WO2024050780A1 - 用于确定资源分配方式的方法、终端设备和网络设备 - Google Patents

用于确定资源分配方式的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2024050780A1
WO2024050780A1 PCT/CN2022/117892 CN2022117892W WO2024050780A1 WO 2024050780 A1 WO2024050780 A1 WO 2024050780A1 CN 2022117892 W CN2022117892 W CN 2022117892W WO 2024050780 A1 WO2024050780 A1 WO 2024050780A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
resources
resource allocation
information
terminal
Prior art date
Application number
PCT/CN2022/117892
Other languages
English (en)
French (fr)
Inventor
杜忠达
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/117892 priority Critical patent/WO2024050780A1/zh
Publication of WO2024050780A1 publication Critical patent/WO2024050780A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a method, terminal equipment and network equipment for determining a resource allocation manner.
  • This application provides a method, terminal equipment, and network equipment for determining a resource allocation method.
  • Each aspect involved in this application is introduced below.
  • a method for determining a resource allocation method including: a terminal device determines a first resource allocation method from a plurality of resource allocation methods; wherein the plurality of resource allocation methods include a network device scheduling resources. method and the method in which the terminal device independently selects resources.
  • a method for determining a resource allocation mode including: a network device sending auxiliary information to a terminal device, the auxiliary information being used by the terminal device to determine a first resource allocation from a plurality of resource allocation modes.
  • Method including: a network device sending auxiliary information to a terminal device, the auxiliary information being used by the terminal device to determine a first resource allocation from a plurality of resource allocation modes.
  • the multiple resource allocation methods include a method of network equipment scheduling resources and a method of the terminal equipment autonomously selecting resources.
  • a terminal device including: a determining module configured to determine a first resource allocation manner from a plurality of resource allocation manners; wherein the plurality of resource allocation manners include a manner in which a network device schedules resources and the Describes how the terminal device independently selects resources.
  • a network device including: a sending module configured to send auxiliary information to a terminal device, where the auxiliary information is used by the terminal device to determine a first resource allocation method from a plurality of resource allocation methods; wherein , the multiple resource allocation methods include the method of network equipment scheduling resources and the method of the terminal equipment autonomously selecting resources.
  • a terminal device including a processor, a memory, and a communication interface.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory so that the terminal The device performs some or all of the steps of the method of the first aspect.
  • a network device including a processor, a memory, and a communication interface.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory so that the network The device performs some or all of the steps of the method of the second aspect.
  • embodiments of the present application provide a communication system, which includes the above-mentioned terminal device and/or network device.
  • the system may also include other devices that interact with the terminal device or network device in the solution provided by the embodiments of the present application.
  • embodiments of the present application provide a computer-readable storage medium that stores a computer program, and the computer program causes a terminal device or a network device to execute part of the methods of the above aspects or All steps.
  • embodiments of the present application provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a terminal device or network to The device performs some or all of the steps in the methods of each of the above aspects.
  • the computer program product can be a software installation package.
  • embodiments of the present application provide a chip, which includes a memory and a processor.
  • the processor can call and run a computer program from the memory to implement some or all of the steps described in the methods of the above aspects.
  • the terminal device can determine the first resource allocation method from multiple resource allocation methods. That is to say, the terminal device has the ability to independently determine the resource allocation method, so that the terminal device can use different resource allocation methods to select resources according to different situations, improving the flexibility of resource selection, thereby improving the performance of the wireless communication system.
  • FIG. 1 is an example system architecture diagram of a wireless communication system to which embodiments of the present application can be applied.
  • Figure 2 is an example diagram of a side communication scenario within network coverage.
  • Figure 3 is an example diagram of a sidelink communication scenario with partial network coverage.
  • Figure 4 is an example diagram of a sidelink communication scenario outside network coverage.
  • FIG. 5 is a schematic flowchart of a method for determining a resource allocation method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for determining a resource allocation method according to another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for determining a resource allocation method according to yet another embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for determining a resource allocation method according to yet another embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1 is an example system architecture diagram of a wireless communication system 100 to which embodiments of the present application can be applied.
  • the wireless communication system 100 may include a network device 110 and a terminal device 120.
  • the network device 110 may be a device that communicates with the terminal device 120 .
  • the network device 110 may provide communication coverage for a specific geographical area and may communicate with terminal devices 120 located within the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include one or more network devices 110 and/or other numbers of terminal devices 120 .
  • one or more terminal devices 120 may all be located within the network coverage of the network device 110 , all may be located outside the network coverage of the network device 110 , or part of them may be located within the coverage of the network device 110 Within the range, the other part is located outside the network coverage range of the network device 110, which is not limited in the embodiment of the present application.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the wireless communication system 100 also includes a core network part, or in other words, the wireless communication system 100 may be composed of terminal equipment, network equipment, and a core network.
  • the core network can be connected to one or more network devices, and one or more terminal devices can communicate under the network device.
  • one or more terminal devices can communicate under the same network device.
  • a network device may further include one or more cells.
  • the network device includes multiple cells, one or more terminal devices located in the same cell can share resources in the cell.
  • the terminal equipment in the embodiment of this application may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT) ), remote station, remote terminal, mobile device, user terminal, terminal, wireless communications equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to users, and may be used to connect people, things, and machines, such as handheld devices and vehicle-mounted devices with wireless connection functions.
  • the terminal device in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (Pad), a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device, a virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the UE may be used to act as a base station.
  • a UE may act as a scheduling entity that provides sidelink signals between UEs in V2X or D2D, etc.
  • cell phones and cars use sidelink signals to communicate with each other.
  • Cell phones and smart home devices communicate between each other without having to relay communication signals through base stations.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • the network device may also be called an access network device or a wireless access network device.
  • the network device may be a base station.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
  • radio access network radio access network, RAN node (or device) that connects the terminal device to the wireless network.
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), main station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, access node , wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), radio remote unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit) , AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB, gNB
  • relay station Access point
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and a device that undertakes base station functions in device-to-device D2D, vehicle-to-everything (V2X), machine-to-machine (M2M) communications, and in 6G networks.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device in the embodiment of this application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • gNB can also include AAU.
  • Network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. In the embodiments of this application, the scenarios in which network devices and terminal devices are located are not limited.
  • Sidelink communication refers to communication technology based on sidelinks.
  • Sideline communication may be D2D or V2X, for example.
  • Communication data in traditional cellular systems is received or sent between terminal devices and network devices, while sideline communication supports direct transmission of communication data between terminal devices.
  • sideline communication supports direct transmission of communication data between terminal devices.
  • direct transmission of communication data between terminal devices can have higher spectrum efficiency and lower transmission delay.
  • the Internet of Vehicles system uses side-travel communication technology.
  • side-link communication according to the network coverage of the terminal device, side-link communication can be divided into side-link communication within network coverage, side-link communication with partial network coverage, and side-link communication outside network coverage.
  • FIG 2 is an example diagram of a side communication scenario within network coverage.
  • both terminal devices 120a are within the coverage of the network device 110. Therefore, both terminal devices 120a can receive the configuration signaling of the network device 110 (the configuration signaling in this application can also be replaced with configuration information), and determine the side row configuration according to the configuration signaling of the network device 110. After both terminal devices 120a are configured for sidelink, sidelink communication can be performed on the sidelink link.
  • FIG 3 is an example diagram of a sidelink communication scenario with partial network coverage.
  • the terminal device 120a and the terminal device 120b perform side-line communication.
  • the terminal device 120a is located within the coverage of the network device 110, so the terminal device 120a can receive the configuration signaling of the network device 110 and determine the sidelink configuration according to the configuration signaling of the network device 110.
  • the terminal device 120b is located outside the network coverage and cannot receive the configuration signaling of the network device 110.
  • the terminal device 120b may be configured according to the pre-configuration information and/or the information carried in the physical sidelink broadcast channel (PSBCH) sent by the terminal device 120a located within the network coverage. Determine side row configuration. After both the terminal device 120a and the terminal device 120b perform side-link configuration, side-link communication can be performed on the side-link.
  • PSBCH physical sidelink broadcast channel
  • FIG 4 is an example diagram of a sidelink communication scenario outside network coverage.
  • both terminal devices 120b are located outside the network coverage.
  • both terminal devices 120b can determine the side row configuration according to the preconfiguration information.
  • sidelink communication can be performed on the sidelink link.
  • Some standards or protocols (such as the 3rd Generation Partnership Project (3GPP)) define multiple resource allocation methods, such as multiple resource allocation methods for uplink and downlink communications, and multiple resource allocation methods for sidelink communications. Resource allocation methods, etc.
  • the terminal equipment when the terminal equipment sends an uplink signal on the Uu interface, it basically uses the resource scheduling method of the network equipment to determine (or select) the method for sending the uplink signal.
  • Resources the resources mentioned in this application may also be called wireless resources or transmission resources, such as time-frequency resources
  • the terminal device can independently select resources are limited. Only during random access, the terminal device can use the method of autonomously selecting resources to determine random access resources.
  • the terminal device when using the four-step random access method, can independently choose the resource that carries the random access preamble (preamble); or when using the two-step random access method, the terminal device can independently choose the resource that carries the preamble and the physical Resources of the physical uplink shared channel (PUSCH) unit.
  • preamble the resource that carries the random access preamble
  • PUSCH physical uplink shared channel
  • the way in which the network device schedules resources may include the way in which the network device dynamically schedules resources for the terminal device (referred to as the dynamic scheduling method for short).
  • full dynamic scheduling is generally triggered by the terminal device.
  • the terminal device can send a scheduling request to the network device, and then the network device will respond with a scheduling authorization to the terminal device, so that the terminal device can send uplink signals based on the scheduling authorization.
  • the advantage of the network device dynamically scheduling resources to the terminal device is that once the network device sends a scheduling authorization to the terminal device, the resources associated with the scheduling authorization are exclusively used by the scheduled terminal device, and there is no resource conflict between terminal devices. problem, but this method also has shortcomings, for example, it introduces too long delay on the user plane.
  • the way in which the network device schedules resources may include the way in which the network device preconfigures resources for the terminal device (referred to as the preconfiguration-based resource allocation method).
  • the network device In the uplink direction, the network device can pre-configure some resources for the terminal device, and the terminal device can use the pre-configured resources to send uplink signals.
  • the resource allocation method based on preconfiguration can shorten the user plane delay. However, there is not always data to be sent in the uplink. Therefore, the unused resources among the preconfigured resources are actually wasted.
  • Some standards or protocols (such as 3GPP) define two resource allocation methods for side-link communication (or called side-link communication modes, side-link communication transmission modes, etc.): the first mode and the second mode.
  • resources of the terminal device are scheduled by the network device.
  • the terminal device can send data on the sidelink according to the resources scheduled by the network device.
  • the network device can schedule a single transmission resource for the terminal device, or allocate semi-static transmission resources to the terminal device.
  • This first mode can be applied to scenarios covered by network devices, such as the scenario shown in Figure 2 above.
  • the terminal device 120a is located within the network coverage of the network device 110, so the network device 110 can allocate resources used in the sidelink transmission process to the terminal device 120a.
  • the terminal device can autonomously select one or more resources from the resource pool (RP). Then, the terminal device can perform sidelink transmission according to the selected resources. For example, in the scenario shown in Figure 4, the terminal device 120b is located outside the cell coverage. Therefore, the terminal device 120b can autonomously select resources from the resource pool for sidelink transmission.
  • the terminal device when the terminal device sends a side-link signal through the PC5 interface, it can use the first mode or the second mode to determine the resource for sending the side-link signal.
  • resource allocation methods which resource allocation method is used to determine the resources carrying wireless signals (such as uplink signals, sidelink signals) They are all stipulated by the protocol or determined by the network equipment.
  • the terminal equipment itself does not have the right to make decisions independently. In other words, for a certain wireless signal to be sent, whether the resources carrying the wireless signal should be scheduled by the network device or independently selected by the terminal device is essentially stipulated in the protocol or determined by the network device, and the terminal device itself cannot make the decision.
  • the protocol stipulates that random access resources can be selected independently by the terminal device, while the resources for the terminal device to send other signals are scheduled by the network device.
  • the terminal device cannot decide whether the resource corresponding to a certain signal is scheduled by the network device or selected independently by the terminal device.
  • whether the terminal device adopts the first mode or the second mode to select side-link resources is stipulated by the protocol or the network. For example, if the terminal device is outside the coverage of the network, then the terminal device only The second mode can be used to select side row resources. The terminal device cannot decide whether the resource corresponding to a certain signal is scheduled by the network device or selected independently by the terminal device.
  • the above-mentioned technology has a relatively large background: the coverage area of cellular networks is large, often more than 100 meters, and there are usually at least dozens of users in a cell.
  • users have higher and higher requirements for high transmission rate and large bandwidth.
  • the spectrum of wireless communication systems is getting higher and higher, and the bandwidth will be larger and larger, while the coverage of the network will be reduced accordingly, so that fewer and fewer users will share the large bandwidth within the network coverage.
  • future terahertz cells there may be only a few users in a cell, and the large bandwidth within the network coverage is shared only by these users. In this case, how to improve the performance of the wireless communication system has become a problem that needs to be solved.
  • embodiments of the present application provide a solution for determining a resource allocation method to improve the performance of the wireless communication system.
  • FIG. 5 is a schematic flowchart of a method for determining a resource allocation method provided by an embodiment of the present application.
  • the method shown in FIG. 5 is described from the perspective of interaction between a terminal device and a network device.
  • the terminal device and the network device may be, for example, the terminal device 120 and the network device 110 shown in FIGS. 1 to 4 .
  • the method shown in Figure 5 may include step S510, which step will be described in detail below.
  • step S510 the terminal device determines a first resource allocation method from multiple resource allocation methods.
  • the resources can be used to carry uplink and downlink signals between terminal equipment and network equipment, or can be used to carry sidelink signals between terminal equipment and terminal equipment.
  • Resources can be multi-accessed in various dimensions, such as time domain, frequency domain and code domain.
  • resources may refer to time domain resources, frequency domain resources, code domain resources, etc.
  • the embodiments of this application do not specifically limit the types of resources.
  • the terminal equipment when the terminal equipment sends an uplink signal to the network equipment or a sidelink signal to the terminal equipment, the resources carrying the uplink signal or sidelink signal are obtained through a certain resource allocation method.
  • the multiple resource allocation methods may include a method in which the network device schedules resources and a method in which the terminal device autonomously selects resources.
  • the way in which the network device schedules resources may mean that resources for sending wireless signals (for example, uplink signals or sidelink signals) are scheduled by the network device.
  • the terminal device may send an uplink signal on an uplink or a sidelink signal on a sidelink based on resources scheduled by the network device.
  • the way in which the terminal device autonomously selects resources may mean that the resource for sending the wireless signal is independently selected by the terminal device in the resource pool.
  • the resources determined by the terminal device autonomously selecting resources are the resources selected by the terminal device from the resource pool.
  • the terminal device may send uplink signals on the uplink or send sidelink signals on the sidelink based on autonomously selected resources.
  • the terminal device autonomously selecting resources may mean that the terminal device autonomously selects resources for itself. In some embodiments, the terminal device autonomously selecting resources may mean that the terminal device autonomously selects resources for other terminal devices (such as terminal devices with which it conducts side-line communication).
  • the first resource allocation method is determined by the terminal device from the multiple resource allocation methods mentioned above. After the terminal device determines the first resource allocation mode, the terminal device may determine resources for sending wireless signals according to the first resource allocation mode. In other words, the terminal device can determine (or select) which resource allocation method to use to select resources carrying wireless signals.
  • the terminal device may determine that the first resource allocation mode is the mode in which the network device schedules resources, that is, the terminal device may determine to use the mode in which the network device schedules resources to select resources.
  • the terminal device may determine that the first resource allocation method is a method in which the terminal device independently selects resources, that is, the terminal device may determine to use a method in which the terminal device independently selects resources to select resources, so as to use the selected resources to send wireless signals.
  • the terminal device can determine the first resource allocation method from multiple resource allocation methods. That is to say, the terminal device has the ability to independently determine the resource allocation method, so that the terminal device can use different resource allocation methods to select resources according to different situations, improving the flexibility of resource selection, thereby improving the performance of the wireless communication system.
  • the terminal device may request the network device to perform resource scheduling through a preconfigured wireless channel (for example, an uplink control channel).
  • a preconfigured wireless channel for example, an uplink control channel.
  • the terminal device can send wireless signals on the resources included in the scheduling authorization.
  • the scheduling authorization may also specify a method for sending wireless signals on the resource.
  • the terminal device may send wireless signals on the resource in a manner specified by the scheduling authorization, for example, sending Uplink signal or sidelink signal.
  • the terminal device may send the currently cached information of the terminal device to the network device to trigger subsequent scheduling authorization.
  • the uplink signal can include the currently cached information; or when a terminal device uses resources authorized by scheduling to send sidelink signals, the terminal device can separately send the current cached information to the network device. Cached information, or sent in other signals.
  • the network device may schedule resources in a variety of ways, which are not limited in the embodiments of this application.
  • the way in which the network device schedules resources may include dynamic scheduling and/or semi-static scheduling.
  • the network device In the dynamic scheduling mode, the network device has a corresponding downlink control signaling for each data packet of the terminal device to notify it of the occupied resources and transmission mode.
  • the network device In the semi-static scheduling mode, the network device sends a downlink control signaling once when starting semi-static transmission.
  • the terminal device starts semi-static transmission according to the resources indicated by this downlink control signaling.
  • the terminal device transmits and transmits data packets according to a certain period. Receive until there is another specially formatted downlink control signaling to terminate the semi-static transmission.
  • the resource scheduling method of the network device may also include a resource allocation method based on preconfiguration, etc., as long as the resources carrying the wireless signals that the terminal device needs to send are provided by the network device. It can be scheduled.
  • the terminal device may randomly select resources required for sending wireless signals in the resource pool. For example, if the terminal device has listening capabilities, when the terminal device selects resources in the resource pool, it can obtain the resource set available in the resource pool through listening, and then randomly select a resource from the set to perform wireless signal transmission. Send; if the terminal device does not have the listening capability, the terminal device can directly randomly select a resource in the resource pool to send wireless signals.
  • the resource pool may be preconfigured to the end device.
  • the resource pool may be configured and broadcast by the network device.
  • the terminal device can select the required resources from the resource pool specified by the network device.
  • the network device can notify the terminal device through public or dedicated signaling on which resources the terminal device is allowed to independently select resources for sending wireless signals.
  • the network device when the network device notifies the terminal device of relevant information about the resource pool through public or dedicated signaling, it can also specify certain parameters for sending data in the signaling. These parameters can be one or more sets of parameters. and their combinations, such as power control parameters, modulation and channel numbering parameters, etc.
  • the terminal device can select some of the parameters, for example, the network device allows the terminal device to determine parameters according to specific circumstances.
  • the terminal device can select the first resource using the first resource allocation method, and use the first resource to send the first signal.
  • the resources determined using the first resource allocation method may include uplink communication resources (that is, the first resource is an uplink communication resource).
  • the first signal sent using the first resource may be an uplink signal.
  • the resources determined using the first resource allocation method may include side communication resources (that is, the first resource is a side communication resource).
  • the first signal sent using the first resource may be a side communication resource. line signal.
  • the first signal may be retransmitted in a hybrid automatic retransmission request (HARQ) manner.
  • HARQ hybrid automatic retransmission request
  • the resource allocation method corresponding to the retransmission of the first signal may be the same as the resource allocation method for the previous transmission of the first signal. In some embodiments, the resource allocation method corresponding to the retransmission of the first signal may be different from the resource allocation method for the previous transmission of the first signal. For example, the resource allocation method may be the same as or different from the resource allocation method for the first transmission of the first signal; or the resource allocation method may be the same as or different from the resource allocation method for the last transmission of the first signal.
  • the terminal device can determine the first resource allocation method based on the first information, or randomly select the first resource allocation method. This will be introduced in detail below with reference to specific embodiments.
  • Embodiment 1 The first resource allocation method is determined by the terminal device based on the first information
  • the first information may include local information of the terminal device and/or auxiliary information obtained by the terminal device.
  • the local information of the terminal device may refer to information inside the terminal device, such as information that can be grasped inside the terminal device, or information stored inside the terminal device.
  • the auxiliary information obtained by the terminal device may refer to information obtained by the terminal device from the outside. For example, it may include auxiliary information measured by the terminal device, auxiliary information provided by the network device to the terminal device, and auxiliary information provided by other terminal devices.
  • the local information of the terminal device may include information related to the data packets of the application layer of the terminal device. For example, it may include the size of the data packet that the application layer needs to send, the success rate of previous data packet transmission, the location of the data packet.
  • Required quality of service (QoS) parameters such as allowed delay budget, packet error rate (ratio of discarded packets to total packets), reliability and other information.
  • QoS quality of service
  • the terminal device can also determine the specific parameters for sending the data packet, such as power and bandwidth, based on the above-mentioned local information. wait.
  • the auxiliary information obtained by the terminal device may include information related to the channel where the resources that the terminal device can select are measured, load distribution information located in the same cell (or network device), and other information that can be used to determine the first Information about how resources are allocated.
  • the first information may include one or more of the following information: auxiliary information provided by the network device; measurement results of the first channel by the terminal device, where the first channel belongs to a channel where resources that the terminal device can select are located. ; The load condition of the community where the terminal equipment is located; and the performance evaluation results of the historical resource allocation method used by the terminal equipment, etc.
  • one or more of the auxiliary information may be obtained by the terminal device through measurement, so as to sense the congestion of resources in the cell based on the measurement of the channel.
  • the first information may include a measurement result of the first channel by the terminal device, and the first channel belongs to a channel where resources that the terminal device can select are located. That is to say, the terminal device can determine the first resource allocation method according to the measurement result of the first channel by the terminal device.
  • the terminal device determines the first resource allocation method as a method of scheduling resources by the network device; if the measurement result is that the channel occupancy rate of the first channel is less than or equal to the first threshold, the terminal device determines that the first resource allocation method is a method in which the terminal device independently selects resources.
  • the channel occupancy rate may refer to the occupied ratio of the channel within a certain period of time. For example, if the terminal device measures the channel in 10 time slots and obtains the occupied ratio of the channel bandwidth in a certain time slot, then the channel occupancy rate can be the average of the channel bandwidth occupancy ratio of these 10 time slots.
  • the terminal device after the terminal device obtains the measurement results, it can use the measurement results and other relevant information (collectively referred to as the first information) that can be used to determine the first resource allocation method as the artificial intelligence
  • the input parameters of the algorithm use artificial intelligence algorithms to determine the first resource allocation method from multiple resource allocation methods.
  • the measurement of the first channel by the terminal device may include a predicted amount before transmitting the wireless signal (measured before the signal is transmitted) and a current measurement when the signal is transmitted (measured at the current time when the signal is transmitted).
  • the terminal device performs measurements at the current time when the signal is sent, and can determine whether there is a resource conflict with other terminal devices. If no signals sent by other terminal devices are measured, this can indicate to a certain extent that there is no resource conflict, or that the terminal device that conflicts with the terminal device is relatively far away from the terminal device.
  • the terminal device may choose to retransmit in time, thereby shortening the delay of wireless signal retransmission.
  • the terminal device may choose to perform measurements on the full bandwidth of the network device where it is located to improve measurement accuracy. In some embodiments, the terminal device may choose to perform measurements on part of the bandwidth of the network device where it is located to save resources.
  • the measurement results of the first channel by the terminal device may include: whether other terminal devices are sending signals on the first channel.
  • the embodiments of the present application are not limited to this.
  • the measurement results of the first channel by the terminal device may also include: obtaining the strength, direction, frequency, etc. of these received signals.
  • the terminal device can basically determine the congestion level of the community (or network device where it is located), including the relative position and distance between itself and other terminal devices, thereby helping Choose the first resource allocation method among multiple resource allocation methods.
  • the network device can easily differentiate in other dimensions, such as beams of wireless signals.
  • one or more types of auxiliary information may be provided by the network device.
  • the terminal equipment sharing resources may send wireless signals to the same network device (or cell), so that the network equipment can collect the transmission status of the terminal equipment sharing resources, such as the transmission bandwidth, power and location. wait.
  • the network device can directly provide the auxiliary information to the terminal device, so that the terminal device can use the auxiliary information to help it determine the first resource allocation method from multiple resource allocation methods.
  • the method may further include step S505.
  • the terminal device receives the auxiliary information provided (sent) by the network device.
  • the auxiliary information provided by the network device can help the terminal device make a decision and determine the first resource allocation method from multiple resource allocation methods.
  • the auxiliary information provided by the network device may include one or more of the following information: a threshold for evaluating channel occupancy; information related to resource conflicts between the terminal device and other terminal devices, where the other terminal devices are related to the terminal device.
  • a terminal device that shares resources with the terminal device statistical information of the first channel, which belongs to the channel where the resources that the terminal device can select are located; prediction information of the statistical information of the first channel; statistical information of other terminal devices that share resources with the terminal device Distribution information; and prediction information of distribution information of other terminal devices, etc.
  • the network device may provide the above auxiliary information to the terminal device before the terminal device determines the first resource allocation method. In some embodiments, the network device may provide the above-mentioned auxiliary information to the terminal device before the terminal device sends the first signal or during the process of the terminal device sending the first signal. However, the embodiments of the present application are not limited to this. In some embodiments, the network device may also adopt other methods, such as a periodic or event-triggered method, to provide the above auxiliary information to the terminal device. For example, the event-triggered method may mean that when the above-mentioned auxiliary information changes (such as a major change), the network device provides updated auxiliary information to the terminal device again.
  • these auxiliary information may be provided to the terminal device using high-level signaling (such as radio resource control (radio resource control, RRC) signaling).
  • these auxiliary information may be provided to the terminal device using low-layer signaling (such as layer one/layer two (L1/L2) signaling).
  • the first information may include load conditions of the cell (current cell) where the terminal device is located.
  • the load condition of the cell where the terminal device is located may refer to the number of terminal devices in the cell (or network device) where the terminal device is located.
  • the terminal devices may tend to choose a method of autonomously selecting resources based on the terminal devices. This is because this method can omit the step of resource negotiation between terminal equipment and network equipment, so that wireless signals can be sent quickly; in addition, since the number of terminal equipment in the cell is small, there will basically be no conflicts between terminal equipment. The problem of resource collision or the probability of collision is relatively small, and the transmission reliability of wireless signals can also be guaranteed.
  • the terminal devices may tend to choose a method of scheduling resources based on network devices, because this can avoid mutual interference caused by resource collisions.
  • the determination of the first resource allocation mode may depend on the load of the cell where the terminal device is located, that is, the terminal device may determine the first resource allocation mode according to the load condition of the cell where the terminal device is located.
  • the terminal device determines the first resource allocation method as the method of scheduling resources by the network device; if the load of the cell where the terminal device is located is less than or equal to the second threshold, The terminal device determines that the first resource allocation method is a method in which the terminal device independently selects resources.
  • the first resource allocation method may be determined by the terminal device after processing the first information using an artificial intelligence algorithm. For example, after the terminal device obtains the first information, such as the auxiliary information provided by the network device, the terminal device's measurement information of the channel, the terminal device's local information, etc., the first information can be input to the corresponding artificial intelligence algorithm as a parameter. In the algorithm model, the first resource allocation method is output.
  • the first information such as the auxiliary information provided by the network device, the terminal device's measurement information of the channel, the terminal device's local information, etc.
  • the embodiments of this application do not limit the specific type of artificial intelligence algorithm.
  • it may be a nonlinear machine learning algorithm, a reinforcement learning algorithm, etc.
  • the terminal device may determine the first resource allocation method from multiple resource allocation methods based on one or more of the first information introduced above, or a combination thereof.
  • the terminal device determines the first resource allocation method from multiple resource allocation methods based on the first information, which can ensure that the determined first resource allocation method is more in line with the characteristics of the current wireless communication system and has higher applicability.
  • Embodiment 2 The first resource allocation method is randomly selected by the terminal device
  • the terminal device may determine the first resource allocation method from multiple resource allocation methods according to a certain probability, for example, by randomly selecting.
  • the terminal device may randomly select the first resource allocation method when initially performing uplink synchronization with the network device (for example, the terminal device has just been powered on).
  • the terminal device after the terminal device randomly selects the first resource allocation method, it can evaluate the performance of using the first resource allocation method, so that the first resource allocation method can be subsequently determined from multiple resource allocation methods based on the performance evaluation results of historical resource allocation methods. How resources are allocated.
  • the embodiments of this application do not specifically limit the performance evaluation parameters of the terminal equipment. For example, they may include the delay of signal transmission, whether the signal transmission status is successful or failed, the number of signal retransmissions, etc.
  • the terminal device when the terminal device determines the first resource allocation method from multiple resource allocation methods based on the performance evaluation results of historical resource allocation methods, it can always select the method with better performance. In some embodiments, the terminal device may select a mode with better performance in most cases, and may occasionally select a mode with suboptimal performance.
  • Example 1 The terminal device randomly selects the first resource allocation method
  • FIG. 6 is a schematic flowchart of a method for determining a resource allocation method according to another embodiment of the present application. Referring to Fig. 6, the method of Fig. 6 may include steps S610 to S650.
  • step S610 the terminal device randomly determines a first resource allocation method from multiple resource allocation methods.
  • the terminal device can determine the first resource allocation method from multiple resource allocation methods according to a certain probability.
  • the first resource allocation method is determined to be a method for the network device to schedule resources, or the first resource allocation method is determined to be independently selected by the terminal device. resource way.
  • step S620 the terminal device determines the first resource based on the first resource allocation method, and uses the first resource to send the first signal.
  • step S630 the terminal device evaluates the performance of the first resource allocation method based on feedback from the network device.
  • the terminal device may determine whether the first signal is successfully sent based on feedback from the network device.
  • the terminal device can also learn the specific performance that can be achieved by the first resource allocation method, for example, the signal sending delay, etc.
  • step S640 the terminal device determines the subsequent resource allocation method after randomly trying for a period of time.
  • the terminal device can always choose the mode with better performance; or the terminal device can choose the mode with better performance in most cases, and occasionally choose the mode with suboptimal performance.
  • step S650 the terminal device continues to evaluate the performance of the currently adopted first resource allocation method.
  • step S610 if the performance of the currently adopted first resource allocation method fluctuates greatly, you can return to step S610 and reselect the first resource allocation method again.
  • Example 2 The terminal device determines the first resource allocation method based on channel measurement
  • FIG. 7 is a schematic flowchart of a method for determining a resource allocation method according to yet another embodiment of the present application. Referring to Fig. 7, the method of Fig. 7 may include steps S710 to S750.
  • the terminal device measures the channel where the selectable resource is located. For example, the terminal device can measure the channel occupancy rate of the channel.
  • step S720 the terminal device determines the first resource allocation method based on the channel measurement result.
  • the first resource allocation method is a method in which the terminal device independently selects resources.
  • the measurement result is that the channel occupancy rate of the channel is relatively high, then it can be determined that the first resource allocation method is a method in which the network device schedules resources.
  • step S730 the terminal device determines the first resource based on the first resource allocation method, and uses the first resource to send the first signal.
  • step S740 if the terminal device determines that the first resource allocation method is a method in which the terminal device independently selects resources, then at the time point when the terminal device sends the first signal (for example, wireless frame, subframe, time slot, symbol, etc.), Continue to measure on the bandwidth of the resource you are using to confirm whether there is any conflict with the signals sent by other terminal devices.
  • the first signal for example, wireless frame, subframe, time slot, symbol, etc.
  • step S750 if no conflict occurs or the conflict is not serious, the terminal device waits for feedback from the network device; if the conflict is serious, the terminal device selects whether to retransmit the first signal in a shorter period of time.
  • the terminal device may choose to retransmit the first signal in a shorter period of time, for example, retransmit the first signal immediately or before receiving feedback from the network device.
  • the terminal device may continue to determine the resources for retransmitting the first signal in a manner in which the terminal device independently selects resources.
  • a new resource allocation method for example, a method of resource scheduling by a network device may be used to determine the resources for retransmitting the first signal.
  • Example 3 The terminal device determines the first resource allocation method based on the auxiliary information provided by the network device.
  • FIG. 8 is a schematic flowchart of a method for determining a resource allocation method according to yet another embodiment of the present application. Referring to Fig. 8, the method of Fig. 8 may include steps S810 to S830.
  • step S810 the network device sends auxiliary information to the terminal device.
  • the auxiliary information sent by the network device can be one or more of the following information: the threshold used by the terminal device to determine the level of channel occupancy; the threshold of the conflict severity between the terminal device and the signals sent by other terminal devices; past or Current statistical information about the channel, such as channel occupancy; prediction information of channel statistical information; distribution information of other terminal devices sharing resources within the network equipment (or cell); and prediction information of these distribution information, etc.
  • step S820 the terminal device determines the first resource allocation method according to the auxiliary information provided by the network device.
  • step S830 the terminal device determines the first resource based on the first resource allocation method, and uses the first resource to send the first signal.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 900 shown in FIG. 9 may include a determining module 910.
  • the determining module 910 may be used to determine a first resource allocation method from multiple resource allocation methods; wherein the multiple resource allocation methods include a method of network device scheduling resources and a method of autonomous selection of resources by the terminal device.
  • the first resource allocation method is determined by the terminal device based on the first information.
  • the first information includes local information of the terminal device and/or auxiliary information obtained by the terminal device.
  • the first information includes one or more of the following information: auxiliary information provided by the network device; the measurement result of the first channel by the terminal device, the first channel being selectable by the terminal device The channel where the resource is located; the load condition of the cell where the terminal equipment is located; and the performance evaluation results of the historical resource allocation method adopted by the terminal equipment.
  • the first information includes auxiliary information provided by the network device.
  • the auxiliary information provided by the network device includes one or more of the following information: a threshold for evaluating channel occupancy; a relationship between the terminal device and other terminal devices.
  • Information related to resource conflicts the other terminal devices are terminal devices that share resources with the terminal device; statistical information of the first channel, the first channel belongs to the channel where the resources that the terminal device can select are located; the Prediction information of the statistical information of the first channel; distribution information of the other terminal devices; and prediction information of the distribution information of the other terminal devices.
  • the auxiliary information provided by the network device is provided by the network device in one or more of the following ways: provided to the terminal device before the terminal device determines the first resource allocation method; periodically Provide the property to the terminal device; and provide the terminal device to the terminal device in an event-triggered manner.
  • the first information includes the measurement result of the first channel by the terminal device, and the first channel belongs to a channel where resources that the terminal device can select are located.
  • the determining module 910 is further configured to: if the If the measurement result is that the channel occupancy rate of the first channel is greater than the first threshold, it is determined that the first resource allocation method is the method of scheduling resources by the network device; if the measurement result is the channel occupancy rate of the first channel If it is less than or equal to the first threshold, it is determined that the first resource allocation method is a method in which the terminal device autonomously selects resources.
  • the first information includes the load condition of the cell where the terminal device is located
  • the determining module 910 is further configured to: if the load of the cell where the terminal device is located is greater than a second threshold, determine the first resource allocation.
  • the method is the method in which the network device schedules resources; if the load of the cell where the terminal device is located is less than or equal to the second threshold, it is determined that the first resource allocation method is the method in which the terminal device autonomously selects resources.
  • the first resource allocation method is determined by the terminal device after processing the first information using an artificial intelligence algorithm.
  • the first resource allocation method is randomly selected by the terminal device.
  • the terminal device 900 further includes: a selection module 920, configured to select a first resource using the first resource allocation method; and a sending module 930, configured to send a first signal using the first resource.
  • a selection module 920 configured to select a first resource using the first resource allocation method
  • a sending module 930 configured to send a first signal using the first resource.
  • the first signal is retransmitted using Hybrid Automatic Repeat Request (HARQ), and the resource allocation method for retransmitting the first signal using HARQ is the same as or different from the resource allocation method for first transmission of the first signal. .
  • HARQ Hybrid Automatic Repeat Request
  • the resources determined using the first resource allocation method include one or more of the following resources: uplink communication resources and sidelink communication resources.
  • the network device schedules resources in a manner that includes dynamic scheduling and/or semi-static scheduling.
  • the resources determined by the terminal device autonomously selecting resources are resources selected by the terminal device from a resource pool, wherein the resource pool is configured and broadcast by the network device, or is pre-configured to all terminal devices. of the terminal equipment.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 1000 shown in FIG. 10 may include a sending module 1010.
  • the sending module 1010 may be used to send auxiliary information to the terminal device, where the auxiliary information is used by the terminal device to determine the first resource allocation mode from multiple resource allocation modes; wherein the multiple resource allocation modes include network device scheduling. resources and the terminal device autonomously selects resources.
  • the auxiliary information includes one or more of the following information: a threshold for evaluating channel occupancy; information related to resource conflicts between the terminal device and other terminal devices, and the other terminal devices are related to the terminal device.
  • Terminal devices sharing resources; statistical information of the first channel, which belongs to the channel where the resources that the terminal device can select are located; prediction information of the statistical information of the first channel; distribution of the other terminal devices information; and prediction information of distribution information of other terminal devices.
  • the auxiliary information is provided by the network device in one or more of the following ways: provided to the terminal device before the terminal device determines the first resource allocation method; periodically provided to the terminal device Provided by the device; and provided to the terminal device in an event-triggered manner.
  • the resources determined using the first resource allocation method include one or more of the following resources: uplink communication resources and sidelink communication resources.
  • the network device schedules resources in a dynamic scheduling manner and/or a semi-static scheduling manner.
  • the resources determined by the terminal device autonomously selecting resources are resources selected by the terminal device from a resource pool, wherein the resource pool is configured and broadcast by the network device, or is pre-configured to all terminal devices. of the terminal equipment.
  • Figure 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the dashed line in Figure 11 indicates that the unit or module is optional.
  • the device 1100 can be used to implement the method described in the above method embodiment.
  • Device 1100 may be a chip, terminal device or network device.
  • Apparatus 1100 may include one or more processors 1110.
  • the processor 1110 can support the device 1100 to implement the method described in the foregoing method embodiments.
  • the processor 1110 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Apparatus 1100 may also include one or more memories 1120.
  • the memory 1120 stores a program, which can be executed by the processor 1110, so that the processor 1110 executes the method described in the foregoing method embodiment.
  • the memory 1120 may be independent of the processor 1110 or integrated in the processor 1110 .
  • Device 1100 may also include a transceiver 1130.
  • Processor 1110 may communicate with other devices or chips through transceiver 1130.
  • the processor 1110 can transmit and receive data with other devices or chips through the transceiver 1130 .
  • An embodiment of the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal or network device provided by the embodiments of the present application, and the computer program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • the "instruction" mentioned may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the term "correspondence” can mean that there is a direct correspondence or indirect correspondence between the two, or it can also mean that there is an association between the two, or it can also mean indicating and being instructed, configuring and being configured, etc. relation.
  • predefinition or “preconfiguration” can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be determined by the implementation process of the embodiments of the present application. constitute any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种用于确定资源分配方式的方法、终端设备和网络设备。该方法包括:终端设备从多种资源分配方式中确定第一资源分配方式;其中,多种资源分配方式包括网络设备调度资源的方式和终端设备自主选择资源的方式。本申请实施例中,终端设备能够从多种资源分配方式中确定第一资源分配方式。也就是说,终端设备具有自主确定资源分配方式的能力,使得终端设备能够根据不同情况采用不同的资源分配方式来选择资源,提高资源选择的灵活性,从而提高无线通信系统的性能。

Description

用于确定资源分配方式的方法、终端设备和网络设备 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及一种用于确定资源分配方式的方法、终端设备和网络设备。
背景技术
随着无线通信技术的发展,用户对高传输速率和大带宽的要求越来越高。为了满足用户的要求,无线通信系统的频谱越来越高,而网络的覆盖范围则随之减小,使得网络覆盖范围内共享大带宽的用户也越来越少。这种情况下,如何提高无线通信系统的性能成为需要解决的问题。
发明内容
本申请提供一种用于确定资源分配方式的方法、终端设备和网络设备。下面对本申请涉及的各个方面进行介绍。
第一方面,提供了一种用于确定资源分配方式的方法,包括:终端设备从多种资源分配方式中确定第一资源分配方式;其中,所述多种资源分配方式包括网络设备调度资源的方式和所述终端设备自主选择资源的方式。
第二方面,提供了一种用于确定资源分配方式的方法,包括:网络设备向终端设备发送辅助信息,所述辅助信息用于所述终端设备从多种资源分配方式中确定第一资源分配方式;其中,所述多种资源分配方式包括网络设备调度资源的方式和所述终端设备自主选择资源的方式。
第三方面,提供了一种终端设备,包括:确定模块,用于从多种资源分配方式中确定第一资源分配方式;其中,所述多种资源分配方式包括网络设备调度资源的方式和所述终端设备自主选择资源的方式。
第四方面,提供了一种网络设备,包括:发送模块,用于向终端设备发送辅助信息,所述辅助信息用于所述终端设备从多种资源分配方式中确定第一资源分配方式;其中,所述多种资源分配方式包括网络设备调度资源的方式和所述终端设备自主选择资源的方式。
第五方面,提供了一种终端设备,包括处理器、存储器以及通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述终端设备执行第一方面的方法中的部分或全部步骤。
第六方面,提供了一种网络设备,包括处理器、存储器以及通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述网络设备执行第二方面的方法中的部分或全部步骤。
第七方面,本申请实施例提供了一种通信系统,该系统包括上述的终端设备和/或网络设备。在另一种可能的设计中,该系统还可以包括本申请实施例提供的方案中与该终端设备或网络设备进行交互的其他设备。
第八方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得终端设备或网络设备执行上述各个方面的方法中的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使终端设备或网络设备执行上述各个方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第十方面,本申请实施例提供了一种芯片,该芯片包括存储器和处理器,处理器可以 从存储器中调用并运行计算机程序,以实现上述各个方面的方法中所描述的部分或全部步骤。
本申请实施例中,终端设备能够从多种资源分配方式中确定第一资源分配方式。也就是说,终端设备具有自主确定资源分配方式的能力,使得终端设备能够根据不同情况采用不同的资源分配方式来选择资源,提高资源选择的灵活性,从而提高无线通信系统的性能。
附图说明
图1为可应用本申请实施例的无线通信系统的系统架构示例图。
图2为网络覆盖内的侧行通信的场景示例图。
图3为部分网络覆盖的侧行通信的场景示例图。
图4为网络覆盖外的侧行通信的场景示例图。
图5为本申请一实施例提供的用于确定资源分配方式的方法的流程示意图。
图6为本申请另一实施例提供的用于确定资源分配方式的方法的流程示意图。
图7为本申请又一实施例提供的用于确定资源分配方式的方法的流程示意图。
图8为本申请又一实施例提供的用于确定资源分配方式的方法的流程示意图。
图9为本申请实施例提供的终端设备的结构示意图。
图10为本申请实施例提供的网络设备的结构示意图。
图11为本申请实施例提供的通信装置的示意性结构图。
具体实施方式
通信系统架构
图1是可应用本申请实施例的无线通信系统100的系统架构示例图。该无线通信系统100可以包括网络设备110和终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括一个或多个网络设备110和/或其他数量的终端设备120。针对一个网络设备110,一个或多个终端设备120可以均位于该网络设备110的网络覆盖范围内,也可以均位于该网络设备110的网络覆盖范围外,也可以一部分位于该网络设备110的覆盖范围内,另一部分位于该网络设备110的网络覆盖范围外,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,该无线通信系统100还包括核心网部分,或者说,无线通信系统100可以由终端设备、网络设备和核心网组成。其中,核心网可以连接到一个或者多个网络设备,一个或多个终端设备可以在网络设备下进行通信,例如,一个或多个终端设备在同一个网络设备下进行通信。
在一些实现方式中,一个网络设备进一步可以包括一个或者多个小区。在网络设备包括多个小区的情况下,位于同一小区内的一个或者多个终端设备可以共享该小区内的资源。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统,又如卫星通信系统,等等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户 装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,UE可以用于充当基站。例如,UE可以充当调度实体,其在V2X或D2D等中的UE之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备D2D、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
应理解,本申请中的通信设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
不同网络覆盖下的侧行通信
侧行通信指的是基于侧行链路的通信技术。侧行通信例如可以是D2D或V2X。传统的蜂窝系统中的通信数据在终端设备和网络设备之间进行接收或者发送,而侧行通信支持在终端设备与终端设备之间直接进行通信数据传输。相比于传统的蜂窝通信,终端设备与终端设备直接进行通信数据的传输可以具有更高的频谱效率以及更低的传输时延。例如,车联网系统采用侧行通信技术。
在侧行通信中,根据终端设备所处的网络覆盖的情况,可以将侧行通信分为网络覆盖 内的侧行通信,部分网络覆盖的侧行通信,及网络覆盖外的侧行通信。
图2为网络覆盖内的侧行通信的场景示例图。在图2所示的场景中,两个终端设备120a均处于网络设备110的覆盖范围内。因此,两个终端设备120a均可以接收网络设备110的配置信令(本申请中的配置信令也可替换为配置信息),并根据网络设备110的配置信令确定侧行配置。在两个终端设备120a均进行侧行配置之后,即可在侧行链路上进行侧行通信。
图3为部分网络覆盖的侧行通信的场景示例图。在图3所示的场景中,终端设备120a与终端设备120b进行侧行通信。终端设备120a位于网络设备110的覆盖范围内,因此终端设备120a能够接收到网络设备110的配置信令,并根据网络设备110的配置信令确定侧行配置。终端设备120b位于网络覆盖范围外,无法接收网络设备110的配置信令。在这种情况下,终端设备120b可以根据预配置(pre-configuration)信息和/或位于网络覆盖范围内的终端设备120a发送的物理侧行广播信道(physical sidelink broadcast channel,PSBCH)中携带的信息确定侧行配置。在终端设备120a和终端设备120b均进行侧行配置之后,即可在侧行链路上进行侧行通信。
图4为网络覆盖外的侧行通信的场景示例图。在图4所示的场景中,两个终端设备120b均位于网络覆盖范围外。在这种情况下,两个终端设备120b均可以根据预配置信息确定侧行配置。在两个终端设备120b均进行侧行配置之后,即可在侧行链路上进行侧行通信。
通信系统中的资源分配方式
某些标准或协议(如第三代合作伙伴计划(3rd Generation Partnership Project,3GPP))定义了多种资源分配方式,例如,上下行通信对应的多种资源分配方式、侧行通信对应的多种资源分配方式等。
上下行通信(终端设备与网络设备之间的通信)的场景下,终端设备在Uu接口发送上行信号的时候,基本都是利用网络设备调度资源的方式来确定(或选择)发送该上行信号的资源(本申请提及的资源也可称为无线资源或者传输资源,如时频资源),即发送该上行信号的资源是由网络设备调度的,也可以理解为是由网络设备分配的。而终端设备能够自主选择资源的应用场景有限,只有在随机接入时,终端设备可以利用自主选择资源的方式来确定随机接入资源。例如,采用四步随机接入的方式时,终端设备可以自主选择承载随机接入前导码(preamble)的资源;或者,采用两步随机接入的方式时,终端设备可以自主选择承载preamble和物理上行共享信道(physical uplink shared channel,PUSCH)单元的资源。
在一些实现方式中,网络设备调度资源的方式可以包括网络设备为终端设备动态调度资源的方式(简称为动态调度的方式)。在上行方向上,完全的动态调度一般是由终端设备触发的。比如,在目前的5G系统中,终端设备可以发送调度请求给网络设备,然后网络设备会应答调度授权给终端设备,以便终端设备能够基于调度授权发送上行信号。网络设备向终端设备动态调度资源的好处是,一旦网络设备向终端设备发送了调度授权,该调度授权关联的资源是专门给所调度的终端设备单独使用的,不存在终端设备之间发生资源冲突的问题,不过这种方式也存在缺点,例如,在用户面引入了过长的时延。
在一些实现方式中,网络设备调度资源的方式可以包括网络设备为终端设备预配置资源的方式(简称为基于预配置的资源分配方式)。在上行方向上,网络设备可以为终端设备预配置一些资源,该终端设备可以使用预配置的资源发送上行信号。与动态调度的方式相比,基于预配置的资源分配方式能够缩短用户面的时延,不过上行并不是总有数据需要发送,因此,预配置的资源中不使用的资源其实就浪费了。
某些标准或协议(例如3GPP)定义了两种侧行通信的资源分配方式(或称侧行通信的模式、侧行通信的传输模式等):第一模式和第二模式。
在第一模式下,终端设备的资源是由网络设备调度的。终端设备可以根据网络设备调度的资源在侧行链路上进行数据的发送。网络设备可以为终端设备调度单次传输的资源,也可以为终端设备分配半静态传输的资源。该第一模式可以应用于有网络设备覆盖的场景,如前文图2所示的场景。在图2所示的场景中,终端设备120a位于网络设备110的网络覆盖范围内,因此网络设备110可以为终端设备120a分配侧行传输过程中使用的资源。
在第二模式下,终端设备可以自主在资源池(resource pool,RP)中选取一个或多个资源。然后,终端设备可以根据选择出的资源进行侧行传输。例如,在图4所示的场景中,终端设备120b位于小区覆盖范围外。因此,终端设备120b可以在资源池中自主选取资源进行侧行传输。
侧行通信的场景下,终端设备在PC5接口发送侧行信号的时候,可以采用第一模式或者第二模式来确定发送该侧行信号的资源。
然而,无论在上下行通行的场景还是在侧行通信的场景下,虽然存在有多种资源分配方式,但是采用哪种资源分配方式来确定承载无线信号(比如上行信号、侧行信号)的资源均是由协议规定的,或者是由网络设备确定的,终端设备本身没有自主决策(决定)的权利。换句话说,针对某待发送的无线信号,承载该无线信号的资源应该由网络设备调度还是由终端设备自主选择,实质是协议规定好的或者是由网络设备确定的,终端设备自己不能决策。
以上下行通信的场景为例,协议规定随机接入资源可以由终端设备自主选择,而终端设备发送其他信号的资源则是由网络设备调度。终端设备不能决定某一信号对应的资源是由网络设备调度还是终端设备自主选择。
以侧行通信的场景为例,终端设备采用第一模式还是第二模式进行侧行资源的选取是由协议或者网络规定的,比如,如果终端设备在网络的覆盖范围之外,那么终端设备只能采用第二模式进行侧行资源的选取。终端设备不能决定某一信号对应的资源是由网络设备调度还是终端设备自主选择。
上述的技术有一个比较大的背景是蜂窝网络的覆盖范围较大,往往在百米以上,而一个蜂窝中的用户通常情况下至少有几十个以上。而随着无线通信技术的发展,用户对高传输速率和大带宽的要求越来越高。为了满足用户的要求,无线通信系统的频谱越来越高,带宽会越来越大,而网络的覆盖范围则随之减小,使得网络覆盖范围内共享大带宽的用户也越来越少。比如,在以后的太赫兹蜂窝中,可能一个蜂窝中只有几个用户,网络覆盖范围内的大带宽仅由这几个用户共享。这种情况下,如何提高无线通信系统的性能成为需要解决的问题。
为了解决上述问题,本申请实施例提供一种用于确定资源分配方式的方案,以提高无线通信系统的性能。
图5为本申请实施例提供的用于确定资源分配方式的方法的流程示意图。图5所示的方法是站在终端设备和网络设备交互的角度进行描述的,该终端设备和网络设备例如可以是图1至图4中所示的终端设备120和网络设备110。图5所示的方法可以包括步骤S510,下面对该步骤进行详细介绍。
在步骤S510,终端设备从多种资源分配方式中确定第一资源分配方式。
资源可以用于承载终端设备与网络设备之间的上下行信号,或者可以用于承载终端设备与终端设备之间的侧行信号。
资源可以在各个维度上进行多址接入,比如,在时域、频域和码域等维度上进行多址接入。对应地,资源可以是指时域资源、频域资源、码域资源等,本申请实施例对资源的类型不作具体限定。
对终端设备而言,终端设备向网络设备发送上行信号或者向终端设备发送侧行信号时,承载该上行信号或侧行信号的资源是通过一定的资源分配方式得到的。
能够为终端设备分配资源的资源分配方式有多种,本申请实施例对此并不限定。例如,该多种资源分配方式可以包括网络设备调度资源的方式和终端设备自主选择资源的方式。
网络设备调度资源的方式可以是指,发送无线信号(比如,上行信号或侧行信号)的资源是由网络设备调度的。终端设备可以基于网络设备调度的资源在上行链路上发送上行信号或者在侧行链路上发送侧行信号。
终端设备自主选择资源的方式可以是指,发送无线信号的资源是终端设备在资源池中自主选择的。或者说,采用终端设备自主选择资源的方式确定的资源是终端设备从资源池中选择的资源。终端设备可以基于自主选择的资源在上行链路上发送上行信号或者在侧行链路上发送侧行信号。
在一些实施例中,终端设备自主选择资源可以是指,终端设备自主为自己选择资源。在一些实施例中,终端设备自主选择资源可以是指,终端设备自主为其他终端设备(比如与其进行侧行通信的终端设备)选择资源。
第一资源分配方式是终端设备从上文提及的多种资源分配方式中确定出的。终端设备确定第一资源分配方式后,可以按照第一资源分配方式来确定发送无线信号的资源。换句话说,终端设备可以确定(或选择)使用哪种资源分配方式来选取承载无线信号的资源。
例如,终端设备可以确定第一资源分配方式为网络设备调度资源的方式,即终端设备可以确定使用网络设备调度资源的方式来选取资源。或者,终端设备可以确定第一资源分配方式为终端设备自主选择资源的方式,即终端设备可以确定使用终端设备自主选择资源的方式来选取资源,以利用选取的资源发送无线信号。
本申请实施例中,终端设备能够从多种资源分配方式中确定第一资源分配方式。也就是说,终端设备具有自主确定资源分配方式的能力,使得终端设备能够根据不同情况采用不同的资源分配方式来选择资源,提高资源选择的灵活性,从而提高无线通信系统的性能。
在一些实施例中,终端设备确定第一资源分配方式为网络设备调度资源的方式的情况下,终端设备可以通过预配置的无线信道(比如,上行控制信道),请求网络设备进行资源调度。当终端设备接收到网络设备发送的调度授权后,可以在调度授权中包含的资源上进行无线信号的发送。在一些实施例中,调度授权中还可以规定在该资源上发送无线信号的方式,这种情况下,终端设备可以在该资源上按照调度授权所规定的方式进行无线信号的发送,例如,发送上行信号或侧行信号。
在一些实施例中,采用网络设备调度资源的方式确定承载无线信号的资源的情况下,终端设备可以向网络设备发送终端设备的当前缓存的信息,以触发后续的调度授权。例如,终端设备使用调度授权的资源发送上行信号时,可以在该上行信号中包含当前缓存的信息;或者,终端设备使用调度授权的资源发送侧行信号时,终端设备可以向网络设备单独发送当前缓存的信息,或承载于其他信号中发送。
网络设备调度资源的方式可以包括多种,本申请实施例对此并不限定。示例性地,网络设备调度资源的方式可以包括动态调度的方式和/或半静态调度的方式。动态调度的方式下,网络设备对终端设备的每个数据包都有一个相应的下行控制信令来通知其占用的资源和传输方式。半静态调度的方式下,网络设备在启动半静态传输时发送一次下行控制信令,终端设备根据这个下行控制信令所指示的资源启动半静态传输,终端设备按照一定周期进行数据包的传输和接收,直到有另一个特殊格式的下行控制信令来终止半静态传输。
不过本申请实施例并不限定于此,在一些实施例中,网络设备调度资源的方式还可以包括基于预配置的资源分配方式等,只要承载终端设备需要发送的无线信号的资源是由网络设备调度的即可。
在一些实施例中,终端设备确定第一资源分配方式为终端设备自主选择资源的方式的情况下,终端设备可以在资源池中随机选择发送无线信号所需要的资源。示例性地,如果终端设备具备侦听能力,终端设备在资源池中选择资源时,可以通过侦听的方式获取资源 池中可用的资源集合,然后从该集合中随机选择一个资源进行无线信号的发送;如果终端设备不具备侦听能力,终端设备可以直接在资源池中随机选择一个资源进行无线信号的发送。
本申请实施例对资源池的来源不作具体限定。在一些实施例中,资源池可以是预配置给终端设备的。在一些实施例中,资源池可以是网络设备配置和广播的,这种情况下,可以理解为终端设备可以在网络设备指定的资源池中选择所需要的资源。作为一种具体的实现方式,网络设备可以通过公共或专用的信令通知终端设备,在哪些资源上允许终端设备自主选择资源进行无线信号的发送。
在一些实施例中,网络设备通过公共或专用的信令通知终端设备资源池的相关信息时,还可以在信令中规定发送数据的某些参数,这些参数可以是一套或者多套参数,以及他们的组合,比如功率控制参数,调制和信道编号参数等等。终端设备可以选择其中某些参数,例如在网络设备允许终端设备自己决定的参数上根据具体的情况进行选择。
在一些实施例中,终端设备确定第一资源分配方式后,可以利用第一资源分配方式来选择第一资源,并利用该第一资源发送第一信号。
在一些实施例中,利用第一资源分配方式确定的资源可以包括上行通信资源(即第一资源为上行通信资源),这种情况下,利用第一资源发送的第一信号可以是上行信号。
在一些实施例中,利用第一资源分配方式确定的资源可以包括侧行通行资源(即第一资源为侧行通信资源),这种情况下,利用第一资源发送的第一信号可以是侧行信号。
在一些实施例中,第一信号可以采用混合自动重传请求(hybrid automatic retransmission request,HARQ)的方式进行重传。
在一些实施例中,采用HARQ的方式重传第一信号的情况下,重传第一信号对应的资源分配方式与之前传输该第一信号的资源分配方式可以相同。在一些实施例中,重传第一信号对应的资源分配方式与之前传输该第一信号的资源分配方式可以不同。例如,可以与首次传输第一信号的资源分配方式相同或不同;或者,可以与上一次传输第一信号的资源分配方式相同或不同。
由于存在上述多种资源分配方式,终端设备如何从多种资源分配方式中确定第一资源分配方式是需要进一步讨论的问题。对此,本申请实施例提供的技术方案中,终端设备可以基于第一信息确定第一资源分配方式,或者随机选择第一资源分配方式。下面结合具体实施例对此进行详细介绍。
实施例一:第一资源分配方式是终端设备基于第一信息确定的
本申请实施例对第一信息的具体内容不作限定。示例性地,第一信息可以包括终端设备的本地信息和/或终端设备得到的辅助信息。其中,终端设备的本地信息可以是指终端设备内部的信息,比如终端设备内部能够掌握的信息,或者终端设备内部存储的信息等。终端设备得到的辅助信息可以是指终端设备从外部获取的信息,例如,可以包括终端设备测量得到的辅助信息,网络设备提供给终端设备的辅助信息,以及其他终端设备提供的辅助信息等。
在一些实施例中,终端设备的本地信息可以包括终端设备的应用层的数据包的相关信息,例如,可以包括应用层需要发送的数据包的大小,之前数据包发送的成功率,数据包所要求的服务质量(quality of service,QoS)参数,比如,允许的时延预算、包错误率(丢弃的数据包和总的数据包的比例)、可靠性等信息。如前文所述,在一些实施例中,在网络设备通过公共或专用信令规定某些发送参数的情况下,终端设备还可以根据上述本地信息来确定发送数据包的具体参数,比如功率、带宽等。
在一些实施例中,终端设备得到的辅助信息可以包括终端设备测量能够选择的资源所在的信道的相关信息、位于同一小区(或网络设备)内的负载分布信息、以及其他可以用于确定第一资源分配方式的相关信息。
示例性地,第一信息可以包括以下信息中的一种或多种:网络设备提供的辅助信息;终端设备对第一信道的测量结果,其中第一信道属于终端设备能够选择的资源所在的信道;终端设备所处小区的负载情况;以及终端设备采用的历史资源分配方式的性能评估结果等。
在一些实施例中,辅助信息中的一种或多种可以是由终端设备通过测量获取的,以基于对信道的测量来感受小区中资源的拥挤情况。例如,第一信息可以包括终端设备对第一信道的测量结果,第一信道属于终端设备能够选择的资源所在的信道。也就是说,终端设备可以根据终端设备对第一信道的测量结果确定第一资源分配方式。作为一种实现方式,如果测量结果为第一信道的信道占用率大于第一阈值,终端设备确定第一资源分配方式为网络设备调度资源的方式;如果测量结果为第一信道的信道占用率小于或等于第一阈值,终端设备确定第一资源分配方式为终端设备自主选择资源的方式。其中,信道占用率可以是指在一定时间段内,信道被占用的比率。比如,终端设备在10个时隙内分别对信道进行了测量,得到某个时隙内信道带宽被占用的比率,那么信道占用率可以是这10个时隙信道带宽占用比率的平均值。
不过本申请并不限定于此,在一些实施例中,终端设备获得测量结果后,可以将测量结果以及其他可以用于确定第一资源分配方式的相关信息(统称为第一信息)作为人工智能算法的输入参数,利用人工智能算法从多种资源分配方式中确定第一资源分配方式。
在一些实施例中,终端设备对第一信道的测量可以包括在发送无线信号前的预测量(在发送信号之前测量)和发送信号时的当前测量(在发送信号的当前时间测量)。终端设备在发送信号的当前时间进行测量,可以判断出是否和其他终端设备在资源上有冲突。如果没有测量到其他终端设备发送的信号,这一定程度上可以说明没有资源冲突,或者和该终端设备有冲突的终端设备距离该终端设备比较远。
在一些实施例中,假如终端设备在发送信号的当前时间测量的时候,测量到了比较严重的资源冲突,那么终端设备可以选择及时的重传,从而缩短无线信号重发的时延。
在一些实施例中,终端设备可以选择在所处网络设备的全带宽上进行测量,以提升测量准确性。在一些实施例中,终端设备可以选择在所处网络设备的部分带宽上进行测量,以节省资源。
在一些实施例中,终端设备对第一信道的测量结果可以包括:第一信道上是否有其他终端设备正在发送信号。不过本申请实施例并不限定于此,在一些实施例中,终端设备对第一信道的测量结果还可以包括:获取这些接收到的信号的强度、方向和频度等。通过测量其他终端设备的无线信号的强度、方向和频度等信息,终端设备可以基本判断出所在小区(或者所在网络设备)的拥挤程度,包括自己和其他终端设备的相对方位和远近,从而帮助自己在多种资源分配方式中选择第一资源分配方式。在一些实施例中,只要两个终端设备在方向上有足够的区分,网络设备可以比较容易地在其他维度上,比如无线信号的波束,进行区分。
考虑到终端设备不断测量周边环境会导致终端设备比较耗电,因此,在一些实施例中,辅助信息中的一种或多种可以是由网络设备提供的。这是因为,共享资源的终端设备可能会把无线信号发送给相同的网络设备(或小区),使得网络设备能够收集到共享资源的终端设备的发送情况,比如发送的带宽,功率和所在的方位等。如此一来,网络设备可以直接向终端设备提供这些辅助信息,让终端设备可以借助这些辅助信息来帮助自己从多种资源分配方式中确定第一资源分配方式。
继续参见图5,在图5所示的方法中,在终端设备从多种资源分配方式中确定第一资源分配方式之前,该方法还可以包括步骤S505。在步骤S505,终端设备接收网络设备提供(发送)的辅助信息。网络设备提供的辅助信息可以帮助终端设备进行决策,从多种资源分配方式中确定出第一资源分配方式。
示例性地,网络设备提供的辅助信息可以包括以下信息中的一种或多种:评估信道占 用率的阈值;终端设备与其他终端设备的资源冲突的相关信息,其中,其他终端设备为与该终端设备共享资源的终端设备;第一信道的统计信息,第一信道属于终端设备能够选择的资源所在的信道;第一信道的统计信息的预测信息;与该终端设备共享资源的其他终端设备的分布信息;以及其他终端设备的分布信息的预测信息等。
在一些实施例中,网络设备可以在终端设备确定第一资源分配方式之前将上述辅助信息提供给终端设备。在一些实施例中,网络设备可以在终端设备发送第一信号之前,或者在终端设备发送第一信号的过程中,把上述辅助信息提供给终端设备。不过本申请实施例并不限定于此,在一些实施例中,网络设备还可以采取其他的方式,例如周期性或者事件触发式的方式,将上述辅助信息提供给终端设备。示例性地,事件触发式的方式可以是指上述辅助信息发生了变化(比如较大变化)的时候,网络设备向终端设备再次提供更新的辅助信息。
本申请实施例对网络设备提供辅助信息的方式不作限定。在一些实施例中,这些辅助信息可以采用高层信令(比如,无线资源控制(radio resource control,RRC)信令)的方式提供给终端设备。在一些实施例中,这些辅助信息可以采用低层信令(比如,层一/层二(L1/L2)信令)的方式提供给终端设备。
在一些实施例中,第一信息可以包括终端设备所处小区(当前小区)的负载情况。终端设备所处小区的负载情况可以是指,该终端设备所处小区(或网络设备)内的终端设备的数量。
在一些实施例中,当小区中终端设备的个数较少时,终端设备可以倾向于选择基于终端设备自主选择资源的方式。这是因为,采用这种方式可以省略终端设备和网络设备协商资源的步骤,从而能够快速地进行无线信号的发送;此外,由于小区中终端设备的个数较少,基本不会出现终端设备之间资源碰撞的问题或者出现碰撞的概率比较小,无线信号的传输可靠性也能够得到保证。
在一些实施例中,当小区中终端设备的个数较多时,终端设备可以倾向于选择基于网络设备调度资源的方式,因为这样可以避免因为资源碰撞而导致的相互干扰。
也就是说,第一资源分配方式的确定可以取决于终端设备所处小区的负载,即终端设备可以根据所处小区的负载情况确定第一资源分配方式。作为一种实现方式,如果终端设备所处小区的负载大于第二阈值,终端设备确定第一资源分配方式为网络设备调度资源的方式;如果终端设备所处小区的负载小于或等于第二阈值,终端设备确定第一资源分配方式为终端设备自主选择资源的方式。
在一些实施例中,第一资源分配方式可以是终端设备利用人工智能算法处理第一信息后确定的。示例性地,终端设备获取第一信息后,比如网络设备提供的辅助信息、终端设备对信道的测量信息、终端设备的本地信息等,可以将第一信息作为人工智能算法的参数输入至对应的算法模型中,以输出第一资源分配方式。
本申请实施例对人工智能算法的具体类型不作限定,例如,可以是非线性的机器学习算法、强化学习算法等等。
需要说明的是,终端设备可以基于上述介绍的第一信息中的一种或多种,或者组合来从多种资源分配方式中确定第一资源分配方式。
终端设备基于第一信息从多种资源分配方式中确定第一资源分配方式,能够保证确定的第一资源分配方式更符合当前无线通信系统的特征,适用性较高。
实施例二:第一资源分配方式是终端设备随机选择的
终端设备可以按照一定的概率,例如采用随机选择的方式,从多种资源分配方式中确定第一资源分配方式。
在一些实施例中,终端设备可以在初始与网络设备进行上行同步(比如,终端设备刚开机)的情况下,随机选择第一资源分配方式。
在一些实施例中,终端设备随机选择第一资源分配方式后,可以评估使用该第一资源分配方式的性能,以便后续根据历史资源分配方式的性能评估结果从多种资源分配方式中确定第一资源分配方式。
本申请实施例对终端设备的性能评估参数不作具体限定,例如,可以包括信号发送的时延,信号发送状态为成功还是失败,信号重传的次数等等。
在一些实施例中,终端设备根据历史资源分配方式的性能评估结果从多种资源分配方式中确定第一资源分配方式时,可以总是选择性能比较好的那种方式。在一些实施例中,终端设备可以在大多数情况下选择性能较好的方式,偶尔也可以选择性能次佳的方式。
为了便于理解,下面结合几个具体示例,对本申请实施例的技术方案进行介绍。下面示例是以终端设备向网络设备发送上行信号为例进行介绍的,不过本申请的技术方案也可以应用于终端设备之间发送侧行信号。
示例1:终端设备随机选择第一资源分配方式
图6为本申请另一实施例提供的用于确定资源分配方式的方法的流程示意图。参见图6,图6的方法可以包括步骤S610至步骤S650。
在步骤S610,终端设备随机从多种资源分配方式中确定第一资源分配方式。
终端设备可以按照一定的概率,从多种资源分配方式中确定第一资源分配方式,例如,确定第一资源分配方式为网络设备调度资源的方式,或者确定第一资源分配方式为终端设备自主选择资源的方式。
在步骤S620,终端设备基于第一资源分配方式确定第一资源,并利用第一资源发送第一信号。
在步骤S630,终端设备根据网络设备的反馈,评估第一资源分配方式的性能。
在一些实施例中,终端设备可以根据网络设备的反馈,确定第一信号是否发送成功。
在一些实施例中,如果第一信号发送成功,终端设备还可以获知第一资源分配方式所能达到的具体性能,例如,信号发送的时延等。
在步骤S640,终端设备随机尝试一段时间后,再确定后续的资源分配方式。
比如,终端设备可以总是选择性能较好的那种方式;或者,终端设备可以在大多数情况下选择性能较好的方式,偶尔也可以选择性能次佳的方式。
在步骤S650,终端设备继续评估当前采用的第一资源分配方式的性能。
在一些实施例中,如果当前采用的第一资源分配方式的性能出现较大波动,则可以回到步骤S610,再次重新选择第一资源分配方式。
示例2:终端设备基于信道测量确定第一资源分配方式
图7为本申请又一实施例提供的用于确定资源分配方式的方法的流程示意图。参见图7,图7的方法可以包括步骤S710至步骤S750。
在步骤S710,终端设备测量能够选择的资源所在的信道。例如,终端设备可以测量信道的信道占用率。
在步骤S720,终端设备基于信道的测量结果,确定第一资源分配方式。
例如,测量结果为信道的信道占用率比较低,那么可以确定第一资源分配方式为终端设备自主选择资源的方式。或者,测量结果为信道的信道占用率比较高,那么可以确定第一资源分配方式为网络设备调度资源的方式。
在步骤S730,终端设备基于第一资源分配方式确定第一资源,并利用第一资源发送第一信号。
在步骤S740,如果终端设备确定第一资源分配方式为终端设备自主选择资源的方式,则终端设备在发送第一信号的时间点(比如,无线帧、子帧、时隙、符号等)上,继续在自己使用的资源所在的带宽上进行测量,以确认是否和其他终端设备发送的信号发生了冲突。
在步骤S750,如果没有产生冲突或者冲突不严重,则终端设备等待网络设备的反馈;如果冲突严重,终端设备选择是否在较短时间内重传第一信号。
在一些实施例中,如果冲突严重,终端设备可以选择在较短时间内重传第一信号,例如,立即或还未收到网络设备的反馈前重传第一信号。在一些实施例中,终端设备重传第一信号时,可以继续采用终端设备自主选择资源的方式确定重传第一信号的资源。在一些实施例中,终端设备重传第一信号时,可以采用新的资源分配方式(比如,网络设备调度资源的方式)确定重传第一信号的资源。
示例3:终端设备基于网络设备提供的辅助信息确定第一资源分配方式
图8为本申请又一实施例提供的用于确定资源分配方式的方法的流程示意图。参见图8,图8的方法可以包括步骤S810至步骤S830。
在步骤S810,网络设备向终端设备发送辅助信息。
网络设备发送的辅助信息可以是以下信息中的一种或多种:终端设备用来判断信道占有率高低的阈值;终端设备和其他终端设备发送的信号之间的冲突严重程度的阈值;过去或当前关于信道的统计信息,比如信道占用率;信道的统计信息的预测信息;共享资源的其他终端设备在网络设备(或小区)内的分布信息;以及这些分布信息的预测信息等。
在步骤S820,终端设备根据网络设备提供的辅助信息确定第一资源分配方式。
在步骤S830,终端设备基于第一资源分配方式确定第一资源,并利用第一资源发送第一信号。
上文结合图1至图8,详细描述了本申请的方法实施例,下面结合图9至图11,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图9为本申请实施例提供的终端设备的结构示意图。图9所示的终端设备900可以包括确定模块910。
确定模块910可以用于从多种资源分配方式中确定第一资源分配方式;其中,所述多种资源分配方式包括网络设备调度资源的方式和所述终端设备自主选择资源的方式。
可选地,第一资源分配方式是所述终端设备基于第一信息确定的。
可选地,第一信息包括所述终端设备的本地信息和/或所述终端设备得到的辅助信息。
可选地,第一信息包括以下信息中的一种或多种:网络设备提供的辅助信息;所述终端设备对第一信道的测量结果,所述第一信道属于所述终端设备能够选择的资源所在的信道;所述终端设备所处小区的负载情况;以及所述终端设备采用的历史资源分配方式的性能评估结果。
可选地,第一信息包括网络设备提供的辅助信息,所述网络设备提供的辅助信息包括以下信息中的一种或多种:评估信道占用率的阈值;所述终端设备与其他终端设备的资源冲突的相关信息,所述其他终端设备为与所述终端设备共享资源的终端设备;第一信道的统计信息,所述第一信道属于所述终端设备能够选择的资源所在的信道;所述第一信道的统计信息的预测信息;所述其他终端设备的分布信息;以及所述其他终端设备的分布信息的预测信息。
可选地,网络设备提供的辅助信息是所述网络设备通过以下方式中的一种或多种提供的:在所述终端设备确定所述第一资源分配方式之前向所述终端设备提供;周期性向所述终端设备提供;以及基于事件触发的方式向所述终端设备提供。
可选地,第一信息包括所述终端设备对第一信道的测量结果,所述第一信道属于所述终端设备能够选择的资源所在的信道,所述确定模块910进一步用于:如果所述测量结果为所述第一信道的信道占用率大于第一阈值,确定所述第一资源分配方式为所述网络设备调度资源的方式;如果所述测量结果为所述第一信道的信道占用率小于或等于所述第一阈值,确定所述第一资源分配方式为所述终端设备自主选择资源的方式。
可选地,第一信息包括所述终端设备所处小区的负载情况,所述确定模块910进一步用于:如果所述终端设备所处小区的负载大于第二阈值,确定所述第一资源分配方式为所述网络设备调度资源的方式;如果所述终端设备所处小区的负载小于或等于所述第二阈值,确定所述第一资源分配方式为所述终端设备自主选择资源的方式。
可选地,第一资源分配方式是所述终端设备利用人工智能算法处理所述第一信息后确定的。
可选地,第一资源分配方式是所述终端设备随机选择的。
可选地,终端设备900还包括:选择模块920,用于利用所述第一资源分配方式选择第一资源;发送模块930,用于利用所述第一资源发送第一信号。
可选地,第一信号采用混合自动重传请求HARQ的方式进行重传,采用HARQ的方式重传所述第一信号的资源分配方式与首次传输所述第一信号的资源分配方式相同或不同。
可选地,利用所述第一资源分配方式确定的资源包括以下资源中的一种或多种:上行通信资源、侧行通信资源。
可选地,所述网络设备调度资源的方式包括动态调度的方式和/或半静态调度的方式。
可选地,利用所述终端设备自主选择资源的方式确定的资源是所述终端设备从资源池中选择的资源,其中,所述资源池是网络设备配置和广播的,或者是预配置给所述终端设备的。
图10为本申请实施例提供的网络设备的结构示意图。图10所示的网络设备1000可以包括发送模块1010。
发送模块1010可以用于向终端设备发送辅助信息,所述辅助信息用于所述终端设备从多种资源分配方式中确定第一资源分配方式;其中,所述多种资源分配方式包括网络设备调度资源的方式和所述终端设备自主选择资源的方式。
可选地,辅助信息包括以下信息中的一种或多种:评估信道占用率的阈值;所述终端设备与其他终端设备的资源冲突的相关信息,所述其他终端设备为与所述终端设备共享资源的终端设备;第一信道的统计信息,所述第一信道属于所述终端设备能够选择的资源所在的信道;所述第一信道的统计信息的预测信息;所述其他终端设备的分布信息;以及所述其他终端设备的分布信息的预测信息。
可选地,辅助信息是所述网络设备通过以下方式中的一种或多种提供的:在所述终端设备确定所述第一资源分配方式之前向所述终端设备提供;周期性向所述终端设备提供;以及基于事件触发的方式向所述终端设备提供。
可选地,利用所述第一资源分配方式确定的资源包括以下资源中的一种或多种:上行通信资源、侧行通信资源。
可选地,网络设备调度资源的方式包括动态调度的方式和/或半静态调度的方式。
可选地,利用所述终端设备自主选择资源的方式确定的资源是所述终端设备从资源池中选择的资源,其中,所述资源池是网络设备配置和广播的,或者是预配置给所述终端设备的。
图11是本申请实施例的通信装置的示意性结构图。图11中的虚线表示该单元或模块为可选的。该装置1100可用于实现上述方法实施例中描述的方法。装置1100可以是芯片、终端设备或网络设备。
装置1100可以包括一个或多个处理器1110。该处理器1110可支持装置1100实现前文方法实施例所描述的方法。该处理器1110可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置1100还可以包括一个或多个存储器1120。存储器1120上存储有程序,该程序可以被处理器1110执行,使得处理器1110执行前文方法实施例所描述的方法。存储器1120可以独立于处理器1110也可以集成在处理器1110中。
装置1100还可以包括收发器1130。处理器1110可以通过收发器1130与其他设备或芯片进行通信。例如,处理器1110可以通过收发器1130与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
应理解,本申请中术语“系统”和“网络”可以被可互换使用。另外,本申请使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本申请的实施例中,提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (49)

  1. 一种用于确定资源分配方式的方法,其特征在于,包括:
    终端设备从多种资源分配方式中确定第一资源分配方式;
    其中,所述多种资源分配方式包括网络设备调度资源的方式和所述终端设备自主选择资源的方式。
  2. 根据权利要求1所述的方法,其特征在于,所述第一资源分配方式是所述终端设备基于第一信息确定的。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息包括所述终端设备的本地信息和/或所述终端设备得到的辅助信息。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一信息包括以下信息中的一种或多种:
    网络设备提供的辅助信息;
    所述终端设备对第一信道的测量结果,所述第一信道属于所述终端设备能够选择的资源所在的信道;
    所述终端设备所处小区的负载情况;以及
    所述终端设备采用的历史资源分配方式的性能评估结果。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述第一信息包括网络设备提供的辅助信息,所述网络设备提供的辅助信息包括以下信息中的一种或多种:
    评估信道占用率的阈值;
    所述终端设备与其他终端设备的资源冲突的相关信息,所述其他终端设备为与所述终端设备共享资源的终端设备;
    第一信道的统计信息,所述第一信道属于所述终端设备能够选择的资源所在的信道;
    所述第一信道的统计信息的预测信息;
    所述其他终端设备的分布信息;以及
    所述其他终端设备的分布信息的预测信息。
  6. 根据权利要求4或5所述的方法,其特征在于,所述网络设备提供的辅助信息是所述网络设备通过以下方式中的一种或多种提供的:
    在所述终端设备确定所述第一资源分配方式之前向所述终端设备提供;
    周期性向所述终端设备提供;以及
    基于事件触发的方式向所述终端设备提供。
  7. 根据权利要求2-6中任一项所述的方法,其特征在于,所述第一信息包括所述终端设备对第一信道的测量结果,所述第一信道属于所述终端设备能够选择的资源所在的信道,所述终端设备从多种资源分配方式中确定第一资源分配方式,包括:
    如果所述测量结果为所述第一信道的信道占用率大于第一阈值,所述终端设备确定所述第一资源分配方式为所述网络设备调度资源的方式;
    如果所述测量结果为所述第一信道的信道占用率小于或等于所述第一阈值,所述终端设备确定所述第一资源分配方式为所述终端设备自主选择资源的方式。
  8. 根据权利要求2-7中任一项所述的方法,其特征在于,所述第一信息包括所述终端设备所处小区的负载情况,所述终端设备从多种资源分配方式中确定第一资源分配方式,包括:
    如果所述终端设备所处小区的负载大于第二阈值,所述终端设备确定所述第一资源分配方式为所述网络设备调度资源的方式;
    如果所述终端设备所处小区的负载小于或等于所述第二阈值,所述终端设备确定所述第一资源分配方式为所述终端设备自主选择资源的方式。
  9. 根据权利要求2-8中任一项所述的方法,其特征在于,所述第一资源分配方式是所 述终端设备利用人工智能算法处理所述第一信息后确定的。
  10. 根据权利要求1所述的方法,其特征在于,所述第一资源分配方式是所述终端设备随机选择的。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备利用所述第一资源分配方式选择第一资源;
    所述终端设备利用所述第一资源发送第一信号。
  12. 根据权利要求11所述的方法,其特征在于,所述第一信号采用混合自动重传请求HARQ的方式进行重传,采用HARQ的方式重传所述第一信号的资源分配方式与首次传输所述第一信号的资源分配方式相同或不同。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,利用所述第一资源分配方式确定的资源包括以下资源中的一种或多种:上行通信资源、侧行通信资源。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,所述网络设备调度资源的方式包括动态调度的方式和/或半静态调度的方式。
  15. 根据权利要求1-14中任一项所述的方法,其特征在于,利用所述终端设备自主选择资源的方式确定的资源是所述终端设备从资源池中选择的资源,其中,所述资源池是网络设备配置和广播的,或者是预配置给所述终端设备的。
  16. 一种用于确定资源分配方式的方法,其特征在于,包括:
    网络设备向终端设备发送辅助信息,所述辅助信息用于所述终端设备从多种资源分配方式中确定第一资源分配方式;
    其中,所述多种资源分配方式包括网络设备调度资源的方式和所述终端设备自主选择资源的方式。
  17. 根据权利要求16所述的方法,其特征在于,所述辅助信息包括以下信息中的一种或多种:
    评估信道占用率的阈值;
    所述终端设备与其他终端设备的资源冲突的相关信息,所述其他终端设备为与所述终端设备共享资源的终端设备;
    第一信道的统计信息,所述第一信道属于所述终端设备能够选择的资源所在的信道;
    所述第一信道的统计信息的预测信息;
    所述其他终端设备的分布信息;以及
    所述其他终端设备的分布信息的预测信息。
  18. 根据权利要求16或17所述的方法,其特征在于,所述辅助信息是所述网络设备通过以下方式中的一种或多种提供的:
    在所述终端设备确定所述第一资源分配方式之前向所述终端设备提供;
    周期性向所述终端设备提供;以及
    基于事件触发的方式向所述终端设备提供。
  19. 根据权利要求16-18中任一项所述的方法,其特征在于,利用所述第一资源分配方式确定的资源包括以下资源中的一种或多种:上行通信资源、侧行通信资源。
  20. 根据权利要求16-19中任一项所述的方法,其特征在于,所述网络设备调度资源的方式包括动态调度的方式和/或半静态调度的方式。
  21. 根据权利要求16-20中任一项所述的方法,其特征在于,利用所述终端设备自主选择资源的方式确定的资源是所述终端设备从资源池中选择的资源,其中,所述资源池是网络设备配置和广播的,或者是预配置给所述终端设备的。
  22. 一种终端设备,其特征在于,包括:
    确定模块,用于从多种资源分配方式中确定第一资源分配方式;
    其中,所述多种资源分配方式包括网络设备调度资源的方式和所述终端设备自主选择 资源的方式。
  23. 根据权利要求22所述的终端设备,其特征在于,所述第一资源分配方式是所述终端设备基于第一信息确定的。
  24. 根据权利要求23所述的终端设备,其特征在于,所述第一信息包括所述终端设备的本地信息和/或所述终端设备得到的辅助信息。
  25. 根据权利要求23或24所述的终端设备,其特征在于,所述第一信息包括以下信息中的一种或多种:
    网络设备提供的辅助信息;
    所述终端设备对第一信道的测量结果,所述第一信道属于所述终端设备能够选择的资源所在的信道;
    所述终端设备所处小区的负载情况;以及
    所述终端设备采用的历史资源分配方式的性能评估结果。
  26. 根据权利要求23-25中任一项所述的终端设备,其特征在于,所述第一信息包括网络设备提供的辅助信息,所述网络设备提供的辅助信息包括以下信息中的一种或多种:
    评估信道占用率的阈值;
    所述终端设备与其他终端设备的资源冲突的相关信息,所述其他终端设备为与所述终端设备共享资源的终端设备;
    第一信道的统计信息,所述第一信道属于所述终端设备能够选择的资源所在的信道;
    所述第一信道的统计信息的预测信息;
    所述其他终端设备的分布信息;以及
    所述其他终端设备的分布信息的预测信息。
  27. 根据权利要求25或26所述的终端设备,其特征在于,所述网络设备提供的辅助信息是所述网络设备通过以下方式中的一种或多种提供的:
    在所述终端设备确定所述第一资源分配方式之前向所述终端设备提供;
    周期性向所述终端设备提供;以及
    基于事件触发的方式向所述终端设备提供。
  28. 根据权利要求23-27中任一项所述的终端设备,其特征在于,所述第一信息包括所述终端设备对第一信道的测量结果,所述第一信道属于所述终端设备能够选择的资源所在的信道,所述确定模块进一步用于:
    如果所述测量结果为所述第一信道的信道占用率大于第一阈值,确定所述第一资源分配方式为所述网络设备调度资源的方式;
    如果所述测量结果为所述第一信道的信道占用率小于或等于所述第一阈值,确定所述第一资源分配方式为所述终端设备自主选择资源的方式。
  29. 根据权利要求23-28中任一项所述的终端设备,其特征在于,所述第一信息包括所述终端设备所处小区的负载情况,所述确定模块进一步用于:
    如果所述终端设备所处小区的负载大于第二阈值,确定所述第一资源分配方式为所述网络设备调度资源的方式;
    如果所述终端设备所处小区的负载小于或等于所述第二阈值,确定所述第一资源分配方式为所述终端设备自主选择资源的方式。
  30. 根据权利要求23-29中任一项所述的终端设备,其特征在于,所述第一资源分配方式是所述终端设备利用人工智能算法处理所述第一信息后确定的。
  31. 根据权利要求22所述的终端设备,其特征在于,所述第一资源分配方式是所述终端设备随机选择的。
  32. 根据权利要求22-31中任一项所述的终端设备,其特征在于,还包括:
    选择模块,用于利用所述第一资源分配方式选择第一资源;
    发送模块,用于利用所述第一资源发送第一信号。
  33. 根据权利要求32所述的终端设备,其特征在于,所述第一信号采用混合自动重传请求HARQ的方式进行重传,采用HARQ的方式重传所述第一信号的资源分配方式与首次传输所述第一信号的资源分配方式相同或不同。
  34. 根据权利要求22-33中任一项所述的终端设备,其特征在于,利用所述第一资源分配方式确定的资源包括以下资源中的一种或多种:上行通信资源、侧行通信资源。
  35. 根据权利要求22-34中任一项所述的终端设备,其特征在于,所述网络设备调度资源的方式包括动态调度的方式和/或半静态调度的方式。
  36. 根据权利要求22-35中任一项所述的终端设备,其特征在于,利用所述终端设备自主选择资源的方式确定的资源是所述终端设备从资源池中选择的资源,其中,所述资源池是网络设备配置和广播的,或者是预配置给所述终端设备的。
  37. 一种网络设备,其特征在于,包括:
    发送模块,用于向终端设备发送辅助信息,所述辅助信息用于所述终端设备从多种资源分配方式中确定第一资源分配方式;
    其中,所述多种资源分配方式包括网络设备调度资源的方式和所述终端设备自主选择资源的方式。
  38. 根据权利要求37所述的网络设备,其特征在于,所述辅助信息包括以下信息中的一种或多种:
    评估信道占用率的阈值;
    所述终端设备与其他终端设备的资源冲突的相关信息,所述其他终端设备为与所述终端设备共享资源的终端设备;
    第一信道的统计信息,所述第一信道属于所述终端设备能够选择的资源所在的信道;
    所述第一信道的统计信息的预测信息;
    所述其他终端设备的分布信息;以及
    所述其他终端设备的分布信息的预测信息。
  39. 根据权利要求37或38所述的网络设备,其特征在于,所述辅助信息是所述网络设备通过以下方式中的一种或多种提供的:
    在所述终端设备确定所述第一资源分配方式之前向所述终端设备提供;
    周期性向所述终端设备提供;以及
    基于事件触发的方式向所述终端设备提供。
  40. 根据权利要求37-39中任一项所述的网络设备,其特征在于,利用所述第一资源分配方式确定的资源包括以下资源中的一种或多种:上行通信资源、侧行通信资源。
  41. 根据权利要求37-40中任一项所述的网络设备,其特征在于,所述网络设备调度资源的方式包括动态调度的方式和/或半静态调度的方式。
  42. 根据权利要求37-41中任一项所述的网络设备,其特征在于,利用所述终端设备自主选择资源的方式确定的资源是所述终端设备从资源池中选择的资源,其中,所述资源池是网络设备配置和广播的,或者是预配置给所述终端设备的。
  43. 一种终端设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述终端设备执行如权利要求1-15中任一项所述的方法。
  44. 一种网络设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述网络设备执行如权利要求16-21中任一项所述的方法。
  45. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以使所述装置执行如权利要求1-21中任一项所述的方法。
  46. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-21中任一项所述的方法。
  47. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-21中任一项所述的方法。
  48. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-21中任一项所述的方法。
  49. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-21中任一项所述的方法。
PCT/CN2022/117892 2022-09-08 2022-09-08 用于确定资源分配方式的方法、终端设备和网络设备 WO2024050780A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117892 WO2024050780A1 (zh) 2022-09-08 2022-09-08 用于确定资源分配方式的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117892 WO2024050780A1 (zh) 2022-09-08 2022-09-08 用于确定资源分配方式的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2024050780A1 true WO2024050780A1 (zh) 2024-03-14

Family

ID=90192490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117892 WO2024050780A1 (zh) 2022-09-08 2022-09-08 用于确定资源分配方式的方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2024050780A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615190A (zh) * 2019-04-23 2020-09-01 维沃移动通信有限公司 处理方法及设备
US20220248374A1 (en) * 2021-02-02 2022-08-04 Qualcomm Incorporated User equipment autonomous resource selection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615190A (zh) * 2019-04-23 2020-09-01 维沃移动通信有限公司 处理方法及设备
US20220248374A1 (en) * 2021-02-02 2022-08-04 Qualcomm Incorporated User equipment autonomous resource selection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "On sidelink resource allocation mechanism", 3GPP TSG RAN WG1 MEETING #96BIS, R1-1904494, 3 April 2019 (2019-04-03), pages 1 - 9, XP051707234 *

Similar Documents

Publication Publication Date Title
CN110891314B (zh) 一种通信方法、资源分配方法及装置
WO2024066145A1 (zh) 侧行通信的方法及装置
WO2024026978A1 (zh) 通信方法及终端设备
WO2018082055A1 (zh) 无线网络中的数据传输方法、装置和系统
WO2024036671A1 (zh) 侧行通信的方法及装置
WO2024119660A1 (zh) 用于通信的方法及装置
CN112997433B (zh) 用于harq传输的方法以及通信设备
CN116192337A (zh) 无线通信的方法及装置
WO2022110188A1 (zh) 侧行链路载波管理方法、装置和系统
WO2024152327A1 (zh) 用于通信的方法及装置
JP2022521086A (ja) 送受信デバイス及びスケジューリングデバイス
CN116349259B (zh) 通信方法及装置
WO2024050780A1 (zh) 用于确定资源分配方式的方法、终端设备和网络设备
WO2021155574A1 (zh) 信道处理方法、装置、设备及存储介质
WO2024119479A1 (zh) 通信方法、终端设备以及通信设备
WO2024178548A1 (zh) 通信方法及通信装置
US12101815B2 (en) Communication method and terminal device
WO2024032325A1 (zh) 一种测量方法、装置及计算机可读存储介质
US12041638B2 (en) Method and device for sidelink communication
WO2024174179A1 (zh) 用于通信的方法及终端设备
CN116321483B (zh) 用于通信的方法和终端设备
WO2024098212A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024060187A1 (zh) 用于侧行通信方法以及终端设备
WO2024140600A1 (zh) 通信方法、通信装置及通信系统
WO2024055241A1 (zh) 通信方法、终端设备以及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957752

Country of ref document: EP

Kind code of ref document: A1