WO2020059145A1 - 非水電解質電池及び電池パック - Google Patents
非水電解質電池及び電池パック Download PDFInfo
- Publication number
- WO2020059145A1 WO2020059145A1 PCT/JP2018/035200 JP2018035200W WO2020059145A1 WO 2020059145 A1 WO2020059145 A1 WO 2020059145A1 JP 2018035200 W JP2018035200 W JP 2018035200W WO 2020059145 A1 WO2020059145 A1 WO 2020059145A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- layer
- active material
- positive electrode
- aqueous electrolyte
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the embodiment of the present invention relates to a nonaqueous electrolyte battery and a battery pack.
- Non-aqueous electrolyte batteries typified by lithium-ion batteries, in which lithium ions carry charge, take advantage of high energy density and high output, and can be used for small vehicles such as portable electronic devices, electric vehicles and electric power supply and demand adjustment. Widely used for large applications. For large applications, for example, life characteristics and high safety are required.
- titanium composite oxides have attracted attention from the viewpoint of life characteristics and safety.
- a reductive decomposition reaction of the electrolytic solution may occur. If such a reaction occurs excessively during the charge / discharge cycle, an excessive film is formed on the negative electrode, and there is a problem that the life characteristics are deteriorated.
- the problem to be solved by the present invention is to provide a non-aqueous electrolyte battery having excellent charge / discharge cycle characteristics, and a battery pack including the non-aqueous electrolyte battery.
- a non-aqueous electrolyte battery includes a first layer containing Mg, a second layer containing Co, a negative electrode containing a negative electrode active material containing layer, a positive electrode, and a nonaqueous electrolyte.
- the first layer exists as the outermost layer of the negative electrode.
- the second layer exists inside the first layer.
- the negative electrode active material containing layer contains a titanium composite oxide.
- Titanium composite oxides include lithium titanate having a spinel structure, monoclinic ⁇ -type titanium composite oxide, Ti 1-x M1 x Nb 2-y M2 y O 7- ⁇ (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, M1 and M2 each independently include at least one selected from the group consisting of Fe, Ni, W, Ta and Mo), Li 2 + v Na 2-w M1 x Ti 6-yz Nb y M2 z O 14 + ⁇ (0 ⁇ v ⁇ 4, 0 ⁇ w ⁇ 2, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 6, 0 ⁇ z ⁇ 3, ⁇ 0.5 ⁇ ⁇ ⁇ 0.5, M1 is Cs, M2 includes at least one selected from the group consisting of K, Sr, Ba and Ca, and M2 includes at least one selected from Zr, Sn, V, Ta, Mo, W, Fe, Mn and Al) At least one selected from the group consisting of:
- a battery pack is provided.
- the battery pack includes the nonaqueous electrolyte battery of the embodiment.
- FIG. 2 is a cross-sectional view of the non-aqueous electrolyte battery of the first example according to the first embodiment cut in a thickness direction.
- FIG. 2 is an enlarged sectional view of a portion A in FIG. 1.
- FIG. 2 is a partially cutaway perspective view of a nonaqueous electrolyte battery of a second example according to the first embodiment.
- FIG. 9 is an exploded perspective view of an example of a battery pack according to the second embodiment.
- FIG. 5 is a block diagram showing an electric circuit of the battery pack shown in FIG. 4.
- a non-aqueous electrolyte battery includes a first layer containing Mg, a second layer containing Co, a negative electrode containing a negative electrode active material containing layer, a positive electrode, and a nonaqueous electrolyte.
- the first layer exists as the outermost layer of the negative electrode.
- the second layer exists inside the first layer.
- the negative electrode active material containing layer contains a titanium composite oxide.
- Titanium composite oxides include lithium titanate having a spinel structure, monoclinic ⁇ -type titanium composite oxide, Ti 1-x M1 x Nb 2-y M2 y O 7- ⁇ (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, M1 and M2 each independently include at least one selected from the group consisting of Fe, Ni, W, Ta and Mo), Li 2 + v Na 2-w M1 x Ti 6-yz Nb y M2 z O 14 + ⁇ (0 ⁇ v ⁇ 4, 0 ⁇ w ⁇ 2, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 6, 0 ⁇ z ⁇ 3, ⁇ 0.5 ⁇ ⁇ ⁇ 0.5, M1 is Cs, M2 includes at least one selected from the group consisting of K, Sr, Ba and Ca, and M2 includes at least one selected from Zr, Sn, V, Ta, Mo, W, Fe, Mn and Al. -yz does not include 0).
- the present inventors have found that the presence of the Mg-containing layer (first layer) as the outermost layer of the negative electrode can suppress the formation of an excessive coating. Although the reason is not clear, when the layer containing Mg is present as the outermost layer of the negative electrode, the decomposition of the solvent and salt contained in the non-aqueous electrolyte is suppressed, and excessive film formation due to repeated charge / discharge cycles is prevented. Can be suppressed. In other words, once the layer containing Mg is once formed on the negative electrode by performing charging and discharging, the decomposition product of the nonaqueous electrolyte does not easily deposit on the negative electrode even if the charging and discharging cycle is repeated more.
- the negative electrode according to the embodiment includes a layer containing Co (second layer) as a layer inside the layer in order to deposit a layer containing Mg as the outermost layer.
- a layer containing Co second layer
- the layer containing Mg is likely to be deposited later.
- the presence of the layer containing Co facilitates the uniform deposition of the layer containing Mg. If the layer containing Co does not exist, the layer containing Mg is not easily deposited.
- the layer containing Mg tends to have a non-uniform deposition form. In this case, the decomposition of the non-aqueous electrolyte is not sufficiently suppressed.
- the non-aqueous electrolyte battery according to the embodiment has excellent charge / discharge cycle characteristics.
- a separator can be arranged between the positive electrode and the negative electrode.
- the positive electrode, the negative electrode, and the separator can form an electrode group.
- the non-aqueous electrolyte can be retained on the electrode group.
- the nonaqueous electrolyte battery according to the embodiment may further include an exterior member for accommodating the electrode group, the nonaqueous electrolyte, and the separator.
- Negative electrode The negative electrode has a negative electrode current collector and a negative electrode active material-containing layer (negative electrode material layer) supported on one or both surfaces of the negative electrode current collector.
- the negative electrode active material containing layer contains a negative electrode active material, a negative electrode conductive agent, and a binder.
- the current collector is an aluminum foil or at least one selected from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu, and Si that is electrochemically stable in a potential range that is more noble than 1.0 V. It is preferably formed from an aluminum alloy foil containing an element.
- the current collector may include a portion where the negative electrode active material-containing layer is not formed on the surface. This portion can serve as a negative electrode current collection tab.
- the negative electrode active material contains a titanium composite oxide.
- the type of the negative electrode active material can be one type or two or more types.
- an active material having a lithium storage / release potential of 0.7 to 2.0 V (vs. Li / Li + ) can be used.
- the titanium composite oxide according to the embodiment does not substantially contain Mg or Co. Alternatively, the titanium composite oxide according to the embodiment contains neither Mg nor Co.
- Titanium composite oxides include lithium titanate having a spinel structure, monoclinic ⁇ -type titanium composite oxide, Ti 1-x M1 x Nb 2-y M2 y O 7- ⁇ (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, M1 and M2 each independently include at least one selected from the group consisting of Fe, Ni, W, Ta and Mo), Li 2 + v Na 2-w M1 x Ti 6-yz Nb y M2 z O 14 + ⁇ (0 ⁇ v ⁇ 4, 0 ⁇ w ⁇ 2, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 6, 0 ⁇ z ⁇ 3, ⁇ 0.5 ⁇ ⁇ ⁇ 0.5, M1 is Cs, M2 includes at least one selected from the group consisting of K, Sr, Ba and Ca, and M2 includes at least one selected from Zr, Sn, V, Ta, Mo, W, Fe, Mn and Al) At least one selected from the group consisting of:
- the lithium titanate having a spinel structure preferably contains, for example, lithium titanate represented by a general formula Li 4 + x Ti 5 O 12 .
- the value of x is a value that changes due to charging and discharging, and can change within a range of ⁇ 1 ⁇ x ⁇ 3.
- the composition of the monoclinic ⁇ -type titanium composite oxide can be represented by Li x TiO 2 (B). Note that in the general formula Li x TiO 2 (B), the value of x is a value that changes due to charge and discharge, and can change within a range of 0 ⁇ x ⁇ 1.
- titanium composite oxides include Ti 1-x M1 x Nb 2-y M2 y O 7- ⁇ (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, M1 and M2 are each independently Fe, Ni, W, Ta, and Mo).
- M1 and M2 may be the same element, or may be different elements.
- the niobium titanium composite oxide represented by the above general formula Ti 1-x M1 x Nb 2-y M2 y O 7- ⁇ has, for example, a monoclinic crystal structure.
- titanium composite oxides include Li 2 + v Na 2-w M1 x Ti 6-yz Nb y M2 z O 14 + ⁇ (0 ⁇ v ⁇ 4, 0 ⁇ w ⁇ 2, 0 ⁇ x ⁇ 2, 0 ⁇ Y ⁇ 6, 0 ⁇ z ⁇ 3, ⁇ 0.5 ⁇ ⁇ ⁇ 0.5, M1 includes at least one selected from the group consisting of Cs, K, Sr, Ba and Ca, and M2 includes Zr, Sn, V, Including at least one selected from Ta, Mo, W, Fe, Mn and Al, and 6-yz does not include 0).
- the general formula Li 2 + v Na 2-w M1 x Ti 6-yz Nb y M2 z O 14 + Na -containing niobium titanium composite oxide represented by ⁇ has a crystal structure of, for example, rectangular tetragonal.
- the negative electrode active material preferably contains lithium titanate having a spinel structure among the above-described negative electrode active materials. This is because the cycle characteristics and the rate characteristics are excellent.
- the negative electrode active material may include an active material other than the types described above (another active material).
- active materials include ramsdellite-type lithium titanate (eg, Li 2 + y Ti 3 O 7 , 0 ⁇ y ⁇ 3), anatase-type titanium dioxide, rutile-type titanium dioxide, hollandite-type titanium composite oxide, niobium Oxides can be mentioned.
- niobium oxide include Nb 2 O 5 , Nb 12 O 29 and the like.
- the negative electrode active material can be contained as particles in the negative electrode active material-containing layer.
- the average particle size of the primary particles of the negative electrode active material particles is preferably 5 ⁇ m or less. When the average particle size of the primary particles is 5 ⁇ m or less, an effective area contributing to the electrode reaction can be sufficiently ensured, and a good large-current discharge performance can be obtained in a nonaqueous electrolyte battery.
- the average particle size of the primary particles of the negative electrode active material can be measured, for example, using a laser diffraction / scattering particle size distribution analyzer. As the measuring device, a laser diffraction / scattering type ⁇ particle size distribution measuring device ⁇ (model: MT3000-II) manufactured by Microtrack Bell Co., Ltd. can be used.
- the negative electrode includes the first layer containing Mg (magnesium) as the outermost layer.
- the first layer may contain an inorganic compound such as LiF and an organic compound such as lithium alkyl carbonate, in addition to the Mg compound. These inorganic compounds and organic compounds are lithium salts that can be contained in the nonaqueous electrolyte and decomposition products of the solvent.
- the first layer does not need to cover the entire surface of the negative electrode, and may be present as at least a part of the outermost layer of the negative electrode.
- the first layer may cover the entire surface of the negative electrode.
- the first layer exists as a layer on the outside (surface side) of a second layer described later.
- the first layer for example, directly covers at least a part of the second layer.
- the thickness of the first layer is not particularly limited, but is, for example, 3 nm or more, and preferably 5 nm or more.
- the upper limit of the thickness of the first layer can be 10 nm.
- Mg contained in the first layer can exist, for example, in a state of Mg metal and / or in a state of Mg 2+ .
- Examples of the state of Mg 2+ include a case where it exists in the state of at least one inorganic substance selected from MgO and MgF 2 .
- Mg contained in the first layer exists in a state of Mg 2+ , an Mg compound having low electron conductivity and an inorganic compound and an organic compound having Li conductivity form an appropriate film, and excellent Li This has the effect of suppressing an increase in resistance while maintaining conductivity. It is preferable that, of the first layer, the second layer, and the negative electrode active material-containing layer, only the first layer contains Mg.
- the first layer is formed, for example, by depositing Mg ions present in the non-aqueous electrolyte as Mg metal and / or Mg 2+ .
- the negative electrode includes the second layer containing Co (cobalt).
- the second layer may contain an inorganic compound such as LiF and an organic compound such as lithium alkyl carbonate, in addition to the Co compound. These inorganic compounds and organic compounds are lithium salts that can be contained in the nonaqueous electrolyte and decomposition products of the solvent.
- the second layer containing Co exists inside the first layer.
- a second layer containing Co exists on the negative electrode active material containing layer, and a first layer containing Mg exists on the second layer.
- the second layer exists, for example, as a layer directly covering the negative electrode active material particles.
- the second layer does not need to cover the entire surface of the negative electrode active material particles, but only needs to cover at least a part of the negative electrode active material particles.
- the thickness of the second layer is not particularly limited, but is, for example, 1 nm or more.
- only the second layer of the first layer, the second layer, and the negative electrode active material-containing layer contains Co.
- the second layer is formed, for example, by depositing Co ions present in the non-aqueous electrolyte.
- the ratio of the weight of Mg to the total weight of the first layer, the second layer and the negative electrode active material-containing layer is, for example, in the range of 0.002% to 0.1% by weight, and preferably 0.005% by weight to 0.1% by weight. It is in the range of 0.04 weight.
- the ratio of the weight of Mg to the total weight of the first layer, the second layer, and the negative electrode active material-containing layer is within this range, the effect of suppressing an increase in resistance and the effect of maintaining Li conductivity are compatible. . If the ratio of the weight of Mg to the total weight of the first layer, the second layer, and the negative electrode active material-containing layer is too small, it may be difficult to sufficiently suppress the decomposition reaction of the non-aqueous electrolyte.
- the weight ratio of Co to the total weight of the first layer, the second layer, and the negative electrode active material-containing layer is, for example, in the range of 0.003% to 0.2% by weight, and preferably 0.01% to 0.2% by weight. It is in the range of 0.05% by weight.
- the weight ratio of Co to the total weight of the first layer, the second layer, and the negative electrode active material-containing layer is within this range, it is possible to easily form a layer containing an Mg compound while suppressing an increase in resistance. . If the proportion of the weight of Co with respect to the total weight of the first layer, the second layer, and the negative electrode active material-containing layer is too large, the positive electrode is easily deteriorated, which is not preferable.
- the ratio of the weight ratio of Mg to the total weight of the first layer, the second layer, and the negative electrode active material-containing layer, and the ratio of the weight ratio of Co to the total weight of the first layer, the second layer, and the negative electrode active material-containing layer, is And the ratio Mg / Co.
- the ratio Mg / Co is preferably in the range of 0.05 to 3.5, more preferably in the range of 1.1 to 2.9.
- the fact that the first layer containing Mg exists as the outermost layer can be detected by X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy).
- XPS X-ray Photoelectron Spectroscopy
- an element existing in a range from the surface of the negative electrode to a depth of about several nm can be identified.
- XPS X-ray Photoelectron Spectroscopy
- a QuantaSXM manufactured by PHI or a device having a similar function can be used as a device for performing XPS.
- Single crystal spectroscopy Al-K ⁇ (1486.6 eV) is used as the excitation X-ray source, the photoelectron detection angle is 45 °, and the X-ray diameter is 200 ⁇ m.
- @ XPS is performed on the negative electrode taken out of the battery in the following procedure. First, the battery is brought into a completely discharged state. Next, the battery is disassembled in a glove box in an argon atmosphere. After disassembling the battery, the negative electrode is taken out, washed with an ethyl methyl carbonate solvent, and then dried. XPS is performed on the thus prepared negative electrode sample.
- the existence of the second layer containing Co inside the first layer can be detected by performing inductively coupled plasma emission spectroscopy (ICP-AES: Inductively Coupled Plasma Atomic Emission Spectroscopy) in addition to the XPS. .
- ICP-AES Inductively Coupled Plasma Atomic Emission Spectroscopy
- the amount of Mg (% by weight) per unit weight of the negative electrode active material containing layer and the amount of Co (% by weight) per unit weight of the negative electrode active material containing layer can be determined.
- a negative electrode sample is prepared in the same manner as described for XPS.
- the negative electrode active material-containing layer is scraped from its surface to a position where the negative electrode current collector can be seen.
- the scraped sample is thermally decomposed using sulfuric acid, nitric acid, perchloric acid, hydrogen fluoride, or the like, the sample is dissolved in dilute nitric acid to obtain a predetermined volume of solution. ICP-AES analysis is performed using this solution.
- the conductive agent is blended in order to enhance the current collecting performance and suppress the contact resistance between the active material and the current collector.
- the conductive agent include carbonaceous materials such as vapor grown carbon fiber (VGCF), carbon black, graphite, carbon nanotube, and fullerene.
- carbon black include acetylene black and Ketjen black. One of these may be used as the conductive agent, or two or more of them may be used as the conductive agent.
- a carbon coat or an electronic conductive inorganic material coat may be applied to the surface of the active material particles.
- the binder is blended to fill the gap between the dispersed active materials and to bind the active material and the negative electrode current collector.
- the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, styrene-butadiene rubber, polyacrylic acid compound, imide compound, and carboxymethyl cellulose (carboxymethyl cellulose).
- CMC salts of CMC, polyimides and polyamides.
- One of these may be used as a binder, or two or more of them may be used as a binder.
- the compounding ratio of the negative electrode active material, the conductive agent and the binder in the negative electrode active material-containing layer is 70% by weight or more and 96% by weight or less of the negative electrode active material, 2% by weight or more and 28% by weight or less and 2% by weight of the binder. It is preferable that the content be at least 28% by weight.
- the conductive agent By blending the conductive agent at a ratio of 2% by weight or more, excellent large current characteristics due to high current collecting performance can be obtained.
- the amount of the binder is 2% by weight or more, the binding property between the negative electrode active material-containing layer and the negative electrode current collector can be increased, and the cycle characteristics can be improved.
- each of the negative electrode conductive agent and the binder is preferably 28% by weight or less.
- the negative electrode can be produced, for example, by the following method. First, a negative electrode active material, a negative electrode conductive agent, and a binder are suspended in a solvent to prepare a slurry. This slurry is applied to one or both surfaces of the negative electrode current collector. Next, the applied slurry is dried to obtain a laminate of the negative electrode active material-containing layer and the negative electrode current collector. Thereafter, the laminate is pressed. Thus, a negative electrode is manufactured.
- the negative electrode may be manufactured by the following method. First, a negative electrode active material, a negative electrode conductive agent, and a binder are mixed to obtain a mixture. Next, this mixture is formed into a pellet. Next, a negative electrode can be obtained by disposing these pellets on the negative electrode current collector.
- the positive electrode can include a positive electrode current collector and a positive electrode active material-containing layer.
- the positive electrode active material-containing layer can be formed on one side or both sides of the positive electrode current collector.
- the positive electrode active material-containing layer can include a positive electrode active material and optionally a conductive agent and a binder.
- the positive electrode active material is, for example, lithium cobalt composite oxide LiCo 1-ab Ni a Mn b O 2 (0 ⁇ a ⁇ 0.5, 0 ⁇ b ⁇ 0.5, a + b ⁇ 1), lithium nickel composite oxide (for example, Li u NiO 2), lithium-nickel-cobalt-aluminum composite oxide (e.g., Li u Ni 1-st Co s Al t O 2), lithium manganese composite oxide (e.g., Li u Mn 2 O 4 or Li u MnO 2) , Mg-containing lithium manganese composite oxide, lithium phosphates having an olivine structure (e.g., Li u FePO 4, Li u MnPO 4, Li u Mn 1-s Fe s PO 4, Li u CoPO 4), a spinel structure And at least one selected from the group consisting of lithium manganese nickel composite oxides (eg, Li x Mn 2-y Ni y O 4 ; 0 ⁇ x ⁇ 1, 0
- the positive electrode active material is Mg-containing lithium manganese composite oxide, LiMn 1-xy Mg x Fe y PO 4 having an olivine type structure (0 ⁇ x ⁇ 0.1, 0 ⁇ y ⁇ 0.3), and Li 1+ having a spinel type structure. More preferably, it contains at least one selected from the group consisting of a Mn 2-bc Al b Mg c O 4 (0 ⁇ a ⁇ 0.15, 0 ⁇ b ⁇ 0.3, 0 ⁇ c ⁇ 0.2).
- Mg-containing lithium manganese composite oxide examples include LiMn 1-xy Mg x Fe y PO 4 (0 ⁇ x ⁇ 0.1, 0 ⁇ y ⁇ 0.3) and Li 1 + a Mn 2-bc Al b Mg c O 4 ( 0 ⁇ a ⁇ 0.15, 0 ⁇ b ⁇ 0.3, 0 ⁇ c ⁇ 0.2).
- the positive electrode active material preferably contains a lithium cobalt composite oxide LiCo 1-ab Ni a Mn b O 2 (0 ⁇ a ⁇ 0.5, 0 ⁇ b ⁇ 0.5, a + b ⁇ 1). More preferably, the lithium-cobalt composite oxide has a composition included in a general formula represented by LiCo 1-ab Ni a Mn b O 2 (0 ⁇ a ⁇ 0.35, 0 ⁇ b ⁇ 0.35).
- the positive electrode active material contains a Mg-containing lithium manganese composite oxide and a lithium cobalt composite oxide.
- the mass ratio between the Mg-containing lithium manganese composite oxide and the lithium cobalt composite oxide is preferably in the range of 97: 3 to 70:30.
- the positive electrode active material may include only the Mg-containing lithium manganese composite oxide and the lithium cobalt composite oxide.
- the primary particle size of the positive electrode active material is preferably 100 nm or more and 1 ⁇ m or less.
- a positive electrode active material having a primary particle size of 100 nm or more is easy to handle in industrial production.
- a positive electrode active material having a primary particle diameter of 1 ⁇ m or less can smoothly diffuse lithium ions in a solid.
- the specific surface area of the positive electrode active material is preferably from 0.1 m 2 / g to 10 m 2 / g.
- the positive electrode active material having a specific surface area of 0.1 m 2 / g or more can sufficiently secure sites for occluding and releasing Li ions.
- a positive electrode active material having a specific surface area of 10 m 2 / g or less is easy to handle in industrial production and can secure good charge / discharge cycle performance.
- the conductive agent is blended in order to enhance the current collecting performance and suppress the contact resistance between the active material and the current collector.
- the conductive agent include carbonaceous materials such as vapor grown carbon fiber (VGCF), carbon black, graphite, carbon nanotube, and fullerene.
- carbon black include acetylene black and Ketjen black. One of these may be used as the conductive agent, or two or more of them may be used as the conductive agent.
- the binder is blended to fill gaps between the dispersed positive electrode active materials and to bind the positive electrode active material and the positive electrode current collector.
- the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluoro rubber, styrene butadiene rubber (SBR), acrylic resin or a copolymer thereof, and polyacryl. Acid compounds, polyacrylonitrile, imide compounds, carboxyl methylcellulose (CMC), and salts of CMC are included. One of these may be used as a binder, or two or more of them may be used as a binder.
- the positive electrode current collector is preferably an aluminum foil or an aluminum alloy foil containing one or more elements selected from Mg, Ti, Zn, Ni, Cr, Mn, Fe, Cu, and Si.
- the thickness of the aluminum foil or aluminum alloy foil is preferably 5 ⁇ m or more and 20 ⁇ m or less, more preferably 5 ⁇ m or more and 15 ⁇ m or less.
- the purity of the aluminum foil is preferably 99% by mass or more.
- the content of transition metals such as iron, copper, nickel, and chromium contained in the aluminum foil or aluminum alloy foil is preferably 1% by mass or less.
- the positive electrode current collector may include a portion where the surface of the positive electrode active material-containing layer is not formed. This portion can serve as a positive current collector tab.
- the total amount of the positive electrode active material in the positive electrode active material-containing layer, the conductive agent and the binder are 80% by weight or more and 95% by weight or less, 3% by weight or more and 18% by weight or less, and 2% by weight or more and 17% by weight or less. It is preferable to mix them in proportions.
- the amount of the conductive agent is 3% by weight or more, the above-described effect can be exhibited.
- the amount of the conductive agent is 2% by weight or more, sufficient electrode strength can be obtained.
- the amount of the binder is 17% by weight or less, the amount of the binder as an insulating material in the positive electrode can be reduced, and the internal resistance can be reduced.
- the positive electrode can be manufactured, for example, by the following method. First, a positive electrode active material, a positive electrode conductive agent, and a binder are suspended in a solvent to prepare a slurry. This slurry is applied to one or both surfaces of the positive electrode current collector. Next, the applied slurry is dried to obtain a laminate of the positive electrode active material-containing layer and the positive electrode current collector. Thereafter, the laminate is pressed. Thus, a positive electrode is manufactured.
- the positive electrode may be manufactured by the following method. First, a positive electrode active material, a positive electrode conductive agent, and a binder are mixed to obtain a mixture. Next, this mixture is formed into a pellet. Next, a positive electrode can be obtained by arranging these pellets on a positive electrode current collector.
- Non-aqueous electrolyte examples include a liquid non-aqueous electrolyte (non-aqueous electrolyte) which is prepared by dissolving an electrolyte in a non-aqueous solvent, a gel non-aqueous electrolyte obtained by combining a liquid non-aqueous electrolyte and a polymer material. Contains water electrolyte.
- electrolyte examples include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), and trifluoromethanesulfonic acid.
- Lithium salts such as lithium (LiCF 3 SO 3 ), lithium difluorophosphate (LiPO 2 F 2 ), and lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ] are included. These electrolytes can be used alone or in combination of two or more.
- the electrolyte is dissolved in the organic solvent in a range of 0.5 mol / L or more and 2.5 mol / L or less.
- non-aqueous solvents examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC); chains such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC).
- cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC)
- chains such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC).
- Cyclic ethers such as tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2MeTHF); linear ethers such as dimethoxyethane (DME) and diethoxyethane (DEE); ⁇ -butyrolactone (BL) and ⁇ -methyl ⁇ -butyrolactone Cyclic esters such as (MBL); linear esters such as methyl acetate, ethyl acetate, methyl propionate, and ethyl propionate; acetonitrile (AN); and sulfolane (SL).
- organic solvents can be used alone or in the form of a mixture of two or more.
- Examples of the polymer material used for the gel non-aqueous electrolyte include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), and polyethylene oxide (PEO).
- PVdF polyvinylidene fluoride
- PAN polyacrylonitrile
- PEO polyethylene oxide
- the non-aqueous electrolyte preferably contains cyclic carbonate and LiPF 6 .
- the effect of suppressing the decomposition of the nonaqueous electrolyte is large.
- the separator is formed of, for example, a porous film containing polyethylene (PE), polypropylene (polypropylene; PP), cellulose, or polyvinylidene fluoride (PVdF), or a synthetic resin nonwoven fabric. . From the viewpoint of safety, it is preferable to use a porous film formed of polyethylene or polypropylene. This is because these porous films can be melted at a certain temperature and interrupt current.
- PE polyethylene
- PP polypropylene
- PVdF polyvinylidene fluoride
- Exterior Member for example, a container made of a laminate film or a metal container can be used.
- the thickness of the laminate film is, for example, 0.5 mm or less, and preferably 0.2 mm or less.
- a multilayer film including a plurality of resin layers and a metal layer interposed between the resin layers is used.
- the resin layer contains, for example, a polymer material such as polypropylene (PP), polyethylene (PE), nylon, and polyethylene terephthalate (PET).
- the metal layer is preferably made of aluminum foil or aluminum alloy foil for weight reduction.
- the laminated film can be formed into a shape of an exterior member by performing sealing by heat fusion.
- the thickness of the wall of the metal container is, for example, 1 mm or less, more preferably 0.5 mm or less, and further preferably 0.2 mm or less.
- the metal container is made of, for example, aluminum or an aluminum alloy.
- the aluminum alloy preferably contains elements such as magnesium, zinc, and silicon.
- transition metals such as iron, copper, nickel, and chromium
- the content is preferably 100 ppm by mass or less.
- the shape of the exterior member is not particularly limited.
- the shape of the exterior member may be, for example, a flat type (thin type), a square type, a cylindrical type, a coin type, a button type, or the like.
- the exterior member can be appropriately selected according to the battery size and the application of the battery.
- Negative electrode terminal may be formed of a material that is electrically stable and conductive in a potential range (vs. Li / Li + ) of 1 V to 3 V with respect to the oxidation-reduction potential of lithium. it can.
- the material of the negative electrode terminal includes at least one element selected from the group consisting of copper, nickel, stainless steel, or aluminum, or Mg, Ti, Zn, Mn, Fe, Cu, and Si. Aluminum alloys are mentioned. It is preferable to use aluminum or an aluminum alloy as a material of the negative electrode terminal.
- the negative electrode terminal is preferably made of the same material as the negative electrode current collector in order to reduce the contact resistance with the negative electrode current collector.
- Positive electrode terminal is formed of a material that is electrically stable and electrically conductive in a potential range of 3 V or more and 4.5 V or less (vs. Li / Li + ) with respect to the oxidation-reduction potential of lithium. be able to.
- Examples of the material of the positive electrode terminal include aluminum and an aluminum alloy containing at least one element selected from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu, and Si.
- the positive electrode terminal is preferably formed of the same material as the positive electrode current collector in order to reduce the contact resistance with the positive electrode current collector.
- the non-aqueous electrolyte battery according to the embodiment can be manufactured, for example, by assembling a non-aqueous non-aqueous electrolyte battery, performing initial charging, and performing the following aging.
- the first charge and aging are performed under the following conditions, the first layer and the second layer can be formed uniformly.
- the positive electrode contains the Mg-containing lithium manganese composite oxide and the lithium cobalt composite oxide as the positive electrode active material
- the present invention is not limited to this case. That is, the type of the positive electrode active material is not limited as long as aging is performed in a state where Mg ions and Co ions are present in the nonaqueous electrolyte.
- a battery having a state of charge (SOC: 5% to 100%) is stored in a high-temperature environment of 45 ° C. or more and 70 ° C. or less for 10 hours or more and less than 100 hours.
- the second layer containing Co is deposited on the negative electrode, for example, on the negative electrode active material particles or the negative electrode active material-containing layer.
- the battery is completely discharged, and charge and discharge are performed once or more, so that the first layer containing Mg is deposited on the second layer.
- This charge / discharge is preferably such that the SOC goes through a state of 100%.
- the negative electrode potential is Co.
- the potential includes the potential for deposition. Therefore, Co is deposited on the negative electrode. It is considered that Co precipitates at a potential of about 2.7 V (vs. Li / Li + ).
- the second layer is likely to be uniformly deposited on the negative electrode.
- the negative electrode according to the embodiment includes a titanium composite oxide as a negative electrode active material.
- a negative electrode containing a titanium composite oxide typically does not have a negative electrode potential of 0.7 V (vs. Li / Li + ).
- the present inventors believe that underpotential deposition has occurred. That is, it is considered that most of the precipitated Mg is precipitated by a reaction different from the reaction of the following formula (1). As described above, it is considered that the amount of Mg precipitated in the form of inorganic substances such as MgO and MgF 2 is large.
- the non-aqueous electrolyte battery according to the embodiment has a long life and excellent safety, and is particularly suitable for a vehicle-mounted battery.
- the flat type non-aqueous electrolyte battery includes a flat wound electrode group 1, a package member 2, a positive electrode terminal 7, a negative electrode terminal 6, and a non-aqueous electrolyte.
- the exterior member 2 is a bag-shaped exterior member made of a laminated film.
- the wound electrode group 1 is housed in an exterior member 2.
- the wound electrode group 1 includes a positive electrode 3, a negative electrode 4, and a separator 5, and a laminate formed by laminating the negative electrode 4, the separator 5, the positive electrode 3, and the separator 5 from the outside in a spiral shape. It is formed by winding and press molding.
- the positive electrode 3 includes the positive electrode current collector 3a and the positive electrode active material containing layer 3b.
- the positive electrode active material containing layer 3b contains a positive electrode active material.
- the positive electrode active material containing layer 3b is formed on both surfaces of the positive electrode current collector 3a.
- the negative electrode 4 includes a negative electrode current collector 4a and a negative electrode active material containing layer 4b.
- the negative electrode active material containing layer 4b contains a negative electrode active material.
- the negative electrode active material-containing layer 4b is formed only on one surface on the inner surface side of the negative electrode current collector 4a, and in other portions, the negative electrode active material-containing layers 4b are formed on both surfaces of the negative electrode current collector 4a. Is formed.
- a strip-shaped positive electrode terminal 7 is connected to the positive electrode current collector 3 a of the positive electrode 3 near the outer peripheral end of the wound electrode group 1.
- the strip-shaped negative electrode terminal 6 is connected to the negative electrode current collector 4a of the outermost negative electrode 4.
- the positive electrode terminal 7 and the negative electrode terminal 6 extend outside through the opening of the exterior member 2.
- a non-aqueous electrolyte is further injected into the exterior member 2 as a non-aqueous electrolyte.
- the wound electrode group 1 and the nonaqueous electrolyte are sealed by heat sealing the opening of the exterior member 2 with the positive electrode terminal 7 and the negative electrode terminal 6 sandwiched therebetween.
- the battery according to the embodiment is not limited to the configuration shown in FIG. 1 and FIG. 2 described above, but may be, for example, the configuration shown in FIG. 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
- the wound electrode group 11 is housed in a metal bottomed rectangular cylindrical container (outer member) 12.
- the non-aqueous electrolyte liquid non-aqueous electrolyte
- the flat wound electrode group 11 is formed by spirally winding a laminate in which a negative electrode, a separator, a positive electrode, and a separator are laminated in this order from the outside, and press-molding the laminate.
- the negative electrode tab 14 has one end electrically connected to the negative electrode current collector and the other end electrically connected to the negative electrode terminal 15.
- the negative electrode terminal 15 is fixed to the rectangular lid 13 with a hermetic seal with a glass material 16 interposed therebetween.
- One end of the positive electrode tab 17 is electrically connected to the positive electrode current collector, and the other end is electrically connected to the positive electrode terminal 18 fixed to the rectangular lid 13.
- the negative electrode tab 14 is made of, for example, a material such as aluminum or an aluminum alloy containing elements such as Mg, Ti, Zn, Mn, Fe, Cu, and Si.
- the negative electrode tab 14 is preferably made of the same material as the negative electrode current collector in order to reduce the contact resistance with the negative electrode current collector.
- the positive electrode tab 17 is made of a material such as aluminum or an aluminum alloy containing elements such as Mg, Ti, Zn, Mn, Fe, Cu, and Si.
- the positive electrode tab 17 is preferably made of the same material as the positive electrode current collector in order to reduce the contact resistance with the positive electrode current collector.
- the illustrated non-aqueous electrolyte battery used a wound type electrode group in which a separator was wound together with a positive electrode and a negative electrode. However, the separator was folded ninety-nine, and a positive electrode and a negative electrode were alternately arranged at the folded portion.
- An electrode group of a mold type may be used.
- a non-aqueous electrolyte battery includes a first layer containing Mg, a second layer containing Co, a negative electrode containing a negative electrode active material containing layer, a positive electrode, and a nonaqueous electrolyte.
- the first layer exists as the outermost layer of the negative electrode.
- the second layer exists inside the first layer.
- the negative electrode active material containing layer contains a titanium composite oxide.
- Titanium composite oxides include lithium titanate having a spinel structure, monoclinic ⁇ -type titanium composite oxide, Ti 1-x M1 x Nb 2-y M2 y O 7- ⁇ (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, M1 and M2 each independently include at least one selected from the group consisting of Fe, Ni, W, Ta and Mo), Li 2 + v Na 2-w M1 x Ti 6-yz Nb y M2 z O 14 + ⁇ (0 ⁇ v ⁇ 4, 0 ⁇ w ⁇ 2, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 6, 0 ⁇ z ⁇ 3, ⁇ 0.5 ⁇ ⁇ ⁇ 0.5, M1 is Cs, M2 includes at least one selected from the group consisting of K, Sr, Ba and Ca, and M2 includes at least one selected from Zr, Sn, V, Ta, Mo, W, Fe, Mn and Al) At least one selected from the group consisting of: As a result, in the negative electrode, excessive
- a battery pack is provided.
- This battery pack includes the nonaqueous electrolyte battery according to the first embodiment.
- the battery pack according to the second embodiment may include a plurality of nonaqueous electrolyte batteries.
- the plurality of non-aqueous electrolyte batteries can be electrically connected in series or electrically in parallel.
- a plurality of non-aqueous electrolyte batteries can be connected in a combination of series and parallel.
- the battery pack according to the second embodiment may include five first nonaqueous electrolyte batteries. These non-aqueous electrolyte batteries can be connected in series. Also, the non-aqueous electrolyte batteries connected in series can constitute a battery pack. That is, the battery pack according to the second embodiment may include an assembled battery.
- the battery pack according to the second embodiment can include a plurality of assembled batteries.
- a plurality of assembled batteries can be connected in series, in parallel, or in a combination of series and parallel.
- FIG. 4 is an exploded perspective view of an example of a battery pack according to the second embodiment.
- FIG. 5 is a block diagram showing an electric circuit of the battery pack of FIG.
- the battery pack 20 shown in FIGS. 4 and 5 includes a plurality of unit cells 21.
- the unit cell 21 may be an example of the flat nonaqueous electrolyte battery according to the first embodiment described with reference to FIG.
- the plurality of unit cells 21 are stacked so that the negative electrode terminal 51 and the positive electrode terminal 61 extending outside are aligned in the same direction, and are fastened with the adhesive tape 22 to constitute the assembled battery 23. These cells 21 are electrically connected to each other in series as shown in FIG.
- the printed wiring board 24 is arranged to face the side surface from which the negative electrode terminal 51 and the positive electrode terminal 61 of the cell 21 extend. As shown in FIG. 5, a thermistor 25, a protection circuit 26, and a terminal 27 for energizing an external device are mounted on the printed wiring board 24. Note that an insulating plate (not shown) is attached to the printed wiring board 24 on the surface facing the assembled battery 23 in order to avoid unnecessary connection with the wiring of the assembled battery 23.
- the positive electrode lead 28 is connected to a positive electrode terminal 61 located at the lowermost layer of the battery pack 23, and the leading end is inserted into the positive electrode connector 29 of the printed wiring board 24 and electrically connected.
- the negative electrode lead 30 is connected to a negative electrode terminal 51 located on the uppermost layer of the battery pack 23, and the leading end is inserted into the negative electrode connector 31 of the printed wiring board 24 and is electrically connected.
- the thermistor 25 detects the temperature of the cell 21, and the detection signal is transmitted to the protection circuit 26.
- the protection circuit 26 can cut off the plus side wiring 34a and the minus side wiring 34b between the protection circuit 26 and the terminal 27 for energizing the external device under predetermined conditions.
- An example of the predetermined condition is, for example, when the temperature detected by the thermistor 25 becomes equal to or higher than the predetermined temperature.
- Another example of the predetermined condition is, for example, a time when overcharge, overdischarge, overcurrent, or the like of the cell 21 is detected. The detection of the overcharge or the like is performed for each of the unit cells 21 or the entire assembled battery 23.
- the battery voltage When detecting the individual cells 21, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each unit cell 21. In the case of the battery pack 20 of FIGS. 4 and 5, a wiring 35 for voltage detection is connected to each of the cells 21. A detection signal is transmitted to the protection circuit 26 through these wirings 35.
- Protective sheets 36 made of rubber or resin are arranged on the three side surfaces of the battery pack 23 except for the side surfaces from which the positive terminal 61 and the negative terminal 51 project.
- the assembled battery 23 is stored in the storage container 37 together with the respective protective sheets 36 and the printed wiring board 24. That is, the protective sheets 36 are disposed on both the inner side surfaces in the long side direction and the inner side surface in the short side direction of the storage container 37, and the printed wiring board 24 is disposed on the inner side opposite to the short side direction.
- the assembled battery 23 is located in a space surrounded by the protection sheet 36 and the printed wiring board 24.
- the lid 38 is attached to the upper surface of the storage container 37.
- the heat-shrinkable tape may be used for fixing the battery pack 23.
- the protective sheets are arranged on both side surfaces of the battery pack, and after the heat shrink tape is circulated, the heat shrink tape is heat shrunk to bind the battery pack.
- 4 and 5 show the configuration in which the cells 21 are connected in series, but they may be connected in parallel to increase the battery capacity. Further, assembled battery packs can be connected in series and / or in parallel.
- the aspect of the battery pack according to the second embodiment is appropriately changed depending on the application.
- the application of the battery pack according to the second embodiment those in which a cycle performance with a large current performance is desired are preferable.
- Specific applications include power supplies for digital cameras, and in-vehicle applications such as two- or four-wheel hybrid electric vehicles, two- or four-wheel electric vehicles, and assisted bicycles.
- the battery pack according to the second embodiment is particularly suitable for a vehicle.
- the battery pack according to the second embodiment includes the nonaqueous electrolyte battery according to the first embodiment. Therefore, in the negative electrode, formation of an excessive film due to repeated charge / discharge cycles can be suppressed, so that a battery pack having excellent charge / discharge cycle characteristics can be provided.
- Example 1 ⁇ Preparation of positive electrode> LiMn 0.85 Mg 0.05 Fe 0.1 PO 4 and LiCo 0.8 Ni 0.2 O 2 were prepared as the positive electrode active material, and these were mixed so that LiCo 0.8 Ni 0.2 O 2 was 10% by mass of the total positive electrode active material mass. 90% by mass of the obtained active material mixed powder, 5% by mass of acetylene black as a conductive agent, and 5% by mass of polyvinylidene fluoride (PVdF) were added to N-methylpyrrolidone (NMP) and mixed to prepare a slurry. The slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 ⁇ m, dried, and pressed to produce a positive electrode having an electrode density of 2.0 g / cm 3 .
- PVdF polyvinylidene fluoride
- PVdF polyvinylidene fluoride
- a positive electrode, a separator made of a 25 ⁇ m-thick polyethylene porous film, a negative electrode, and a separator were laminated in this order, and then spirally wound. This was hot-pressed at 90 ° C. to produce a flat electrode group having a width of 30 mm and a thickness of 3.0 mm.
- the obtained electrode group was housed in a pack (exterior member) made of a laminated film, and vacuum dried at 80 ° C. for 24 hours.
- the laminate film is formed by forming a polypropylene layer on both sides of an aluminum foil having a thickness of 40 ⁇ m, and has a total thickness of 0.1 mm.
- ⁇ Preparation of non-aqueous electrolyte battery> The liquid non-aqueous electrolyte was injected into the pack of the laminated film containing the electrode group. Thereafter, the pack was completely sealed by heat sealing to produce a non-aqueous electrolyte battery having the structure shown in FIG. 1 described above, a width of 35 mm, a thickness of 3.2 mm, and a height of 65 mm.
- X XPS was performed on the negative electrode of the battery after aging according to the method described in the first embodiment. As a result, around 1304 eV, a peak considered to be derived from Mg1S was observed. ICP-AES was performed on the negative electrode according to the method described in the first embodiment. As a result, the ratio Mg / Co in the negative electrode was 0.68.
- the ratio Mg / Co is, as described above, the ratio of the weight of Mg to the total weight of the first layer, the second layer, and the negative electrode active material-containing layer, and the ratio of Mg, Co, Means the ratio of the weight of Co to the total weight of Co.
- Example 2 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that LiMn 0.83 Mg 0.07 Fe 0.1 PO 4 was used instead of LiMn 0.85 Mg 0.05 Fe 0.1 PO 4 as the positive electrode active material.
- Example 3 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that LiMn 0.8 Mg 0.01 Fe 0.19 PO 4 was used instead of LiMn 0.85 Mg 0.05 Fe 0.1 PO 4 as the positive electrode active material.
- Example 4 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that LiMn 0.6 Mg 0.1 Fe 0.3 PO 4 was used instead of LiMn 0.85 Mg 0.05 Fe 0.1 PO 4 as the positive electrode active material.
- Example 5 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that LiMn 0.89 Mg 0.1 Fe 0.01 PO 4 was used instead of LiMn 0.85 Mg 0.05 Fe 0.1 PO 4 as the positive electrode active material.
- Example 6 Same as Example 1 except that Li1.05 Mn 1.8 Al 0.1 Mg 0.05 O 4 was used instead of LiMn 0.85 Mg 0.05 Fe 0.1 PO 4 as the positive electrode active material, and the positive electrode density was 2.7 g / cm 3.
- a non-aqueous electrolyte battery was manufactured by the method described above.
- Example 7 A method similar to that of Example 1 except that LiMn 1.7 Al 0.28 Mg 0.02 O 4 was used instead of LiMn 0.85 Mg 0.05 Fe 0.1 PO 4 as the positive electrode active material and the positive electrode density was 2.7 g / cm 3. Produced a non-aqueous electrolyte battery.
- Example 8 Instead of LiMn 0.85 Mg 0.05 Fe 0.1 PO 4 using Li 1.05 Mn 1.7 Al 0.05 Mg 0.2 O 4 as a cathode active material, a positive electrode density except that a 2.7 g / cm 3, as in Example 1 A non-aqueous electrolyte battery was manufactured by the method described above.
- Example 9 Same as Example 1 except that LiMn 0.85 Mg 0.05 Fe 0.1 PO 4 was replaced with Li 1.12 Mn 1.85 Al 0.03 Mg 0.02 O 4 as the positive electrode active material and the positive electrode density was 2.7 g / cm 3 A non-aqueous electrolyte battery was manufactured by the method described above.
- Example 10 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that LiCo 0.2 Ni 0.5 Mn 0.3 O 2 was used instead of LiCo 0.8 Ni 0.2 O 2 as the positive electrode active material.
- Example 11 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that LiCo 0.2 Ni 0.4 Mn 0.4 O 2 was used instead of LiCo 0.8 Ni 0.2 O 2 as the positive electrode active material.
- Example 12 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that LiCo 0.9 Ni 0.05 Mn 0.05 O 2 was used instead of LiCo 0.8 Ni 0.2 O 2 as the positive electrode active material.
- Example 13 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that LiCo 0.95 Ni 0.04 Mn 0.01 O 2 was used instead of LiCo 0.8 Ni 0.2 O 2 as the positive electrode active material.
- Example 14 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that the monoclinic ⁇ -type titanium composite oxide TiO 2 ( B) was used instead of Li 4 Ti 5 O 12 as the negative electrode active material. did.
- Example 15 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that TiNb 2 O 7 was used instead of Li 4 Ti 5 O 12 as the negative electrode active material.
- Example 16 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that Ti 0.95 Fe 0.05 Nb 1.95 Ta 0.05 O 7 was used instead of Li 4 Ti 5 O 12 as the negative electrode active material.
- Example 17 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that Ti 0.9 Ni 0.1 Nb 1.9 W 0.1 O 7 was used instead of Li 4 Ti 5 O 12 as the negative electrode active material.
- Example 18 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that Li 2.05 Na 1.9 Sr 0.05 Ti 5.7 Nb 0.3 O 14 was used instead of Li 4 Ti 5 O 12 as the negative electrode active material.
- Example 19 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that Li 2.05 Na 1.8 Ca 0.1 Ti 5.9 Nb 0.1 O 14 was used as the negative electrode active material instead of Li 4 Ti 5 O 12 .
- Example 20 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 except that Li 2 Na 1.85 Ba 0.01 Ti 5.75 Nb 0.2 Al 0.05 O 14 was used instead of Li 4 Ti 5 O 12 as the negative electrode active material. .
- Example 21 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that Li 2.05 Na 1.5 Ti 5.5 Nb 0.4 Mo 0.1 O 14 was used instead of Li 4 Ti 5 O 12 as the negative electrode active material.
- Example 22 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 except that aging was performed at an environmental temperature of 50 ° C. for 10 hours with an SOC of 100%.
- Example 23 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that aging was performed at an environment temperature of 60 ° C. for 10 hours with an SOC of 100%.
- Example 24 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that aging was performed at an environment temperature of 70 ° C. for 10 hours at an SOC of 30%.
- Example 25 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that aging was performed at an environment temperature of 70 ° C. for 5 hours with an SOC of 100%.
- Example 26 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 except that aging was performed at an environmental temperature of 70 ° C. for 24 hours at an SOC of 100%.
- Example 1 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that the aging treatment was not performed.
- Example 2 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that LiMn 0.85 Fe 0.15 PO 4 was used instead of LiMn 0.85 Mg 0.05 Fe 0.1 PO 4 as the positive electrode active material.
- Example 3 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that LiNi 0.5 Mn 0.5 O 2 was used instead of LiCo 0.8 Ni 0.2 O 2 as the positive electrode active material.
- Example 4 A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1, except that aging was performed at an environmental temperature of 30 ° C. for 10 hours with an SOC of 100%.
- a charge / discharge cycle test in a 60 ° C. environment was performed on the manufactured nonaqueous electrolyte batteries of Examples 1 to 26 and Comparative Examples 1 to 4.
- the battery was charged in a constant current constant voltage mode.
- the charging conditions in each cycle were a charging rate of 1 C and a charging voltage of 2.7 V.
- the condition for terminating the charging under these conditions was set to a point after 3 hours had passed or when the current value reached 0.05C.
- Discharge was performed in a constant current mode.
- the number of cycles performed in the charge / discharge cycle test was 500 for each nonaqueous electrolyte battery.
- Tables 1 and 2 The above results are summarized in Tables 1 and 2 below.
- the column of “Positive electrode active material 1” shows the first type of positive electrode active material included in each battery.
- the column of “Positive electrode active material 2” shows a second type of positive electrode active material included in each battery.
- the column of “Mg content” shows the weight% of Mg measured by ICP-AES.
- the column of “Co amount” shows the weight% of Co measured by ICP-AES.
- the column of “capacity maintenance rate (%)” shows the cycle capacity maintenance rate calculated by the cycle test described above.
- the non-aqueous electrolyte battery includes a first layer including Mg, a second layer including Co, and a negative electrode including a negative electrode active material containing layer, a positive electrode, A water electrolyte.
- the first layer exists as the outermost layer of the negative electrode.
- the second layer exists inside the first layer.
- the negative electrode active material containing layer contains a titanium composite oxide.
- Titanium composite oxides include lithium titanate having a spinel structure, monoclinic ⁇ -type titanium composite oxide, Ti 1-x M1 x Nb 2-y M2 y O 7- ⁇ (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, M1 and M2 each independently include at least one selected from the group consisting of Fe, Ni, W, Ta and Mo), Li 2 + v Na 2-w M1 x Ti 6-yz Nb y M2 z O 14 + ⁇ (0 ⁇ v ⁇ 4, 0 ⁇ w ⁇ 2, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 6, 0 ⁇ z ⁇ 3, ⁇ 0.5 ⁇ ⁇ ⁇ 0.5, M1 is Cs, M2 includes at least one selected from the group consisting of K, Sr, Ba and Ca, and M2 includes at least one selected from Zr, Sn, V, Ta, Mo, W, Fe, Mn and Al) At least one selected from the group consisting of: As a result, in the negative electrode, excessive
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Compounds Of Iron (AREA)
Abstract
実施形態によると、非水電解質電池が提供される。この非水電解質電池は、Mgを含む第1層、Coを含む第2層、及び、負極活物質含有層を含む負極と、正極と、非水電解質とを備える。第1層は負極の最表層として存在する。第2層は第1層よりも内側に存在する。負極活物質含有層はチタン複合酸化物を含む。チタン複合酸化物は、スピネル構造を有するチタン酸リチウム、単斜晶系β型チタン複合酸化物、Ti1-xM1xNb2-yM2yO7-δ(0≦x<1、0≦y<1、M1及びM2は、各々独立してFe, Ni, W, Ta及びMoからなる群より選択される少なくとも1つを含む)、Li2+vNa2-wM1xTi6-y-zNbyM2zO14+δ(0≦v≦4、0<w<2、0≦x<2、0<y≦6、0≦z<3、-0.5≦δ≦0.5、M1はCs, K, Sr, Ba及びCaからなる群より選択される少なくとも1つを含み、M2はZr, Sn, V, Ta, Mo, W, Fe, Mn及びAlから選択される少なくとも1つを含む)からなる群より選択される少なくとも1つを含む。
Description
本発明の実施形態は、非水電解質電池及び電池パックに関する。
リチウムイオンが電荷の担い手となるリチウムイオン電池に代表される非水電解質電池は、高エネルギー密度・高出力が得られる利点を生かし、携帯電子機器などの小型用途から電気自動車や電力需給調整などの大型用途まで広く適用が進められている。大型用途では、例えば寿命特性及び高い安全性が要求される。
非水電解質電池の負極活物質としては、寿命特性及び安全性の観点からチタン複合酸化物が注目されている。しかしながら、チタン複合酸化物を含む負極においては、電解液の還元分解反応が生じる可能性がある。充放電サイクルに伴ってこのような反応が過剰に生じると、負極上に過剰な被膜が形成され、寿命特性が低下するという問題がある。
本発明が解決しようとする課題は、充放電サイクル特性に優れる非水電解質電池、及びこの非水電解質電池を具備する電池パックを提供することである。
実施形態によれば、非水電解質電池が提供される。この非水電解質電池は、Mgを含む第1層、Coを含む第2層、及び、負極活物質含有層を含む負極と、正極と、非水電解質とを備える。第1層は負極の最表層として存在する。第2層は第1層よりも内側に存在する。負極活物質含有層はチタン複合酸化物を含む。チタン複合酸化物は、スピネル構造を有するチタン酸リチウム、単斜晶系β型チタン複合酸化物、Ti1-xM1xNb2-yM2yO7-δ(0≦x<1、0≦y<1、M1及びM2は、各々独立してFe, Ni, W, Ta及びMoからなる群より選択される少なくとも1つを含む)、Li2+vNa2-wM1xTi6-y-zNbyM2zO14+δ(0≦v≦4、0<w<2、0≦x<2、0<y≦6、0≦z<3、-0.5≦δ≦0.5、M1はCs, K, Sr, Ba及びCaからなる群より選択される少なくとも1つを含み、M2はZr, Sn, V, Ta, Mo, W, Fe, Mn及びAlから選択される少なくとも1つを含む)からなる群より選択される少なくとも1つを含む。
また、実施形態によれば、電池パックが提供される。電池パックは、実施形態の非水電解質電池を具備する。
(第1の実施形態)
実施形態によれば、非水電解質電池が提供される。この非水電解質電池は、Mgを含む第1層、Coを含む第2層、及び、負極活物質含有層を含む負極と、正極と、非水電解質とを備える。第1層は負極の最表層として存在する。第2層は第1層よりも内側に存在する。負極活物質含有層はチタン複合酸化物を含む。チタン複合酸化物は、スピネル構造を有するチタン酸リチウム、単斜晶系β型チタン複合酸化物、Ti1-xM1xNb2-yM2yO7-δ(0≦x<1、0≦y<1、M1及びM2は、各々独立してFe, Ni, W, Ta及びMoからなる群より選択される少なくとも1つを含む)、Li2+vNa2-wM1xTi6-y-zNbyM2zO14+δ(0≦v≦4、0<w<2、0≦x<2、0<y≦6、0≦z<3、-0.5≦δ≦0.5、M1はCs, K, Sr, Ba及びCaからなる群より選択される少なくとも1つを含み、M2はZr, Sn, V, Ta, Mo, W, Fe, Mn及びAlから選択される少なくとも1つを含む、6-y-zは0を含まない)からなる群より選択される少なくとも1つを含む。
実施形態によれば、非水電解質電池が提供される。この非水電解質電池は、Mgを含む第1層、Coを含む第2層、及び、負極活物質含有層を含む負極と、正極と、非水電解質とを備える。第1層は負極の最表層として存在する。第2層は第1層よりも内側に存在する。負極活物質含有層はチタン複合酸化物を含む。チタン複合酸化物は、スピネル構造を有するチタン酸リチウム、単斜晶系β型チタン複合酸化物、Ti1-xM1xNb2-yM2yO7-δ(0≦x<1、0≦y<1、M1及びM2は、各々独立してFe, Ni, W, Ta及びMoからなる群より選択される少なくとも1つを含む)、Li2+vNa2-wM1xTi6-y-zNbyM2zO14+δ(0≦v≦4、0<w<2、0≦x<2、0<y≦6、0≦z<3、-0.5≦δ≦0.5、M1はCs, K, Sr, Ba及びCaからなる群より選択される少なくとも1つを含み、M2はZr, Sn, V, Ta, Mo, W, Fe, Mn及びAlから選択される少なくとも1つを含む、6-y-zは0を含まない)からなる群より選択される少なくとも1つを含む。
活物質としてチタン複合酸化物を含む負極を充放電させると、活物質表面において非水電解質の還元分解反応を生じることが知られている。充放電サイクルを繰り返すことにより非水電解質の還元分解反応が過剰に生じると、それに伴って負極上に過剰な被膜が形成される可能性がある。過剰な被膜とは、例えば厚みが厚く、面積が大きい被膜である。このような過剰な被膜が形成されると、リチウムイオンの拡散抵抗が高まり、例えば負極活物質及び非水電解質の間でリチウムイオンの授受が円滑に行われなくなる。充放電サイクルを行う度に被膜が形成されると、この被膜の厚みはますます厚くなるため、サイクル寿命特性が低下する可能性がある。
本発明者らは、Mgを含む層(第1層)が負極の最表層として存在することにより、過剰な被膜が形成されるのを抑制できることを見出した。この理由は定かではないが、Mgを含む層が負極の最表層として存在していると、非水電解質が含む溶媒及び塩の分解が抑えられ、充放電サイクルを繰り返すことによる過剰な被膜形成を抑制できる。つまり、充放電を行うことによりMgを含む層が負極上に一旦形成されると、それ以上に充放電サイクルを繰り返したとしても、非水電解質の分解物が負極上に析出しにくくなる。
また、実施形態に係る負極は、Mgを含む層を最表層として析出させるために、当該層よりも内側の層としてCoを含む層(第2層)を含む。例えば、負極上に、Coを含む層がMgを含む層よりも先に析出することにより、その後にMgを含む層が析出しやすくなる。また、Coを含む層が存在することにより、Mgを含む層が均一に析出しやすくなる。Coを含む層が存在しないと、Mgを含む層が析出されにくい。Coを含む層が存在しないまま、Mgを含む層が析出された場合、Mgを含む層は不均一な析出形態になる傾向にある。この場合、非水電解質の分解が十分に抑制されない。
以上の作用により、実施形態に係る非水電解質電池の充放電サイクル特性は優れている。
実施形態に係る非水電解質電池において、正極及び負極の間にセパレータを配置することができる。正極、負極及びセパレータは、電極群を構成することができる。非水電解質は、電極群に保持され得る。また、実施形態の非水電解質電池は、電極群、非水電解質及びセパレータを収納するための外装部材を更に具備することができる。
以下、負極、正極、非水電解質、セパレータ及び外装部材について説明する。
(1)負極
負極は、負極集電体と、負極集電体の片面もしくは両面に担持された負極活物質含有層(負極材料層)とを有する。負極活物質含有層は、負極活物質、負極導電剤及び結着剤を含む。
負極は、負極集電体と、負極集電体の片面もしくは両面に担持された負極活物質含有層(負極材料層)とを有する。負極活物質含有層は、負極活物質、負極導電剤及び結着剤を含む。
集電体は、1.0Vよりも貴である電位範囲において電気化学的に安定であるアルミニウム箔又はMg、Ti、Zn、Mn、Fe、Cu、及びSiからなる群より選択される少なくとも1つの元素を含むアルミニウム合金箔から形成されることが好ましい。
また、集電体は、その表面に負極活物質含有層が形成されていない部分を含むことができる。この部分は、負極集電タブとして働くことができる。
負極活物質は、チタン複合酸化物を含む。負極活物質の種類は1種類又は2種類以上にすることができる。負極活物質としては、例えば、リチウム吸蔵放出電位が0.7~2.0V(vs. Li/Li+)の範囲内にある活物質を使用することができる。実施形態に係るチタン複合酸化物は、実質的にはMgもCoも含まない。或いは、実施形態に係るチタン複合酸化物は、MgもCoも含まない。
チタン複合酸化物は、スピネル構造を有するチタン酸リチウム、単斜晶系β型チタン複合酸化物、Ti1-xM1xNb2-yM2yO7-δ(0≦x<1、0≦y<1、M1及びM2は、各々独立してFe, Ni, W, Ta及びMoからなる群より選択される少なくとも1つを含む)、Li2+vNa2-wM1xTi6-y-zNbyM2zO14+δ(0≦v≦4、0<w<2、0≦x<2、0<y≦6、0≦z<3、-0.5≦δ≦0.5、M1はCs, K, Sr, Ba及びCaからなる群より選択される少なくとも1つを含み、M2はZr, Sn, V, Ta, Mo, W, Fe, Mn及びAlから選択される少なくとも1つを含む)からなる群より選択される少なくとも1つを含む。
スピネル構造を有するチタン酸リチウムは、例えば、一般式Li4+xTi5O12で表されるチタン酸リチウムが含まれることが好ましい。なお、一般式Li4+xTi5O12において、xの値は充放電により変化する値であり、-1≦x≦3の範囲内で変化しうる。
単斜晶系β型チタン複合酸化物の組成は、LixTiO2(B)で表すことができる。なお、一般式LixTiO2(B)において、xの値は充放電により変化する値であり、0≦x≦1の範囲内で変化しうる。
チタン複合酸化物の例に、Ti1-xM1xNb2-yM2yO7-δ(0≦x<1、0≦y<1、M1及びM2は、各々独立してFe, Ni, W, Ta及びMoからなる群より選択される少なくとも1つを含む)が含まれる。上記一般式Ti1-xM1xNb2-yM2yO7-δにおいて、M1及びM2は同一の元素であっても良く、異なる元素であっても良い。上記一般式Ti1-xM1xNb2-yM2yO7-δで表されるニオブチタン複合酸化物は、例えば単斜晶系の結晶構造を有する。
チタン複合酸化物の例に、Li2+vNa2-wM1xTi6-y-zNbyM2zO14+δ(0≦v≦4、0<w<2、0≦x<2、0<y≦6、0≦z<3、-0.5≦δ≦0.5、M1はCs, K, Sr, Ba及びCaからなる群より選択される少なくとも1つを含み、M2はZr, Sn, V, Ta, Mo, W, Fe, Mn及びAlから選択される少なくとも1つを含む、6-y-zは0を含まない)が含まれる。上記一般式Li2+vNa2-wM1xTi6-y-zNbyM2zO14+δで表されるNa含有ニオブチタン複合酸化物は、例えば直方晶系の結晶構造を有する。
負極活物質は、上述した負極活物質の中でも、スピネル構造を有するチタン酸リチウムを含むことが好ましい。この理由は、サイクル特性及びレート特性に優れるためである。
負極活物質は、上述した種類以外の活物質(他の活物質)を含んでいてもよい。他の活物質の例として、ラムスデライト型チタン酸リチウム(例えばLi2+yTi3O7、0≦y≦3)、アナターゼ型二酸化チタン、ルチル型二酸化チタン、ホランダイト型チタン複合酸化物、ニオブ酸化物を挙げることができる。ニオブ酸化物の例は、Nb2O5、Nb12O29などを含む。
負極活物質は、粒子として負極活物質含有層に含まれ得る。負極活物質粒子の一次粒子の平均粒径は、5μm以下であることが好ましい。一次粒子の平均粒径が5μm以下であると、電極反応に寄与する有効面積を十分に確保することができ、非水電解質電池において良好な大電流放電性能を得ることができる。負極活物質の一次粒子の平均粒径は、例えば、レーザー回折・散乱式 粒子径分布測定装置を用いて測定することができる。測定装置としては、マイクロトラックベル株式会社製、レーザー回折・散乱式 粒子径分布測定装置 (型版:MT3000-II)を用いることができる。
負極は、Mg(マグネシウム)を含む第1層を最表層として含む。第1層は、Mg化合物の他に、LiFなどの無機化合物、及び、リチウムアルキルカーボネートなどの有機化合物を含んでいてもよい。これらの無機化合物及び有機化合物は、非水電解質が含み得るリチウム塩、及び、溶媒の分解生成物である。第1層がMg化合物を含むことにより、無機化合物及び有機化合物の過剰な生成が抑制される。第1層は、負極の表面全体を被覆している必要はなく、負極の最表層の少なくとも一部として存在していればよい。第1層は負極の表面全体を被覆していてもよい。第1層は、後述する第2層よりも外側(表面側)の層として存在する。第1層は、例えば、第2層の少なくとも一部を直接被覆している。第1層の厚みは特に限定されないが、例えば3nm以上であり、好ましくは5nm以上である。第1層の厚みの上限値は、10nmとすることができる。
第1層が含むMgは、例えば、Mgメタルの状態及び/又はMg2+の状態で存在し得る。Mg2+の状態の例は、MgO及びMgF2から選択される少なくとも1つの無機物の状態で存在する場合を含む。第1層が含むMgがMg2+の状態で存在していると、電子導電性の低いMg化合物と、Li導電性のある無機化合物及び有機化合物とが適切な膜を形成し、優れたLi導電性を維持しながら、抵抗上昇を抑制する効果を奏する。第1層、第2層及び負極活物質含有層のうち、第1層のみがMgを含むことが好ましい。
第1層は、例えば、非水電解質中に存在するMgイオンが、Mgメタル及び/又はMg2+として析出することにより形成される。
負極は、Co(コバルト)を含む第2層を含む。第2層は、Co化合物の他に、LiFなどの無機化合物、及び、リチウムアルキルカーボネートなどの有機化合物を含んでいてもよい。これらの無機化合物及び有機化合物は、非水電解質が含み得るリチウム塩、及び、溶媒の分解生成物である。Coを含む第2層は、上記第1層よりも内側に存在する。例えば、負極活物質含有層上にCoを含む第2層が存在し、第2層上にMgを含む第1層が存在する。第2層は、例えば、負極活物質粒子を直接被覆する層として存在している。但し、第2層は、負極活物質粒子の全面を被覆している必要はなく、負極活物質粒子の少なくとも一部を被覆していればよい。第2層の厚みは特に限定されないが、例えば1nm以上である。
第1層、第2層及び負極活物質含有層のうち、第2層のみがCoを含むことが好ましい。
第2層は、例えば、非水電解質中に存在するCoイオンが析出することにより形成される。
第1層、第2層及び負極活物質含有層の合計重量に対するMgの重量の割合は、例えば0.002重量%~0.1重量%の範囲内にあり、好ましくは0.005重量%~0.04重量の範囲内にある。第1層、第2層及び負極活物質含有層の合計重量に対するMgの重量の割合がこの範囲内にあると、抵抗上昇を抑制する効果と、Li導電性を維持する効果とが両立される。第1層、第2層及び負極活物質含有層の合計重量に対するMgの重量の割合が小さすぎると、非水電解質の分解反応を十分に抑制することが困難になる可能性がある。
第1層、第2層及び負極活物質含有層の合計重量に対するCoの重量の割合は、例えば0.003重量%~0.2重量%の範囲内にあり、好ましくは0.01重量%~0.05重量%の範囲内にある。第1層、第2層及び負極活物質含有層の合計重量に対するCoの重量の割合がこの範囲内にあると、抵抗上昇を抑制しつつ、Mg化合物を含む層を形成しやすくすることができる。第1層、第2層及び負極活物質含有層の合計重量に対するCoの重量の割合が大きすぎると、正極が劣化し易くなるため好ましくない。
第1層、第2層及び負極活物質含有層の合計重量に対するMgの重量の割合と、第1層、第2層及び負極活物質含有層の合計重量に対するCoの重量の割合との比を、比Mg/Coとする。比Mg/Coは、0.05~3.5の範囲内にあることが好ましく、1.1~2.9の範囲内にあることが更に好ましい。
Mgを含む第1層が最表層として存在しているという事実は、X線光電子分光分析法(XPS: X-ray Photoelectron Spectroscopy)により検出可能である。XPSによると、負極の表面から数nm程度の深さまでの範囲に存在する元素を同定することができる。負極活物質含有層の表面をXPSにより分析すると、1300eV~1308eVにMg1S由来のピークを観察することができる。但し、Coは負極表層に存在していないため、負極活物質含有層の表面に対してXPSを行ってもCo由来のピークは現れない。
XPSを行うための装置として、PHI社製QuanteraSXM、又はこれと同様な機能を有する装置を用いることができる。励起X線源には単結晶分光Al-Kα(1486.6eV)を用い、光電子検出角度は45°とし、X線径を200μmとする。
XPSは、以下の手順で電池から取り出した負極に対して実施する。まず、電池を完放電状態とする。次に、アルゴン雰囲気のグローブボックス内で電池を分解する。電池を分解した後に負極を取り出し、エチルメチルカーボネート溶媒で洗浄した後に乾燥する。こうして準備した負極試料に対してXPSを実施する。
Coを含む第2層が第1層よりも内側に存在することは、上記XPSに加えて、誘導結合プラズマ発光分光分析法(ICP-AES: Inductively Coupled Plasma Atomic Emission Spectroscopy)を行うことにより検出できる。ICP-AESを行うと、負極活物質含有層の単位重量当たりのMg量(重量%)、及び負極活物質含有層の単位重量当たりのCo量(重量%)を定量することができる。
ICP分析は、まず、XPSについて説明したのと同様にして負極試料を準備する。次に、負極活物質含有層をその表面から負極集電体が見える位置まで削り取る。削り取った試料を硫酸、硝酸、過塩素酸又はフッ化水素などを用いて加熱分解した後に、希硝酸に溶解させて所定体積の溶液を得る。この溶液を用いてICP-AES分析を行う。
導電剤は、集電性能を高め、且つ、活物質と集電体との接触抵抗を抑えるために配合される。導電剤の例には、気相成長カーボン繊維(Vapor Grown Carbon Fiber;VGCF)、カーボンブラック、黒鉛、カーボンナノチューブ及びフラーレンなどの炭素質物が含まれる。カーボンブラックの例は、アセチレンブラック及びケッチェンブラックを含む。これらの1つを導電剤として用いてもよく、或いは、2つ以上を組み合わせて導電剤として用いてもよい。あるいは、導電剤を用いる代わりに、活物質粒子の表面に、炭素コートや電子導電性無機材料コートを施してもよい。
結着剤は、分散された活物質の間隙を埋め、また、活物質と負極集電体を結着させるために配合される。結着剤の例には、ポリテトラフルオロエチレン(polytetrafluoro ethylene;PTFE)、ポリフッ化ビニリデン(polyvinylidene fluoride;PVdF)、フッ素系ゴム、スチレンブタジエンゴム、ポリアクリル酸化合物、イミド化合物、カルボキシルメチルセルロース(carboxymethyl cellulose;CMC)、CMCの塩、ポリイミド及びポリアミドが含まれる。これらの1つを結着剤として用いてもよく、或いは、2つ以上を組み合わせて結着剤として用いてもよい。
負極活物質含有層における負極活物質、導電剤及び結着剤の配合割合は、負極活物質70重量%以上96重量%以下、導電剤2重量%以上28重量%以下及び結着剤2重量%以上28重量%以下にすることが好ましい。導電剤は、2重量%以上の割合で配合することにより高い集電性能による優れた大電流特性が得られる。また、結着剤量を2重量%以上にすることにより、負極活物質含有層と負極集電体の結着性を高くしてサイクル特性を向上することができる。一方、高容量化の観点から、負極導電剤及び結着剤はそれぞれ28重量%以下であることが好ましい。
負極は、例えば次の方法により作製することができる。まず、負極活物質、負極導電剤及び結着剤を溶媒に懸濁してスラリーを調製する。このスラリーを、負極集電体の片面又は両面に塗布する。次いで、塗布したスラリーを乾燥させて、負極活物質含有層と負極集電体との積層体を得る。その後、この積層体にプレスを施す。このようにして、負極を作製する。
或いは、負極は、次の方法により作製してもよい。まず、負極活物質、負極導電剤及び結着剤を混合して、混合物を得る。次いで、この混合物をペレット状に成形する。次いで、これらのペレットを負極集電体上に配置することにより、負極を得ることができる。
負極の表面上に、第1層及び第2層を形成する方法は後述する。
(2)正極
正極は、正極集電体と、正極活物質含有層とを含むことができる。正極活物質含有層は、正極集電体の片面又は両面に形成され得る。正極活物質含有層は、正極活物質と、任意に導電剤及び結着剤を含むことができる。
正極は、正極集電体と、正極活物質含有層とを含むことができる。正極活物質含有層は、正極集電体の片面又は両面に形成され得る。正極活物質含有層は、正極活物質と、任意に導電剤及び結着剤を含むことができる。
正極活物質は、例えば、リチウムコバルト複合酸化物LiCo1-a-bNiaMnbO2(0≦a≦0.5、0≦b≦0.5、a+b<1)、リチウムニッケル複合酸化物(例えば、LiuNiO2)、リチウムニッケルコバルトアルミニウム複合酸化物(例えば、LiuNi1-s-tCosAltO2)、リチウムマンガン複合酸化物(例えば、LiuMn2O4又はLiuMnO2)、Mg含有リチウムマンガン複合酸化物、オリビン構造を有するリチウムリン酸化物(例えば、LiuFePO4、LiuMnPO4、LiuMn1-sFesPO4、LiuCoPO4)、スピネル構造を有するリチウムマンガンニッケル複合酸化物(例えばLixMn2-yNiyO4;0<x≦1、0<y<2)からなる群より選択される少なくとも1種を含むことができる。上記において、0<u≦1であり、0≦s≦1であり、0≦t≦1であることが好ましい。正極活物質は、1種類の化合物を単独で含んでいてもよく、2種類以上の化合物を組み合わせて含んでいてもよい。
正極活物質は、Mg含有リチウムマンガン複合酸化物、オリビン型構造を有するLiMn1-x-yMgxFeyPO4(0<x≦0.1, 0<y≦0.3)、スピネル型構造を有するLi1+aMn2-b-cAlbMgcO4(0≦a<0.15, 0<b≦0.3, 0<c≦0.2)からなる群より選ばれる少なくとも1つを含むことがより好ましい。Mg含有リチウムマンガン複合酸化物の例は、LiMn1-x-yMgxFeyPO4(0<x≦0.1、0<y≦0.3)及びLi1+aMn2-b-cAlbMgcO4(0≦a<0.15、0<b≦0.3、0<c≦0.2)を含む。
また、正極活物質は、リチウムコバルト複合酸化物LiCo1-a-bNiaMnbO2(0≦a≦0.5、0≦b≦0.5、a+b<1)を含むことが好ましい。リチウムコバルト複合酸化物は、LiCo1-a-bNiaMnbO2(0≦a≦0.35、0≦b≦0.35)で表される一般式に含まれる組成を有していることがより好ましい。
正極活物質は、Mg含有リチウムマンガン複合酸化物及びリチウムコバルト複合酸化物を含むことが更に好ましい。この場合、Mg含有リチウムマンガン複合酸化物とリチウムコバルト複合酸化物との質量比は、97:3~70:30の範囲内にあることが好ましい。正極活物質は、Mg含有リチウムマンガン複合酸化物及びリチウムコバルト複合酸化物のみを含んでいてもよい。
正極活物質の一次粒径は、100nm以上1μm以下であることが好ましい。一次粒径が100nm以上の正極活物質は、工業生産上の取り扱いが容易である。一次粒径が1μm以下の正極活物質は、リチウムイオンの固体内拡散をスムーズに進行させることが可能である。
正極活物質の比表面積は、0.1m2/g以上10m2/g以下であることが好ましい。0.1m2/g以上の比表面積を有する正極活物質は、Liイオンの吸蔵・放出サイトを十分に確保できる。10m2/g以下の比表面積を有する正極活物質は、工業生産の上で取り扱い易く、かつ良好な充放電サイクル性能を確保できる。
導電剤は、集電性能を高め、且つ、活物質と集電体との接触抵抗を抑えるために配合される。導電剤の例には、気相成長カーボン繊維(Vapor Grown Carbon Fiber;VGCF)、カーボンブラック、黒鉛、カーボンナノチューブ及びフラーレンなどの炭素質物が含まれる。カーボンブラックの例は、アセチレンブラック及びケッチェンブラックを含む。これらの1つを導電剤として用いてもよく、或いは、2つ以上を組み合わせて導電剤として用いてもよい。
結着剤は、分散された正極活物質の間隙を埋め、また、正極活物質と正極集電体とを結着させるために配合される。結着剤の例には、ポリテトラフルオロエチレン(polytetrafluoro ethylene;PTFE)、ポリフッ化ビニリデン(polyvinylidene fluoride;PVdF)、フッ素系ゴム、スチレンブタジエンゴム(SBR)、アクリル樹脂又はその共重合体、ポリアクリル酸化合物、ポリアクリロニトリル、イミド化合物、カルボキシルメチルセルロース(carboxyl methyl cellulose;CMC)、及びCMCの塩が含まれる。これらの1つを結着剤として用いてもよく、或いは、2つ以上を組み合わせて結着剤として用いてもよい。
正極集電体は、アルミニウム箔、又は、Mg、Ti、Zn、Ni、Cr、Mn、Fe、Cu及びSiから選択される一以上の元素を含むアルミニウム合金箔であることが好ましい。
アルミニウム箔又はアルミニウム合金箔の厚さは、5μm以上20μm以下であることが好ましく、5μm以上15μm以下であることがより好ましい。アルミニウム箔の純度は99質量%以上であることが好ましい。アルミニウム箔又はアルミニウム合金箔に含まれる鉄、銅、ニッケル、及びクロムなどの遷移金属の含有量は、1質量%以下であることが好ましい。
また、正極集電体は、その表面に正極活物質含有層が形成されていない部分を含むことができる。この部分は、正極集電タブとして働くことができる。
正極活物質含有層中の正極活物質の総量、導電剤及び結着剤は、それぞれ80重量%以上95重量%以下、3重量%以上18重量%以下、及び2重量%以上17重量%以下の割合で配合することが好ましい。導電剤は、3重量%以上の量にすることにより上述した効果を発揮することができる。導電剤は、18重量%以下の量にすることにより高温保存下での導電剤表面での非水電解質の分解を低減することができる。結着剤は、2重量%以上の量にすることにより十分な電極強度が得られる。結着剤は、17重量%以下の量にすることにより、正極中の絶縁材料である結着剤の配合量を減少させ、内部抵抗を減少できる。
正極は、例えば次の方法により作製することができる。まず、正極活物質、正極導電剤及び結着剤を溶媒に懸濁してスラリーを調製する。このスラリーを、正極集電体の片面又は両面に塗布する。次いで、塗布したスラリーを乾燥させて、正極活物質含有層と正極集電体との積層体を得る。その後、この積層体にプレスを施す。このようにして、正極を作製する。
或いは、正極は、次の方法により作製してもよい。まず、正極活物質、正極導電剤及び結着剤を混合して、混合物を得る。次いで、この混合物をペレット状に成形する。次いで、これらのペレットを正極集電体上に配置することにより、正極を得ることができる。
(3)非水電解質
非水電解質の例は、電解質を非水溶媒に溶解し調整される液状非水電解質(非水電解液)、液状非水電解質及び高分子材料を複合化したゲル状非水電解質を含む。
非水電解質の例は、電解質を非水溶媒に溶解し調整される液状非水電解質(非水電解液)、液状非水電解質及び高分子材料を複合化したゲル状非水電解質を含む。
電解質の例は、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、ジフルオロリン酸リチウム(LiPO2F2)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO2)2]などのリチウム塩が含まれる。これらの電解質は、単独で又は2種類以上を組み合わせて使用することができる。
電解質は、有機溶媒に対して0.5mol/L以上2.5mol/L以下の範囲で溶解させることが好ましい。
非水溶媒の例は、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)などの環状カーボネート;ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)などの鎖状カーボネート;テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)などの環状エーテル;ジメトキシエタン(DME)、ジエトキシエタン(DEE)などの鎖状エーテル;γ-ブチロラクトン(BL)、α-メチルγ-ブチロラクトン(MBL)などの環状エステル;酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチルなどの鎖状エステル;アセトニトリル(AN);スルホラン(SL)等を挙げることができる。これらの有機溶媒は、単独又は2種以上の混合物の形態で用いることができる。
ゲル状非水電解質に用いる高分子材料としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキシド(PEO)等を挙げることができる。
非水電解質は、環状カーボネート及びLiPF6を含むことが好ましい。実施形態に係る第1層及び第2層が存在する状態においては、非水電解質が、環状カーボネート及びLiPF6を含んでいると、非水電解質の分解を抑制する効果が大きい。
(4)セパレータ
セパレータは、例えば、ポリエチレン(polyethylene;PE)、ポリプロピレン(polypropylene;PP)、セルロース、若しくはポリフッ化ビニリデン(polyvinylidene fluoride;PVdF)を含む多孔質フィルム、又は合成樹脂製不織布から形成される。安全性の観点からは、ポリエチレン又はポリプロピレンから形成された多孔質フィルムを用いることが好ましい。これらの多孔質フィルムは、一定温度において溶融し、電流を遮断することが可能なためである。
セパレータは、例えば、ポリエチレン(polyethylene;PE)、ポリプロピレン(polypropylene;PP)、セルロース、若しくはポリフッ化ビニリデン(polyvinylidene fluoride;PVdF)を含む多孔質フィルム、又は合成樹脂製不織布から形成される。安全性の観点からは、ポリエチレン又はポリプロピレンから形成された多孔質フィルムを用いることが好ましい。これらの多孔質フィルムは、一定温度において溶融し、電流を遮断することが可能なためである。
(5)外装部材
外装部材としては、例えば、ラミネートフィルムからなる容器、又は金属製容器を用いることができる。
外装部材としては、例えば、ラミネートフィルムからなる容器、又は金属製容器を用いることができる。
ラミネートフィルムの厚さは、例えば、0.5mm以下であり、好ましくは、0.2mm以下である。
ラミネートフィルムとしては、複数の樹脂層とこれらの樹脂層間に介在した金属層とを含む多層フィルムが用いられる。樹脂層は、例えば、ポリプロピレン(polypropylene;PP)、ポリエチレン(polyethylene;PE)、ナイロン、及びポリエチレンテレフタレート(polyethylene terephthalate;PET)等の高分子材料を含んでいる。金属層は、軽量化のためにアルミニウム箔又はアルミニウム合金箔からなることが好ましい。ラミネートフィルムは、熱融着によりシールを行うことにより、外装部材の形状に成形され得る。
金属製容器の壁の厚さは、例えば、1mm以下であり、より好ましくは0.5mm以下であり、更に好ましくは、0.2mm以下である。
金属製容器は、例えば、アルミニウム又はアルミニウム合金等から作られる。アルミニウム合金は、マグネシウム、亜鉛、及びケイ素等の元素を含むことが好ましい。アルミニウム合金は、鉄、銅、ニッケル、及びクロム等の遷移金属を含む場合、その含有量は100質量ppm以下であることが好ましい。
外装部材の形状は、特に限定されない。外装部材の形状は、例えば、扁平型(薄型)、角型、円筒型、コイン型、又はボタン型等であってもよい。外装部材は、電池寸法や電池の用途に応じて適宜選択することができる。
(6)負極端子
負極端子は、リチウムの酸化還元電位に対し1V以上3V以下の電位範囲(vs.Li/Li+)において電気的に安定であり、かつ導電性を有する材料から形成することができる。具体的には、負極端子の材料としては、銅、ニッケル、ステンレス若しくはアルミニウム、又は、Mg,Ti,Zn,Mn,Fe,Cu,及びSiからなる群より選択される少なくとも1種の元素を含むアルミニウム合金が挙げられる。負極端子の材料としては、アルミニウム又はアルミニウム合金を用いることが好ましい。負極端子は、負極集電体との接触抵抗を低減するために、負極集電体と同様の材料からなることが好ましい。
負極端子は、リチウムの酸化還元電位に対し1V以上3V以下の電位範囲(vs.Li/Li+)において電気的に安定であり、かつ導電性を有する材料から形成することができる。具体的には、負極端子の材料としては、銅、ニッケル、ステンレス若しくはアルミニウム、又は、Mg,Ti,Zn,Mn,Fe,Cu,及びSiからなる群より選択される少なくとも1種の元素を含むアルミニウム合金が挙げられる。負極端子の材料としては、アルミニウム又はアルミニウム合金を用いることが好ましい。負極端子は、負極集電体との接触抵抗を低減するために、負極集電体と同様の材料からなることが好ましい。
(7)正極端子
正極端子は、リチウムの酸化還元電位に対し3V以上4.5V以下の電位範囲(vs.Li/Li+)において電気的に安定であり、且つ導電性を有する材料から形成することができる。正極端子の材料としては、アルミニウム、或いは、Mg、Ti、Zn、Mn、Fe、Cu及びSiからなる群より選択される少なくとも1種の元素を含むアルミニウム合金が挙げられる。正極端子は、正極集電体との接触抵抗を低減するために、正極集電体と同様の材料から形成されることが好ましい。
正極端子は、リチウムの酸化還元電位に対し3V以上4.5V以下の電位範囲(vs.Li/Li+)において電気的に安定であり、且つ導電性を有する材料から形成することができる。正極端子の材料としては、アルミニウム、或いは、Mg、Ti、Zn、Mn、Fe、Cu及びSiからなる群より選択される少なくとも1種の元素を含むアルミニウム合金が挙げられる。正極端子は、正極集電体との接触抵抗を低減するために、正極集電体と同様の材料から形成されることが好ましい。
実施形態に係る非水電解質電池は、例えば、未初充電の非水電解質電池を組み立てた後、初充電を施し、以下のエージングを行うことにより製造することができる。以下の条件で初充電及びエージングを行うと、第1層及び第2層を均一に形成することができる。
ここでは、正極が、正極活物質としてMg含有リチウムマンガン複合酸化物と、リチウムコバルト複合酸化物とを含む場合を説明するが、この場合に限られない。即ち、非水電解質中にMgイオン及びCoイオンが存在している状態でエージングが実施されれば、正極活物質の種類は限定されない。
まず、充電状態(SOC: State of Charge)が5%~100%の電池を、45℃以上70℃以下の高温環境下で10時間以上100時間未満に亘って保管する。この保管により、Coを含む第2層が負極上、例えば負極活物質粒子又は負極活物質含有層上へ析出する。その後、電池を完全放電し、充放電を1回以上行うことにより、Mgを含む第1層が第2層上に析出する。この充放電は、SOCが100%の状態を経るような充放電であることが好ましい。
上述した、電池を45℃以上70℃以下の高温環境下で10時間以上100時間未満に亘って保管する際に、SOCが5%~100%の範囲内である場合、負極電位は、Coが析出する電位を包含する電位となっている。それ故、負極上にCoが析出する。Coは2.7V(vs. Li/Li+)程度の電位で析出すると考えられる。上記のように、45℃以上70℃以下の高温環境下で保管することにより第2層が負極上に均一に析出されやすい。
Mgは0.7V(vs. Li/Li+)程度の電位で析出すると考えられる。実施形態に係る負極は、負極活物質としてチタン複合酸化物を含んでいる。チタン複合酸化物を含む負極は、典型的には負極電位が0.7V(vs. Li/Li+)にはならない。それにも関わらずMgが析出する理由について、本発明者らはアンダーポテンシャル析出が生じていると考えている。つまり、析出するMgのうちの多くは、下記式(1)の反応とは異なる反応で析出していると考えられる。上述したように、MgO及びMgF2などの無機物の形態で析出するMg量が多いと考えられる。
Mg2+ + 2e- → Mg ・・・(1)
実施形態に係る非水電解質電池は、長寿命であり安全性に優れているため、特に車載用電池に適する。
実施形態に係る非水電解質電池は、長寿命であり安全性に優れているため、特に車載用電池に適する。
実施形態に係る非水電解質電池の一例を図1及び図2を参照して説明する。図1に示すように、扁平型非水電解質電池は、扁平形状の捲回電極群1、外装部材2、正極端子7、負極端子6、及び非水電解質を備える。外装部材2はラミネートフィルムからなる袋状外装部材である。捲回電極群1は、外装部材2に収納されている。捲回電極群1は、図2に示すように、正極3、負極4、及びセパレータ5を含み、外側から負極4、セパレータ5、正極3、セパレータ5の順で積層した積層物を渦巻状に捲回し、プレス成型することにより形成される。
正極3は、正極集電体3aと正極活物質含有層3bとを含む。正極活物質含有層3bには正極活物質が含まれる。正極活物質含有層3bは正極集電体3aの両面に形成されている。負極4は、負極集電体4aと負極活物質含有層4bとを含む。負極活物質含有層4bには負極活物質が含まれる。負極4は、最外層においては、負極集電体4aの内面側の片面にのみ負極活物質含有層4bが形成され、その他の部分では負極集電体4aの両面に負極活物質含有層4bが形成されている。
図2に示すように、捲回電極群1の外周端近傍において、帯状の正極端子7が正極3の正極集電体3aに接続されている。また、帯状の負極端子6が最外層の負極4の負極集電体4aに接続されている。正極端子7及び負極端子6は、外装部材2の開口部を通って外部に延出されている。外装部材2の内部には、さらに、非水電解質として非水電解液が注入される。外装部材2の開口部を、正極端子7及び負極端子6を挟んだ状態でヒートシールすることにより、捲回電極群1及び非水電解質が封止される。
実施形態に係る電池は、前述した図1及び図2に示す構成のものに限らず、例えば図3に示す構成にすることができる。なお、図1及び図2と同様な部材については、同符号を付して説明を省略する。
図3に示す角型非水電解質電池において、捲回電極群11は、金属製の有底矩形筒状容器(外装部材)12内に収納されている。非水電解液(液状非水電解質)は、例えば容器12の開口部から注入されて、容器12内に収容されている。容器12の開口部に矩形蓋体13を溶接することにより、捲回電極群11及び非水電解液が外装部材内に封止されている。扁平状の捲回電極群11は、外側から負極、セパレータ、正極、セパレータの順で積層した積層物を渦巻状に捲回し、プレス成型することにより形成される。
負極タブ14は、その一端が負極集電体に電気的に接続され、他端が負極端子15に電気的に接続されている。負極端子15は、矩形蓋体13にガラス材16を介在するハーメチックシールで固定されている。正極タブ17は、その一端が正極集電体に電気的に接続され、他端が矩形蓋体13に固定された正極端子18に電気的に接続されている。
負極タブ14は、例えば、アルミニウム又はMg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金などの材料で製造される。負極タブ14は、負極集電体との接触抵抗を低減するために、負極集電体と同様の材料であることが好ましい。
正極タブ17は、例えば、アルミニウム又はMg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金などの材料で製造される。正極タブ17は、正極集電体との接触抵抗を低減するために、正極集電体と同様の材料であることが好ましい。
なお、図示した非水電解質電池はセパレータを正極及び負極と共に捲回した捲回型の電極群を用いたが、セパレータを九十九折りし、折り込んだ個所に正極及び負極を交互に配置した積層型の電極群を用いてもよい。
以上説明した第1の実施形態によると、非水電解質電池が提供される。この非水電解質電池は、Mgを含む第1層、Coを含む第2層、及び、負極活物質含有層を含む負極と、正極と、非水電解質とを備える。第1層は負極の最表層として存在する。第2層は第1層よりも内側に存在する。負極活物質含有層はチタン複合酸化物を含む。チタン複合酸化物は、スピネル構造を有するチタン酸リチウム、単斜晶系β型チタン複合酸化物、Ti1-xM1xNb2-yM2yO7-δ(0≦x<1、0≦y<1、M1及びM2は、各々独立してFe, Ni, W, Ta及びMoからなる群より選択される少なくとも1つを含む)、Li2+vNa2-wM1xTi6-y-zNbyM2zO14+δ(0≦v≦4、0<w<2、0≦x<2、0<y≦6、0≦z<3、-0.5≦δ≦0.5、M1はCs, K, Sr, Ba及びCaからなる群より選択される少なくとも1つを含み、M2はZr, Sn, V, Ta, Mo, W, Fe, Mn及びAlから選択される少なくとも1つを含む)からなる群より選択される少なくとも1つを含む。その結果、負極において、充放電サイクルを繰り返すことによる過剰な被膜形成を抑制できるため、充放電サイクル特性に優れる非水電解質電池を提供することができる。
(第2の実施形態)
第2の実施形態によると、電池パックが提供される。この電池パックは、第1の実施形態に係る非水電解質電池を含む。
第2の実施形態によると、電池パックが提供される。この電池パックは、第1の実施形態に係る非水電解質電池を含む。
第2の実施形態に係る電池パックは、複数の非水電解質電池を備えることもできる。複数の非水電解質電池は、電気的に直列に接続することもできるし、又は電気的に並列に接続することもできる。或いは、複数の非水電解質電池を、直列及び並列の組み合わせで接続することもできる。
例えば、第2の実施形態に係る電池パックは、第1の非水電解質電池を5つ具備することもできる。これらの非水電解質電池は、直列に接続されることができる。また、直列に接続された非水電解質電池は、組電池を構成することができる。すなわち、第2の実施形態に係る電池パックは、組電池を具備することもできる。
第2の実施形態に係る電池パックは、複数の組電池を具備することができる。複数の組電池は、直列、並列、又は直列及び並列の組み合わせで接続することができる。
以下に、第2の実施形態に係る電池パックの一例を、図4及び図5を参照しながら説明する。
図4は、第2の実施形態に係る一例の電池パックの分解斜視図である。図5は、図4の電池パックの電気回路を示すブロック図である。
図4及び図5に示す電池パック20は、複数個の単電池21を備える。単電池21は、図1を参照しながら説明した第1の実施形態に係る一例の扁平型非水電解質電池であり得る。
複数の単電池21は、外部に延出した負極端子51及び正極端子61が同じ向きに揃えられるように積層され、粘着テープ22で締結することにより組電池23を構成している。これらの単電池21は、図5に示すように互いに電気的に直列に接続されている。
プリント配線基板24は、単電池21の負極端子51及び正極端子61が延出する側面に対向して配置されている。プリント配線基板24には、図5に示すようにサーミスタ25、保護回路26及び外部機器への通電用端子27が搭載されている。なお、プリント配線基板24には、組電池23と対向する面に組電池23の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
正極側リード28は、組電池23の最下層に位置する正極端子61に接続され、その先端はプリント配線基板24の正極側コネクタ29に挿入されて電気的に接続されている。負極側リード30は、組電池23の最上層に位置する負極端子51に接続され、その先端はプリント配線基板24の負極側コネクタ31に挿入されて電気的に接続されている。これらのコネクタ29及び31は、プリント配線基板24に形成された配線32及び33を通して保護回路26に接続されている。
サーミスタ25は、単電池21の温度を検出し、その検出信号は保護回路26に送信される。保護回路26は、所定の条件で保護回路26と外部機器への通電用端子27との間のプラス側配線34a及びマイナス側配線34bを遮断できる。所定の条件の一例とは、例えば、サーミスタ25の検出温度が所定温度以上になったときである。また、所定の条件の他の例とは、例えば、単電池21の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池21もしくは組電池23全体について行われる。個々の単電池21を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池21中に参照極として用いるリチウム電極が挿入される。図4及び図5の電池パック20の場合、単電池21それぞれに電圧検出のための配線35が接続されている。これら配線35を通して検出信号が保護回路26に送信される。
正極端子61及び負極端子51が突出する側面を除く組電池23の三側面には、ゴムもしくは樹脂からなる保護シート36がそれぞれ配置されている。
組電池23は、各保護シート36及びプリント配線基板24と共に収納容器37内に収納される。すなわち、収納容器37の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート36が配置され、短辺方向の反対側の内側面にプリント配線基板24が配置される。組電池23は、保護シート36及びプリント配線基板24で囲まれた空間内に位置する。蓋38は、収納容器37の上面に取り付けられている。
なお、組電池23の固定には粘着テープ22に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮テープを周回させた後、熱収縮テープを熱収縮させて組電池を結束させる。
図4及び図5では単電池21を直列接続した形態を示したが、電池容量を増大させるためには並列に接続してもよい。更に、組み上がった電池パックを直列及び/又は並列に接続することもできる。
また、第2の実施形態に係る電池パックの態様は用途により適宜変更される。第2の実施形態に係る電池パックの用途としては、大電流性能でのサイクル性能が望まれるものが好ましい。具体的な用途としては、デジタルカメラの電源用や、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用が挙げられる。第2の実施形態に係る電池パックは、特に、車載用が好適である。
第2の実施形態に係る電池パックは、第1の実施形態に係る非水電解質電池を備えている。それ故、負極において、充放電サイクルを繰り返すことによる過剰な被膜形成を抑制できるため、充放電サイクル特性に優れる電池パックを提供することができる。
[実施例]
以下、実施例に基づいて上記実施形態を更に詳細に説明する。実施例を説明するが、本発明の主旨を超えない限り、以下に記載される実施例に限定されるものではない。
以下、実施例に基づいて上記実施形態を更に詳細に説明する。実施例を説明するが、本発明の主旨を超えない限り、以下に記載される実施例に限定されるものではない。
(実施例1)
<正極の作製>
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4及びLiCo0.8Ni0.2O2を用意し、これらを、LiCo0.8Ni0.2O2が全正極活物質質量の10質量%となるように混合した。得られた活物質混合粉末90質量%、導電剤としてアセチレンブラック5質量%、及びポリフッ化ビニリデン(PVdF)5質量%をN-メチルピロリドン(NMP)に加えて混合してスラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔からなる集電体の両面に塗布した後、乾燥し、プレスすることにより電極密度が2.0g/cm3の正極を作製した。
<正極の作製>
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4及びLiCo0.8Ni0.2O2を用意し、これらを、LiCo0.8Ni0.2O2が全正極活物質質量の10質量%となるように混合した。得られた活物質混合粉末90質量%、導電剤としてアセチレンブラック5質量%、及びポリフッ化ビニリデン(PVdF)5質量%をN-メチルピロリドン(NMP)に加えて混合してスラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔からなる集電体の両面に塗布した後、乾燥し、プレスすることにより電極密度が2.0g/cm3の正極を作製した。
<負極の作製>
負極活物質としてのLi4Ti5O12粉末90質量%、アセチレンブラック5質量%及びポリフッ化ビニリデン(PVdF)5質量%をN-メチルピロリドン(NMP)加えて混合し、スラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔からなる集電体の両面に塗布し、乾燥した後、プレスすることにより電極密度が2.0g/cm3の負極を作製した。
負極活物質としてのLi4Ti5O12粉末90質量%、アセチレンブラック5質量%及びポリフッ化ビニリデン(PVdF)5質量%をN-メチルピロリドン(NMP)加えて混合し、スラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔からなる集電体の両面に塗布し、乾燥した後、プレスすることにより電極密度が2.0g/cm3の負極を作製した。
<電極群の作製>
正極、厚さ25μmのポリエチレン製多孔質フィルムからなるセパレータ、負極及びセパレータをこの順で積層した後、渦巻き状に捲回した。これを90℃で加熱プレスすることにより、幅が30mm、厚さ3.0mmの偏平状電極群を作製した。得られた電極群をラミネートフィルムからなるパック(外装部材)に収納し、80℃で24時間真空乾燥を施した。ラミネートフィルムは厚さ40μmのアルミニウム箔の両面にポリプロピレン層を形成して構成され、全体の厚さが0.1mmである。<液状非水電解質の作製>
プロピレンカーボネート(PC)及びジエチルカーボネート(DEC)を1:2の体積比率で混合して混合溶媒とした。この混合溶媒に電解質であるLiPF6を1M濃度で溶解させ、液状非水電解質を調製した。
正極、厚さ25μmのポリエチレン製多孔質フィルムからなるセパレータ、負極及びセパレータをこの順で積層した後、渦巻き状に捲回した。これを90℃で加熱プレスすることにより、幅が30mm、厚さ3.0mmの偏平状電極群を作製した。得られた電極群をラミネートフィルムからなるパック(外装部材)に収納し、80℃で24時間真空乾燥を施した。ラミネートフィルムは厚さ40μmのアルミニウム箔の両面にポリプロピレン層を形成して構成され、全体の厚さが0.1mmである。<液状非水電解質の作製>
プロピレンカーボネート(PC)及びジエチルカーボネート(DEC)を1:2の体積比率で混合して混合溶媒とした。この混合溶媒に電解質であるLiPF6を1M濃度で溶解させ、液状非水電解質を調製した。
<非水電解質電池の作製>
電極群を収納したラミネートフィルムのパック内に液状非水電解質を注入した。その後、パックをヒートシールにより完全密閉することにより、前述した図1に示す構造を有し、幅35mm、厚さ3.2mm、高さが65mmの非水電解質電池を製造した。
電極群を収納したラミネートフィルムのパック内に液状非水電解質を注入した。その後、パックをヒートシールにより完全密閉することにより、前述した図1に示す構造を有し、幅35mm、厚さ3.2mm、高さが65mmの非水電解質電池を製造した。
更に、この非水電解質電池のSOCを100%とし、70℃の環境温度で10時間に亘りエージングを行った。このエージングにより、負極の最表層としてMgを含む第1層と、この第1層よりも内側に存在する、Coを含む第2層とを形成して、実施例1に係る非水電解質電池を得た。
エージング後の電池の負極について、第1の実施形態において説明した方法に従ってXPSを実施した。その結果、1304eV付近にMg1Sに由来すると考えられるピークが観察された。また、負極について第1の実施形態において説明した方法に従ってICP-AESを実施した。その結果、負極における比Mg/Coは0.68であった。比Mg/Coは、先に説明したように、第1層、第2層及び負極活物質含有層の合計重量に対するMgの重量の割合と、第1層、第2層及び負極活物質含有層の合計重量に対するCoの重量の割合との比を意味している。
(実施例2)
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLiMn0.83Mg0.07Fe0.1PO4を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLiMn0.83Mg0.07Fe0.1PO4を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは1.1であった。
(実施例3)
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLiMn0.8Mg0.01Fe0.19PO4を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLiMn0.8Mg0.01Fe0.19PO4を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.07であった。
(実施例4)
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLiMn0.6Mg0.1Fe0.3PO4を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLiMn0.6Mg0.1Fe0.3PO4を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは2.0であった。
(実施例5)
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLiMn0.89Mg0.1Fe0.01PO4を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLiMn0.89Mg0.1Fe0.01PO4を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは3.3であった。
(実施例6)
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLi1.05Mn1.8Al0.1Mg0.05O4を使用し、正極密度を2.7g/cm3としたことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLi1.05Mn1.8Al0.1Mg0.05O4を使用し、正極密度を2.7g/cm3としたことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.32であった。
(実施例7)
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLiMn1.7Al0.28Mg0.02O4を使用し、正極密度を2.7g/cm3としたことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLiMn1.7Al0.28Mg0.02O4を使用し、正極密度を2.7g/cm3としたことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.12であった。
(実施例8)
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLi1.05Mn1.7Al0.05Mg0.2O4を使用し、正極密度を2.7g/cm3としたことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLi1.05Mn1.7Al0.05Mg0.2O4を使用し、正極密度を2.7g/cm3としたことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは2.9であった。
(実施例9)
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLi1.12Mn1.85Al0.03Mg0.02O4を使用し、正極密度を2.7g/cm3としたことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLi1.12Mn1.85Al0.03Mg0.02O4を使用し、正極密度を2.7g/cm3としたことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.28であった。
(実施例10)
正極活物質としてLiCo0.8Ni0.2O2に代えてLiCo0.2Ni0.5Mn0.3O2を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
正極活物質としてLiCo0.8Ni0.2O2に代えてLiCo0.2Ni0.5Mn0.3O2を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは2.1であった。
(実施例11)
正極活物質としてLiCo0.8Ni0.2O2に代えてLiCo0.2Ni0.4Mn0.4O2を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
正極活物質としてLiCo0.8Ni0.2O2に代えてLiCo0.2Ni0.4Mn0.4O2を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは1.9であった。
(実施例12)
正極活物質としてLiCo0.8Ni0.2O2に代えてLiCo0.9Ni0.05Mn0.05O2を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
正極活物質としてLiCo0.8Ni0.2O2に代えてLiCo0.9Ni0.05Mn0.05O2を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.61であった。
(実施例13)
正極活物質としてLiCo0.8Ni0.2O2に代えてLiCo0.95Ni0.04Mn0.01O2を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
正極活物質としてLiCo0.8Ni0.2O2に代えてLiCo0.95Ni0.04Mn0.01O2を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.57であった。
(実施例14)
負極活物質としてLi4Ti5O12に代えて単斜晶型β型チタン複合酸化物TiO2(B)を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
負極活物質としてLi4Ti5O12に代えて単斜晶型β型チタン複合酸化物TiO2(B)を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.59であった。
(実施例15)
負極活物質としてLi4Ti5O12に代えてTiNb2O7を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
負極活物質としてLi4Ti5O12に代えてTiNb2O7を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.77であった。
(実施例16)
負極活物質としてLi4Ti5O12に代えてTi0.95Fe0.05Nb1.95Ta0.05O7を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
負極活物質としてLi4Ti5O12に代えてTi0.95Fe0.05Nb1.95Ta0.05O7を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.71であった。
(実施例17)
負極活物質としてLi4Ti5O12に代えてTi0.9Ni0.1Nb1.9W0.1O7を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
負極活物質としてLi4Ti5O12に代えてTi0.9Ni0.1Nb1.9W0.1O7を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.75であった。
(実施例18)
負極活物質としてLi4Ti5O12に代えてLi2.05Na1.9Sr0.05Ti5.7Nb0.3O14を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
負極活物質としてLi4Ti5O12に代えてLi2.05Na1.9Sr0.05Ti5.7Nb0.3O14を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.57であった。
(実施例19)
負極活物質としてLi4Ti5O12に代えてLi2.05Na1.8Ca0.1Ti5.9Nb0.1O14を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
負極活物質としてLi4Ti5O12に代えてLi2.05Na1.8Ca0.1Ti5.9Nb0.1O14を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.55であった。
(実施例20)
負極活物質としてLi4Ti5O12に代えてLi2Na1.85Ba0.01Ti5.75Nb0.2Al0.05O14を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
負極活物質としてLi4Ti5O12に代えてLi2Na1.85Ba0.01Ti5.75Nb0.2Al0.05O14を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.61であった。
(実施例21)
負極活物質としてLi4Ti5O12に代えてLi2.05Na1.5Ti5.5Nb0.4Mo0.1O14を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
負極活物質としてLi4Ti5O12に代えてLi2.05Na1.5Ti5.5Nb0.4Mo0.1O14を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.51であった。
(実施例22)
SOCを100%とし、50℃の環境温度で10時間に亘りエージングを行ったことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
SOCを100%とし、50℃の環境温度で10時間に亘りエージングを行ったことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.64であった。
(実施例23)
SOCを100%とし、60℃の環境温度で10時間に亘りエージングを行ったことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
SOCを100%とし、60℃の環境温度で10時間に亘りエージングを行ったことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.67であった。
(実施例24)
SOCを30%とし、70℃の環境温度で10時間に亘りエージングを行ったことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
SOCを30%とし、70℃の環境温度で10時間に亘りエージングを行ったことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.54であった。
(実施例25)
SOCを100%とし、70℃の環境温度で5時間に亘りエージングを行ったことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
SOCを100%とし、70℃の環境温度で5時間に亘りエージングを行ったことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.61であった。
(実施例26)
SOCを100%とし、70℃の環境温度で24時間に亘りエージングを行ったことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
SOCを100%とし、70℃の環境温度で24時間に亘りエージングを行ったことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。また、負極についてICP-AESを実施した結果、比Mg/Coは0.65であった。
(比較例1)
エージング処理を行わなかったことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
エージング処理を行わなかったことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークは観察されなかった。但し、このXPSによりCo2S由来のピークが観察された。即ち、Coを含む層が負極の最表層に存在していた。
(比較例2)
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLiMn0.85Fe0.15PO4を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
正極活物質としてLiMn0.85Mg0.05Fe0.1PO4に代えてLiMn0.85Fe0.15PO4を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークは観察されなかった。また、負極についてICP-AESを実施した結果、Mgは観察されなかったが、Coは観察された。
(比較例3)
正極活物質としてLiCo0.8Ni0.2O2に代えてLiNi0.5Mn0.5O2を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
正極活物質としてLiCo0.8Ni0.2O2に代えてLiNi0.5Mn0.5O2を使用したことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークが観察された。しかしながら、負極についてICP-AESを実施した結果、Coは観察されなかった。
(比較例4)
SOCを100%とし、30℃の環境温度で10時間に亘りエージングを行ったことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
SOCを100%とし、30℃の環境温度で10時間に亘りエージングを行ったことを除いて、実施例1と同様の方法により非水電解質電池を製造した。
この非水電解質電池の負極についてXPSを実施した結果、Mg1S由来のピークは観察されなかった。但し、このXPSによりCo2S由来のピークが観察された。即ち、Coを含む層が負極の最表層に存在していた。
作製した実施例1~26及び比較例1~4の非水電解質電池について、60℃環境における充放電サイクル試験を行った。電池の充電は定電流定電圧モードで行った。各サイクルの充電条件は、充電レートを1C、充電電圧を2.7Vとした。この条件による充電を終了する際の条件は、3時間経過後、又は、0.05Cの電流値に到達した時点とした。放電は定電流モードで行った。充放電サイクル試験において実施するサイクル数は、それぞれの非水電解質電池について500サイクルとした。
それぞれの非水電解質電池について、500サイクルの充放電サイクル試験を実施した後の放電容量を測定した。これを、1サイクル目の放電容量により除することで、60℃環境における容量維持率(%)を百分率として算出した。このサイクル容量維持率は、非水電解質電池の寿命性能の指標となる。
以上の結果を下記表1及び表2にまとめる。
表1中、「正極活物質1」の列には、各電池が含む1種類目の正極活物質を示している。「正極活物質2」の列には、各電池が含む2種類目の正極活物質を示している。
表1中、「正極活物質1」の列には、各電池が含む1種類目の正極活物質を示している。「正極活物質2」の列には、各電池が含む2種類目の正極活物質を示している。
表2中、「Mg量」の列には、ICP-AESにより測定されたMgの重量%を示している。「Co量」の列には、ICP-AESにより測定されたCoの重量%を示している。「容量維持率(%)」の列には、上述したサイクル試験により算出されたサイクル容量維持率を示している。
実施例1~実施例26に係る非水電解質電池は、比較例1~比較例4に係る非水電解質電池と比較して容量維持率が優れていた。
実施例1~9に示すように、Mg含有リチウムマンガン複合酸化物の組成を種々変更しても、優れた容量維持率を達成することができた。実施例10~13に示すように、リチウムコバルト複合酸化物の組成を種々変更しても、優れた容量維持率を達成することができた。実施例14~21に示すように、負極活物質として、スピネル構造を有するチタン酸リチウムではなく、単斜晶系βチタン複合酸化物、ニオブチタン複合酸化物、又はNa含有ニオブチタン複合酸化物を使用した場合にも優れた容量維持率を達成することができた。実施例22~実施例26に示すように、エージング条件を種々変化させた場合にも、優れた容量維持率を達成することができた。
比較例1のようにエージング処理を行わない場合、及び、比較例4のように30℃でエージングを行った場合、最表層にCoを含む層が存在しているため、充放電サイクルを繰り返すことによる過剰な被膜形成を抑制することができず、実施例1と比較して容量維持率が劣っていた。
以上に説明した少なくとも一つの実施形態及び実施例に係る非水電解質電池は、Mgを含む第1層、Coを含む第2層、及び、負極活物質含有層を含む負極と、正極と、非水電解質とを備える。第1層は負極の最表層として存在する。第2層は第1層よりも内側に存在する。負極活物質含有層はチタン複合酸化物を含む。チタン複合酸化物は、スピネル構造を有するチタン酸リチウム、単斜晶系β型チタン複合酸化物、Ti1-xM1xNb2-yM2yO7-δ(0≦x<1、0≦y<1、M1及びM2は、各々独立してFe, Ni, W, Ta及びMoからなる群より選択される少なくとも1つを含む)、Li2+vNa2-wM1xTi6-y-zNbyM2zO14+δ(0≦v≦4、0<w<2、0≦x<2、0<y≦6、0≦z<3、-0.5≦δ≦0.5、M1はCs, K, Sr, Ba及びCaからなる群より選択される少なくとも1つを含み、M2はZr, Sn, V, Ta, Mo, W, Fe, Mn及びAlから選択される少なくとも1つを含む)からなる群より選択される少なくとも1つを含む。その結果、負極において、充放電サイクルを繰り返すことによる過剰な被膜形成を抑制できるため、充放電サイクル特性に優れる非水電解質電池を提供することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1、11…電極群、2、12…外装部材、3…正極、3a…正極集電体、3b…正極活物質含有層、4…負極、4a…負極集電体、4b…負極活物質含有層、5…セパレータ、6…負極端子、7…正極端子、13…矩形蓋体、14…負極タブ、15…負極端子、16…ガラス材、17…正極タブ、18…正極端子、20…電池パック、21…単電池、22…粘着テープ、23…組電池、24…プリント配線基板、25…サーミスタ、26…保護回路、27…外部機器への通電用端子、28…正極側リード、29…正極側コネクタ、30…負極側リード、31…負極側コネクタ、32、33、35…配線、34a…プラス側配線、34b…マイナス側配線、36…保護シート、37…収納容器、38…蓋、51…負極端子、61…正極端子。
Claims (9)
- Mgを含む第1層、Coを含む第2層、及び、負極活物質含有層を含む負極と、
正極と、
非水電解質とを備え、
前記第1層は前記負極の最表層として存在し、前記第2層は前記第1層よりも内側に存在し、
前記負極活物質含有層はチタン複合酸化物を含み、
前記チタン複合酸化物は、スピネル構造を有するチタン酸リチウム、単斜晶系β型チタン複合酸化物、Ti1-xM1xNb2-yM2yO7-δ(0≦x<1、0≦y<1、M1及びM2は、各々独立してFe, Ni, W, Ta及びMoからなる群より選択される少なくとも1つを含む)、Li2+vNa2-wM1xTi6-y-zNbyM2zO14+δ(0≦v≦4、0<w<2、0≦x<2、0<y≦6、0≦z<3、-0.5≦δ≦0.5、M1はCs, K, Sr, Ba及びCaからなる群より選択される少なくとも1つを含み、M2はZr, Sn, V, Ta, Mo, W, Fe, Mn及びAlから選択される少なくとも1つを含む)からなる群より選択される少なくとも1つを含む非水電解質電池。 - 前記第1層が含むMgは、Mg2+の状態で存在する請求項1に記載の非水電解質電池。
- 前記第1層、前記第2層及び前記負極活物質含有層の合計重量に対するMgの重量の割合と、前記第1層、前記第2層及び前記負極活物質含有層の合計重量に対するCoの重量の割合との比Mg/Coは、0.05~3.5の範囲内にある請求項1又は2に記載の非水電解質電池。
- 前記正極はMg含有リチウムマンガン複合酸化物を含む請求項1~3の何れか1項に記載の非水電解質電池。
- 前記Mg含有リチウムマンガン複合酸化物は、LiMn1-x-yMgxFeyPO4(0<x≦0.1、0<y≦0.3)及びLi1+aMn2-b-cAlbMgcO4(0≦a<0.15、0<b≦0.3、0<c≦0.2)からなる群より選択される少なくとも1つを含む請求項4に記載の非水電解質電池。
- 前記正極はリチウムコバルト複合酸化物LiCo1-a-bNiaMnbO2(0≦a≦0.5、0≦b≦0.5、a+b<1)を含む請求項1~5の何れか1項に記載の非水電解質電池。
- 前記リチウムコバルト複合酸化物は、LiCo1-a-bNiaMnbO2(0≦a≦0.35、0≦b≦0.35)を含む請求項6に記載の非水電解質電池。
- 前記非水電解質は環状カーボネート及びLiPF6を含む請求項1~7の何れか1項に記載の非水電解質電池。
- 請求項1~8の何れか1項に記載の非水電解質電池を1以上含む電池パック。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/035200 WO2020059145A1 (ja) | 2018-09-21 | 2018-09-21 | 非水電解質電池及び電池パック |
JP2020547602A JP7021364B2 (ja) | 2018-09-21 | 2018-09-21 | 非水電解質電池及び電池パック |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/035200 WO2020059145A1 (ja) | 2018-09-21 | 2018-09-21 | 非水電解質電池及び電池パック |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020059145A1 true WO2020059145A1 (ja) | 2020-03-26 |
Family
ID=69886813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/035200 WO2020059145A1 (ja) | 2018-09-21 | 2018-09-21 | 非水電解質電池及び電池パック |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7021364B2 (ja) |
WO (1) | WO2020059145A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111474166A (zh) * | 2020-04-28 | 2020-07-31 | 蜂巢能源科技有限公司 | 测定钛酸锂硅碳负极材料中元素含量的方法 |
WO2024057641A1 (ja) * | 2022-09-12 | 2024-03-21 | 株式会社村田製作所 | 二次電池用負極および二次電池 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015149267A (ja) * | 2013-03-14 | 2015-08-20 | 株式会社東芝 | 非水電解質電池及び電池パック |
WO2017013718A1 (ja) * | 2015-07-17 | 2017-01-26 | 株式会社 東芝 | 非水電解質電池および電池パック |
WO2017046891A1 (ja) * | 2015-09-16 | 2017-03-23 | 株式会社 東芝 | 充電システム及び非水電解質電池の充電方法 |
-
2018
- 2018-09-21 JP JP2020547602A patent/JP7021364B2/ja active Active
- 2018-09-21 WO PCT/JP2018/035200 patent/WO2020059145A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015149267A (ja) * | 2013-03-14 | 2015-08-20 | 株式会社東芝 | 非水電解質電池及び電池パック |
WO2017013718A1 (ja) * | 2015-07-17 | 2017-01-26 | 株式会社 東芝 | 非水電解質電池および電池パック |
WO2017046891A1 (ja) * | 2015-09-16 | 2017-03-23 | 株式会社 東芝 | 充電システム及び非水電解質電池の充電方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111474166A (zh) * | 2020-04-28 | 2020-07-31 | 蜂巢能源科技有限公司 | 测定钛酸锂硅碳负极材料中元素含量的方法 |
CN111474166B (zh) * | 2020-04-28 | 2022-12-20 | 蜂巢能源科技有限公司 | 测定钛酸锂硅碳负极材料中元素含量的方法 |
WO2024057641A1 (ja) * | 2022-09-12 | 2024-03-21 | 株式会社村田製作所 | 二次電池用負極および二次電池 |
Also Published As
Publication number | Publication date |
---|---|
JP7021364B2 (ja) | 2022-02-16 |
JPWO2020059145A1 (ja) | 2021-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5586532B2 (ja) | 非水電解質電池及び電池パック | |
JP5300502B2 (ja) | 電池用活物質、非水電解質電池および電池パック | |
JP6130053B1 (ja) | 組電池及び電池パック | |
JP4249727B2 (ja) | 非水電解質電池およびリチウムチタン複合酸化物 | |
JP4950980B2 (ja) | 非水電解質電池および非水電解質電池負極活物質用リチウムチタン複合酸化物 | |
JP5121614B2 (ja) | 電池用活物質、非水電解質電池および電池パック | |
JP6416214B2 (ja) | 非水電解質二次電池用活物質、非水電解質二次電池用電極、非水電解質二次電池、電池パックおよび非水電解質二次電池用活物質の製造方法 | |
JP2014112536A (ja) | 電池用活物質、非水電解質電池および電池パック | |
JP5665828B2 (ja) | 電池用活物質、非水電解質電池および電池パック | |
JP6334308B2 (ja) | 非水電解質電池、電池パック、及び車 | |
US10411250B2 (en) | Nonaqueous electrolyte battery, battery pack, and vehicle | |
JP6416406B2 (ja) | 非水電解質電池用正極、非水電解質電池および電池パック | |
WO2017094163A1 (ja) | 非水電解質電池用正極活物質、非水電解質電池用正極、非水電解質電池および電池パック | |
JP6699907B2 (ja) | リチウム非水電解質二次電池及び電池パック | |
US20190221834A1 (en) | Nonaqueous electrolyte battery and battery pack | |
WO2017042931A1 (ja) | 組電池及びそれを用いた電池パック | |
JP7021364B2 (ja) | 非水電解質電池及び電池パック | |
JP6054540B2 (ja) | 正極活物質、非水電解質電池及び電池パック | |
EP3951933B1 (en) | Electrode, non-aqueous electrolyte battery, and battery pack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18934476 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020547602 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18934476 Country of ref document: EP Kind code of ref document: A1 |