WO2020058180A1 - Optoelektronischer halbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips - Google Patents

Optoelektronischer halbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips Download PDF

Info

Publication number
WO2020058180A1
WO2020058180A1 PCT/EP2019/074685 EP2019074685W WO2020058180A1 WO 2020058180 A1 WO2020058180 A1 WO 2020058180A1 EP 2019074685 W EP2019074685 W EP 2019074685W WO 2020058180 A1 WO2020058180 A1 WO 2020058180A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
structures
layer sequence
semiconductor layer
semiconductor structures
Prior art date
Application number
PCT/EP2019/074685
Other languages
English (en)
French (fr)
Inventor
Siegfried Herrmann
Original Assignee
Osram Oled Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Oled Gmbh filed Critical Osram Oled Gmbh
Priority to EP19769789.9A priority Critical patent/EP3853913A1/de
Priority to US17/276,492 priority patent/US20220037558A1/en
Publication of WO2020058180A1 publication Critical patent/WO2020058180A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction

Abstract

In mindestens einer Ausführungsform umfasst der optoelektronische Halbleiterchip (100) eine Halbleiterschichtenfolge (1) und mehrere HalbleiterStrukturen (21, 22) mit jeweils einem aktiven Bereich (210). Die aktiven Bereiche sind jeweils zur Emission und/oder Absorption von elektromagnetischer Strahlung eingerichtet. Die aktiven Bereiche unterschiedlicher HalbleiterStrukturen hängen nicht zusammen. Die HalbleiterStrukturen sind jeweils als Nanorod oder als Mikrorod ausgebildet. Die HalbleiterStrukturen sind in der Halbleiterschichtenfolge eingebettet.

Description

Beschreibung
OPTOELEKTRONISCHER HALBLEITERCHIP UND VERFAHREN ZUR HERSTELLUNG EINES OPTOELEKTRONISCHEN HALBLEITERCHIPS
Es wird ein optoelektronischer Halbleiterchip angegeben.
Darüber hinaus wird ein Verfahren zur Herstellung eines optoelektronischen Halbleiterchips angegeben.
Eine zu lösende Aufgabe besteht darin, einen besonders effizienten optoelektronischen Halbleiterchip
bereitzustellen. Eine weitere zu lösende Aufgabe besteht darin, ein Verfahren zur Herstellung eines solchen
optoelektronischen Halbleiterchips anzugeben.
Zunächst wird ein optoelektronischer Halbleiterchip
angegeben. Der Halbleiterchip kann beispielsweise in
Leuchtdioden oder SSL- oder SMT-Bauelementen oder als
Laserdiodenchip eingesetzt werden. Der Halbleiterchip eignet sich beispielsweise für den Einsatz in Videoleinwänden oder in Scheinwerfern, insbesondere Frontscheinwerfern, für
Fahrzeuge. Ferner eignet sich der Halbleiterchip für
Sensoren, wie 3D-Sensoren.
Gemäß zumindest einer Ausführungsform des optoelektronischen Halbleiterchips umfasst dieser eine Halbleiterschichtenfolge. Die Halbleiterschichtenfolge ist bevorzugt zusammenhängend, insbesondere einfach zusammenhängend, ausgebildet.
Die Halbleiterschichtenfolge basiert zum Beispiel auf einem III-V-Verbindungshalbleitermaterial . Bei dem
Halbleitermaterial handelt es sich zum Beispiel um ein
Nitrid-Verbindungshalbleitermaterial, wie AlnIn]__n-mGamN, oder um ein Phosphid-Verbindungshalbleitermaterial , wie
AlnIn]__n-mGamP, oder um ein Arsenid-
Verbindungshalbleitermaterial , wie AlnIn]__n-mGamAs oder AlnIn]__n-mGamAsP, wobei jeweils 0 d n < 1, 0 d m < 1 und m + n < 1 ist. Dabei kann die Halbleiterschichtenfolge
Dotierstoffe sowie zusätzliche Bestandteile aufweisen. Der Einfachheit halber sind jedoch nur die wesentlichen
Bestandteile des Kristallgitters der
Halbleiterschichtenfolge, also Al, As, Ga, In, N oder P, angegeben, auch wenn diese teilweise durch geringe Mengen weiterer Stoffe ersetzt und/oder ergänzt sein können.
Bevorzugt basiert die Halbleiterschichtenfolge auf AlInGaN.
Eine laterale Ausdehnung des Halbleiterchips, gemessen entlang der Haupterstreckungsebene der
Halbleiterschichtenfolge, ist beispielsweise höchstens 5 % oder höchstens 10 % größer als die laterale Ausdehnung der Halbleiterschichtenfolge .
Gemäß zumindest einer Ausführungsform umfasst der
optoelektronische Halbleiterchip mehrere Halbleiterstrukturen mit jeweils einem aktiven Bereich. Die aktiven Bereiche umfassen insbesondere jeweils wenigstens einen pn-Übergang und/oder mindestens eine QuantentopfStruktur in Form eines einzelnen Quantentopfs, kurz SQW, oder in Form einer Multi- QuantentopfStruktur, kurz MQW. Neben dem aktiven Bereich umfassen die Halbleiterstrukturen bevorzugt jeweils zwei Halbleiterabschnitte, zwischen denen der aktive Bereich angeordnet ist. Die Halbleiterabschnitte auf
unterschiedlichen Seiten des aktiven Bereichs können
unterschiedlich dotiert sein. Der aktive Bereich der Halbleiterstrukturen ist zum Beispiel jeweils dreidimensional geformt. Eine Grenzfläche zwischen dem aktiven Bereich und einem angrenzenden
Halbleiterabschnitt ist zum Beispiel nicht durchgehend eben, sondern beispielsweise gekrümmt oder weist Kanten auf. Die Grenzfläche hat zum Beispiel die Form der Mantelfläche eines Kegels oder eines Kegelstumpfes oder einer Pyramide oder eines Pyramidenstumpfes.
Das Halbleitermaterial der Halbleiterstrukturen kann auf dem gleichen III-V-Verbindungshalbleitermaterial basieren wie die Halbleiterschichtenfolge. Lediglich die genaue
stöchiometrische Zusammensetzung der Halbleiterstrukturen unterscheidet sich dann beispielsweise von der der
Halbleiterschichtenfolge .
Gemäß zumindest einer Ausführungsform sind die aktiven
Bereiche jeweils zur Emission und/oder Absorption von
elektromagnetischer Strahlung eingerichtet. Insbesondere sind die aktiven Bereiche zur Emission und/oder Absorption im sichtbaren Spektralbereich oder im nahen UV-Bereich oder im nahen infraroten Bereich eingerichtet. Beispielsweise sind die aktiven Bereiche zur Emission und/oder Absorption von elektromagnetischer Strahlung in einem Bereich zwischen einschließlich 350 nm und 850 nm eingerichtet.
Gemäß zumindest einer Ausführungsform hängen die aktiven Bereiche unterschiedlicher Halbleiterstrukturen nicht zusammen. Das heißt, die aktiven Bereiche unterschiedlicher Halbleiterstrukturen sind voneinander getrennt und
voneinander beabstandet. Bevorzugt hängen auch die
Halbleiterstrukturen untereinander nicht zusammen, sondern sind voneinander getrennt und beabstandet. Die Halbleiterstrukturen oder eine Teilmenge der
Halbleiterstrukturen können beispielsweise in einer Ebene parallel zu einer Haupterstreckungsebene der
Halbleiterschichtenfolge nebeneinander angeordnet sein.
Beispielsweise sind die Halbleiterstrukturen regelmäßig oder unregelmäßig entlang dieser Ebene angeordnet.
Gemäß zumindest einer Ausführungsform sind die
Halbleiterstrukturen jeweils als Nanorod oder als Mikrorod, zu Deutsch Nanostab oder Mikrostab, ausgebildet. Die
Halbleiterstrukturen sind also längliche Strukturen mit einem Aspektverhältnis von zumindest 1 oder zumindest 1,3 oder zumindest 2, wobei das Aspektverhältnis als Verhältnis von Länge zu Durchmesser definiert ist. Das Aspektverhältnis ist zum Beispiel höchstens 10 oder höchstens 5. Nanorods haben einen Durchmesser von zum Beispiel zumindest 10 nm und höchstens 1 ym. Mikrorods haben zum Beispiel einen
Durchmesser von mehr als 1 ym und zum Beispiel höchstens 10 ym. Die Nanostäbe oder Mikrostäbe können beispielsweise jeweils die Form eines viereckigen oder sechseckigen
Obelisken oder einer Pyramide oder eines Kegels oder eines Zylinders aufweisen. Längsachsen der Halbleiterstrukturen verlaufen beispielsweise im Rahmen der Herstellungstoleranz alle parallel zueinander. Die Längsachsen der
Halbleiterstrukturen verlaufen im Rahmen der
Herstellungstoleranz bevorzugt senkrecht zur
Haupterstreckungsebene der Halbleiterschichtenfolge.
Die Nanorods oder Mikrorods können insbesondere in einer Kern-Hüllen-Struktur ausgebildet sein. Das heißt, ein
Halbleiterabschnitt bildet einen Kern, der von dem aktiven Bereich zumindest teilweise ummantelt ist. Der aktive Bereich wiederum ist von einem weiteren Halbleiterabschnitt in Form einer Schicht ummantelt.
Gemäß zumindest einer Ausführungsform sind die
Halbleiterstrukturen in der Halbleiterschichtenfolge
eingebettet oder vergraben. Insbesondere sind die
Halbleiterstrukturen epitaktisch mit der
Halbleiterschichtenfolge überwachsen. Die
Halbleiterstrukturen sind beispielsweise in alle lateralen Richtungen, parallel zur Haupterstreckungsebene der
Halbleiterschichtenfolge, oder in alle Raumrichtungen
vollständig von der Halbleiterschichtenfolge umgeben.
In mindestens einer Ausführungsform umfasst der
optoelektronische Halbleiterchip eine
Halbleiterschichtenfolge und mehrere Halbleiterstrukturen mit jeweils einem aktiven Bereich. Die aktiven Bereiche sind jeweils zur Emission und/oder Absorption von
elektromagnetischer Strahlung eingerichtet. Die aktiven
Bereiche unterschiedlicher Halbleiterstrukturen hängen nicht zusammen. Die Halbleiterstrukturen sind jeweils als Nanorod oder als Mikrorod ausgebildet. Die Halbleiterstrukturen sind in der Halbleiterschichtenfolge eingebettet.
Der vorliegenden Erfindung liegt insbesondere die Idee zu Grunde, aktive oder passive Halbleiterstrukturen in einer Halbleiterschichtenfolge zu vergraben. Als passive Strukturen können die Halbleiterstrukturen zum Beispiel
Konversionselemente sein. Als aktive Strukturen sind die Halbleiterstrukturen zur intrinsischen Erzeugung von
elektromagnetischer Strahlung eingerichtet und können
beispielsweise verschiedene Pixel eines Halbleiterchips bilden. Durch das Einbetten der Halbleiterstrukturen in der Halbleiterschichtenfolge ist eine finale Verkapselungsschicht für die Halbleiterstrukturen nicht notwendig. Auch für die thermischen Eigenschaften ist das Einbetten der
Halbleiterstrukturen vorteilhaft .
Durch Einstellen der Dichte der Halbleiterstrukturen kann die Intensität oder der Farbort des Halbleiterchips eingestellt werden. Außerdem können die Halbleiterstrukturen mit der Halbleiterschichtenfolge überwachsen sein. Beim Wachstum der Halbleiterschichtenfolge wirken sich die Halbleiterstrukturen positiv im Hinblick auf die Reduktion von Gitterdefekten aus. Die Halbleiterstrukturen können beispielsweise wie ein PSS (Patterned Saphire Substrate) wirken. Durch das Einstellen der Durchmesser der Halbleiterstrukturen kann die Wellenlänge der von den Halbleiterstrukturen emittierten oder
absorbierten Strahlung eingestellt werden. Details dazu sind beispielsweise dem Papier „Full-Color Single Nanowire Pixels for Projection Displays" Yong-Ho Ra et al . , Nano Lett . , 2016, 16 (7), pp 4608-4615 zu entnehmen, dessen Offenbarungsgehalt hiermit durch Rückbezug aufgenommen ist.
Gemäß zumindest einer Ausführungsform sind die
Halbleiterstrukturen Konversionselemente. In diesem Fall sind die Halbleiterstrukturen also passive Elemente.
Gemäß zumindest einer Ausführungsform umfasst die
Halbleiterschichtenfolge eine aktive Schicht, die im
bestimmungsgemäßen Betrieb eine Primärstrahlung erzeugt oder absorbiert. Die aktive Schicht der Halbleiterschichtenfolge beinhaltet insbesondere wenigstens einen pn-Übergang und/oder mindestens eine QuantentopfStruktur in Form eines einzelnen Quantentopfs, kurz SQW, oder in Form einer Multi- QuantentopfStruktur, kurz MQW. Die aktive Schicht kann im bestimmungsgemäßen Betrieb elektromagnetische Strahlung im blauen oder grünen oder roten Spektralbereich oder im UV- Bereich oder im IR-Bereich erzeugen oder absorbieren. Die aktive Schicht der Halbleiterschichtenfolge kann
zusammenhängend ausgebildet sein. Eine laterale Ausdehnung der aktiven Schicht beträgt beispielsweise zumindest 95 % der lateralen Ausdehnung der Halbleiterschichtenfolge.
Gemäß zumindest einer Ausführungsform sind die
Konversionselemente dazu eingerichtet, die Primärstrahlung in eine Sekundärstrahlung zu konvertieren oder eine
Sekundärstrahlung in die Primärstrahlung zu konvertieren. Die Primärstrahlung und die Sekundärstrahlung umfassen
unterschiedliche Wellenlängenbereiche. Dazu absorbieren die Halbleiterstrukturen die Primärstrahlung. Durch eine
Rekombination der aus der Absorption entstehenden Elektron- Loch-Paare in dem aktiven Bereich wird die Sekundärstrahlung emittiert .
Gemäß zumindest einer Ausführungsform sind die
Halbleiterstrukturen mit der Halbleiterschichtenfolge
epitaktisch überwachsen. Dabei handelt es sich nicht nur um ein Verfahrensmerkmal, sondern ebenso um ein gegenständliches Merkmal, welches am fertigen Halbleiterchip nachgewiesen werden kann. Insbesondere ist zwischen den
Halbleiterstrukturen und der Halbleiterschichtenfolge in diesem Fall kein Verbindungsmaterial, wie beispielsweise ein Klebstoff, angeordnet, sondern die beiden Komponenten grenzen direkt aneinander.
Gemäß zumindest einer Ausführungsform sind die
Halbleiterstrukturen zwischen der aktiven Schicht und einem Aufwachssubstrat der Halbleiterschichtenfolge angeordnet. Auf dem Aufwachssubstrat ist die Halbleiterschichtenfolge
gewachsen. Das Aufwachssubstrat ist Teil des Halbleiterchips. Das Aufwachssubstrat kann Saphir sein. Beispielsweise handelt es sich bei dem Halbleiterchip dann um einen so genannten Saphir-Chip oder einen Flip-Chip.
Gemäß zumindest einer Ausführungsform ist der Halbleiterchip frei von einem Aufwachssubstrat der Halbleiterschichtenfolge. Nach dem Aufwachsen der Halbleiterschichtenfolge auf einem Aufwachssubstrat ist das Aufwachssubstrat also abgelöst worden. Bei dem Halbleiterchip handelt es sich insbesondere um einen Dünnfilm-Chip.
Gemäß zumindest einer Ausführungsform umfasst der
Halbleiterchip einen Träger, auf dem die
Halbleiterschichtenfolge angeordnet ist. Der Träger
unterscheidet sich von dem Aufwachssubstrat . Der Träger stabilisiert insbesondere die Halbleiterschichtenfolge. Der Träger kann elektrisch leitend sein. Bei dem Träger kann es sich um einen Silizium-Träger handeln.
Gemäß zumindest einer Ausführungsform ist die aktive Schicht zwischen dem Träger und den Halbleiterstrukturen angeordnet.
Gemäß zumindest einer Ausführungsform verjüngen sich die Halbleiterstrukturen jeweils entlang einer Längsachse der Halbleiterstruktur. Beispielsweise verjüngen sich die
Halbleiterstrukturen alle entlang derselben Richtung. Zum Beispiel verjüngen sich alle Halbleiterstrukturen in Richtung hin oder alle in Richtung weg von der aktiven Schicht.
Gemäß zumindest einer Ausführungsform umfasst der
Halbleiterchip eine Mehrzahl von einzeln und unabhängig ansteuerbaren Pixeln. Ein angesteuertes Pixel emittiert oder absorbiert elektromagnetische Strahlung. Bei dem
Halbleiterchip handelt es sich dann um einen pixelierten Halbleiterchip .
Gemäß zumindest einer Ausführungsform sind unterschiedlichen Pixeln unterschiedliche Halbleiterstrukturen zugeordnet.
Beispielsweise sind einem Pixel jeweils zwei, als
Konversionselemente ausgebildete Halbleiterstrukturen
zugeordnet, die die Primärstrahlung der aktiven Schicht jeweils in unterschiedliche Sekundärstrahlungen konvertieren.
Gemäß zumindest einer Ausführungsform weist die aktive
Schicht mehrere Erhebungen auf, wobei jeder Erhebung eine Halbleiterstruktur zugeordnet ist. Bei den Erhebungen handelt es sich insbesondere um Auswölbungen oder Ausstülpungen der aktiven Schicht, die sich senkrecht zu einer
Haupterstreckungsebene der aktiven Schicht erstrecken. Die Erhebungen in der aktiven Schicht können beispielsweise durch das Aufwachsen der Halbleiterschichtenfolge auf den
Halbleiterstrukturen bedingt sein. Beispielsweise sind die Erhebungen durch so genannter V-Pits gebildet. Die V-Pits können dann jeweils einer Halbleiterstruktur zugeordnet sein. Durch die Erhebungen in der aktiven Schicht kann die
Leuchtdichte erhöht werden.
Gemäß zumindest einer Ausführungsform sind die
Halbleiterstrukturen in einer Spiegelschicht der
Halbleiterschichtenfolge eingebettet. Die Spiegelschicht ist insbesondere ein Bragg-Spiegel aus mehreren
Halbleiterschichten. Die Spiegelschicht kann epitaktisch gewachsen sein. Zum Beispiel umfasst die Spiegelschicht eine Schicht aus n-dotiertem AlInN und eine Schicht aus GaN. Die Spiegelschicht ist bevorzugt ein Spiegel für die von der aktiven Schicht emittierte Primärstrahlung. Einzelne
Schichten der Spiegelschicht erfüllen zum Beispiel die l/4- Bedingung in Bezug auf die Primärstrahlung. Dadurch kann die Primärstrahlung vorteilhaft dazu gebracht werden, länger in der Spiegelschicht zu verweilen, was wiederum die
Konversionswahrscheinlichkeit durch die Konversionselemente erhöht .
Gemäß zumindest einer Ausführungsform sind zumindest einige Halbleiterstrukturen lateral neben der aktiven Schicht angeordnet. Insbesondere sind diese Halbleiterstrukturen in einer gleichen Ebene wie die aktive Schicht angeordnet. Die Halbleiterstrukturen lateral neben der aktiven Schicht dienen insbesondere zur Konversion der seitlich emittierten
PrimärStrahlung .
Die aktive Schicht der Halbleiterschichtenfolge ist
beispielsweise in eine Mehrzahl von Pixel strukturiert, wobei im Bereich zwischen je zwei Pixeln Halbleiterstrukturen in einer gemeinsamen Ebene mit der aktiven Schicht angeordnet sind .
Weitere Halbleiterstrukturen können über oder unter der aktiven Schicht in einer anderen Ebene als die aktive Schicht angeordnet sein.
Darüber hinaus wird ein Verfahren zur Herstellung eines optoelektronischen Halbleiterchips angegeben. Das Verfahren eignet sich insbesondere dazu, einen wie eben beschriebenen Halbleiterchip herzustellen. Alle im Zusammenhang mit dem optoelektronischen Halbleiterchip offenbarten Merkmale sind daher auch für das Verfahren offenbart und umgekehrt. Gemäß zumindest einer Ausführungsform umfasst das Verfahren zur Herstellung eines optoelektronischen Halbleiterchips einen Schritt A) , in dem ein Aufwachssubstrat mit einer
Wachstumsseite bereitgestellt wird. In einem Schritt B) werden Halbleiterstrukturen mit jeweils einem aktiven Bereich auf der Wachstumsseite aufgewachsen, insbesondere epitaktisch aufgewachsen . In einem Schritt C) wird eine
Halbleiterschichtenfolge auf der Wachstumsseite aufgewachsen, insbesondere epitaktisch aufgewachsen . Dabei ist jede
Halbleiterstruktur ein Nanorod oder ein Mikrorod. Die aktiven Bereiche der Halbleiterstrukturen sind jeweils zur Emission und/oder Absorption von elektromagnetischer Strahlung
eingerichtet. Die aktiven Bereiche unterschiedlicher
Halbleiterstrukturen hängen nicht zusammen. Die
Halbleiterstrukturen werden bei dem Verfahren in der
Halbleiterschichtenfolge eingebettet .
Die Schritte B) und C) werden bevorzugt abwechselnd
ausgeführt. Beispielsweise wird zuerst ein Teil der
Halbleiterschichtenfolge gewachsen, anschließend werden die Halbleiterstrukturen gewachsen, und daraufhin wird ein weiterer Teil der Halbleiterschichtenfolge gewachsen.
Gemäß zumindest einer Ausführungsform werden die
Halbleiterstrukturen mit der Halbleiterschichtenfolge
überwachsen. Das heißt, die Halbleiterschichtenfolge wird auf den Halbleiterstrukturen gewachsen, wobei die
Halbleiterstrukturen bevorzugt ein Wachstum der
Halbleiterschichtenfolge mit einer geringeren Defektdichte bewirken. Zum Beispiel bewirken die Halbleiterstrukturen ein laterales Zusammenwachsen der Halbleiterschichtenfolge
(ELOG) . Nachfolgend werden ein hier beschriebener optoelektronischer Halbleiterchip sowie ein hier beschriebenes Verfahren zur Herstellung eines optoelektronischen Halbleiterchips unter Bezugnahme auf Zeichnungen anhand von Ausführungsbeispielen näher erläutert. Gleiche Bezugszeichen geben dabei gleiche Elemente in den einzelnen Figuren an. Es sind dabei jedoch keine maßstäblichen Bezüge dargestellt, vielmehr können einzelne Elemente zum besseren Verständnis übertrieben groß dargestellt sein.
Es zeigen:
Figuren 1A, 1B, IC, IE, 3A, 3B, 5A, 5B, 9
Ausführungsbeispiele des optoelektronischen Halbleiterchips in verschiedenen Ansichten,
Figuren 2A bis 21, 4A bis 4F, 6A bis 6E Positionen in
verschiedenen Ausführungsbeispielen des Verfahrens zur
Herstellung eines optoelektronischen Halbleiterchips,
Figuren ID und 7 Ausführungsbeispiele von
Halbleiterstrukturen in Detailansichten,
Figuren 8A bis 8D Positionen in einem weiteren
Ausführungsbeispiel des Verfahrens zur Herstellung eines optoelektronischen Halbleiterchips sowie ein
Ausführungsbeispiel eines optoelektronischen Halbleiterchips.
In den Figuren 1A bis IC ist ein erstes Ausführungsbeispiel des optoelektronischen Halbleiterchips 100 in
perspektivischen Ansichten und Seitenansicht dargestellt. Der Halbleiterchip 100 umfasst ein Aufwachssubstrat 3, beispielsweise ein Saphirsubstrat. Auf dem Aufwachssubstrat 3 ist eine Hilfsschicht 13 gewachsen. Die Hilfsschicht 13 ist eine Halbleiterschicht und basiert beispielsweise auf GaN.
Auf der Hilfsschicht 13 sind Halbleiterstrukturen 21, 22 in Form von Nanorods oder Mikrorods gewachsen. Bei den
Halbleiterstrukturen 21, 22 handelt es sich um
Konversionselemente. Erste Halbleiterstrukturen 21
unterscheiden sich von zweiten Halbleiterstrukturen 22 beispielsweise hinsichtlich der Konversionseigenschaften. Die Halbleiterstrukturen 21, 22 basieren beispielsweise auf einem Nitrid-Verbindungshalbleitermaterial .
Die Halbleiterstrukturen 21, 22 sind mit einer
Halbleiterschichtenfolge 1, die zum Beispiel auf AlInGaN basiert, überwachsen. Die Halbleiterschichtenfolge 1 umfasst eine erste Halbleiterschicht 11. Die erste Halbleiterschicht 11 ist zum Beispiel n-dotiert. Der ersten Halbleiterschicht 11 ist eine aktive Schicht 10 in Form eines
Multiquantentopfs, MQW, nachgeordnet. Der aktiven Schicht 10 wiederum ist eine zweite Halbleiterschicht 12, die zum
Beispiel p-dotiert ist, nachgeordnet.
Weiter ist in Figuren 1A bis IC ein erstes Kontaktelement 41 zur Kontaktierung der ersten Halbleiterschicht 11 und ein zweites Kontaktelement 42 zur Kontaktierung der zweiten
Halbleiterschicht 12 gezeigt. Beide Kontaktelemente 41, 42 sind auf einer dem Aufwachssubstrat 3 abgewandten Seite der Halbleiterschichtenfolge 1 angeordnet. Das erste
Kontaktelement 41 ist in einer Ausnehmung der
Halbleiterschichtenfolge 1 angeordnet, in der die erste
Halbleiterschicht 11 freigelegt ist. Die Kontaktelemente 41, 42 können mit Kontaktdrähten 43 von einer dem
Aufwachssubstrat 3 abgewandten Seite her kontaktiert werden. Bei dem Halbleiterchip 100 der Figuren 1A bis IC handelt es sich insbesondere um einen so genannten Saphir-Chip.
In der Figur ID ist eine Detailansicht einer ersten
Halbleiterstruktur 21 gezeigt. Zu erkennen ist, dass die erste Halbleiterstruktur 21 einen ersten Halbleiterabschnitt
211 in Form eines Kerns umfasst. Der erste
Halbleiterabschnitt 211 ist mit einem aktiven Bereich 210 ummantelt. Der aktive Bereich 210 dient zur Absorption und/oder Emission von elektromagnetischer Strahlung. Der aktive Bereich 210 ist von einem zweiten Halbleiterabschnitt
212 in Form einer Schicht ummantelt. Außerdem sind in der Figur 1 die Reste einer Maske 25 gezeigt, die zum Wachstum der ersten Halbleiterstrukturen 21 verwendet wurde.
In der Figur IE ist ein zweites Ausführungsbeispiel des optoelektronischen Halbleiterchips 100 gezeigt. Wiederum handelt es sich hier um einen Saphir-Chip. Anders als in den Figuren 1A bis IC sind die als Konversionselemente
ausgebildeten Halbleiterstrukturen 21, 22 nun auf einer dem Aufwachssubstrat 3 abgewandten Seite der aktiven Schicht 10 in die Halbleiterschichtenfolge 1 eingebettet. Auf einer der Halbleiterschichtenfolge 1 abgewandten Seite des
Aufwachssubstrats 3 ist ein Spiegel 7, beispielsweise ein Bragg-Spiegel , angeordnet. Ein solcher Spiegel 7 kann auch in dem Ausführungsbeispiel der Figuren 1A bis IC vorgesehen sein .
In den Figuren 2A bis 21 sind verschiedene Positionen in einem ersten Ausführungsbeispiel des Verfahrens zur
Herstellung des optoelektronischen Halbleiterchips der
Figuren 1A bis IC gezeigt. In der Figur 2A ist zunächst ein Aufwachssubstrat 3 mit einer Hilfsschicht 13 bereitgestellt. Die Hilfsschicht 13 ist eine Halbleiterschicht und ist auf einer Wachstumsseite 31 des Aufwachssubstrats 3 epitaktisch aufgewachsen .
In der Figur 2B ist eine erste Halbleiterstruktur 21 in Form eines Nanorods oder Mikrorods auf der Wachstumsseite 31 des Aufwachssubstrats 3 aufgewachsen . Dazu wurde zunächst eine Maske 25 auf die Wachstumsseite 31 aufgebracht. Die Maske 25 kann beispielsweise mit einem elektrisch isolierenden
Material, zum Beispiel mit einem Fotolackmaterial und/oder mit einem Siliziumoxid und/oder mit einem Siliziumnitrid, gebildet sein. Anschließend wurde die Maske 25 strukturiert, indem Löcher in die Maske 25 eingebracht wurden. Die Größe der Löcher in der Maske 25 definiert dabei den Durchmesser der später entstehenden Halbleiterstrukturen. Innerhalb der Löcher wurden dann die ersten Halbleiterstrukturen 21 gewachsen. Dies sind zum Beispiel grüne Konversionselemente.
In der Figur 2C ist die Maske 25 erneut mit Löchern
strukturiert. Innerhalb der zusätzlichen Löcher sind zweite Halbleiterstrukturen 22 wieder in Form von Nanorods oder Mikrorods gewachsen. Für die zweiten Halbleiterstrukturen 22 sind beispielsweise die Durchmesser anders gewählt als für die ersten Halbleiterstrukturen 21. Es handelt sich hier zum Beispiel um rote Konversionselemente. Die ersten
Halbleiterstrukturen 21 sind mit einer Passivierung 26, zum Beispiel Si02 oder SiN, überzogen. Anders als in Figur 2B und
2C dargestellt, können die ersten Halbleiterstrukturen 21 und die zweiten Halbleiterstrukturen 22 aber auch gleichzeitig gewachsen werden. In der Figur 2D ist die Position der Figur 2C nochmals in perspektivischer Ansicht und Querschnittsansicht dargestellt.
In den Figuren 2E bis 2G ist dargestellt, wie die
Halbleiterstrukturen 21, 22 zunächst mit einer ersten
Halbleiterschicht 11, anschließend einer aktiven Schicht 10 und daraufhin mit einer zweiten Halbleiterschicht 12
überwachsen werden, so dass eine Halbleiterschichtenfolge 1 entsteht, in der die Halbleiterstrukturen 21, 22 eingebettet sind. Die erste Halbleiterschicht 11 kann zum Beispiel eine Spiegelschicht, insbesondere einen Braggspiegel , umfassen oder daraus bestehen.
In den Figuren 2H und 21 ist gezeigt, wie die
Halbleiterschichten 11, 12 anschließend mit Kontaktelementen
41, 42 kontaktiert werden.
In den Figuren 3A und 3B ist ein zweites Ausführungsbeispiel des optoelektronischen Halbleiterchips 100 dargestellt. Bei diesem Halbleiterchip 100 handelt es sich um einen so
genannten Flip-Chip. Die Kontaktelemente 41, 42 zur
Kontaktierung der Halbleiterschichtenfolge 1 sind auf einer dem Aufwachssubstrat 3 abgewandten Seite der
Halbleiterschichtenfolge 1 angeordnet. Zwischen der
Halbleiterschichtenfolge 1 und den Kontaktelementen 41, 42 ist eine Kontaktschicht 6 zur Kontaktierung der zweiten
Halbleiterschicht 12 sowie ein Spiegel 7 angeordnet. Die Kontaktschicht 6 ist mit einer zweiten Elektrode 420
elektrisch leitend verbunden. Die erste Halbleiterschicht 11 ist über Durchkontaktierungen 411, die sich durch die zweite Halbleiterschicht 12 und die aktive Schicht 10 erstrecken, mit einer ersten Elektrode 410 verbunden. Beide Elektroden 410, 420 sind auf derselben Seite der Halbleiterschichtenfolge 1 angeordnet. Auf den Elektroden 410, 420 ist eine Isolationsschicht 8 angeordnet. Durch die Isolationsschicht 8 hindurch sind die Elektroden 410, 420 mit den Kontaktelementen 41, 42 elektrisch leitend verbunden.
In den Figuren 4A bis 4F sind verschiedene Positionen eines Ausführungsbeispiels zur Herstellung des Halbleiterchips 100 der Figuren 3A und 3B gezeigt. Zunächst wird beispielsweise das Verfahren wie im Zusammenhang mit den Figuren 2A bis 2G erläutert durchgeführt. Die in der Figur 4A dargestellte Position schließt sich an die Position der Figur 2G an.
In der Figur 4A sind von einer dem Aufwachssubstrat 3
abgewandten Seite der Halbleiterschichtenfolge 1 her
Öffnungen in die Halbleiterschichtenfolge 1 eingebracht, die sich durch die zweite Halbleiterschicht 12 und die aktive Schicht 10 bis hinein in die erste Halbleiterschicht 11 erstrecken und in der ersten Halbleiterschicht 11 münden. Anschließend werden auf die zweite Halbleiterschicht 12 eine Kontaktschicht 6, zum Beispiel aus Silber, (Figur 4B) und ein Spiegel 7, zum Beispiel aus Metall, (Figur 4C) aufgebracht. Die Öffnungen werden mit einem elektrisch leitenden Material, wie einem Metall, aufgefüllt (Figur 4C) . Dadurch entstehen Durchkontaktierungen 411 zur Kontaktierung der ersten
Halbleiterschicht 11. Auf den Spiegel 7 werden Elektroden 410, 420 aufgebracht (Figur 4D) . Die erste Elektrode 410 ist mit den Durchkontaktierungen 411 elektrisch leitend
verbunden. Die zweite Elektrode 420 ist über Löcher in dem Spiegel 7 mit der Kontaktschicht 6 elektrisch leitend
verbunden. In der Figur 4E ist auf die Elektroden 410, 420 eine Isolationsschicht 8 aufgebracht. Die Isolationsschicht 8 umfasst beispielsweise Siliziumoxid oder Siliziumnitrid. In der Figur 4F sind dann noch Kontaktelemente 41, 42 auf einer dem Aufwachssubstrat 3 abgewandten Seite der
Isolationsschicht 8 aufgebracht.
In den Figuren 5A und 5B ist ein drittes Ausführungsbeispiel des optoelektronischen Halbleiterchips 100 dargestellt.
Anders als in den vorherigen Ausführungsbeispielen ist nun das Aufwachssubstrat abgelöst. Dafür ist zusätzlich ein
Träger 5, beispielsweise einen Siliziumträger, auf eine der aktiven Schicht 10 abgewandten Seite der zweiten
Halbleiterschicht 12 aufgebracht. Zwischen der zweiten
Halbleiterschicht 12 und dem Träger 5 ist außerdem ein
Spiegel 7 vorgesehen, der gleichzeitig als zweite Elektrode 420 zur Kontaktierung der zweiten Halbleiterschicht 12 dient. Auf eine der Halbleiterschichtenfolge 1 abgewandte Seite der zweiten Elektrode 420 ist eine erste Elektrode 410
aufgebracht. Die beiden Elektroden 410, 420 sind durch eine Isolationsschicht 8 voneinander getrennt und elektrisch isoliert. Die erste Elektrode 410 ist über
Durchkontaktierungen 411, die sich durch die
Isolationsschicht 8, die zweite Elektrode 24, die zweite Halbleiterschicht 12 und die aktive Schicht 10 bis hinein in die erste Halbleiterschicht 11 erstrecken, mit der ersten Halbleiterschicht 11 elektrisch leitend verbunden. Auf der ersten Elektrode 410 ist der Träger 5 aufgebracht.
Auf einer der Halbleiterschichtenfolge 1 abgewandten Seite des Trägers 5 ist ein erstes Kontaktelement 41 aufgebracht. Der Träger 5 ist in diesem Fall bevorzugt elektrisch leitend.
In die Halbleiterschichtenfolge 1 ist außerdem eine
Ausnehmung eingebracht, die sich von einer dem Träger 5 abgewandten Seite der Halbleiterschichtenfolge 1 bis hin zur zweiten Elektrode 420 erstreckt. In der Ausnehmung ist ein zweites Kontaktelement 42 zur elektrischen Kontaktierung der zweiten Elektrode 420 vorgesehen. Das zweite Kontaktelement 42 kann von einer dem Träger 5 abgewandten Seite der
Halbleiterschichtenfolge 1 her mit einem Kontaktdraht 43 elektrisch kontaktiert werden (Figur 5B) .
In den Figuren 6A bis 6B sind verschiedene Positionen in einem Ausführungsbeispiel zur Herstellung des
optoelektronischen Halbleiterchips gemäß der Figuren 5A und 5B dargestellt. Zunächst wurde beispielsweise wiederum das Verfahren gemäß den Schritten 2A bis 2G ausgeführt. Die
Position der Figur 6A schließt sich an die Position der Figur 2G an .
In der Figur 6A sind zunächst Öffnungen in die
Halbleiterschichtenfolge 1 von einer dem Aufwachssubstrat 3 abgewandten Seite her in die Halbleiterschichtenfolge 1 eingebracht. Außerdem ist ein Spiegel 7, der gleichzeitig eine zweite Elektrode 420 bildet, auf die zweite
Halbleiterschicht 12 aufgebracht. Dann wird auf den Spiegel 7 eine Isolationsschicht 8 aufgebracht (Figur 6B) . Auf die Isolationsschicht 8 wird eine erste Elektrode 410 aufgebracht (Figur 6C) . Außerdem sind die Öffnungen mit einem elektrisch leitenden Material aufgefüllt, das mit der ersten Elektrode 410 elektrisch leitend verbunden ist. Dadurch sind
Durchkontaktierungen 411 in der Halbleiterschichtenfolge 1 entstanden. In der Figur 6D ist auf die erste Elektrode 410 ein Träger 5 aufgebracht, der elektrisch leitend mit der ersten Elektrode 410 verbunden ist. Anschließend wird das Aufwachssubstrat 3 abgelöst (Figur 6E) .
In der Figur 7 sind verschiedene Ausführungsbeispiele für die Halbleiterstrukturen dargestellt. Die Halbleiterstrukturen können Kern-Hülle-Stäbe sein, die zum Beispiel zylinderförmig, pyramidenförmig oder obeliskenförmig
ausgebildet sind. Die aktiven Bereiche 210 der
Halbleiterstrukturen können jeweils in Form eines
Multiquantentopfs ausgebildet sein.
Figur 8A zeigt eine erste Position in einem weiteren
Ausführungsbeispiel des Verfahrens zur Herstellung eines optoelektronischen Halbleiterchips. Auf einem Aufwachsubstrat 3 ist ein erster Teil einer Halbleiterschichtenfolge mit einer aktiven Schicht 10 gewachsen.
In der Figur 8B ist eine zweite Position des Verfahrens gezeigt, bei dem die Halbleiterschichtenfolge zusammen mit der aktiven Schicht 10 strukturiert ist. Dabei ist in einigen Bereichen die aktive Schicht 10 entfernt. Dies wird
beispielsweise durch einen Ätzprozess unter Verwendung einer Ätzmaske erreicht.
In der dritten Position der Figur 8C sind
Halbleiterstrukturen 21, 22 in Form von Nanorods oder
Mikrorods auf dem Rest der Halbleiterschichtenfolge
gewachsen. Die Halbleiterstrukturen 21, 22 sind
Konversionselemente zur Konversion der von der aktiven
Schicht 10 emittierten Primärstrahlung. Die
Halbleiterstrukturen 21, 22 werden sowohl in den Bereichen aufgewachsen, in denen die aktive 10 entfernt wurde, als auch in den übrigen Bereichen. In den Bereichen, in denen die aktive Schicht 10 entfernt wurde, liegen die
Halbleiterstrukturen 21, 22 auf der gleichen Höhe wie die aktive Schicht 10 und liegen insbesondere in einer durch die aktive Schicht 10 definierten Ebene. In der Figur 8D ist eine vierte Position des Verfahrens gezeigt, in der die Halbleiterstrukturen 21, 22 mit weiterem Halbleitermaterial überwachsen sind und die
Halbleiterschichtenfolge 1 fertig gestellt ist. Figur 8D zeigt gleichzeitig ein Ausführungsbeispiel eines fertigen optoelektronischen Halbleiterchips 100.
Der Halbleiterchip 100 der Figur 8D umfasst eine segmentierte aktive Schicht 10. Jedes Segment der aktiven Schicht 10 stellt beispielsweise ein Pixel dar. Diese sind
beispielsweise einzeln und unabhängig ansteuerbar. Die von den Segmenten der aktiven Schicht 10 emittierte
Primärstrahlung wird durch die über den Segmenten
angeordneten Halbleiterstrukturen 21, 22 konvertiert. Die Halbleiterstrukturen 21, 22 lateral neben den Segmenten der aktiven Schicht 10 konvertieren die seitlich emittierte
PrimärStrahlung .
In der Figur 9 ist ein weiteres Ausführungsbeispiel eines optoelektronischen Halbleiterchips 100 gezeigt. Der
Halbleiterchip 100 umfasst nur eine einzige, zusammenhängende und unterbrechungsfreie aktive Schicht 10. Diese reicht aber nicht bis zu dem seitlichen Grenzen der
Halbleiterschichtenfolge 1, sondern ist lateral von
Halbleiterstrukturen 21, 22 umgeben, die seitlich emittierte Primärstrahlung konvertieren. Über der aktiven Schicht 10, auf einer dem Aufwachssubstrat 3 abgewandten Seite der aktiven Schicht 10, sind weitere Halbleiterstrukturen 21, 22 zur Konversion der emittierten Primärstrahlung vorgesehen.
Diese Patentanmeldung beansprucht die Priorität der deutschen Patentanmeldung 10 2018 122 684.5, deren Offenbarungsgehalt hiermit durch Rückbezug aufgenommen wird. Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele auf diese beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn diese Merkmale oder diese Kombination selbst nicht explizit in den
Patentansprüchen oder Ausführungsbeispielen angegeben sind.
Bezugszeichenliste
I Halbleiterschichtenfolge
3 Aufwachssubstrat
6 Kontaktschicht
7 Spiegel
8 Isolationsschicht
10 aktive Schicht
II erste Halbleiterschicht
12 zweite Halbleiterschicht
13 Hilfsschicht
21 erstes Konversionselement
22 zweites Konversionselement
25 Maske
26 Passivierung
31 Wachstumsseite
41 erstes Kontaktelement
42 zweites Kontaktelement
43 Kontaktdraht
100 optoelektronischer Halbleiterchip
210 aktiver Bereich
211 Halbleiterschicht
212 Halbleiterschicht
410 erste Elektrode
411 Durchkontaktierung
420 zweite Elektrode

Claims

Patentansprüche
1. Optoelektronischer Halbleiterchip (100), umfassend:
- eine Halbleiterschichtenfolge (1),
- mehrere Halbleiterstrukturen (21, 22) mit jeweils einem aktiven Bereich (210), wobei
- die aktiven Bereiche (210) jeweils zur Emission und/oder Absorption von elektromagnetischer Strahlung eingerichtet sind,
- die aktiven Bereiche (210) unterschiedlicher
Halbleiterstrukturen (21, 22) nicht Zusammenhängen,
- die Halbleiterstrukturen (21, 22) jeweils als Nanorod oder Mikrorod ausgebildet sind,
- die Halbleiterstrukturen (21, 22) in der
Halbleiterschichtenfolge (1) eingebettet sind.
2. Optoelektronischer Halbleiterchip (100) nach Anspruch 1, wobei
- die Halbleiterstrukturen (21, 22) Konversionselemente (21, 22) sind,
- die Halbleiterschichtenfolge (1) eine aktive Schicht (10) umfasst, die im bestimmungsgemäßen Betrieb eine
Primärstrahlung erzeugt oder absorbiert,
- die Konversionselemente (21, 22) dazu eingerichtet sind, die Primärstrahlung in eine Sekundärstrahlung zu konvertieren oder eine Sekundärstrahlung in die Primärstrahlung zu
konvertieren .
3. Optoelektronischer Halbleiterchip (100) nach Anspruch 1 oder 2,
wobei die Halbleiterstrukturen (21, 22) mit der
Halbleiterschichtenfolge (1) epitaktisch überwachsen sind.
4. Optoelektronischer Halbleiterchip (100) nach Anspruch 2 oder nach Anspruch 3 im Rückbezug auf Anspruch 2,
wobei die Halbleiterstrukturen (21, 22) zwischen der aktiven Schicht (10) und einem Aufwachssubstrat (3) der
Halbleiterschichtenfolge (1) angeordnet sind.
5. Optoelektronischer Halbleiterchip (100) nach Anspruch 2 oder nach Anspruch 3 im Rückbezug auf Anspruch 2, wobei
- der Halbleiterchip (100) frei von einem Aufwachssubstrat der Halbleiterschichtenfolge (1) ist,
- der Halbleiterchip (100) einen Träger (5) umfasst, auf dem die Halbleiterschichtenfolge (1) angeordnet ist,
- die aktive Schicht (10) zwischen dem Träger (5) und den Halbleiterstrukturen (21, 22) angeordnet ist.
6. Optoelektronischer Halbleiterchip (100) nach einem der vorhergehenden Ansprüche,
wobei die Halbleiterstrukturen (21, 22) sich jeweils entlang einer Längsachse der Halbleiterstruktur (21, 22) verjüngen.
7. Optoelektronischer Halbleiterchip (100) nach einem der vorhergehenden Ansprüche, wobei
- der Halbleiterchip (100) eine Mehrzahl von einzeln und unabhängig ansteuerbaren Pixeln (13) umfasst,
- unterschiedlichen Pixeln (13) unterschiedliche
Halbleiterstrukturen (21, 22) zugeordnet sind.
8. Optoelektronischer Halbleiterchip (100) nach Anspruch 2 oder einem der Ansprüche 3 bis 7 im Rückbezug auf Anspruch 2, wobei die aktive Schicht (10) mehrere Erhebungen aufweist und jede Erhebung einer Halbleiterstruktur (21, 22) zugeordnet ist .
9. Verfahren zur Herstellung eines optoelektronischen
Halbleiterchips (100), umfassend die Schritte:
A) Bereitstellen eines Aufwachssubstrats (3) mit einer
Wachstumsseite (31);
B) Aufwachsen von Halbleiterstrukturen (21, 22) mit jeweils einem aktiven Bereich (210) auf die Wachstumsseite (31);
C) Aufwachsen einer Halbleiterschichtenfolge (1) auf der Wachstumsseite (31), wobei
jede Halbleiterstruktur (21, 22) ein Nanorod oder ein Mikrorod ist,
die aktiven Bereiche (210) jeweils zur Emission und/oder Absorption von elektromagnetischer Strahlung eingerichtet sind,
die aktiven Bereiche (210) unterschiedlicher
Halbleiterstrukturen (21, 22) nicht Zusammenhängen,
die Halbleiterstrukturen (21, 22) in der
Halbleiterschichtenfolge (1) eingebettet werden.
10. Verfahren nach Anspruch 9,
wobei im Schritt C) die Halbleiterstrukturen (21, 22) mit der Halbleiterschichtenfolge (1) überwachsen werden.
PCT/EP2019/074685 2018-09-17 2019-09-16 Optoelektronischer halbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips WO2020058180A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19769789.9A EP3853913A1 (de) 2018-09-17 2019-09-16 Optoelektronischer halbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips
US17/276,492 US20220037558A1 (en) 2018-09-17 2019-09-16 Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018122684.5 2018-09-17
DE102018122684.5A DE102018122684A1 (de) 2018-09-17 2018-09-17 Optoelektronischer halbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips

Publications (1)

Publication Number Publication Date
WO2020058180A1 true WO2020058180A1 (de) 2020-03-26

Family

ID=67989002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/074685 WO2020058180A1 (de) 2018-09-17 2019-09-16 Optoelektronischer halbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips

Country Status (4)

Country Link
US (1) US20220037558A1 (de)
EP (1) EP3853913A1 (de)
DE (1) DE102018122684A1 (de)
WO (1) WO2020058180A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021129843A1 (de) * 2021-11-16 2023-05-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur herstellung einer vielzahl strahlungsemittierender halbleiterchips und strahlungsemittierender halbleiterchip

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090165844A1 (en) * 2007-12-31 2009-07-02 Banpil Photonics Inc. Hybrid photovoltaic device
KR20110101555A (ko) * 2010-03-09 2011-09-16 삼성엘이디 주식회사 질화물 반도체 발광소자 및 그 제조방법
WO2012052257A2 (de) * 2010-09-28 2012-04-26 Osram Opto Semiconductors Gmbh Optoelektronischer halbleiterchip und verfahren zu dessen herstellung
US20150171269A1 (en) * 2013-12-16 2015-06-18 Samsung Display Co. Ltd. Light emitting diode and method of manufacturing the same
WO2015117851A1 (en) * 2014-02-04 2015-08-13 Koninklijke Philips N.V. Oxo- and hydroxo-based composite inorganic ligands for quantum dots
US20170092820A1 (en) * 2015-09-30 2017-03-30 Samsung Electronics Co., Ltd. Light emitting device package
WO2017144512A1 (de) * 2016-02-25 2017-08-31 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines strahlungsemittierenden halbleiterchips und strahlungsemittierender halbleiterchip

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664986B1 (ko) * 2004-10-29 2007-01-09 삼성전기주식회사 나노로드를 이용한 질화물계 반도체 소자 및 그 제조 방법
KR101603777B1 (ko) * 2009-04-16 2016-03-15 삼성전자주식회사 백색 발광 다이오드
US8835903B2 (en) * 2010-07-29 2014-09-16 National Tsing Hua University Light-emitting diode display and method of producing the same
KR101710159B1 (ko) * 2010-09-14 2017-03-08 삼성전자주식회사 Ⅲ족 질화물 나노로드 발광소자 및 그 제조 방법
EP2506321B1 (de) * 2011-03-28 2019-01-23 Osram Opto Semiconductors Gmbh Leuchtdiodenchip

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090165844A1 (en) * 2007-12-31 2009-07-02 Banpil Photonics Inc. Hybrid photovoltaic device
KR20110101555A (ko) * 2010-03-09 2011-09-16 삼성엘이디 주식회사 질화물 반도체 발광소자 및 그 제조방법
WO2012052257A2 (de) * 2010-09-28 2012-04-26 Osram Opto Semiconductors Gmbh Optoelektronischer halbleiterchip und verfahren zu dessen herstellung
US20150171269A1 (en) * 2013-12-16 2015-06-18 Samsung Display Co. Ltd. Light emitting diode and method of manufacturing the same
WO2015117851A1 (en) * 2014-02-04 2015-08-13 Koninklijke Philips N.V. Oxo- and hydroxo-based composite inorganic ligands for quantum dots
US20170092820A1 (en) * 2015-09-30 2017-03-30 Samsung Electronics Co., Ltd. Light emitting device package
WO2017144512A1 (de) * 2016-02-25 2017-08-31 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines strahlungsemittierenden halbleiterchips und strahlungsemittierender halbleiterchip

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YONG-HO RA ET AL.: "Full-Color Single Nanowire Pixels for Projection Displays", NANO LETT., vol. 16, no. 7, 2016, pages 4608 - 4615

Also Published As

Publication number Publication date
EP3853913A1 (de) 2021-07-28
DE102018122684A1 (de) 2020-03-19
US20220037558A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
DE102012109460B4 (de) Verfahren zur Herstellung eines Leuchtdioden-Displays und Leuchtdioden-Display
DE102009023849B4 (de) Optoelektronischer Halbleiterkörper und optoelektronischer Halbleiterchip
WO2012062635A1 (de) Optoelektronischer halbleiterchip und verfahren zu dessen herstellung
DE112017006428T5 (de) Lichtemittierende Halbleitervorrichtung und Verfahren zu ihrer Herstellung
DE112017003307T5 (de) Verfahren zur Herstellung einer optischen Halbleitervorrichtung und optische Halbleitervorrichtung
WO2012052257A2 (de) Optoelektronischer halbleiterchip und verfahren zu dessen herstellung
WO2014056762A2 (de) Verfahren zur herstellung eines optoelektronischen halbleiterbauteils und optoelektronisches halbleiterbauteil
DE112015004200T5 (de) Vertikale led-chipstruktur mit spezieller vergröbernder morphologie und herstellungsverfahren dafür
WO2018234154A1 (de) Optoelektronisches halbleiterbauelement
DE112014000439B4 (de) Optoelektronischer Halbleiterchip und Verfahren zum Herstellen eines optoelektronischen Halbleiterchips
WO2012052415A1 (de) Optoelektronisches bauelement und verfahren zu dessen herstellung
DE112018001450B4 (de) Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
EP3853913A1 (de) Optoelektronischer halbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips
WO2017129446A1 (de) Konversionselement und strahlungsemittierendes halbleiterbauelement mit einem solchen konversionselement
WO2020035498A1 (de) Optoelektronischer halbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips
WO2019115344A1 (de) Lichtemittierendes halbleiterbauteil und verfahren zur herstellung eines licht emittierenden halbleiterbauteils
WO2020239749A1 (de) Optoelektronisches halbleiterbauelement mit verbindungsbereichen und verfahren zur herstellung des optoelektronischen halbleiterbauelements
WO2020064947A1 (de) Optoelektronisches bauelement mit dielektrischer spiegelschicht und dessen herstellungsverfahren
WO2020127435A1 (de) Optoelektronisches halbleiterbauelement und dessen herstellungsverfahren
WO2020165164A1 (de) Optoelektronisches bauelement
WO2017140615A1 (de) Optoelektronisches halbleiterbauelement und verfahren zur herstellung eines optoelektronischen halbleiterbauelements
WO2017021301A1 (de) Verfahren zur herstellung eines nitrid-halbleiterbauelements und nitrid-halbleiterbauelement
DE102019108216A1 (de) Optoelektronisches Halbleiterbauelement mit dielektrischer Schicht und transparenter leitfähiger Schicht und Verfahren zur Herstellung des optoelektronischen Halbleiterbauelements
WO2023105036A1 (de) Optoelektronisches bauelement, optoelektronische vorrichtung und verfahren zur herstellung eines bauelements
DE112022003001T5 (de) Optoelektronisches bauelement, bauelementeinheit und verfahren zu deren herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19769789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019769789

Country of ref document: EP

Effective date: 20210419