WO2020057637A1 - 无线调度的方法和装置 - Google Patents

无线调度的方法和装置 Download PDF

Info

Publication number
WO2020057637A1
WO2020057637A1 PCT/CN2019/107014 CN2019107014W WO2020057637A1 WO 2020057637 A1 WO2020057637 A1 WO 2020057637A1 CN 2019107014 W CN2019107014 W CN 2019107014W WO 2020057637 A1 WO2020057637 A1 WO 2020057637A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
logical channel
uplink authorized
authorized resource
resource
Prior art date
Application number
PCT/CN2019/107014
Other languages
English (en)
French (fr)
Inventor
娄崇
刘星
黄曲芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112021005235-6A priority Critical patent/BR112021005235A2/pt
Priority to EP19863954.4A priority patent/EP3843489A4/en
Priority to AU2019344405A priority patent/AU2019344405A1/en
Publication of WO2020057637A1 publication Critical patent/WO2020057637A1/zh
Priority to US17/207,288 priority patent/US12004169B2/en
Priority to AU2022259771A priority patent/AU2022259771A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and device for wireless scheduling.
  • network devices can schedule terminals in two ways: dynamic scheduling and pre-configured resource scheduling. For example, user equipment (UE) sends uplink data by sending dynamic uplink grant (UL grant) or pre-configuration. UL grant, which instructs the terminal to complete uplink data transmission.
  • UE user equipment
  • UL grant dynamic uplink grant
  • pre-configuration pre-configuration
  • the new radio (NR) system introduces a constraint relationship from a logical channel (LCH) to a pre-configured ULgrant type 1 (hereinafter referred to as Type 1), that is, the network device indicates to each LCH whether or not Type 1 can be used. Resources, if the network device indicates that the LCH can use the resources of the Type 1, when the terminal needs to perform scheduling for the UL grant corresponding to Type 1, the LCH can be selected; otherwise, the terminal does not select the LCH to participate in scheduling of the UL grant .
  • LCH logical channel
  • Type 1 pre-configured ULgrant type 1
  • a wireless scheduling method includes: a terminal receiving a first message from a network device, the first message including a parameter of the number of repetitions of a logical channel; and the terminal obtaining a first uplink from the network device.
  • Authorized resources the terminal determines a first logical channel according to the number of repetitions of the first uplink authorized resource and the number of repetitions of the logical channel, where the first logical channel is a parameter that the number of repetitions meets the number of repetitions of the first uplink authorized resource Logical channel; the terminal uses the first uplink authorized resource to send service data of the first logical channel.
  • the first message is used to configure a logical channel and includes a first parameter.
  • the first parameter includes, for example, a parameter of the number of repetitions of the logical channel.
  • the first message is used to configure one or more logical channels, or to include a parameter of the number of repetitions of one or more logical channels.
  • the first logical channel is a logical channel among one or more logical channels that satisfies the repetition number requirement of the first uplink authorized resource.
  • the terminal using the first uplink authorized resource to send service data of the first logical channel includes: the terminal using the first uplink authorized resource to send the first logical channel to another terminal Business data.
  • the terminal sends service data of the first logical channel to another terminal through a PC5 interface.
  • another wireless scheduling method includes: a terminal receiving a first message from a network device, the first message including a stream, a proximity service packet priority (PPPP), or a proximity service packet reliability (PPPR) repetition number parameter; the terminal receives at least one uplink authorized resource from the network device; the terminal determines a first stream, a first, a second stream according to the number of repetitions of the at least one uplink authorized resource and the number of repetitions of the stream, PPPP, or PPPR.
  • PPPP proximity service packet priority
  • PPPR proximity service packet reliability
  • a PPPP or a first PPPR the first stream, the first PPPP, or the first PPPR is a stream, PPPP, or PPPR whose repetition parameter meets the repetition requirements of the first uplink authorized resource;
  • the first message is used to configure the stream, PPPP or PPPR, the first parameter includes, for example, a parameter of the number of repetitions of the stream, PPPP, or PPPR.
  • the first message is used to configure one or more flows, PPPP or PPPR, or a parameter including the number of repetitions of one or more flows, PPPP or PPPR.
  • the first stream, the first PPPP, or the first PPPR is one or more streams, the PPPP or the PPPR, the stream, the PPPP, or the PPPR that meets the repetition number requirement of the first uplink authorized resource.
  • the terminal uses the first uplink authorized resource to send the first stream or the first PPPP service data to the network device.
  • the repetition number parameter includes a minimum repetition number, and the minimum repetition number of the first logical channel is less than or equal to the repetition number of the first uplink authorized resource.
  • the repetition number parameter includes one or more repetition numbers
  • the repetition number parameter of the first logical channel includes the repetition number of the first uplink authorized resource.
  • the terminal selects an appropriate logical channel, stream, PPPP, or PPPR according to one or more repetition times of the logical channel, stream, PPPP, or PPPR and the uplink authorized resource, which helps Meet the needs of different businesses for reliability.
  • the first logical channel is a parameter for the number of repetitions that meets the requirement for the number of repetitions of the first uplink grant resource, and the second parameter meets the first uplink grant The logical channel required by the parameter corresponding to the resource.
  • all parameters may be restricted for selecting logical channels, and some parameters may be restricted for restricting logical channels. That is, the first logical channel is a logical channel in which all or part of the parameters in the first message meet the parameter requirements corresponding to the first uplink authorized resource.
  • the above second parameter may also be configured, and the method similar to the logical channel is used to determine the first flow, the first PPPP, or the first PPPR. That is, the first stream, the first PPPP, or the first PPPR is a stream, PPPP, or PPPR in which all or part of the parameters in the first message meet the parameter requirements corresponding to the first uplink authorized resource.
  • the wireless scheduling method in the embodiment of the present application configures a logical channel, flow, PPPP, or PPPR corresponding repetition number parameter and a second parameter through a network device, which helps ensure that a terminal selects an appropriate logical channel, flow, PPPP, or PPPR. This helps meet the needs of different services for reliability and latency.
  • the terminal selects an appropriate logical channel, stream, PPPP, or PPPR according to the minimum repetition times, maximum scheduling period, and repetition times and scheduling periods of uplink authorized resources of the logical channel, stream, and PPPP. , To help meet the needs of different businesses for reliability and latency.
  • the second parameter includes a scheduling period parameter
  • the scheduling period parameter includes one or more scheduling periods
  • the scheduling period parameter of the first logical channel includes the The scheduling period of the first uplink grant resource.
  • the logical channel can be replaced with stream, PPPP or PPPR.
  • the terminal selects an appropriate logical channel according to one or more repetition times of the logical channel, flow, PPPP or PPPR, one or more scheduling cycles, and repetition times and scheduling cycles of uplink authorized resources. , Streaming, PPPP, or PPPR, which help meet the needs of different services for reliability and latency.
  • the obtaining, by the terminal, a first uplink authorized resource from the network device includes: the terminal receiving multiple uplink authorized resources from the network device; the terminal Acquire the first uplink authorized resource from the multiple uplink authorized resources.
  • the multiple uplink authorized resources include an uplink authorized resource indicated by a random access response RAR and a pre-configured uplink authorized resource, and the first uplink authorized resource is The uplink authorized resource indicated by the RAR.
  • the first uplink authorized resource is an uplink authorized resource whose repetition times satisfy a condition.
  • the number of repetitions of the first uplink grant resource is greater than the number of repetitions of other uplink grant resources in the at least two uplink grant resources.
  • the first uplink authorized resource is an uplink authorized resource whose target block error rate satisfies a condition.
  • the target block error rate of the first uplink grant resource is less than the target block error rate of other uplink grant resources in the at least two uplink grant resources.
  • the first uplink authorized resource is an uplink authorized resource whose transmission power satisfies a condition.
  • the first uplink authorized resource is an uplink authorized resource with frequency hopping enabled.
  • the priority of the first logical channel selected according to the first uplink authorized resource is higher than the priority of the logical channel selected according to other uplink authorized resources of the at least two uplink authorized resources.
  • the physical uplink shared channel PUSCH sending durations corresponding to the at least two uplink grant resources at least partially overlap.
  • the terminal receiving an uplink authorization resource from a network device includes: the terminal receiving downlink control information DCI from the network device, where the DCI indicates the uplink authorization Or the terminal receives a random access response RAR from the network device, the RAR indicating the uplink authorized resource; or the terminal receives a configuration message from the network device, the configuration message indicating the uplink authorized resource; or , The terminal receives a configuration message and a DCI sent by the network device, the configuration message includes configuration parameters of the uplink authorized resource, and the DCI indicates the uplink authorized resource.
  • a wireless scheduling method includes: a network device configuring a first parameter of a logical channel, the first parameter including a parameter of the number of repetitions of the logical channel; the network device sending a first message to a terminal, The first message includes the first parameter.
  • a network device configures a first parameter of a stream, PPPP, or PPPR, and the first parameter includes a parameter of the number of repetitions of the stream, PPPP, or PPPR; the network device sends a first message to a terminal, the The first message includes the first parameter.
  • the description of the first parameter is the same as the first aspect above.
  • the method further includes: the network device configuring a second parameter of the logical channel, the second parameter including a scheduling period parameter, a modulation and At least one of a coding strategy parameter, power information, or frequency hopping information.
  • the second parameter including a scheduling period parameter, a modulation and At least one of a coding strategy parameter, power information, or frequency hopping information.
  • the first message is used to configure one or more logical channels, or an index of corresponding uplink authorized resources including one or more logical channels.
  • the first logical channel is a logical channel whose index of the corresponding uplink grant resource in the one or more logical channels includes the index of the first uplink grant resource.
  • the logical channel can be replaced with a stream, PPPP, or PPPR.
  • the wireless scheduling method in the embodiment of the present application configures an index of an uplink authorized resource corresponding to a logical channel, flow, PPPP, or PPPR through a network device, which helps to ensure that the terminal selects an appropriate logical channel, flow, PPPP, or PPPR. Help meet the needs of different businesses for reliability and latency.
  • the terminal obtaining the first uplink authorized resource from the network device includes: the terminal receiving a plurality of uplink authorized resources from the network device; the terminal Acquire the first uplink authorized resource from the multiple uplink authorized resources.
  • the selection of the first uplink authorized resource is the same as the first aspect above.
  • the terminal receiving an uplink authorization resource from a network device includes: the terminal receiving downlink control information DCI from the network device, where the DCI indicates the uplink authorization Or the terminal receives a random access response RAR from the network device, the RAR indicating the uplink authorized resource; or the terminal receives a configuration message from the network device, the configuration message indicating the uplink authorized resource; or , The terminal receives a configuration message and a DCI sent by the network device, the configuration message includes configuration parameters of the uplink authorized resource, and the DCI indicates the uplink authorized resource.
  • the method for configuring uplink resources here may be applicable to the configuration of the above first uplink authorized resource, or may be applicable to the configuration of the above multiple uplink resources. That is, the network device may configure one or more uplink authorized resources for the terminal, and any one of the uplink authorized resources may be configured in one of the methods, and the configuration methods of multiple uplink authorized resources may be the same or different.
  • the first message is used to configure one or more logical channels, or an index of a corresponding broadband partial packet including one or more logical channels.
  • the first logical channel is a logical channel whose index of the corresponding broadband partial packet in one or more logical channels includes an index of the broadband partial packet corresponding to the first uplink authorized resource.
  • the logical channel can be replaced with a stream, PPPP, or PPPR.
  • the wireless scheduling method in the embodiment of the present application configures the logical channel, flow, PPPP, or PPBR corresponding to the broadband partial packet index through the network device, which helps to ensure that the terminal selects an appropriate logical channel, flow, PPPP, or PPPR. Help meet the needs of different businesses for reliability and latency.
  • the obtaining, by the terminal, the first uplink authorized resource from the network device includes: the terminal receiving multiple uplink authorized resources from the network device; the terminal Acquire the first uplink authorized resource from the multiple uplink authorized resources.
  • the selection of the first uplink authorized resource is the same as the first aspect above.
  • the terminal receiving an uplink authorization resource from a network device includes: the terminal receiving downlink control information DCI from the network device, where the DCI indicates the uplink authorization Or the terminal receives a random access response RAR from the network device, the RAR indicating the uplink authorized resource; or the terminal receives a configuration message from the network device, the configuration message indicating the uplink authorized resource; or , The terminal receives a configuration message and a DCI sent by the network device, the configuration message includes configuration parameters of the uplink authorized resource, and the DCI indicates the uplink authorized resource.
  • the method for configuring uplink resources here may be applicable to the configuration of the above first uplink authorized resource, or may be applicable to the configuration of the above multiple uplink resources. That is, the network device may configure one or more uplink authorized resources for the terminal, and any one of the uplink authorized resources may be configured in one of the methods, and the configuration methods of multiple uplink authorized resources may be the same or different.
  • a wireless scheduling method includes: a network device configuring a first parameter of a logical channel, the first parameter including an index of a broadband partial packet corresponding to the logical channel; and the network device sending a first A message, the first message including the first parameter.
  • the present application provides a wireless scheduling apparatus, which includes units or means for performing each step of the first aspect, the third aspect, or the fifth aspect above.
  • the present application provides a wireless scheduling apparatus, which includes units or means for performing each step of the second, fourth, or sixth aspects above.
  • the present application provides a wireless scheduling apparatus, including at least one processor, configured to connect to a memory to call a program in the memory to execute the method provided in the first aspect, the third aspect, or the fifth aspect above.
  • the present application provides a wireless scheduling apparatus, including at least one processor, configured to connect to a memory to invoke a program in the memory to execute the method provided in the second aspect, the fourth aspect, or the sixth aspect above.
  • the present application provides a device for wireless scheduling, including at least one processor and an interface circuit, where the at least one processor is configured to execute the method provided in the first aspect, the third aspect, or the fifth aspect above.
  • the present application provides a wireless scheduling apparatus, including at least one processor and an interface circuit, where the at least one processor is configured to execute the method provided in the second aspect, the fourth aspect, or the sixth aspect above.
  • a network device includes the device provided in the eighth aspect, or the terminal includes the device provided in the tenth aspect, or the terminal includes the device provided in the twelfth aspect. .
  • the present application provides a program that, when executed by a processor, executes the method provided in the first aspect, the third aspect, or the fifth aspect above.
  • the present application provides a program that, when executed by a processor, executes the method provided in the second aspect, the fourth aspect, or the sixth aspect above.
  • the present application provides a program product, such as a computer-readable storage medium, including the above program.
  • FIG. 1 is a schematic diagram of an application scenario of a technical solution provided by an embodiment of the present application.
  • FIG. 2 is another schematic diagram of an application scenario of a technical solution provided by an embodiment of the present application.
  • FIG. 6 is another schematic flowchart of a wireless scheduling method according to an embodiment of the present application.
  • FIG. 7 is another schematic flowchart of a wireless scheduling method according to an embodiment of the present application.
  • FIG. 10 is another schematic flowchart of a wireless scheduling method according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a wireless scheduling apparatus according to an embodiment of the present application.
  • FIG. 13 is another schematic block diagram of a wireless scheduling apparatus according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 16 is another schematic structural diagram of a network device according to an embodiment of the present application.
  • Terminal also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • UE user equipment
  • MT mobile terminal
  • some examples of terminals are: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • MID mobile internet devices
  • VR virtual reality
  • augmented reality augmented reality
  • Wireless terminals wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • the network device is a device in a wireless network, for example, a radio access network (RAN) node that connects a terminal to the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home NodeB, or home NodeB, HNB), baseband unit , BBU), or wireless fidelity (Wifi) access point (access point, AP), etc.
  • a network device may include a centralized unit (CU) node, a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • Modulation and coding scheme Represents the modulation method used for transmission and the code rate of the channel coding. Usually, the MCS index is used as a row, and the corresponding set of modulation methods and channel coding codes The rate is the corresponding column. The modulation method and channel code rate used for transmission are determined through the MCS index, and then the transport block size (TBS) is determined.
  • MCS Modulation and coding scheme
  • DCI downlink control information
  • MCS modulation and coding style used for the current transmission
  • TBS TB size
  • the network device can schedule the terminal for uplink transmission through dynamic scheduling, pre-configured resource scheduling, etc. For example, by sending a dynamic UL grant or pre-configured UL grant, instruct the terminal to send uplink data.
  • Dynamic scheduling The network device sends an uplink grant (UL grant), sends DCI on the physical downlink control channel (PDCCH), that is, dynamic UL grant, and scrambles through the terminal identity. If the terminal succeeds By decoding the control information, the size of the physical layer resources corresponding to the uplink scheduling and the time / frequency domain distribution of the physical layer resources and the HARQ information required for the uplink scheduling transmission can be obtained, so that the terminal performs the HARQ process and completes Upstream transmission.
  • UL grant uplink grant
  • PDCCH physical downlink control channel
  • Pre-configured resource scheduling Network devices can pre-configure the resources required for uplink transmission by the terminal through semi-static resource allocation, that is, pre-configured UL grants. It should be understood that the pre-configured UL grants can occur on a periodic basis and do not require the terminal to Obtain uplink authorization before sending uplink transmission. For example, a network device may configure UL grant for uplink transmission through radio resource control (RRC) signaling, and the RRCL signaling may also include a period for pre-configured UL grants, so that the terminal can schedule the pre-configured resource.
  • RRC radio resource control
  • the method may be configured grant method 1 (configured grant type 1); the network device may configure part of the uplink transmission information through RRC signaling, for example, pre-configured UL grant period, etc., and carry the uplink through physical layer signaling The transmitted UL grants and activates the uplink transmission resources, so that the terminal transmits on the pre-configured resource scheduling.
  • the method may be a configured authorization method 2 (configured grant type 2). The above two may be called pre-configuration Resource Scheduling.
  • uplink grant and “uplink grant message” can be understood as signaling for scheduling physical uplink resources, for example, downlink control information used for uplink authorization, or RRC for semi-static configuration. Signaling, or downlink control information used to activate uplink authorized resources in a semi-static configuration mode.
  • Uplink authorized resource can be understood as a resource indicated by the uplink authorization.
  • Uplink grant”, “uplink grant message” and “uplink grant resource” can all correspond to UL grants, and those skilled in the art can understand the meaning.
  • the “protocol” may refer to a standard protocol in the communication field, and may include, for example, the LTE protocol, the NR protocol, and related protocols used in future communication systems, which is not limited in this application.
  • a and / or B can mean that there are three cases in which A exists alone, A and B exist, and B exists alone.
  • the character “/” generally indicates that the associated object is an "or” relationship.
  • At least one means one or more than one; "At least one of A and B", similar to "A and / or B", describes the association relationship of related objects, and indicates that there can be three kinds of relationships, for example, A and B At least one of them may indicate that there are three cases of A alone, A and B, and B alone.
  • FIG. 1 is a schematic diagram of an application scenario of a technical solution provided by an embodiment of the present application.
  • the terminal 130 accesses a wireless network to obtain services of an external network (such as the Internet) through the wireless network, or communicate with other networks through the wireless network.
  • Terminal communication The wireless network includes a RAN 110 and a core network (CN) 120.
  • the RAN 110 is used to connect the terminal 130 to the wireless network
  • the CN 120 is used to manage the terminal and provide a gateway for communication with the external network.
  • the wireless scheduling method provided in this application may be applicable to a wireless communication system, for example, the wireless communication system 100 shown in FIG. 1.
  • a wireless communication connection between two communication devices in a wireless communication system.
  • One of the two communication devices may correspond to the terminal 130 shown in FIG. 1.
  • the communication device may be the terminal 130 shown in FIG. 1. It may be a chip configured in the terminal 130; the other communication device of the two communication devices may correspond to the RAN 110 shown in FIG. 1, for example, it may be the RAN 110 in FIG. 1, or it may be the RAN 110 configured in the RAN 110 chip.
  • FIG. 2 is another schematic diagram of an application scenario of the technical solution provided by the embodiment of the present application.
  • the technical solution of the embodiment of the present application can also be applied to a vehicle-to-everything (V2X) system to
  • V2X vehicle-to-everything
  • the terminal 230 communicates with the terminal 220 through the PC5 port
  • the terminal 220 communicates with the RAN210 through the Uu port.
  • the RAN210 can be configured with at least one pre-configured UL Grant, which can reach up to 8 sets, of which the difference
  • the period of the pre-configured UL Grant may be different, which is used to adapt to different characteristics of different V2X service cycles.
  • RAN 210 can configure uplink authorized resources to terminal 220 through the Uu port. After terminal 220 finds a suitable logical channel, flow, PPPP, or PPPR on the PC5 interface, it uses the uplink authorized resources to send the corresponding logical channel, flow, PPPP, or PPPR to terminal 230. Business data.
  • the uplink authorized resource used by the terminal 220 on the PC5 interface may be a pre-configured uplink authorized resource or a dynamic uplink authorized resource, which is not limited in this embodiment of the present application.
  • FIG. 3 is a schematic diagram of a network architecture according to an embodiment of the present application.
  • the network architecture includes a CN device and a RAN device.
  • the RAN device includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one node or multiple nodes.
  • the radio frequency device can be implemented independently from the baseband device remotely, can also be integrated into the baseband device, or part of the remote part Integrated in the baseband device.
  • a RAN device eNB
  • eNB includes a baseband device and a radio frequency device, where the radio frequency device can be remotely arranged relative to the baseband device, such as a remote radio unit.
  • RRU is arranged remotely relative to the BBU.
  • the control plane protocol layer structure may include a radio resource control (RRC) layer, a packet data convergence layer protocol (PDCP) layer, a radio link control (RLC) layer, and a media interface. Functions of the protocol layer such as the media access control (MAC) layer and the physical layer.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • RLC radio link control
  • Functions of the protocol layer such as the media access control (MAC) layer and the physical layer.
  • the user plane protocol layer structure may include the functions of the protocol layers such as the PDCP layer, the RLC layer, the MAC layer, and the physical layer; in one implementation, the PDCP layer may also include a service data adaptation (SDAP) layer .
  • SDAP service data adaptation
  • a RAN device can implement radio resource control (RRC), packet data convergence layer protocol (PDCP), radio link control (RLC), and media access control (RPC) from one node.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • RLC radio link control
  • RPC media access control
  • MAC Media, Access, Control
  • a RAN device can include a centralized unit (CU) and a distribution unit (CU distributed unit (DU), multiple DUs can be centrally controlled by a CU.
  • CU and DU can be divided according to the protocol layer of the wireless network. For example, the functions of the PDCP layer and above are set in the CU, and the functions of the protocol layers below PDCP, such as the RLC layer and the MAC layer are set in the DU.
  • This division of the protocol layer is only an example. It can also be divided at other protocol layers, for example, at the RLC layer.
  • the functions of the RLC layer and above are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU.
  • it is divided in a certain protocol layer, for example, setting some functions of the RLC layer and functions of the protocol layer above the RLC layer in the CU, and setting the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer in the DU.
  • it can also be divided in other ways, for example, by delay, and the function that needs to meet the delay requirement in processing time is set in the DU, and the function that does not need to meet the delay requirement is set in the CU.
  • the radio frequency device can be remote, not placed in the DU, or integrated in the DU, or part of the remote can be integrated in the DU, without any restrictions here.
  • FIG. 4 shows a schematic diagram of another network architecture provided by an embodiment of the present application.
  • the control plane (CP) and user plane (UP) of the CU can also be changed. It is separated and implemented by different entities, which are a control plane CU entity (CU-CP entity) and a user plane CU entity (CU-UP entity).
  • CU-CP entity control plane CU entity
  • CU-UP entity user plane CU entity
  • the signaling generated by the CU can be sent to the terminal through the DU, or the signaling generated by the terminal can be sent to the CU through the DU.
  • the DU can directly transmit to the terminal or the CU through protocol layer encapsulation without parsing the signaling. If the following embodiments involve the transmission of such signaling between the DU and the terminal, at this time, the sending or receiving of signaling by the DU includes this scenario.
  • the signaling at the RRC or PDCP layer will eventually be processed as the PHY layer signaling and sent to the terminal, or it will be transformed from the received PHY layer signaling.
  • the RRC or PDCP layer signaling can also be considered to be sent by the DU, or sent by the DU and the radio frequency.
  • the CU is divided into network equipment on the RAN side.
  • the CU may also be divided into network equipment on the CN side, which is not limited herein.
  • the devices in the following embodiments of the present application may be located at the terminal according to the functions they implement.
  • the network device may be a CU node, or a DU node, or a RAN device including a CU node and a DU node.
  • FIG. 5 shows a schematic flowchart of a wireless scheduling method 300 according to an embodiment of the present application.
  • an execution subject of the method 300 may be a wireless scheduling device (for example, a terminal or a chip for a terminal). Or device), the method 300 includes:
  • the terminal receives a message A from a network device, and the message A is used to configure one or more logical channels.
  • the message A includes a parameter A, and the parameter A includes a number of repetitions of each logical channel in the one or more logical channels. parameter.
  • the network device may configure a parameter for the number of repetitions of one or more logical channels, and carry the configured parameter A in a message A and send it to the terminal.
  • the message A may be used to configure one or more logical channels, and may also be used to configure a flow, a proximity-based service priority-packet priority (PPPP), or a proximity service packet.
  • PPPP proximity-based service priority-packet priority
  • PPPR proximity service packet reliability
  • PPPP is used to reflect the delay requirements of the service data packets in the V2X system
  • PPPR is used to reflect the reliability requirements of the service data packets in the V2X system. Therefore, both PPPP and PPPR can be represented by a quantified value Delay / reliability urgency.
  • the repeat sending parameter includes a minimum number of repeats.
  • Table 1 shows the correspondence between the index of a logical channel and the minimum number of repetitions.
  • the network device may configure the minimum number of repetitions of m logical channels (LCH1 to LCHm), where the minimum number of repetitions of LCH1 is K 1 , the minimum number of repetitions of LCH2 is K 2 , and the minimum number of repetitions of LCHm is K m .
  • the at least one uplink authorized resource includes a pre-configured uplink authorized resource.
  • the configuration message is radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the terminal determines a first logical channel according to the number of repetitions of the first uplink authorized resource and the number of repetitions of the one or more logical channels.
  • the first logical channel is a parameter that the number of repetitions satisfies the first uplink authorized resource. The number of repetitions required for the logical channel.
  • the first logical channel is a logical channel whose repetition number parameter meets the repetition number requirement of the first uplink authorized resource may be understood as the minimum repetition number of the first logical channel Less than or equal to the number of repetitions of the first uplink authorized resource.
  • the physical (PHY) layer of the terminal indicates to the media access control (MAC) layer the number of repetitions of the first uplink authorized resource, which is optional.
  • the number of repetitions may be included in uplink information (uplink information) indicated by the physical layer to the MAC layer.
  • the MAC layer compares the minimum number of repetitions of each logical channel with the number of repetitions of the first uplink authorized resource to determine The first logical channel.
  • the MAC layer determines that the minimum repetition number K 2 of the LCH2 is less than K m + 1 , then the MAC layer may determine that the repetition number parameter of the LCH2 meets the repetition number requirement of the first uplink authorized resource, and the terminal may determine that the LCH2 is Appropriate logical channel.
  • the first logical channel is a logical channel whose repetition number parameter satisfies the repetition number requirement of the first uplink authorized resource, which may be understood as the first logical channel.
  • the number of repetitions parameter includes the number of repetitions of the first uplink grant resource.
  • the physical layer (PHY) of the terminal sends uplink information (UL) to the media access control layer (MAC). Compare one or more repetition times of each logical channel with the repetition times of the uplink authorized resources to determine the first logical channel.
  • the MAC layer may determine that the repetition number parameter of the LCH 1 meets the repetition number requirement of the first uplink authorized resource.
  • the terminal may determine that the LCH2 is a suitable logical channel.
  • the MAC judges whether a logical channel is a suitable logical channel, it can determine "k strictly" that K m + 1 is equal to one of the one or more repetition times of the logical channel, and it is determined that the logical channel is suitable.
  • the logical channel can also be judged "not strictly”.
  • the number of repetitions of LCH3 is K6, and the difference between K6 and K m + 1 is in the interval [a, b].
  • the interval allowed by the difference It can be sent to the terminal through the network device, and then the terminal can also determine that the LCH3 is a suitable logical channel.
  • the parameter of the number of repetitions of the logical channel is not limited to the above examples, and may be other ways.
  • the parameter of the number of repetitions of the logical channel may be an interval. If the number of repetitions is within the interval, it can be determined that the logical channel is a suitable logical channel.
  • the MAC layer may continue to indicate to the MAC layer the number of repetitions of other uplink authorized resources in the at least one uplink authorized resource.
  • a logical channel that satisfies the repetition requirements of other uplink authorized resources may also be determined.
  • the message A further includes a parameter B
  • the parameter B includes one or more of a scheduling period parameter, a modulation and coding strategy parameter, power information, or frequency hopping information of the one or more logical channels.
  • the first logical channel is a logical channel in which the number of repetitions parameter satisfies the requirement for the number of repetitions of the first uplink grant resource, and the parameter B satisfies the parameter requirement corresponding to the first uplink grant resource.
  • the physical (PHY) layer of the terminal indicates the scheduling period of the first uplink authorized resource to the media access control (MAC) layer.
  • the scheduling period may include uplink information (uplink information) indicated by the PHY layer to the MAC.
  • the MAC layer compares the maximum scheduling period of each logical channel with the scheduling period of the first uplink authorized resource to determine the first scheduling period. One logical channel.
  • the first uplink authorized resource may be The index can be UL Grant Config index 1, and its corresponding scheduling period is P m + 1.
  • the MAC layer determines that the maximum number of repetitions of LCH1 P 1 is greater than P m + 1 , and then the MAC layer can determine that the number of repetitions of LCH1 parameter meets the The scheduling period requirement of the first uplink grant resource.
  • the MAC layer may determine that the LCH1 is not Appropriate logical channel.
  • the MAC layer may determine that the scheduling period parameters of the LCH2 meet the scheduling period requirements of the first uplink authorized resource.
  • the MAC layer may determine that the LCH2 is suitable Logical channel.
  • the MAC layer may determine that the scheduling period parameters of the LCH3 also meet the repetition requirements of the first uplink authorized resource.
  • the first logical channel is a logical channel whose scheduling period parameter satisfies a scheduling period requirement of the first uplink authorized resource. It can also be understood that the maximum scheduling period of the first logical channel is greater than the first uplink channel. The scheduling period of authorized resources.
  • the parameter B includes a scheduling period parameter of the one or more logical channels, and the scheduling period parameter includes one or more scheduling periods.
  • the scheduling period parameter includes one or more scheduling periods
  • the process of satisfying the number of repetitions of the first uplink authorized resource is similar.
  • the parameter B includes MCS information, power information, and frequency hopping information.
  • Table 7 shows a correspondence between a logical channel index and MCS information, power information, and frequency hopping information.
  • Table 7 Correspondence between the logical channel index and MCS information, power information and frequency hopping information
  • the correspondence between the logical channel configured by the network device and MCS information, power information, and frequency hopping information is shown in Table 7.
  • the correspondence between the uplink authorized resource and uplink scheduling parameters is shown in Table 4.
  • the MAC layer can determine LCH1.
  • the corresponding MCS table 3 is the MCS table 1 of the first uplink authorized resource, and the MAC layer can determine that the MCS information of LCH1 meets the MCS requirements of the first uplink authorized resource;
  • the MAC layer determines that MCS index3 corresponding to LCH1 is MCS index1 in the first uplink scheduling parameter, and then the MAC layer may determine that the MCS information of LCH1 meets the MCS requirements of the first uplink authorized resource;
  • the MAC layer may determine that the MCS information of LCH1 satisfies the first uplink authorized resource. MCS requirements.
  • MCS tables correspond to different target block error rates, that is, different standards for reliability.
  • the MCS information of logical channels, streams, PPPP, or PPPR meets the MCS requirements for uplink authorized resources. It is also to meet the reliability requirements of different services. Demand.
  • the wireless scheduling method in the embodiment of the present application configures the MCS information corresponding to the logical channel, flow, PPPP, or PPPR through the network device, which helps to ensure that the terminal selects an appropriate logical channel, flow, PPPP, or PPPR, thereby helping to meet the requirements. Demand for reliability in different businesses.
  • the MAC layer may determine that the power information Power # set # 3 corresponding to LCH1 is Poweroffset # 1 in the first uplink parameter, and the MAC layer may determine that the power information of LCH1 meets the power requirement of the first uplink authorized resource.
  • the power information of logical channels, streams, PPPP, or PPPR meets the power requirements of uplink authorized resources to meet the reliability requirements of different services.
  • the transmission power is high, the target signal-to-noise ratio is increased, and the decoding success rate is correspondingly increased. .
  • the wireless scheduling method in the embodiment of the present application configures the logical information corresponding to the logical channel, stream, PPPP, or PPPR through the network device, which helps to ensure that the terminal selects an appropriate logical channel, stream, PPPP, or PPPR, thereby helping to meet the requirements. Demand for reliability in different businesses.
  • the frequency hopping information of logical channels, streams, PPPP or PPPR to meet the frequency hopping requirements of uplink authorized resources is also to meet the reliability requirements of different services, because this can improve the anti-interference and anti-fading capabilities of the signal.
  • the wireless scheduling method in the embodiment of the present application configures the frequency hopping information corresponding to the logical channel, stream, PPPP, or PPPR through the network device, which helps to ensure that the terminal selects an appropriate logical channel, stream, PPPP, or PPPR, and thus helps Meet the needs of different businesses for reliability.
  • the MAC layer can determine the data volume of the data to be sent on LCH1, such as the size of a radio link control protocol protocol data unit (RLC PDU) or consider media access consisting of a MAC subheader.
  • the size of the control layer protocol data unit (medium access control protocol data unit, MAC PDU).
  • the TBS of the first uplink authorized resource is close to or equal to the data packet of the data to be sent of LCH1.
  • the TBS of the first uplink authorized resource is 100 bits
  • the amount of data to be sent on LCH1 is 100 bits
  • the amount of data to be sent on LCH2 is 200 bits
  • the MAC layer can determine that the amount of data to be sent on LCH1 meets the TBS requirements of the first uplink authorized resource.
  • the TBS information of logical channels, flows, PPPP, or PPPR meets the TBS requirements for uplink authorized resources in order to satisfy different packet sizes of different services, thereby maximizing resource utilization.
  • Tables 5, 6, and 7 are only schematic, and Tables 5 and 7 may be combined, or Tables 6 and 7 may be combined, and Tables 5, 6, and 7 may also be selected. Some of the information is combined.
  • the network device can configure the correspondence between the logical channel and the repetition number parameter and the MCS information, or the network device can configure the correspondence between the logical channel and the repetition number parameter, the scheduling period parameter, and the power information.
  • the application embodiments are not limited to the above examples.
  • the MAC judges whether the LCH is a suitable LCH in the above example, it can be judged only by combining the number of repetitions, or by combining one or more of the number of repetitions and parameter B, or only one of the parameters B To determine by one or more kinds, the embodiments of the present application are not limited to the above examples.
  • the terminal uses the first uplink authorized resource to send service data of a first logical channel to the network device.
  • the network device is configured with a UL Grant (for example, UL Grant 1 and the corresponding index is UL Grant Config index 1).
  • the MAC layer of the terminal may be based on the UL scheduling parameter of the UL Grant and the uplink scheduling parameter of the logical channel ( The A parameter, and optionally the parameter B), determines a suitable logical channel (for example, LCH1), and the terminal can use UL Grant 1 to send data on LCH1.
  • a suitable logical channel for example, LCH1
  • the network device is configured with one or more UL Grants (for example, UL Grant 1 and the corresponding index is UL Grant 1), and the MAC layer of the terminal may be based on UL uplink scheduling parameters and logical channel assignments.
  • the uplink scheduling parameters (parameter A, optionally including parameter B) determine multiple suitable logical channels (for example, LCH1 and LCH2).
  • the terminal can use UL Grant 1 to send data on LCH1 and LCH2.
  • the terminal determines that multiple logical channels are suitable logical channels, and can allocate resources according to the priority of the logical channels and send data of the multiple logical channels.
  • the network device is configured with multiple UL Grants (for example, UL Grant 1 and UL Grant 2), and the MAC layer of the terminal may be based on the UL scheduling parameters of the UL Grant 1 and the uplink scheduling parameters of the logical channel (parameter A, may Optionally, it also includes parameter B) to determine a suitable logical channel (for example, LCH1), but according to the UL scheduling parameters of UL Grant 2 and the uplink scheduling parameters of the logical channel (parameter A, optionally including parameter B), no With a suitable logical channel, the terminal can use UL Grant1 to send data on LCH1.
  • UL Grant 1 and UL Grant 2 for example, UL Grant 2
  • the MAC layer of the terminal may be based on the UL scheduling parameters of the UL Grant 1 and the uplink scheduling parameters of the logical channel (parameter A, may Optionally, it also includes parameter B) to determine a suitable logical channel (for example, LCH1), but according to the UL scheduling parameters of UL Grant 2 and the uplink scheduling parameters
  • the wireless scheduling method in this embodiment of the present application helps the terminal to select a proper logical channel, stream, PPPP, or PPPR to transmit service data by configuring the correspondence between the logical channel, stream, PPPP, or PPPR to the number of repetitions or parameter B. This ensures the reliability and time delay requirements of different business data.
  • a network device may configure one or more uplink authorized resources, and the terminal may use the uplink scheduling parameters of the uplink authorized resources and the uplink corresponding to the logical channel.
  • a scheduling parameter (parameter A, optionally including parameter B), determines a suitable logical channel, flow, PPPP, or PPPR, and uses the uplink authorized resource to send data on the logical channel, flow, PPPP, or PPPR.
  • the following describes another wireless scheduling method according to an embodiment of the present application with reference to FIG. 6.
  • a case in which multiple uplink authorized resources are configured by a network device is used as an example for description.
  • the uplink authorized resources that can be used by the terminal may be multiple. .
  • FIG. 6 illustrates another schematic flowchart of a wireless scheduling method 300 according to an embodiment of the present application.
  • an execution subject of the method 300 may be a wireless scheduling device (for example, a terminal or a terminal for a terminal). Chip or device), the method 300 includes:
  • the terminal receives a message B from the network device, and the message B is used to configure one or more logical channels.
  • the message B includes a parameter A, and the parameter A includes the number of repetitions of each logical channel in the one or more logical channels. parameter.
  • the terminal obtains a first uplink authorized resource from the network device.
  • the acquiring the first uplink authorized resource from the network device includes:
  • the terminal obtains the first uplink authorized resource from the multiple uplink authorized resources.
  • the terminal receiving multiple uplink authorized resources from the network device includes:
  • the terminal receives a DCI from the network device, and the DCI indicates the multiple uplink authorized resources.
  • the terminal receiving multiple uplink authorized resources from the network device includes:
  • the terminal receives a RAR from the network device, and the RAR indicates the multiple uplink authorized resources.
  • the terminal receiving multiple uplink authorized resources from the network device includes:
  • the terminal receives a configuration message from the network device, where the configuration message indicates multiple uplink authorized resources.
  • the configuration message may indicate a start position of multiple pre-configured uplink authorized resources, for example, using a start time domain position of one of the pre-configured uplink authorized resources as a reference start position, indicating one or more time The offset of the domain position.
  • the starting time domain position of the second pre-configured uplink authorized resource is the reference start position + offset 1, and so on.
  • the terminal determines the starting positions of multiple uplink authorized resources.
  • the terminal receiving multiple uplink authorized resources from the network device includes:
  • the terminal receives a configuration message and a DCI from the network device.
  • the configuration message includes configuration parameters of multiple uplink authorized resources, and the DCI indicates the multiple uplink authorized resources.
  • the DCI may also indicate an activated uplink authorized resource index.
  • 001 indicates that the uplink authorized resource index # 1 is activated
  • 010 indicates that the uplink authorized resource index # 2 is activated.
  • the index may be in a bitmap form , Where each bit represents the corresponding uplink grant resource, for example, the first bit represents the uplink grant index # 1, the second bit represents the uplink grant index # 2, and the third bit represents the uplink grant index # 3, Then 001 indicates that the uplink authorized resource index # 1 is activated, and 011 indicates that the uplink authorized resource index # 1 and the uplink authorized resource index # 2 are activated at the same time.
  • the DCI may also indicate the starting positions of multiple pre-configured uplink authorized resources, for example, using the starting time domain position of one of the pre-configured uplink authorized resources as a reference starting position, indicating one or more time points.
  • the starting time domain position of the second pre-configured uplink authorized resource is the reference start position + offset 1, and so on.
  • the terminal determines the starting positions of multiple uplink authorized resources.
  • the multiple uplink authorized resources may be all dynamic uplink authorized resources, or they may all be pre-configured uplink authorized resources, or the multiple uplink authorized resources may include pre-configured uplink authorized resources.
  • dynamic uplink grant resources which are not limited in the embodiments of the present application.
  • the terminal determines a first logical channel according to the number of repetitions of the first uplink authorized resource and the number of repetitions of the one or more logical channels.
  • the first logical channel is a parameter that the number of repetitions satisfies the first uplink authorized resource. The number of repetitions required for the logical channel.
  • the network device may be configured with one or more uplink authorized resources, and the uplink authorized resource that the terminal can use may be one of them; in S331, the network device may be configured with multiple uplink authorized resources, then The terminal may send data using multiple uplink authorized resources:
  • the network device is configured with UL Grant 1 and UL Grant 2.
  • the MAC layer of the terminal can determine that LCH1 is a suitable logical channel through the uplink scheduling parameters of UL Grant 1 and the uplink scheduling parameters corresponding to the logical channel. It is also possible to determine that LCH1 is a suitable logical channel through the uplink scheduling parameters of UL Grant 2 and the uplink scheduling parameters corresponding to the logical channel.
  • the uplink authorized resources that the terminal can use at the same time are UL Grant 1 and UL Grant 2.
  • the network device is configured with UL Grant 1 and UL Grant 2.
  • the MAC layer of the terminal can determine that LCH1 is a suitable logical channel through the uplink scheduling parameters of UL Grant 1 and the uplink scheduling parameters corresponding to the logical channel.
  • the layer can also determine that LCH2 is a suitable logical channel through the uplink scheduling parameters of the UL Grant 2 and the uplink scheduling parameters corresponding to the logical channel.
  • the uplink authorized resources that the terminal can use at the same time are UL Grant 1 and UL Grant 2.
  • the terminal uses the first uplink authorized resource to send service data of a first logical channel to the network device.
  • the method 300 further includes:
  • the terminal determines a first uplink authorized resource from a plurality of available uplink authorized resources.
  • the terminal when the terminal has multiple uplink authorized resources available at the same time or the physical uplink shared channel (PUSCH) sending duration corresponding to the multiple uplink authorized resources at least partially overlaps, if the terminal When only one uplink authorized resource can be used for sending, the terminal may consider to be able to select the uplink authorized resource with the largest number of repetitions for transmission. If the number of repeated uplink authorized resources is the same, the terminal may independently select one of the uplink authorized resources or select scheduling The uplink authorized resource with the shortest period sends data, and the uplink authorized resource is the first uplink authorized resource.
  • PUSCH physical uplink shared channel
  • the terminal when the terminal has multiple uplink authorized resources available at the same time or the PUSCH transmission duration corresponding to the multiple uplink authorized resources at least partially overlaps, if the terminal can only send using one uplink authorized resource, the The terminal can send according to the uplink authorized resource with the shortest scheduling period. If the scheduling periods of multiple uplink authorized resources are the same, the terminal can independently select one of the uplink authorized resources or select the uplink authorized resource with the largest number of repetitions to send data.
  • the authorized resource is the first uplink authorized resource.
  • the terminal when the terminal has multiple uplink authorized resources available at the same time or the PUSCH sending durations corresponding to the multiple uplink authorized resources at least partially overlap, if the terminal can only send using one uplink authorized resource, it may Determine a first uplink authorized resource according to the MCS information of the plurality of uplink authorized resources, where the first uplink authorized resource is an uplink authorized resource using an MCS table with a lower target block error rate, or the first uplink authorized resource is used
  • the MCS index corresponds to uplink authorization resources with lower modulation levels. If the MCS information of multiple uplink authorization resources is the same, the terminal can independently select one of the uplink authorization resources or select the uplink authorization resource with the largest number of repetitions to send data.
  • the uplink authorization resource is Authorize resources for the first uplink.
  • the terminal when the terminal has multiple uplink authorized resources available at the same time or the PUSCH sending durations corresponding to the multiple uplink authorized resources at least partially overlap, if the terminal can only send using one uplink authorized resource, it may A first uplink authorized resource is determined according to the power information of the multiple uplink authorized resources.
  • the first uplink authorized resource is an uplink authorized resource that uses a higher sending power. If the power information of multiple uplink authorized resources is the same, the terminal can independently select One of the uplink authorized resources or the uplink authorized resource with the largest number of repetitions is selected to send data, and the uplink authorized resource is the first uplink authorized resource.
  • the terminal when the terminal has multiple uplink authorized resources available at the same time or the PUSCH transmission duration corresponding to the multiple uplink authorized resources at least partially overlaps, if the terminal can only send using one uplink authorized resource, the The terminal may select the uplink authorized resource indicated by the RAR for transmission, that is, the terminal cannot use the pre-configured uplink authorized resource.
  • the multiple uplink authorized resources include pre-configured uplink authorized resources and uplink authorized resources indicated by the RAR, and when the PUSCH sending duration of the pre-configured uplink authorized resources is When there is no overlap with the PUSCH sending duration of the uplink authorized resource indicated by the RAR, the terminal may use the pre-configured uplink authorized resource or the uplink authorized resource indicated by the RAR.
  • the terminal may select the first uplink resource by using any of the foregoing methods.
  • the terminal may determine an uplink authorized resource corresponding to the highest logical channel priority or the highest logical channel group priority in the first logical channel selected by each of the multiple uplink authorized resources.
  • the uplink authorized resource is the first uplink. Authorized resources.
  • the manner in which the terminal determines the first uplink authorized resource from the multiple uplink authorized resources is not limited to the above examples, and may be determined by other The method is determined, and this application does not make any limitation.
  • the terminal may also use at least two uplink authorized resources of the multiple uplink authorized resources to send data.
  • the RAN 110 may configure the terminal 130 with a logical channel parameter A (optionally also including a parameter B) and the first uplink authorized resource, and the terminal 130 may determine a suitable logical channel. And using the first uplink authorized resource to send the service data of the logical channel to the RAN 110.
  • a logical channel parameter A optionally also including a parameter B
  • the terminal 130 may determine a suitable logical channel.
  • the first uplink authorized resource to send the service data of the logical channel to the RAN 110.
  • FIG. 7 shows another schematic flowchart of a wireless scheduling method 300 according to an embodiment of the present application. As shown in FIG. 7, the method 300 includes:
  • the first terminal receives a message C from a network device, and the message C is used to configure one or more logical channels.
  • the message C includes a parameter A, and the parameter A includes a parameter of each logical channel in the one or more logical channels.
  • the first terminal acquires a first uplink authorized resource from the network device.
  • the first terminal determines a first logical channel according to the number of repetitions of the first uplink authorized resource and the number of repetitions of the one or more logical channels.
  • the first logical channel is a parameter of the number of repetitions that satisfies the first uplink grant.
  • the number of logical channels required for the repetition of the resource is a parameter of the number of repetitions that satisfies the first uplink grant.
  • the terminal may send data to a network device, and in S342, the terminal may send data to another terminal.
  • the RAN 210 may configure the logical channel parameter A (optionally, also including the parameter B) and the first uplink authorized resource to the terminal 220 through the Uu port, and the terminal 220 may determine an appropriate And use the first uplink authorized resource to send service data of the logical channel to the terminal 230 through the PC5 interface.
  • the RAN 210 may configure the logical channel parameter A (optionally, also including the parameter B) and the first uplink authorized resource to the terminal 220 through the Uu port, and the terminal 220 may determine an appropriate And use the first uplink authorized resource to send service data of the logical channel to the terminal 230 through the PC5 interface.
  • the network device may be configured with multiple uplink authorized resources, and the multiple uplink authorized resources may belong to the same broadband partial group or different broadband partial groups.
  • the grouping of the uplink authorized resources may have the following two types: Method, taking BWP Group Index 1 as an example:
  • An obtaining unit 620 configured to receive a first uplink authorized resource from the network device
  • a determining unit 630 configured to determine a first logical channel according to the number of repetitions of the first uplink authorized resource and the number of repetitions of the logical channel, where the first logical channel is a number of repetitions that satisfies the number of repetitions of the first uplink authorized resource Required logical channel;
  • the repetition number parameter includes a minimum number of repetitions, and the minimum number of repetitions of the first logical channel is less than or equal to the number of repetitions of the first uplink authorized resource.
  • the first message further includes a second parameter
  • the second parameter includes at least one of a scheduling period parameter, a modulation and coding strategy parameter, power information, or frequency hopping information of the logical channel.
  • the first logical channel is a logical channel in which the number of repetitions parameter satisfies the requirement of the number of repetitions of the first uplink grant resource, and the second parameter satisfies the parameter requirement corresponding to the first uplink grant resource.
  • the multiple uplink authorized resources include an uplink authorized resource indicated by a random access response RAR and a pre-configured uplink authorized resource, and the first uplink authorized resource is the uplink authorized resource indicated by the RAR.
  • the first uplink authorized resource is an uplink authorized resource whose repetition times meet a condition.
  • the wireless scheduling apparatus 600 may correspond to a terminal in the wireless scheduling method 300 according to the embodiment of the present application, and the wireless scheduling apparatus 600 may include a unit for performing a method performed by a terminal of the wireless scheduling method 300.
  • each unit in the wireless scheduling apparatus 600 and the other operations and / or functions described above are respectively to implement a corresponding process of the wireless scheduling method 300.
  • the receiving unit 610 is configured to receive a first message from a network device, the first message is used to configure a logical channel, the first message includes a first parameter, and the first parameter includes the logic.
  • a determining unit 630 configured to determine a first logical channel according to the index of the first uplink authorized resource and the first parameter, and an index of the uplink authorized resource corresponding to the first logical channel includes an index of the first uplink authorized resource;
  • the sending unit 640 is configured to use the first uplink authorized resource to send service data of the first logical channel.
  • the wireless scheduling apparatus 600 may also correspond to a terminal in the wireless scheduling method 400 according to the embodiment of the present application, and the wireless scheduling apparatus 600 may include a unit for performing a method performed by a terminal of the wireless scheduling method 400 .
  • each unit in the wireless scheduling apparatus 600 and the other operations and / or functions described above are respectively to implement a corresponding process of the wireless scheduling method 400.
  • the receiving unit 610 is configured to receive a first message from a network device, where the first message is used to configure a logical channel, the first message includes a first parameter, and the first parameter includes the logical channel.
  • An obtaining unit 620 configured to obtain a first uplink authorized resource from the network device
  • a determining unit 630 is configured to determine a first logical channel according to the index of the first uplink authorized resource and the first parameter, and an index of a broadband partial packet corresponding to the first logical channel includes a broadband partial packet corresponding to the first uplink authorized resource. index of;
  • the sending unit 640 is further configured to use the first uplink authorized resource to send service data of the first logical channel.
  • the wireless scheduling apparatus 600 may also correspond to a terminal in the wireless scheduling method 500 according to the embodiment of the present application, and the wireless scheduling apparatus 600 may include a unit for performing a method performed by a terminal of the wireless scheduling method 500 .
  • each unit in the wireless scheduling apparatus 600 and the other operations and / or functions described above are respectively to implement a corresponding process of the method 500 for wireless scheduling.
  • FIG. 13 shows a schematic block diagram of a wireless scheduling apparatus 700 according to an embodiment of the present application.
  • the wireless scheduling apparatus 700 may include a determining unit 710, a sending unit 720, and a receiving unit 730.
  • the wireless scheduling device may be the network device in the above method 300 to method 500, or a chip configured in the network device.
  • the determining unit 710 is configured to determine a first parameter of one or more logical channels, where the first parameter includes a parameter of the number of repetitions of the one or more logical channels;
  • the sending unit 720 is configured to send a first message to the terminal, where the first message includes the first parameter;
  • the repetition number parameter includes a minimum number of repetitions.
  • the second parameter includes a scheduling period parameter, and the scheduling period parameter is a maximum scheduling period.
  • the second parameter includes a scheduling period parameter
  • the scheduling period parameter includes one or more scheduling periods.
  • the determining unit 710 is configured to determine a first parameter of one or more logical channels, where the first parameter includes an uplink authorized resource corresponding to each logical channel in the one or more logical channels. index;
  • the sending unit 720 is configured to send a first message to the terminal, where the first message includes the first parameter;
  • the wireless scheduling apparatus 700 may correspond to a network device in the wireless scheduling method 400 according to the embodiment of the present application, and the wireless scheduling apparatus 700 may include a method performed by a network device for performing the wireless scheduling method 400 unit.
  • each unit in the wireless scheduling apparatus 700 and the other operations and / or functions described above are respectively to implement a corresponding process of the wireless scheduling method 400.
  • the determining unit 710 is configured to determine a first parameter of one or more logical channels, where the first parameter includes a broadband partial packet corresponding to each logical channel in the one or more logical channels. index;
  • the sending unit 720 is configured to send a first message to the terminal, where the first message includes the first parameter;
  • the wireless scheduling apparatus 700 may correspond to a network device in the wireless scheduling method 500 according to the embodiment of the present application, and the wireless scheduling apparatus 700 may include a method performed by a network device for performing the wireless scheduling method 500 unit.
  • each unit in the wireless scheduling apparatus 700 and the other operations and / or functions described above are respectively to implement a corresponding process of the wireless scheduling method 500.
  • FIG. 14 shows a schematic structural diagram of a terminal provided in an embodiment of the present application, which may be the terminal in the foregoing embodiment, and is configured to implement operations of the terminal in the foregoing embodiment.
  • the terminal includes: an antenna 810, a radio frequency portion 820, and a signal processing portion 830.
  • the antenna 810 is connected to the radio frequency portion 820.
  • the radio frequency part 820 receives the information sent by the network device through the antenna 810, and sends the information sent by the network device to the signal processing part 830 for processing.
  • the signal processing section 830 processes the information of the terminal and sends it to the radio frequency section 820. After processing the information of the terminal, the radio frequency section 820 sends the information to the network device via the antenna 810.
  • the signal processing section 830 may include a modulation and demodulation subsystem to implement processing of each communication protocol layer of the data; it may also include a central processing subsystem to implement processing of the terminal operating system and the application layer; in addition, it may also include Other subsystems, such as multimedia subsystem, peripheral subsystem, etc. Among them, the multimedia subsystem is used to control the terminal camera and screen display, and the peripheral subsystem is used to achieve connection with other devices.
  • the modem subsystem can be a separately set chip.
  • the above device for a terminal may be located in the modem subsystem.
  • the modem subsystem may include one or more processing elements 831, for example, including a main control CPU and other integrated circuits.
  • the modulation and demodulation subsystem may further include a storage element 832 and an interface circuit 833.
  • the storage element 832 is used to store data and programs, but the program for executing the method performed by the terminal in the above method may not be stored in the storage element 832, but stored in a memory other than the modem subsystem, and used When the modem subsystem is loaded and used.
  • the interface circuit 833 is used to communicate with other subsystems.
  • the above device for a terminal may be located in a modem subsystem.
  • the modem subsystem may be implemented by a chip.
  • the chip includes at least one processing element and an interface circuit, and the processing element is configured to execute any method performed by the terminal.
  • Each step of the interface circuit is used to communicate with other devices.
  • the unit that the terminal implements each step in the above method may be implemented in the form of a processing element scheduler.
  • a device for a terminal includes a processing element and a storage element, and the processing element calls a program stored by the storage element to execute the above.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program for executing the method executed by the terminal in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads the program from the off-chip storage element to the on-chip storage element to call and execute the method executed by the terminal in the foregoing method embodiments.
  • the unit for the terminal to implement each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the modulation and demodulation subsystem.
  • the processing elements here may be integrated circuits, such as : One or more application-specific integrated circuits (ASICs), or one or more digital signal processors (DSPs), or one or more ready-made programmable gate arrays (field programmable gates) array, FPGA), or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the unit that implements each step in the above method in the terminal may be integrated together and implemented in the form of a system-on-a-chip (SOC), which is used to implement the above method.
  • SOC system-on-a-chip
  • At least one processing element and storage element may be integrated in the chip, and the method executed by the above terminal may be implemented by the processing element calling the stored program of the storage element; or, at least one integrated circuit may be integrated in the chip to implement the above terminal execution.
  • the functions of some units are implemented in the form of a program called by a processing element, and the functions of some units are implemented in the form of an integrated circuit.
  • the above apparatus for a terminal may include at least one processing element and an interface circuit, where at least one processing element is configured to execute any method performed by the terminal provided by the foregoing method embodiments.
  • the processing element may execute a part or all of the steps executed by the terminal in a manner of calling the program stored in the storage element in a first manner; or a method of integrating the logic of the hardware in the processor element with the instruction in a second manner: Some or all of the steps performed by the terminal are performed in a manner; of course, some or all of the steps performed by the terminal may also be performed in combination with the first and second methods.
  • the processing elements here are the same as described above, and may be general-purpose processors, such as a CPU, or one or more integrated circuits configured to implement the above methods, such as: one or more ASICs, or one or more micro-processing Processor DSP, or one or more FPGAs, or a combination of at least two of these integrated circuit forms.
  • general-purpose processors such as a CPU
  • integrated circuits configured to implement the above methods, such as: one or more ASICs, or one or more micro-processing Processor DSP, or one or more FPGAs, or a combination of at least two of these integrated circuit forms.
  • a storage element may be a single memory or a collective term for multiple storage elements.
  • FIG. 15 shows a schematic structural diagram of a network device according to an embodiment of the present application, which may be the network device in the foregoing embodiment, and is used to implement the operation of the network device in the foregoing embodiment.
  • the network device includes an antenna 901, a radio frequency device 902, and a baseband device 903.
  • the antenna 901 is connected to a radio frequency device 902.
  • the radio frequency device 902 receives the information sent by the terminal through the antenna 901, and sends the information sent by the terminal to the baseband device 903 for processing.
  • the baseband device 903 processes the information of the terminal and sends it to the radio frequency device 902.
  • the radio frequency device 902 processes the information of the terminal and sends it to the terminal via the antenna 201.
  • the baseband device 903 may include one or more processing elements 9031, for example, including a main control CPU and other integrated circuits.
  • the baseband device 903 may further include a storage element 9032 and an interface 9033.
  • the storage element 9032 is used to store programs and data; the interface 9033 is used to exchange information with the radio frequency device 902.
  • the interface is, for example, a common public wireless interface (common public radio interface). , CPRI).
  • the above device for a network device may be located in the baseband device 903.
  • the above device for a network device may be a chip on the baseband device 903.
  • the chip includes at least one processing element and an interface circuit, and the processing element is used to execute the above network.
  • the device executes each step of any method, and the interface circuit is used to communicate with other devices.
  • the unit that the network device implements each step in the above method may be implemented in the form of a processing element scheduler.
  • an apparatus for a network device includes a processing element and a storage element, and the processing element calls a program stored by the storage element to The method performed by the network device in the foregoing method embodiment is performed.
  • the storage element may be a storage element on the same chip as the processing element, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit that the network device implements each step in the above method may be configured as one or more processing elements, which are disposed on the baseband device.
  • the processing element here may be an integrated circuit, for example: an Or multiple ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • a unit that implements each step in the above method of a network device may be integrated together and implemented in the form of an SOC.
  • a baseband device includes the SOC chip to implement the above method.
  • At least one processing element and storage element may be integrated in the chip, and the method executed by the above network device may be implemented by the processing element calling a stored program of the storage element; or, at least one integrated circuit may be integrated in the chip to implement the above network
  • the method executed by the device or, in combination with the above implementation manner, the functions of some units are implemented in the form of a program called by a processing element, and the functions of some units are implemented in the form of an integrated circuit.
  • the processing elements here are the same as described above, and may be general-purpose processors, such as a CPU, or one or more integrated circuits configured to implement the above methods, such as: one or more ASICs, or one or more micro-processing Processor DSP, or one or more FPGAs, or a combination of at least two of these integrated circuit forms.
  • general-purpose processors such as a CPU
  • integrated circuits configured to implement the above methods, such as: one or more ASICs, or one or more micro-processing Processor DSP, or one or more FPGAs, or a combination of at least two of these integrated circuit forms.
  • a storage element may be a single memory or a collective term for multiple storage elements.
  • FIG. 16 shows another schematic structural diagram of a network device according to an embodiment of the present application, which may be the network device in the foregoing embodiment, and is configured to implement operations of the network device in the foregoing embodiment.
  • the network device includes a processor 1010, a memory 1020, and an interface 1030, and the processor 1010, the memory 1020, and the interface 1030 are signally connected.
  • the above wireless scheduling apparatus 600 may be located in the network device, and the functions of each unit may be implemented by the processor 1010 calling a program stored in the memory 1020. That is, the above wireless scheduling apparatus 600 includes a memory and a processor. The memory is used to store a program, and the program is called by the processor to execute the method in the foregoing method embodiment.
  • the processor here may be an integrated circuit having a signal processing capability, such as a CPU. Or the functions of the above units may be implemented by one or more integrated circuits configured to implement the above method. For example: one or more ASICs, or one or more microprocessor DSPs, or one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms. Alternatively, the above implementations can be combined.
  • the present application further provides a computer program product.
  • the computer program product includes: computer program code that, when the computer program code runs on a computer, causes the computer to execute the method in the foregoing embodiment. .
  • the present application further provides a computer-readable medium, the computer-readable interpretation stores program code, and when the program code runs on the computer, the computer executes the method in the foregoing embodiment. .
  • the terminal and the network device in each of the foregoing device embodiments may completely correspond to the terminal or the network device in the method embodiment, and corresponding modules or units execute corresponding steps.
  • the receiving The unit may be an interface circuit that the chip uses to receive signals from other chips or devices.
  • the above sending unit is an interface circuit of the device for sending signals to other devices.
  • the sending unit is the chip for sending signals to other chips or devices. Interface circuit.
  • An embodiment of the present application further provides a communication system including the foregoing terminal, and / or the foregoing network device.
  • the foregoing method embodiments in the embodiments of the present application may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the aforementioned processor may be a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic devices, a discrete gate or transistor logic device, or a discrete hardware component.
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrical memory Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced SDRAM
  • SLDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM
  • uplink and downlink appearing in this application are used to describe the direction of data / information transmission in specific scenarios.
  • the direction of “uplink” generally refers to the direction or distribution of data / information from the terminal to the network side.
  • the “downlink” direction generally refers to the direction in which data / information is transmitted from the network side to the terminal, or the direction in which the centralized unit transmits to the distributed unit.
  • uplink and downlink “" It is only used to describe the direction of data / information transmission, and the specific start and end devices of this data / information transmission are not limited.
  • the architecture of the CU and DU is not limited to 5G, NR, and gNB, and can also be applied to the scenario where the LTE base station is divided into CU and DU; the CU can be further divided into CP and UP.
  • the protocol layer does not include an SDAP layer.
  • the network architecture and service scenarios described in the embodiments of the present application are for the convenience of the reader to clearly understand the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • all or part of the implementation may be implemented by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product may include one or more computer instructions.
  • the computer When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions according to the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic disk), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线调度的方法和装置,该无线调度的方法包括:终端接收来自网络设备的第一消息,该第一消息包括第一参数,该第一参数包括一个或者多个逻辑信道的重复次数参数;该终端获取来自该网络设备的第一上行授权资源;该终端根据该第一上行授权资源的重复次数和该一个或者多个逻辑信道的重复次数参数,从该一个或者多个逻辑信道中确定第一逻辑信道,该第一逻辑信道为重复次数参数满足第一上行授权资源的重复次数要求的逻辑信道;该终端使用该第一上行授权资源,发送该第一逻辑信道的业务数据。本申请实施例的无线调度的方法,有助于保证终端选择到合适的逻辑信道,从而有助于满足不同业务对于可靠性的需求。

Description

无线调度的方法和装置
本申请要求于2018年9月21日提交中国专利局、申请号为201811107463.2、申请名称为“无线调度的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种无线调度的方法和装置。
背景技术
在无线通信系统中,网络设备可以通过动态调度以及预配置资源调度两种方式调度终端,例如用户设备(user equipment,UE)进行上行数据发送,分别通过发送动态上行授权(UL grant)或者预配置UL grant,指示终端完成上行数据发送。
新空口(new radio,NR)系统引入了逻辑信道(logical channel,LCH)到预配置ULgrant类型1(以下简称Type 1)的约束关系,即网络设备会为每个LCH指示能否使用Type 1的资源,若网络设备指示该LCH可以使用所述Type 1的资源,则当终端需要为Type 1对应的UL grant进行调度时,可以选择该LCH,否则,终端不选择该LCH参与该UL grant的调度。
当网络设备配置了多套可用的预配置UL grant资源时,不同的预配置UL grant资源对应的上行调度参数可能不同,不同的上行调度参数对于可靠性的保障以及时延的保障是不同的,因此,在网络设备配置多套预配置UL Grant的情况下,仅仅通过配置LCH到Type1的约束关系不能满足不同业务对于可靠性的需求。
发明内容
有鉴于此,本申请提供一种无线调度的方法和装置,以期满足不同业务对于可靠性和时延等不同服务质量的需求。
第一方面,提供了一种无线调度的方法,该方法包括:终端接收来自网络设备的第一消息,该第一消息包括逻辑信道的重复次数参数;该终端获取来自该网络设备的第一上行授权资源;该终端根据该第一上行授权资源的重复次数和逻辑信道的重复次数参数,确定第一逻辑信道,该第一逻辑信道为重复次数参数满足该第一上行授权资源的重复次数要求的逻辑信道;该终端使用该第一上行授权资源,发送该第一逻辑信道的业务数据。第一消息用于配置逻辑信道,且包括第一参数,该第一参数例如包括逻辑信道的重复次数参数。且第一消息用于配置一个或多个逻辑信道,或者说包括一个或者多个逻辑信道的重复次数参数。第一逻辑信道为一个或多个逻辑信道中的满足第一上行授权资源的重复次数要求的逻辑信道。
在一些可能的实现方式中,该终端使用该第一上行授权资源,发送该第一逻辑信道的 业务数据,包括:该终端使用该第一上行授权资源,向该网络设备发送该第一逻辑信道的业务数据。
在一些可能的实现方式中,该终端使用该第一上行授权资源,发送该第一逻辑信道的业务数据,包括:该终端使用该第一上行授权资源,向另一个终端发送该第一逻辑信道的业务数据。
在一些可能的实现方式中,该终端通过PC5接口,向另一个终端发送该第一逻辑信道的业务数据。
第一方面,提供了另一种无线调度的方法,该方法包括:终端接收来自网络设备的第一消息,该第一消息包括流、临近业务包优先级(PPPP)或者临近业务包可靠性(PPPR)的重复次数参数;该终端接收来自该网络设备的至少一个上行授权资源;该终端根据该至少一个上行授权资源的重复次数和该流、PPPP或者PPPR的重复次数参数,确定第一流、第一PPPP或者第一PPPR,该第一流、第一PPPP或者该第一PPPR为重复次数参数满足该第一上行授权资源的重复次数要求的流、PPPP或者PPPR;该第一消息用于配置流、PPPP或者PPPR,该第一参数例如包括流、PPPP或者PPPR的重复次数参数。且第一消息用于配置一个或多个流、PPPP或者PPPR,或者说包括一个或者多个流、PPPP或者PPPR的重复次数参数。第一流、第一PPPP或者第一PPPR为一个或多个流、PPPP或者PPPR中的满足第一上行授权资源的重复次数要求的流、PPPP或者PPPR。
该终端使用该第一上行授权资源,向该网络设备发送该第一流或者第一PPPP的业务数据。
本申请实施例的无线调度的方法,通过网络设备配置逻辑信道、流、PPPP或者PPPR对应的重复次数参数,有助于保证终端选择到合适的逻辑信道、流、PPPP或者PPPR,从而有助于满足不同业务对于可靠性的需求。
结合第一方面,在第一方面的某些可能的实现方式中,该重复次数参数包括最小重复次数,该第一逻辑信道的最小重复次数小于或者等于该第一上行授权资源的重复次数。
本申请实施例的无线调度的方法,终端根据每个逻辑信道、流、PPPP或者PPPR的最小重复次数和上行授权资源的重复次数,选择合适的逻辑信道、流、PPPP或者PPPR,有助于满足不同业务对于可靠性的需求。
结合第一方面,在第一方面的某些可能的实现方式中,该重复次数参数包括一个或者多个重复次数,该第一逻辑信道的重复次数参数包括该第一上行授权资源的重复次数。
本申请实施例的无线调度的方法,终端根据逻辑信道、流、PPPP或者PPPR的一个或者多个重复次数和上行授权资源的重复次数,选择合适的逻辑信道、流、PPPP或者PPPR,有助于满足不同业务对于可靠性的需求。
结合第一方面,在第一方面的某些可能的实现方式中,该第一消息还包括以下参数中的一种或多种:该逻辑信道的调度周期参数、调制与编码策略参数、功率信息或者跳频信息。以下将重复次数以外的其它参数称为第二参数,即第二参数包括以上参数中的一种或多种。
结合第一方面,在第一方面的某些可能的实现方式中,该第一逻辑信道为重复次数参数满足该第一上行授权资源的重复次数要求,且该第二参数满足该第一上行授权资源对应的参数要求的逻辑信道。当第一消息中包括的参数为多种时,可以限制所有参数用于选择 逻辑信道,也可以限制部分参数用于限制逻辑信道。即,第一逻辑信道为第一消息中全部或部分参数满足第一上行授权资源对应的参数要求的逻辑信道。
对于流、PPPP或者PPPR也可以配置以上第二参数,且采用与逻辑信道类似的方法确定第一流、第一PPPP或者第一PPPR。即,第一流、第一PPPP或者第一PPPR为第一消息中全部或部分参数满足第一上行授权资源对应的参数要求的流、PPPP或者PPPR。
本申请实施例的无线调度的方法,通过网络设备配置逻辑信道、流、PPPP或者PPPR对应的重复次数参数和第二参数,有助于保证终端选择到合适的逻辑信道、流、PPPP或者PPPR,从而有助于满足不同业务对于可靠性以及时延的需求。
结合第一方面,在第一方面的某些可能的实现方式中,该第二参数包括调度周期参数,该调度周期参数包括最大调度周期,该第一逻辑信道的最大调度周期大于或者等于该第一上行授权资源的调度周期。这里的逻辑信道可以替换为流、PPPP或者PPPR。
本申请实施例的无线调度的方法,终端根据逻辑信道、流、PPPP或者PPPR的最小重复次数、最大调度周期和上行授权资源的重复次数、调度周期,选择合适的逻辑信道、流、PPPP或者PPPR,有助于满足不同业务对于可靠性和时延的需求。
结合第一方面,在第一方面的某些可能的实现方式中,该第二参数包括调度周期参数,该调度周期参数包括一个或者多个调度周期,该第一逻辑信道的调度周期参数包括该第一上行授权资源的调度周期。这里的逻辑信道可以替换为流、PPPP或者PPPR。
本申请实施例的无线调度的方法,终端根据逻辑信道、流、PPPP或者PPPR的一个或者多个重复次数、一个或者多个调度周期和上行授权资源的重复次数、调度周期,选择合适的逻辑信道、流、PPPP或者PPPR,有助于满足不同业务对于可靠性和时延的需求。
结合第一方面,在第一方面的某些可能的实现方式中,该终端获取来自该网络设备的第一上行授权资源,包括:该终端接收来自该网络设备的多个上行授权资源;该终端从该多个上行授权资源中获取该第一上行授权资源。
在一些可能的实现方式中,该第一逻辑信道为重复次数参数满足该多个上行授权资源中至少两个上行授权资源的重复次数要求的逻辑信道,该终端从该多个上行授权资源中获取该第一上行授权资源,包括:该终端从该至少两个上行授权资源中确定该第一上行授权资源。
结合第一方面,在第一方面的某些可能的实现方式中,该多个上行授权资源包括随机接入响应RAR指示的上行授权资源和预配置的上行授权资源,该第一上行授权资源为该RAR指示的上行授权资源。
结合第一方面,在第一方面的某些可能的实现方式中,该第一上行授权资源为重复次数满足条件的上行授权资源。
在一些可能的实现方式中,该第一上行授权资源的重复次数大于该至少两个上行授权资源中其他上行授权资源的重复次数。
在一些可能的实现方式中,该第一上行授权资源为调度周期满足条件的上行授权资源。
在一些可能的实现方式中,该第一上行授权资源的调度周期小于该至少两个上行授权资源中其他上行授权资源的调度周期。
在一些可能的实现方式中,该第一上行授权资源为目标误块率满足条件的上行授权资 源。
在一些可能的实现方式中,该第一上行授权资源的目标误块率小于该至少两个上行授权资源中其他上行授权资源的目标误块率。
在一些可能的实现方式中,该第一上行授权资源为发送功率满足条件的上行授权资源。
在一些可能的实现方式中,该第一上行授权资源的发送功率大于该至少两个上行授权资源中其他上行授权资源的发送功率。
在一些可能的实现方式中,该第一上行授权资源为跳频信息满足条件的上行授权资源。
在一些可能的实现方式中,该第一上行授权资源为开启跳频的上行授权资源。
在一些可能的实现方式中,根据该第一上行授权资源选择的第一逻辑信道的优先级高于根据该至少两个上行授权资源中其他上行授权资源选择的逻辑信道的优先级。
在一些可能的实现方式中,该至少两个上行授权资源对应的物理上行共享信道PUSCH发送持续时间至少部分交叠。
结合第一方面,在第一方面的某些可能的实现方式中,该终端接收来自网络设备的上行授权资源,包括:该终端接收来自该网络设备的下行控制信息DCI,该DCI指示该上行授权资源;或者,该终端接收来自该网络设备的随机接入响应RAR,所述RAR指示该上行授权资源;或者,该终端接收来自该网络设备的配置消息,该配置消息指示该上行授权资源;或者,该终端接收该网络设备发送的配置消息和DCI,该配置消息包括该上行授权资源的配置参数,该DCI指示该上行授权资源。这里对上行资源的配置方法可以适用于以上第一上行授权资源的配置,或者适用于以上多个上行资源的配置。即网络设备可以为终端配置一个或多个上行授权资源,任一个上行授权资源可以采用其中的一种方式进行配置,且多个上行授权资源的配置方式可以相同,也可以不同。
第二方面,提供了一种无线调度的方法,该方法包括:网络设备配置逻辑信道的第一参数,该第一参数包括该逻辑信道的重复次数参数;该网络设备向终端发送第一消息,该第一消息包括该第一参数。
在另一中无线调度方法中:网络设备配置流,PPPP,或者PPPR的第一参数,该第一参数包括该流、PPPP或者PPPR的重复次数参数;该网络设备向终端发送第一消息,该第一消息包括该第一参数。关于第一参数的描述同以上第一方面。
结合第二方面,在第二方面的某些可能的实现方式中,该方法还包括:该网络设备配置该逻辑信道的第二参数,该第二参数包括该逻辑信道的调度周期参数、调制与编码策略参数、功率信息或者跳频信息中的至少一种。关于第二参数的描述同以上第一方面。
此外,逻辑信道可以替换为流、PPPP或者PPPR。
第三方面,提供了一种无线调度的方法,该方法包括:终端接收来自网络设备的第一消息,该第一消息包括逻辑信道对应的上行授权资源的索引;该终端获取来自该网络设备的第一上行授权资源;该终端根据该第一上行授权资源的索引和该第一参数,确定第一逻辑信道,该第一逻辑信道对应的上行授权资源的索引包括该第一上行授权资源的索引;该终端使用该第一上行授权资源,发送该第一逻辑信道的业务数据。第一消息用于配置逻辑信道,且包括第一参数,该第一参数例如包括逻辑信道对应的上行授权资源的索引。且第 一消息用于配置一个或多个逻辑信道,或者说包括一个或者多个逻辑信道的对应的上行授权资源的索引。第一逻辑信道为一个或多个逻辑信道中对应的上行授权资源的索引包括该第一上行授权资源的索引的逻辑信道。可选的,逻辑信道可以替换为流、PPPP或者PPPR。
本申请实施例的无线调度的方法,通过网络设备配置逻辑信道、流、PPPP或者PPPR对应的上行授权资源的索引,有助于保证终端选择到合适的逻辑信道、流、PPPP或者PPPR,从而有助于满足不同业务对于可靠性和时延的需求。
结合第三方面,在第三方面的某些可能的实现方式中,该终端获取来自该网络设备的第一上行授权资源,包括:该终端接收来自该网络设备的多个上行授权资源;该终端从该多个上行授权资源中获取该第一上行授权资源。第一上行授权资源的选择同以上第一方面。
结合第三方面,在第三方面的某些可能的实现方式中,该终端接收来自网络设备的上行授权资源,包括:该终端接收来自该网络设备的下行控制信息DCI,该DCI指示该上行授权资源;或者,该终端接收来自该网络设备的随机接入响应RAR,所述RAR指示该上行授权资源;或者,该终端接收来自该网络设备的配置消息,该配置消息指示该上行授权资源;或者,该终端接收该网络设备发送的配置消息和DCI,该配置消息包括该上行授权资源的配置参数,该DCI指示该上行授权资源。这里对上行资源的配置方法可以适用于以上第一上行授权资源的配置,或者适用于以上多个上行资源的配置。即网络设备可以为终端配置一个或多个上行授权资源,任一个上行授权资源可以采用其中的一种方式进行配置,且多个上行授权资源的配置方式可以相同,也可以不同。
第四方面,提供了一种无线调度的方法,该方法包括:网络设备配置逻辑信道的第一参数,该第一参数包括该逻辑信道对应的上行授权资源的索引;该网络设备向终端发送第一消息,该第一消息包括该第一参数。逻辑信道可以替换为流、PPPP或者PPPR。
第五方面,提供了一种无线调度的方法,该方法包括:终端接收来自网络设备的第一消息,该第一消息包括逻辑信道对应的宽带部分分组的索引;该终端获取来自该网络设备的第一上行授权资源;该终端根据该第一上行授权资源的索引和该第一参数,确定第一逻辑信道,该第一逻辑信道对应的宽带部分分组的索引包括该第一上行授权资源对应的宽带部分分组的索引;该终端使用该第一上行授权资源,发送该第一逻辑信道的业务数据。第一消息用于配置逻辑信道,且包括第一参数,该第一参数例如包括逻辑信道对应的宽带部分分组的索引。且第一消息用于配置一个或多个逻辑信道,或者说包括一个或者多个逻辑信道的对应的宽带部分分组的索引。第一逻辑信道为一个或多个逻辑信道中对应的宽带部分分组的索引包括该第一上行授权资源对应的宽带部分分组的索引的逻辑信道。可选的,逻辑信道可以替换为流、PPPP或者PPPR。
本申请实施例的无线调度的方法,通过网络设备配置逻辑信道、流、PPPP或者PPPR对应的宽带部分分组的索引,有助于保证终端选择到合适的逻辑信道、流、PPPP或者PPPR,从而有助于满足不同业务对于可靠性和时延的需求。
结合第五方面,在第五方面的某些可能的实现方式中,该终端获取来自该网络设备的第一上行授权资源,包括:该终端接收来自该网络设备的多个上行授权资源;该终端从该多个上行授权资源中获取该第一上行授权资源。第一上行授权资源的选择同以上第一方面。
结合第五方面,在第五方面的某些可能的实现方式中,该终端接收来自网络设备的上行授权资源,包括:该终端接收来自该网络设备的下行控制信息DCI,该DCI指示该上行授权资源;或者,该终端接收来自该网络设备的随机接入响应RAR,所述RAR指示该上行授权资源;或者,该终端接收来自该网络设备的配置消息,该配置消息指示该上行授权资源;或者,该终端接收该网络设备发送的配置消息和DCI,该配置消息包括该上行授权资源的配置参数,该DCI指示该上行授权资源。这里对上行资源的配置方法可以适用于以上第一上行授权资源的配置,或者适用于以上多个上行资源的配置。即网络设备可以为终端配置一个或多个上行授权资源,任一个上行授权资源可以采用其中的一种方式进行配置,且多个上行授权资源的配置方式可以相同,也可以不同。
第六方面,提供了一种无线调度的方法,该方法包括:网络设备配置逻辑信道的第一参数,该第一参数包括该逻辑信道对应的宽带部分分组的索引;该网络设备向终端发送第一消息,该第一消息包括该第一参数。
第七方面,本申请提供一种无线调度的装置,包括用于执行以上第一方面、第三方面或者第五方面各个步骤的单元或者手段(means)。
第八方面,本申请提供一种无线调度的装置,包括用于执行以上第二方面、第四方面或者第六方面各个步骤的单元或者手段(means)。
第九方面,本申请提供一种无线调度的装置,包括至少一个处理器,用于与存储器连接,以调用存储器中的程序执行以上第一方面、第三方面或者第五方面提供的方法。
第十方面,本申请提供一种无线调度的装置,包括至少一个处理器,用于与存储器连接,以调用存储器中的程序执行以上第二方面、第四方面或者第六方面提供的方法。
第十一方面,本申请提供一种无线调度的装置,包括至少一个处理器和接口电路,所述至少一个处理器用于执行以上第一方面、第三方面或者第五方面提供的方法。
第十二方面,本申请提供一种无线调度的装置,包括至少一个处理器和接口电路,所述至少一个处理器用于执行以上第二方面、第四方面或者第六方面提供的方法。
第十三方面,提供了一种终端,该终端包括上述第七方面提供的装置,或者,该终端包括上述第九方面提供的装置,或者,该终端包括上述第十一方面提供的装置。
第十四方面,提供了一种网络设备,该网络设备包括上述第八方面提供的装置,或者,该终端包括上述第十方面提供的装置,或者,该终端包括上述第十二方面提供的装置。
第十五方面,本申请提供一种程序,该程序在被处理器执行时,用于执行以上第一方面、第三方面或者第五方面提供的方法。
第十六方面,本申请提供一种程序,该程序在被处理器执行时,用于执行以上第二方面、第四方面或者第六方面提供的方法。
第十七方面,本申请提供一种程序产品,例如计算机可读存储介质,包括以上程序。
附图说明
图1是本申请实施例提供的技术方案的应用场景的示意图。
图2是本申请实施例提供的技术方案的应用场景的另一示意图。
图3是本申请实施例提供的一种网络架构的示意图。
图4是本申请实施例提供的另一种网络架构的示意图。
图5是本申请实施例提供的无线调度的方法的示意性流程图。
图6是本申请实施例提供的无线调度的方法的另一示意性流程图。
图7是本申请实施例提供的无线调度的方法的另一示意性流程图。
图8是本申请实施例提供的无线调度的方法的另一示意性流程图。
图9是本申请实施例提供的无线调度的方法的另一示意性流程图。
图10是本申请实施例提供的无线调度的方法的另一示意性流程图。
图11是本申请实施例提供的无线调度的方法的另一示意性流程图。
图12是本申请实施例提供的无线调度的装置的示意性框图。
图13是本申请实施例提供的无线调度的装置的另一示意性框图。
图14是本申请实施例提供的终端的结构示意图。
图15是本申请实施例提供的网络设备的结构示意图。
图16是本申请实施例提供的网络设备的另一结构示意图。
具体实施方式
以下,对本申请中的部分用语进行说明:
1)、终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)、网络设备是无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system, UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
在介绍本申请实施例之前,首先简单介绍几个与本申请实施例的技术方案相关的概念。
调制与编码策略(modulation and coding scheme,MCS):表示传输使用的调制方式(modulation)以及信道编码的码率,通常将MCS索引(index)作为行,对应的一组调制方式与信道编码的码率作为对应的列,通过MCS index确定传输使用的调制方式以及信道码率,进而确定传输块大小(transport block size,TBS)。
例如,LTE中下行控制信息(downlink control information,DCI)使用5比特的MCS index(0~31)来指示当前传输所使用的调制和编码样式,并影响到TB大小(TB size,TBS)的选择。MCS共计32种组合,其中3种组合(索引为29~31)是预留的,且这3种组合只用于重传。
调度过程:网络设备可以通过动态调度,预配置资源调度等方式调度终端进行上行传输,例如,通过发送动态UL grant,或预配置UL grant,指示终端进行上行数据发送。
动态调度:网络设备发送上行调度授权(uplink grant,UL grant),在物理下行控制信道(physical downlink control channel,PDCCH)上发送DCI,即动态UL grant,并且通过终端标识进行加扰,终端若成功解码该控制信息,可以获取此次上行调度对应的物理层资源大小以及所述物理层资源的时域/频域分布,以及此次上行调度传输所需的HARQ信息,从而终端进行HARQ过程,完成上行传输。
预配置资源调度:网络设备可以通过半静态资源分配的方式预配置终端上行传输所需的资源,即预配置UL grant,应理解,所述预配置UL grant可以按周期出现,不需要终端每次发送上行传输前先获得上行授权。例如,网络设备可以通过无线资源控制(radio resource control,RRC)信令配置上行传输的UL grant,该RRCL信令还可以包括预配置UL grant的周期,从而终端在所述预配置的资源调度上传输,所述方式可以是配置授权方式1(configured grant type 1);网络设备可以通过RRC信令配置上行传输的部分信息,例如,预配置UL grant的周期等,并且通过物理层信令携带上行传输的UL grant并激活所述上行传输的资源,从而终端在所述预配置的资源调度上传输,所述方式可以是配置授权方式2(configured grant type 2)以上两种均可以称为预配置资源调度。
在本申请实施例中,“上行授权”、“上行授权消息”可理解为用于调度物理上行资源的信令,例如,用于上行授权的下行控制信息,或者,用于半静态配置的RRC信令,或者,在半静态配置方式中用于激活上行授权资源的下行控制信息等。“上行授权资源”可理解为通过上行授权指示的资源。“上行授权”、“上行授权消息”和“上行授权资源”都可对应为UL grant,本领域的技术人员可理解其含义。
本申请实施例中,“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
在下文示出的实施例中,第一、第二等仅为便于区分不同的对象,而不应对本申请构成任何限定。
“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后 关联对象是一种“或”的关系。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
图1是本申请实施例提供技术方案的应用场景的示意图,如图1所示,终端130接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端通信。该无线网络包括RAN110和核心网(CN)120,其中RAN110用于将终端130接入到无线网络,CN120用于对终端进行管理并提供与外网通信的网关。
应理解,本申请提供的无线调度的方法可适用于无线通信系统,例如,图1中所示的无线通信系统100。处于无线通信系统中的两个通信装置间具有无线通信连接,该两个通信装置中的一个通信装置可对应于图1中所示的终端130,例如,可以为图1中的终端130,也可以为配置于终端130中的芯片;该两个通信装置中的另一个通信装置可对应于图1中所示的RAN110,例如,可以为图1中的RAN110,也可以为配置于RAN110中的芯片。
图2是本申请实施例提供的技术方案的应用场景的另一示意图,如图2所示,本申请实施例的技术方案还可以应用于车联网(vehicle-to-everything,V2X)系统,以LTE系统中V2X为例,终端230通过PC5口与终端220进行通信,终端220通过Uu口与RAN210通信,对于Uu口,RAN210可以配置至少一套预配置UL Grant,最多可以达到8套,其中不同预配置UL Grant的周期可能不同,用于适配不同V2X业务周期不同的特点。
RAN210可以通过Uu口向终端220配置上行授权资源,终端220在PC5接口上找到合适的逻辑信道、流、PPPP或者PPPR后,使用上行授权资源向终端230发送逻辑信道、流、PPPP或者PPPR对应的业务数据。
应理解,本申请实施例中,终端220在PC5接口上使用的上行授权资源可以是预配置的上行授权资源,也可以是动态上行授权资源,本申请实施例对此并不作任何限定。
图3是本申请实施例提供的一种网络架构的示意图,如图3所示,该网络架构包括CN设备和RAN设备。其中RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成基带装置中,或者部分拉远部分集成在基带装置中。例如,在长期演进(Long Term Evolution,LTE)通信系统中,RAN设备(eNB)包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置,例如射频拉远单元(remote radio unit,RRU)相对于BBU拉远布置。
RAN设备和终端之间的通信遵循一定的协议层结构。例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层等协议层的功能。用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
RAN设备可以由一个节点实现无线资源控制(radio resource control,RRC)、分组数据汇聚层协议(packet data convergence protocol,PDCP)、无线链路控制(radio link control,RLC)、和媒体接入控制(Media Access Control,MAC)等协议层的功能;或者可以由多个节点实现这些协议层的功能;例如,在一种演进结构中,RAN设备可以包括集中单元 (centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。如图2所示,CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
请继续参考图4,图4示出了本申请实施例提供的另一种网络架构的示意图,相对于图3所示的架构,还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端,或者终端产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端或CU。以下实施例中如果涉及这种信令在DU和终端之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为PHY层的信令发送给终端,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频发送的。
在以上实施例中CU划分为RAN侧的网络设备,此外,也可以将CU划分为CN侧的网络设备,在此不做限制。
本申请以下实施例中的装置,根据其实现的功能,可以位于终端。当采用以上CU-DU的结构时,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的RAN设备。
图5示出了本申请实施例提供的无线调度的方法300的示意性流程图,如图5所示,该方法300的执行主体可以是无线调度的装置(例如,终端或用于终端的芯片或装置),该方法300包括:
S310,终端接收来自网络设备的消息A,该消息A用于配置一个或者多个逻辑信道,该消息A包括参数A,该参数A包括该一个或者多个逻辑信道中每个逻辑信道的重复次数参数。
具体而言,网络设备可以对一个或者多个逻辑信道的重复次数参数进行配置,并将配置的参数A携带在消息A中发送给终端。
应理解,本申请实施例中该消息A可以用于配置一个或者多个逻辑信道,还可以用于配置流、临近业务包优先级(proximity-based service per-packet priority,PPPP)或者临近业务包可靠性(proximity-based service per-packet reliability,PPPR),本申请实施例并不限于此,以下以逻辑信道为例进行说明。
本申请实施例中,PPPP用于反映V2X系统中业务数据包的时延要求,PPPR用于反 映V2X系统中业务数据包的可靠性要求,所以PPPP以及PPPR均可以用一个量化的数值表示其时延/可靠性紧急程度。
可选地,该重复发送参数包括最小重复次数。
表1示出了一种逻辑信道的索引和最小重复次数的对应关系。
表1逻辑信道的索引和重复次数参数的对应关系
逻辑信道的索引 最小重复次数
LCH1 K 1
LCH2 K 2
LCHm K m
例如,网络设备可以配置m个逻辑信道(LCH1~LCHm)的最小重复次数,其中,LCH1的最小重复次数为K 1,LCH2的最小重复次数为K 2,LCHm的最小重复次数为K m
可选地,该重复发送参数包括一个或者多个重复次数。
具体而言,网络设备配置的一个或者多个逻辑信道中每个逻辑信道可以对应一个或者多个重复次数。
表2示出了另一种逻辑信道的索引和一个或者多个重复次数参数的对应关系。
表2逻辑信道的索引和一个或者多个重复次数的对应关系
逻辑信道的索引 重复次数
LCH1 K 1、K 2、K 3
LCH2 K 4、K 5
LCHm K 7、K 8
例如,网络设备可以配置m个逻辑信道(LCH1~LCHm)的重复次数,其中,LCH1的重复次数为K 1、K 2、K 3,LCH2的重复次数为K 4、K 5,LCHm的重复次数为K 7、K 8
应理解,本申请实施例中,逻辑信道和重复次数参数的映射关系(对应关系)可以以表格的形式体现,还可以以其他方式体现,本申请对此并不作任何限定。
S320,该终端获取来自该网络设备的第一上行授权资源。
可选地,该终端获取来自该网络设备的第一上行授权资源,包括:
该终端接收来自该网络设备的至少一个上行授权资源;
该终端从该至少一个上行授权资源中获取该第一上行授权资源。
具体而言,网络设备可以配置至少一个上行授权资源,该网络设备可以配置至少一个上行授权资源中每个上行授权资源对应的上行调度参数,该每个上行授权资源对应的上行调度参数可以包括重复次数、调度周期、MCS信息、功率信息,跳频信息和传输块大小(transport block,TB)中的一种或者多种。
应理解,本申请实施例中,该至少一个上行授权资源也可以理解为至少一套上行授权资源,应理解,一套上行授权资源对应同样的一组配置参数,例如若该上行授权资源为预配置上行授权,一套上行授权资源对应同样的周期,HARQ进程数等配置,该至少一套上行授权资源中每套上行授权资源对应一套上行授权参数。
可选地,该网络设备可以配置多个上行授权资源。
当网络设备配置多套可用的上行授权资源时,每套上行授权资源对应一组上行调度参数,上行调度参数可以包括但不限于:
(1)重复次数K:表示终端可以对一个传输块(transport block,TB)重复发送的次数,为了保证业务的可靠性,减少由于空口传输失败对可靠性以及重传造成的时延的影响,NR系统引入了预配置UL grant重复发送的功能,网络设备可以配置重复次数,从而终端可以在预配置UL grant对应的资源上重复发送,直至达到重复次数为止,通过重复发送,从而提高接收的可靠性。
(2)调度周期P:用于指示两个相邻的上行授权资源的间隔。例如,表3示出了一种上行授权资源的索引与上行调度参数的对应关系列表。
表3上行授权资源的索引和上行调度参数的对应关系
Figure PCTCN2019107014-appb-000001
例如,该至少一个上行授权资源中包括的第一上行授权资源的索引可以为UL Grant Config index 1,则该第一上行授权资源的索引对应的上行调度参数为:重复次数K m+1和周期P m+1
应理解,上表所示的上行授权资源的索引与上行调度参数的对应关系仅仅是示意性的,该上行授权资源的索引对应的上行调度参数可以包括更多或者更少的参数,例如,该上行授权资源的索引可以仅和重复次数对应,或者,上行授权资源的索引可以和重复次数、周期和MCS信息对应,本申请实施例对此并不作任何限定。
例如,表4示出了另一种上行授权资源的索引与上行调度参数的对应关系列表。
表4上行授权资源的索引和上行调度参数的对应关系
Figure PCTCN2019107014-appb-000002
本申请实施例中,每套上行授权资源对应上行调度参数还可以包括:
(1)MCS信息可以指示MCS表格,不同的MCS表格可以表示不同的目标误块率(target block error rate,target BLER),例如MCS表格1的target BLER为10 -1或10 -3,MCS表格2的target BLER为10 -5,又例如,MCS信息可以指示调制与编码策略,不同的调制与编码策略可以指示不同的调制方式与编码方式的组合,例如MCS index#1表示正交相移键控(quadrature phase shift keyin,QPSK)与120目标码率的组合,MCS index#2表示16正交振幅调制(quadrature amplitude modulation,QAM)与340目标码率的组合。
(2)功率信息可以指示功率的偏移量,即在当前功率的基础上的偏移值作为目标发送功率。
(3)跳频信息可以指示是否开启跳频。
(4)传输块大小(transport block size,TBS)信息可以指示此次传输的传输块的大小,以比特或者字节为单位。
可选地,该至少一个上行授权资源包括动态上行授权资源。
可选地,该终端接收来自该网络设备的至少一个上行授权资源,包括:
该终端接收来自该网络设备的下行控制信息(downlink control information,DCI),该DCI指示该至少一个上行授权资源。
可选地,该终端接收来自该网络设备的至少一个上行授权资源,包括:
该终端接收来自该网络设备的随机接入响应(random access response,RAR),该RAR指示该至少一个上行授权资源。
应理解,本申请实施例中的随机接入响应还可以称为随机接入过程消息二(Msg2)。
可选地,该至少一个上行授权资源包括预配置的上行授权资源。
可选地,该终端接收来自该网络设备的至少一个上行授权资源,包括:
该终端接收来自该网络设备发送的配置消息,该配置消息指示该至少一个上行授权资源;或者,
该终端接收来自该网络设备的配置消息和DCI,该配置消息包括该至少一个上行授权资源的配置参数,该DCI指示该至少一个上行授权资源。
可选地,该配置消息为无线资源控制(radio resource control,RRC)信令。
应理解,本申请实施例中,该至少一个上行授权资源可以都是动态上行授权资源,也可以都是预配置的上行授权资源,还可以在该至少一个上行授权资源为多个上行授权资源时,该多个上行授权资源包括预配置的上行授权资源和动态上行授权资源,本申请实施例对此并不作任何限定。
应理解,本申请实施例中,并不对S310和S320的先后顺序进行限定。
S330,该终端根据该第一上行授权资源的重复次数和该一个或者多个逻辑信道的重复次数参数,确定第一逻辑信道,该第一逻辑信道为重复次数参数满足该第一上行授权资源的重复次数要求的逻辑信道。
可选地,该至少一个上行授权资源包括该第一上行授权资源。
可选地,当该重复次数参数包括最小重复次数时,该第一逻辑信道为重复次数参数满足该第一上行授权资源的重复次数要求的逻辑信道可以理解为该第一逻辑信道的最小重复次数小于或者等于该第一上行授权资源的重复次数。
具体而言,该终端接收到该消息A和该第一上行授权资源,该终端的物理(PHY)层会向媒体接入控制(MAC)层指示该第一上行授权资源的重复次数,可选地,该重复次数可以包含在物理层向MAC层指示的上行信息(uplink information,UL)中,MAC层根据每个逻辑信道的最小重复次数与该第一上行授权资源的重复次数进行对比,确定该第一逻辑信道。
例如,该网络设备配置的逻辑信道与重复次数参数的对应关系如表1所示,该上行授权资源与上行调度参数的对应关系如表3或者表4所示,该第一上行授权资源可以的索引可以为UL Grant Config index 1,其对应的重复次数为K m+1,MAC层确定该LCH1的最小重复次数K 1大于K m+1,则MAC层可以确定该LCH1的重复次数参数不满足该第一上行授权资源的重复次数要求。
又例如,MAC层确定该LCH2的最小重复次数K 2小于K m+1,则MAC层可以确定该LCH2的重复次数参数满足该第一上行授权资源的重复次数要求,该终端可以确定该LCH2为合适的逻辑信道。
又例如,MAC层确定该LCH3的最小重复次数K 3等于K m+1,则MAC层可以确定该LCH3的重复次数参数也满足该第一上行授权资源的重复次数要求,该终端可以确定该LCH3也为合适的逻辑信道。
应理解,本申请实施例中,该第一逻辑信道为重复次数参数满足该第一上行授权资源的重复次数要求的逻辑信道还可以理解为该第一逻辑信道的最小重复次数小于该第一上行授权资源的重复次数,例如,MAC层确定该LCH3的最小重复次数K 3等于K m+1,则MAC层可以确定该LCH3的重复次数参数不满足该第一上行授权资源的重复次数要求。
可选地,当该重复次数参数包括一个或者多个重复次数时,该第一逻辑信道为重复次数参数满足该第一上行授权资源的重复次数要求的逻辑信道可以理解为该第一逻辑信道的重复次数参数包括该第一上行授权资源的重复次数。
具体而言,该终端接收到该消息A和该第一上行授权资源,该终端的物理层(PHY)会向媒体接入控制层(MAC)发送上行信息(uplink information,UL),MAC层根据每个逻辑信道的一个或者多个重复次数与上行授权资源的重复次数进行对比,确定该第一逻 辑信道。
例如,该网络设备配置的逻辑信道与重复次数参数的对应关系如表2所示,该上行授权资源与上行调度参数的对应关系如表3或者表4所示,该第一上行授权资源可以的索引可以为UL Grant Config index 1,其对应的重复次数为K m+1,MAC层确定该LCH1的重复次数包括K 1、K 2、K 3,且K 1、K 2、K 3与K m+1均不相同,则MAC层可以确定该LCH1的重复次数参数不满足该第一上行授权资源的重复次数要求。
又例如,MAC层确定该LCH2的重复次数包括K 4、K 5,且K 4与K m+1相等,则MAC层可以确定该LCH1的重复次数参数满足该第一上行授权资源的重复次数要求,该终端可以确定该LCH2为合适的逻辑信道。
应理解,MAC在判断逻辑信道是否为合适的逻辑信道时,可以通过“严格”判断K m+1与逻辑信道的一个或者多个重复次数中某一个重复次数相等,则确定该逻辑信道为合适的逻辑信道,还可以“不严格”判断,例如,LCH3的重复次数为K6,K6与K m+1的差值在[a,b]这个区间内,可选地,该差值允许的区间可以通过网络设备发送给终端,则该终端也可以确定该LCH3为合适的逻辑信道。
还应理解,本申请实施例中,该逻辑信道的重复次数参数并不限于以上举例,还可以为其他方式,例如,该逻辑信道的重复次数参数可以为一个区间,若该第一上行授权资源的重复次数在该区间内,则可以确定该逻辑信道为合适的逻辑信道。
还应理解,该终端的PHY层会向MAC层指示该第一上行授权资源的重复次数后,MAC层可以继续向MAC层指示该至少一个上行授权资源中其他上行授权资源的重复次数,MAC层还可以确定满足其他上行授权资源的重复次数要求的逻辑信道。
可选地,该MAC可以确定第一逻辑信道满足多个上行授权资源的重复次数的要求。
可选地,该消息A还包括参数B,该参数B包括该一个或者多个逻辑信道的调度周期参数、调制与编码策略参数、功率信息或者跳频信息中的一种或者多种。
可选地,该参数B包括该一个或者多个逻辑信道的调度周期参数,该调度周期参数包括最大调度周期。
表5示出了一种逻辑信道的索引和最小重复次数、最大调度周期的对应关系。
表5逻辑信道的索引和最小重复次数、最大调度周期的对应关系
Figure PCTCN2019107014-appb-000003
可选地,该第一逻辑信道为重复次数参数满足该第一上行授权资源的重复次数要求,且该参数B满足该第一上行授权资源对应的参数要求的逻辑信道。
可选地,该参数B包括调度周期参数,该调度周期参数为最大调度参数,该参数B满足该第一上行授权资源对应的参数要求的逻辑信道可以理解为该第一逻辑信道的最大调度周期大于或者等于该第一上行授权资源的调度周期。
具体而言,该终端接收到该消息A和该第一上行授权资源,该终端的物理(PHY)层会向媒体接入控制(MAC)层指示该第一上行授权资源的调度周期,可选地,该调度周期可以包含在PHY层向MAC指示的上行信息(uplink information,UL),MAC层根据每个逻辑信道的最大调度周期与该第一上行授权资源的调度周期进行对比,确定该第一逻辑信道。
例如,该网络设备配置的逻辑信道与调度周期参数的对应关系如表5所示,该上行授权资源与上行调度参数的对应关系如表3或者表4所示,该第一上行授权资源可以的索引可以为UL Grant Config index 1,其对应的调度周期为P m+1,MAC层确定该LCH1的最大重复次数P 1大于P m+1,则MAC层可以确定该LCH1的重复次数参数满足该第一上行授权资源的调度周期要求。
可选地,MAC层在确定该LCH1的最小重复次数不满足该第一上行授权资源的重复次数要求,而最大调度周期满足该第一上行授权资源的调度周期要求后,可以确定该LCH1为不合适的逻辑信道。
又例如,MAC层确定该LCH2的最大调度周期P 2大于P m+1,则MAC层可以确定该LCH2的调度周期参数满足该第一上行授权资源的调度周期要求。
可选地,MAC层在确定该LCH2的最小重复次数满足该第一上行授权资源的重复次数要求,而最大调度周期满足该第一上行授权资源的调度周期要求后,可以确定该LCH2为合适的逻辑信道。
又例如,MAC层确定该LCH3的最大调度周期P 3等于P m+1,则MAC层可以确定该LCH3的调度周期参数也满足该第一上行授权资源的重复次数要求。
应理解,本申请实施例中,该第一逻辑信道为调度周期参数满足该第一上行授权资源的调度周期要求的逻辑信道还可以理解为该第一逻辑信道的最大调度周期大于该第一上行授权资源的调度周期。
可选地,该参数B包括该一个或者多个逻辑信道的调度周期参数,该调度周期参数包括一个或者多个调度周期。
表6示出了一种逻辑信道的索引和重复次数、调度周期的对应关系。
表6逻辑信道的索引和重复次数、调度周期的对应关系
Figure PCTCN2019107014-appb-000004
应理解,当调度周期参数包括一个或者多个调度周期时,确定该调度周期参数满足该第一上行授权资源的调度周期要求的逻辑信道的过程与确定该重复次数参数(包括一个或者多个重复次数)满足该第一上行授权资源的重复次数的过程类似,为了简洁,在此不再赘述。可选地,该参数B包括MCS信息、功率信息和跳频信息。
表7示出了一种逻辑信道的索引和MCS信息、功率信息和跳频信息的对应关系。
表7逻辑信道的索引和MCS信息、功率信息和跳频信息的对应关系
Figure PCTCN2019107014-appb-000005
例如,该网络设备配置的逻辑信道与MCS信息、功率信息和跳频信息的对应关系如表7所示,该上行授权资源与上行调度参数的对应关系如表4所示,MAC层可以确定LCH1对应的MCS表格3为该第一上行授权资源的MCS表格1,则MAC层可以确定LCH1的MCS信息满足该第一上行授权资源的MCS要求;
或者,MAC层确定LCH1对应的MCS index3为该第一上行调度参数中的MCS index1,则MAC层可以确定LCH1的MCS信息满足该第一上行授权资源的MCS要求;
或者,MAC层确定LCH1对应的MCS表格对应的target BLER小于或者小于等于该第一上行调度参数中的MCS表格对应的target BLER,则MAC层可以确定LCH1的MCS信息满足该第一上行授权资源的MCS要求。
应理解,不同的MCS表格对应不同的目标误块率,即可靠性达到的标准不同,逻辑信道、流、PPPP或者PPPR的MCS信息满足上行授权资源的MCS要求,也是为了满足 不同业务对于可靠性的需求。
本申请实施例的无线调度的方法,通过网络设备配置逻辑信道、流、PPPP或者PPPR对应的MCS信息,有助于保证终端选择到合适的逻辑信道、流、PPPP或者PPPR,从而有助于满足不同业务对于可靠性的需求。
又例如,MAC层可以确定LCH1对应的功率信息Power offset#3为该第一上行参数中的Power offset#1,则MAC层可以确定LCH1的功率信息满足该第一上行授权资源的功率要求。
应理解,逻辑信道、流、PPPP或者PPPR的功率信息满足上行授权资源的功率要求也是为了满足不同业务对于可靠性的需求,发送功率高,目标接收信噪比提高,解码成功率也会相应提高。
本申请实施例的无线调度的方法,通过网络设备配置逻辑信道、流、PPPP或者PPPR对应的功率信息,有助于保证终端选择到合适的逻辑信道、流、PPPP或者PPPR,从而有助于满足不同业务对于可靠性的需求。
再例如,MAC层可以确定LCH1对应的跳频信息为开启,该第一上行授权资源的跳频信息为开启,则MAC层可以确定LCH1的跳频信息满足该第一上行授权资源的跳频要求。
应理解,逻辑信道、流、PPPP或者PPPR的跳频信息满足上行授权资源的跳频要求也是为了满足不同业务对于可靠性的需求,因为这样可以提高信号的抗干扰和抗衰落能力。
本申请实施例的无线调度的方法,通过网络设备配置逻辑信道、流、PPPP或者PPPR对应的跳频信息,有助于保证终端选择到合适的逻辑信道、流、PPPP或者PPPR,从而有助于满足不同业务对于可靠性的需求。
再例如,MAC层可以确定LCH1待发送数据的数据量大小,例如无线链路控制层协议数据单元(radio link control protocol data unit,RLC PDU)的大小或者考虑加上MAC子头组成的媒体接入控制层协议数据单元(medium access control protocol data unit,MAC PDU)的大小,该第一上行授权资源的TBS与LCH1的待发送数据的数据包较为贴近或者相等,例如第一上行授权资源的TBS为100比特,LCH1的待发送数据量为100比特,LCH2的待发送数据量为200比特,则MAC层可以确定LCH1待发送数据的数据量大小满足第一上行授权资源的TBS要求。
可选地,当该终端同时有多个上行授权资源可以使用或者所述多个上行授权资源对应的PUSCH发送持续时间存在交叠或者部分交叠时,若终端只能使用一个上行授权资源发送时,该终端可以考虑能够通过该上行授权资源发送的待发送数据大小,选择TBS最为匹配的上行授权资源进行发送。
应理解,逻辑信道、流、PPPP或者PPPR的TBS信息满足上行授权资源的TBS要求是为了满足不同业务的数据包大小不同,从而最大化资源利用率。
应理解,上述表5、表6和表7仅仅是示意性的,也可以将表5和表7进行结合,或者将表6和表7进行结合,还可以挑选表5、表6和表7中的一部分信息进行结合,例如,网络设备可以配置逻辑信道与重复次数参数和MCS信息的对应关系,或者,网络设备可以配置逻辑信道与重复次数参数、调度周期参数和功率信息的对应关系,本申请实施例并 不限于以上举例。
应理解,上述举例中MAC判断LCH是否为合适的LCH时,可以只结合重复次数来判断,也可以结合重复次数和参数B中一种或者多种来判断,还可以只结合参数B中的一种或者多种来判断,本申请实施例并不限于以上举例。
S340,该终端使用该第一上行授权资源,向该网络设备发送第一逻辑信道的业务数据。
例如,该网络设备配置了一个UL Grant(例如,UL Grant 1,对应的索引为UL Grant Config index 1),该终端的MAC层可以根据UL Grant 1的上行调度参数和逻辑信道的上行调度参数(A参数,可选地还包括参数B)确定出一个合适的逻辑信道(例如,LCH1),该终端可以使用UL Grant 1,在LCH1上发送数据。
又例如,该网络设备配置了一个或者多个UL Grant(例如,UL Grant 1,对应的索引为UL Grant Config index 1),该终端的MAC层可以根据UL Grant 1的上行调度参数和逻辑信道的上行调度参数(参数A,可选地还包括参数B)确定出多个合适的逻辑信道(例如,LCH1和LCH2),该终端可以使用UL Grant 1,在LCH1和LCH2上发送数据。
应理解,该终端确定出多个逻辑信道为合适的逻辑信道,可以按照逻辑信道的优先级分配资源,发送该多个逻辑信道的数据。
又例如,该网络设备配置了多个UL Grant(例如,UL Grant 1和UL Grant 2),该终端的MAC层可以根据UL Grant 1的上行调度参数和逻辑信道的上行调度参数(参数A,可选地还包括参数B)确定出合适的逻辑信道(例如,LCH1),而根据UL Grant 2的上行调度参数和逻辑信道的上行调度参数(参数A,可选地还包括参数B)没有确定出合适的逻辑信道,则该终端可以使用UL Grant 1,在LCH1上发送数据。
本申请实施例的无线调度的方法,通过配置逻辑信道、流、PPPP或者PPPR到重复次数或者参数B的对应关系,有助于终端选择到合适的逻辑信道、流、PPPP或者PPPR传输业务数据,进而保证了不同业务数据的可靠性及时延要求。
以上结合图5详细得描述本申请实施例的无线调度的方法,该方法300中网络设备可以配置一个或者多个上行授权资源,该终端可以通过上行授权资源的上行调度参数和逻辑信道对应的上行调度参数(参数A,可选地还包括参数B),确定出合适的逻辑信道、流、PPPP或者PPPR,,使用该上行授权资源,在逻辑信道、流、PPPP或者PPPR发送数据。
下面结合图6描述本申请实施例的另一无线调度的方法,该方法中以网络设备配置多个上行授权资源的情况为例进行说明,其中,该终端可以使用的上行授权资源可以为多个。
图6示出了本申请实施例提供的无线调度的方法300的另一示意性流程图,如图6所示,该方法300的执行主体可以是无线调度的装置(例如,终端或用于终端的芯片或装置),该方法300包括:
S311,终端接收来自网络设备的消息B,该消息B用于配置一个或者多个逻辑信道,该消息B包括参数A,该参数A包括该一个或者多个逻辑信道中每个逻辑信道的重复次数参数。
应理解S311与上述S310的过程类似,为了简洁,在此不再赘述。
S321,该终端获取来自该网络设备的第一上行授权资源。
可选地,该终端获取来自该网络设备的第一上行授权资源,包括:
该终端接收来自该网络设备的多个上行授权资源;
该终端从该多个上行授权资源中获取该第一上行授权资源。
可选地,该终端接收来自该网络设备的多个上行授权资源,包括:
该终端接收来自该网络设备的DCI,该DCI指示该多个上行授权资源。
可选地,该终端接收来自该网络设备的多个上行授权资源,包括:
该终端接收来自该网络设备的RAR,该RAR指示该多个上行授权资源。
可选地,该终端接收来自该网络设备的多个上行授权资源,包括:
该终端接收来自该网络设备的配置消息,该配置消息指示多个上行授权资源。
可选地,该配置消息可以指示多个预配置的上行授权资源的起始位置,例如以其中一个预配置的上行授权资源的起始时域位置为参考起始位置,指示一个或者多个时域位置的偏移量,第二个预配置的上行授权资源的起始时域位置为参考起始位置+偏移量1,依次类推,终端从而确定多个上行授权资源的起始位置。
可选地,该终端接收来自网络设备的多个上行授权资源,包括:
该终端接收来自该网络设备的配置消息和DCI,该配置消息包括多个上行授权资源的配置参数,该DCI指示该多个上行授权资源。
可选地,该DCI还可以指示激活的上行授权资源索引,例如001表示激活上行授权资源index#1,010表示激活上行授权资源index#2,又例如该索引可以通过比特地图(bitmap)的形式,其中每个比特位表示对应的上行授权资源,例如第一个比特位表示上行授权index#1,第二个比特位表示上行授权index#2,第三个比特位表示上行授权index#3,则001表示激活上行授权资源index#1,011表示同时激活上行授权资源index#1和上行授权资源index#2。
可选地,该DCI还可以指示多个预配置的上行授权资源的起始位置,例如以其中一个预配置的上行授权资源的起始时域位置为参考起始位置,指示一个或者多个时域位置的偏移量,第二个预配置的上行授权资源的起始时域位置为参考起始位置+偏移量1,依次类推,终端从而确定多个上行授权资源的起始位置。
应理解,本申请实施例中,该多个上行授权资源可以都是动态上行授权资源,也可以都是预配置的上行授权资源,还可以是该多个上行授权资源包括预配置的上行授权资源和动态上行授权资源,本申请实施例对此并不作任何限定。
S331,该终端根据该第一上行授权资源的重复次数和该一个或者多个逻辑信道的重复次数参数,确定第一逻辑信道,该第一逻辑信道为重复次数参数满足该第一上行授权资源的重复次数要求的逻辑信道。
应理解,该终端通过上行授权资源的上行调度参数和逻辑信道与上行调度参数(包括参数A,可选地还包括参数B)的对应关系确定合适的逻辑信道的过程与上述S330中的过程类似,为了简洁,在此不再赘述。
还应理解,上述S330中网络设备可以配置了一个或者多个上行授权资源,而该终端可以使用的上行授权资源可以为其中一个;S331中,网络设备可以配置了多个上行授权资源,则该终端可能存在可以使用多个上行授权资源发送数据的情形:
例如,网络设备配置了UL Grant 1和UL Grant 2,该终端的MAC层可以通过UL Grant 1的上行调度参数和逻辑信道对应的上行调度参数确定出LCH1为合适的逻辑信道,该终端的MAC层也可以通过UL Grant 2的上行调度参数和逻辑信道对应的上行调度参数确定 出LCH1为合适的逻辑信道,此时该终端可以同时使用的上行授权资源为UL Grant 1和UL Grant 2。
又例如,网络设备配置了UL Grant 1和UL Grant 2,该终端的MAC层可以通过UL Grant 1的上行调度参数和逻辑信道对应的上行调度参数确定出LCH1为合适的逻辑信道,该终端的MAC层也可以通过UL Grant 2的上行调度参数和逻辑信道对应的上行调度参数确定出LCH2为合适的逻辑信道,此时该终端可以同时使用的上行授权资源为UL Grant 1和UL Grant 2。
S341,该终端使用该第一上行授权资源,向该网络设备发送第一逻辑信道的业务数据。
可选地,该终端可以使用多个上行授权资源时,该方法300还包括:
该终端从多个可以使用的上行授权资源中确定第一上行授权资源。
可选地,当该终端同时有多个上行授权资源可以使用或者所述多个上行授权资源对应的物理上行共享信道(physical uplink shared channel,PUSCH)发送持续时间存在至少部分交叠时,若终端只能使用一个上行授权资源发送时,该终端可以考虑能够选择重复次数最大的上行授权资源进行发送,若多个上行授权资源的重复次数相同时,终端可以自主选择其中一个上行授权资源或者选择调度周期最短的上行授权资源发送数据,该上行授权资源即为第一上行授权资源。
可选地,当该终端同时有多个上行授权资源可以使用或者所述多个上行授权资源对应的PUSCH发送持续时间存在至少部分交叠时,若终端只能使用一个上行授权资源发送时,该终端可以根据能够选择调度周期最短的上行授权资源进行发送,若多个上行授权资源的调度周期相同时,终端可以自主选择其中一个上行授权资源或者选择重复次数最大的上行授权资源发送数据,该上行授权资源即为第一上行授权资源。
可选地,当该终端同时有多个上行授权资源可以使用或者所述多个上行授权资源对应的PUSCH发送持续时间存在至少部分交叠时,若终端只能使用一个上行授权资源发送时,可以根据所述多个上行授权资源的MCS信息,确定第一上行授权资源,该第一上行授权资源为使用目标误块率更低的MCS表格的上行授权资源,或者该第一上行授权资源为使用MCS index对应的调制等级更低的上行授权资源,若多个上行授权资源的MCS信息相同,终端可以自主选择其中一个上行授权资源或者选择重复次数最大的上行授权资源发送数据,该上行授权资源即为第一上行授权资源。
可选地,当该终端同时有多个上行授权资源可以使用或者所述多个上行授权资源对应的PUSCH发送持续时间存在至少部分交叠时,若终端只能使用一个上行授权资源发送时,可以根据所述多个上行授权资源的功率信息确定第一上行授权资源,该第一上行授权资源为使用发送功率更高的上行授权资源,若多个上行授权资源的功率信息相同,终端可以自主选择其中一个上行授权资源或者选择重复次数最大的上行授权资源发送数据,该上行授权资源即为第一上行授权资源。
可选地,当该终端同时有多个上行授权资源可以使用或者所述多个上行授权资源对应的PUSCH发送持续时间存在至少部分交叠时,若终端只能使用一个上行授权资源发送时,可以根据所述多个上行授权资源的跳频信息确定第一上行授权资源,该第一上行授权资源为开启跳频的上行授权资源,若多个上行授权资源的跳频信息相同,终端可以自主选择其中一个上行授权资源或者选择重复次数最大的上行授权资源发送数据,该上行授权资源即 为第一上行授权资源。
可选地,当该终端同时有多个上行授权资源可以使用或者所述多个上行授权资源对应的PUSCH发送持续时间存在至少部分交叠时,若终端只能使用一个上行授权资源发送时,该终端可以选择RAR指示的上行授权资源进行发送,即该终端不能使用预配置的上行授权资源。
可选地,当该终端同时有多个上行授权资源可以使用,该多个上行授权资源包括预配置的上行授权资源和RAR指示的上行授权资源,当预配置的上行授权资源的PUSCH发送持续时间与RAR指示的上行授权资源的PUSCH发送持续时间不存在交叠时,该终端可以使用预配置的上行授权资源,也可以使用RAR指示的上行授权资源。
应理解,当该终端同时有多个上行授权资源可以使用且该多个上行授权资源为RAR指示多个上行授权资源,若该多个上行授权资源对应的PUSCH发送持续时间不存在交叠,则该终端可以使用所述多个上行授权资源,也可以从该多个上行授权资源中选择一个上行授权资源发送数据,从RAR指示的多个上行授权资源中确定一个上行授权资源的方式可以与上述确定方式相同,也可以是其他确定方式。
还应理解,当该终端同时有多个上行授权资源可以使用且该多个上行授权资源为RAR指示多个上行授权资源,若所述多个上行授权资源对应的PUSCH发送持续时间存在部分交叠,则该终端可以使用上述任意方法选择第一上行资源。
可选地,当该终端同时有多个上行授权资源可以使用或者所述多个上行授权资源对应的PUSCH发送持续时间存在至少部分交叠时,若终端只能使用一个上行授权资源发送时,该终端可以根据所述多个上行授权资源中每个上行授权资源选择的第一逻辑信道中逻辑信道优先级最高或者逻辑信道组优先级最高对应的上行授权资源,该上行授权资源即为第一上行授权资源。
应理解,本申请实施例中,若该终端同时有多个上行授权资源可以使用,该终端从该多个上行授权资源中确定第一上行授权资源的方式并不限于以上举例,还可以由其他方式确定,本申请并对并不作任何限定。
还应理解,本申请实施例中,若该终端同时有多个上行授权资源可以使用,该终端也可以使用该多个上行授权资源中的至少两个上行授权资源发送数据。
例如,对于图1所示的场景而言,RAN110可以向终端130配置逻辑信道的参数A(可选地,还包括参数B),以及第一上行授权资源,终端130可以确定出合适的逻辑信道,并使用该第一上行授权资源,向RAN110发送该逻辑信道的业务数据。
图7示出了本申请实施例提供的无线调度的方法300的另一示意性流程图,如图7所示,该方法300包括:
S312,第一终端接收来自网络设备的消息C,该消息C用于配置一个或者多个逻辑信道,该消息C包括参数A,该参数A包括该一个或者多个逻辑信道中每个逻辑信道的重复次数参数;
S322,该第一终端获取来自该网络设备的第一上行授权资源;
S332,该第一终端根据该第一上行授权资源的重复次数和该一个或者多个逻辑信道的重复次数参数,确定第一逻辑信道,该第一逻辑信道为重复次数参数满足该第一上行授权资源的重复次数要求的逻辑信道。
应理解,S312-S332与上述S310-S330过程类似,或者S312-S332与上述S311-S331类似,为了简洁,在此不加赘述。
S342,该第一终端使用该第一上行授权资源,向第二终端发送该第一逻辑信道的业务数据。
应理解,S340和S341中该终端可以向网络设备发送数据,S342中该终端可以向另一个终端发送数据。
还应理解,上述图5和图6所示的方法可以应用在图1所示的场景1中,图7所示的方法可以应用于图2所示的场景2中。
例如,对于图2所示的场景而言,RAN210可以通过Uu口向终端220配置逻辑信道的参数A(可选地,还包括参数B),以及第一上行授权资源,终端220可以确定出合适的逻辑信道,并使用该第一上行授权资源,通过PC5接口向终端230发送该逻辑信道的业务数据。
本申请实施例的无线调度的方法,通过配置逻辑信道、流、PPPP或者PPPR到参数A和/或参数B的对应关系,有助于终端选择到合适的逻辑信道、流、PPPP或者PPPR传输业务数据,进而保证了不同业务数据的可靠性及时延要求。
图8示出了本申请实施例提供的无线调度的方法400的示意性流程图,如图8所示,该方法400的执行主体可以是无线调度的装置(例如,终端或用于终端的芯片或装置),该方法400包括:
S410,终端接收来自网络设备的消息D,该消息D用于配置一个或者多个逻辑信道,该消息D包括参数C,该参数C包括该一个或者多个逻辑信道中每个逻辑信道对应的上行授权资源的索引。
具体而言,该网络设备可以对一个或者多个逻辑信道中每个逻辑信道配置一个或者多个合适的上行授权资源,并将配置的一个或者多个上行授权资源的索引携带在该消息D中发送给终端。
表8示出一种逻辑信道的索引和上行授权资源索引的对应关系。
表8逻辑信道的索引和上行授权资源索引的对应关系
逻辑信道的索引 上行授权资源的索引
LCH1 UL Grant config{index 1,index2}
LCH2 UL Grant config{index 3,index4}
LCHm UL Grant config{index 7}
应理解,本申请实施例中,该网络设备确定逻辑信道的索引和上行授权资源索引的对应关系的方式可以同方法300中确定方式类似,该网络设备可以根据每一个逻辑信道的最大重复次数参数、最小调度周期参数、MCS信息、功率信息和跳频信息中的一种或者多种,以及多个上行授权资源中每一个上行授权资源的重复次数、调度周期、MCS信息、功率信息和跳频信息中的一种或者多种,确定每一个逻辑信道对应的一个或者多个上行授权资源的索引,具体的确定方式可以和方法300中终端的MAC层确定的方式类似,为了简洁,在此不加赘述。
S420,该终端获取来自该网络设备的第一上行授权资源。
可选地,该终端获取来自该网络设备的第一上行授权资源,包括:
该终端设备接收来自该网络设备的多个上行授权资源;
该终端从该多个上行授权资源中获取该第一上行授权资源。
S430,该终端根据该第一上行授权资源的索引和该参数C,确定第二逻辑信道,该第二逻辑信道对应的一个或者多个上行授权资源的索引包括第一上行授权资源的索引。
具体而言,该终端的在接收到该参数C和该第一上行授权资源后,PHY层可以向MAC层指示该第一上行授权资源的索引,可选地,该第一上行授权资源的索引可以包含在物理层向MAC层指示的发送上行信息(UL),MAC在收到该上行信息后确定该第一上行授权资源的索引,然后根据该参数C确定合适的逻辑信道。
例如,该第一上行授权资源对应的索引为UL Grant config index 3,MAC层通过表8所示的逻辑信道的索引和上行授权资源索引的对应关系,可以确定LCH2为合适的逻辑信道。
S440,该终端使用该第一上行授权资源,向该网络设备发送该第一逻辑信道的业务数据。
可选地,该多个上行授权资源包括随机接入响应RAR指示的上行授权资源和预配置的上行授权资源,该第一上行授权资源为该RAR指示的上行授权资源。
可选地,该第一上行授权资源为重复次数满足条件的上行授权资源。
应理解,当该终端有多个上行授权资源可以使用时,该终端可以从该多个可以使用的上行授权资源中确定该第一上行授权资源,确定的方式与方法300中的方法相同,为了简洁,在此不再赘述。
例如,对于图1所示的场景而言,RAN110可以向终端130配置逻辑信道对应的上行授权资源的索引,以及第一上行授权资源,终端130可以确定出合适的逻辑信道,并使用该第一上行授权资源,向RAN110发送该逻辑信道的业务数据。
图9示出了本申请实施例提供的无线调度的方法400的另一示意性流程图,如图9所示,该方法400包括:
S411,第一终端接收来自网络设备的消息D,该消息D用于配置一个或者多个逻辑信道,该消息D包括参数C,该参数C包括该一个或者多个逻辑信道中每个逻辑信道对应的上行授权资源的索引;
S421,该第一终端获取来自该网络设备的第一上行授权资源;
S431,该第一终端根据该第一上行授权资源的索引和该参数C,确定第一逻辑信道,该第一逻辑信道对应的一个或者多个上行授权资源的索引包括第一上行授权资源的索引。
应理解,S411-S431与S410-S430类似,为了简洁,在此不加赘述。
S441,该第一终端使用该第一上行授权资源,向第二终端发送该第一逻辑信道的业务数据。
例如,对于图2所示的场景而言,RAN210可以通过Uu口向终端220配置逻辑信道对应的上行授权资源的索引,以及第一上行授权资源,终端220可以确定出合适的逻辑信道,并使用该第一上行授权资源,通过PC5接口向终端230发送该逻辑信道的业务数据。
本申请实施例中的无线调度的方法,通过网络设备直接配置逻辑信道、流、PPPP或者PPPR与上行授权资源的索引关系,有助于终端选择到合适的逻辑信道、流、PPPP或 者PPPR传输业务数据,进而保证了不同业务数据的可靠性及时延要求,同时,也可以节省终端选择逻辑信道的开销。
图10示出了本申请实施例提供的无线调度的方法500的示意性流程图,如图10所示,该方法500的执行主体可以是无线调度的装置(例如,终端或用于终端的芯片或装置),该方法500包括:
S510,终端接收来自网络设备的消息E,该消息E用于配置一个或者多个逻辑信道,该消息E包括参数D,该参数D包括该一个或者多个逻辑信道中每个逻辑信道对应的宽带部分分组(bandwidth part group,BWP group)的索引。
具体而言,该网络设备可以对一个或者多个逻辑信道中每个逻辑信道配置一个或者多个合适的宽带部分分组,并将配置的一个或者多个宽带部分分组的索引携带在该消息E中发送给终端。
表9示出一种逻辑信道的索引和宽带部分分组的索引的对应关系。
表9逻辑信道的索引和宽带部分分组索引的对应关系
逻辑信道的索引 宽带部分分组的索引
LCH1 BWP Group{index 1,index2,index3}
LCH2 BWP Group{index 4,index5}
LCHm BWP Group{index 8}
本申请实施例中,网络设备可以配置多个上行授权资源,该多个上行授权资源可以归属同一个宽带部分分组,也可以归属不同的宽带部分分组,对上行授权资源的分组可以有以下两种方式,以BWP Group index 1为例进行说明:
方式一
将重复次数为K 1的上行授权资源放在BWP Group index 1内,或者,将重复次数为K 1且调度周期为P 1的上行授权资源归为BWP Group index 1内。
应理解,还可以将MCS信息、功率信息和跳频信息相同的上行授权资源放在BWP Group index 1内。
方式二
可以将不同重复次数的上行授权资源放在BWP Group index 1内,或者,将不同调度周期的上行授权资源放在BWP Group index 1内。
例如,BWP Group index 1包括UL Grant config index 1和UL Grant config index 2,该UL Grant config index 1的重复次数为K 1和P 1,该UL Grant config index 2的重复次数为K 2和P 2
应理解,本申请实施例中,该网络设备确定逻辑信道的索引和宽带部分分组的对应关系的方式可以同方法300中确定方式类似,该网络设备可以根据每一个逻辑信道的最大重复次数参数、最小调度周期参数、MCS信息、功率信息和跳频信息中的一种或者多种,以及多个上行授权资源中每一个上行授权资源的重复次数、调度周期、MCS信息、功率信息和跳频信息中的一种或者多种,确定每一个逻辑信道对应的一个或者多个上行授权资源的索引,然后将一个或者多个上行授权资源放在不同的宽带部分分组中,为了简洁,在此不加赘述。
S520,该终端获取来自该网络设备的第一上行授权资源。
可选地,该终端获取来自该网络设备的第一上行授权资源,包括:
该终端设备接收来自该网络设备的多个上行授权资源;
该终端从该多个上行授权资源中获取该第一上行授权资源。
S530,该终端根据该第一上行授权资源的索引和该参数D,确定第三逻辑信道,该第三逻辑信道对应的一个或者多个宽带部分分组的索引包括第一上行授权资源的对应的宽带部分分组的索引。
具体而言,该终端的在接收到该参数D和该第一上行授权资源后,PHY层可以向MAC层指示该第一上行授权资源的索引,可选地,该第一上行授权资源的索引可以包含在PHY层向MAC层指示的上行信息(UL),MAC在收到该上行信息后确定该第一上行授权资源的索引所在的宽带部分分组的索引,然后根据该参数D确定合适的逻辑信道。
例如,该第一上行授权资源对应的索引为UL Grant config index 4,该UL Grant config index 4所在的宽带部分分组的索引为BWP Group index 4,MAC层通过表9所示的逻辑信道的索引和宽带部分分组的索引的对应关系,可以确定LCH2为合适的逻辑信道。
S540,该终端使用该第一上行授权资源,向该网络设备发送该第一逻辑信道的业务数据。
可选地,该多个上行授权资源包括随机接入响应RAR指示的上行授权资源和预配置的上行授权资源,该第一上行授权资源为该RAR指示的上行授权资源。
可选地,该第一上行授权资源为重复次数满足条件的上行授权资源。
应理解,当该终端有多个上行授权资源可以使用时,该终端可以从该多个可以使用的上行授权资源中确定该第一上行授权资源,确定的方式与方法300中的方法相同,为了简洁,在此不再赘述。
例如,对于图1所示的场景而言,RAN110可以向终端130配置逻辑信道对应的BWP group的索引,以及第一上行授权资源,终端130可以确定出合适的逻辑信道,并使用该第一上行授权资源,向RAN110发送该逻辑信道的业务数据。
图11示出了本申请实施例提供的无线调度的方法500的另一示意性流程图,如图11所示,该方法500包括:
S511,第一终端接收来自网络设备的消息E,该消息E用于配置一个或者多个逻辑信道,该消息E包括参数D,该参数D包括该一个或者多个逻辑信道中每个逻辑信道对应的BWP group的索引;
S521,该第一终端接收来自该网络设备的第一上行授权资源;
S531,该第一终端根据该第一上行授权资源的索引和该参数D,确定第一逻辑信道,该第一逻辑信道对应的一个或者多个宽带部分分组的索引包括第一上行授权资源的对应的宽带部分分组的索引。
应理解,S511-S531与S510-S530类似,为了简洁,在此不加赘述。
S541,该第一终端使用该第一上行授权资源,向第二终端发送该第一逻辑信道的业务数据。
例如,对于图2所示的场景而言,RAN210可以通过Uu口向终端220配置逻辑信道对应的BWP group的索引,以及第一上行授权资源,终端220可以确定出合适的逻辑信 道,并使用该第一上行授权资源,通过PC5接口向终端230发送该逻辑信道的业务数据。
本申请实施例中的无线调度的方法,通过网络设备直接配置逻辑信道、流、PPPP或者PPPR与上行授权资源的索引关系,有助于终端选择到合适的逻辑信道、流、PPPP或者PPPR传输业务数据,进而保证了不同业务数据的可靠性及时延要求,同时,也可以节省终端选择逻辑信道的开销。
以上,结合图5至图11对本申请实施提供的无线调度的方法进行了详细地说明。以下,结合附图对本申请实施例提供的无线调度的装置做详细说明。
本申请实施例还提供用于实现以上任一种方法的装置。例如,提供一种装置,包括用以实现以上任一种方法中终端所执行的各个步骤的单元(或手段)。再如,还提供另一种装置,包括用以实现以上任一种方法中网络设备所执行的各个步骤的单元(或手段)。
图12示出了本申请实施例提供的无线调度的装置600的示意性框图,如图12所示,该无线调度的装置600可以包括接收单元610、获取单元620、确定单元630和发送单元640。
在一种可能的设计中,该无线调度的装置可以为上述方法300至方法500中的终端,或者配置于终端中的芯片。
具体地,接收单元610,用于接收来自网络设备的第一消息,该第一消息用于配置逻辑信道,该第一消息包括第一参数,该第一参数包括该逻辑信道的重复次数参数;
获取单元620,用于接收来自该网络设备的第一上行授权资源;
确定单元630,用于根据该第一上行授权资源的重复次数和该逻辑信道的重复次数参数,确定第一逻辑信道,该第一逻辑信道为重复次数参数满足该第一上行授权资源的重复次数要求的逻辑信道;
发送单元640,用于使用该第一上行授权资源,发送该第一逻辑信道的业务数据。
可选地,该重复次数参数包括最小重复次数,该第一逻辑信道的最小重复次数小于或者等于该第一上行授权资源的重复次数。
可选地,该重复次数参数包括一个或者多个重复次数,该第一逻辑信道的重复次数参数包括该第一上行授权资源的重复次数。
可选地,该第一消息还包括第二参数,该第二参数包括该逻辑信道的调度周期参数、调制与编码策略参数、功率信息或者跳频信息中的至少一种。
可选地,该第一逻辑信道为重复次数参数满足该第一上行授权资源的重复次数要求,且该第二参数满足该第一上行授权资源对应的参数要求的逻辑信道。
可选地,该第二参数包括调度周期参数,该调度周期参数包括最大调度周期,该第一逻辑信道的最大调度周期大于或者等于该第一上行授权资源的调度周期。
可选地,该第二参数包括调度周期参数,该调度周期参数包括一个或者多个调度周期,该第一逻辑信道的调度周期参数包括该第一上行授权资源的调度周期。
可选地,该接收单元610还用于接收来自所述网络设备的多个上行授权资源;
该获取单元620具体用于:从该多个上行授权资源中获取该第一上行授权资源。
可选地,该多个上行授权资源包括随机接入响应RAR指示的上行授权资源和预配置的上行授权资源,该第一上行授权资源为该RAR指示的上行授权资源。
可选地,该第一上行授权资源为重复次数满足条件的上行授权资源。
可选地,该接收单元610具体用于:
接收来自该网络设备的下行控制信息DCI,该DCI指示上行授权资源;或者,
接收来自该网络设备的随机接入响应RAR,所述RAR指示上行授权资源;或者,
接收来自该网络设备的配置消息,该配置消息指示上行授权资源;或者,
接收该网络设备发送的配置消息和DCI,该配置消息包括上行授权资源的配置参数,该DCI指示该多个上行授权资源。
应理解,无线调度的装置600可对应于根据本申请实施例的无线调度的方法300中的终端,该无线调度的装置600可以包括用于执行无线调度的方法300的终端执行的方法的单元。并且,该无线调度的装置600中的各单元和上述其他操作和/或功能分别为了实现无线调度的方法300的相应流程。各单元执行上述相应步骤的具体过程请参照前文中结合图5至图7的方法实施例的描述,为了简洁,这里不再赘述。
在另一种实现方式中,该接收单元610,用于接收来自网络设备的第一消息,该第一消息用于配置逻辑信道,该第一消息包括第一参数,该第一参数包括该逻辑信道对应的上行授权资源的索引;
获取单元620,还用于获取来自该网络设备的第一上行授权资源;
确定单元630,用于根据该第一上行授权资源的索引和该第一参数,确定第一逻辑信道,该第一逻辑信道对应的上行授权资源的索引包括第一上行授权资源的索引;
发送单元640,用于使用该第一上行授权资源,发送该第一逻辑信道的业务数据。
应理解,无线调度的装置600也可对应于根据本申请实施例的无线调度的方法400中的终端,该无线调度的装置600可以包括用于执行无线调度的方法400的终端执行的方法的单元。并且,该无线调度的装置600中的各单元和上述其他操作和/或功能分别为了实现无线调度的方法400的相应流程。各单元执行上述相应步骤的具体过程请参照前文中结合图8和图9的方法实施例的描述,为了简洁,这里不再赘述。
在另一种实现方式中,接收单元610,用于接收来自网络设备的第一消息,该第一消息用于配置逻辑信道,该第一消息包括第一参数,该第一参数包括该逻辑信道对应的宽带部分分组的索引;
获取单元620,用于获取来自该网络设备的第一上行授权资源;
确定单元630,用于根据该第一上行授权资源的索引和该第一参数,确定第一逻辑信道,该第一逻辑信道对应的宽带部分分组的索引包括第一上行授权资源对应的宽带部分分组的索引;
发送单元640,还用于使用该第一上行授权资源,发送该第一逻辑信道的业务数据。
应理解,无线调度的装置600还可对应于根据本申请实施例的无线调度的方法500中的终端,该无线调度的装置600可以包括用于执行无线调度的方法500的终端执行的方法的单元。并且,该无线调度的装置600中的各单元和上述其他操作和/或功能分别为了实现无线调度的方法500的相应流程。各单元执行上述相应步骤的具体过程请参照前文中结合图10和图11的方法实施例的描述,为了简洁,这里不再赘述。
图13示出了本申请实施例提供的无线调度的装置700的示意性框图,如图13所示,该无线调度的装置700可以包括确定单元710、发送单元720和接收单元730。
在一种可能的设计中,该无线调度的装置可以为上述方法300至方法500中的网络设 备,或者配置于网络设备中的芯片。
具体地,该确定单元710,用于确定一个或者多个逻辑信道的第一参数,该第一参数包括该一个或者多个逻辑信道的重复次数参数;
发送单元720,用于向终端发送第一消息,该第一消息包括该第一参数;
接收单元730,用于在第一逻辑信道上,接收该终端发送的业务数据,该第一逻辑信道由该终端根据该第一参数确定。
可选地,该重复次数参数包括最小重复次数。
可选地,该重复次数参数包括一个或者多个重复次数。
可选地,该确定单元710,还用于确定该一个或者多个逻辑信道的第二参数,该第二参数包括该一个或者多个逻辑信道的调度周期参数、调制与编码策略参数、功率信息或者跳频信息中的至少一种。
可选地,该第二参数包括调度周期参数,该调度周期参数为最大调度周期。
可选地,该第二参数包括调度周期参数,该调度周期参数包括一个或者多个调度周期。
应理解,无线调度的装置700可对应于根据本申请实施例的无线调度的方法300中的网络设备,该无线调度的装置700可以包括用于执行无线调度的方法300的网络设备执行的方法的单元。并且,该无线调度的装置700中的各单元和上述其他操作和/或功能分别为了实现无线调度的方法300的相应流程。各单元执行上述相应步骤的具体过程请参照前文中结合图5至图7的方法实施例的描述,为了简洁,这里不再赘述。
在另一种实现方式中,该确定单元710,用于确定一个或者多个逻辑信道的第一参数,该第一参数包括该一个或者多个逻辑信道中每个逻辑信道对应的上行授权资源的索引;
发送单元720,用于向终端发送第一消息,该第一消息包括该第一参数;
接收单元730,用于在第一逻辑信道上,接收该终端发送的业务数据,该第一逻辑信道由该终端根据该第一参数确定。
应理解,无线调度的装置700可对应于根据本申请实施例的无线调度的方法400中的网络设备,该无线调度的装置700可以包括用于执行无线调度的方法400的网络设备执行的方法的单元。并且,该无线调度的装置700中的各单元和上述其他操作和/或功能分别为了实现无线调度的方法400的相应流程。各单元执行上述相应步骤的具体过程请参照前文中结合图8和图9的方法实施例的描述,为了简洁,这里不再赘述。
在另一种实现方式中,该确定单元710,用于确定一个或者多个逻辑信道的第一参数,该第一参数包括该一个或者多个逻辑信道中每个逻辑信道对应的宽带部分分组的索引;
该发送单元720,用于向终端发送第一消息,该第一消息包括该第一参数;
接收单元730,用于在第一逻辑信道上,接收该终端发送的业务数据,该第一逻辑信道由该终端根据该第一参数确定。
应理解,无线调度的装置700可对应于根据本申请实施例的无线调度的方法500中的网络设备,该无线调度的装置700可以包括用于执行无线调度的方法500的网络设备执行的方法的单元。并且,该无线调度的装置700中的各单元和上述其他操作和/或功能分别为了实现无线调度的方法500的相应流程。各单元执行上述相应步骤的具体过程请参照前文中结合图10和图11的方法实施例的描述,为了简洁,这里不再赘述。
图14示出了本申请实施例提供的终端的结构示意图,其可以为以上实施例中的终端, 用于实现以上实施例中终端的操作。如图14所示,该终端包括:天线810、射频部分820、信号处理部分830。天线810与射频部分820连接。在下行方向上,射频部分820通过天线810接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分830进行处理。在上行方向上,信号处理部分830对终端的信息进行处理,并发送给射频部分820,射频部分820对终端的信息进行处理后经过天线810发送给网络设备。
信号处理部分830可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。可选的,以上用于终端的装置可以位于该调制解调子系统。
调制解调子系统可以包括一个或多个处理元件831,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件832和接口电路833。存储元件832用于存储数据和程序,但用于执行以上方法中终端所执行的方法的程序可能不存储于该存储元件832中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路833用于与其它子系统通信。以上用于终端的装置可以位于调制解调子系统,该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端执行的方法。
在又一种实现中,终端实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现成可编程门阵列(field programmable gate array,FPGA),或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端执行的部分或全部步骤;也可以以第二 种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
图15示出了本申请实施例提供的网络设备的结构示意图,其可以为上述实施例中的网络设备,用于实现以上实施例中网络设备的操作。如图15所示,该网络设备包括:天线901、射频装置902、基带装置903。天线901与射频装置902连接。在上行方向上,射频装置902通过天线901接收终端发送的信息,将终端发送的信息发送给基带装置903进行处理。在下行方向上,基带装置903对终端的信息进行处理,并发送给射频装置902,射频装置902对终端的信息进行处理后经过天线201发送给终端。
基带装置903可以包括一个或多个处理元件9031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置903还可以包括存储元件9032和接口9033,存储元件9032用于存储程序和数据;接口9033用于与射频装置902交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置903,例如,以上用于网络设备的装置可以为基带装置903上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
图16示出了本申请实施例提供的网络设备的另一结构示意图,其可以为上述实施例中的网络设备,用于实现以上实施例中网络设备的操作。
如图16所示,该网络设备包括:处理器1010,存储器1020,和接口1030,处理器1010、存储器1020和接口1030信号连接。
以上无线调度的装置600可以位于该网络设备中,且各个单元的功能可以通过处理器1010调用存储器1020中存储的程序来实现。即,以上无线调度的装置600包括存储器和处理器,存储器用于存储程序,该程序被处理器调用,以执行以上方法实施例中的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU。或者以上各个单元的功能可以通过配置成实施以上方法的一个或多个集成电路来实现。例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。或者,可以结合以上实现方式。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读解释存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述实施例中的方法。
上述各个装置实施例中的终端与网络设备可以与方法实施例中的终端或者网络设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该接收单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其他芯片或者装置发送信号的接口电路。
本申请实施例还提供了一种通信系统,该通信系统包括:上述终端,和/或,上述网络设备。
在本申请实施例中,应注意,本申请实施例上述的方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请中出现的术语“上行”和“下行”,用于在特定场景描述数据/信息传输的方向,比如,“上行”方向一般是指数据/信息从终端向网络侧传输的方向,或者分布式单元向集中式单元传输的方向,“下行”方向一般是指数据/信息从网络侧向终端传输的方向,或者集中式单元向分布式单元传输的方向,可以理解,“上行”和“下行”仅用于描述数据/信息的传输方向,该数据/信息传输的具体起止的设备都不作限定。
在本申请中可能出现的对各种消息/信息/设备/网元/系统/装置/动作/操作/流程/概念等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
本申请实施例中CU和DU的架构不限于5G NR gNB,还可以应用在LTE基站划分为CU和DU的场景;CU还可以进一步划分为CP和UP两部分。可选的,当为LTE基站时,所述协议层不包含SDAP层。
本申请实施例描述的网络架构以及业务场景是为了便于读者清楚理解本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品可以包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁盘)、光介质(例如,DVD)、或者半导体 介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (43)

  1. 一种无线调度的方法,其特征在于,包括:
    接收来自网络设备的第一消息,所述第一消息包括逻辑信道的重复次数参数;
    获取来自所述网络设备的第一上行授权资源;
    根据所述第一上行授权资源的重复次数和所述逻辑信道的重复次数参数,确定第一逻辑信道,所述第一逻辑信道为重复次数参数满足所述第一上行授权资源的重复次数要求的逻辑信道;
    使用所述第一上行授权资源,发送所述第一逻辑信道的业务数据。
  2. 根据权利要求1所述的方法,其特征在于,所述重复次数参数包括最小重复次数,所述第一逻辑信道的最小重复次数小于或者等于所述第一上行授权资源的重复次数。
  3. 根据权利要求1所述的方法,其特征在于,所述重复次数参数包括一个或者多个重复次数,所述第一逻辑信道的重复次数参数包括所述第一上行授权资源的重复次数。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一消息还包括以下参数的一种或多种:
    逻辑信道的调度周期参数、调制与编码策略参数、功率信息或者跳频信息。
  5. 根据权利要求4所述的方法,其特征在于,所述第一逻辑信道为所述第一消息中全部或部分参数满足所述第一上行授权资源对应的参数要求的逻辑信道。
  6. 根据权利要求5所述的方法,其特征在于,所述第一消息包括调度周期参数,所述调度周期参数包括最大调度周期,所述第一逻辑信道的最大调度周期大于或者等于所述第一上行授权资源的调度周期。
  7. 根据权利要求5所述的方法,其特征在于,所述第一消息包括调度周期参数,所述调度周期参数包括一个或者多个调度周期,所述第一逻辑信道的调度周期参数包括所述第一上行授权资源的调度周期。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述获取来自所述网络设备的第一上行授权资源,包括:
    接收来自所述网络设备的多个上行授权资源;
    从所述多个上行授权资源中获取所述第一上行授权资源。
  9. 根据权利要求8所述的方法,其特征在于,所述多个上行授权资源包括随机接入响应RAR指示的上行授权资源和预配置的上行授权资源,所述第一上行授权资源为所述RAR指示的上行授权资源。
  10. 根据权利要求8所述的方法,其特征在于,所述第一上行授权资源为重复次数满足条件的上行授权资源。
  11. 一种无线调度的装置,其特征在于,包括:
    接收单元,用于接收来自网络设备的第一消息,所述第一消息包括逻辑信道的重复次数参数;
    获取单元,用于获取来自所述网络设备的第一上行授权资源;
    确定单元,用于根据所述第一上行授权资源的重复次数和所述逻辑信道的重复次数参数,确定第一逻辑信道,所述第一逻辑信道为重复次数参数满足所述第一上行授权资源的重复次数要求的逻辑信道;
    发送单元,用于使用所述第一上行授权资源,发送所述第一逻辑信道的业务数据。
  12. 根据权利要求11所述的装置,其特征在于,所述重复次数参数包括最小重复次数,所述第一逻辑信道的最小重复次数小于或者等于所述第一上行授权资源的重复次数。
  13. 根据权利要求11所述的装置,其特征在于,所述重复次数参数包括一个或者多个重复次数,所述第一逻辑信道的重复次数参数包括所述第一上行授权资源的重复次数。
  14. 根据权利要求11至13中任一项所述的装置,其特征在于,所述第一消息还包括以下参数的一种或多种:
    逻辑信道的调度周期参数、调制与编码策略参数、功率信息或者跳频信息。
  15. 根据权利要求14所述的装置,其特征在于,所述第一逻辑信道为所述第一消息中全部或部分参数满足所述第一上行授权资源对应的参数要求的逻辑信道。
  16. 根据权利要求15所述的装置,其特征在于,所述第一消息包括调度周期参数,所述调度周期参数包括最大调度周期,所述第一逻辑信道的最大调度周期大于或者等于所述第一上行授权资源的调度周期。
  17. 根据权利要求15所述的装置,其特征在于,所述第一消息包括调度周期参数,所述调度周期参数包括一个或者多个调度周期,所述第一逻辑信道的调度周期参数包括所述第一上行授权资源的调度周期。
  18. 根据权利要求11至17中任一项所述的装置,其特征在于,所述接收单元还用于接收来自所述网络设备的多个上行授权资源;
    所述获取单元具体用于:从所述多个上行授权资源中获取所述第一上行授权资源。
  19. 根据权利要求18所述的装置,其特征在于,所述多个上行授权资源包括随机接入响应RAR指示的上行授权资源和预配置的上行授权资源,所述第一上行授权资源为所述RAR指示的上行授权资源。
  20. 根据权利要求18所述的装置,其特征在于,所述第一上行授权资源为重复次数满足条件的上行授权资源。
  21. 一种无线调度的装置,其特征在于,包括:至少一个处理器和接口电路,所述至少一个处理器用于通过所述接口电路与其它装置通信,并执行如权利要求1至10中任一项所述的方法。
  22. 一种无线调度的装置,其特征在于,包括处理器,用于与存储器相连,用于读取并执行所述存储器中存储的程序,以实现如权利要求1至10中任一项所述的方法。
  23. 一种终端,包括如权利要求11至22中任一项所述的装置。
  24. 一种存储介质,其特征在于,包括程序,当所述程序被处理器运行时,如权利要求1至10中任一项所述的方法被执行。
  25. 一种无线调度的方法,其特征在于,包括:
    获取多个上行授权资源,其中所述多个上行授权资源包括预配置的上行授权资源和随机接入响应RAR指示的上行授权资源;
    当所述预配置的上行授权资源的物理上行共享信道PUSCH发送持续时间与所述RAR 指示的上行授权资源的PUSCH发送持续时间不存在交叠时,使用预配置的上行授权资源。
  26. 根据权利要求25所述的方法,其特征在于,还包括:
    使用所述RAR指示的上行授权资源。
  27. 一种无线调度的方法,其特征在于,包括:
    获取多个上行授权资源,其中所述多个上行授权资源包括预配置的上行授权资源和随机接入响应RAR指示的上行授权资源;
    当所述预配置的上行授权资源的物理上行共享信道PUSCH发送持续时间与所述RAR指示的上行授权资源的PUSCH发送持续时间存在交叠时,使用所述RAR指示的上行授权资源。
  28. 根据权利要求27所述的方法,其特征在于,还包括:
    不使用所述预配置的上行授权资源。
  29. 一种无线调度的方法,其特征在于,包括:
    接收来自网络设备的第一消息,该第一消息包括逻辑信道对应的上行授权资源的索引;
    获取来自所述网络设备的第一上行授权资源;
    根据所述第一上行授权资源的索引和所述逻辑信道对应的上行授权资源的索引,确定第一逻辑信道,所述第一逻辑信道对应的上行授权资源的索引包括所述第一上行授权资源的索引。
  30. 根据权利要求29所述的方法,其特征在于,还包括:
    使用所述第一上行授权资源,发送所述第一逻辑信道的业务数据。
  31. 根据权利要求29或30所述的方法,其特征在于,还包括:
    物理层可以向媒体接入控制MAC层指示所述第一上行授权资源的索引。
  32. 根据权利要求31所述的方法,其特征在于,所述第一上行授权资源的索引包含在所述物理层向所述MAC层指示的发送上行信息中。
  33. 一种无线调度的装置,其特征在于,包括:用于执行如权利要求25-32之一所述方法的各个步骤的单元。
  34. 一种无线调度的装置,其特征在于,包括:至少一个处理器和接口电路,所述至少一个处理器用于通过所述接口电路与其它装置通信,并执行如权利要求25-32之一所述的方法。
  35. 一种无线调度的装置,其特征在于,包括处理器,用于与存储器相连,读取并执行所述存储器中存储的程序,以实现如权利要求25-32之一所述的方法。
  36. 一种终端,包括如权利要求33至35中任一项所述的装置。
  37. 一种存储介质,其特征在于,包括程序,当所述程序被处理器运行时,如权利要求25-32之一所述的方法被执行。
  38. 一种无线调度的方法,其特征在于,包括:
    向终端发送第一消息,该第一消息包括逻辑信道对应的上行授权资源的索引;
    向终端发送第一上行授权资源;
    在所述第一上行授权资源上接收所述第一逻辑信道的业务数据,其中所述第一逻辑信道对应的上行授权资源的索引包括所述第一上行授权资源的索引。
  39. 一种无线调度的装置,其特征在于,包括:用于执行如权利要求38所述方法的各个步骤的单元。
  40. 一种无线调度的装置,其特征在于,包括:至少一个处理器和接口电路,所述至少一个处理器用于通过所述接口电路与其它装置通信,并执行如权利要求38所述的方法。
  41. 一种无线调度的装置,其特征在于,包括处理器和存储器,所述处理器用于读取并执行所述存储器中存储的程序,以实现如权利要求38所述的方法。
  42. 一种网络设备,包括如权利要求39至41中任一项所述的装置。
  43. 一种存储介质,其特征在于,包括程序,当所述程序被处理器运行时,如权利要求38所述的方法被执行。
PCT/CN2019/107014 2018-09-21 2019-09-20 无线调度的方法和装置 WO2020057637A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112021005235-6A BR112021005235A2 (pt) 2018-09-21 2019-09-20 método de programação de rádio, aparelho de programação de rádio, meio legível por computador e sistema de comunicação de programação de rádio
EP19863954.4A EP3843489A4 (en) 2018-09-21 2019-09-20 METHOD AND DEVICE FOR WIRELESS PLANNING
AU2019344405A AU2019344405A1 (en) 2018-09-21 2019-09-20 Radio scheduling method and apparatus
US17/207,288 US12004169B2 (en) 2018-09-21 2021-03-19 Radio scheduling method and apparatus
AU2022259771A AU2022259771A1 (en) 2018-09-21 2022-10-26 Radio scheduling method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811107463.2 2018-09-21
CN201811107463.2A CN110944395B (zh) 2018-09-21 2018-09-21 无线调度的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/207,288 Continuation US12004169B2 (en) 2018-09-21 2021-03-19 Radio scheduling method and apparatus

Publications (1)

Publication Number Publication Date
WO2020057637A1 true WO2020057637A1 (zh) 2020-03-26

Family

ID=69888314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107014 WO2020057637A1 (zh) 2018-09-21 2019-09-20 无线调度的方法和装置

Country Status (5)

Country Link
EP (1) EP3843489A4 (zh)
CN (2) CN110944395B (zh)
AU (2) AU2019344405A1 (zh)
BR (1) BR112021005235A2 (zh)
WO (1) WO2020057637A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111328137B (zh) * 2018-12-13 2023-04-07 大唐移动通信设备有限公司 预配置资源的使用方法、装置、网络侧设备及终端
US20240056230A1 (en) * 2020-12-24 2024-02-15 Beijing Xiaomi Mobile Software Co., Ltd. Data retransmission determination method and device
WO2023056626A1 (zh) * 2021-10-09 2023-04-13 Oppo广东移动通信有限公司 零功耗终端的上行数据发送方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100281486A1 (en) * 2009-05-04 2010-11-04 HT mMobile Inc. Enhanced scheduling, priority handling and multiplexing method and system
CN106961741A (zh) * 2017-05-04 2017-07-18 电信科学技术研究院 一种上行资源分配方法和装置
CN107920390A (zh) * 2016-10-10 2018-04-17 展讯通信(上海)有限公司 上行逻辑信道调度方法、装置及用户设备
CN108307505A (zh) * 2017-01-13 2018-07-20 华为技术有限公司 调度方法及相关设备
CN108401302A (zh) * 2017-02-04 2018-08-14 华为技术有限公司 一种资源调度方法、装置及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077331B (zh) * 2013-02-04 2016-03-02 快车科技有限公司 一种数字资源保护方法及相关装置
EP3079317B1 (en) * 2013-12-27 2019-12-11 Huawei Technologies Co., Ltd. Broadcast control bandwidth allocation and data transceiving method and apparatus
US9877141B2 (en) * 2014-06-24 2018-01-23 Telefonaktiebolaget Lm Ericsson (Publ) Management of wireless devices in limited radio coverage
US10419990B2 (en) * 2015-01-16 2019-09-17 Sharp Kabushiki Kaisha Wireless terminals, base stations, communication systems, communication methods, and integrated circuits
CN106455093B (zh) * 2015-08-13 2019-05-24 电信科学技术研究院 一种数据传输方法及装置
US10602529B2 (en) * 2016-04-29 2020-03-24 Ofinno, Llc Resource allocation in a wireless device
EP3301986A1 (en) * 2016-09-30 2018-04-04 Panasonic Intellectual Property Corporation of America Improved uplink resource allocation among different ofdm numerology schemes
CN110249672A (zh) * 2017-01-19 2019-09-17 华为技术有限公司 一种数据传输方法及电子终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100281486A1 (en) * 2009-05-04 2010-11-04 HT mMobile Inc. Enhanced scheduling, priority handling and multiplexing method and system
CN107920390A (zh) * 2016-10-10 2018-04-17 展讯通信(上海)有限公司 上行逻辑信道调度方法、装置及用户设备
CN108307505A (zh) * 2017-01-13 2018-07-20 华为技术有限公司 调度方法及相关设备
CN108401302A (zh) * 2017-02-04 2018-08-14 华为技术有限公司 一种资源调度方法、装置及系统
CN106961741A (zh) * 2017-05-04 2017-07-18 电信科学技术研究院 一种上行资源分配方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3843489A4

Also Published As

Publication number Publication date
AU2022259771A1 (en) 2022-12-01
BR112021005235A2 (pt) 2021-06-15
AU2019344405A1 (en) 2021-04-15
EP3843489A4 (en) 2021-11-24
EP3843489A1 (en) 2021-06-30
US20210212108A1 (en) 2021-07-08
CN113747596A (zh) 2021-12-03
CN110944395B (zh) 2022-02-25
CN110944395A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
US11647538B2 (en) Data transmission method and device, and signal feedback method and device
CN110621075B (zh) 一种传输数据的方法和装置
WO2019242776A1 (zh) 无线通信方法及装置
EP3434061A1 (en) Channel access priority class selection
WO2020151637A1 (zh) 通信方法以及装置
WO2020057637A1 (zh) 无线调度的方法和装置
WO2022074884A1 (ja) 端末、基地局及び通信方法
WO2021179325A1 (zh) 一种数据处理的方法及装置
WO2021022423A1 (zh) 一种传输数据的方法和装置
US12004169B2 (en) Radio scheduling method and apparatus
WO2021072597A1 (en) Method and apparatus for indicating qos flow information
EP4118914A1 (en) Multi trp based scheduling of mixed type traffics
CN113939019A (zh) 通信方法及通信设备
WO2024065762A1 (zh) 无线通信的方法及终端设备
WO2023131067A1 (zh) 一种频域资源配置方法及装置、通信设备
WO2024026739A1 (zh) 通信方法以及终端设备
WO2024031540A1 (zh) 通信方法及通信装置
WO2023197309A1 (zh) 侧行通信的方法及装置
WO2022079955A1 (ja) 端末、基地局及び通信方法
WO2024050780A1 (zh) 用于确定资源分配方式的方法、终端设备和网络设备
WO2024055241A1 (zh) 通信方法、终端设备以及网络设备
WO2023243614A1 (ja) 端末、基地局及び通信方法
WO2022201651A1 (ja) 基地局、端末、及び、通信方法
WO2022239289A1 (ja) 通信装置、及び、通信方法
WO2023231965A1 (zh) 数据传输的方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021005235

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019863954

Country of ref document: EP

Effective date: 20210326

ENP Entry into the national phase

Ref document number: 2019344405

Country of ref document: AU

Date of ref document: 20190920

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021005235

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210319