WO2024026739A1 - 通信方法以及终端设备 - Google Patents

通信方法以及终端设备 Download PDF

Info

Publication number
WO2024026739A1
WO2024026739A1 PCT/CN2022/110012 CN2022110012W WO2024026739A1 WO 2024026739 A1 WO2024026739 A1 WO 2024026739A1 CN 2022110012 W CN2022110012 W CN 2022110012W WO 2024026739 A1 WO2024026739 A1 WO 2024026739A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
symbols
transmission
symbol
sent
Prior art date
Application number
PCT/CN2022/110012
Other languages
English (en)
French (fr)
Inventor
马腾
张世昌
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/110012 priority Critical patent/WO2024026739A1/zh
Publication of WO2024026739A1 publication Critical patent/WO2024026739A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and more specifically, provides a communication method and terminal equipment.
  • This application provides a communication method and terminal equipment. Each aspect involved in this application is introduced below.
  • a communication method includes: a first terminal device determines the transmission resources and/or transmission parameters of the first transmission block TB according to a first time, and the first time is the first terminal. The moment when the device completes channel monitoring on the unlicensed frequency band; on the sidelink, the first terminal device sends the first TB according to the transmission resources and/or transmission parameters of the first TB.
  • a communication method including: according to the transmission resources and/or transmission parameters of the first transmission block TB, on the side link, the second terminal device receives the first terminal device sent by the first terminal device.
  • One TB wherein the transmission resources and/or transmission parameters of the first TB are determined based on the first time, and the first time is the time when the first terminal device completes channel monitoring on the unlicensed frequency band.
  • a terminal device is provided.
  • the terminal device is a first terminal device.
  • the terminal device includes: a determining unit configured to determine the transmission resources and/or transmission parameters of the first transmission block TB according to the first time. , the first moment is the moment when the first terminal device completes channel monitoring on the unlicensed frequency band; the sending unit is configured to, on the sidelink, according to the transmission resources and/or transmission parameters of the first TB , sending the first TB.
  • a terminal device is provided.
  • the terminal device is a second terminal device.
  • the terminal device includes: a receiving unit, configured to receive the data in the side row according to the transmission resources and/or transmission parameters of the first transmission block TB. On the link, receive the first TB sent by the first terminal device; wherein the transmission resources and/or transmission parameters of the first TB are determined based on the first time, and the first time is the first terminal device The time when channel monitoring is completed on the unlicensed band.
  • a terminal including a processor, a memory, and a communication interface.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory to cause the terminal device to execute Some or all of the steps in the method of the first aspect and/or the second aspect.
  • embodiments of the present application provide a communication system, which includes the above terminal device.
  • the system may also include other devices that interact with the terminal device in the solution provided by the embodiments of this application.
  • embodiments of the present application provide a computer-readable storage medium that stores a computer program, and the computer program causes a terminal to perform some or all of the steps in the methods of the above aspects.
  • embodiments of the present application provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause the terminal device to execute the above Some or all of the steps in various aspects of the method.
  • the computer program product can be a software installation package.
  • embodiments of the present application provide a chip, which includes a memory and a processor.
  • the processor can call and run a computer program from the memory to implement some or all of the steps described in the methods of the above aspects.
  • the transmission of the first TB can be made to meet the resource and parameter requirements for transmitting the first TB after channel access, so that in the sidelink Accurately transfer the first terabyte.
  • FIG. 1 is an example system architecture diagram of a wireless communication system to which embodiments of the present application can be applied.
  • Figure 2 is an example diagram of a side communication scenario within network coverage.
  • Figure 3 is an example diagram of a sidelink communication scenario with partial network coverage.
  • Figure 4 is an example diagram of a sidelink communication scenario outside network coverage.
  • Figure 5 is an example diagram of a side communication scenario with a central control node.
  • Figure 6 is an example diagram of a broadcast-based sidelink communication method.
  • Figure 7 is an example diagram of a unicast-based sidelink communication method.
  • Figure 8 is an example diagram of a multicast-based sidelink communication method.
  • Figure 9 is an example of the time slot structure of some side-link communication systems (such as NR-V2X systems).
  • Figure 10 is an example diagram showing changes in OFDM symbols available for PSSCH in different time slots.
  • Figure 11 is an example diagram of the time-frequency resources occupied by the second-order SCI in a time slot.
  • Figure 12 is a schematic diagram of a DMRS pattern of PSCCH.
  • Figure 13 is a schematic diagram of the time domain positions of 4 DMRS symbols when the number of PSSCH symbols is 14.
  • Figure 14 is an example diagram of single symbol DMRS frequency domain type 1.
  • Figure 15 is an example diagram of SL CSI-RS time-frequency position.
  • Figure 16 is an example diagram of a channel occupancy time obtained by a communication device after successful LBT on a channel in an unlicensed spectrum and the use of resources within the channel occupancy time for signal transmission.
  • Figure 17 is an example diagram of a scenario in which a terminal device completes channel monitoring.
  • Figure 18 is an example diagram of a scenario in which a terminal device completes channel monitoring.
  • Figure 19 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 20 is an example diagram of a method of transmitting the first TB provided by the embodiment of the present application.
  • Figure 21 is an example diagram of a method of transmitting the first TB provided by the embodiment of the present application.
  • Figure 22 is an example diagram of a method of transmitting the first TB provided by the embodiment of the present application.
  • Figure 23 is an example diagram of a method of transmitting the first TB provided by the embodiment of the present application.
  • Figure 24 is an example diagram of a method of transmitting the first TB provided by the embodiment of the present application.
  • Figure 25 is an example diagram of a method of transmitting the first TB provided in Embodiment 4.
  • Figure 26 is an example diagram of a method of transmitting the first TB provided in Embodiment 4.
  • Figure 27 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 28 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 29 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 1 is an example system architecture diagram of a wireless communication system 100 applied in an embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 and a terminal device 120.
  • the network device 110 may be a device that communicates with the terminal device 120 .
  • the network device 110 may provide communication coverage for a specific geographical area and may communicate with terminal devices 120 located within the coverage area.
  • the wireless communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices, which is not limited in this embodiment of the present application.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the terminal equipment in the embodiment of this application may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT) ), remote station, remote terminal, mobile device, user terminal, terminal, wireless communications equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to users, and may be used to connect people, things, and machines, such as handheld devices and vehicle-mounted devices with wireless connection functions.
  • the terminal device in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (Pad), a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device, a virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the terminal device can be used to act as a base station.
  • the terminal device may act as a scheduling entity that provides sidelink signals between terminal devices in vehicle-to-everything (V2X) or device-to-device communication (D2D), etc. .
  • V2X vehicle-to-everything
  • D2D device-to-device communication
  • cell phones and cars use sidelink signals to communicate with each other.
  • Cell phones and smart home devices communicate between each other without having to relay communication signals through base stations.
  • the terminal device can be used to act as a base station.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • the network device may also be called an access network device or a wireless access network device.
  • the network device may be a base station.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
  • radio access network radio access network, RAN node (or device) that connects the terminal device to the wireless network.
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), main station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, access node , wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), radio remote unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit) , AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB, gNB
  • relay station Access point
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and device to device (D2D), vehicle to vehicle (V2V), vehicle outreach (vehicle-to-everything, V2X), machine-to -Machine, M2M) communication equipment that performs base station functions, network side equipment in 6G networks, equipment that performs base station functions in future communication systems, etc.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device in the embodiment of this application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • gNB can also include AAU.
  • Network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. In the embodiments of this application, the scenarios in which network devices and terminal devices are located are not limited.
  • Sidelink communication refers to communication technology based on sidelinks.
  • Sideline communication may be D2D or V2X, for example.
  • Sideline communication supports direct transmission of communication data between terminal devices.
  • the direct transmission of communication data between terminal equipment can have higher spectrum efficiency and lower transmission delay.
  • the Internet of Vehicles system uses side-travel communication technology.
  • side communication according to the network coverage of the terminal device, side communication can be divided into side communication within network coverage, side communication with partial network coverage, side communication outside network coverage, and side communication controlled by the central Control side communication of nodes.
  • FIG 2 is an example diagram of a side communication scenario within network coverage.
  • both terminal devices 120a are within the coverage of the network device 110. Therefore, both terminal devices 120a can receive the configuration signaling of the network device 110 (the configuration signaling in this application can also be replaced with configuration information), and determine the side row configuration according to the configuration signaling of the network device 110. After both terminal devices 120a are configured for sidelink, sidelink communication can be performed on the sidelink link.
  • FIG 3 is an example diagram of a sidelink communication scenario with partial network coverage.
  • the terminal device 120a and the terminal device 120b perform side-line communication.
  • the terminal device 120a is located within the coverage of the network device 110, so the terminal device 120a can receive the configuration signaling of the network device 110 and determine the sidelink configuration according to the configuration signaling of the network device 110.
  • the terminal device 120b is located outside the network coverage and cannot receive the configuration signaling of the network device 110.
  • the terminal device 120b may be configured according to the pre-configuration information and/or the information carried in the physical sidelink broadcast channel (PSBCH) sent by the terminal device 120a located within the network coverage. Determine side row configuration. After both the terminal device 120a and the terminal device 120b perform side-link configuration, side-link communication can be performed on the side-link.
  • PSBCH physical sidelink broadcast channel
  • FIG 4 is an example diagram of a sidelink communication scenario outside network coverage.
  • both terminal devices 120b are located outside the network coverage.
  • both terminal devices 120b can determine the side row configuration according to the preconfiguration information.
  • sidelink communication can be performed on the sidelink link.
  • FIG. 5 is an example diagram of a side communication scenario with a central control node.
  • multiple terminal devices 120b may form a communication group.
  • the central control node can become a cluster header (CH) terminal device.
  • the central control node can have one or more of the following functions: responsible for the establishment of communication groups, the joining and leaving of group members, resource coordination, allocating side transmission resources to other terminal devices, and receiving side transmission feedback from other terminal devices. Information, resource coordination and other functions with other communication groups.
  • Some standards or protocols (such as the 3rd generation partnership project (3GPP)) define two modes (or transmission modes) of sideline communication: the first mode and the second mode.
  • 3GPP 3rd generation partnership project
  • the resources of the terminal device are allocated by the network device.
  • the terminal device can send data on the sidelink according to the resources allocated by the network device.
  • the network device can allocate single-transmission resources to the terminal device or allocate semi-static transmission resources to the terminal device.
  • This first mode can be applied to scenarios covered by network devices, such as the scenario shown in Figure 2 above.
  • the terminal device 120a is located within the network coverage of the network device 110, so the network device 110 can allocate resources used in the sidelink transmission process to the terminal device 120a.
  • the terminal device can autonomously select one or more resources from the resource pool (RP). Then, the terminal device can perform sidelink transmission according to the selected resources.
  • the terminal device 120b is located outside the cell coverage. Therefore, the terminal device 120b can autonomously select resources from the preconfigured resource pool for sidelink transmission.
  • the terminal device 120a can also independently select one or more resources from the resource pool configured by the network device 110 for side transmission.
  • Some sideline communication systems support broadcast-based data transmission (hereinafter referred to as broadcast transmission).
  • the receiving terminal device can be any terminal device surrounding the sending terminal device.
  • terminal device 1 is a sending terminal device
  • the receiving terminal device corresponding to the sending terminal device is any terminal device around terminal device 1, for example, it can be terminal device 2-terminal device in Figure 6 6.
  • some communication systems also support unicast-based data transmission (hereinafter referred to as unicast transmission) and/or multicast-based data transmission (hereinafter referred to as multicast transmission).
  • unicast transmission hereinafter referred to as unicast transmission
  • multicast transmission hereinafter referred to as multicast transmission.
  • NR-V2X hopes to support autonomous driving. Autonomous driving places higher requirements on data interaction between vehicles. For example, data interaction between vehicles requires higher throughput, lower latency, higher reliability, larger coverage, more flexible resource allocation, etc. Therefore, in order to improve the data interaction performance between vehicles, NR-V2X introduces unicast transmission and multicast transmission.
  • terminal device 1 For unicast transmission, there is generally only one terminal device at the receiving end. Taking Figure 7 as an example, unicast transmission is performed between terminal device 1 and terminal device 2.
  • Terminal device 1 may be a sending terminal device
  • terminal device 2 may be a receiving terminal device
  • terminal device 1 may be a receiving terminal device
  • terminal device 2 may be a sending terminal device.
  • the receiving terminal device may be a terminal device within a communication group (group), or the receiving terminal device may be a terminal device within a certain transmission distance.
  • group a communication group
  • terminal device 1 terminal device 2, terminal device 3 and terminal device 4 form a communication group. If terminal device 1 sends data, other terminal devices (terminal device 2 to terminal device 4) in the group can all be receiving terminal devices.
  • a time slot can include physical sidelink control channel (PSCCH), physical sidelink shared channel (PSSCH), physical sidelink feedback channel (PSFCH) and other channels.
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • PSFCH physical sidelink feedback channel
  • Figure 9 is an example of the time slot structure of some side-link communication systems (such as NR-V2X systems).
  • Figure 9(a) is an example of the time slot structure that does not include the physical sidelink feedback channel (PSFCH) in the time slot.
  • Figure 9(b) is an example of a time slot structure including a PSFCH channel in the time slot.
  • PSFCH physical sidelink feedback channel
  • the PSCCH can start from the second sidelink symbol of the time slot and occupy 2 or 3 orthogonal frequency division multiplexing (OFDM) symbols. In the frequency domain It can occupy ⁇ 10,12 15,20,25 ⁇ physical resource blocks (PRB).
  • PRB physical resource blocks
  • sub-channel is the minimum granularity of PSSCH resource allocation in some side-link communication systems (such as NR-V2X system). Therefore, the number of PRBs occupied by PSCCH must be less than or equal to the number of PRBs contained in a sub-channel in the resource pool. So as not to cause additional restrictions on PSSCH resource selection or allocation.
  • the PSSCH can start from the second sidelink symbol of the slot.
  • the last time domain symbol in the time slot is the guard period (GP) symbol, and the remaining symbols can be mapped to PSSCH.
  • the first siderow symbol in a slot may be a repetition of the second siderow symbol.
  • the receiving terminal equipment can use the first side row symbol as an automatic gain control (AGC) symbol, and the data on this symbol is usually not used for data demodulation.
  • AGC automatic gain control
  • PSSCH can occupy K sub-channels in the frequency domain, and each sub-channel can include N consecutive PRBs. Among them, K can be an integer greater than 0, and N can be an integer greater than 0.
  • the second to last and third to last symbols in the time slot can be used as PSFCH channel transmission, and a time domain symbol before the PSFCH channel can be used as GP symbol.
  • PSSCH can be used to carry second-level sidelink control information (SCI).
  • SCI second-level sidelink control information
  • the second level of SCI can include SCI 2-A or SCI 2-B.
  • the second-level SCI can use Polar encoding.
  • the second-order SCI can fixedly adopt QPSK modulation.
  • the data part of PSSCH can use low density parity check (LDPC).
  • LDPC low density parity check
  • the highest modulation order that the data part of PSSCH can support is 256QAM.
  • PSSCH supports up to two stream transmissions, and a unit precoding matrix is used to map data on two layers to two antenna ports.
  • a unit precoding matrix is used to map data on two layers to two antenna ports.
  • at most Can send a terabyte.
  • the modulation symbols sent by the second-order SCI on the two streams are exactly the same. This design can ensure the performance of the second-order SCI under high correlation channels. reception performance.
  • the maximum number of retransmissions of a PSSCH is 32 times. If there are PSFCH resources in the resource pool, and the configuration period of the PSFCH resources is 2 or 4, the OFDM symbols available in the time slots where different transmissions of a PSSCH occur may change.
  • Figure 10 is an example diagram showing changes in OFDM symbols available for PSSCH in different time slots. As shown in Figure 10, due to the existence of PSFCH resources, the number of OFDM symbols available for the nth transmission and the n+1th transmission of PSSCH is different.
  • Q′ SCI2 may be different due to the different number of symbols available for PSSCH transmission in a time slot, and changes in Q′ SCI2 will cause changes in the size of the TB carried by PSSCH, as described below.
  • TBS transmission block size
  • the actual number of PSFCH symbols is not used when calculating When, the number of resource elements (resource elements, RE) occupied by the PSSCH demodulation reference signal (DMRS) that may change during the retransmission process and the tracking reference signal (phase-tracking reference signals, PT-RS) The number of occupied REs is also not taken into account.
  • RE resource elements
  • DMRS PSSCH demodulation reference signal
  • PT-RS phase-tracking reference signals
  • FIG 11 is an example diagram of the time-frequency resources occupied by the second-order SCI in a time slot. As shown in Figure 11, the modulation symbols of the second-order SCI can be mapped from the symbol where the first PSSCH DMRS is located in the frequency domain first and then the time domain. The second-order SCI can be mapped to the OFDM symbol where the DMRS is located. On the RE occupied by DMRS.
  • the data part of PSSCH can use multiple different modulation and coding scheme (MCS) tables.
  • MCS modulation and coding scheme
  • the MCS table specifically used for the data part of the PSSCH can be indicated by the "MCS table indication" field in the first-level SCI.
  • PSSCH In order to control PAPR, PSSCH must use continuous PRB transmission. Since the subchannel is the minimum frequency domain resource granularity of PSSCH, PSSCH must occupy continuous subchannels.
  • PSSCH follows the TBS determination mechanism of PDSCH and PUSCH, that is, the TBS can be determined based on the reference value of the number of REs used for PSSCH in the time slot where PSSCH is located, so that the actual code rate is as close as possible to the target code rate.
  • the purpose of using the reference value of the number of REs instead of the actual number of REs is to ensure that the number of REs used to determine the TBS remains unchanged during PSSCH retransmission, so that the size of the determined TBSs is the same.
  • the reference value N RE for the number of REs occupied by PSSCH during the TBS determination process can be determined according to the following formula:
  • n PRB is the number of PRBs occupied by PSSCH
  • n RE is the number of REs occupied by the first-order SCI (including REs occupied by DMRS of PSCCH)
  • N′ RE represents the number of reference REs that can be used for PSSCH in a PRB.
  • N′ RE can be determined by the following formula:
  • It can represent the number of subcarriers in a PRB, for example, Indicates the number of symbols that can be used for side rows in a time slot, which may not include the last GP symbol and the first symbol used for AGC.
  • the reference value can represent the number of REs occupied by PT-RS and channel state information-reference signal (channel state information-reference signal, CSI-RS), and can be configured by radio resource control (radio resource control, RRC) layer parameters. It can represent the average number of DMRS REs in a time slot, which is related to the DMRS pattern allowed in the resource pool. Table 1 shows the DMRS patterns allowed within the resource pool and corresponding relationship.
  • the DMRS pattern of PSCCH can be the same as the downlink control channel (physical downlink control channel, PDCCH). That is to say, DMRS can exist on each OFDM symbol of PSCCH, and can be located in ⁇ #1, #5, #9 ⁇ REs of a PRB in the frequency domain.
  • Figure 12 is a schematic diagram of a DMRS pattern of PSCCH.
  • the DMRS sequence of PSCCH is generated by the following formula:
  • the pseudo-random sequence c(m) can be given by Perform initialization.
  • l can represent the index of the OFDM symbol in the slot where the DMRS is located, It can represent the index of the DMRS time slot within the system frame. It can represent the number of OFDM symbols in a time slot, N ID ⁇ ⁇ 0,1,...,65535 ⁇ .
  • the specific value of N ID in a resource pool is configured or pre-configured by the network.
  • Some side-link communication systems use multiple time-domain PSSCH DMRS patterns, which are designed from the Uu interface of the NR system.
  • the number of DMRS patterns that can be used may be related to the number of PSSCH symbols in the resource pool.
  • the available DMRS patterns and the position of each DMRS symbol within the pattern are shown in Table 2.
  • Figure 13 is a schematic diagram of the time domain positions of 4 DMRS symbols when the number of PSSCH symbols is 14.
  • the specific time-domain DMRS pattern used is selected by the sending terminal device and indicated in the first-level SCI.
  • Such a design allows high-speed moving terminal equipment to select a high-density DMRS pattern to ensure the accuracy of channel estimation, while for low-speed moving terminal equipment, a low-density DMRS pattern can be used to improve spectral efficiency.
  • PSSCH DMRS sequence is almost the same as that of PSCCH DMRS sequence.
  • the only difference lies in the initialization formula c init of pseudo-random sequence c(m),
  • p i is the i-th CRC of the PSCCH that schedules the PSSCH.
  • PDSCH and PUSCH support two frequency domain DMRS patterns, namely DMRS frequency domain type 1 and DMRS frequency domain type 2.
  • DMRS frequency domain type 1 supports 4 DMRS ports
  • single-symbol DMRS frequency domain type 2 can support 6 DMRS ports.
  • dual DMRS symbols the number of supported ports is doubled.
  • PSSCH may only need to support up to two DMRS ports, it may only support single-symbol DMRS frequency domain type 1.
  • Figure 14 is an example diagram of single symbol DMRS frequency domain type 1.
  • the sidelink communication system can support sidelink CSI-RS (SL CSI-RS) to better support unicast communication.
  • SL CSI-RS can be sent when the following three conditions are met: the terminal device sends the corresponding PSSCH, that is, the terminal device cannot only send SL CSI-RS; high-level signaling activates SL CSI-RS reporting; in high-level signaling When SL CSI-RS reporting is activated, the corresponding bit in the second-order SCI sent by the terminal device triggers SL CSI-RS reporting.
  • the maximum number of ports supported by SL CSI-RS is 2.
  • the SL CSI-RS of two ports that are different ports are multiplexed on two adjacent REs of the same OFDM symbol through code division.
  • the number of SL CSI-RS for each port in a PRB is 1, that is, the density is 1. Therefore, SL CSI-RS will only appear on at most one OFDM symbol in a PRB.
  • the specific position of this OFDM symbol can be determined by the sending terminal equipment.
  • SL CSI-RS cannot be located in the same OFDM symbol as PSCCH and second-order SCI.
  • the SL-CSI-RS cannot be sent in the same channel as the DMRS of the PSSCH. on OFDM symbols.
  • the position of the OFDM symbol where the SL CSI-RS is located is indicated by the sl-CSI-RS-FirstSymbol parameter in PC5RRC.
  • the position of the first RE occupied by SL CSI-RS within a PRB can be indicated by the sl-CSI-RS-FreqAllocation parameter in PC5RRC.
  • this parameter can be a 12-bit bitmap, corresponding to 12 REs in a PRB.
  • this parameter is a bitmap with a length of 6.
  • the SL CSI-RS can occupy two REs of 2f(1) and 2f(1)+1.
  • f(1) can represent the index of the bit with a value of 1 in the above-mentioned bitmap.
  • the frequency domain position of the SL CSI-RS can also be determined by the sending terminal equipment.
  • Figure 15 is an example diagram of SL CSI-RS time-frequency location.
  • the number of SL CSI-RS ports is 2
  • sl-CSI-RS-FirstSymbol is 8
  • Unlicensed spectrum is a spectrum allocated by countries and regions that can be used for radio equipment communication. This spectrum is usually considered a shared spectrum, that is, communication equipment can use this spectrum as long as it meets the regulatory requirements set by the country or region on this spectrum. There is no need to apply for exclusive spectrum authorization from the exclusive spectrum management agency of the country or region. Unlicensed spectrum can also be called shared spectrum, unlicensed spectrum, unlicensed frequency band or unlicensed frequency band, etc.
  • NR-U NR-unlicensed
  • the NR-U system supports two networking methods: assisted access to licensed spectrum and independent access to unlicensed spectrum.
  • Assisted access to licensed spectrum requires the use of licensed spectrum to access the network, while unlicensed spectrum is used as a secondary carrier.
  • Independent access to unlicensed spectrum can be independently networked through unlicensed spectrum, and terminal devices can directly access the network through unlicensed spectrum.
  • the range of unlicensed spectrum used by the NR-U system introduced in 3GPP R16 is concentrated in the 5GHz and 6GHz frequency bands. For example, in the United States, the unlicensed spectrum ranges from 5925–7125MHz; in Europe, the unlicensed spectrum ranges from 5925–6425MHz. In the R16 standard, band 46 (5150MHz-5925MHz) is newly defined as unlicensed spectrum.
  • NR-U NR technology needs to be enhanced accordingly to adapt to the regulatory requirements of unlicensed frequency bands, while efficiently utilizing unlicensed spectrum to provide services.
  • 3GPP R16 the standardization of NR-U technology in the following aspects has been mainly completed: channel monitoring process; initial access process; control channel design; HARQ and scheduling; scheduling-free authorized transmission, etc.
  • Principles may include: communication equipment needs to perform LBT before using a channel on an unlicensed spectrum to send signals. If LBT is successful, the result of channel monitoring is that the channel is idle. The communication device can send signals through the channel only when the channel is idle. If the channel monitoring result of the communication device on the channel is that the channel is busy or the LBT fails, the communication device cannot send signals through the channel. In addition, in order to ensure fairness in the use of spectrum resources in the shared spectrum, if a communication device succeeds in LBT on an unlicensed spectrum channel, the communication device can use the channel for communication transmission for a period of time not exceeding a certain period. This mechanism allows different communication devices to have the opportunity to access the shared channel by limiting the maximum duration of communication after a successful LBT, thereby allowing different communication systems to coexist friendly on the shared spectrum.
  • channel monitoring is not a global regulatory requirement, channel monitoring can bring the benefits of interference avoidance and friendly coexistence to communication transmissions between communication systems on shared spectrum. Therefore, in the design process of NR systems on unlicensed spectrum, channel monitoring is a feature that communication equipment in the system must support. From the perspective of system network deployment, channel monitoring includes two mechanisms. One is Load based equipment (LBE) LBT, also known as dynamic channel monitoring or dynamic channel occupancy; the other is based on frame structure. LBT of equipment (frame based equipment, FBE), also known as semi-static channel monitoring or semi-static channel occupancy.
  • LBE Load based equipment
  • FBE frame based equipment
  • the LBT principle of dynamic channel monitoring is: the communication device performs LBT on the carrier of the unlicensed spectrum after the service arrives, and starts transmitting signals on the carrier after the LBT is successful.
  • the LBT methods of dynamic channel monitoring include: type 1 (type 1) channel access method and type 2 (type 2) channel access method.
  • Type 1 channel access method is multi-slot channel detection with random backoff based on contention window size adjustment. Among them, the corresponding channel access priority class (CAPC)p can be selected according to the priority of the service to be transmitted.
  • the Type 2 channel access method is a channel access method based on fixed-length listening time slots.
  • the Type 2 channel access method includes Type 2A (type2A) channel access, Type 2B (type2B) channel access and Type 2C ( type2C) channel access.
  • Type 1 channel access method is mainly used for communication equipment to initiate channel occupation.
  • Type 2 channel access mode is mainly used for shared channel occupation by communication equipment. It should be noted that when the network device initiates channel occupation for the SS/PBCH block in the dedicated reference signal (DRS) window and the DRS window does not include unicast data transmission of the terminal device, if the length of the DRS window does not exceed 1ms and the duty cycle of DRS window transmission does not exceed 1/20, then the communication device can use Type 2A channel access to initiate channel occupation.
  • DRS dedicated reference signal
  • Figure 16 is an example diagram of a channel occupancy time obtained by a communication device after successful LBT on a channel in an unlicensed spectrum and the use of resources within the channel occupancy time for signal transmission.
  • the following uses network equipment as an example to introduce the Type 1 channel access method and Type 2 channel access method in detail. It can be understood that the process of channel monitoring by other communication devices such as terminal devices through the Type 1 channel access method or the Type 2 channel access method is similar.
  • Network device default channel access method
  • the default channel access mode on the network device side is type 1 channel access mode.
  • the channel access parameters corresponding to the channel access priority p are shown in Table 3.
  • m p can refer to the number of backoff slots corresponding to the channel access priority p
  • CW p can refer to the contention window (CW) size corresponding to the channel access priority p
  • CW min,p It can refer to the minimum value of CW p corresponding to the channel access priority p.
  • CW max,p can refer to the maximum value of CW p corresponding to the channel access priority p.
  • T mcot,p refers to the channel access priority. The maximum occupied time length of the channel corresponding to level p.
  • the network device can use the channel to transmit the service to be transmitted.
  • the maximum length of time that a network device can use this channel for transmission cannot exceed T mcot,p .
  • the resources in the COT can be used for downlink transmission, and the resources in the COT can also be shared with the terminal device for uplink transmission.
  • the channel access methods that the terminal equipment can use are Type 2A channel access, Type 2B channel access, or Type 2C channel access.
  • Type 2A channel access, Type Both 2B channel access and Type 2C channel access are channel access methods based on fixed-length listening time slots.
  • the channel detection mode of the terminal equipment is a single time slot channel detection of 25 ⁇ s.
  • the terminal device can monitor the channel for 25 ⁇ s before starting transmission, and transmit after the channel monitoring is successful.
  • the channel detection mode of the terminal device is 16 ⁇ s single-slot channel detection.
  • the terminal device can monitor the channel for 16 ⁇ s before starting transmission, and transmit after the channel monitoring is successful.
  • the gap size between the starting position of this transmission and the end position of the previous transmission is 16 ⁇ s.
  • the terminal device can transmit without performing channel detection after the gap ends. Specifically, under Type 2C channel access, the terminal device can directly transmit, where the gap size between the starting position of the transmission and the end position of the previous transmission is less than or equal to 16 ⁇ s. Among them, the length of the transmission does not exceed 584 ⁇ s.
  • the transmission of TB is based on time slots.
  • the terminal device may prepare TB according to the duration of one time slot (which may include 14 symbols, for example). For convenience of description, this case is referred to as long-slot-based TB preparation below.
  • network equipment may be configured to have a smaller number of symbols available for sidelink communications than the total number of symbols in a time slot. This case is referred to as preparing TB based on short slots below. For example, network equipment can be configured to use fewer than 14 but more than 6 symbols for sidelink communications.
  • the terminal device can learn in advance the number of symbols available for sidelink communication based on the configuration of the resource pool. Based on the pre-acquired information, the terminal device can determine or calculate the TBS based on the number of symbols occupying a time slot for side-link communication. Both the sending terminal device and the receiving terminal device can calculate the same TBS based on the configuration information and the instruction information in the SCI, thereby achieving reliable decoding.
  • the side-link communication terminal equipment When the side-link communication terminal equipment operates in the unlicensed frequency band, it also needs to support the channel monitoring mechanism (such as the LBT mechanism) mentioned above to avoid resource conflicts between the terminal equipment and other communication equipment or users of other communication systems. .
  • the channel monitoring mechanism such as the LBT mechanism
  • the prepared TB After completing channel monitoring, there may be situations where the prepared TB cannot be transmitted accurately. For example, at the moment when channel monitoring is completed, there may be a situation where the number of symbols remaining in the current time slot may not match the number of symbols corresponding to the TB prepared by the terminal device. For example, if the terminal device prepares a TB according to 14 symbols and plans to map it on 14 symbols in a time slot, if the number of remaining symbols in the time slot to complete channel monitoring is less than 14 symbols, the TB cannot be mapped to enough symbols. on the symbol.
  • the above problem will be explained below with reference to Figures 17 and 18.
  • Figures 17 and 18 are respectively example diagrams of scenarios in which a terminal device completes channel monitoring.
  • the first terminal device (represented by UE1 in Figure 17) performs type 1 channel monitoring on the unlicensed frequency band.
  • the first terminal device completes channel monitoring on the unlicensed frequency band and successfully accesses the channel (for example, occupying the channel through a placeholder (such as cyclic prefix extension (CPE))).
  • CPE cyclic prefix extension
  • the first terminal device starts sending data.
  • the first terminal device can prepare TB according to 14 OFDM symbols and calculate TBS. In this case, at time slot n+1, TB can be mapped on sufficient resources as planned.
  • the first terminal device (represented by UE1 in Figure 18) performs type 1 channel monitoring on the unlicensed frequency band. In the middle of time slot n, the first terminal device completes channel monitoring on the unlicensed frequency band and successfully accesses the channel.
  • the first terminal device may decide to send side-link communication data (eg PSCCH and/or PSSCH) immediately after the LBT is successful.
  • side-link communication data eg PSCCH and/or PSSCH
  • the first terminal equipment previously prepared the TB according to 14 OFDM symbols, and at this time the number of symbols available for side-line communication is less than 14 (for example, only 8 OFDM symbols can be used to transmit side-line communication data), then it cannot Mapping TB on sufficient resources makes it impossible to transmit sideline communication data.
  • Figure 19 is a schematic flow chart of a communication method provided by an embodiment of the present application to solve the above problems.
  • Figure 19 may be executed by the first terminal device and/or the second terminal device.
  • the method shown in Figure 19 may include steps S1910 to S1920.
  • Step S1910 The first terminal device determines the transmission resources and/or transmission parameters of the first TB according to the first time.
  • the first moment may be the moment when the first terminal device completes channel monitoring on the unlicensed frequency band.
  • the first moment can be a point in time.
  • the first moment can belong to one or more time units.
  • a time unit may include, for example, one or more of the following: slot, symbol, subframe, frame, second, millisecond, microsecond, etc.
  • Transmission resources may include time domain resources and/or frequency domain resources.
  • the transmission resources for the first TB may include one or more time units for transmitting the first TB.
  • the transmission resource of the first TB may include a transmission start time of the first TB.
  • the transmission start time can belong to one or more time units.
  • the transmission start time may belong to one or more time slots.
  • the transmission start time can belong to one or more symbols.
  • the transmission parameters may include one or more parameters related to transmitting the first TB.
  • the transmission parameters may include one or more of the following parameters: TBS, MCS, etc.
  • channel monitoring can be implemented through LBT as described above.
  • the channel monitoring mode may be Type 1 or Type 2 (including Type 2A, Type 2B or Type 2C) as described above.
  • the first terminal device and/or the second terminal device may support a side link sensing (SL sensing) mechanism. That is to say, in the unlicensed frequency band, the terminal device can avoid resource conflicts with other sidelink communication users through the sidelink sensing mechanism, and avoid conflict with other users using the unlicensed frequency band (such as other communication systems) through the channel monitoring mechanism. user) creates a resource conflict.
  • SL sensing side link sensing
  • Step S1920 On the sidelink, the first terminal device sends the first TB according to the transmission resources and/or transmission parameters of the first TB. Correspondingly, the second terminal device receives the first TB.
  • this application determines the transmission resources and/or transmission parameters of the first TB in side-link communication based on the moment when the terminal device completes channel monitoring on the unlicensed frequency band.
  • the terminal device may further transmit the first TB according to the determined transmission resources and/or transmission parameters. It can be understood that based on the transmission resources and/or transmission parameters adapted to the channel monitoring completion time, the transmission of the first TB can be made to meet the resource and parameter requirements for transmitting the first TB after channel access, so that in the sidelink Accurately transfer the first terabyte.
  • the transmission resource of the first TB may include the transmission start time of the first TB.
  • the transmission start time of the first TB may belong to the first time slot.
  • the first time slot may be a time slot for completing channel monitoring.
  • the first time slot may be the time slot in which the first moment is located. That is to say, the transmission (including sending and/or receiving) of the first TB can be performed in the time slot in which channel monitoring is completed.
  • the first TB can also be transmitted in a time slot after the first time slot.
  • transmitting the first TB in the first time slot can transmit the first TB as early as possible.
  • transmitting the first TB in the first time slot can reduce data transmission delay.
  • transferring the first TB immediately can guarantee successful resource occupation, thereby reducing the chance of other users seizing the resource again.
  • one or more symbols may remain in the first time slot, and the transmission start time of the first TB may be located at one of the remaining one or more symbols.
  • the transmission start time of the first TB may be located on the first symbol.
  • the first symbol can be determined based on the first moment.
  • the first symbol may be the next symbol to the symbol at the first moment. That is, after completing the channel monitoring, the transmission of the first TB can be carried out immediately.
  • the first symbol may be the n-th symbol after the symbol at the first moment, and n may be an integer greater than 0. That is to say, after completing the channel monitoring, the first TB transmission can be performed at an interval of one or more symbols.
  • n can be a preset value, protocol specified or preconfigured.
  • Figure 20 is an example diagram of a method of transmitting the first TB provided by the embodiment of the present application.
  • the first terminal device completes the channel monitoring process
  • symbol 3 is the symbol for completing the channel monitoring process.
  • the first TB can be transmitted, that is, the transmission start time of the first TB belongs to symbol 4.
  • Figure 21 is an example diagram of a method of transmitting the first TB provided by the embodiment of the present application.
  • the first terminal device completes the channel monitoring process, that is, symbol 5 is the symbol that completes the channel monitoring process.
  • the first TB can be transmitted, that is, the transmission start time of the first TB belongs to symbol 6.
  • the transmission start time of the first TB may be located on the second symbol.
  • the second symbol may be a preset or preconfigured symbol.
  • the second symbol may be calculated according to a preset value or a preconfigured first rule.
  • the first TB plans to send m symbols.
  • m can be a fixed value.
  • the value of m may be less than or equal to the total number of symbols x in a time slot (x may be 14, for example).
  • the first rule may be, for example: the second symbol may be the (x-m)th symbol in the first time slot.
  • the second symbol may be a symbol at a fixed position that is preconfigured or has a preset value in the first time slot.
  • the second symbol is the y-th symbol in the first slot.
  • y can be a fixed value.
  • the value of y can be less than or equal to the total number of symbols x in a time slot. y can be preconfigured or preset.
  • the transmission of the second symbol can begin on the next symbol (i.e., the first symbol) after the symbol that completes monitoring.
  • the transmission of the first TB may be started on the second symbol.
  • Figure 22 is an example diagram of a method of transmitting the first TB provided by the embodiment of the present application.
  • the first terminal device completes the channel monitoring process, that is, symbol 3 is the symbol that completes the channel monitoring process.
  • the second symbol is a preset or preconfigured symbol 7. Between symbol 3 and symbol 7, no data may be transmitted.
  • the first TB can be transmitted, that is, the transmission start time of the first TB belongs to symbol 7.
  • Figure 23 is an example diagram of a method of transmitting the first TB provided by the embodiment of the present application.
  • the first terminal device completes the channel monitoring process, that is, symbol 7 is the symbol that completes the channel monitoring process.
  • the second symbol is a preset or preconfigured symbol 6. Since the second symbol is earlier than the symbol that completes the channel monitoring process, starting from symbol 8, the first TB can be transmitted, that is, the transmission start time of the first TB belongs to symbol 8.
  • a short LBT can be performed before the first terminal device sends the first TB. If the short LBT is successful, the first terminal device can send the first TB. It can be understood that, after the channel monitoring is completed and before the sending start time of the first TB, if the first terminal device does not send data, the shared channel may be occupied by other users, and performing a short LBT can cause the first TB to be sent. The resource does not conflict with other users.
  • This application not only proposes a method for determining the transmission start time of the first TB, but also provides a method for adjusting the symbols of the transmitted first TB according to the first time.
  • the number of symbols that the first TB plans to send may be a first number of symbols
  • the number of symbols that may be used for sending by the first TB in the first time slot may be a second number of symbols.
  • the number of symbols that can be used for transmission by the first TB in the first time slot (ie, the second number of symbols) can be the number of symbols occupied by the transmission start time to the last symbol that can be used for transmission in the first time slot.
  • the first symbol number and the second symbol number may be the same or different.
  • the first TB can be sent directly. That is to say, if the number of symbols that can be sent by the first TB in the first time slot matches the number of symbols that the first TB plans to send, then the symbols that the first TB plans to send can be directly used in the first time slot. The symbols available for transmission in the first TB are sent on.
  • one or more symbols sent by the first TB plan may be repeatedly transmitted.
  • One or more symbols of the repeated transmission may be used to fill the symbols available for the first TB transmission in the first slot.
  • the repeatedly transmitted symbol or symbols may be padded to the last symbol in the first slot available for transmission of the first TB.
  • the repeated transmission can be repeated once or multiple times. That is, one or more of the symbols planned to be sent by the first TB may be sent twice or more than twice.
  • the repeatedly transmitted symbol or symbols may be consecutive symbols.
  • the symbol or symbols of the repeated transmission may be located after all the symbols scheduled to be sent in the first TB, i.e. at the end.
  • the symbols planned to be sent by the first TB are gray-marked symbols 0 to 6, that is, the first symbol number m is 7.
  • the symbols that can be used for transmission by the first TB in the first time slot are white-marked symbols 4 to 13, that is, the second symbol number P is 10.
  • part of the symbols planned to be sent by the first TB may be transmitted. That is, symbols other than some of the symbols planned to be sent by the first TB may not be transmitted. In some embodiments, not transmitting part of the symbols planned to be sent by the first TB may also be referred to as puncturing part of the symbols of the first TB.
  • some of the transmitted symbols may be continuous symbols.
  • some of the transmitted symbols may be early symbols. That is to say, the partial symbols removed by puncturing may be the last symbol or symbols among the symbols sent in the first TB plan.
  • the first symbol number as m and the second symbol number as P Take the first symbol number as m and the second symbol number as P as an example.
  • the last Y symbols among the m symbols can be removed by punching and not sent, and Y can be m-P.
  • the symbols planned to be sent by the first TB are gray-marked symbols 0 to 9, that is, the first symbol number m is 10.
  • the symbols that can be used for transmission by the first TB in the first time slot are white-marked symbols 6 to 13, that is, the second symbol number P is 8.
  • the transmission parameters of the first TB may be jointly determined based on the first time and the available transmission resources of the first TB.
  • the transmission resources available for the first TB may include the number of REs and/or the number of symbols available for the first TB.
  • the number of REs and/or symbols available for the first TB can be granularized in one time slot, that is, the transmission resources available for the first TB can be the number of REs and/or symbols available for the first TB transmission in one time slot. .
  • the number of REs available in the first TB may be the number of REs allocated to the PSSCH; the number of symbols available in the first TB may be the number of symbols available for side-link transmission.
  • the value range of the number of symbols q available for the first TB may be a ⁇ q ⁇ b. Among them, 1 ⁇ a ⁇ b ⁇ 14. For example, the value of a can be 7 and the value of b can be 14.
  • the transmission resources available for the first TB may include the number r of REs allocated to PSSCH in one time slot and the number q of symbols available for sidelink transmission in one time slot.
  • the first terminal device may determine r, and the determining factor of r may include q.
  • the first terminal device may determine the number r of REs allocated to the PSSCH in one time slot, and determine the transmission parameters of the first TB (for example, the TBS of the first TB) based on r.
  • the transmission parameters of the first TB may include a first parameter set or a second parameter set.
  • the first parameter set may include one or more parameters
  • the second parameter set may also include one or more parameters.
  • the first parameter set may include a first TBS and/or a first MCS
  • the second parameter set may include a second TBS and/or a second MCS.
  • the number of symbols planned to be sent by the first TB is the third number of symbols.
  • the number of symbols planned to be sent by the first TB is the fourth number of symbols.
  • the third symbol number may be smaller than the fourth symbol number.
  • the third number of symbols may be smaller than the number of symbols that can be used for side-link communication in one time slot (for example, the third number of symbols is less than 14), and the fourth number of symbols may be equal to the number of symbols that can be used for side-link communication in one time slot.
  • the number of symbols (e.g. the fourth symbol number is equal to 14).
  • the first terminal device may determine the transmission parameters of the first TB as the first parameter set or the second parameter set according to the first moment.
  • two or more parameter sets can be prepared.
  • the number of symbols planned to be sent in the first TB corresponding to different parameter sets can be different.
  • Which parameter set is actually used to send the first TB can be based on the license-free frequency band.
  • the time when channel monitoring is completed is determined. That is to say, a more matching parameter set can be selected to transmit the first TB based on the remaining symbols available for side-link communication in the time slot in which channel monitoring is completed.
  • the first terminal device may determine that the transmission parameters of the first TB are the first parameter set; and/or if the first TB transmits in the time slot when channel monitoring is completed. After the time slot is sent, the first terminal device can determine that the transmission parameters of the first TB are the second parameter set.
  • the transmission start time can be determined by referring to the above method of determining the transmission start time of the first TB. ; and/or, you can refer to the above method to repeatedly send one or more symbols planned to be sent by the first TB, or send part of the symbols planned to be sent by the first TB.
  • the first TB can be directly sent according to the fourth symbol number.
  • the following description takes Figure 24 as an example.
  • Figure 24 is an example diagram of a method of transmitting the first TB provided by the embodiment of the present application.
  • the fourth symbol number is 14.
  • the first terminal device completes channel monitoring on the license-free frequency band, and the time slot in which the channel monitoring is completed is time slot t-1.
  • the first terminal device sends the first TB based on the second parameter set. As shown in Figure 24, in time slot t, the first terminal device can directly send the first TB according to 14 symbols.
  • the transmission parameters for the first TB may vary.
  • the first terminal device may change the transmission parameters of the first TB according to the first moment.
  • the first terminal device changes the transmission parameters of the first TB.
  • the first terminal device may change the transmission parameters of the first TB to the third parameter set.
  • the third parameter set may include one or more parameters.
  • the third parameter set may be dynamically changed.
  • the third parameter set may be determined based on the time at which the channel monitoring process ends.
  • the third parameter set may be determined based on the remaining available resources of the time slot in which the channel monitoring process is completed.
  • the first terminal device may prepare the first TB according to the default parameter set. If the transmission parameters of the first TB do not need to be changed, the first terminal device may send the first TB prepared according to the default parameter set. For example, if the channel monitoring process is completed at the end of one time slot, the first TB prepared according to the default parameter set can be sent in the next time slot, that is, the transmission parameters of the first TB do not need to be changed.
  • the first terminal device may prepare to send the first TB in the second time slot. If the channel monitoring process is not completed at the end of the time slot before the second time slot, the first terminal device can change the transmission parameters of the first TB so that the first TB can adapt to the resource situation of the second time slot, thereby transmitting accurately.
  • Changing the transmission parameters of the first TB may cause the number of symbols that the first TB is prepared to send to change. For example, the first terminal device may prepare the first TB based on the fifth symbol number. If the transmission parameters of the first TB are changed, the first terminal device may be caused to prepare the first TB again based on the sixth symbol number. Wherein, the sixth symbol number may be smaller than the fifth symbol number.
  • adjusting the transmission parameters of the first TB can ensure the real-time and adaptability of data transmission, and improve the flexibility of the communication system.
  • the first terminal device may prepare the first TB according to the changed transmission parameters, that is, adjust the first TB.
  • the duration of adjusting the first TB can be expressed as ⁇ .
  • the first terminal device can send in the time slot when channel monitoring is completed.
  • First TB For a specific sending method, refer to the method of sending the first TB in the first time slot described above.
  • the first terminal device may be sent after the first TB is prepared, or the first TB may not be sent.
  • First TB That is, the first TB may not be sent until the first TB is ready.
  • a placeholder such as a cyclic prefix extension (CP extension or CPE) may be sent before the first TB is prepared to avoid the channel being occupied by other communication devices.
  • channel access may succeed or fail. If the channel access is successful, the first TB can occupy the channel for transmission, and can avoid communication equipment from occupying the unlicensed frequency band to avoid communication conflicts. If channel access fails, that is to say, there are other communication devices communicating on the unlicensed frequency band, the first TB can also occupy the channel for transmission.
  • the transmission resources of the first TB may conflict with the transmission resources of other communication devices, resulting in the second terminal device possibly receiving the first TB with low accuracy.
  • the second terminal device can record the first TB that has a lower accuracy in this transmission, and analyze the first TB in combination with the first TB transmitted after successful channel access, thereby improving the decoding of the first TB. Accuracy.
  • the method disclosed in Embodiment 1 may include steps S1910 to S1930.
  • the first terminal determines the number r of REs allocated to the PSSCH in one time slot.
  • the determinants of r include m, where m can be the number of symbols that can be used for sideline transmission in a time slot, and the value range of m is a ⁇ m ⁇ b. Among them, r, m, a, and b are all integers greater than 0.
  • the value of a can be 7, and the value of b can be 14.
  • the value range of a and b can be 1 ⁇ a ⁇ b ⁇ 14.
  • the first terminal equipment determines the TBS of the first TB according to the number of REs available for PSSCH.
  • Figures 20 and 21 are diagrams illustrating two methods of transmitting the first TB provided in Embodiment 1.
  • the method shown in Figure 20 may include step S1931.
  • the first terminal device uses the existing m symbols when mapping resources.
  • the method shown in Figure 21 may include step S1932.
  • the method disclosed in Embodiment 2 may include steps S2010 to S2030.
  • the first terminal equipment determines the number r of REs allocated to the PSSCH in one time slot.
  • the determinants of r include m, where m is the number of symbols available for sidelink transmission in a time slot, and the value range of m is a ⁇ m ⁇ b. Among them, r, m, a, and b are all integers greater than 0.
  • the value of a can be 7, and the value of b can be 14.
  • the value range of a and b can be 1 ⁇ a ⁇ b ⁇ 14.
  • the first terminal device determines the TBS of the first TB according to the number of REs available for PSSCH.
  • the fixed transmission symbols of the first TB are preset or preconfigured.
  • Figures 22 and 23 are diagrams illustrating two methods of transmitting the first TB provided in Embodiment 2.
  • the method shown in Figure 22 may include step S2031.
  • the interval between the channel monitoring completion time c (channel access is successful at time c) and the symbol s at the sending time is greater than g symbols. At this time, LBT is no longer performed. Wait until before the sending time symbol s, and perform a short LBT. If the channel access is successful, the first TB is sent. If the channel access fails, the first TB is not sent.
  • channel access is successful at symbol 3. There is still more than 3 symbols between symbol 3 and symbol 7. You can do nothing during this period, perform a short LBT before symbol 7, and then decide whether to send the first TB based on whether the short LBT is successful.
  • the method shown in Figure 23 may include step S2032.
  • the first TB when the channel monitoring completion time c (at time c, channel access is successful) is after the symbol s of the sending time, the first TB can be sent starting from the latest symbol.
  • the first TB may be sent according to step S1931 or S1932 in Embodiment 1.
  • the LBT success time c is after the fixed transmission symbol s, then the first TB can be transmitted starting from the nearest symbol 8. This TB cannot be completely transmitted with the remaining symbols in the current slot, and the remaining symbols 6 cannot be transmitted through puncturing. send.
  • the method disclosed in Embodiment 3 may include steps S2110 to S2130.
  • S2110 The first terminal equipment prepares to determine the number of REs allocated to the PSSCH according to the first parameter set and the second parameter set.
  • Step S2110 may include step S2111 and step S2112.
  • the first terminal equipment determines the number of REs allocated to the PSSCH according to the first parameter set.
  • the first terminal equipment can determine the number r1 of REs allocated to PSSCH in a time slot.
  • the determinant of r2 includes m1, where m1 is the number of symbols available for sidelink transmission in a time slot, and the value range of m1 a ⁇ m1 ⁇ b. Among them, r1, m1, a, b are all integers.
  • the value of a can be 7, and the value of b can be 14.
  • the value range of a and b can be 1 ⁇ a ⁇ b ⁇ 14.
  • the first terminal equipment determines the number of REs allocated to the PSSCH according to the second parameter set.
  • the first terminal equipment determines the number r2 of REs allocated to the PSSCH in a time slot.
  • the first terminal device Based on the number of REs determined by the two parameter sets, the first terminal device determines the transmission block sizes TB1 and TB2 corresponding to the two parameter sets.
  • S2130 may include steps S2131 and/or S2132.
  • Step S2131 in the case where the first terminal device plans to send the first TB in time slot t, if the channel access is successful in time slot (t-1), then the first TB can be sent in time slot t according to the second parameter set ( That is, the second set of data corresponding to the first TB).
  • Step S2131 can be seen in Figure 24.
  • the first terminal device plans to send the first TB in time slot t, if the channel access is successful in time slot t, then the first TB can be sent in time slot t according to the first parameter set.
  • step S1931 of Embodiment 1 If the number of remaining available symbols in time slot t is s>m2 when the channel access is successful, subsequent operations may be performed according to step S1931 of Embodiment 1. When the channel access is successful, the number of remaining available symbols in time slot t is s ⁇ m2, and subsequent operations are performed according to step S1932 of Embodiment 1.
  • the method disclosed in Embodiment 4 may include steps S2210 to S2230.
  • the first terminal equipment determines the number r of REs allocated to the PSSCH in one time slot.
  • the determinants of r include m, where m is the number of symbols available for sidelink transmission in a time slot, and the value range of m is a ⁇ m ⁇ b. Among them, r, m, a, b are all integers.
  • the value of a can be 7, and the value of b can be 14.
  • the value range of a and b can be 1 ⁇ a ⁇ b ⁇ 14.
  • the first terminal equipment determines TBS1 of the first TB according to the number of REs available for PSSCH.
  • S2230 Determine the transmission resources and/or transmission parameters of the first TB according to the time when channel monitoring is completed.
  • S2230 may include S2231 and/or S2232.
  • the first terminal device If the first terminal device successfully accesses the channel in time slot t-1, it sends the prepared first TB in time slot t.
  • the first terminal device re-prepares the first TB, that is, repeats S2210 and S2220 of this embodiment, and the value of m is reduced. To m2, m2 ⁇ m.
  • step S1931 or S1932 in Embodiment 1 is further performed.
  • Figures 25 and 26 are diagrams illustrating two methods of transmitting the first TB provided in Embodiment 4.
  • the channel access process for example, performing LBT
  • Figure 27 is a schematic structural diagram of a terminal device 2700 provided by an embodiment of the present application.
  • the terminal device 2700 may be a first terminal device.
  • the terminal device 2700 may include a determining unit 2710 and a sending unit 2720.
  • the determining unit 2710 is configured to determine the transmission resources and/or transmission parameters of the first transmission block TB according to the first time, which is the time when the first terminal device completes channel monitoring on the unlicensed frequency band.
  • the sending unit 2720 is configured to send the first TB on the sidelink according to the transmission resources and/or transmission parameters of the first TB.
  • the first time slot is a time slot for completing the channel monitoring
  • the transmission resource of the first TB includes the transmission start time of the first TB
  • the transmission start time belongs to the first time slot. gap.
  • the transmission start time is located at the first symbol, and the first symbol is determined based on the first time.
  • the transmission start time is located at a second symbol, and the second symbol is a preconfigured or preset value symbol.
  • the number of symbols that the first TB plans to send is a first number of symbols
  • the number of symbols occupied by the last symbol available for transmission from the transmission start time to the first time slot is a second number.
  • the number of symbols that the first TB plans to send is a first number of symbols
  • the number of symbols occupied by the last symbol available for transmission from the transmission start time to the first time slot is a second number.
  • the transmission parameters include: a transmission block size TBS and/or a modulation and coding scheme MCS corresponding to the first TB.
  • the transmission parameters of the first TB are determined based on the first moment and the available transmission resources of the first TB.
  • the available transmission resources include: the number of REs and/or the number of symbols available for the first TB.
  • the transmission parameters include a first parameter set or a second parameter set
  • the determining unit 2710 is specifically configured to: determine the transmission parameters of the first TB to be the first parameter set according to the first moment. or the second parameter set; wherein, when the transmission parameters of the first TB are the first parameter set, the number of symbols planned to be sent by the first TB is the first number of symbols, and in the When the transmission parameters of one TB are the second parameter set, the number of symbols planned to be sent by the first TB is the second number of symbols, and the first number of symbols is smaller than the second number of symbols.
  • the determining unit 2710 is specifically configured to: if the first TB transmits in the time slot in which the channel monitoring is completed, determine that the transmission parameters of the first TB are the first parameter set; and/ Or if the first TB is sent after completing the time slot for channel monitoring, the transmission parameters of the first TB are determined to be the second parameter set.
  • the determining unit 2710 includes an adjusting unit configured to change the transmission parameters of the first TB according to the first moment.
  • the adjustment unit is specifically configured to: if the channel monitoring process is not completed at the end of a time slot, the first terminal device changes the transmission parameters of the first TB.
  • the sending unit 2720 is specifically configured to: when completing the channel monitoring slot to send the first TB.
  • the sending unit 2720 is specifically configured to: Send the first TB after completion; or not send the first TB; and/or send a placeholder before the first TB is ready to be completed.
  • the terminal device 2700 further includes: a listening unit configured to perform a short listen-before-talk LBT before sending the first TB; the sending unit 2720 is specifically configured to: when the short LBT is successful Next, send the first TB.
  • the first terminal device fails to access the channel on the unlicensed frequency band.
  • Figure 28 is a schematic structural diagram of a terminal device 2800 provided by an embodiment of the present application.
  • Terminal device 2800 is the second terminal device.
  • the terminal device 2800 may include a receiving unit 2810.
  • the receiving unit 2810 is configured to receive the first TB sent by the first terminal device on the sidelink according to the transmission resources and/or transmission parameters of the first transmission block TB; wherein the transmission resources and/or the transmission parameters of the first TB Or the transmission parameters are determined based on the first time, which is the time when the first terminal device completes channel monitoring on the unlicensed frequency band.
  • the first time slot is a time slot for completing the channel monitoring
  • the transmission resource of the first TB includes the transmission start time of the first TB
  • the transmission start time belongs to the first time slot. gap.
  • the transmission start time is located at the first symbol, and the first symbol is determined based on the first time.
  • the transmission start time is located at a second symbol, and the second symbol is a preconfigured or preset value symbol.
  • the number of symbols that the first TB plans to send is a first number of symbols
  • the number of symbols occupied by the last symbol available for transmission from the transmission start time to the first time slot is a second number.
  • the number of symbols that the first TB plans to send is a first number of symbols
  • the number of symbols occupied by the last symbol available for transmission from the transmission start time to the first time slot is a second number. The number of symbols. If the first number of symbols is greater than the second number of symbols, the receiving unit 2810 is specifically configured to receive some of the symbols planned to be sent by the first TB.
  • the transmission parameters include a first parameter set or a second parameter set.
  • the transmission parameters of the first TB are the first parameter set
  • the number of symbols planned to be sent by the first TB is The first number of symbols.
  • the transmission parameter of the first TB is the second parameter set
  • the number of symbols planned to be sent by the first TB is the second number of symbols, and the first number of symbols is less than the second number of symbols. Second symbol number.
  • the transmission parameter of the first TB is the first parameter set; and/or if the first TB transmits in the time slot in which the channel monitoring is completed; is sent after the time slot for monitoring the channel, then the transmission parameters of the first TB are the second parameter set.
  • the transmission parameters include: TBS transmission block size and/or MCS modulation and coding method corresponding to the first TB.
  • the first terminal device fails to access the channel on the unlicensed frequency band.
  • Figure 29 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the dashed line in Figure 29 indicates that the unit or module is optional.
  • the device 2900 can be used to implement the method described in the above method embodiment.
  • the device 2900 may be a chip or a terminal device.
  • Apparatus 2900 may include one or more processors 2910.
  • the processor 2910 can support the device 2900 to implement the method described in the foregoing method embodiments.
  • the processor 2910 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Apparatus 2900 may also include one or more memories 2920.
  • the memory 2920 stores a program, which can be executed by the processor 2910, so that the processor 2910 executes the method described in the foregoing method embodiment.
  • the memory 2920 may be independent of the processor 2910 or integrated in the processor 2910.
  • Apparatus 2900 may also include a transceiver 2930.
  • Processor 2910 may communicate with other devices or chips through transceiver 2930.
  • the processor 2910 can send and receive data with other devices or chips through the transceiver 2930.
  • the sending unit 2720 and/or the receiving unit 2810 may be a transceiver 2930, and the determining unit 2710 may be a processor 2910.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal or network device provided by the embodiments of the present application, and the computer program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • the "instruction" mentioned may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the term "correspondence” can mean that there is a direct correspondence or indirect correspondence between the two, or it can also mean that there is an association between the two, or it can also mean indicating and being instructed, configuring and being configured, etc. relation.
  • predefinition or “preconfiguration” can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be determined by the implementation process of the embodiments of the present application. constitute any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种通信方法以及终端设备。所述方法包括:第一终端设备根据第一时刻确定第一传输块TB的传输资源和/或传输参数,所述第一时刻为所述第一终端设备在免授权频段上完成信道监听的时刻;在侧行链路上,根据所述第一TB的传输资源和/或传输参数,第一终端设备发送所述第一TB。可以理解的是,基于与信道监听完成时刻适配的传输资源和/或传输参数,可以使得第一TB的传输满足信道接入后传输第一TB的资源以及参数要求,从而在侧行链路上准确地传输第一TB。

Description

通信方法以及终端设备 技术领域
本申请涉及通信技术领域,并且更为具体地,提供了一种通信方法以及终端设备。
背景技术
在侧行通信终端设备在免授权频段上工作的情况下,需要支持信道监听机制,以避免终端设备与其他系统的用户产生资源冲突。在完成信道监听后,可能存在准备好的传输块(transport block,TB)无法准确传输的情况。例如,在完成信道监听的时刻,可能存在当前时隙中剩余的符号数可能与终端设备准备好的TB对应的符号数不匹配的情况。
发明内容
本申请提供一种通信方法以及终端设备。下面对本申请涉及的各个方面进行介绍。
第一方面,提供了一种通信方法,所述方法包括:第一终端设备根据第一时刻确定第一传输块TB的传输资源和/或传输参数,所述第一时刻为所述第一终端设备在免授权频段上完成信道监听的时刻;在侧行链路上,根据所述第一TB的传输资源和/或传输参数,第一终端设备发送所述第一TB。
第二方面,提供了一种通信方法,所述方法包括:根据第一传输块TB的传输资源和/或传输参数,在侧行链路上,第二终端设备接收第一终端设备发送的第一TB;其中,所述第一TB的传输资源和/或传输参数是根据第一时刻确定的,所述第一时刻为所述第一终端设备在免授权频段上完成信道监听的时刻。
第三方面,提供了一种终端设备,所述终端设备为第一终端设备,所述终端设备包括:确定单元,用于根据第一时刻确定第一传输块TB的传输资源和/或传输参数,所述第一时刻为所述第一终端设备在免授权频段上完成信道监听的时刻;发送单元,用于在侧行链路上,根据所述第一TB的传输资源和/或传输参数,发送所述第一TB。
第四方面,提供了一种终端设备,所述终端设备为第二终端设备,所述终端设备包括:接收单元,用于根据第一传输块TB的传输资源和/或传输参数,在侧行链路上,接收第一终端设备发送的第一TB;其中,所述第一TB的传输资源和/或传输参数是根据第一时刻确定的,所述第一时刻为所述第一终端设备在免授权频段上完成信道监听的时刻。
第五方面,提供一种终端,包括处理器、存储器以及通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述终端设备执行第一方面和/或第二方面的方法中的部分或全部步骤。
第六方面,本申请实施例提供了一种通信系统,该系统包括上述的终端设备。在另一种可能的设计中,该系统还可以包括本申请实施例提供的方案中与该终端设备进行交互的其他设备。
第七方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得终端执行上述各个方面的方法中的部分或全部步骤。
第八方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使终端设备执行上述各个方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第九方面,本申请实施例提供了一种芯片,该芯片包括存储器和处理器,处理器可以从存储器中调用并运行计算机程序,以实现上述各个方面的方法中所描述的部分或全部步骤。
可以理解的是,基于与信道监听完成时刻适配的传输资源和/或传输参数,可以使得第一TB的传输满足信道接入后传输第一TB的资源以及参数要求,从而在侧行链路上准确地传输第一TB。
附图说明
图1为可应用本申请实施例的无线通信系统的系统架构示例图。
图2为网络覆盖内的侧行通信的场景示例图。
图3为部分网络覆盖的侧行通信的场景示例图。
图4为网络覆盖外的侧行通信的场景示例图。
图5为有中央控制节点的侧行通信的场景示例图。
图6为基于广播的侧行通信方式的示例图。
图7为基于单播的侧行通信方式的示例图。
图8为基于组播的侧行通信方式的示例图。
图9为某些侧行通信系统(例如NR-V2X系统)的时隙结构示例图。
图10为不同时隙内PSSCH可用OFDM符号发生变化的示例图。
图11为第二阶SCI在一个时隙中占用的时频资源的示例图。
图12为一种PSCCH的DMRS图案的示意图。
图13为PSSCH为14个符号数时4个DMRS符号的时域位置示意图。
图14为一种单符号DMRS频域类型1示例图。
图15为一种SL CSI-RS时频位置示例图。
图16中为通信设备在非授权频谱的信道上LBT成功后获得的一次信道占用时间以及使用该信道占用时间内的资源进行信号传输的示例图。
图17是一种终端设备完成信道监听的场景示例图。
图18是一种终端设备完成信道监听的场景示例图。
图19为本申请实施例提供的一种通信方法的示意性流程图
图20为本申请实施例提供的一种传输第一TB方法的示例图。
图21为本申请实施例提供的一种传输第一TB方法的示例图。
图22为本申请实施例提供的一种传输第一TB方法的示例图。
图23为本申请实施例提供的一种传输第一TB方法的示例图。
图24为本申请实施例提供的一种传输第一TB方法的示例图。
图25是实施例四提供的一种传输第一TB方法的示例图。
图26是实施例四提供的一种传输第一TB方法的示例图。
图27为本申请实施例提供的一种终端设备的示意性结构图。
图28为本申请实施例提供的一种终端设备的示意性结构图。
图29为本申请实施例提供的另一种通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
通信系统
图1是本申请实施例应用的无线通信系统100的系统架构示例图。该无线通信系统100可以包括网络设备110和终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
可选地,无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统,又如卫星通信系统,等等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,终端设备可以用于充当基站。例如,终端设备可以充当调度实体,其在车辆外联(vehicle-to-everything,V2X)或设备到设备通信(device-to-device,D2D)等中的终端设备之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。可选地,终端设备可以用 于充当基站。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备(device to device,D2D)、车辆到车辆(vehicle to vehicle,V2V)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
应理解,本申请中的通信设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
不同网络覆盖情况下的侧行通信
侧行通信指的是基于侧行链路的通信技术。侧行通信例如可以是D2D或V2X。侧行通信支持在终端设备与终端设备之间直接进行通信数据传输。终端设备与终端设备直接进行通信数据的传输可以具有更高的频谱效率以及更低的传输时延。例如,车联网系统采用侧行通信技术。
在侧行通信中,根据终端设备所处的网络覆盖的情况,可以将侧行通信分为网络覆盖内的侧行通信、部分网络覆盖的侧行通信、网络覆盖外的侧行通信以及由中央控制节点的侧行通信。
图2为网络覆盖内的侧行通信的场景示例图。在图2所示的场景中,两个终端设备120a均处于网络设备110的覆盖范围内。因此,两个终端设备120a均可以接收网络设备110的配置信令(本申请中的配置信令也可替换为配置信息),并根据网络设备110的配置信令确定侧行配置。在两个终端设备120a均进行侧行配置之后,即可在侧行链路上进行侧行通信。
图3为部分网络覆盖的侧行通信的场景示例图。在图3所示的场景中,终端设备120a与终端设备120b进行侧行通信。终端设备120a位于网络设备110的覆盖范围内,因此终端设备120a能够接收到网络设备110的配置信令,并根据网络设备110的配置信令确定侧行配置。终端设备120b位于网络覆盖范围外,无法接收网络设备110的配置信令。在这种情况下,终端设备120b可以根据预配置(pre-configuration)信息和/或位于网络覆盖范围内的终端设备120a发送的物理侧行广播信道(physical sidelink broadcast channel,PSBCH)中携带的信息确定侧行配置。在终端设备120a和终端设备120b均进行侧行配置之后,即可在侧行链路上进行侧行通信。
图4为网络覆盖外的侧行通信的场景示例图。在图4所示的场景中,两个终端设备120b均位于网络覆盖范围外。在这种情况下,两个终端设备120b均可以根据预配置信息确定侧行配置。在两个终端设备120b均进行侧行配置之后,即可在侧行链路上进行侧行通信。
图5为有中央控制节点的侧行通信的场景示例图。在图5所示的场景中,多个终端设备120b可以构成一个通信组。该通信组内可以具有中央控制节点。在一些情况下,中央控制节点可以成为组头(cluster header,CH)终端设备。中央控制节点可以具有以下功能中的一项或多项:负责通信组的建立,组成员的加入、离开,进行资源协调,为其他终端设备分配侧行传输资源,接收其他终端设备的侧行反馈信息,与其他通信组进行资源协调等功能。
侧行通信的模式
某些标准或协议(如第三代合作伙伴计划(3rd generation partnership project,3GPP))定义了两种 侧行通信的模式(或称传输模式):第一模式和第二模式。
在第一模式下,终端设备的资源(本申请提及的资源也可称为传输资源,如时频资源)是由网络设备分配的。终端设备可以根据网络设备分配的资源在侧行链路上进行数据的发送。网络设备可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源。该第一模式可以应用于有网络设备覆盖的场景,如前文图2所示的场景。在图2所示的场景中,终端设备120a位于网络设备110的网络覆盖范围内,因此网络设备110可以为终端设备120a分配侧行传输过程中使用的资源。
在第二模式下,终端设备可以自主在资源池(resource pool,RP)中选取一个或多个资源。然后,终端设备可以根据选择出的资源进行侧行传输。例如,在图4所示的场景中,终端设备120b位于小区覆盖范围外。因此,终端设备120b可以在预配置的资源池中自主选取资源进行侧行传输。或者,在图2所示的场景中,终端设备120a也可以在网络设备110配置的资源池中自主选取一个或多个资源进行侧行传输。
侧行通信的数据传输方式
某些侧行通信系统(如LTE-V2X)支持基于广播的数据传输方式(下文简称广播传输)。对于广播传输,接收端终端设备可以为发送端终端设备周围的任意一个终端设备。以图6为例,终端设备1是发送端终端设备,该发送端终端设备对应的接收端终端设备是终端设备1周围的任意一个终端设备,例如可以是图6中的终端设备2-终端设备6。
除了广播传输之外,某些通信系统还支持基于单播的数据传输方式(下文简称单播传输)和/或基于组播的数据传输方式(下文简称组播传输)。例如,NR-V2X希望支持自动驾驶。自动驾驶对车辆之间的数据交互提出了更高的要求。例如,车辆之间的数据交互需要更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配方式等。因此,为了提升车辆之间的数据交互性能,NR-V2X引入了单播传输和组播传输。
对于单播传输,接收端终端设备一般只有一个终端设备。以图7为例,终端设备1和终端设备2之间进行的是单播传输。终端设备1可以为发送端终端设备,终端设备2可以为接收端终端设备,或者终端设备1可以为接收端终端设备,终端设备2可以为发送端终端设备。
对于组播传输,接收端终端设备可以是一个通信组(group)内的终端设备,或者,接收端终端设备可以是在一定传输距离内的终端设备。以图7为例,终端设备1、终端设备2、终端设备3和终端设备4构成一个通信组。如果终端设备1发送数据,则该组内的其他终端设备(终端设备2至终端设备4)均可以是接收端终端设备。
侧行通信系统帧结构
一个时隙中可以包括物理侧行控制信道(physical sidelink control channel,PSCCH)、物理侧行共享信道(physical sidelink shared channel,PSSCH)、物理侧行反馈信道(physical sidelink feedback channel,PSFCH)等信道。下文将详细介绍上述信道,此处不再赘述。
图9为某些侧行通信系统(例如NR-V2X系统)的时隙结构示例图。其中,图9(a)为时隙中不包括物理侧行反馈信道(physical sidelink feedback channel,PSFCH)的时隙结构示例图。图9(b)为时隙中包括PSFCH信道的时隙结构示例图。
如图9所示,在时域上,PSCCH可以从时隙的第二个侧行符号开始,占用2个或3个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,在频域上可以占用{10,12 15,20,25}个物理资源块(physical resource block,PRB)。为了降低终端设备对PSCCH的盲检测的复杂度,在一个资源池内可以只允许配置一个PSCCH符号个数和PRB个数。另外,子信道为某些侧行通信系统(例如NR-V2X系统)中PSSCH资源分配的最小粒度,因此,PSCCH占用的PRB个数必须小于或等于资源池内一个子信道中包含的PRB个数,以免对PSSCH资源选择或分配造成额外的限制。
在时域上,PSSCH可以从时隙的第二个侧行符号开始。时隙中的最后一个时域符号为保护间隔(guard period,GP)符号,其余符号可以映射PSSCH。时隙中的第一个侧行符号可以是第二个侧行符号的重复。接收端终端设备可以将第一个侧行符号用作自动增益控制(automatic gain control,AGC)符号,该符号上的数据通常不用于数据解调。如图9(a)所示,PSSCH在频域上可以占据K个子信道,每个子信道可以包括N个连续的PRB。其中,K可以为大于0的整数,N可以为大于0的整数。
如图9(b)所示,当时隙中包含PSFCH信道时,时隙中倒数第二个和倒数第三个符号可以用作PSFCH信道传输,在PSFCH信道之前的一个时域符号可以用作GP符号。
PSSCH
在某些侧行通信系统(例如NR-V2X系统)中,PSSCH可以用于承载第二阶侧行控制信息(sidelink control information,SCI)。第二阶SCI可以包括SCI 2-A或SCI 2-B。第二阶SCI可以采用Polar编码方式。第二阶SCI可以固定采用QPSK调制。PSSCH的数据部分可以采用低密度奇偶校验码(low density  parity check,LDPC)。PSSCH的数据部分可以支持的最高调制阶数为256QAM。
在某些侧行通信系统(例如NR-V2X系统)中,PSSCH最多支持两个流传输,并且采用单位预编码矩阵将两个层上的数据映射到两个天线端口,在一个PSSCH中最多只能发送一个TB。然而,和PSSCH数据部分的发送方式不同,当PSSCH采用双流发送方式时,第二阶SCI在两个流上发送的调制符号完全相同,这样的设计可以保证第二阶SCI在高相关信道下的接收性能。
在某些侧行通信系统(例如NR-V2X系统)中一个PSSCH的最大重传次数为32次。如果资源池内存在PSFCH资源,而且PSFCH资源的配置周期为2或4,则一个PSSCH的不同传输所在的时隙内可用的OFDM符号可能会发生变化。图10为不同时隙内PSSCH可用OFDM符号发生变化的示例图。如图10所示,由于PSFCH资源的存在,PSSCH的第n次传输和第n+1传输可用的OFDM符号数不同。如果按照一个时隙内真实的OFDM符号数计算PSSCH传输的符号个数
Figure PCTCN2022110012-appb-000001
可能会由于一个时隙内可用于PSSCH传输的符号个数不同导致Q′ SCI2不同,而Q′ SCI2的改变会导致PSSCH承载的TB的大小的变化,如下文所述。为了保证PSSCH多次传输中传输块大小(transmission block size,TBS)保持不变,在计算
Figure PCTCN2022110012-appb-000002
时并没有采用真实的PSFCH符号数,另外在计算
Figure PCTCN2022110012-appb-000003
时,可能在重传过程中发生变化的PSSCH解调参考信号(demodulation reference symbol,DMRS)占用的资源元素(resource element,RE)个数和追踪参考信号(phase-tracking reference signals,PT-RS)占用的RE个数也没有考虑在内。
第二阶SCI的码率可以在一定范围内动态调整,具体采用的码率可以由第一阶SCI指示。因此,即使在码率改变后接收端也无需对第二阶SCI进行盲检测。图11为第二阶SCI在一个时隙中占用的时频资源的示例图。如图11所示,第二阶SCI的调制符号可以从第一个PSSCH DMRS所在的符号采用先频域后时域的方式开始映射,在DMRS所在的OFDM符号上第二阶SCI可以映射到未被DMRS占用的RE上。
在一个资源池内,PSSCH的数据部分可以采用多个不同的调制编码方式(Modulation and coding scheme,MCS)表格。例如,可以采用以下表格中的一个或多个:常规64QAM MCS表格,256QAM MCS表格,和低频谱效率64QAM MCS表格。在一次传输中,PSSCH的数据部分具体采用的MCS表格可以由第一阶SCI中的“MCS表格指示”域指示。为了控制PAPR,PSSCH必须采用连续的PRB发送。由于子信道为PSSCH的最小频域资源粒度,因此,PSSCH必须占用连续的子信道。
侧行链路TBS
PSSCH沿用了PDSCH和PUSCH的TBS确定机制,即可以根据PSSCH所在时隙内用于PSSCH的RE个数的参考值确定TBS,从而使得实际码率尽可能的接近目标码率。需要说明的是,采用RE数的参考值而不是实际RE数的目的是为了保证PSSCH重传过程中用于确定TBS的RE数保持不变,从而使得确定的TBS大小相同。为了达到这一目的,在TBS确定过程中PSSCH占用RE数的参考值N RE可以按照下面的公式确定:
Figure PCTCN2022110012-appb-000004
其中,n PRB为PSSCH占用的PRB的个数,
Figure PCTCN2022110012-appb-000005
为第一阶SCI占用的RE个数(包括PSCCH的DMRS占用的RE),
Figure PCTCN2022110012-appb-000006
为第二阶SCI占用的RE个数(如上文所述),N′ RE表示一个PRB内可用于PSSCH的参考RE数。N′ RE可以由下面的公式确定:
Figure PCTCN2022110012-appb-000007
其中,
Figure PCTCN2022110012-appb-000008
可以表示表示一个PRB内的子载波个数,例如,
Figure PCTCN2022110012-appb-000009
表示一个时隙内可用于侧行的符号数,可以不包括最后一个GP符号和第一个用于AGC的符号。
Figure PCTCN2022110012-appb-000010
表示PSFCH占用的符号数的参考值,例如,
Figure PCTCN2022110012-appb-000011
或3,具体值可以由第一阶SCI中的“PSFCH符号数”域指示。
Figure PCTCN2022110012-appb-000012
可以表示PT-RS和信道状态信息参考信号(channel state information-reference signal,CSI-RS)占用RE数的参考值,可以由无线资源控制(radio resource control,RRC)层参数配置。
Figure PCTCN2022110012-appb-000013
可以表示一个时隙中的平均DMRS RE个数,和资源池内允许的DMRS图案有关。表1示出了资源池内允许的DMRS图案和
Figure PCTCN2022110012-appb-000014
的对应关系。
表1
Figure PCTCN2022110012-appb-000015
侧行链路DMRS
在某些侧行通信系统(例如NR-V2X系统)中,PSCCH的DMRS图案可以和下行控制信道(physical downlink control channel,PDCCH)相同。也就是说,DMRS可以存在于每一个PSCCH的OFDM符号上,在频域上可以位于一个PRB的{#1,#5,#9}个RE。图12为一种PSCCH的DMRS图案的示意图。PSCCH的DMRS序列通过下面的公式生成:
Figure PCTCN2022110012-appb-000016
其中,伪随机序列c(m)可以由
Figure PCTCN2022110012-appb-000017
进行初始化。其中,l可以表示DMRS所在OFDM符号在时隙内的索引,
Figure PCTCN2022110012-appb-000018
可以表示DMRS所在时隙在系统帧内的索引,
Figure PCTCN2022110012-appb-000019
可以表示一个时隙内OFDM符号的个数,N ID∈{0,1,…,65535},在一个资源池内N ID的具体值由网络配置或预配置。
某些侧行通信系统(例如NR-V2X系统)采用了多个时域PSSCH DMRS图案,即借鉴了NR系统Uu接口中的设计。在一个资源池内,可采用的DMRS图案的个数可以和资源池内PSSCH的符号数有关。对于特定的PSSCH符号数(包括第一个AGC符号)和PSCCH符号数,可用的DMRS图案以及图案内每个DMRS符号的位置如表2所示。图13为PSSCH为14个符号数时4个DMRS符号的时域位置示意图。
表2
Figure PCTCN2022110012-appb-000020
如果资源池内配置了多个时域DMRS图案,则具体采用的时域DMRS图案由发送终端设备选择,并在第一阶SCI中予以指示。这样的设计允许高速运动的终端设备选择高密度的DMRS图案,从而保证信道估计的精度,而对于低速运动的终端设备,则可以采用低密度的DMRS图案,从而提高频谱效率。
PSSCH DMRS序列的生成方式和PSCCH DMRS序列的生成方式几乎完全相同,唯一的区别在于伪随机序列c(m)的初始化公式c init中,
Figure PCTCN2022110012-appb-000021
其中,p i为调度该PSSCH的PSCCH的 第i位CRC。L可以为PSCCH CRC的比特位数,例如L=24。
NR通信系统中,PDSCH和PUSCH中支持两种频域DMRS图案,即DMRS频域类型1和DMRS频域类型2。对于每一种频域类型,均存在单DMRS符号和双DMRS符号两种不同类型。单符号DMRS频域类型1支持4个DMRS端口,单符号DMRS频域类型2可以支持6个DMRS端口。双DMRS符号情况下,支持的端口数均翻倍。然而,在侧行通信系统(例如NR-V2X)中,由于PSSCH可以最多只需要支持两个DMRS端口,因此,可以仅支持单符号的DMRS频域类型1。图14为一种单符号DMRS频域类型1示例图。
侧行链路CSI-RS
侧行通信系统可以支持侧行链路CSI-RS(SL CSI-RS),以更好地支持单播通信。SL CSI-RS可以在满足以下3个条件时发送:终端设备发送对应的PSSCH,也就是说,终端设备不能只发送SL CSI-RS;高层信令激活了SL CSI-RS上报;在高层信令激活SL CSI-RS上报的情况下,终端设备发送的二阶SCI中的相应比特触发了SL CSI-RS上报。
SL CSI-RS支持的最大端口数为2。两个端口是不同端口的SL CSI-RS在同一个OFDM符号的相邻两个RE上通过码分的方式复用。在一个PRB内每个端口的SL CSI-RS的个数为1,即密度为1。因此,在一个PRB内SL CSI-RS最多只会出现在一个OFDM符号上。这个OFDM符号的具体位置可以由发送终端设备确定。为了避免对PSCCH和第二阶SCI的资源映射造成影响,SL CSI-RS不能与PSCCH和第二阶SCI位于同一个OFDM符号。由于PSSCH DMRS所在OFDM符号的信道估计精度较高,而且两个端口的SL CSI-RS将在频域上占用两个连续的RE,所以SL-CSI-RS也不能和PSSCH的DMRS发送在同一个OFDM符号上。SL CSI-RS所在的OFDM符号的位置由PC5RRC中的sl-CSI-RS-FirstSymbol参数指示。
SL CSI-RS在一个PRB内占用的第一个RE的位置可以由PC5RRC中的sl-CSI-RS-FreqAllocation参数指示。如果SL CSI-RS为一个端口,该参数可以为长度为12的比特位图,对应一个PRB内的12个RE。如果SL CSI-RS为两个端口,该参数为长度可以为6的比特位图,在这种情况下SL CSI-RS可以占用2f(1)和2f(1)+1两个RE。其中,f(1)可以表示值为1的比特在上述比特位图中的索引。SL CSI-RS的频域位置也可以由发送终端设备确定。确定的SL CSI-RS的频域位置不能和PT-RS发生冲突。图15为一种SL CSI-RS时频位置示例图。在图15中,SL CSI-RS端口数为2,sl-CSI-RS-FirstSymbol为8,sl-CSI-RS-FreqAllocation为[b 5,b 4,b 3,b 2,b 1,b 0]=[0,0,0,1,0,0]。
非授权频谱通信
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,而不需要向国家或地区的专属频谱管理机构申请专有的频谱授权。非授权频谱也可以称为共享频谱、免授权频谱、非授权频段或免授权频段等。
在LTE系统中,非授权频谱作为授权频谱的补充频段用于蜂窝网络已经实现。对于NR系统,NR系统可以实现蜂窝网络的无缝覆盖、高频谱效率、高峰值速率和高可靠性。NR系统也可以使用非授权频谱,作为5G蜂窝网络技术的一部分,为用户提供服务。在3GPP R16标准中,讨论了用于非授权频谱上的NR系统,称为NR非授权(NR-unlicensed,NR-U)系统。
NR-U系统支持可以两种组网方式:授权频谱辅助接入和非授权频谱独立接入。授权频谱辅助接入需要借助授权频谱接入网络,非授权频谱作为辅载波使用。非授权频谱独立接入可以通过非授权频谱独立组网,终端设备可以直接通过非授权频谱接入网络。在3GPP R16中引入的NR-U系统使用的非授权频谱的范围集中与5GHz和6GHz频段。例如,在美国,非授权频谱的范围为5925–7125MHz;在欧洲,非授权频谱的范围为5925–6425MHz。在R16的标准中,新定义了band 46(5150MHz-5925MHz)作为非授权频谱使用。
非授权频谱的使用需要满足各个国家和地区特定的法规的要求,例如,通信设备可以通过信道监听实现在非授权频谱上信道接入从而使用非授权频谱,以避免与其他通信设备或其他通信系统(例如WiFi系统)产生冲突。作为一种实现方式,通信设备可以遵循“先听后说”(listen-before-talk,LBT)的原则使用非授权频谱。因此,对于NR-U而言,NR技术需要进行相应的增强以适应非授权频段的法规要求,同时高效利用非授权频谱提供服务。在3GPP R16标准中,主要完成了以下方面的NR-U技术的标准化:信道监听过程;初始接入过程;控制信道设计;HARQ与调度;免调度授权传输等。
Figure PCTCN2022110012-appb-000022
原则可以包括:通信设备在使用非授权频谱上的信道进行信号发送前,需要先进行LBT,在 LBT成功的情况下,信道监听的结果为信道空闲。只有信道空闲时,该通信设备才能通过该信道进行信号发送。如果通信设备在该信道上的信道监听结果为信道忙或者说LBT失败,那么该通信设备不能通过该信道进行信号发送。另外,为了保证共享频谱的频谱资源使用的公平性,如果通信设备在非授权频谱的信道上LBT成功,该通信设备可以使用该信道进行通信传输的时长不能超过一定的时长。该机制通过限制一次LBT成功后可以进行通信的最大时长,可以使不同的通信设备都有机会接入该共享信道,从而使不同的通信系统在该共享频谱上友好共存。
虽然信道监听并不是全球性的法规规定,然而由于信道监听能为共享频谱上的通信系统之间的通信传输带来干扰避免以及友好共存的好处。因此,在非授权频谱上的NR系统的设计过程中,信道监听是该系统中的通信设备必须要支持的特性。从系统的布网角度,信道监听包括两种机制,一种是基于负载的设备(Load based equipment,LBE)的LBT,也称为动态信道监听或动态信道占用;另一种是基于帧结构的设备(frame based equipment,FBE)的LBT,也称为半静态信道监听或半静态信道占用。
动态信道监听
动态信道监听的LBT原则是:通信设备在业务到达后进行非授权频谱的载波上的LBT,并在LBT成功后在该载波上开始信号的发送。动态信道监听的LBT方式包括:类型1(type1)信道接入方式和类型2(type2)信道接入方式。类型1信道接入方式为基于竞争窗口大小调整的随机回退的多时隙信道检测。其中,根据待传输业务的优先级可以选择对应的信道接入优先级(channel access priority class,CAPC)p。类型2信道接入方式为基于固定长度的监听时隙的信道接入方式,其中,类型2信道接入方式包括类型2A(type2A)信道接入、类型2B(type2B)信道接入和类型2C(type2C)信道接入。类型1信道接入方式主要用于通信设备发起信道占用。类型2信道接入方式主要用于通信设备共享信道占用。需要说明的是,当网络设备为传输专用参考信号(dedicated reference signal,DRS)窗口内的SS/PBCH block发起信道占用且DRS窗口内不包括终端设备的单播数据传输时,如果DRS窗口的长度不超过1ms而且DRS窗口传输的占空比不超过1/20,那么通信设备可以使用类型2A信道接入发起信道占用。
图16中为通信设备在非授权频谱的信道上LBT成功后获得的一次信道占用时间以及使用该信道占用时间内的资源进行信号传输的示例图。
下面以网络设备为例详细介绍类型1信道接入方式和类型2信道接入方式。可以理解的是,终端设备等其他通信设备通过类型1信道接入方式或类型2信道接入方式进行信道监听的过程是类似的。
网络设备默认信道接入方式
网络设备侧默认信道接入方式为类型1信道接入方式。信道接入优先级p对应的信道接入参数如表3所示。在表3中,m p可以指信道接入优先级p对应的回退时隙个数,CW p可以指信道接入优先级p对应的竞争窗口(contention window,CW)大小,CW min,p可以指信道接入优先级p对应的CW p取值的最小值,CW max,p可以指信道接入优先级p对应的CW p取值的最大值,T mcot,p是指信道接入优先级p对应的信道最大占用时间长度。
如果信道接入过程结束,那么网络设备可以使用该信道进行待传输业务的传输。网络设备可以使用该信道进行传输的最大时间长度不能超过T mcot,p
表3
Figure PCTCN2022110012-appb-000023
网络设备侧的信道占用时间共享
当网络设备发起信道占用时间(channel occupancy time,COT)后,可以将该COT内的资源用于下行传输,还可以将该COT内的资源共享给终端设备进行上行传输。COT内的资源共享给终端设备进行上行传输时,终端设备可以使用的信道接入方式为类型2A信道接入、类型2B信道接入或类型2C信道接入,其中,类型2A信道接入、类型2B信道接入和类型2C信道接入均为基于固定长度的监听时隙的信道接入方式。
在终端设备以类型2A进行信道接入的情况下,终端设备的信道检测方式为25μs的单时隙信道检测。具体地,类型2A信道接入下,终端设备在传输开始前可以进行25μs的信道监听,并在信道监听成功后进行传输。
在终端设备以类型2B进行信道接入的情况下,终端设备的信道检测方式为16μs的单时隙信道检测。具体地,类型2B信道接入下,终端设备在传输开始前可以进行16μs的信道监听,并在信道监听成功后进行传输。其中,该传输的起始位置距离上一次传输的结束位置之间的空隙大小为16μs。
在终端设备以类型2C进行信道接入的情况下,终端设备在空隙结束后可以不做信道检测而进行传输。具体地,类型2C信道接入下,终端设备可以直接进行传输,其中,该传输的起始位置距离上一次传输的结束位置之间的空隙大小为小于或等于16μs。其中,该传输的长度不超过584μs。
在侧行链路通信技术中,TB的发送是基于时隙(slot)的。在一些情况下,终端设备可以按照一个时隙(例如可以包含14个符号)的时长准备TB。为便于描述,下文将这种情况称为基于长时隙准备TB。在一些情况下,网络设备可以配置侧行通信可用的符号数小于一个时隙中的符号总数。下文将这种情况称为基于短时隙准备TB。例如,网络设备可以配置侧行通信可用的符号数少于14个但大于6个。无论是基于长时隙准备TB,还是基于短时隙准备TB,终端设备都可以根据资源池的配置情况预先获知侧行通信可用的符号数。基于预先获知的信息,终端设备可以根据侧行通信占用一个时隙的符号数来确定或计算TBS。发送终端设备和接收终端设备都可以根据配置信息和SCI中的指示信息,计算得到相同的TBS,从而实现可靠的解码。
在侧行通信终端设备在免授权频段上工作的情况下,也需要支持上文所述的信道监听机制(例如LBT机制),以避免终端设备与其他通信设备或其他通信系统的用户产生资源冲突。在完成信道监听后,可能存在准备好的TB无法准确传输的情况。例如,在完成信道监听的时刻,可能存在当前时隙中剩余的符号数可能与终端设备准备好的TB对应的符号数不匹配的情况。以终端设备按照14个符号准备TB并计划映射在一个时隙的14个符号上为例,如果完成信道监听的时隙中剩余的符号数少于14个符号,则该TB无法映射到足够的符号上。下面结合图17和图18说明上述问题。
图17和图18分别是一种终端设备完成信道监听的场景示例图。
如图17所示,第一终端设备(图17通过UE1表示)在免授权频段上进行类型1的信道监听。在时隙n,第一终端设备在免授权频段上完成信道监听并且信道接入成功(例如通过占位符(如循环前缀扩展(cyclic prefix extension,CPE))占用信道)。在时隙n+1边界开始,第一终端设备开始发送数据。第一终端设备可以按照14个OFDM符号准备TB并计算TBS。在这种情况下,在时隙n+1,可以按计划将TB映射在足够的资源上。
如图18所示,第一终端设备(图18通过UE1表示)在免授权频段上进行类型1的信道监听。在时隙n的中间位置,第一终端设备在免授权频段上完成信道监听并信道接入成功。第一终端设备可以决定在LBT成功后立即发送侧行通信数据(例如PSCCH和/或PSSCH)。但是,此前第一终端设备是按照14个OFDM符号准备TB的,而此时可用于侧行通信的符号数目小于14个(例如只有8个OFDM符号可以用于传输侧行通信数据),那么无法将TB映射在足够的资源上,进而无法传输侧行通信数据。
图19为本申请实施例提供的一种通信方法的示意性流程图,以解决上述问题。
图19可以由第一终端设备和/或第二终端设备执行。图19所示的方法可以包括步骤S1910~S1920。
步骤S1910,第一终端设备根据第一时刻确定第一TB的传输资源和/或传输参数。
第一时刻可以为第一终端设备在免授权频段上完成信道监听的时刻。第一时刻可以为一个时间点。第一时刻可以属于一个或多个时间单元。时间单元例如可以包括以下一项或多项:时隙、符号、子帧、帧、秒、毫秒、微秒等。
传输资源可以包括时域资源和/或频域资源。例如,第一TB的传输资源可以包括传输第一TB的一个或多个时间单元。或者,第一TB的传输资源可以包括第一TB的传输起始时间。传输起始时间可以属于一个或多个时间单元。例如,传输起始时间可以属于一个或多个时隙。或者,传输起始时间可以属于一个或多个符号。
传输参数可以包括一个或多个与传输第一TB相关参数。例如,传输参数可以包括以下参数中的一项或多项:TBS、MCS等。
本申请不限制信道监听的具体过程。例如,信道监听可以通过上文所述的LBT实现。信道监听方式可以为上文所述的类型1或类型2(包括类型2A、类型2B或类型2C)。
在支持免授权频段通信的同时,第一终端设备和/或第二终端设备可以支持侧行链路感知(SL sensing)机制。也就是说,在免授权频段,终端设备可以通过侧行链路感知机制避免与其他侧行通信用户产生资源冲突,并且通过信道监听机制避免与其他使用该免授权频段的用户(例如其他通信系统的用户)产生资源冲突。
步骤S1920,在侧行链路上,根据第一TB的传输资源和/或传输参数,第一终端设备发送第一TB。对应地,第二终端设备接收第一TB。
由此可知,本申请基于终端设备在免授权频段上完成信道监听的时刻,确定侧行通信中第一TB的 传输资源和/或传输参数。终端设备可以进一步根据确定的传输资源和/或传输参数传输第一TB。可以理解的是,基于与信道监听完成时刻适配的传输资源和/或传输参数,可以使得第一TB的传输满足信道接入后传输第一TB的资源以及参数要求,从而在侧行链路上准确地传输第一TB。
上文提到,第一TB的传输资源可以包括第一TB的传输起始时间。在一些实施例中,第一TB的传输起始时间可以属于第一时隙。其中,第一时隙可以为完成信道监听的时隙。换句话说,第一时隙可以为第一时刻所在的时隙。也就是说,在完成信道监听的时隙即可以进行第一TB的传输(包括发送和/或接收)。
可以理解的是,第一TB也可以在第一时隙之后的时隙传输,相比较而言,在第一时隙传输第一TB可以尽早地传输第一TB。一方面,在第一时隙传输第一TB可以减少数据发送时延。另一方面,立即传输第一TB可以保证资源占用成功,从而降低了其他用户再次抢占资源的机会。
在完成信道监听的时刻(即第一时刻),第一时隙中可以剩余一个或多个符号,第一TB的传输起始时间位于可以位于所述剩余的一个或多个符号中的一个符号。
在一些实施例中,第一TB的传输起始时间可以位于第一符号。其中,第一符号可以根据第一时刻确定。例如,第一符号可以是第一时刻所在符号的下一个符号。也就是说,在完成信道监听后,可以立即进行第一TB的传输。或者,第一符号可以是第一时刻所在的符号后的第n个符号,n可以为大于0的整数。也就是说,完成信道监听后,可以间隔一个或多个符号再进行第一TB的传输。其中,n可以是预设值的、协议规定的或预配置的。
图20为本申请实施例提供的一种传输第一TB方法的示例图。如图20所示,在第一时刻c,第一终端设备完成信道监听过程,符号3为完成信道监听过程的符号。从符号4开始,可以传输第一TB,即第一TB的传输起始时间属于符号4。
图21为本申请实施例提供的一种传输第一TB方法的示例图。如图21所示,在第一时刻c,第一终端设备完成信道监听过程,即符号5为完成信道监听过程的符号。从符号6开始,可以传输第一TB,即第一TB的传输起始时间属于符号6。
在一些实施例中,第一TB的传输起始时间可以位于第二符号。其中,第二符号可以为预设置或预配置的符号。作为一种实现方式,第二符号可以根据预设值或预配置的第一规则计算得到。例如,第一TB计划发送的符号为m个。m可以为一个固定值。m的取值可以小于或等于一个时隙中的总符号数x(x例如可以为14)。第一规则例如可以为:第二符号可以为第一时隙中的第(x-m)个符号。作为另一种实现方式,第二符号可以为第一时隙中预配置或预设值的固定位置的符号。例如,第二符号为第一时隙中的第y个符号。y可以为一个固定值。y的取值可以小于或等于一个时隙中的总符号数x。y可以为预配置或预设值的。
需要说明的是,在第二符号早于完成信道监听的符号,或者第二符号是完成信道监听的符号的情况下,可以在完成监听的符号的下一个符号(即第一符号)开始传输第一TB。在第二符号晚于完成信道监听的符号的情况下,可以到第二符号再开始传输第一TB。
图22为本申请实施例提供的一种传输第一TB方法的示例图。如图22所示,在第一时刻c,第一终端设备完成信道监听过程,即符号3为完成信道监听过程的符号。第二符号为预设或预配置的符号7。在符号3和符号7之间,可以不传输数据。从符号7开始,可以传输第一TB,即第一TB的传输起始时间属于符号7。
图23为本申请实施例提供的一种传输第一TB方法的示例图。如图23所示,在第一时刻c,第一终端设备完成信道监听过程,即符号7为完成信道监听过程的符号。第二符号为预设或预配置的符号6。由于第二符号早于完成信道监听过程的符号,则从符号8开始,可以传输第一TB,即第一TB的传输起始时间属于符号8。
在第一终端设备发送第一TB之前,可以进行短LBT。如果短LBT成功,则第一终端设备可以发送第一TB。可以理解的是,在信道监听完成后到第一TB的发送起始时间之前,如果第一终端设备没有发送数据,则该共享信道可能被其他用户占用,进行短LBT可以使得发送第一TB的资源不与其他用户发生冲突。
本申请不仅提出了确定第一TB的发送起始时间的方法,也提供了一种根据第一时刻调整发送的第一TB的符号的方法。
在一些实施例中,第一TB计划发送的符号的数目可以为第一符号数,第一时隙中可以用于第一TB发送的符号的数目可以是第二符号数。其中,第一时隙中可以用于第一TB发送的符号的数目(即第二符号数)可以为传输起始时间到第一时隙中最后一个可用于传输的符号所占用的符号数。第一符号数和第二符号数可以相同,也可以不同。
在第一符号数与第二符号数相同的情况下,可以发送第一TB计划发送的全部符号,即可以直接在 发送第一TB。也就是说,第一时隙中可以用于第一TB发送的符号的数目与第一TB计划发送的符号的数目相匹配,则可以直接将第一TB计划发送的符号在第一时隙中可用于第一TB发送的符号上发送。
在第一符号数小于第二符号数的情况下,可以重复传输第一TB计划发送的一个或多个符号。重复传输的一个或多个符号可以用于填充第一时隙中可用于第一TB发送的符号。重复传输的一个或多个符号可以填充至第一时隙中最后一个可用于传输第一TB的符号。
需要说明的是,重复传输可以重复传输一次,也可以重复传输多次。也就是说,第一TB计划发送的符号中的一个或多个可以发送两次或者两次以上。
可选地,重复传输的一个或多个符号可以是连续的符号。重复传输的一个或多个符号可以位于第一TB计划发送的所有符号之后,即位于末尾。
以第一符号数为m,第二符号数为P为例。当m<P时,可以将m个符号中的d(d=P-m)个连续符号复制在m个符号之后。以图20为例进行说明,第一TB计划发送的符号为灰色标记的符号0~6,即第一符号数m为7。第一时隙中可以用于第一TB发送的符号为白色标记的符号4~13,即第二符号数P为10。可以将第一TB计划发送的符号中的后P-m=3个连续的符号复制在第一TB计划发送的符号之后。
在第一符号数大于第二符号数的情况下,可以传输第一TB计划发送的部分符号。也就是说,可以不传输第一TB计划发送的部分符号以外的符号。在一些实施例中,不传输第一TB计划发送的部分符号也可以称为将第一TB的部分符号打孔去掉。
可选地,第一TB计划发送的符号中,传输的部分符号可以为连续的符号。第一TB计划发送的符号中,传输的部分符号可以为靠前的符号。也就是说,打孔去掉的部分符号可以为第一TB计划发送的符号中最后的一个或多个符号。
以第一符号数为m,第二符号数为P为例。当m>P时,可以传输m个符号中的前X个符号,直到第一时隙中最后一个可用于第一TB传输的符号(即X=P)。m个符号中的后Y个符号可以通过打孔去掉不发送,Y可以为m-P。以图21为例进行说明,第一TB计划发送的符号为灰色标记的符号0~9,即第一符号数m为10。第一时隙中可以用于第一TB发送的符号为白色标记的符号6~13,即第二符号数P为8。可以传输第一TB计划发送的10个符号中的前X=P=8个符号。第一TB计划发送的10个符号中的后Y=m-P=2个符号打孔去掉不发送。
第一TB的传输参数可以基于第一时刻和第一TB的可用传输资源共同确定。第一TB可用的传输资源可以包括第一TB可用的RE个数和/或符号数。第一TB可用的RE个数和/或符号数可以以一个时隙为粒度,即第一TB可用的传输资源可以为一个时隙中可用于第一TB传输的RE个数和/或符号数。对于侧行通信而言,第一TB可用的RE个数可以为分配给PSSCH的RE个数;第一TB可用的符号数可以是可用于侧行传输的符号数。第一TB可用的符号数q的取值范围可以为a≤q≤b。其中,1≤a≤b≤14。例如,a的取值可以为7,b的取值可以为14。
作为一种实现方式,第一TB可用的传输资源可以包括一个时隙内分配给PSSCH的RE个数r以及一个时隙中可用于侧行传输的符号个数q。其中,第一终端设备可以确定r,r的决定因素可以包含q。第一终端设备可以确定一个时隙内分配给PSSCH的RE个数r,并根据r确定第一TB的传输参数(例如第一TB的TBS)。
第一TB的传输参数可以包括第一参数集或第二参数集。第一参数集可以包括一个或多个参数,第二参数集也可以包括一个或多个参数。例如,第一参数集可以包括第一TBS和/或第一MCS,第二参数集可以包括第二TBS和/或第二MCS。
在第一TB的传输参数为第一参数集的情况下,第一TB计划发送的符号数为第三符号数。在第一TB的传输参数为第二参数集的情况下,第一TB计划发送的符号数为第四符号数。第三符号数可以小于第四符号数。第三符号数例如可以小于一个时隙中的能够用于侧行通信的符号数(例如第三符号数小于14),第四符号数例如可以等于一个时隙中的能够用于侧行通信的符号数(例如第四符号数等于14)。第一终端设备可以根据第一时刻确定第一TB的传输参数为第一参数集或第二参数集。
可以理解的是,可以准备两套或两套以上的参数集,不同参数集对应的第一TB计划发送的符号数可以不同,实际发送第一TB使用哪套参数集,可以基于在免授权频段上完成信道监听的时刻确定。也就是说,可以根据完成信道监听的时隙中的剩余侧行通信可用的符号,选择一个更为匹配的参数集传输第一TB。
作为一种实现方式,如果第一TB在完成信道监听的时隙发送,则第一终端设备可以确定第一TB的传输参数为第一参数集;和/或如果第一TB在完成信道监听的时隙后发送,则第一终端设备可以确定第一TB的传输参数为第二参数集。
如果确定第一TB的传输参数为第一参数集,即在第一TB在完成信道监听的时隙发送的情况下, 可以参考上述确定第一TB的传输起始时间的方法确定传输起始时间;和/或,可以参考上述方法重复发送第一TB计划发送的一个或多个符号,或发送第一TB计划发送的部分符号。
如果确定第一TB的传输参数为第二参数集,即在第一TB在完成信道监听的时隙后*(例如下一个时隙)发送的情况下,可以直接按照第四符号数发送第一TB。下面以图24为例进行说明。
图24为本申请实施例提供的一种传输第一TB方法的示例图。在图24中,第四符号数为14。在第一时刻c,第一终端设备在免授权频段上完成信道监听,完成信道监听的时隙为时隙t-1。在时隙t,由于时隙t在完成信道监听的时隙t-1后,第一终端设备基于第二参数集发送第一TB。如图24所示,在时隙t,第一终端设备可以按照14个符号直接发送第一TB。
第一TB的传输参数可以是变化的。例如,第一终端设备可以根据第一时刻改变第一TB的传输参数。
作为一种实现方式,如果在一个时隙结束时信道监听的过程未完成,则第一终端设备改变第一TB的传输参数。
第一终端设备可以将第一TB的传输参数改变为第三参数集。第三参数集可以包括一个或多个参数。在一些实施例中,第三参数集可以是动态变化的。例如,第三参数集可以根据信道监听过程结束的时刻确定。或者,第三参数集可以根据完成信道监听过程的时隙的剩余可用资源确定。
第一终端设备可以按照默认参数集准备第一TB。如果不需要改变第一TB的传输参数,则第一终端设备可以发送按照默认参数集准备的第一TB。例如,如果在一个时隙结束时信道监听的过程完成,则在下一个时隙可以发送按照默认参数集准备的第一TB,即可以不用改变第一TB的传输参数。
第一终端设备可以准备在第二时隙发送该第一TB。如果在第二时隙前的时隙结束时,信道监听过程未完成,则第一终端设备可以改变第一TB的传输参数,以便所述第一TB可以适配第二时隙的资源情况,从而准确传输。
改变第一TB的传输参数可以使得第一TB准备发送的符号数变化。例如,第一终端设备可以基于第五符号数准备第一TB。如果改变第一TB的传输参数,可以使得第一终端设备基于第六符号数再次准备第一TB。其中,第六符号数可以小于第五符号数。
可以理解的是,调整第一TB的发送参数,可以保证数据发送的实时性和适配性,并提高了通信系统的灵活性。
如果第一TB的传输参数改变,则第一终端设备可以按照改变后的传输参数准备第一TB,即调整第一TB。调整第一TB的时长可以表示为τ。
如果在信道监听完成的时刻(即第一时刻),第一终端设备按照改变后的传输参数将第一TB准备完成(即τ结束),则第一终端设备可以在完成信道监听的时隙发送第一TB。具体的发送方法可以参考上文所述的在第一时隙中发送第一TB的方法。
如果在信道监听完成的时刻(即第一时刻),第一终端设备没有按照改变后的传输参数将第一TB准备完成,则可以在第一TB准备完成再发送第一TB,或者可以不发送第一TB。也就是说,可以在第一TB准备完成前不发送第一TB。在一些实施例中,在第一TB准备完成之前可以发送占位符(如循环前缀扩展(cyclic prefix extension,CP extension或CPE)),以避免该信道被其他通信设备占用。
需要说明的是,在完成信道监听的第一时刻,信道接入可以成功,也可以失败。在信道接入成功的情况下,第一TB可以占用该信道进行传输,并且可以避免通信设备占用该免授权频段从而避免通信冲突。如果信道接入失败,也就是说,该免授权频段上有其他通信设备在进行通信,第一TB也可以占用该信道进行传输。
可以理解的是,在信道接入失败的情况下,第一TB的传输资源会与其他通信设备的传输资源冲突,从而导致第二终端设备可能接收到第一TB准确率较低。在这种情况下,第二终端设备可以记录此次传输的准确率较低的第一TB,并结合后续信道接入成功后传输的第一TB解析该第一TB,从而提高第一TB解码准确率。
需要说明的是,上述通信方法可以在满足以下条件的情况下实施:第一TB的初传TBS=第一TB的重传TBS;第一TB的码率不大于0.95。需要说明的是,不论第一终端设备按照上述哪种传输参数准备第一TB,第一TB的码率都不大于0.95。如果第二终端设备接收到的第一TB的码率大于0.95,则可以不解码该第一TB。
下面结合图20~图26,详细介绍本申请的实施例。
实施例一
实施例一公开的方法可以包括步骤S1910~S1930。
S1910,第一终端确定一个时隙内分配给PSSCH的RE个数r。r的决定因素中包含m,其中,m可以为一个时隙中可用于侧行传输的符号个数,且m的取值范围a≤m≤b。其中,r、m、a、b均为大于 0的整数。
优选地,a的取值可以7,b的取值可以14。可选地,a和b的取值范围可以为1≤a≤b≤14。
S1920,第一终端设备根据可用于PSSCH的RE个数,确定第一TB的TBS。
S1930,第一终端设备在当前时隙信道接入成功后,在最近的一个符号开始发送第一TB。第二终端设备在最近的一个符号开始接收第一TB。
图20和图21是实施例一提供的两种传输第一TB方法的示例图。
图20所示的方法可以包括步骤S1931。
S1931,在当前时隙可用于发送SL发送的符号个数P>m(如图20,P=10,m=7)的情况下,第一终端设备在映射资源时,将现有m个符号中的d(如图20,d=3)个连续符号复制在m个符号之后,用于填充当前时隙,直至当前时隙最后一个可用于传输的符号。
图21所示的方法可以包括步骤S1932。
S1932,当前时隙可用于发送SL发送的符号个数P<m(如图21,P=8,m=10)的情况下,终端设备在映射资源时,将现有m个符号中的前X(如图1-1,X=8)个连续符号映射,直至当前时隙最后一个可用于传输的符号,m个符号中的后Y个符号通过打孔去掉且不发送。
实施例二
实施例二公开的方法可以包括步骤S2010~S2030。
S2010,第一终端设备确定一个时隙内分配给PSSCH的RE个数r。r的决定因素中包含m,其中m为一个时隙中可用于侧行传输的符号个数,且m的取值范围a≤m≤b。其中,r、m、a、b均为大于0的整数。
优选地,a的取值可以7,b的取值可以14。可选的,a和b的取值范围可以为1≤a≤b≤14。
S2020,第一终端设备根据可用于PSSCH的RE个数,确定第一TB的TBS。
S2030,第一终端设备在当前时隙信道接入成功后,需要确定信道接入成功的符号是否到了第一TB的固定发送符号。
第一TB的固定发送符号是预设值或预配置的。
图22和图23是实施例二提供的两种传输第一TB方法的示例图。
图22所示的方法可以包括步骤S2031。
S2031,信道监听完成时刻c(在时刻c,信道接入成功)距离发送时刻的符号s的间隔大于g个符号,此时不再做LBT,等到发送时刻符号s前,做短LBT。如果信道接入成功,就发送第一TB,如果信道接入失败,不发送第一TB。
如图22所示,信道接入在符号3成功。符号3距离发送符号7之间还有大于3个符号的时间。这段时间可以不做任何行为,在符号7之前进行短LBT,然后根据短LBT是否成功,决定是否发送第一TB。
图23所示的方法可以包括步骤S2032。
S2032,信道监听完成时刻c(在时刻c,信道接入成功)在发送时刻的符号s之后,则可以在最近的一个符号开始发送第一TB。接着,可以根据实施例一中的步骤S1931或S1932发送第一TB。
如图23,LBT成功时刻c在固定发送符号s之后,那么可以在最近的符号8开始发送第一TB,在当前时隙中剩余符号无法将这个TB完全发送,剩余的符号6通过打孔不发送。
实施例三
实施例三公开的方法可以包括步骤S2110~S2130。
S2110,第一终端设备准备按照第一参数集和第二参数集确定分配给PSSCH的RE个数。
步骤S2110可以包括步骤S2111和步骤S2112。
S2111,第一终端设备按照第一参数集确定分配给PSSCH的RE个数。第一终端设备可以确定一个时隙内分配给PSSCH的RE个数r1,r2的决定因素中包含m1,其中m1为一个时隙中可用于侧行传输的符号个数,且m1的取值范围a≤m1≤b。其中,r1,m1,a,b均为整数。
优选地,a的取值可以7,b的取值可以14。可选的,a和b的取值范围可以为1≤a≤b≤14。
S2112,第一终端设备按照第二参数集确定分配给PSSCH的RE个数。第一终端设备确定一个时隙内分配给PSSCH的RE个数r2,r2的决定因素中包含m2,其中m2为一个时隙中可用于侧行传输的符号个数,例如m2=14。
S2120,根据两套参数集确定的RE个数,第一终端设备确定两套参数集对应的传输块大小TB1和TB2。
S2130,发送第一TB。
S2130可以包括步骤S2131和/或S2132。
S2131,在第一终端设备计划在时隙t发送第一TB的情况下,如果在时隙(t-1)信道接入成功,那么在时隙t可以根据第二参数集发送第一TB(即第一TB对应的第二套数据)。步骤S2131可以参见图24。
S2132,在第一终端设备计划在时隙t发送第一TB的情况下,如果在时隙t信道接入成功,那么在时隙t可以根据第一参数集发送第一TB。
如果信道接入成功时在时隙t中的剩余可用符号数s>m2,则可以按照实施例一步骤S1931执行后续操作。信道接入成功时在时隙t中剩余可用符号数s<m2,按照实施例一步骤S1932执行后续操作。
实施例四
实施例四公开的方法可以包括步骤S2210~S2230。
S2210,第一终端设备确定一个时隙内分配给PSSCH的RE个数r。r的决定因素中包含m,其中m为一个时隙中可用于侧行传输的符号个数,且m的取值范围a≤m≤b。其中,r,m,a,b均为整数。
优选地,a的取值可以7,b的取值可以14。可选的,a和b的取值范围可以为1≤a≤b≤14。
S2220,第一终端设备根据可用于PSSCH的RE个数,确定第一TB的TBS1。
S2230,根据完成信道监听的时刻,确定第一TB的传输资源和/或传输参数。
S2230可以包括S2231和/或S2232。
S2231,如果第一终端设备在时隙t-1信道接入成功,则在时隙t发送已准备好的第一TB。
S2232,如果第一终端设备在时隙t-1结束时仍在进行信道接入过程,则第一终端设备重新准备第一TB,即重复本实施例的S2210和S2220,且m的取值减少至m2,m2<m。
如果第一终端设备在时隙t内的某时刻信道接入成功,则进一步执行实施例一中的步骤S1931或S1932。
图25和图26是实施例四提供的两种传输第一TB方法的示例图。
第一终端设备可以按照m=14个符号准备第一TB,且第一TB准备在时隙t发送。如图25所示,当第一终端设备在时隙t-1信道接入成功,那么就在时隙t发送准备好的第一TB。如图26所示,如果第一终端设备在时隙t-1结束时刻,时隙t开始时刻仍在进行信道接入过程(例如进行LBT),第一终端设备可以重新准备/调整第一TB,将m值由14减少,例如减少到7个符号。第一终端设备可以等待信道接入成功发送第一TB。
上文结合图1至图26,详细描述了本申请的方法实施例,下面结合图27至图29,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图27为本申请实施例提供的一种终端设备2700的示意性结构图。终端设备2700可以为第一终端设备。终端设备2700可以包括确定单元2710和发送单元2720。
确定单元2710,用于根据第一时刻确定第一传输块TB的传输资源和/或传输参数,所述第一时刻为所述第一终端设备在免授权频段上完成信道监听的时刻。
发送单元2720,用于在侧行链路上,根据所述第一TB的传输资源和/或传输参数,发送所述第一TB。
可选地,第一时隙为完成所述信道监听的时隙,所述第一TB的传输资源包括所述第一TB的传输起始时间,所述传输起始时间属于所述第一时隙。
可选地,所述传输起始时间位于第一符号,所述第一符号是根据所述第一时刻确定的。
可选地,所述传输起始时间位于第二符号,所述第二符号为预配置或预设值的符号。
可选地,所述第一TB计划发送的符号的数目为第一符号数,所述传输起始时间到所述第一时隙中最后一个可用于传输的符号所占用的符号数为第二符号数,在所述第一符号数小于所述第二符号数的情况下,所述发送单元2720具体用于:重复发送所述第一TB计划发送的一个或多个符号。
可选地,所述第一TB计划发送的符号的数目为第一符号数,所述传输起始时间到所述第一时隙中最后一个可用于传输的符号所占用的符号数为第二符号数,在所述第一符号数大于所述第二符号数的情况下,所述发送单元2720具体用于:发送所述第一TB计划发送的部分符号。
可选地,所述传输参数包括:所述第一TB对应的传输块小TBS和/或调制编码方式MCS。
可选地,所述第一TB的传输参数是基于所述第一时刻和所述第一TB的可用传输资源共同确定的。
可选地,所述可用传输资源包括:所述第一TB可用的RE个数和/或符号数。
可选地,所述传输参数包括第一参数集或第二参数集,所述确定单元2710具体用于:根据所述第一时刻确定所述第一TB的传输参数为所述第一参数集或所述第二参数集;其中,在所述第一TB的传输参数为所述第一参数集的情况下,所述第一TB计划发送的符号数为第一符号数,在所述第一TB的传输参数为所述第二参数集的情况下,所述第一TB计划发送的符号数为第二符号数,所述第一符号数 小于所述第二符号数。
可选地,所述确定单元2710具体用于:如果所述第一TB在完成所述信道监听的时隙发送,则确定所述第一TB的传输参数为所述第一参数集;和/或如果所述第一TB在完成所述信道监听的时隙后发送,则确定所述第一TB的传输参数为所述第二参数集。
可选地,所述确定单元2710包括:调整单元,用于根据所述第一时刻改变所述第一TB的传输参数。
可选地,所述调整单元具体用于:如果在一个时隙结束时所述信道监听的过程未完成,则所述第一终端设备改变所述第一TB的传输参数。
可选地,如果在所述第一时刻,所述第一终端设备按照改变后的传输参数将所述第一TB准备完成,所述发送单元2720具体用于:在完成所述信道监听的时隙发送所述第一TB。
可选地,如果在所述第一时刻,所述第一终端设备按照改变后的传输参数未将所述第一TB准备完成,所述发送单元2720具体用于:在所述第一TB准备完成后发送所述第一TB;或不发送所述第一TB;和/或在所述第一TB准备完成之前发送占位符。
可选地,所述终端设备2700还包括:监听单元,用于在所述第一TB发送前进行短先听后说LBT;所述发送单元2720具体用于:在所述短LBT成功的情况下,发送所述第一TB。
可选地,在所述第一时刻,所述第一终端设备在所述免授权频段上信道接入失败。
图28为本申请实施例提供的一种终端设备2800的结构示意图。终端设备2800为第二终端设备。终端设备2800可以包括接收单元2810。
接收单元2810用于根据第一传输块TB的传输资源和/或传输参数,在侧行链路上,接收第一终端设备发送的第一TB;其中,所述第一TB的传输资源和/或传输参数是根据第一时刻确定的,所述第一时刻为所述第一终端设备在免授权频段上完成信道监听的时刻。
可选地,第一时隙为完成所述信道监听的时隙,所述第一TB的传输资源包括所述第一TB的传输起始时间,所述传输起始时间属于所述第一时隙。
可选地,所述传输起始时间位于第一符号,所述第一符号是根据所述第一时刻确定的。
可选地,所述传输起始时间位于第二符号,所述第二符号为预配置或预设值的符号。
可选地,所述第一TB计划发送的符号的数目为第一符号数,所述传输起始时间到所述第一时隙中最后一个可用于传输的符号所占用的符号数为第二符号数,在所述第一符号数小于所述第二符号数的情况下,所述接收单元2810具体用于:重复接收所述第一TB计划发送的一个或多个符号。
可选地,所述第一TB计划发送的符号的数目为第一符号数,所述传输起始时间到所述第一时隙中最后一个可用于传输的符号所占用的符号数为第二符号数,在所述第一符号数大于所述第二符号数的情况下,所述接收单元2810具体用于:接收所述第一TB计划发送的部分符号。
可选地,所述传输参数包括第一参数集或第二参数集,在所述第一TB的传输参数为所述第一参数集的情况下,所述第一TB计划发送的符号数为第一符号数,在所述第一TB的传输参数为所述第二参数集的情况下,所述第一TB计划发送的符号数为第二符号数,所述第一符号数小于所述第二符号数。
可选地,如果所述第一TB在完成所述信道监听的时隙发送,则所述第一TB的传输参数为所述第一参数集;和/或如果所述第一TB在完成所述信道监听的时隙后发送,则所述第一TB的传输参数为所述第二参数集。
可选地,所述传输参数包括:所述第一TB对应的TBS传输块大小和/或MCS调制编码方式。
可选地,在所述第一时刻,所述第一终端设备在所述免授权频段上信道接入失败。
图29是本申请实施例的通信装置的示意性结构图。图29中的虚线表示该单元或模块为可选的。该装置2900可用于实现上述方法实施例中描述的方法。装置2900可以是芯片、终端设备。
装置2900可以包括一个或多个处理器2910。该处理器2910可支持装置2900实现前文方法实施例所描述的方法。该处理器2910可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置2900还可以包括一个或多个存储器2920。存储器2920上存储有程序,该程序可以被处理器2910执行,使得处理器2910执行前文方法实施例所描述的方法。存储器2920可以独立于处理器2910也可以集成在处理器2910中。
装置2900还可以包括收发器2930。处理器2910可以通过收发器2930与其他设备或芯片进行通信。例如,处理器2910可以通过收发器2930与其他设备或芯片进行数据收发。
在可选的实施例中,所述发送单元2720和/或接收单元2810可以为收发器2930,确定单元2710可以为处理器2910。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
应理解,本申请中术语“系统”和“网络”可以被可互换使用。另外,本申请使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本申请的实施例中,提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (60)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一终端设备根据第一时刻确定第一传输块TB的传输资源和/或传输参数,所述第一时刻为所述第一终端设备在免授权频段上完成信道监听的时刻;
    在侧行链路上,根据所述第一TB的传输资源和/或传输参数,第一终端设备发送所述第一TB。
  2. 根据权利要求1所述的方法,其特征在于,第一时隙为完成所述信道监听的时隙,所述第一TB的传输资源包括所述第一TB的传输起始时间,所述传输起始时间属于所述第一时隙。
  3. 根据权利要求2所述的方法,其特征在于,所述传输起始时间位于第一符号,所述第一符号是根据所述第一时刻确定的。
  4. 根据权利要求2所述的方法,其特征在于,所述传输起始时间位于第二符号,所述第二符号为预配置或预设值的符号。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述第一TB计划发送的符号的数目为第一符号数,所述传输起始时间到所述第一时隙中最后一个可用于传输的符号所占用的符号数为第二符号数,在所述第一符号数小于所述第二符号数的情况下,所述第一终端设备发送所述第一TB包括:
    所述第一终端设备重复发送所述第一TB计划发送的一个或多个符号。
  6. 根据权利要求2-4中任一项所述的方法,其特征在于,所述第一TB计划发送的符号的数目为第一符号数,所述传输起始时间到所述第一时隙中最后一个可用于传输的符号所占用的符号数为第二符号数,在所述第一符号数大于所述第二符号数的情况下,所述第一终端设备发送所述第一TB包括:
    所述第一终端设备发送所述第一TB计划发送的部分符号。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述传输参数包括:所述第一TB对应的传输块小TBS和/或调制编码方式MCS。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第一TB的传输参数是基于所述第一时刻和所述第一TB的可用传输资源共同确定的。
  9. 根据权利要求8所述的方法,其特征在于,所述可用传输资源包括:所述第一TB可用的资源元素RE个数和/或符号数。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述传输参数包括第一参数集或第二参数集,所述第一终端设备根据第一时刻确定第一TB的传输资源和/或传输参数包括:
    所述第一终端设备根据所述第一时刻确定所述第一TB的传输参数为所述第一参数集或所述第二参数集;
    其中,在所述第一TB的传输参数为所述第一参数集的情况下,所述第一TB计划发送的符号数为第三符号数,在所述第一TB的传输参数为所述第二参数集的情况下,所述第一TB计划发送的符号数为第四符号数,所述第三符号数小于所述第四符号数。
  11. 根据权利要求10所述的方法,其特征在于,所述第一终端设备确定所述第一TB的传输参数为所述第一参数集或所述第二参数集包括:
    如果所述第一TB在完成所述信道监听的时隙发送,则所述第一终端设备确定所述第一TB的传输参数为所述第一参数集;和/或
    如果所述第一TB在完成所述信道监听的时隙后发送,则所述第一终端设备确定所述第一TB的传输参数为所述第二参数集。
  12. 根据权利要求1-9中任一项所述的方法,其特征在于,所述第一终端设备根据第一时刻确定第一TB的传输资源和/或传输参数包括:
    所述第一终端设备根据所述第一时刻改变所述第一TB的传输参数。
  13. 根据权利要求12所述的方法,其特征在于,所述第一终端设备根据所述第一时刻改变所述第一TB的传输参数包括:
    如果在一个时隙结束时所述信道监听的过程未完成,则所述第一终端设备改变所述第一TB的传输参数。
  14. 根据权利要求12或13所述的方法,其特征在于,如果在所述第一时刻,所述第一终端设备按照改变后的传输参数将所述第一TB准备完成,所述第一终端设备发送所述第一TB包括:
    所述第一终端设备在完成所述信道监听的时隙发送所述第一TB。
  15. 根据权利要求12-14中任一项所述的方法,其特征在于,如果在所述第一时刻,所述第一终端设备按照改变后的传输参数未将所述第一TB准备完成,所述第一终端设备发送所述第一TB包括:
    所述第一终端设备在所述第一TB准备完成后发送所述第一TB;或
    所述第一终端设备不发送所述第一TB;和/或
    所述第一终端设备在所述第一TB准备完成之前发送占位符。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备在所述第一TB发送前进行短先听后说LBT;
    所述第一终端设备发送所述第一TB包括:
    在所述短LBT成功的情况下,所述第一终端设备发送所述第一TB。
  17. 根据权利要求1-16中任一项所述的方法,其特征在于,在所述第一时刻,所述第一终端设备在所述免授权频段上信道接入失败。
  18. 一种通信方法,其特征在于,所述方法包括:
    根据第一传输块TB的传输资源和/或传输参数,在侧行链路上,第二终端设备接收第一终端设备发送的第一TB;
    其中,所述第一TB的传输资源和/或传输参数是根据第一时刻确定的,所述第一时刻为所述第一终端设备在免授权频段上完成信道监听的时刻。
  19. 根据权利要求18所述的方法,其特征在于,第一时隙为完成所述信道监听的时隙,所述第一TB的传输资源包括所述第一TB的传输起始时间,所述传输起始时间属于所述第一时隙。
  20. 根据权利要求19所述的方法,其特征在于,所述传输起始时间位于第一符号,所述第一符号是根据所述第一时刻确定的。
  21. 根据权利要求19所述的方法,其特征在于,所述传输起始时间位于第二符号,所述第二符号为预配置或预设值的符号。
  22. 根据权利要求19-21中任一项所述的方法,其特征在于,所述第一TB计划发送的符号的数目为第一符号数,所述传输起始时间到所述第一时隙中最后一个可用于传输的符号所占用的符号数为第二符号数,在所述第一符号数小于所述第二符号数的情况下,所述第二终端设备接收第一终端设备发送的第一TB包括:
    所述第二终端设备重复接收所述第一TB计划发送的一个或多个符号。
  23. 根据权利要求19-21中任一项所述的方法,其特征在于,所述第一TB计划发送的符号的数目为第一符号数,所述传输起始时间到所述第一时隙中最后一个可用于传输的符号所占用的符号数为第二符号数,在所述第一符号数大于所述第二符号数的情况下,所述第二终端设备接收第一终端设备发送的第一TB包括:
    所述第二终端设备接收所述第一TB计划发送的部分符号。
  24. 根据权利要求18-23中任一项所述的方法,其特征在于,所述传输参数包括第一参数集或第二参数集,在所述第一TB的传输参数为所述第一参数集的情况下,所述第一TB计划发送的符号数为第三符号数,在所述第一TB的传输参数为所述第二参数集的情况下,所述第一TB计划发送的符号数为第四符号数,所述第三符号数小于所述第四符号数。
  25. 根据权利要求24所述的方法,其特征在于,
    如果所述第一TB在完成所述信道监听的时隙发送,则所述第一TB的传输参数为所述第一参数集;和/或
    如果所述第一TB在完成所述信道监听的时隙后发送,则所述第一TB的传输参数为所述第二参数集。
  26. 根据权利要求18-25中任一项所述的方法,其特征在于,所述传输参数包括:所述第一TB对应的传输块大小TBS和/或调制编码方式MCS。
  27. 根据权利要求18-26中任一项所述的方法,其特征在于,在所述第一时刻,所述第一终端设备在所述免授权频段上信道接入失败。
  28. 一种终端设备,其特征在于,所述终端设备为第一终端设备,所述终端设备包括:
    确定单元,用于根据第一时刻确定第一传输块TB的传输资源和/或传输参数,所述第一时刻为所述第一终端设备在免授权频段上完成信道监听的时刻;
    发送单元,用于在侧行链路上,根据所述第一TB的传输资源和/或传输参数,发送所述第一TB。
  29. 根据权利要求28所述的终端设备,其特征在于,第一时隙为完成所述信道监听的时隙,所述第一TB的传输资源包括所述第一TB的传输起始时间,所述传输起始时间属于所述第一时隙。
  30. 根据权利要求29所述的终端设备,其特征在于,所述传输起始时间位于第一符号,所述第一符号是根据所述第一时刻确定的。
  31. 根据权利要求29所述的终端设备,其特征在于,所述传输起始时间位于第二符号,所述第二符号为预配置或预设值的符号。
  32. 根据权利要求29-31中任一项所述的终端设备,其特征在于,所述第一TB计划发送的符号的数目为第一符号数,所述传输起始时间到所述第一时隙中最后一个可用于传输的符号所占用的符号数为第二符号数,在所述第一符号数小于所述第二符号数的情况下,所述发送单元具体用于:
    重复发送所述第一TB计划发送的一个或多个符号。
  33. 根据权利要求29-31中任一项所述的终端设备,其特征在于,所述第一TB计划发送的符号的数目为第一符号数,所述传输起始时间到所述第一时隙中最后一个可用于传输的符号所占用的符号数为第二符号数,在所述第一符号数大于所述第二符号数的情况下,所述发送单元具体用于:
    发送所述第一TB计划发送的部分符号。
  34. 根据权利要求28-33中任一项所述的终端设备,其特征在于,所述传输参数包括:所述第一TB对应的传输块小TBS和/或调制编码方式MCS。
  35. 根据权利要求28-34中任一项所述的终端设备,其特征在于,所述第一TB的传输参数是基于所述第一时刻和所述第一TB的可用传输资源共同确定的。
  36. 根据权利要求35所述的终端设备,其特征在于,所述可用传输资源包括:所述第一TB可用的资源元素RE个数和/或符号数。
  37. 根据权利要求28-36中任一项所述的终端设备,其特征在于,所述传输参数包括第一参数集或第二参数集,所述确定单元具体用于:
    根据所述第一时刻确定所述第一TB的传输参数为所述第一参数集或所述第二参数集;
    其中,在所述第一TB的传输参数为所述第一参数集的情况下,所述第一TB计划发送的符号数为第一符号数,在所述第一TB的传输参数为所述第二参数集的情况下,所述第一TB计划发送的符号数为第二符号数,所述第一符号数小于所述第二符号数。
  38. 根据权利要求37所述的终端设备,其特征在于,所述确定单元具体用于:
    如果所述第一TB在完成所述信道监听的时隙发送,则确定所述第一TB的传输参数为所述第一参数集;和/或
    如果所述第一TB在完成所述信道监听的时隙后发送,则确定所述第一TB的传输参数为所述第二参数集。
  39. 根据权利要求28-36中任一项所述的终端设备,其特征在于,所述确定单元包括:
    调整单元,用于根据所述第一时刻改变所述第一TB的传输参数。
  40. 根据权利要求39所述的终端设备,其特征在于,所述调整单元具体用于:
    如果在一个时隙结束时所述信道监听的过程未完成,则所述第一终端设备改变所述第一TB的传输参数。
  41. 根据权利要求39或40所述的终端设备,其特征在于,如果在所述第一时刻,所述第一终端设备按照改变后的传输参数将所述第一TB准备完成,所述发送单元具体用于:
    在完成所述信道监听的时隙发送所述第一TB。
  42. 根据权利要求39-41中任一项所述的终端设备,其特征在于,如果在所述第一时刻,所述第一终端设备按照改变后的传输参数未将所述第一TB准备完成,所述发送单元具体用于:
    在所述第一TB准备完成后发送所述第一TB;或
    不发送所述第一TB;和/或
    在所述第一TB准备完成之前发送占位符。
  43. 根据权利要求28-42中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    监听单元,用于在所述第一TB发送前进行短先听后说LBT;
    所述发送单元具体用于:
    在所述短LBT成功的情况下,发送所述第一TB。
  44. 根据权利要求28-43中任一项所述的终端设备,其特征在于,在所述第一时刻,所述第一终端设备在所述免授权频段上信道接入失败。
  45. 一种终端设备,其特征在于,所述终端设备为第二终端设备,所述终端设备包括:
    接收单元,用于根据第一传输块TB的传输资源和/或传输参数,在侧行链路上,接收第一终端设备发送的第一TB;
    其中,所述第一TB的传输资源和/或传输参数是根据第一时刻确定的,所述第一时刻为所述第一终端设备在免授权频段上完成信道监听的时刻。
  46. 根据权利要求45所述的终端设备,其特征在于,第一时隙为完成所述信道监听的时隙,所述第一TB的传输资源包括所述第一TB的传输起始时间,所述传输起始时间属于所述第一时隙。
  47. 根据权利要求46所述的终端设备,其特征在于,所述传输起始时间位于第一符号,所述第一 符号是根据所述第一时刻确定的。
  48. 根据权利要求46所述的终端设备,其特征在于,所述传输起始时间位于第二符号,所述第二符号为预配置或预设值的符号。
  49. 根据权利要求46-48中任一项所述的终端设备,其特征在于,所述第一TB计划发送的符号的数目为第一符号数,所述传输起始时间到所述第一时隙中最后一个可用于传输的符号所占用的符号数为第二符号数,在所述第一符号数小于所述第二符号数的情况下,所述接收单元具体用于:
    重复接收所述第一TB计划发送的一个或多个符号。
  50. 根据权利要求46-48中任一项所述的终端设备,其特征在于,所述第一TB计划发送的符号的数目为第一符号数,所述传输起始时间到所述第一时隙中最后一个可用于传输的符号所占用的符号数为第二符号数,在所述第一符号数大于所述第二符号数的情况下,所述接收单元具体用于:
    接收所述第一TB计划发送的部分符号。
  51. 根据权利要求45-50中任一项所述的终端设备,其特征在于,所述传输参数包括第一参数集或第二参数集,在所述第一TB的传输参数为所述第一参数集的情况下,所述第一TB计划发送的符号数为第一符号数,在所述第一TB的传输参数为所述第二参数集的情况下,所述第一TB计划发送的符号数为第二符号数,所述第一符号数小于所述第二符号数。
  52. 根据权利要求51所述的终端设备,其特征在于,
    如果所述第一TB在完成所述信道监听的时隙发送,则所述第一TB的传输参数为所述第一参数集;和/或
    如果所述第一TB在完成所述信道监听的时隙后发送,则所述第一TB的传输参数为所述第二参数集。
  53. 根据权利要求45-52中任一项所述的终端设备,其特征在于,所述传输参数包括:所述第一TB对应的传输块大小TBS和/或调制编码方式MCS。
  54. 根据权利要求45-53中任一项所述的终端设备,其特征在于,在所述第一时刻,所述第一终端设备在所述免授权频段上信道接入失败。
  55. 一种终端设备,其特征在于,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述终端设备执行如权利要求1-27中任一项所述的方法。
  56. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以使所述装置执行如权利要求1-27中任一项所述的方法。
  57. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-27中任一项所述的方法。
  58. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-27中任一项所述的方法。
  59. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-27中任一项所述的方法。
  60. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-27中任一项所述的方法。
PCT/CN2022/110012 2022-08-03 2022-08-03 通信方法以及终端设备 WO2024026739A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110012 WO2024026739A1 (zh) 2022-08-03 2022-08-03 通信方法以及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110012 WO2024026739A1 (zh) 2022-08-03 2022-08-03 通信方法以及终端设备

Publications (1)

Publication Number Publication Date
WO2024026739A1 true WO2024026739A1 (zh) 2024-02-08

Family

ID=89848160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110012 WO2024026739A1 (zh) 2022-08-03 2022-08-03 通信方法以及终端设备

Country Status (1)

Country Link
WO (1) WO2024026739A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111279782A (zh) * 2017-12-06 2020-06-12 Oppo广东移动通信有限公司 数据传输的方法和终端设备
WO2021029708A1 (ko) * 2019-08-15 2021-02-18 엘지전자 주식회사 비면허 대역에서 수송 블록을 전송하는, 방법, 전송 기기 및 기록 매체
CN112888078A (zh) * 2018-08-10 2021-06-01 Oppo广东移动通信有限公司 一种数据传输方法、终端设备及网络设备
WO2021217438A1 (zh) * 2020-04-28 2021-11-04 Oppo广东移动通信有限公司 资源预留方法、装置、设备及存储介质
US20210345408A1 (en) * 2019-08-21 2021-11-04 Lenovo (Singapore) Pte. Ltd. Transmitting a tb after sucessful lbt procedure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111279782A (zh) * 2017-12-06 2020-06-12 Oppo广东移动通信有限公司 数据传输的方法和终端设备
CN112888078A (zh) * 2018-08-10 2021-06-01 Oppo广东移动通信有限公司 一种数据传输方法、终端设备及网络设备
WO2021029708A1 (ko) * 2019-08-15 2021-02-18 엘지전자 주식회사 비면허 대역에서 수송 블록을 전송하는, 방법, 전송 기기 및 기록 매체
US20210345408A1 (en) * 2019-08-21 2021-11-04 Lenovo (Singapore) Pte. Ltd. Transmitting a tb after sucessful lbt procedure
WO2021217438A1 (zh) * 2020-04-28 2021-11-04 Oppo广东移动通信有限公司 资源预留方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Sidelink resource allocation mode 2 for NR V2X", 3GPP DRAFT; R1-1906011, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051708053 *

Similar Documents

Publication Publication Date Title
JP7277472B2 (ja) スケジューリング要求およびアップリンク制御情報のためのコリジョンの回避
TWI794295B (zh) 用於廣播通道的速率匹配
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
CN111656748A (zh) 用于管理新型无线电(nr)中车联网(v2x)能力汇聚协议的技术
WO2019242776A1 (zh) 无线通信方法及装置
JP7459269B2 (ja) Nr v2xにおけるリソース選択及びharq動作を運営する方法及び装置
US11304229B2 (en) Constraints on no listen-before-talk (LBT) transmission during uplink/downlink (UL/DL) switches
CN108292983A (zh) 业务传输的方法和装置
CN115152173A (zh) 在nr v2x中执行psfch传输的方法和装置
CN111757459A (zh) 一种通信方法及装置
CN116530040A (zh) 用于侧行链路通信的长物理侧行链路共享信道格式
WO2024036671A1 (zh) 侧行通信的方法及装置
WO2024066145A1 (zh) 侧行通信的方法及装置
CN114449675A (zh) 信息传输方法及相关产品
US20230284210A1 (en) Techniques for inter-slot and intra-slot frequency hopping in full duplex
WO2024026739A1 (zh) 通信方法以及终端设备
EP4122145A1 (en) Supporting allocation modification during transition instance in an integrated access and backhaul network
WO2024031377A1 (zh) 通信方法以及终端设备
WO2024138549A1 (zh) 侧行传输的方法和终端设备
WO2024065762A1 (zh) 无线通信的方法及终端设备
WO2024138595A1 (zh) 用于侧行传输的方法和终端设备
WO2024031540A1 (zh) 通信方法及通信装置
WO2024055241A1 (zh) 通信方法、终端设备以及网络设备
WO2024138609A1 (zh) 通信方法及通信装置
WO2024092670A1 (zh) 侧行传输方法及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953550

Country of ref document: EP

Kind code of ref document: A1