WO2023056626A1 - 零功耗终端的上行数据发送方法、装置、设备及存储介质 - Google Patents

零功耗终端的上行数据发送方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023056626A1
WO2023056626A1 PCT/CN2021/122837 CN2021122837W WO2023056626A1 WO 2023056626 A1 WO2023056626 A1 WO 2023056626A1 CN 2021122837 W CN2021122837 W CN 2021122837W WO 2023056626 A1 WO2023056626 A1 WO 2023056626A1
Authority
WO
WIPO (PCT)
Prior art keywords
zero
timer
terminal
network device
uplink
Prior art date
Application number
PCT/CN2021/122837
Other languages
English (en)
French (fr)
Inventor
林雪
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180102981.9A priority Critical patent/CN118056452A/zh
Priority to PCT/CN2021/122837 priority patent/WO2023056626A1/zh
Publication of WO2023056626A1 publication Critical patent/WO2023056626A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of zero-power communication, and in particular to a zero-power terminal uplink data transmission method, device, device and storage medium.
  • Zero Power communication adopts energy harvesting technology and backscatter communication technology. Using the backscatter method does not require the power of the zero-power terminal itself to realize signal transmission.
  • the zero-power terminal collects energy by collecting radio waves and enters the working state.
  • the zero-power terminal sends uplink data carrying the terminal identifier on the uplink resource as a response to the trigger instruction.
  • the multiple zero-power terminals will send the above-mentioned uplink data on the same uplink resource, thus an uplink conflict imagination occurs.
  • Embodiments of the present application provide a method, device, device, and storage medium for sending uplink data of a zero-power terminal. Described technical scheme is as follows:
  • a method for sending uplink data of a zero-power terminal comprising:
  • the zero-power consumption terminal When the zero-power consumption terminal satisfies the trigger condition, select the first uplink resource from the uplink resources configured by the network device;
  • a method for sending uplink data of a zero-power terminal comprising:
  • the network device receives the uplink data sent by the zero-power consumption terminal on the first uplink resource
  • the first uplink resource is selected by the zero-power terminal from the uplink resources configured by the network device when a trigger condition is met.
  • an uplink data sending device for a zero-power terminal comprising:
  • a first selection module configured to select a first uplink resource from uplink resources configured by the network device when a trigger condition is met
  • a first sending module configured to use the first uplink resource to send uplink data to the network device.
  • an uplink data sending device for a zero-power terminal comprising:
  • the first receiving module is used for the network device to receive the uplink data sent by the zero-power consumption terminal on the first uplink resource;
  • the first uplink resource is selected by the zero-power terminal from the uplink resources configured by the network device when a trigger condition is met.
  • a communication device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program to realize the above zero work A method for sending uplink data of a consumption terminal.
  • a computer-readable storage medium is provided, and a computer program is stored in the storage medium, and the computer program is used to be executed by a processor to realize the above-mentioned zero-power consumption terminal uplink Data sending method.
  • a chip is provided, the chip includes a programmable logic circuit and/or program instructions, and when the chip is running, it is used to implement the above-mentioned uplink data transmission method of a zero-power terminal .
  • a computer program product or computer program includes computer instructions, the computer instructions are stored in a computer-readable storage medium, and the processor reads from the The computer-readable storage medium reads and executes the computer instructions, so as to realize the above-mentioned uplink data sending method of the zero-power consumption terminal.
  • the zero-power consumption terminal selects the first uplink resource to send uplink data from at least two uplink resources configured by the network device, so that the first uplink resources selected by different zero-power consumption terminals are as different as possible, thereby reducing multiple
  • the possibility of uplink conflicts in zero-power terminals improves the uplink success rate of zero-power communication.
  • FIG. 1 is a schematic diagram of a zero-power communication system provided by an exemplary embodiment of the present application
  • Fig. 2 is a schematic diagram of radio frequency energy harvesting
  • Fig. 3 is a schematic diagram of the backscatter communication process
  • Figure 4 is a schematic diagram of resistive load modulation
  • Fig. 5 is a schematic diagram of an encoding method
  • Fig. 6 is a schematic diagram of a zero-power communication system provided by an exemplary embodiment of the present application.
  • FIG. 7 is a schematic diagram of a zero-power communication system provided by an exemplary embodiment of the present application.
  • FIG. 8 is a flowchart of a method for sending uplink data of a zero-power terminal provided by an embodiment of the present application
  • FIG. 9 is a flowchart of a method for sending uplink data of a zero-power terminal provided by an embodiment of the present application.
  • FIG. 10 is a flow chart of a method for sending uplink data of a zero-power terminal provided by an embodiment of the present application
  • FIG. 11 is a flowchart of a method for sending uplink data of a zero-power terminal provided by an embodiment of the present application
  • FIG. 12 is a flowchart of a method for sending uplink data of a zero-power terminal provided by an embodiment of the present application
  • FIG. 13 is a flowchart of a method for sending uplink data of a zero-power terminal provided by an embodiment of the present application
  • FIG. 14 is a flowchart of a method for sending uplink data of a zero-power terminal provided by an embodiment of the present application
  • FIG. 15 is a block diagram of an uplink data sending device for a zero-power terminal provided by an embodiment of the present application.
  • FIG. 16 is a block diagram of an uplink data sending device for a zero-power terminal provided by an embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • first, second, etc. may be used in the present disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another.
  • a first parameter may also be called a second parameter, and similarly, a second parameter may also be called a first parameter.
  • the word "if” as used herein may be interpreted as “at” or “when” or “in response to a determination.”
  • FIG. 1 shows a schematic diagram of a zero-power communication system 100 .
  • the zero-power communication system 100 includes a network device 120 and a zero-power terminal 140 .
  • the network device 120 is used to send wireless power supply signals and downlink communication signals to zero-power terminals and receive backscattered signals from zero-power terminals.
  • the zero-power terminal 140 includes an energy collection module 141 , a backscatter communication module 142 and a low-power computing module 143 .
  • the energy harvesting module 141 can collect energy carried by radio waves in space, and use it to drive the low-power computing module 143 of the zero-power terminal 140 and realize backscatter communication.
  • the zero-power terminal 140 may receive the control signaling of the network device 120, and send data to the network device 120 in a backscattering manner according to the control signaling.
  • the sent data may come from the data stored by the zero-power terminal itself (such as an identity or pre-written information, such as the production date, brand, manufacturer, etc. of the commodity).
  • the zero power consumption terminal 140 may also include a sensor module 144 and a memory 145 .
  • the sensor module 144 may include various sensors, and the zero-power consumption terminal 140 may report data collected by various sensors based on a zero-power consumption mechanism.
  • the memory 145 is used to store some basic information (such as item identification, etc.) or obtain sensing data such as ambient temperature and ambient humidity.
  • the zero-power terminal itself does not need a battery.
  • the low-power computing module can realize simple signal demodulation, decoding or encoding, and modulation. Therefore, the zero-power module only needs a minimalist hardware design, making zero-power Power consumption devices are low cost and small in size.
  • FIG. 2 shows a schematic diagram of RF energy harvesting.
  • Radio frequency energy collection is based on the principle of electromagnetic induction, using the radio frequency module RF through electromagnetic induction, and connecting with the capacitor C and the load resistance RL that maintain a parallel relationship, so as to realize the collection of space electromagnetic wave energy and obtain the power needed to drive the zero-power terminal.
  • energy such as: used to drive low-power demodulation modules, modulation modules, sensors and memory reading, etc. Therefore, zero-power terminals do not require conventional batteries.
  • FIG. 3 shows a schematic diagram of the backscatter communication process.
  • the zero-power consumption terminal 140 receives the wireless signal carrier 131 sent by the network device 120 sending module (Transmit, TX) 121 using an asynchronous mapping procedure (Asynchronous Mapping Procedure, AMP) 122, and modulates the wireless signal carrier 131, using the logic processing module 141 Load the information to be sent, and use the energy harvesting module 142 to collect radio frequency energy.
  • the zero-power consumption terminal 140 uses the antenna 143 to radiate the modulated reflected signal 132 , and this information transmission process is called backscatter communication.
  • the receiving module (Receive, RX) 123 of the network device 120 uses a low noise amplifier (Low Noise Amplifier, LNA) 124 to receive the modulated reflection signal 132.
  • LNA Low Noise Amplifier
  • Backscatter and load modulation functions are inseparable. Load modulation adjusts and controls the circuit parameters of the oscillating circuit of the zero-power consumption terminal 140 according to the beat of the data flow, so that the parameters such as the impedance of the electronic tag change accordingly, and the modulation process is completed.
  • Load modulation techniques mainly include resistive load modulation and capacitive load modulation.
  • Figure 4 shows a schematic diagram of resistive load modulation.
  • the load resistor RL is connected in parallel with the third resistor R 3 , and the switch S controlled by the binary code is turned on or off. The on-off of the third resistor R 3 will cause the voltage on the circuit to change, and the load
  • the resistor RL is connected in parallel with the first capacitor C 1
  • the load resistor RL is connected in series with the second resistor R 2
  • the second resistor R 2 is connected in series with the first inductor L 1 .
  • the first inductor L 1 is coupled to the second inductor L 2 , and the second inductor L 2 and the second capacitor C 2 are connected in series.
  • Amplitude Shift Keying (ASK) can be realized, that is, signal modulation and transmission can be realized by adjusting the amplitude of the backscattering signal of the zero-power terminal.
  • the circuit resonant frequency can be changed by switching on and off the capacitor, and frequency keying modulation (Frequency Shift Keying, FSK) can be realized, that is, by adjusting the working frequency of the backscatter signal of the zero-power consumption terminal Realize signal modulation and transmission.
  • FSK frequency Shift Keying
  • the zero-power terminal performs information modulation on the incoming wave signal, realizing the process of backscatter communication.
  • Zero-power terminals have significant advantages: the terminal does not actively transmit signals, so it does not need complex radio frequency links, such as PAs, radio frequency filters, etc.; the terminal does not need to actively generate high-frequency signals, so it does not need high-frequency crystal oscillators; For scattered communication, the terminal signal transmission does not need to consume the energy of the terminal itself.
  • Fig. 5 shows a schematic diagram of the encoding method.
  • the data transmitted by the electronic tag can use different forms of codes to represent binary "1" and "0".
  • Radio frequency identification systems usually use one of the following encoding methods: reverse non-return to zero (Not Return to Zero, NRZ) encoding, Manchester encoding, unipolar return to zero (Unipolar Return to Zero, URZ) encoding, Differential Binary Phase (DBP) encoding, Miller (Miller) encoding and differential encoding. That is, different pulse signals can be used to represent 0 and 1.
  • ⁇ NRZ encoding uses a high level to represent a binary "1", and a low level to represent a binary "0".
  • the NRZ coding in Figure 5 shows a schematic diagram of the binary data encoded using the NRZ method: 101100101001011.
  • Manchester encoding is also known as split-phase encoding (Split-Phase Coding).
  • the binary value is represented by a level change (rising or falling) during half a bit period within the bit length, a negative transition during a half bit period represents a binary "1", and a half bit period Positive jumps represent binary "0”, and data transmission errors refer to when multiple electronic tags send data bits with different values at the same time, the rising and falling edges of the reception cancel each other out, resulting in uninterrupted transmission throughout the entire bit length carrier signal.
  • Manchester encoding is within the bit length, there can be no state without change. Using this error, the reader can determine the specific location of the collision.
  • Manchester encoding is helpful for finding errors in data transmission. When using carrier load modulation or backscatter modulation, it is usually used for data transmission from electronic tags to readers.
  • Manchester encoding in FIG. 5 shows a level schematic diagram of encoding binary data using the Manchester method: 101100101001011.
  • URZ Encoding shows a level diagram of encoding binary data using the URZ method: 101100101001011.
  • ⁇ DBP encoding differential biphase encoding represents binary "0" at any edge in half a bit period, and binary "1" without an edge. In addition, at the beginning of each bit period, the level must be inverted. Bit beats are relatively easy to reconstruct for the receiver.
  • the DBP encoding in FIG. 5 shows a level schematic diagram of encoding binary data using the DBP method: 101100101001011.
  • Miller encoding represents a binary "1" at any edge within half a bit period, and a binary "0" through a constant level in the next bit period. The level transition occurs at the beginning of the bit period, and the bit beat is relatively easy for the receiver to reconstruct.
  • Miller encoding in FIG. 5 shows a level schematic diagram of encoding binary data using the Miller method: 101100101001011.
  • each binary "1" to be transmitted causes a change in signal level, while for a binary "0", the signal level remains unchanged.
  • zero-power terminals Based on the energy sources and usage methods of zero-power terminals, zero-power terminals can be divided into the following types:
  • the zero-power terminal does not need a built-in battery.
  • the zero-power terminal is close to the network device, the zero-power terminal is within the near-field range formed by the antenna radiation of the network device.
  • the network device is a radio frequency identification technology (Radio Frequency Identification, RFID ) system reader. Therefore, the antenna of the zero-power terminal generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the backward link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
  • the passive zero-power terminal does not need a built-in battery to drive either the forward link or the reverse link, and is a true zero-power terminal.
  • Passive zero-power terminals do not require batteries, and the radio frequency circuits and baseband circuits are very simple, such as low noise amplifiers (Low Noise Amplifier, LNA), power amplifiers (Power Amplifier, PA), crystal oscillators, analog-to-digital converters (Analog to Digital Converter (ADC) and other devices have many advantages such as small size, light weight, very cheap price, and long service life.
  • LNA Low Noise Amplifier
  • PA Power Amplifier
  • ADC Analog to Digital Converter
  • the semi-passive zero-power terminal itself does not install a conventional battery. It can use a radio frequency energy harvesting module to collect radio wave energy, and store the collected energy in an energy storage unit.
  • the energy storage unit is a capacitor. After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the backward link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
  • the semi-passive zero-power terminal does not need a built-in battery to drive the forward link or the reverse link.
  • the energy stored in the capacitor used in the work comes from the radio energy collected by the RF energy harvesting module, which is a real meaning zero-power terminals.
  • Semi-passive zero-power terminals inherit many advantages of passive zero-power terminals, such as: small size, light weight, very cheap price, long service life and many other advantages.
  • Active zero-power terminals can have built-in batteries.
  • the battery is used to drive the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the backward link. But for the backscatter link, the zero-power terminal uses the backscatter implementation to transmit the signal.
  • the zero power consumption of the active zero-power terminal is mainly reflected in the fact that the signal transmission of the reverse link does not require the power of the terminal itself, and the backscattering method is used.
  • the built-in battery supplies power to the RFID chip, increasing the reading and writing distance of the tag and improving the reliability of communication. It can be applied in some scenarios that require relatively high communication distance and read delay.
  • Fig. 6 shows a schematic diagram of a zero-power communication system provided by an exemplary embodiment of the present application.
  • the zero-power communication system includes the following functional nodes:
  • Zero-power terminal 140 The zero-power terminal 140 can collect radio wave energy by using an RF energy collection module, and the zero-power terminal 140 uses backscattering to implement signal transmission.
  • Network device 120 The network device 120 provides a communication link for the zero-power terminal, and/or provides the zero-power terminal with radio waves collected by the RF energy harvesting module, that is, energy supply.
  • Core network (Corn Network, CN) 160 functions such as data processing and reception, control and management of zero-power consumption terminal-related services, and gateway.
  • Unified Data Management (UDM) 180 Here, the contract data of zero-power terminals and/or communication-related configuration information are stored. Communication-related configuration information includes bearer configuration, zero-power terminal identification, security configuration information, and service identification information etc.
  • Cellular Internet of Things Service Cellular Internet of Things Service, CIoT Service 200: used to provide cellular Internet of Things services.
  • the zero-power network system architecture may also be in the form shown in FIG. 7 .
  • the network device that supplies energy to the zero-power terminal and the network device that communicates with the zero-power terminal can be the same or different, for example:
  • the network device that supplies power to the zero-power terminal 140 is the same as the network device that communicates with the zero-power terminal 140, that is, the first network device 121 is used to implement communication and power supply with the zero-power terminal.
  • the terminal 130 is used to implement communication and power supply with the zero-power consumption terminal 140 , and interface signaling and data transmission are performed between the terminal 130 and the first network device 121 .
  • the network device that supplies energy to the zero-power terminal 140 is different from the network device that communicates with the zero-power terminal 140.
  • the first network device 121 is used to communicate with the zero-power terminal, and the second network device 122 It is specially used to realize energy supply for zero-power consumption terminals, which improves the coverage and energy supply efficiency of energy supply.
  • FIG. 8 provides a flowchart of a method for sending uplink data of a zero-power terminal provided by an embodiment of the present application. This method can be executed by the zero-power terminal shown in FIG. 6 , and the method includes:
  • Step 310 the zero-power terminal selects the first uplink resource from the uplink resources configured by the network device when the trigger condition is met;
  • the trigger condition is a condition for the zero-power terminal to determine whether it needs to send uplink data, or the trigger condition is a condition for the zero-power terminal to determine whether it needs to respond to a downlink instruction or downlink data of the network device.
  • the trigger condition includes but not limited to at least one of the following conditions:
  • the terminal attribute or terminal configuration of the zero-power terminal matches the trigger command sent by the network device
  • the terminal attribute or terminal configuration includes, but is not limited to, at least one of the following: service type, group information, and terminal identifier.
  • the trigger instruction instructs the zero-power terminal under the current coverage and belongs to the first service type to respond, and the zero-power terminal selects the first uplink resource among the uplink resources configured by the network device when the service belongs to the first service type.
  • the group information is used to label the group information of the zero-power terminal, and the same zero-power terminal belongs to at least one group.
  • the basis for grouping zero-power devices includes at least one of the following: model, location, and function of the zero-power devices.
  • the trigger instruction instructs zero-power terminals belonging to the first group under current coverage to respond, and all zero-power terminals belonging to the first group have the same group information.
  • the terminal selects the first uplink resource from the uplink resources configured by the network device.
  • the terminal identifier is an identifier of a zero-power terminal, and is used to distinguish different zero-power terminals.
  • the trigger instruction instructs the zero-power terminal whose terminal ID is the first value under current coverage to respond, and the zero-power terminal whose terminal ID is the first value selects the first uplink resource among the uplink resources configured by the network device.
  • the autonomous trigger condition includes at least one of the following conditions: the access network of the zero-power terminal changes, the geographic location of the zero-power terminal changes, and the current moment is a periodic trigger moment.
  • the zero-power consumption terminal selects the first uplink resource from the uplink resources configured by the network device.
  • the network device is usually configured with at least two uplink resources, and the zero-power consumption terminal selects the first uplink resource from the at least two uplink resources.
  • no limitation is imposed on the method for the zero-power terminal to select the first uplink resource.
  • this embodiment does not exclude the situation that the network device configures one uplink resource.
  • the network device configures different uplink resources for zero-power consumption terminals with different terminal identities or different terminal groups or different service types.
  • Step 320 Use the first uplink resource to send uplink data to the network device.
  • the uplink data is used to respond to the trigger instruction to implement communication with the network device.
  • the uplink data usually includes relevant information of the zero-power terminal, such as a terminal identifier of the zero-power terminal. However, it does not rule out the situation that the relevant information of the zero-power consumption terminal is not included. This embodiment does not impose any restrictions on the type and content of the uplink data sent by the zero-power terminal to the network device.
  • the zero-power terminal selects the first uplink resource to send uplink data from at least two uplink resources configured by the network device, so that the zero-power terminal selected
  • the first uplink resources are as different as possible, thereby reducing the possibility of uplink conflicts among multiple zero-power terminals, and improving the uplink success rate of zero-power communication.
  • the zero-power terminal receives the uplink resources configured by the network device including any one of the following three implementations:
  • any of the three implementation methods can realize the zero-power consumption terminal receiving the uplink resources configured by the network device, and the three implementation methods can be implemented separately and recombined with other steps to form a new Example.
  • Implementation method 1 Receive broadcast messages periodically sent by network devices, and the broadcast messages are used to configure uplink resources;
  • the broadcast message carries at least one of time-domain position information and frequency-domain position information of the uplink resources.
  • Implementation method 2 receiving a trigger message sent by a network device, and the trigger message is used to configure uplink resources;
  • the trigger message carries identification information of uplink resources and related information of terminal attributes.
  • Implementation mode 3 receiving a configuration message sent by a network device, the configuration message is used to configure uplink resources, and the time domain position corresponding to the configuration message is later than the time domain position corresponding to the trigger message.
  • the trigger message carries identification information of uplink resources and related information about terminal configuration.
  • the zero-power terminal receives the uplink resource configured by the network device including the following implementation manner:
  • Implementation method 1 Receive broadcast messages periodically sent by network devices, and the broadcast messages are used to configure uplink resources;
  • the broadcast message carries at least one of time-domain position information and frequency-domain position information of the uplink resource.
  • the method for the zero-power terminal to select the first uplink resource from the uplink resources configured by the network device includes any one of the following three implementations:
  • any of the three implementations can realize the selection of the first uplink resource by the zero-power terminal, and the three implementations can be implemented separately, and recombined with other steps to form a new Example.
  • Implementation method 1 when the zero-power consumption terminal satisfies the trigger condition, select the first uplink resource based on the terminal identifier of the zero-power consumption terminal and the number of uplink resources;
  • the resource sequence number of the first uplink resource selected by the zero-power consumption terminal is equal to the remainder obtained by dividing the terminal identifier by the number of uplink resources.
  • Resource_valid_ID represents the resource serial number of the first uplink resource selected by the zero-power consumption terminal
  • UE_ID represents the terminal identifier
  • K represents the quantity of the uplink resource
  • mod represents a remainder operation.
  • Exemplary numbers of the K uplink resources configured by the network device are: 0, 1, . . . , K-1.
  • the terminal identifier is 23, the number of uplink resources is 5, and the resource sequence number of the first uplink resource selected by the zero-power consumption terminal is 3.
  • no restrictive provisions are made on the relationship between the first uplink resource selected by the zero-power consumption terminal, the terminal identifier, and the number of uplink resources.
  • Implementation method 2 when the trigger condition is met, the zero-power terminal selects the first uplink resource from the uplink resources configured by the network device based on the first timer;
  • selecting the first uplink resource among the uplink resources configured by the network device based on the first timer includes:
  • the first timer is started; for example, the first timer is an access timer maintained by the zero-power terminal, and the duration of the first timer is pre-configured by the zero-power terminal.
  • the network device When the first timer expires, among the uplink resources configured by the network device, select the uplink resource closest to the time-out time in the time domain, and determine it as the first uplink resource; for example, the time-out time of the first timer is the first At a moment, the network device is configured with an uplink resource 1 and an uplink resource 2, and the time domain position of the uplink resource 2 is closer to the first moment than the uplink resource 1.
  • the zero-power consumption terminal determines the uplink resource 2 as the first uplink resource, and the time domain position of the first uplink resource is later than the timeout moment of the first timer. In this embodiment, no restrictive provisions are made on the relationship between the time domain information of the first uplink resource and the first timer.
  • Implementation mode 3 When the trigger condition is met, the zero-power terminal randomly selects the first uplink resource from the uplink resources configured by the network device.
  • the zero-power consumption terminal randomly selects the first uplink resource among the multiple uplink resources.
  • the method provided by this embodiment enriches the selection basis for the zero-power terminal to select the first uplink resource to send uplink data from at least two uplink resources configured by the network device, and the selection of the first uplink resource Linked with terminal identifiers, timers and random numbers, the first uplink resources selected by different zero-power terminals are as different as possible, thereby reducing the possibility of uplink conflicts between multiple zero-power terminals and improving zero-power communication uplink success rate.
  • FIG. 9 provides a flowchart of a method for transmitting uplink data of a zero-power terminal provided by an embodiment of the present application. This method can be executed by the zero-power terminal shown in FIG. 6 , and the method includes:
  • Step 310 the zero-power terminal selects the first uplink resource from the uplink resources configured by the network device when the trigger condition is met;
  • Step 320 Send uplink data to the network device by using the first uplink resource
  • steps 310 and 320 reference may be made to the steps in the embodiment shown in FIG. 8 above, and details are not repeated in this embodiment.
  • Step 330 When no response to uplink data is received, select the second uplink resource again from the uplink resources configured by the network device;
  • the zero-power consumption terminal After the zero-power consumption terminal sends uplink data to the network device using the first uplink resource, it receives downlink data in the corresponding downlink resource.
  • the communication selects the second uplink resource again from the uplink resources configured by the network device. Exemplarily, a conflict occurs on the first uplink resource.
  • the zero-power consumption terminal selects the second uplink resource again from the uplink resources configured by the network device.
  • the zero-power terminal has not received the downlink feedback sent by the network device; or, the zero-power terminal has received the downlink feedback sent by the network device, and the downlink feedback does not include receiving information, which is used to indicate that the network device has successfully received the zero-power terminal Uplink data sent.
  • Step 340 Use the second uplink resource to send uplink data to the network device.
  • This embodiment does not impose any restrictions on the type of uplink data sent by the zero-power consumption terminal to the network device.
  • the method provided by this embodiment selects the second resource from at least two uplink resources configured by the network device by the zero-power terminal when the zero-power terminal does not receive a response to uplink data.
  • uplink resource selection can be performed again, which solves the problem of uplink conflicts among multiple zero-power terminals and improves the uplink success rate of zero-power communication.
  • FIG. 10 provides a flowchart of a method for transmitting uplink data of a zero-power terminal provided by an embodiment of the present application. This method can be executed by the zero-power terminal shown in FIG. 6 , and the method includes:
  • Step 310 the zero-power terminal selects the first uplink resource from the uplink resources configured by the network device when the trigger condition is met;
  • Step 320 Send uplink data to the network device by using the first uplink resource
  • steps 310 and 320 reference may be made to the steps in the embodiment shown in FIG. 8 above, and details are not repeated in this embodiment.
  • Step 332 Start a second timer if no response to uplink data is received
  • the second timer is a timer maintained by the zero power consumption terminal.
  • no restriction is imposed on the selection of the timer duration of the second timer.
  • the second timer is the same timer as the first timer, and the second timer is started only when no response to uplink data is received.
  • start the second timer when no response to uplink data is received, start the second timer; including any one of the following two implementations:
  • Implementation way 1 when no response to uplink data is received and indication information from the network device is received, start the second timer.
  • the timer duration of the second timer may be selected based on the indication information of the network device, and the zero-power terminal starts the second timer;
  • the timer duration of the second timer is determined as the default duration, and the zero-power terminal starts the second timer.
  • the default duration may be preset by the zero-power device, or may be preset by the network device and transmitted to the zero-power terminal, or may be pre-negotiated between the zero-power terminal and the network device. This embodiment does not impose any limitation on the method for determining the default duration.
  • Implementation manner 2 when no response to the uplink data is received and no indication information from the network device is received, the second timer is started.
  • the timer duration of the second timer is determined as the default duration, and the zero-power consumption terminal starts the second timer.
  • any one of the two implementation manners can implement the start of the second timer, and the two implementation manners can be implemented separately and recombined with other steps to form a new embodiment.
  • the indication information of the network device includes at least one of the following information:
  • the start instruction of the second timer the timer duration of the second timer.
  • Step 334 When the second timer expires, select the second uplink resource again from the uplink resources configured by the network device;
  • the zero-power terminal selects the second uplink resource again from the uplink resources configured by the network device at the time when the second timer expires or at any time after the time when the second timer expires.
  • the uplink resources configured by the network and the uplink resources configured by the network when selecting the first uplink resources may be two different sets of uplink resources, or may be the same set of uplink resources.
  • Step 340 Use the second uplink resource to send uplink data to the network device.
  • step 340 reference may be made to the steps in the embodiment shown in FIG. 9 above, which will not be repeated in this embodiment.
  • the method provided by this embodiment selects the second resource from at least two uplink resources configured by the network device by the zero-power terminal when the zero-power terminal does not receive a response to uplink data.
  • Uplink resources send uplink data, add a second timer, link the second timer with the reselection of uplink resources, and reselect uplink resources, solve the problem of uplink conflicts among multiple zero-power terminals, and improve zero power consumption Communication uplink success rate.
  • the determination of the timer duration of the second timer includes any one of the following five implementations:
  • any one of the five implementations can realize the selection of the second uplink resource by the zero-power terminal, and the five implementations can be implemented separately and recombined with other steps to form a new Example.
  • Implementation method 1 Determine the timer duration of the second timer based on the priority of the zero-power terminal;
  • the basis for determining the priority of the zero-power consumption terminal includes but not limited to at least one of the following: zero-power terminal, zero-power terminal group, service, and service type.
  • the first implementation method further includes the following content: receiving configuration information: the configuration information is used to configure priorities.
  • the basis for configuring the priority includes but is not limited to at least one of the following: zero-power consumption terminals, zero-power consumption terminal groups, services, and service types. This embodiment does not make any restrictive provisions on the basis for configuring the priority.
  • the priority corresponds to a zero-power terminal, or a terminal group of a zero-power terminal, or a service of a zero-power terminal, or a service type group of a zero-power terminal.
  • the pre-configuration information is pre-configured by the zero-power terminal, and the configuration information is used to configure priorities.
  • the basis for configuring the priority includes but is not limited to at least one of the following: zero-power consumption terminals, zero-power consumption terminal groups, services, and service types. This embodiment does not make any restrictive provisions on the basis for configuring the priority.
  • the priority corresponds to a zero-power terminal, or a terminal group of a zero-power terminal, or a service of a zero-power terminal, or a service type group of a zero-power terminal.
  • Implementation method 2 Randomly select the timer duration of the second timer from multiple candidate timer durations
  • the duration of the candidate timer may be set by the zero-power terminal or the network device, and this embodiment does not make any restrictive provisions on this.
  • the candidate timer durations are 1 second, 3 seconds and 6 seconds, and 3 seconds is selected as the timer duration of the second timer.
  • Implementation Mode 3 Select the timer duration of the second timer from multiple candidate timer durations based on the indication information of the network device;
  • the instruction information of the network device carries the information instructing the zero-power terminal to start the second timer and the information for selecting the timer duration of the second timer.
  • the basis of this embodiment for the network device to instruct the zero-power terminal to start the second timer No limitation is imposed, and this embodiment does not impose any limitation on the method in which the indication information indicates the timer duration of the second timer.
  • the candidate timer durations are 1 second, 3 seconds, and 6 seconds
  • the indication information indicates that the timer duration of the second timer is 3 seconds, or the indication information indicates that the timer duration of the second timer is the longest Candidate timer duration.
  • Implementation Mode 4 Based on the terminal identifier of the zero-power terminal and the number of candidate timer durations, select the timer duration of the second timer from multiple candidate timer durations;
  • the timer duration of the second timer is the duration of the first candidate timer
  • the sequence number corresponding to the duration of the first candidate timer is equal to the remainder obtained by dividing the terminal identifier of the zero-power terminal by the number of durations of the candidate timers.
  • Candidate_timer_ID represents the serial number corresponding to the duration of the first candidate timer
  • UE_ID represents the terminal identifier
  • M represents the number of durations of the candidate timers
  • mod represents a remainder operation.
  • the numbers of the m candidate timer durations configured by the exemplary network device are: 0, 1, . . . , M-1.
  • the terminal identifier is 23, the number of candidate timer durations is 5, the sequence number corresponding to the first candidate timer duration is equal to 3, and the timer duration of the second timer is the first candidate timer duration.
  • no restrictive provisions are made on the relationship between the timer duration of the second timer selected by the zero-power consumption terminal and the number of terminal identifiers and candidate timer durations.
  • Implementation manner five the timer duration of the second timer is determined to be the default duration.
  • the default duration can be preset by the zero-power device, or it can be preset by the network device and transmitted to the zero-power terminal, or it can be pre-negotiated between the zero-power terminal and the network device. This embodiment does not impose any limitation on the method for determining the default duration.
  • the method provided by this embodiment enriches the method for setting the timer duration of the second timer, and increases the opportunity for zero-power terminals to select uplink resources, so that the first resource selected by different zero-power terminals
  • the uplink resources are as different as possible.
  • the uplink resource can be selected again, which solves the problem of uplink conflicts between multiple zero-power terminals and improves the uplink success of zero-power communication. Rate.
  • the method for the zero-power terminal to select the second uplink resource from the uplink resources configured by the network device includes any one of the following three implementations:
  • any of the three implementations can realize the selection of the second uplink resource by the zero-power terminal, and the three implementations can be implemented separately, and recombined with other steps to form a new Example.
  • Implementation method 1 In the case of not receiving a response to uplink data, select a second uplink resource based on the terminal identifier of the zero-power terminal and the number of uplink resources;
  • the resource sequence number of the second uplink resource selected by the zero-power terminal is equal to the remainder obtained by dividing the terminal identifier by the number of uplink resources.
  • Resource_valid_ID represents the resource serial number of the second uplink resource selected by the zero-power consumption terminal
  • UE_ID represents the terminal identifier
  • K represents the quantity of the uplink resource
  • mod represents a remainder operation.
  • Exemplary numbers of the K uplink resources configured by the network device are: 0, 1, . . . , K-1.
  • the terminal identifier is 23, the number of uplink resources is 5, and the resource sequence number of the second uplink resource selected by the zero-power consumption terminal is 3.
  • no restrictive provisions are made on the relationship between the first uplink resource selected by the zero-power consumption terminal, the terminal identifier, and the number of uplink resources.
  • Implementation method 2 In the case of not receiving a response to uplink data, select a second uplink resource from the uplink resources configured by the network device based on the second timer;
  • the second timer when the second timer expires, among the uplink resources configured by the network device, select the uplink resource closest to the timeout moment in the time domain, and determine it as the second uplink resource; for example: the second timer timeout moment is the first moment, the network device is configured with an uplink resource 1 and an uplink resource 2, and the time domain position of the uplink resource 2 is closer to the first moment than the uplink resource 1.
  • the zero-power consumption terminal determines the uplink resource 2 as the second uplink resource, and the time domain position of the second uplink resource is later than the timeout moment of the second timer.
  • no restrictive provisions are made on the relationship between the time domain information of the second uplink resource and the second timer.
  • Implementation mode 3 in the case that no response of uplink data is received, randomly select the second uplink resource from the uplink resources configured by the network device.
  • the zero-power consumption terminal randomly selects the second uplink resource from the multiple uplink resources.
  • the method provided by this embodiment selects the second resource from at least two uplink resources configured by the network device by the zero-power terminal when the zero-power terminal does not receive a response to uplink data.
  • uplink resource selection can be performed again, which solves the problem of uplink conflicts among multiple zero-power terminals and improves the uplink success rate of zero-power communication.
  • FIG. 11 provides a flowchart of a method for sending uplink data of a zero-power terminal provided in an embodiment of the present application. This method can be executed by the network device shown in FIG. 6, and the method includes:
  • Step 410 The network device receives the uplink data sent by the zero-power consumption terminal on the first uplink resource.
  • the first uplink resource is selected by the zero-power terminal from the uplink resources configured by the network device when the trigger condition is met.
  • the network device monitors each configured uplink resource, and waits to receive uplink data sent by the zero-power consumption terminal.
  • the trigger condition is a judgment condition for the zero-power terminal to determine whether to select an uplink resource, and the zero-power terminal selects the first uplink resource among the uplink resources configured by the network device when the trigger condition is satisfied.
  • the trigger condition includes but not limited to at least one of the following conditions:
  • the terminal attribute or terminal configuration of the zero-power terminal matches the trigger command sent by the network device
  • the terminal attribute or terminal configuration includes, but is not limited to, at least one of the following: service type, group information, and terminal identifier.
  • the trigger instruction instructs the zero-power terminal under the current coverage and belongs to the first service type to respond, and the zero-power terminal selects the first uplink resource among the uplink resources configured by the network device when the service belongs to the first service type.
  • the group information is used to label the group information of the zero-power terminal, and the same zero-power terminal belongs to at least one group.
  • the basis for grouping zero-power devices includes at least one of the following: model, location, and function of the zero-power devices.
  • the trigger instruction instructs zero-power terminals belonging to the first group under current coverage to respond, and all zero-power terminals belonging to the first group have the same group information.
  • the terminal selects the first uplink resource from the uplink resources configured by the network device.
  • the terminal identifier is an identifier of a zero-power terminal, and is used to distinguish different zero-power terminals.
  • the trigger instruction instructs the zero-power terminal whose terminal ID is the first value under current coverage to respond, and the zero-power terminal whose terminal ID is the first value selects the first uplink resource from the uplink resources configured by the network device.
  • the autonomous triggering condition includes: the access network of the zero-power terminal changes, the geographic location of the zero-power terminal changes, and the current moment is a periodic triggering moment.
  • the zero-power consumption terminal selects the first uplink resource from the uplink resources configured by the network device.
  • the network device is usually configured with at least two uplink resources, and the zero-power consumption terminal selects the first uplink resource from the at least two uplink resources.
  • no limitation is imposed on the method for the zero-power terminal to select the first uplink resource.
  • this embodiment does not exclude the situation that the network device configures one uplink resource.
  • the network device configures different uplink resources for zero-power consumption terminals with different terminal identities or different terminal groups or different service types.
  • the network device receives the uplink data sent by the zero-power terminal on the first uplink resource, which reduces the possibility of uplink conflicts between multiple zero-power terminals, and improves zero-power consumption.
  • the uplink success rate of communication has laid the foundation.
  • the network device sending the configured uplink resources to the zero-power terminal includes any one of the following three implementations:
  • any of the three implementation methods can realize the network device sending the configured uplink resource to the zero-power terminal, and the three implementation methods can be implemented separately, and recombined with other steps to form a new the embodiment.
  • Implementation method 1 The network device periodically sends a broadcast message to the zero-power terminal, and the broadcast message is used to configure uplink resources;
  • the broadcast message carries at least one of time-domain position information and frequency-domain position information of the uplink resources.
  • Implementation method 2 The network device sends a trigger message to the zero-power terminal, and the trigger message is used to configure uplink resources;
  • the trigger message carries identification information of uplink resources and related information of terminal attributes.
  • Implementation mode 3 The network device sends a configuration message to the zero-power terminal.
  • the configuration message is used to configure uplink resources, and the time domain position corresponding to the configuration message is later than the time domain position corresponding to the trigger message.
  • the trigger message carries identification information of uplink resources and related information about terminal configuration.
  • sending the configured uplink resource by the network device to the zero-power terminal includes the following implementation manner:
  • Implementation method 1 The network device periodically sends a broadcast message to the zero-power terminal, and the broadcast message is used to configure uplink resources.
  • the broadcast message carries at least one of time-domain position information and frequency-domain position information of the uplink resource.
  • FIG. 12 provides a flowchart of a method for sending uplink data of a zero-power terminal provided by an embodiment of the present application. This method can be executed by the network device shown in FIG. 6, and the method includes:
  • Step 410 The network device receives the uplink data sent by the zero-power consumption terminal on the first uplink resource;
  • step 410 reference may be made to the steps in the embodiment shown in FIG. 11 above, and details are not repeated in this embodiment.
  • Step 420 Receive uplink data sent by the zero-power consumption terminal on the second uplink resource.
  • the second uplink resource is selected from the uplink resources configured by the network device when the zero-power consumption terminal does not receive a response of uplink data.
  • the second uplink resource is that the zero-power terminal starts a second timer when it does not receive a response to uplink data; when the second timer times out, it selects again from the uplink resources configured by the network device.
  • the determination of the timer duration of the second timer includes any one of the following five implementations:
  • any one of the five implementations can realize the selection of the second uplink resource by the zero-power terminal, and the five implementations can be implemented separately and recombined with other steps to form a new Example.
  • Implementation method 1 Determine the timer duration of the second timer based on the priority of the zero-power terminal;
  • the basis for determining the priority of the zero-power consumption terminal includes but not limited to at least one of the following: zero-power terminal, zero-power terminal group, service, and service type.
  • implementation mode 1 also includes the following content:
  • the configuration information is used to configure the priority.
  • the basis for configuring the priority includes but is not limited to at least one of the following: zero-power consumption terminals, zero-power consumption terminal groups, services, and service types. This embodiment does not make any restrictive provisions on the basis for configuring the priority.
  • the priority corresponds to the zero-power terminal, or corresponds to the terminal group of the zero-power terminal, or corresponds to the service of the zero-power terminal, or corresponds to the service type group of the zero-power terminal.
  • the pre-configuration information is pre-configured by the zero-power terminal, and the configuration information is used to configure priorities.
  • the basis for configuring the priority includes but is not limited to at least one of the following: zero-power consumption terminals, zero-power consumption terminal groups, services, and service types. This embodiment does not make any restrictive provisions on the basis for configuring the priority.
  • Implementation method 2 Randomly select the timer duration of the second timer from multiple candidate timer durations
  • the duration of the candidate timer may be set by the zero-power terminal or the network device, and this embodiment does not make any restrictive provisions on this.
  • the candidate timer durations are 1 second, 3 seconds and 6 seconds, and 3 seconds is selected as the timer duration of the second timer.
  • Implementation Mode 3 Select the timer duration of the second timer from multiple candidate timer durations based on the indication information of the network device;
  • the instruction information of the network device carries the information instructing the zero-power terminal to start the second timer and the information for selecting the timer duration of the second timer.
  • the basis of this embodiment for the network device to instruct the zero-power terminal to start the second timer No limitation is imposed, and this embodiment does not impose any limitation on the method in which the indication information indicates the timer duration of the second timer.
  • the candidate timer durations are 1 second, 3 seconds, and 6 seconds
  • the indication information indicates that the timer duration of the second timer is 3 seconds, or the indication information indicates that the timer duration of the second timer is the longest Candidate timer duration.
  • Implementation Mode 4 Based on the terminal identifier of the zero-power terminal and the number of candidate timer durations, select the timer duration of the second timer from multiple candidate timer durations;
  • the timer duration of the second timer is the duration of the first candidate timer
  • the sequence number corresponding to the duration of the first candidate timer is equal to the remainder obtained by dividing the terminal identifier of the zero-power terminal by the number of durations of the candidate timers.
  • Candidate_timer_ID represents the sequence number corresponding to the duration of the first candidate timer
  • UE_ID represents the terminal identifier
  • M represents the number of durations of the candidate timers
  • mod represents a remainder operation.
  • the numbers of the m candidate timer durations configured by the exemplary network device are: 0, 1, . . . , M-1.
  • the terminal identifier is 23, the number of candidate timer durations is 5, the sequence number corresponding to the first candidate timer duration is equal to 3, and the timer duration of the second timer is the first candidate timer duration.
  • no restrictive provisions are made on the relationship between the timer duration of the second timer selected by the zero-power consumption terminal and the number of terminal identifiers and candidate timer durations.
  • Implementation manner five the timer duration of the second timer is determined to be the default duration.
  • the default duration can be preset by the zero-power device, or preset by the network device and transmitted to the zero-power terminal, or pre-negotiated between the zero-power terminal and the network device. This embodiment does not impose any limitation on the method for determining the default duration.
  • the network device receives the uplink data sent by the zero-power terminal on the first uplink resource, and receives the uplink data sent by the zero-power terminal on the second uplink resource.
  • the possibility of uplink conflicts occurring among multiple zero-power terminals is reduced, and a foundation is laid for improving the uplink success rate of zero-power communication.
  • FIG. 13 provides a flowchart of a method for sending uplink data of a zero-power terminal provided by an embodiment of the present application. This method can be executed by the network device shown in FIG. 6, and the method includes:
  • Step 410 The network device receives the uplink data sent by the zero-power consumption terminal on the first uplink resource;
  • step 410 reference may be made to the steps in the embodiment shown in FIG. 11 above, and details are not repeated in this embodiment.
  • Step 415 sending instruction information
  • the indication information is used to indicate the relevant information of the second timer; the indication information includes at least one of the following information:
  • the timer duration of the second timer is selected based on the indication information of the network device, and the zero-power terminal starts the second timer.
  • Step 420 Receive uplink data sent by the zero-power consumption terminal on the second uplink resource
  • step 420 reference may be made to the steps in the embodiment shown in FIG. 12 above, and details are not repeated in this embodiment.
  • the network device sends indication information to the zero-power terminal, which enriches the way of acquiring related information of the second timer.
  • the possibility of uplink conflicts occurring among multiple zero-power terminals is reduced, and a foundation is laid for improving the uplink success rate of zero-power communication.
  • FIG. 14 provides a flowchart of a method for sending uplink data of a zero-power terminal provided by an embodiment of the present application. This method can be executed by the network device shown in FIG. 6, and the method includes:
  • Step 410 The network device receives the uplink data sent by the zero-power consumption terminal on the first uplink resource;
  • step 410 reference may be made to the steps in the embodiment shown in FIG. 11 above, and details are not repeated in this embodiment.
  • Step 416 Send configuration information
  • Configuration information is used to configure priorities.
  • the basis for configuring the priority includes but is not limited to at least one of the following: zero-power consumption terminals, zero-power consumption terminal groups, services, and service types. This embodiment does not make any restrictive provisions on the basis for configuring the priority.
  • Step 420 Receive uplink data sent by the zero-power consumption terminal on the second uplink resource
  • step 420 reference may be made to the steps in the embodiment shown in FIG. 12 above, and details are not repeated in this embodiment.
  • the network device sends configuration information to the zero-power terminal, which enriches the method for selecting the timer duration of the second timer.
  • the possibility of uplink conflicts occurring among multiple zero-power terminals is reduced, and a foundation is laid for improving the uplink success rate of zero-power communication.
  • Fig. 15 shows a block diagram of an apparatus for sending uplink data of a zero-power terminal provided by an exemplary embodiment of the present application, and the apparatus includes:
  • the first selection module 510 is configured to select a first uplink resource from uplink resources configured by the network device when a trigger condition is met;
  • the first sending module 520 is configured to use the first uplink resource to send uplink data to the network device.
  • the trigger conditions include:
  • the terminal attribute or terminal configuration of the zero-power terminal matches the trigger instruction sent by the network device.
  • the terminal attribute or the terminal configuration includes at least one of the following:
  • the trigger condition includes: an autonomous trigger condition.
  • the autonomous triggering conditions include: the access network of the zero-power terminal changes; the geographic location of the zero-power terminal changes; the current moment is a periodic triggering moment .
  • the device also includes:
  • a receiving module 530 configured to receive broadcast messages periodically sent by the network device, where the broadcast messages are used to configure the uplink resources
  • the network device is used to receive a trigger message sent by the network device, where the trigger message is used to configure the uplink resource;
  • the configuration message is used to configure the uplink resource, and the time domain position corresponding to the configuration message is later than the time domain position corresponding to the trigger message.
  • the receiving module 530 is also used to:
  • the first selection module 510 is used to:
  • the resource sequence number of the first uplink resource is equal to a remainder obtained by dividing the terminal identifier of the zero-power consumption terminal by the quantity of the uplink resource.
  • the first selection module 510 is used to:
  • the network device select the uplink resource closest to the time-out time in the time domain, and determine it as the first uplink resource.
  • the device also includes:
  • the second selection module 540 is configured to select the second uplink resource again from the uplink resources configured by the network device if no response to the uplink data is received;
  • the second sending module 550 is configured to use the second uplink resource to send the uplink data to the network device.
  • the second selection module 540 includes:
  • a starting unit 541, configured to start a second timer when no response to the uplink data is received
  • the selection unit 542 is configured to select the second uplink resource again from the uplink resources configured by the network device when the second timer expires.
  • the situation that the response of the uplink data is not received includes:
  • the zero-power consumption terminal has not received the downlink feedback sent by the network device
  • the zero-power consumption terminal receives the downlink feedback sent by the network device, and the downlink feedback does not include reception information, and the reception information is used to indicate that the network device has successfully received the uplink data sent by the zero-power consumption terminal.
  • the starting unit 541 is used to:
  • the indication information of the network device includes at least one of the following information:
  • the start indication of the second timer the timer duration of the second timer.
  • the device further includes a determination unit 543;
  • the determining unit 543 is configured to determine the timer duration of the second timer based on the priority of the zero-power terminal;
  • the timer duration used to determine the second timer is a default duration.
  • the timer duration of the second timer is equal to a remainder obtained by dividing the terminal identifier of the zero-power terminal by the number of candidate timer durations.
  • the device also includes:
  • a receiving unit 544 configured to receive configuration information, where the configuration information is used to configure the priority
  • the obtaining unit 545 is configured to obtain pre-configuration information, where the pre-configuration information includes the priority
  • the priority corresponds to the zero-power terminal, or corresponds to the terminal group of the zero-power terminal, or corresponds to the service of the zero-power terminal, or corresponds to the service type group of the zero-power terminal .
  • the second selection module 540 is used to:
  • Fig. 16 shows a block diagram of an apparatus for sending uplink data of a zero-power terminal provided by an exemplary embodiment of the present application, and the apparatus includes:
  • the first receiving module 610 is configured for the network device to receive the uplink data sent by the zero-power consumption terminal on the first uplink resource;
  • the first uplink resource is selected by the zero-power terminal from the uplink resources configured by the network device when a trigger condition is met.
  • the trigger conditions include:
  • the terminal attribute or terminal configuration of the zero-power terminal matches the trigger instruction sent by the network device.
  • the terminal attribute or the terminal configuration includes at least one of the following:
  • the trigger condition includes: an autonomous trigger condition.
  • the autonomous triggering conditions include: the access network of the zero-power terminal changes; the geographic location of the zero-power terminal changes; the current moment is a periodic triggering moment .
  • the device further includes: a first sending module 620, configured to periodically send a broadcast message to the zero-power terminal, where the broadcast message is used to configure the uplink resource;
  • the trigger message is used to configure the uplink resource
  • the configuration message is used to configure the uplink resource, and the time domain position corresponding to the configuration message is later than the time domain position corresponding to the trigger message.
  • the first sending module 620 is also configured to:
  • the device also includes:
  • the second receiving module 630 is configured to receive the uplink data sent by the zero-power consumption terminal on the second uplink resource;
  • the second uplink resource is selected by the zero-power consumption terminal from the uplink resources configured by the network device when no response to the uplink data is received.
  • the second uplink resource is that the zero-power terminal starts a second timer when no response to the uplink data is received; when the second timer expires In this case, it is again selected from the uplink resources configured by the network device.
  • the timer duration of the second timer is determined by the zero-power terminal based on the priority of the zero-power terminal;
  • the timer duration of the second timer is randomly selected by the zero-power terminal from multiple candidate timer durations;
  • the timer duration of the second timer is selected by the zero-power terminal from multiple candidate timer durations based on the indication information of the network device;
  • the timer duration of the second timer is selected by the zero-power terminal from multiple candidate timer durations based on the terminal identifier of the zero-power terminal and the number of candidate timer durations;
  • the timer duration of the second timer is determined by the zero-power terminal according to a default duration.
  • the device also includes:
  • the second sending module 640 is configured to send indication information, where the indication information is used to indicate related information of the second timer.
  • the indication information includes at least one of the following information:
  • the timer duration of the second timer is the timer duration of the second timer.
  • the device also includes:
  • the third sending module 650 is configured to send configuration information, where the configuration information is used to configure the priority.
  • the device provided by the above embodiment realizes its functions, it only uses the division of the above-mentioned functional modules as an example for illustration. In practical applications, the above-mentioned function allocation can be completed by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • Fig. 17 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may include: a processor 801 , a receiver 802 , a transmitter 803 , a memory 804 and a bus 805 .
  • the processor 801 includes one or more processing cores, and the processor 801 executes various functional applications and information processing by running software programs and modules.
  • the receiver 802 and the transmitter 803 can be implemented as a transceiver, and the transceiver can be a communication chip.
  • the memory 804 is connected to the processor 801 through the bus 805; for example, the processor 801 can be implemented as a first IC chip, and the processor 801 and the memory 804 can be jointly implemented as a second IC chip; the first chip or the second chip can be It is an Application Specific Integrated Circuit (ASIC) chip.
  • ASIC Application Specific Integrated Circuit
  • the memory 804 may be used to store at least one computer program, and the processor 801 is used to execute the at least one computer program, so as to implement various steps in the foregoing method embodiments.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or their combination, and the volatile or non-volatile storage device includes but not limited to: random-access memory (Random-Access Memory, RAM) , Read-Only Memory (Read-Only Memory, ROM), Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), flash memory or other solid-state storage technology, compact disc read-only memory (CD-ROM), high-density digital video disc (Digital Video Disc, DVD) or other optical storage, tape cartridges, tapes, disks storage or other magnetic storage devices.
  • random-access memory Random-Access Memory
  • ROM Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • flash memory or other solid-state storage technology compact disc read-only memory (CD-ROM), high-
  • the embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a multi-link device, so as to realize the above-mentioned uplink of the zero-power consumption terminal Data sending method.
  • the computer-readable storage medium may include: a read-only memory (Read-Only Memory, ROM), a random-access memory (Random-Access Memory, RAM), a solid-state hard drive (Solid State Drives, SSD) or an optical disc.
  • the random access memory may include resistive random access memory (Resistance Random Access Memory, ReRAM) and dynamic random access memory (Dynamic Random Access Memory, DRAM).
  • the embodiment of the present application also provides a chip, the chip includes a programmable logic circuit and/or program instructions, and when the chip is running on a multi-link device, it is used to realize the uplink data transmission of the above-mentioned zero-power consumption terminal method.
  • An embodiment of the present application also provides a computer program product or computer program, where the computer program product or computer program includes computer instructions, the computer instructions are stored in a computer-readable storage medium, and the processor of the multi-link device reads from the The computer-readable storage medium reads and executes the computer instructions, so as to realize the above-mentioned uplink data sending method of the zero-power consumption terminal.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • the "plurality” mentioned herein means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • the numbering of the steps described herein only exemplarily shows a possible sequence of execution among the steps.
  • the above-mentioned steps may not be executed according to the order of the numbers, such as two different numbers
  • the steps are executed at the same time, or two steps with different numbers are executed in the reverse order as shown in the illustration, which is not limited in this embodiment of the present application.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种零功耗终端的上行数据发送方法、装置、设备及存储介质,涉及零功耗通信领域。所述方法包括:所述零功耗终端在满足触发条件的情况下,在网络设备配置的上行资源中选择第一上行资源;使用所述第一上行资源向所述网络设备发送上行数据。本申请的实施例提供的技术方案通过由零功耗终端在网络设备配置的至少两个上行资源中,选择出第一上行资源发送上行数据,使得不同的零功耗终端所选择的第一上行资源尽量不同,从而降低了多个零功耗终端发生上行冲突的可能性,提高零功耗通信的上行成功率。

Description

零功耗终端的上行数据发送方法、装置、设备及存储介质 技术领域
本申请涉及零功耗通信领域,特别涉及一种零功耗终端的上行数据发送方法、装置、设备及存储介质。
背景技术
零功耗(Zero Power)通信采用能量采集技术和反向散射通信技术,使用反向散射方式不需要零功耗终端自身功率即可实现信号的传输。
零功耗终端通过采集无线电波采集能量,进入工作状态。在网络设备向零功耗终端发送触发指令的情况下,零功耗终端在上行资源上发送携带有终端标识的上行数据,作为该触发指令的响应。
在多个零功耗终端同时收到该触发指令的情况下,多个零功耗终端会在同一个上行资源上发送上述上行数据,从而发生上行冲突想象。
发明内容
本申请实施例提供了一种零功耗终端的上行数据发送方法、装置、设备及存储介质。所述技术方案如下:
根据本申请实施例的一个方面,提供了一种零功耗终端的上行数据发送方法,所述方法包括:
所述零功耗终端在满足触发条件的情况下,在网络设备配置的上行资源中选择第一上行资源;
使用所述第一上行资源向所述网络设备发送上行数据。
根据本申请实施例的另一个方面,提供了一种零功耗终端的上行数据发送方法,所述方法包括:
网络设备在第一上行资源上接收所述零功耗终端发送的上行数据;
其中,所述第一上行资源是所述零功耗终端在满足触发条件的情况下,在所述网络设备配置的上行资源中选择的。
根据本申请实施例的另一个方面,提供了一种零功耗终端的上行数据发送装置,所述装置包括:
第一选择模块,用于在满足触发条件的情况下,在网络设备配置的上行资源中选择第一上行资源;
第一发送模块,用于使用所述第一上行资源向所述网络设备发送上行数据。
根据本申请实施例的另一个方面,提供了一种零功耗终端的上行数据发送装置,所述装置包括:
第一接收模块,用于网络设备在第一上行资源上接收所述零功耗终端发送的上行数据;
其中,所述第一上行资源是所述零功耗终端在满足触发条件的情况下,在所述网络设备配置的上行资源中选择的。
根据本申请实施例的另一方面,提供了一种通信设备,所述通信设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现上述零功耗终端的上行数据发送方法。
根据本申请实施例的另一个方面,提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现上述零功耗终端的上行数据发送方法。
根据本申请实施例的另一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述零功耗终端的上行数据发送方法。
根据本申请实施例的另一个方面,提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述零功耗终端的上行数据发送方法。
本申请实施例提供的技术方案可以带来如下有益效果:
通过由零功耗终端在网络设备配置的至少两个上行资源中,选择出第一上行资源发送上行数据,使得不同的零功耗终端所选择的第一上行资源尽量不同,从而降低了多个零功耗终端发生上行冲突的可能性,提高零功耗通信的上行成功率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的零功耗通信系统的示意图;
图2是射频能量采集的原理图;
图3是反向散射通信过程的原理图;
图4是电阻负载调制的原理图;
图5是编码方式的示意图;
图6是本申请一个示例性实施例提供的零功耗通信系统的示意图;
图7是本申请一个示例性实施例提供的零功耗通信系统的示意图;
图8是本申请一个实施例提供的零功耗终端的上行数据发送方法的流程图;
图9是本申请一个实施例提供的零功耗终端的上行数据发送方法的流程图;
图10是本申请一个实施例提供的零功耗终端的上行数据发送方法的流程图;
图11是本申请一个实施例提供的零功耗终端的上行数据发送方法的流程图;
图12是本申请一个实施例提供的零功耗终端的上行数据发送方法的流程图;
图13是本申请一个实施例提供的零功耗终端的上行数据发送方法的流程图;
图14是本申请一个实施例提供的零功耗终端的上行数据发送方法的流程图;
图15是本申请一个实施例提供的零功耗终端的上行数据发送装置的框图;
图16是本申请一个实施例提供的零功耗终端的上行数据发送装置的框图;
图17是本申请一个实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一参数也可以被称为第二参数,类似地,第二参数也可以被称为第一参数。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1示出了零功耗通信系统100的示意图,零功耗通信系统100包括网络设备120和零功耗终端140。
网络设备120用于向零功耗终端发送无线供能信号,下行通信信号以及接收零功耗终端的反向散射信号。零功耗终端140包含能量采集模块141,反向散射通信模块142以及低功耗计算模块143。能量采集模块141可以采集空间中的无线电波携带的能量,用于驱动零功耗终端140的低功耗计算模块143和实现反向散射通信。零功耗终端140获得能量后,可以接收网络设备120的控制信令,并根据控制信令基于后向散射的方式向网络设备120发送数据。发送数据可以来自于零功耗终端自身存储的数据(如身份标识或预先写入的信息,如商品的生产日期、品牌、生产厂家等)。
零功耗终端140还可以包括传感器模块144和存储器145。传感器模块144可以包括各类传感器,零功耗终端140可以基于零功耗机制将各类传感器采集的数据上报。存储器145用于存储一些基本信息(如物品标识等)或获取环境温度、环境湿度等传感数据。
零功耗终端自身不需要电池,同时采用低功耗计算模块可实现简单的信号解调,解码或编码,调制等简单的运算工作,因此零功耗模块仅需要极简的硬件设计,使得零功耗设备成本很低、体积很小。
接下来,对零功耗通信的关键技术进行介绍:
·射频能量采集(Radio Frequency Power Harvesting)
图2示出了射频能量采集的原理图。射频能量采集是基于电磁感应原理,利用射频模块RF通过电磁感应,并与保持并联关系的电容C、负载电阻R L进行连接,实现对空间电磁波能量的采集,获得驱动零功耗终端工作所需的能量,比如:用于驱动低功耗解调模块、调制模块、传感器和内存读取等。因此,零功耗终端无需传统电池。
·反向散射通信(Back Scattering)
图3示出了反向散射通信过程的原理图。零功耗终端140接收网络设备120发送模块(Transmit,TX)121使用异步映射规程(Asynchronous Mapping Procedure,AMP)122发送的无线信号载波131,并对无线信号载波131进行调制,使用逻辑处理模块141加载需要发送的信息,并使用能量采集模块142采集射频能量。零功耗终端140使用天线143辐射调制后的反射信号132,这个信息传输过程称为反向散射通信。网络设备120接收模块(Receive,RX)123使用低噪声放大器(Low Noise Amplifier,LNA)124接收调制后的反射信号132。反向散射和负载调制功能密不可分。负载调制通过对零功耗终端140的振荡回路的 电路参数按照数据流的节拍进行调节和控制,使电子标签阻抗的大小等参数随之改变,完成调制的过程。
负载调制技术主要包括电阻负载调制和电容负载调制。图4示出了电阻负载调制的原理图。在电阻负载调制中,负载电阻R L并联第三电阻R 3,基于二进制编码的控制的开关S实现接通或断开,第三电阻R 3的通断会导致电路上的电压产生变化,负载电阻R L与第一电容C 1保持并联的连接关系,负载电阻R L与第二电阻R 2保持串联的连接关系,第二电阻R 2与第一电感L 1保持串联的连接关系。第一电感L 1与第二电感L 2之间耦合,第二电感L 2与第二电容C 2保持串联的连接关系。可以实现幅度键控调制(Amplitude Shift Keying,ASK),即通过调整零功耗终端的反向散射信号的幅度大小实现信号的调制与传输。类似地,在电容负载调制中,通过电容的通断可以实现电路谐振频率的变化,实现频率键控调制(Frequency Shift Keying,FSK),即通过调整零功耗终端的反向散射信号的工作频率实现信号的调制与传输。
零功耗终端借助负载调制的方式,对来波信号进行信息调制,实现了反向散射通信的过程。零功耗终端具有显著的优点:终端不主动发射信号,因此不需要复杂的射频链路,如PA、射频滤波器等;终端不需要主动产生高频信号,因此不需要高频晶振;借助反向散射通信,终端信号传输不需要消耗终端自身能量。
接下来,对零功耗通信的编码方式进行介绍:
图5示出了编码方式的示意图。电子标签传输的数据,可以使用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(Not Return to Zero,NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar Return to Zero,URZ)编码、差动双相(Differential Binary Phase,DBP)编码、米勒(Miller)编码和差动编码。即可以使用不同的脉冲信号表示0和1。
·NRZ编码;反向不归零编码用高电平表示二进制“1”,低电平表示二进制“0”,图5中NRZ编码示出了使用NRZ方法编码二进制数据:101100101001011的电平示意图。
·曼彻斯特编码;曼彻斯特编码也被称为分相编码(Split-Phase Coding)。在曼彻斯特编码中,二进制数值由该位长度内半个位周期时电平的变化(上升或下降)表示,在半个位周期时的负跳变表示二进制“1”,半个位周期时的正跳变表示二进制“0”,数据传输的错误是指在当多个电子标签同时发送的数据位有不同值时,接收的上升边和下降边互相抵消,导致在整个位长度内是不间断的载波信号。曼彻斯特编码在位长度内,不可能存在没有变化的状态。读写器利用该错误就可以判定碰撞发生的具体位置。曼彻斯特编码有利于发现数据传输的错误,在采用载波的负载调制或者反向散射调制时,通常用于从电子标签到读写器的数据传输。图5中曼彻斯特编码示出了使用曼彻斯特方法编码二进制数据:101100101001011的电平示意图。
·URZ编码;单极性归零编码在第一个半个位周期中的高电平表示二进制“1”,而持续整个位周期内的低电平信号表示二进制“1”,图5中URZ编码示出了使用URZ方法编码二进制数据:101100101001011的电平示意图。
·DBP编码;差动双相编码在半个位周期中的任意的边沿表示二进制“0”,没有边沿表示二进制“1”,此外,在每个位周期开始时,电平都要反相。对接收器来说,位节拍比较容易重建。图5中DBP编码示出了使用DBP方法编码二进制数据:101100101001011的电平示意图。
·米勒编码;米勒编码在半个位周期内的任意边沿表示二进制“1”,而经过下一个位周期中不变的电平表示二进制“0”。位周期开始时产生电平交变,对接收器来说,位节拍比较容易重建。图5中米勒编码示出了使用米勒方法编码二进制数据:101100101001011的电平示意图。
·差动编码;差动编码中,每个要传输的二进制“1”都会引起信号电平的变化,而对于二进制“0”,信号电平保持不变。
接下来,对零功耗终端进行详细介绍:基于零功耗终端的能量来源以及使用方式可以将零功耗终端分为如下类型:
·无源零功耗终端;
零功耗终端不需要内装电池,零功耗终端接近网络设备时,零功耗终端处于网络设备天线辐射形成的近场范围内,示例性的,网络设备是射频识别技术(Radio Frequency Identification,RFID)系统的读写器。因此,零功耗终端天线通过电磁感应产生感应电流,感应电流驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗终端。无源零功耗终端不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪声放大器(Low Noise Amplifier,LNA)、功率放大器(Power Amplifier,PA)、晶振、模数转换器(Analog to Digital Converter,ADC)等器件,具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
·半无源零功耗终端;
半无源零功耗终端自身不安装常规电池,可使用射频能量采集模块采集无线电波能量,同时将采集的 能量存储于一个储能单元中,示例性的,储能单元是电容。储能单元获得能量后,可以驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
半无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,工作中使用的电容储存的能量来源于射频能量采集模块采集的无线电能量,是一种真正意义的零功耗终端。半无源零功耗终端继承了无源零功耗终端的诸多优点,比如:具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
·有源零功耗终端;
有源零功耗终端可以内置电池。电池用于驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。但对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。有源零功耗终端的零功耗主要体现于反向链路的信号传输不需要终端自身功率,使用了反向散射的方式。在有源零功耗终端中,内置电池向RFID芯片供电,增加标签的读写距离,提高通信的可靠性。在一些对通信距离,读取时延等方面要求相对较高的场景得以应用。
随着通信行业的发展,特别是5G行业应用增加,连接物的种类和应用场景越来越多,对通信终端的价格和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,可以充实网络链接终端类型和数量,真正实现万物互联。其中无源物联网设备可以基于零功耗通信技术,如RFID技术,并在此基础上进行延伸,以适用于蜂窝物联网。
图6示出了本申请一个示例性实施例提供的零功耗通信系统的示意图。
零功耗通信系统中包含如下功能节点:
零功耗终端140:零功耗终端140可以通过使用RF能量采集模块采集无线电波能量,零功耗终端140使用反向散射实现方式进行信号的传输。网络设备120:网络设备120为零功耗终端提供通信链路,和/或给零功耗终端提供基于RF能量采集模块采集无线电波能量的无线电波,即供能。核心网(Corn Network,CN)160:数据处理和接收,零功耗终端相关业务的控制和管理,网关等功能。统一数据管理(Unified Data Management,UDM)180:这里存储零功耗终端的签约数据、和/或通信相关配置信息,通信相关配置信息包括承载配置,零功耗终端标识,安全配置信息,业务标识信息等。蜂窝物联网服务(CellularInternet of Things Service,CIoT Service)200:用于提供蜂窝物联网服务。
在图6示出的零功耗通信系统的基础上,零功耗网络系统架构还可以是图7示出的表现形式。给零功耗终端供能的网络设备和与零功耗终端通信的网络设备可以相同或者不同,示例性的:
在场景1中,给零功耗终端140供能的网络设备和与零功耗终端140通信的网络设备相同,即第一网络设备121用于实现与零功耗终端进行通信和供能。
在场景2中,终端130用于实现与零功耗终端140进行通信和供能,终端130与第一网络设备121之间进行接口信令和数据传输。
在场景3中,给零功耗终端140供能的网络设备和与零功耗终端140通信的网络设备不同,第一网络设备121用于实现与零功耗终端进行通信,第二网络设备122专门用于实现对零功耗终端进行供能,提高了供能的覆盖范围和供能效率。
图8提供了本申请一个实施例提供的零功耗终端的上行数据发送方法的流程图,本方法可以由图6所示的零功耗终端执行,该方法包括:
步骤310:零功耗终端在满足触发条件的情况下,在网络设备配置的上行资源中选择第一上行资源;
可选地,触发条件是零功耗终端判断是否需要发送上行数据的条件,或者,触发条件是零功耗终端判断是否需要响应网络设备的下行指令或下行数据的条件。
示例性的,触发条件包括但不限于下述条件中的至少一种:
·零功耗终端的终端属性或终端配置与网络设备发送的触发指令相匹配;
示例性的,终端属性或终端配置包括但不限于下述至少之一:业务类型、组信息、终端标识。
业务类型用于标注不同的业务。示例性的,可以依据丢包率、时延、传输速率等进行区分,在本实施例中对业务类型的区分依据不做出任何限制。比如:触发指令指示当前覆盖下属于第一业务类型的零功耗终端进行响应,零功耗终端在业务属于第一业务类型的情况下,在网络设备配置的上行资源中选择第一上行资源。
组信息用于标注零功耗终端的分组信息,同一个零功耗终端属于至少一个分组。示例性的,零功耗设备的分组依据包括如下至少之一:零功耗设备的型号、位置、功能。本实施例对零功耗设备的分组依据不做出任何限制。比如:触发指令指示当前覆盖下属于第一组别的零功耗终端进行响应,属于第一组别的所有零功耗终端的组信息相同。零功耗终端在组信息与第一组别的组信息相同的情况下,在网络设备配置的上行资源中选择第一上行资源。
终端标识是零功耗终端的标识,用于区分不同的零功耗终端。比如:触发指令指示当前覆盖下终端标 识为第一取值的零功耗终端进行响应,终端标识为第一取值的零功耗终端在网络设备配置的上行资源中选择第一上行资源。
·自主触发条件。
示例性的,自主触发条件包括如下条件中的至少一个:零功耗终端的接入网络发生变化、零功耗终端的地理位置发生变化、当前时刻为周期性的触发时刻。
在本实施例中,对触发条件选取不作出任何限制。
零功耗终端在网络设备配置的上行资源中选择第一上行资源。其中,网络设备通常配置了至少两个上行资源,零功耗终端在至少两个上行资源中选择第一上行资源。在本实施例中,对零功耗终端选择第一上行资源的方法不作出任何限制。但本实施例也不排除网络设备配置一个上行资源的情况,比如:网络设备为不同终端标识或不同终端组或不同业务类型的零功耗终端配置不同的上行资源。
步骤320:使用第一上行资源向网络设备发送上行数据。
示例性的,上行数据用于响应触发指令,实现与网络设备的通信。上行数据中通常包括零功耗终端的相关信息,比如:零功耗终端的终端标识。但也不排除不包括零功耗终端的相关信息的情况。本实施例对零功耗终端向网络设备发送的上行数据的种类和内容不作出任何限制。
综上所述,本实施例提供的方法,通过由零功耗终端在网络设备配置的至少两个上行资源中,选择出第一上行资源发送上行数据,使得不同的零功耗终端所选择的第一上行资源尽量不同,从而降低了多个零功耗终端发生上行冲突的可能性,提高零功耗通信的上行成功率。
接下来,对零功耗终端接收网络设备配置的上行资源的方法进行介绍。
示例性的,在触发条件包括零功耗终端的终端属性或终端配置的情况下,零功耗终端接收网络设备配置的上行资源包括下述三种实现方式中的任意一种:
需要说明的是,在实施例中,三种实现方式中的任意一种均可以实现零功耗终端接收网络设备配置的上行资源,三种实现方式可以分别实施,与其他步骤重新组合成为新的实施例。
实现方式一:接收网络设备周期性发送的广播消息,广播消息用于配置上行资源;
示例性的,广播消息中携带有上行资源的时域位置信息和频域位置信息中的至少一种。
实现方式二:接收网络设备发送的触发消息,触发消息用于配置上行资源;
示例性的,触发消息中携带有上行资源的标识信息和终端属性的相关信息。
实现方式三:接收网络设备发送的配置消息,配置消息用于配置上行资源,配置消息对应的时域位置晚于触发消息对应的时域位置。
示例性的,触发消息中携带有上行资源的标识信息和终端配置的相关信息。
示例性的,在触发条件包括自主触发条件的情况下,零功耗终端接收网络设备配置的上行资源包括下述一种实现方式:
实现方式一:接收网络设备周期性发送的广播消息,广播消息用于配置上行资源;
示例性的,广播消息中携带有上行资源的时域位置信息和频域位置信息中的至少一种。
接下来,对零功耗终端在网络设备配置的上行资源中选择第一上行资源的方法进行介绍。示例性的,零功耗终端在网络设备配置的上行资源中选择第一上行资源的方法包括下述三种实现方式中的任意一种:
需要说明的是,在实施例中,三种实现方式中的任意一种均可以实现零功耗终端对第一上行资源的选择,三种实现方式可以分别实施,与其他步骤重新组合成为新的实施例。
实现方式一:零功耗终端在满足触发条件的情况下,基于零功耗终端的终端标识和上行资源的数量,选择第一上行资源;
示例性的,零功耗终端选择的第一上行资源的资源序号,等于终端标识除以上行资源的数量得到的余数。
Resource_valid_ID=UE_ID mod K
其中,Resource_valid_ID表示零功耗终端选择的第一上行资源的资源序号,UE_ID表示终端标识,K表示上行资源的数量,mod表示取余数运算。示例性的网络设备配置的K个上行资源的编号为:0、1、…、K-1。比如:终端标识为23,上行资源的数量为5,零功耗终端选择的第一上行资源的资源序号为3。在本实施例中,对零功耗终端选择的第一上行资源与终端标识和上行资源数量之间的关系不作出任何限制性规定。
实现方式二:零功耗终端在满足触发条件的情况下,基于第一定时器在网络设备配置的上行资源中,选择第一上行资源;
示例性的,基于第一定时器在网络设备配置的上行资源中,选择第一上行资源包括:
在满足触发条件的时刻,启动第一定时器;示例性的,第一定时器是由零功耗终端维护的接入定时器, 第一定时器的时长是零功耗终端预先配置的。
在第一定时器超时的情况下,在网络设备配置的上行资源中,选择时域上与超时时刻最近的上行资源,确定为第一上行资源;示例性的,第一定时器超时时刻为第一时刻,网络设备配置有上行资源1和上行资源2,相较于上行资源1,上行资源2的时域位置更接近第一时刻。零功耗终端将上行资源2确定为第一上行资源,第一上行资源的时域位置晚于第一定时器的超时时刻。在本实施例中,对第一上行资源的时域信息与第一定时器之间的关系不作出任何限制性规定。
实现方式三:零功耗终端在满足触发条件的情况下,在网络设备配置的上行资源中,随机选择第一上行资源。
零功耗终端在多个上行资源中随机选择第一上行资源。
综上所述,本实施例提供的方法,丰富了零功耗终端在网络设备配置的至少两个上行资源中,选择出第一上行资源发送上行数据的选择依据,将第一上行资源的选择与终端标识、定时器和随机数联系起来,使得不同的零功耗终端所选择的第一上行资源尽量不同,从而降低了多个零功耗终端发生上行冲突的可能性,提高零功耗通信的上行成功率。
图9提供了本申请一个实施例提供的零功耗终端的上行数据发送方法的流程图,本方法可以由图6所示的零功耗终端执行,该方法包括:
步骤310:零功耗终端在满足触发条件的情况下,在网络设备配置的上行资源中选择第一上行资源;
步骤320:使用第一上行资源向网络设备发送上行数据;
步骤310、步骤320可以参考上文图8示出的实施例中的步骤,在本实施例中不再赘述。
步骤330:在未收到上行数据的响应的情况下,再次在网络设备配置的上行资源中选择第二上行资源;
零功耗终端在使用第一上行资源向网络设备发送上行数据后,在对应的下行资源接收下行数据,在未收到上行数据的响应的情况下,即在第一上行资源未完成与网络设备的通信再次在网络设备配置的上行资源中选择第二上行资源。示例性的,在第一上行资源上发生了冲突。零功耗终端再次在网络设备配置的上行资源中选择第二上行资源。
未收到上行数据的响应的情况,包括:
零功耗终端未收到网络设备发送的下行反馈;或,零功耗终端收到网络设备发送的下行反馈,下行反馈中不包括接收信息,接收信息用于指示网络设备成功接收零功耗终端发送的上行数据。
步骤340:使用第二上行资源向网络设备发送上行数据。
本实施例对零功耗终端向网络设备发送的上行数据种类不作出任何限制。
综上所述,本实施例提供的方法,在零功耗终端未收到上行数据的响应的情况下,通过由零功耗终端在网络设备配置的至少两个上行资源中,选择出第二上行资源发送上行数据,可以再次进行上行资源选择,解决了多个零功耗终端发生上行冲突的问题,提高零功耗通信的上行成功率。
图10提供了本申请一个实施例提供的零功耗终端的上行数据发送方法的流程图,本方法可以由图6所示的零功耗终端执行,该方法包括:
步骤310:零功耗终端在满足触发条件的情况下,在网络设备配置的上行资源中选择第一上行资源;
步骤320:使用第一上行资源向网络设备发送上行数据;
步骤310、步骤320可以参考上文图8示出的实施例中的步骤,在本实施例中不再赘述。
步骤332:在未收到上行数据的响应的情况下,启动第二定时器;
示例性的,第二定时器是由零功耗终端维护的定时器。在本实施例中对第二定时器的定时器时长的选择不作出任何限制性规定。可选的,第二定时器与第一定时器是同一个定时器,第二定时器仅在未收到上行数据的响应的情况下启动。
示例性的,在未收到上行数据的响应的情况下,启动第二定时器;包括下述两种实现方式中的任意一种:
实现方式一:在未收到上行数据的响应且接收到网络设备的指示信息的情况下,启动第二定时器。
示例性的,在接收到网络设备的指示信息的情况下,第二定时器的定时器时长可以是基于网络设备的指示信息选择的,零功耗终端启动第二计时器;也可以是将第二定时器的定时器时长确定为默认时长,零功耗终端启动第二计时器。默认时长可以是零功耗设备预先设置的,也可以是网络设备预先设置并预先传输给零功耗终端的,也可以是零功耗终端和网络设备预先协商确定的。本实施例对默认时长的确定方法不作出任何限制。
实现方式二:在未收到上行数据的响应且未接收到网络设备的指示信息的情况下,启动第二定时器。
示例性的,在未接收到网络设备的指示信息的情况下,第二定时器的定时器时长确定为默认时长,零 功耗终端启动第二计时器。
需要说明的是,在实施例中,两种实现方式中的任意一种均可以实现第二定时器的启动,两种实现方式可以分别实施,与其他步骤重新组合成为新的实施例。
示例性的,下述两种实现方式中,网络设备的指示信息包括如下信息中的至少一项:
第二定时器的启动指示;第二定时器的定时器时长。
步骤334:在第二定时器超时的情况下,再次在网络设备配置的上行资源中选择第二上行资源;
零功耗终端在第二定时器超时的时刻或第二定时器超时的时刻后的任意一个时刻,再次在网络设备配置的上行资源中选择第二上行资源。在选择第二上行资源时,网络配置的上行资源与在选择第一上行资源时,网络配置的上行资源,可以是不同的两组上行资源,也可以是相同的一组上行资源。
步骤340:使用第二上行资源向网络设备发送上行数据。
步骤340可以参考上文图9示出的实施例中的步骤,在本实施例中不再赘述。
综上所述,本实施例提供的方法,在零功耗终端未收到上行数据的响应的情况下,通过由零功耗终端在网络设备配置的至少两个上行资源中,选择出第二上行资源发送上行数据,增加第二定时器,将第二定时器与再次选择上行资源联系起来,可以再次进行上行资源选择,解决了多个零功耗终端发生上行冲突的问题,提高零功耗通信的上行成功率。
接下来,对第二定时器的定时器时长的确定依据进行介绍。示例性的,第二定时器的定时器时长的确定包括下述五种实现方式中的任意一种:
需要说明的是,在实施例中,五种实现方式中的任意一种均可以实现零功耗终端对第二上行资源的选择,五种实现方式可以分别实施,与其他步骤重新组合成为新的实施例。
实现方式一:基于零功耗终端的优先级,确定第二定时器的定时器时长;
在本实施例中,对于确定零功耗终端的优先级的依据不作出任何限制性规定。示例性的,确定零功耗终端的优先级的依据包括但不限于如下至少一种:零功耗终端、零功耗终端组、业务、业务类型。
可选的,实现方式一还包括如下内容:接收配置信息:配置信息用于配置优先级。示例性的,配置优先级的依据包括但不限于下述至少之一:零功耗终端、零功耗终端组、业务、业务类型。本实施例对于配置优先级的依据不作出任何限制性规定。比如:优先级与零功耗终端对应,或零功耗终端的终端组对应,或零功耗终端的业务对应,或零功耗终端的业务类型组对应。
或,获取预配置信息:预配置信息是零功耗终端预先配置的,与配置信息用于配置优先级。示例性的,配置优先级的依据包括但不限于下述至少之一:零功耗终端、零功耗终端组、业务、业务类型。本实施例对于配置优先级的依据不作出任何限制性规定。比如:优先级与零功耗终端对应,或零功耗终端的终端组对应,或零功耗终端的业务对应,或零功耗终端的业务类型组对应。
实现方式二:从多个候选定时器时长中,随机选择第二定时器的定时器时长;
候选定时器时长可以是零功耗终端设置的,也可以是网络设备设置的,本实施例对此不作出任何限制性规定。示例性的,候选定时器时长为1秒、3秒和6秒,选择3秒作为第二定时器的定时器时长。
实现方式三:基于网络设备的指示信息,从多个候选定时器时长中选择第二定时器的定时器时长;
网络设备的指示信息携带有指示零功耗终端启动第二定时器的信息和选择第二定时器的定时器时长的信息,本实施例对网络设备指示零功耗终端启动第二定时器的依据不作出任何限制,本实施例对指示信息指示第二定时器的定时器时长的方法不作出任何限制。示例性的,候选定时器时长为1秒、3秒和6秒,指示信息指示第二定时器的定时器时长为3秒,或指示信息指示第二定时器的定时器时长为时间最长的候选定时器时长。
实现方式四:基于零功耗终端的终端标识和候选定时器时长的数量,从多个候选定时器时长中选择第二定时器的定时器时长;
示例性的,第二定时器的定时器时长是第一候选定时器时长,第一候选定时器时长对应的序号等于零功耗终端的终端标识除以候选定时器时长的数量得到的余数。
Candidate_timer_ID=UE_ID mod M
其中,Candidate_timer_ID表示第一候选定时器时长对应的序号,UE_ID表示终端标识,M表示候选定时器时长的数量,mod表示取余数运算。示例性的网络设备配置的m个候选定时器时长的编号为:0、1、…、M-1。比如:终端标识为23,候选定时器时长的数量为5,第一候选定时器时长对应的序号等于3,第二定时器的定时器时长是第一候选定时器时长。在本实施例中,对零功耗终端选择的第二定时器的定时器时长与终端标识和候选定时器时长的数量的关系不作出任何限制性规定。
实现方式五:确定第二定时器的定时器时长为默认时长。
默认时长可以是零功耗设备预先设置的,也可以是网络设备预先设置并预先传输给零功耗终端的,也 可以是零功耗终端和网络设备预先协商确定的。本实施例对默认时长的确定方法不作出任何限制。
综上所述,本实施例提供的方法,丰富了第二定时器的定时器时长设置方法,增加了零功耗终端进行上行资源选择的机会,使得不同的零功耗终端所选择的第一上行资源尽量不同,在零功耗终端未收到上行数据的响应的情况下,可以再次进行上行资源选择,解决了多个零功耗终端发生上行冲突的问题,提高零功耗通信的上行成功率。
接下来,对零功耗终端在网络设备配置的上行资源中选择第二上行资源的方法进行介绍。示例性的,零功耗终端在网络设备配置的上行资源中选择第二上行资源的方法包括下述三种实现方式中的任意一种:
需要说明的是,在实施例中,三种实现方式中的任意一种均可以实现零功耗终端对第二上行资源的选择,三种实现方式可以分别实施,与其他步骤重新组合成为新的实施例。
实现方式一:在未收到上行数据的响应的情况下,基于零功耗终端的终端标识和上行资源的数量,选择第二上行资源;
示例性的,零功耗终端选择的第二上行资源的资源序号,等于终端标识除以上行资源的数量得到的余数。
Resource_valid_ID=UE_ID mod K
其中,Resource_valid_ID表示零功耗终端选择的第二上行资源的资源序号,UE_ID表示终端标识,K表示上行资源的数量,mod表示取余数运算。示例性的网络设备配置的K个上行资源的编号为:0、1、…、K-1。比如:终端标识为23,上行资源的数量为5,零功耗终端选择的第二上行资源的资源序号为3。在本实施例中,对零功耗终端选择的第一上行资源与终端标识和上行资源数量之间的关系不作出任何限制性规定。
实现方式二:在未收到上行数据的响应的情况下,基于第二定时器在网络设备配置的上行资源中,选择第二上行资源;
示例性的,在第二定时器超时的情况下,在网络设备配置的上行资源中,选择时域上与超时时刻最近的上行资源,确定为第二上行资源;比如:第二定时器超时时刻为第一时刻,网络设备配置有上行资源1和上行资源2,相较于上行资源1,上行资源2的时域位置更接近第一时刻。零功耗终端将上行资源2确定为第二上行资源,第二上行资源的时域位置晚于第二定时器的超时时刻。在本实施例中,对第二上行资源的时域信息与第二定时器之间的关系不作出任何限制性规定。
实现方式三:在未收到上行数据的响应的情况下,在网络设备配置的上行资源中,随机选择第二上行资源。
零功耗终端在多个上行资源中随机选择第二上行资源。
综上所述,本实施例提供的方法,在零功耗终端未收到上行数据的响应的情况下,通过由零功耗终端在网络设备配置的至少两个上行资源中,选择出第二上行资源发送上行数据,可以再次进行上行资源选择,解决了多个零功耗终端发生上行冲突的问题,提高零功耗通信的上行成功率。
图11提供了本申请一个实施例提供的零功耗终端的上行数据发送方法的流程图,本方法可以由图6所示的网络设备执行,该方法包括:
步骤410:网络设备在第一上行资源上接收零功耗终端发送的上行数据。
第一上行资源是零功耗终端在满足触发条件的情况下,在网络设备配置的上行资源中选择的。
示例性的,网络设备配置上行资源后,网络设备监听配置的每个上行资源,等待接收零功耗终端发送的上行数据。
触发条件是零功耗终端判断是否选择上行资源的判断条件,零功耗终端在满足触发条件的情况下,在网络设备配置的上行资源中选择第一上行资源。示例性的,触发条件包括但不限于下述条件中的至少一种:
·零功耗终端的终端属性或终端配置与网络设备发送的触发指令相匹配;
示例性的,终端属性或终端配置包括但不限于下述至少之一:业务类型、组信息、终端标识。
业务类型用于标注不同的业务。示例性的,可以依据丢包率、时延、传输速率等进行区分,在本实施例中对业务类型的区分依据不做出任何限制。比如:触发指令指示当前覆盖下属于第一业务类型的零功耗终端进行响应,零功耗终端在业务属于第一业务类型的情况下,在网络设备配置的上行资源中选择第一上行资源。
组信息用于标注零功耗终端的分组信息,同一个零功耗终端属于至少一个分组。示例性的,零功耗设备的分组依据包括如下至少之一:零功耗设备的型号、位置、功能。本实施例对零功耗设备的分组依据不做出任何限制。比如:触发指令指示当前覆盖下属于第一组别的零功耗终端进行响应,属于第一组别的所有零功耗终端的组信息相同。零功耗终端在组信息与第一组别的组信息相同的情况下,在网络设备配置的上行资源中选择第一上行资源。
终端标识是零功耗终端的标识,用于区分不同的零功耗终端。比如:触发指令指示当前覆盖下终端标识为第一取值的零功耗终端进行响应,终端标识为第一取值的零功耗终端在网络设备配置的上行资源中选择第一上行资源。
·自主触发条件。示例性的,自主触发条件包括:零功耗终端的接入网络发生变化、零功耗终端的地理位置发生变化、当前时刻为周期性的触发时刻。
在本实施例中,对触发条件选取不作出任何限制。
零功耗终端在网络设备配置的上行资源中选择第一上行资源。其中,网络设备通常配置了至少两个上行资源,零功耗终端在至少两个上行资源中选择第一上行资源。在本实施例中,对零功耗终端选择第一上行资源的方法不作出任何限制。但本实施例也不排除网络设备配置一个上行资源的情况,比如:网络设备为不同终端标识或不同终端组或不同业务类型的零功耗终端配置不同的上行资源。
综上所述,本实施例提供的方法,网络设备在第一上行资源上接收零功耗终端发送的上行数据,降低了多个零功耗终端发生上行冲突的可能性,为提高零功耗通信的上行成功率奠定了基础。
接下来,对网络设备向零功耗终端发送配置的上行资源的方法进行介绍。
示例性的,在触发条件包括零功耗终端的终端属性或终端配置的情况下,网络设备向零功耗终端发送配置的上行资源包括下述三种实现方式中的任意一种:
需要说明的是,在实施例中,三种实现方式中的任意一种均可以实现网络设备向零功耗终端发送配置的上行资源,三种实现方式可以分别实施,与其他步骤重新组合成为新的实施例。
实现方式一:网络设备向零功耗终端周期性发送广播消息,广播消息用于配置上行资源;
示例性的,广播消息中携带有上行资源的时域位置信息和频域位置信息中的至少一种。
实现方式二:网络设备向零功耗终端发送触发消息,触发消息用于配置上行资源;
示例性的,触发消息中携带有上行资源的标识信息和终端属性的相关信息。
实现方式三:网络设备向零功耗终端发送配置消息,配置消息用于配置上行资源,配置消息对应的时域位置晚于触发消息对应的时域位置。
示例性的,触发消息中携带有上行资源的标识信息和终端配置的相关信息。
示例性的,在触发条件包括自主触发条件的情况下,网络设备向零功耗终端发送配置的上行资源包括下述一种实现方式:
实现方式一:网络设备向零功耗终端周期性发送广播消息,广播消息用于配置上行资源。
示例性的,广播消息中携带有上行资源的时域位置信息和频域位置信息中的至少一种。
图12提供了本申请一个实施例提供的零功耗终端的上行数据发送方法的流程图,本方法可以由图6所示的网络设备执行,该方法包括:
步骤410:网络设备在第一上行资源上接收零功耗终端发送的上行数据;
步骤410可以参考上文图11示出的实施例中的步骤,在本实施例中不再赘述。
步骤420:在第二上行资源上接收零功耗终端发送的上行数据。
第二上行资源是零功耗终端在未收到上行数据的响应的情况下,在网络设备配置的上行资源中选择的。
第二上行资源是零功耗终端在未收到上行数据的响应的情况下,启动第二定时器;在第二定时器超时的情况下,再次在网络设备配置的上行资源中选择的。
示例性的,第二定时器的定时器时长的确定包括下述五种实现方式中的任意一种:
需要说明的是,在实施例中,五种实现方式中的任意一种均可以实现零功耗终端对第二上行资源的选择,五种实现方式可以分别实施,与其他步骤重新组合成为新的实施例。
实现方式一:基于零功耗终端的优先级,确定第二定时器的定时器时长;
在本实施例中,对于确定零功耗终端的优先级的依据不作出任何限制性规定。示例性的,确定零功耗终端的优先级的依据包括但不限于如下至少一种:零功耗终端、零功耗终端组、业务、业务类型。
可选的,实现方式一还包括如下内容:
接收配置信息:配置信息用于配置优先级。示例性的,配置优先级的依据包括但不限于下述至少之一:零功耗终端、零功耗终端组、业务、业务类型。本实施例对于配置优先级的依据不作出任何限制性规定。比如:优先级与零功耗终端对应,或零功耗终端的终端组对应,或零功耗终端的业务对应,或零功耗终端的业务类型组对应。
或,获取预配置信息:预配置信息是零功耗终端预先配置的,与配置信息用于配置优先级。示例性的,配置优先级的依据包括但不限于下述至少之一:零功耗终端、零功耗终端组、业务、业务类型。本实施例对于配置优先级的依据不作出任何限制性规定。
实现方式二:从多个候选定时器时长中,随机选择第二定时器的定时器时长;
候选定时器时长可以是零功耗终端设置的,也可以是网络设备设置的,本实施例对此不作出任何限制性规定。示例性的,候选定时器时长为1秒、3秒和6秒,选择3秒作为第二定时器的定时器时长。
实现方式三:基于网络设备的指示信息,从多个候选定时器时长中选择第二定时器的定时器时长;
网络设备的指示信息携带有指示零功耗终端启动第二定时器的信息和选择第二定时器的定时器时长的信息,本实施例对网络设备指示零功耗终端启动第二定时器的依据不作出任何限制,本实施例对指示信息指示第二定时器的定时器时长的方法不作出任何限制。示例性的,候选定时器时长为1秒、3秒和6秒,指示信息指示第二定时器的定时器时长为3秒,或指示信息指示第二定时器的定时器时长为时间最长的候选定时器时长。
实现方式四:基于零功耗终端的终端标识和候选定时器时长的数量,从多个候选定时器时长中选择第二定时器的定时器时长;
示例性的,第二定时器的定时器时长是第一候选定时器时长,第一候选定时器时长对应的序号等于零功耗终端的终端标识除以候选定时器时长的数量得到的余数。
Candidate_timer_ID=UE_ID mod M
其中,Candidate_timer_ID表示第一候选定时器时长对应的序号,UE_ID表示终端标识,M表示候选定时器时长的数量,mod表示取余数运算。示例性的网络设备配置的m个候选定时器时长的编号为:0、1、…、M-1。比如:终端标识为23,候选定时器时长的数量为5,第一候选定时器时长对应的序号等于3,第二定时器的定时器时长是第一候选定时器时长。在本实施例中,对零功耗终端选择的第二定时器的定时器时长与终端标识和候选定时器时长的数量的关系不作出任何限制性规定。
实现方式五:确定第二定时器的定时器时长为默认时长。
默认时长可以是零功耗设备预先设置的,也可以是网络设备预先设置并预先传输给零功耗终端的,也可以是零功耗终端和网络设备预先协商确定的。本实施例对默认时长的确定方法不作出任何限制。
综上所述,本实施例提供的方法,网络设备在第一上行资源上接收零功耗终端发送的上行数据,在第二上行资源上接收零功耗终端发送的上行数据。降低了多个零功耗终端发生上行冲突的可能性,为提高零功耗通信的上行成功率奠定了基础。
图13提供了本申请一个实施例提供的零功耗终端的上行数据发送方法的流程图,本方法可以由图6所示的网络设备执行,该方法包括:
步骤410:网络设备在第一上行资源上接收零功耗终端发送的上行数据;
步骤410可以参考上文图11示出的实施例中的步骤,在本实施例中不再赘述。
步骤415:发送指示信息;
指示信息用于指示第二定时器的相关信息;指示信息包括如下信息中的至少一项:
·第二定时器的启动指示;
·第二定时器的定时器时长。
示例性的,在接收到网络设备的指示信息的情况下,第二定时器的定时器时长是基于网络设备的指示信息选择的,零功耗终端启动第二计时器。
步骤420:在第二上行资源上接收零功耗终端发送的上行数据;
步骤420可以参考上文图12示出的实施例中的步骤,在本实施例中不再赘述。
综上所述,本实施例提供的方法,网络设备向零功耗终端发送指示信息,丰富了第二定时器的相关信息的获取方式。降低了多个零功耗终端发生上行冲突的可能性,为提高零功耗通信的上行成功率奠定了基础。
图14提供了本申请一个实施例提供的零功耗终端的上行数据发送方法的流程图,本方法可以由图6所示的网络设备执行,该方法包括:
步骤410:网络设备在第一上行资源上接收零功耗终端发送的上行数据;
步骤410可以参考上文图11示出的实施例中的步骤,在本实施例中不再赘述。
步骤416:发送配置信息;
配置信息用于配置优先级。示例性的,配置优先级的依据包括但不限于下述至少之一:零功耗终端、零功耗终端组、业务、业务类型。本实施例对于配置优先级的依据不作出任何限制性规定。
步骤420:在第二上行资源上接收零功耗终端发送的上行数据;
步骤420可以参考上文图12示出的实施例中的步骤,在本实施例中不再赘述。
综上所述,本实施例提供的方法,网络设备向零功耗终端发送配置信息,丰富了选择第二定时器的定时器时长的方法。降低了多个零功耗终端发生上行冲突的可能性,为提高零功耗通信的上行成功率奠定了基础。
本领域普通技术人员可以理解,上述实施例可以独立实施,也可以将上述实施例进行自由组合,组合出新的实施例,本申请对此不加以限制。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
图15示出了本申请一个示例性实施例提供的零功耗终端的上行数据发送装置的框图,该装置包括:
第一选择模块510,用于在满足触发条件的情况下,在网络设备配置的上行资源中选择第一上行资源;
第一发送模块520,用于使用所述第一上行资源向所述网络设备发送上行数据。
在本实施的一个可选设计中,所述触发条件包括:
所述零功耗终端的终端属性或终端配置,与所述网络设备发送的触发指令相匹配。
在本实施的一个可选设计中,所述终端属性或所述终端配置包括如下至少一项:
业务类型;组信息;终端标识。
在本实施的一个可选设计中,所述触发条件包括:自主触发条件。
在本实施的一个可选设计中,所述自主触发条件包括:所述零功耗终端的接入网络发生变化;所述零功耗终端的地理位置发生变化;当前时刻为周期性的触发时刻。
在本实施的一个可选设计中,所述装置还包括:
接收模块530,用于接收所述网络设备周期性发送的广播消息,所述广播消息用于配置所述上行资源;
或,用于接收所述网络设备发送的触发消息,所述触发消息用于配置所述上行资源;
或,用于接收所述网络设备发送的配置消息,所述配置消息用于配置所述上行资源,所述配置消息对应的时域位置晚于所述触发消息对应的时域位置。
在本实施的一个可选设计中,所述接收模块530还用于:
接收所述网络设备周期性发送的广播消息,所述广播消息用于配置所述上行资源。
在本实施的一个可选设计中,所述第一选择模块510用于:
基于所述零功耗终端的终端标识和所述上行资源的数量,选择所述第一上行资源;
或,基于第一定时器在所述网络设备配置的上行资源中,选择所述第一上行资源;
或,在所述网络设备配置的上行资源中,随机选择所述第一上行资源。
在本实施的一个可选设计中,所述第一上行资源的资源序号,等于所述零功耗终端的终端标识除以所述上行资源的数量得到的余数。
在本实施的一个可选设计中,所述第一选择模块510用于:
在满足触发条件的时刻,启动所述第一定时器;
在所述第一定时器超时的情况下,在所述网络设备配置的上行资源中,选择时域上与超时时刻最近的上行资源,确定为所述第一上行资源。
在本实施的一个可选设计中,所述装置还包括:
第二选择模块540,用于在未收到所述上行数据的响应的情况下,再次在网络设备配置的上行资源中选择第二上行资源;
第二发送模块550,用于使用所述第二上行资源向所述网络设备发送所述上行数据。
在本实施的一个可选设计中,所述第二选择模块540,包括:
启动单元541,用于在未收到所述上行数据的响应的情况下,启动第二定时器;
选择单元542,用于在所述第二定时器超时的情况下,再次在网络设备配置的上行资源中选择第二上行资源。
在本实施的一个可选设计中,所述未收到所述上行数据的响应的情况,包括:
所述零功耗终端未收到所述网络设备发送的下行反馈;
或,所述零功耗终端收到所述网络设备发送的下行反馈,所述下行反馈中不包括接收信息,所述接收信息用于指示网络设备成功接收零功耗终端发送的上行数据。
在本实施的一个可选设计中,所述启动单元541用于:
在未收到所述上行数据的响应且接收到网络设备的指示信息的情况下,启动第二定时器;
或,在未收到所述上行数据的响应且未接收到网络设备的指示信息的情况下,启动第二定时器。
在本实施的一个可选设计中,所述网络设备的指示信息包括如下信息中的至少一项:
所述第二定时器的启动指示;所述第二定时器的定时器时长。
在本实施的一个可选设计中,所述装置还包括确定单元543;
所述确定单元543,用于基于所述零功耗终端的优先级,确定所述第二定时器的定时器时长;
或,用于从多个候选定时器时长中,随机选择所述第二定时器的定时器时长;
或,用于基于所述网络设备的指示信息,从多个候选定时器时长中选择所述第二定时器的定时器时长;
或,用于基于所述零功耗终端的终端标识和所述候选定时器时长的数量,从多个候选定时器时长中选择所述第二定时器的定时器时长;
或,用于确定所述第二定时器的定时器时长为默认时长。
在本实施的一个可选设计中,所述第二定时器的定时器时长,等于所述零功耗终端的终端标识除以所述候选定时器时长的数量得到的余数。
在本实施的一个可选设计中,所述装置还包括:
接收单元544,用于接收配置信息,所述配置信息用于配置所述优先级;
或,获取单元545,用于获取预配置信息,所述预配置信息包括所述优先级;
其中,所述优先级与所述零功耗终端对应,或所述零功耗终端的终端组对应,或所述零功耗终端的业务对应,或所述零功耗终端的业务类型组对应。
在本实施的一个可选设计中,所述第二选择模块540用于:
基于所述零功耗终端的终端标识和所述上行资源的数量,选择所述第二上行资源;
或,基于第二定时器在所述网络设备配置的上行资源中,选择所述第二上行资源;
或,在所述网络设备配置的上行资源中,随机选择所述第二上行资源。
图16示出了本申请一个示例性实施例提供的零功耗终端的上行数据发送装置的框图,该装置包括:
第一接收模块610,用于网络设备在第一上行资源上接收所述零功耗终端发送的上行数据;
其中,所述第一上行资源是所述零功耗终端在满足触发条件的情况下,在所述网络设备配置的上行资源中选择的。
在本实施的一个可选设计中,所述触发条件包括:
所述零功耗终端的终端属性或终端配置,与所述网络设备发送的触发指令相匹配。
在本实施的一个可选设计中,所述终端属性或所述终端配置包括如下至少一项:
业务类型;组信息;终端标识。
在本实施的一个可选设计中,所述触发条件包括:自主触发条件。
在本实施的一个可选设计中,所述自主触发条件包括:所述零功耗终端的接入网络发生变化;所述零功耗终端的地理位置发生变化;当前时刻为周期性的触发时刻。
在本实施的一个可选设计中,所述装置还包括:第一发送模块620,用于向所述零功耗终端周期性发送广播消息,所述广播消息用于配置所述上行资源;
或,用于向所述零功耗终端发送触发消息,所述触发消息用于配置所述上行资源;
或,用于向所述零功耗终端发送配置消息,所述配置消息用于配置所述上行资源,所述配置消息对应的时域位置晚于所述触发消息对应的时域位置。
在本实施的一个可选设计中,所述第一发送模块620,还用于:
向所述零功耗终端周期性发送广播消息,所述广播消息用于配置所述上行资源。
在本实施的一个可选设计中,所述装置还包括:
第二接收模块630,用于在第二上行资源上接收所述零功耗终端发送的上行数据;
其中,所述第二上行资源是所述零功耗终端在未收到所述上行数据的响应的情况下,在所述网络设备配置的上行资源中选择的。
在本实施的一个可选设计中,所述第二上行资源是零功耗终端在未收到所述上行数据的响应的情况下,启动第二定时器;在所述第二定时器超时的情况下,再次在所述网络设备配置的上行资源中选择的。
在本实施的一个可选设计中,所述第二定时器的定时器时长是所述零功耗终端基于所述零功耗终端的优先级确定的;
或,所述第二定时器的定时器时长是所述零功耗终端从多个候选定时器时长中,随机选择的;
或,所述第二定时器的定时器时长是所述零功耗终端基于所述网络设备的指示信息,从多个候选定时器时长中选择的;
或,所述第二定时器的定时器时长是所述零功耗终端基于所述零功耗终端的终端标识和所述候选定时器时长的数量,从多个候选定时器时长中选择的;
或,所述第二定时器的定时器时长是所述零功耗终端按默认时长确定的。
在本实施的一个可选设计中,所述装置还包括:
第二发送模块640,用于发送指示信息,所述指示信息用于指示所述第二定时器的相关信息。
在本实施的一个可选设计中,所述指示信息包括如下信息中的至少一项:
所述第二定时器的启动指示;
所述第二定时器的定时器时长。
在本实施的一个可选设计中,所述装置还包括:
第三发送模块650,用于发送配置信息,所述配置信息用于配置所述优先级。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图17示出了本申请一个实施例提供的通信设备的结构示意图。该通信设备可以包括:处理器801、接收器802、发射器803、存储器804和总线805。
处理器801包括一个或者一个以上处理核心,处理器801通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器802和发射器803可以实现为一个收发器,该收发器可以是一块通信芯片。
存储器804通过总线805与处理器801相连;示例性的,可以将处理器801实现为第一IC芯片,将处理器801和存储器804共同实现为第二IC芯片;第一芯片或第二芯片可以是一种专用集成电路(Application Specific Integrated Circuit,ASIC)芯片。
存储器804可用于存储至少一个计算机程序,处理器801用于执行该至少一个计算机程序,以实现上述方法实施例中的各个步骤。
此外,存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:随机存储器(Random-Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、电可擦写可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他固态存储其技术、只读光盘(Compact Disc Read-Only Memory,CD-ROM)、高密度数字视频光盘(Digital Video Disc,DVD)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被多链路设备的处理器执行,以实现上述零功耗终端的上行数据发送方法。
可选地,该计算机可读存储介质可以包括:只读存储器(Read-Only Memory,ROM)、随机存储器(Random-Access Memory,RAM)、固态硬盘(Solid State Drives,SSD)或光盘等。其中,随机存取记忆体可以包括电阻式随机存取记忆体(Resistance Random Access Memory,ReRAM)和动态随机存取存储器(Dynamic Random Access Memory,DRAM)。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在多链路设备上运行时,用于实现上述零功耗终端的上行数据发送方法。
本申请实施例还提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,多链路设备的处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述零功耗终端的上行数据发送方法。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
另外,本文中描述的步骤编号,仅示例性示出了步骤间的一种可能的执行先后顺序,在一些其它实施例中,上述步骤也可以不按照编号顺序来执行,如两个不同编号的步骤同时执行,或者两个不同编号的步骤按照与图示相反的顺序执行,本申请实施例对此不作限定。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (68)

  1. 一种零功耗终端的上行数据发送方法,其特征在于,所述方法包括:
    所述零功耗终端在满足触发条件的情况下,在网络设备配置的上行资源中选择第一上行资源;
    使用所述第一上行资源向所述网络设备发送上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述触发条件包括:
    所述零功耗终端的终端属性或终端配置,与所述网络设备发送的触发指令相匹配。
  3. 根据权利要求2所述的方法,其特征在于,所述终端属性或所述终端配置包括如下至少一项:
    业务类型;
    组信息;
    终端标识。
  4. 根据权利要求1所述的方法,其特征在于,所述触发条件包括:
    自主触发条件。
  5. 根据权利要求4所述的方法,其特征在于,所述自主触发条件包括:
    所述零功耗终端的接入网络发生变化;
    所述零功耗终端的地理位置发生变化;
    当前时刻为周期性的触发时刻。
  6. 根据权利要求1至3任一所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备周期性发送的广播消息,所述广播消息用于配置所述上行资源;
    或,
    接收所述网络设备发送的触发消息,所述触发消息用于配置所述上行资源;
    或,
    接收所述网络设备发送的配置消息,所述配置消息用于配置所述上行资源,所述配置消息对应的时域位置晚于所述触发消息对应的时域位置。
  7. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备周期性发送的广播消息,所述广播消息用于配置所述上行资源。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述在网络设备配置的上行资源中选择第一上行资源,包括:
    基于所述零功耗终端的终端标识和所述上行资源的数量,选择所述第一上行资源;
    或,基于第一定时器在所述网络设备配置的上行资源中,选择所述第一上行资源;
    或,在所述网络设备配置的上行资源中,随机选择所述第一上行资源。
  9. 根据权利要求8所述的方法,其特征在于,所述第一上行资源的资源序号,等于所述零功耗终端的终端标识除以所述上行资源的数量得到的余数。
  10. 根据权利要求8所述的方法,其特征在于,所述基于第一定时器在所述网络设备配置的上行资源中,选择所述第一上行资源,包括:
    在满足触发条件的时刻,启动所述第一定时器;
    在所述第一定时器超时的情况下,在所述网络设备配置的上行资源中,选择时域上与超时时刻最近的上行资源,确定为所述第一上行资源。
  11. 根据权利要求1至10任一所述的方法,其特征在于,所述方法还包括:
    在未收到所述上行数据的响应的情况下,再次在网络设备配置的上行资源中选择第二上行资源;
    使用所述第二上行资源向所述网络设备发送所述上行数据。
  12. 根据权利要求11所述的方法,其特征在于,所述在未收到所述上行数据的响应的情况下,再次在网络设备配置的上行资源中选择第二上行资源,包括:
    在未收到所述上行数据的响应的情况下,启动第二定时器;
    在所述第二定时器超时的情况下,再次在网络设备配置的上行资源中选择第二上行资源。
  13. 根据权利要求12所述的方法,其特征在于,所述未收到所述上行数据的响应的情况,包括:
    所述零功耗终端未收到所述网络设备发送的下行反馈;
    或,所述零功耗终端收到所述网络设备发送的下行反馈,所述下行反馈中不包括接收信息,所述接收信息用于指示网络设备成功接收零功耗终端发送的上行数据。
  14. 根据权利要求12或13所述的方法,其特征在于,所述在未收到所述上行数据的响应的情况下,启 动第二定时器,包括:
    在未收到所述上行数据的响应且接收到网络设备的指示信息的情况下,启动第二定时器;
    或,
    在未收到所述上行数据的响应且未接收到网络设备的指示信息的情况下,启动第二定时器。
  15. 根据权利要求14所述的方法,其特征在于,所述网络设备的指示信息包括如下信息中的至少一项:
    所述第二定时器的启动指示;
    所述第二定时器的定时器时长。
  16. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    基于所述零功耗终端的优先级,确定所述第二定时器的定时器时长;
    或,
    从多个候选定时器时长中,随机选择所述第二定时器的定时器时长;
    或,
    基于所述网络设备的指示信息,从多个候选定时器时长中选择所述第二定时器的定时器时长;
    或,
    基于所述零功耗终端的终端标识和所述候选定时器时长的数量,从多个候选定时器时长中选择所述第二定时器的定时器时长;
    或,
    确定所述第二定时器的定时器时长为默认时长。
  17. 根据权利要求16所述的方法,其特征在于,所述第二定时器的定时器时长,等于所述零功耗终端的终端标识除以所述候选定时器时长的数量得到的余数。
  18. 根据权利要求16或17所述的方法,其特征在于,所述方法还包括:
    接收配置信息,所述配置信息用于配置所述优先级;
    或,
    获取预配置信息,所述预配置信息包括所述优先级;
    其中,所述优先级与所述零功耗终端对应,或所述零功耗终端的终端组对应,或所述零功耗终端的业务对应,或所述零功耗终端的业务类型组对应。
  19. 根据权利要求11所述的方法,其特征在于,所述再次在网络设备配置的上行资源中选择第二上行资源,包括:
    基于所述零功耗终端的终端标识和所述上行资源的数量,选择所述第二上行资源;
    或,基于第二定时器在所述网络设备配置的上行资源中,选择所述第二上行资源;
    或,在所述网络设备配置的上行资源中,随机选择所述第二上行资源。
  20. 一种零功耗终端的上行数据接收方法,其特征在于,所述方法包括:
    网络设备在第一上行资源上接收所述零功耗终端发送的上行数据;
    其中,所述第一上行资源是所述零功耗终端在满足触发条件的情况下,在所述网络设备配置的上行资源中选择的。
  21. 根据权利要求20所述的方法,其特征在于,所述触发条件包括:
    所述零功耗终端的终端属性或终端配置,与所述网络设备发送的触发指令相匹配。
  22. 根据权利要求21所述的方法,其特征在于,所述终端属性或所述终端配置包括如下至少一项:
    业务类型;
    组信息;
    终端标识。
  23. 根据权利要求20所述的方法,其特征在于,所述触发条件包括:
    自主触发条件。
  24. 根据权利要求23所述的方法,其特征在于,所述自主触发条件包括:
    所述零功耗终端的接入网络发生变化;
    所述零功耗终端的地理位置发生变化;
    当前时刻为周期性的触发时刻。
  25. 根据权利要求20至22任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述零功耗终端周期性发送广播消息,所述广播消息用于配置所述上行资源;
    或,
    所述网络设备向所述零功耗终端发送触发消息,所述触发消息用于配置所述上行资源;
    或,
    所述网络设备向所述零功耗终端发送配置消息,所述配置消息用于配置所述上行资源,所述配置消息对应的时域位置晚于所述触发消息对应的时域位置。
  26. 根据权利要求23或24所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述零功耗终端周期性发送广播消息,所述广播消息用于配置所述上行资源。
  27. 根据权利要求20至26任一所述的方法,其特征在于,所述方法还包括:
    在第二上行资源上接收所述零功耗终端发送的上行数据;
    其中,所述第二上行资源是所述零功耗终端在未收到所述上行数据的响应的情况下,在所述网络设备配置的上行资源中选择的。
  28. 根据权利要求27所述的方法,其特征在于,所述第二上行资源是零功耗终端在未收到所述上行数据的响应的情况下,启动第二定时器;在所述第二定时器超时的情况下,再次在所述网络设备配置的上行资源中选择的。
  29. 根据权利要求28所述的方法,其特征在于,
    所述第二定时器的定时器时长是所述零功耗终端基于所述零功耗终端的优先级确定的;
    或,
    所述第二定时器的定时器时长是所述零功耗终端从多个候选定时器时长中,随机选择的;
    或,
    所述第二定时器的定时器时长是所述零功耗终端基于所述网络设备的指示信息,从多个候选定时器时长中选择的;
    或,
    所述第二定时器的定时器时长是所述零功耗终端基于所述零功耗终端的终端标识和所述候选定时器时长的数量,从多个候选定时器时长中选择的;
    或,
    所述第二定时器的定时器时长是所述零功耗终端按默认时长确定的。
  30. 根据权利要求28或29所述的方法,其特征在于,所述方法还包括:
    发送指示信息,所述指示信息用于指示所述第二定时器的相关信息。
  31. 根据权利要求30所述的方法,其特征在于,所述指示信息包括如下信息中的至少一项:
    所述第二定时器的启动指示;
    所述第二定时器的定时器时长。
  32. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    发送配置信息,所述配置信息用于配置所述优先级。
  33. 一种零功耗终端的上行数据发送装置,其特征在于,所述装置包括:
    第一选择模块,用于在满足触发条件的情况下,在网络设备配置的上行资源中选择第一上行资源;
    第一发送模块,用于使用所述第一上行资源向所述网络设备发送上行数据。
  34. 根据权利要求33所述的装置,其特征在于,所述触发条件包括:
    所述零功耗终端的终端属性或终端配置,与所述网络设备发送的触发指令相匹配。
  35. 根据权利要求34所述的装置,其特征在于,所述终端属性或所述终端配置包括如下至少一项:
    业务类型;
    组信息;
    终端标识。
  36. 根据权利要求33所述的装置,其特征在于,所述触发条件包括:
    自主触发条件。
  37. 根据权利要求36所述的装置,其特征在于,所述自主触发条件包括:
    所述零功耗终端的接入网络发生变化;
    所述零功耗终端的地理位置发生变化;
    当前时刻为周期性的触发时刻。
  38. 根据权利要求33至35任一所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述网络设备周期性发送的广播消息,所述广播消息用于配置所述上行资源;
    或,用于接收所述网络设备发送的触发消息,所述触发消息用于配置所述上行资源;
    或,用于接收所述网络设备发送的配置消息,所述配置消息用于配置所述上行资源,所述配置消息对应的时域位置晚于所述触发消息对应的时域位置。
  39. 根据权利要求35或36所述的装置,其特征在于,所述接收模块还用于:
    接收所述网络设备周期性发送的广播消息,所述广播消息用于配置所述上行资源。
  40. 根据权利要求33至39任一所述的装置,其特征在于,所述第一选择模块用于:
    基于所述零功耗终端的终端标识和所述上行资源的数量,选择所述第一上行资源;
    或,基于第一定时器在所述网络设备配置的上行资源中,选择所述第一上行资源;
    或,在所述网络设备配置的上行资源中,随机选择所述第一上行资源。
  41. 根据权利要求40所述的装置,其特征在于,所述第一上行资源的资源序号,等于所述零功耗终端的终端标识除以所述上行资源的数量得到的余数。
  42. 根据权利要求40所述的装置,其特征在于,所述第一选择模块用于:
    在满足触发条件的时刻,启动所述第一定时器;
    在所述第一定时器超时的情况下,在所述网络设备配置的上行资源中,选择时域上与超时时刻最近的上行资源,确定为所述第一上行资源。
  43. 根据权利要求33至42任一所述的装置,其特征在于,所述装置还包括:
    第二选择模块,用于在未收到所述上行数据的响应的情况下,再次在网络设备配置的上行资源中选择第二上行资源;
    第二发送模块,用于使用所述第二上行资源向所述网络设备发送所述上行数据。
  44. 根据权利要求43所述的装置,其特征在于,所述第二选择模块,包括:
    启动单元,用于在未收到所述上行数据的响应的情况下,启动第二定时器;
    选择单元,用于在所述第二定时器超时的情况下,再次在网络设备配置的上行资源中选择第二上行资源。
  45. 根据权利要求44所述的装置,其特征在于,所述未收到所述上行数据的响应的情况,包括:
    所述零功耗终端未收到所述网络设备发送的下行反馈;
    或,所述零功耗终端收到所述网络设备发送的下行反馈,所述下行反馈中不包括接收信息,所述接收信息用于指示网络设备成功接收零功耗终端发送的上行数据。
  46. 根据权利要求44或45所述的装置,其特征在于,所述启动单元用于:
    在未收到所述上行数据的响应且接收到网络设备的指示信息的情况下,启动第二定时器;
    或,在未收到所述上行数据的响应且未接收到网络设备的指示信息的情况下,启动第二定时器。
  47. 根据权利要求46所述的装置,其特征在于,所述网络设备的指示信息包括如下信息中的至少一项:
    所述第二定时器的启动指示;
    所述第二定时器的定时器时长。
  48. 根据权利要求44或45所述的装置,其特征在于,所述装置还包括确定单元;
    所述确定单元,用于基于所述零功耗终端的优先级,确定所述第二定时器的定时器时长;
    或,用于从多个候选定时器时长中,随机选择所述第二定时器的定时器时长;
    或,用于基于所述网络设备的指示信息,从多个候选定时器时长中选择所述第二定时器的定时器时长;
    或,用于基于所述零功耗终端的终端标识和所述候选定时器时长的数量,从多个候选定时器时长中选择所述第二定时器的定时器时长;
    或,用于确定所述第二定时器的定时器时长为默认时长。
  49. 根据权利要求48所述的装置,其特征在于,所述第二定时器的定时器时长,等于所述零功耗终端的终端标识除以所述候选定时器时长的数量得到的余数。
  50. 根据权利要求48或49所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收配置信息,所述配置信息用于配置所述优先级;
    或,获取单元,用于获取预配置信息,所述预配置信息包括所述优先级;
    其中,所述优先级与所述零功耗终端对应,或所述零功耗终端的终端组对应,或所述零功耗终端的业务对应,或所述零功耗终端的业务类型组对应。
  51. 根据权利要求43所述的装置,其特征在于,所述第二选择模块用于:
    基于所述零功耗终端的终端标识和所述上行资源的数量,选择所述第二上行资源;
    或,基于第二定时器在所述网络设备配置的上行资源中,选择所述第二上行资源;
    或,在所述网络设备配置的上行资源中,随机选择所述第二上行资源。
  52. 一种零功耗终端的上行数据接收装置,其特征在于,所述装置包括:
    第一接收模块,用于网络设备在第一上行资源上接收所述零功耗终端发送的上行数据;
    其中,所述第一上行资源是所述零功耗终端在满足触发条件的情况下,在所述网络设备配置的上行资源中选择的。
  53. 根据权利要求52所述的装置,其特征在于,所述触发条件包括:
    所述零功耗终端的终端属性或终端配置,与所述网络设备发送的触发指令相匹配。
  54. 根据权利要求53所述的装置,其特征在于,所述终端属性或所述终端配置包括如下至少一项:
    业务类型;
    组信息;
    终端标识。
  55. 根据权利要求52所述的装置,其特征在于,所述触发条件包括:
    自主触发条件。
  56. 根据权利要求55所述的装置,其特征在于,所述自主触发条件包括:
    所述零功耗终端的接入网络发生变化;
    所述零功耗终端的地理位置发生变化;
    当前时刻为周期性的触发时刻。
  57. 根据权利要求52至54任一所述的装置,其特征在于,所述装置还包括:
    第一发送模块,用于向所述零功耗终端周期性发送广播消息,所述广播消息用于配置所述上行资源;
    或,用于向所述零功耗终端发送触发消息,所述触发消息用于配置所述上行资源;
    或,用于向所述零功耗终端发送配置消息,所述配置消息用于配置所述上行资源,所述配置消息对应的时域位置晚于所述触发消息对应的时域位置。
  58. 根据权利要求55或56所述的装置,其特征在于,所述第一发送模块,还用于:
    向所述零功耗终端周期性发送广播消息,所述广播消息用于配置所述上行资源。
  59. 根据权利要求52至58任一所述的装置,其特征在于,所述装置还包括:
    第二接收模块,用于在第二上行资源上接收所述零功耗终端发送的上行数据;
    其中,所述第二上行资源是所述零功耗终端在未收到所述上行数据的响应的情况下,在所述网络设备配置的上行资源中选择的。
  60. 根据权利要求59所述的装置,其特征在于,所述第二上行资源是零功耗终端在未收到所述上行数据的响应的情况下,启动第二定时器;在所述第二定时器超时的情况下,再次在所述网络设备配置的上行资源中选择的。
  61. 根据权利要求60所述的装置,其特征在于,
    所述第二定时器的定时器时长是所述零功耗终端基于所述零功耗终端的优先级确定的;
    或,所述第二定时器的定时器时长是所述零功耗终端从多个候选定时器时长中,随机选择的;
    或,所述第二定时器的定时器时长是所述零功耗终端基于所述网络设备的指示信息,从多个候选定时器时长中选择的;
    或,所述第二定时器的定时器时长是所述零功耗终端基于所述零功耗终端的终端标识和所述候选定时器时长的数量,从多个候选定时器时长中选择的;
    或,所述第二定时器的定时器时长是所述零功耗终端按默认时长确定的。
  62. 根据权利要求60或61所述的装置,其特征在于,所述装置还包括:
    第二发送模块,用于发送指示信息,所述指示信息用于指示所述第二定时器的相关信息。
  63. 根据权利要求62所述的装置,其特征在于,所述指示信息包括如下信息中的至少一项:
    所述第二定时器的启动指示;
    所述第二定时器的定时器时长。
  64. 根据权利要求61所述的装置,其特征在于,所述装置还包括:
    第三发送模块,用于发送配置信息,所述配置信息用于配置所述优先级。
  65. 一种通信设备,其特征在于,所述通信设备包括处理器和存储器,所述存储器中有至少一段程序;所述处理器,用于执行所述存储器上中的所述至少一段程序以实现上述权利要求1至32任一项所述的零功耗终端的上行数据发送方法。
  66. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现上述权利要求1至32任一项所述的零功耗终端的上行数据发送方法。
  67. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现权利要求1至32任一项所述的零功耗终端的上行数据发送方法。
  68. 一种计算机程序产品或计算机程序,其特征在于,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述权利要求1至32任一项所述的零功耗终端的上行数据发送方法。
PCT/CN2021/122837 2021-10-09 2021-10-09 零功耗终端的上行数据发送方法、装置、设备及存储介质 WO2023056626A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180102981.9A CN118056452A (zh) 2021-10-09 2021-10-09 零功耗终端的上行数据发送方法、装置、设备及存储介质
PCT/CN2021/122837 WO2023056626A1 (zh) 2021-10-09 2021-10-09 零功耗终端的上行数据发送方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122837 WO2023056626A1 (zh) 2021-10-09 2021-10-09 零功耗终端的上行数据发送方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023056626A1 true WO2023056626A1 (zh) 2023-04-13

Family

ID=85803844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122837 WO2023056626A1 (zh) 2021-10-09 2021-10-09 零功耗终端的上行数据发送方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN118056452A (zh)
WO (1) WO2023056626A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090275338A1 (en) * 2005-06-03 2009-11-05 Terahop Networks, Inc. Using wake-up receivers for soft hand-off in wireless communications
CN108347779A (zh) * 2017-01-25 2018-07-31 维沃移动通信有限公司 上行数据发送方法、接收方法、用户终端和网络侧设备
CN110944395A (zh) * 2018-09-21 2020-03-31 华为技术有限公司 无线调度的方法和装置
WO2021031319A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种上行传输资源的确定方法及装置
CN113067937A (zh) * 2021-03-18 2021-07-02 Oppo广东移动通信有限公司 蓝牙连接方法、装置、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090275338A1 (en) * 2005-06-03 2009-11-05 Terahop Networks, Inc. Using wake-up receivers for soft hand-off in wireless communications
CN108347779A (zh) * 2017-01-25 2018-07-31 维沃移动通信有限公司 上行数据发送方法、接收方法、用户终端和网络侧设备
CN110944395A (zh) * 2018-09-21 2020-03-31 华为技术有限公司 无线调度的方法和装置
WO2021031319A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种上行传输资源的确定方法及装置
CN113067937A (zh) * 2021-03-18 2021-07-02 Oppo广东移动通信有限公司 蓝牙连接方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPREADTRUM COMMUNICATIONS: "Autonomous Uplink Transmission in NR-U", 3GPP DRAFT; R2-1817320 AUTONOMOUS UPLINK TRANSMISSION IN NR-U, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Spokane, USA; 20181112 - 20181116, 2 November 2018 (2018-11-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051481227 *

Also Published As

Publication number Publication date
CN118056452A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
US20230107204A1 (en) Communication method and device, and storage medium
US20240171269A1 (en) Wireless communication method and apparatus, and communication device
WO2023050097A1 (zh) 信息传输方法、装置、设备及存储介质
WO2023056626A1 (zh) 零功耗终端的上行数据发送方法、装置、设备及存储介质
WO2023097442A1 (zh) 节能信号的传输方法、装置、设备及存储介质
WO2022206503A1 (zh) 用于网络设备中数据信号传输的方法和装置
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023097443A1 (zh) 控制信道的监听方法、装置、设备及存储介质
WO2024113212A1 (zh) 一种通信方法及装置、终端、网络设备
WO2023168605A1 (zh) 零功耗通信的方法、装置、设备及介质
WO2024077479A1 (zh) 一种零功耗通信方法及装置、终端设备、网络设备
EP3704838B1 (en) Transmitter, network node, method and computer program for transmitting binary information
WO2023123444A1 (zh) 唤醒信号的接收方法、发送方法、装置、设备及存储介质
WO2023197317A1 (zh) 唤醒信号的接收方法、发送方法、配置方法、装置及设备
WO2023122912A1 (zh) 用于数据传输的方法和通信设备
WO2023220991A1 (zh) 通信方法、通信设备、计算机可读存储介质以及芯片
WO2023122909A1 (zh) 用于数据传输的方法和通信设备
WO2023168721A1 (zh) 配置资源的方法、终端以及网络设备
WO2023044911A1 (zh) 一种信息上报方法及装置、终端、网络设备
WO2023050043A1 (zh) 一种资源配置方法及装置、终端、网络设备
WO2023039730A1 (zh) 通信方法、终端及网络设备
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
WO2023236154A1 (zh) 双工终端、双工通信方法、装置及芯片
WO2023010341A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959716

Country of ref document: EP

Kind code of ref document: A1