM(カーネルモデル)の値が負の値になり、制御に関するパラメータが所定範囲内にないと判定して、f_anomaly=1を出力する。
 f_anomaly=1のときの対応策として、制御を停止する、フェールセーフ処理を行う、又は、制御装置2の制御に関するパラメータ(入力値、内部演算値、出力値)を前述した範囲内に制限して、制御してもよい。
 なお、本実施例では二次元としているが、本実施例における処理はN次元まで拡張可能である。
 本実施例によれば、人工知能を用いた制御装置2の制御に関するパラメータが所定範囲にあるか否かによって、当該人工知能を用いた制御装置2の動作状態が正常か異常か(人工知能を用いた制御装置2の処理を行うか否か)を判定する。また、当該人工知能を用いた制御装置2の性能を決定する性能パラメータ(重み係数)の値を学習中の人工知能を用いた制御装置1の制御に関するパラメータに基づいて当該所定範囲を決定する。
 特に、実施例7において、所定範囲は、当該人工知能を用いた制御装置の制御に関するパラメータで構成されるベクトルが分布する空間を関数で近似して規定される。関数の出力値で制御装置の異常を判断するので、異常判定の説明性が高くなり、かつ、比較的簡便な処理の両立が可能となる。
 従って、学習時のデータ(教師データ)にはない入力値を異常と判定するので、人工知能を用いた制御装置2の異常動作の可能性を未然に防止でき(例えば、不適切な温度にならないなど)、プラント7の制御システムの信頼性を向上できる。また、例えば、学習時のデータにはない内部演算値及び/又は出力値が得られたとき、人工知能によって外挿された領域(空間)の内部演算値及び/又は出力値の採用を未然に防止でき(例えば、不適切な温度にならないなど)、プラント7の制御システムの信頼性を向上できる。
 以上に説明したように、本発明の実施例によると、学習時の情報に基づいた所定範囲決定部(学習時処理)3が、制御装置1の入力値、内部演算値及び出力値の少なくとも一つを含む制御に関するパラメータが、所定範囲(例えば、過去に実績がある範囲)にあるか否かによって、制御装置1の動作状態が正常か異常か(制御装置の処理を行うか否か)を判定し、人工知能を用いた制御の動作状態の判定部(実行時処理)4が、制御装置1の性能を決定する性能パラメータ(例えば、重み係数)の値を学習時の制御装置の制御に関するパラメータに基づいて、所定範囲を決定するので、学習時の情報に基づいて正常又は異常を判定できる。従って、例えば、学習時のデータにはない入力値を異常と判定するので、人工知能を用いた制御装置2の異常動作の可能性を未然に防止でき(例えば、不適切な温度にならないなど)、プラント7の制御システムの信頼性を向上できる。また、例えば、学習時のデータにはない内部演算値及び/又は出力値が得られたとき、人工知能によって外挿された領域(空間)の内部演算値及び/又は出力値の採用を未然に防止でき(例えば、不適切な温度にならないなど)、プラント7の制御システムの信頼性を向上できる。
 また、制御に関するパラメータの各々の上限値及び下限値の少なくとも一つによって所定範囲を規定するので、簡易且つ分かりやすく制御に関するパラメータを規定できる。
 また、制御に関するパラメータで構成されるベクトルが分布する空間における領域で所定範囲を規定するので、制御に関するパラメータが所定条件を満たすかをベクトル空間の内側にあるか否かで判定でき、処理が比較的簡便になる。
 また、制御に関するパラメータで構成されるベクトルが分布する空間において組み合わされる複数の領域で所定範囲を規定するので、制御に関するパラメータが所定条件を満たすかを分割された複数のベクトル空間の内側にあるか否かで判断でき、空間の表現性が向上し、比較的簡便な処理の両立が可能となる。
 また、制御に関するパラメータで構成されるベクトルが分布する空間における、関数で近似された領域で所定範囲を規定するので、制御に関するパラメータが所定条件を満たすかを関数で近似されたベクトル空間の内側にあるか否かで判定でき、処理が比較的簡便になる。
 なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。
 また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。
 各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。

Claims (6)

  1.  人工知能を用いた制御装置であって、
     前記制御装置の入力値、内部演算値、及び出力値の少なくとも一つを含む制御パラメータが所定範囲にあるか否かによって、前記制御装置の動作状態が正常か異常かを判定する判定部と、
     前記制御装置の性能を決定する性能パラメータの値の学習時の制御装置の制御パラメータに基づいて、前記所定範囲を決定する決定部とを、備えることを特徴とする制御装置。
  2.  請求項1に記載の制御装置であって、
     前記所定範囲は、前記制御パラメータの各々の上限値及び下限値の少なくとも一つによって規定されることを特徴とする制御装置。
  3.  請求項1に記載の制御装置であって、
     前記所定範囲は、前記制御パラメータで構成されるベクトルが分布する空間における領域で規定されることを特徴とする制御装置。
  4.  請求項3に記載の制御装置であって、
     前記所定範囲は、前記制御パラメータで構成されるベクトルが分布する空間において組み合わされる複数の領域で規定されることを特徴とする制御装置。
  5.  請求項3に記載の制御装置であって、
     前記領域は関数で近似して表されることを特徴とする制御装置。
  6.  請求項1に記載の制御装置であって、
     少なくとも、プラントの温度を制御する装置、自動運転車を制御する装置、ロボットを制御する装置、又は飛行体を制御する装置であることを特徴とする制御装置。
PCT/JP2019/028238 2018-09-19 2019-07-18 制御装置 WO2020059276A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-174508 2018-09-19
JP2018174508A JP2020046905A (ja) 2018-09-19 2018-09-19 制御装置

Publications (1)

Publication Number Publication Date
WO2020059276A1 true WO2020059276A1 (ja) 2020-03-26

Family

ID=69888646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028238 WO2020059276A1 (ja) 2018-09-19 2019-07-18 制御装置

Country Status (2)

Country Link
JP (1) JP2020046905A (ja)
WO (1) WO2020059276A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120473A1 (ja) * 2021-12-22 2023-06-29 Jfeスチール株式会社 正常ベクトル登録装置、設備異常監視システム、及び設備異常監視方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008217155A (ja) * 2007-02-28 2008-09-18 Fuji Heavy Ind Ltd 制御パラメータの自動適合システム
JP2017211713A (ja) * 2016-05-23 2017-11-30 ルネサスエレクトロニクス株式会社 生産システム
JP2018186610A (ja) * 2017-04-25 2018-11-22 株式会社安川電機 システムおよび評価装置ならびに評価方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008217155A (ja) * 2007-02-28 2008-09-18 Fuji Heavy Ind Ltd 制御パラメータの自動適合システム
JP2017211713A (ja) * 2016-05-23 2017-11-30 ルネサスエレクトロニクス株式会社 生産システム
JP2018186610A (ja) * 2017-04-25 2018-11-22 株式会社安川電機 システムおよび評価装置ならびに評価方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120473A1 (ja) * 2021-12-22 2023-06-29 Jfeスチール株式会社 正常ベクトル登録装置、設備異常監視システム、及び設備異常監視方法
JP7343078B1 (ja) 2021-12-22 2023-09-12 Jfeスチール株式会社 正常ベクトル登録装置、設備異常監視システム、及び設備異常監視方法

Also Published As

Publication number Publication date
JP2020046905A (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
WO2018179191A1 (ja) 制御装置及び制御システム
US20200139989A1 (en) Vehicle Control Method, Apparatus, and Device
EP1577721A2 (en) Model predictive controller with life extending control
WO2020059276A1 (ja) 制御装置
US20130262353A1 (en) Optimal online adaptive controller
Masaud et al. Preventing bursting in adaptive control using an introspective neural network algorithm
CN111037562B (zh) 机器人的控制方法、装置及机器人
US11507032B2 (en) Control device using artificial intelligence
US20200134505A1 (en) Method of updating policy for controlling action of robot and electronic device performing the method
Mao et al. From propeller damage estimation and adaptation to fault tolerant control: Enhancing quadrotor resilience
JP7493338B2 (ja) 制御装置
KR101601074B1 (ko) Ecu 업데이트 장치, ecu 업데이트 방법 및 이를 이용한 ecu 업데이트 네트워크
WO2019207767A1 (ja) 制御装置および制御方法
US11834066B2 (en) Vehicle control using neural network controller in combination with model-based controller
Brockmann et al. A generic concept to increase the robustness of embedded systems by trust management
JP2020046903A (ja) 制御装置
CN118019614A (zh) 数控装置、加工系统、数控方法及加工方法
JP7288772B2 (ja) 制御装置
CN112904898A (zh) 旋转弹箭非定常气动响应特性评估方法和系统
JP7169950B2 (ja) 制御装置
JP2021071913A (ja) 制御装置
Zhang et al. A data-driven quadratic stability condition and its application for stabilizing unknown nonlinear systems
WO2023053399A1 (ja) 数値制御装置、加工システム、数値制御方法および加工方法
US11235859B2 (en) Methods and apparatus for enhancing aircraft flight control surface effectiveness via forced oscillation
JP2020149176A (ja) 制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862083

Country of ref document: EP

Kind code of ref document: A1