WO2020057321A1 - 行星齿轮式增强型电动机 - Google Patents

行星齿轮式增强型电动机 Download PDF

Info

Publication number
WO2020057321A1
WO2020057321A1 PCT/CN2019/102154 CN2019102154W WO2020057321A1 WO 2020057321 A1 WO2020057321 A1 WO 2020057321A1 CN 2019102154 W CN2019102154 W CN 2019102154W WO 2020057321 A1 WO2020057321 A1 WO 2020057321A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
rotor
teeth
stator
output shaft
Prior art date
Application number
PCT/CN2019/102154
Other languages
English (en)
French (fr)
Inventor
张朝刚
周燕飞
刘闯
朱姝姝
朱方晨
陈承儒
Original Assignee
张朝刚
周燕飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张朝刚, 周燕飞 filed Critical 张朝刚
Priority to US17/277,743 priority Critical patent/US11817756B2/en
Publication of WO2020057321A1 publication Critical patent/WO2020057321A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/06Rolling motors, i.e. motors having the rotor axis parallel to the stator axis and following a circular path as the rotor rolls around the inside or outside of the stator ; Nutating motors, i.e. having the rotor axis parallel to the stator axis inclined with respect to the stator axis and performing a nutational movement as the rotor rolls on the stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the invention belongs to the field of electric motors, and particularly relates to a planetary gear type reinforced electric motor.
  • the magnetic pole A of the magnet located on the front track of the train and the magnetic pole B of the magnet located on the front of the train interact to generate a magnetic force F1.
  • the magnetic pole D of the magnet on the rear track of the train will interact with the magnetic pole C of the magnet located at the rear of the train to generate a magnetic force F2.
  • the magnetic levitation train will advance under the combined action of F1 and F2, as shown in Figure 3. Obviously, in this process, the magnetic poles that generate the magnetic force for driving the linear motor are staggered with each other, and the magnetic poles cannot be opposite to each other, so that a larger magnetic force cannot be generated.
  • the object of the present invention is to provide a planetary gear-type enhanced motor with relatively larger magnetic poles that can increase the power of the motor and improve the working efficiency.
  • the present invention discloses a planetary gear-type reinforced motor, which includes a stator with stator teeth and a rotor with rotor teeth that are engaged with each other.
  • the stator and the rotor are eccentrically arranged.
  • the shaft is provided with an output shaft, which is connected to the central shaft of the rotor through a transmission member; the stator teeth and the rotor teeth have magnets on both sides of the teeth, and when the rotor teeth are engaged with the stator teeth, the magnetic properties of the magnets and the magnetic poles are generated
  • the magnetic force drives the rotor to rotate around its central axis while revolving around the central axis of the stator, so that the transmission member converts the movement of the rotor into output shaft power.
  • the magnet is a permanent magnet or an electromagnet, and at least one side of the two opposite magnets on the stator teeth and the rotor teeth is an electromagnet that can change the magnetic and magnetic poles.
  • the opposite magnets are attracted Or repulsion generates magnetic force to drive the rotor to move.
  • the stator is a gear plate fixed to the housing and has an internal ring gear
  • the rotor is at least one gear that meshes with the gear plate
  • the transmission member has one end connected to the gear central shaft and the other end A connecting rod that is vertically connected to the output shaft and can rotate around the output shaft.
  • the electromagnet is connected with a controller for controlling the magnetism and the magnetic pole of the electromagnet, and the controller is connected with an angle sensor for collecting an angle between the connecting rod and the gear currently meshing with the rotor teeth.
  • the controller The electromagnet is controlled according to the angle information collected by the angle sensor.
  • the stator is a gear plate fixed to the housing and has an internal ring gear
  • the rotor is at least one gear that meshes with the gear plate
  • the transmission member is coaxially fixed to the output shaft and is connected with the output shaft.
  • a controller for controlling the magnetic and magnetic poles of the electromagnet is connected to the electromagnet, and the controller is used to collect the angle between the center of the transmission gear and the connection between the center of the gear center and the current engagement of the gear with the rotor teeth
  • the sensors are connected, and the controller controls the electromagnet according to the angle information collected by the angle sensor.
  • the stator is a pin gear fixed on the housing
  • the rotor is a cycloidal wheel meshing with the pin gear
  • the transmission member is connected to the output shaft at one end and connected to the cycloidal wheel at the other end.
  • a controller for controlling the magnetism and the magnetic pole of the electromagnet is connected to the electromagnet, and the controller is connected to an angle sensor for collecting the rotation angle of the cycloid wheel, and the controller controls according to the angle information collected by the angle sensor.
  • Electromagnet is connected to the electromagnet, and the controller is connected to an angle sensor for collecting the rotation angle of the cycloid wheel, and the controller controls according to the angle information collected by the angle sensor.
  • the needle gear includes a needle tooth mechanical layer and a needle tooth magnet layer axially fixed to the needle tooth mechanical layer
  • the cycloid wheel includes a cycloid mechanical layer and a cycloid mechanically connected axially to the cycloid mechanical layer.
  • the linear magnet layer, in which the pinion mechanical layer is engaged with the cycloidal mechanical layer, and the gap between the needle tooth magnetic layer and the cycloidal magnetic layer is spaced.
  • the number of the rotors is at least one.
  • the magnetic poles of the conventional motor are staggered with each other, and the magnetic poles of the present invention are opposite.
  • the electromagnetic force can be generated several times the original electromagnetic force, which greatly improves the torque and power of the motor;
  • the present invention can reduce the heat loss of the motor and improve the efficiency of the motor.
  • the power density of the motor of the present invention is high. Under the same conditions, the weight of the motor can be greatly reduced, making it applicable to the field of automobile shock absorption. ;
  • the stator of the present invention uses a gear disk, the rotor uses a gear meshing with it, the transmission member is a connecting rod, and the controller controls the magnetic poles and magnetic properties of the electromagnet according to the angle information between the connecting rod and the gear currently meshing with the rotor teeth.
  • the magnetic disc is attracted or repelled by the opposite magnet on the gear disc to generate magnetic force to drive the gear to rotate around the central axis of the gear disc while rotating around the central axis of the gear disc, so that the connecting rod rotates around the output shaft, and the connecting rod transforms the gear's revolution For output shaft power;
  • the stator of the present invention adopts a gear disk, the rotor adopts a gear meshing with it, the transmission part is a transmission gear, and the controller controls according to the angle information between the transmission gear center and the connection between the gear center and the gear ’s current meshing rotor teeth
  • the magnetic pole and magnetism of the electromagnet make the gear plate and the opposite magnets on the gear attract or repel to generate magnetic force to drive the gear to mesh with the gear plate.
  • the gear rotates while revolving around the center axis of the gear plate, and simultaneously drives the transmission gear to rotate around the output shaft.
  • the transmission gear converts the revolution and rotation of the gear into output shaft power;
  • the stator of the present invention uses a pin gear, and the rotor uses a cycloid wheel that meshes with the pin gear.
  • the transmission part is a coupling shaft.
  • a magnet is provided on the teeth of the pin gear and the cycloid wheel.
  • the rotation angle information controls the magnetic pole and magnetism of the electromagnet, drives the cycloid wheel to rotate and mesh with the pin gear, while the cycloid wheel rotates while revolving around the center axis of the pin gear, and simultaneously drives the coupling shaft to rotate, and the coupling shaft rotates the cycloid wheel. Converted into output shaft power; the transmission part of the invention has its own deceleration function, and there is almost no energy loss during deceleration;
  • the needle gear of the present invention includes a needle tooth mechanical layer and a needle tooth magnet layer axially fixed to the needle tooth mechanical layer, and the cycloid wheel includes a cycloid mechanical layer and a cycloid fixedly axially connected to the cycloid mechanical layer.
  • the magnet layer in which the pinion mechanical layer is meshed with the cycloidal mechanical layer to achieve radial fixation. There is a gap between the pinion magnetic layer and the cycloidal magnetic layer, and a magnetic force is generated to drive the cycloidal wheel when meshing.
  • FIG. 1 is a schematic diagram of a structure of relative states of magnetic poles
  • FIG. 2 is a structure diagram of magnetic poles staggered from each other;
  • FIG. 3 is a structural schematic diagram of a magnetic pole in a running state of a magnetic levitation train
  • Embodiment 1 of the present invention is a schematic structural diagram of Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of a stator and a rotor in contact with each other in Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural diagram of a stator and a rotor fully engaged in Embodiment 1 of the present invention
  • FIG. 7 is a schematic structural diagram of a stator and a rotor just after being disengaged in Embodiment 1 of the present invention.
  • Embodiment 8 is a schematic structural diagram of Embodiment 2 of the present invention.
  • Embodiment 3 of the present invention is a schematic structural diagram of Embodiment 3 of the present invention.
  • Embodiment 10 is a cross-sectional view in Embodiment 3 of the present invention.
  • FIG. 11 is a front view of a stator and a rotor in Embodiment 3 of the present invention.
  • FIG. 12 is a schematic structural diagram of a stator and a rotor in Embodiment 3 of the present invention.
  • FIG. 13 is a first magnetic pole distribution diagram when the rotor rotates in Embodiment 3 of the present invention.
  • FIG. 15 is a third magnetic pole distribution diagram when the rotor rotates in Embodiment 3 of the present invention.
  • a planetary gear-type reinforced electric motor includes an eccentrically arranged stator and a rotor, and the circle centers of the rotor and the stator are located in the same plane.
  • the number of rotors is at least one, and a plurality of rotors may be provided, and the plurality of rotors are evenly distributed in the circumferential direction.
  • the stator is a gear plate 1 fixed to the housing and has an internal ring gear, and the rotor is at least one gear 2 meshing with the gear plate. In order to increase the power of the motor, multiple gears can be arranged in the circumferential direction of the gear plate.
  • the inner ring gear on the gear plate is provided with stator teeth 1-1, and the outer ring of gear 2 is provided with rotor teeth 2-1.
  • the rotor teeth 2-1 can be meshed with the stator teeth 1-1 for transmission.
  • An output shaft 3 is coaxially provided on the central axis of the gear plate 1, and a connecting rod 4 rotatable about its circumferential direction is vertically connected to the output shaft 3. The other end of the connecting rod 4 is connected to the central shaft 5 of the gear 2.
  • the stator teeth 1-1 and the rotor teeth 2-1 of the present invention have magnets on both sides of the teeth.
  • the rotor teeth 2-1 on the gear 2 of the stator teeth 1-1 on the gear disk 1 of the present invention are teeth of a hollow structure.
  • the teeth of the hollow structure are filled with magnets on both sides; or the rotor teeth 2-1 of the gear 2 of the stator teeth 1-1 on the gear plate 1 of the present invention are teeth of a solid structure, and the teeth of the solid structure are fixed on both sides of the teeth.
  • a magnet is connected.
  • the magnet of the present invention may be a permanent magnet or an electromagnet, and at least one side of the two opposite magnets on the stator teeth and the rotor teeth is an electromagnet that can change the magnetic and magnetic poles. By controlling the magnetic and magnetic poles of the electromagnet, the opposite magnets are phased. Suction or repulsion generates magnetic force to drive the rotor to move.
  • the electromagnet is connected with a controller for controlling the magnetism and the magnetic pole of the electromagnet.
  • the controller is connected with an angle sensor for collecting the angle between the connecting rod 4 and the gear 2 currently meshing with the rotor teeth. The controller is based on the angle sensor. The acquired angle information controls the electromagnet.
  • the magnets on the stator teeth 1-1 of the present invention are electromagnets, and the magnets on the rotor teeth 2-1 are permanent magnets; or the magnets on the stator teeth 1-1 are electromagnets, and the magnets on the rotor teeth 2-1 are electromagnetic Or the magnets on the stator teeth 1-1 are permanent magnets, and the magnets on the rotor teeth 2-1 are electromagnets.
  • the angle sensor transmits the collected angle information between the connecting rod 4 and the gear 2 currently meshing with the rotor teeth to the controller, and the controller controls the magnetic and magnetic characteristics of the electromagnet according to the angle information.
  • the magnetic poles cause the opposite magnets on the gear plate 1 and the gear 2 to attract or repel each other to generate a magnetic force to drive the gear 2 to rotate around its central axis O 'while revolving around the central axis O of the gear disc 1, thereby rotating the connecting rod 4 around the output axis.
  • the connecting rod converts the revolution of the gear 2 into the power of the output shaft 3.
  • the magnet on the stator teeth 1-1 is an electromagnet
  • the magnet on the rotor teeth 2-1 is a permanent magnet
  • the gear 2 rotates counterclockwise, thereby driving the connecting rod 4 to rotate clockwise as an example. Any one of the rotor teeth 2-1 starts from the contact between the rotor teeth 2-1 and the stator teeth 1-1 on the gear plate 1 to the complete meshing and then the disengagement, as shown in FIGS. 5 to 7.
  • the included angle between the connecting rod 4 and the rotor tooth 2-1 of the gear 2 is set to 0, and when the rotor tooth 2-1 of the gear 2 and the gear 2
  • the stator teeth 1-1 of the disk 1 just contact or are about to be disengaged
  • the rotor teeth 2-1 and the connecting rod 4 generate an angle
  • the angle between the connecting rod 4 and the rotor teeth 2-1 of the gear 2 is collected by an angle sensor.
  • the information is transmitted to the controller, thereby controlling the on and off of the stator teeth 1-1 of the gear plate 1 to change the magnetic and magnetic poles of the stator teeth 1-1.
  • the rotor teeth 2-1 and the stator teeth 1-1 have just started to contact. As shown in FIG. 6, the rotor teeth 2-1 and the stator teeth 1-1 are completely meshed. As shown in FIG. 7, the rotor teeth 2 -1 is about to come out of contact with stator teeth 1-1.
  • a, b, c, and d are used to represent the sides of the teeth on the gear and the gear plate, respectively.
  • the rotor teeth 2-1 on the gear 2 and the stator teeth 1-1 of the gear disc 1 start to contact, and a corresponding angle is generated between the connecting rod 4 and the rotor teeth 2-1.
  • the information from the sensor controls the a-side electromagnet of the stator teeth 1-1 to start energizing, and makes the a-side magnetic poles different from the c-side magnetic poles, and the a-side and c-side electromagnets generate mutual attraction so that the gear 2 rotates counterclockwise; Turning from the position in FIG. 5 to the position in FIG. 6, during this process, the b-side electromagnet is not energized and has no magnetism. When the gear 2 is in the position of FIG. 6, the a-side electromagnet is de-energized and loses magnetism, the b-side electromagnet starts to be energized, and the b-side magnetic pole is the same as the d-side magnetic pole.
  • the electric motor of the present invention converts electric energy into kinetic energy, and can also be used in reverse on the basis of the present invention.
  • the structure of the present invention is used to design an enhanced generator to convert kinetic energy into electric energy.
  • the structure of the second embodiment is the same as that of the first embodiment, except that the connecting rod 4 is eliminated, and a transmission gear 6 is coaxially fixed to the output shaft 3.
  • the transmission gear 6 and the gear 2 are externally meshed and transmitted.
  • the gear 2 meshes with the gear disc 1
  • the gear 2 revolves around the central axis of the gear disc 1 while rotating, and simultaneously drives the transmission gear 6 to rotate around the output shaft 3.
  • the transmission gear 6 converts the revolution and rotation of the gear 2 into the power of the output shaft 3.
  • the angle sensor of Embodiment 2 is used to collect the angle information between the transmission gear center and the connection between the gear center and the gear currently meshing with the rotor teeth.
  • a controller is connected to the electromagnet, and the controller controls the electromagnet according to the angle information collected by the angle sensor.
  • the stator is a pin gear 7 fixed on the housing
  • the rotor is a cycloid wheel 8 meshed with the pin gear 7
  • the transmission member is a coupling shaft 9.
  • the inner ring gear on the needle gear 7 is provided with stator teeth, that is, needle teeth 7-1
  • the outer ring of the cycloid wheel 8 is provided with rotor teeth, that is, cycloid teeth 8-1.
  • the needle teeth 7-1 can be connected with the cycloid Tooth 8-1 internal gear transmission.
  • An output shaft 3 is coaxially provided on the central axis of the pin gear 7, and splines are arranged at both ends of the coupling shaft 9, a spline on the right end is splined to the inner hole of the cycloid wheel 8, and a spline on the left end is splined to the inner hole of the output shaft 3.
  • the needle teeth 7-1 and the cycloid teeth 8-1 of the present invention have magnets on both sides of the teeth.
  • the needle gear 7 includes a needle tooth mechanical layer and a needle tooth mechanical layer.
  • the axially fixed needle tooth magnet layer, that is, the needle ring gear 7-2 of the needle gear 7 has a mechanical layer structure
  • the needle teeth 7-1 have a magnet layer structure.
  • the cycloidal wheel 8 includes a cycloidal mechanical layer and a cycloidal magnet layer that is axially fixed to the cycloidal mechanical layer, that is, the cycloidal ring gear 8-2 is a mechanical layer structure
  • the cycloidal gear 8-1 is a magnet layer structure.
  • the pinion ring 7-2 meshes with the cycloidal ring gear 8-2 to achieve radial fixation.
  • the pinion 7-1 and the cycloidal tooth 8-1 approximately mesh with an air gap in the middle.
  • the magnets drive each other during meshing.
  • the cycloid rotates.
  • the magnet layer structure of the needle teeth 7-1 and the cycloid teeth 8-1 may be teeth of a hollow structure, and both sides of the teeth of the hollow structure are filled with magnets; or the teeth of a solid structure, the teeth of the solid structure are fixed on both sides. A magnet is connected.
  • the magnet of the present invention may be a permanent magnet or an electromagnet, and at least one side of the two opposite magnets on the needle teeth 7-1 and the cycloidal teeth 8-1 is an electromagnet whose magnetic and magnetic poles can be changed. Magnetic poles make the opposing magnets attract or repel each other to generate magnetic force to drive the rotor to move.
  • the electromagnet is connected with a controller for controlling the magnetism and magnetic pole of the electromagnet.
  • the controller is connected with an angle sensor for collecting the rotation angle of the cycloid wheel.
  • the controller controls the electromagnet according to the angle information collected by the angle sensor.
  • the magnets on the needle teeth 7-1 of the present invention are electromagnets, and the magnets on the cycloid teeth 8-1 are permanent magnets; or the magnets on the needle teeth 7-1 are electromagnets, and the magnets on the cycloid teeth 8-1 are selected.
  • the angle sensor transmits the rotation angle information collected by the cycloid wheel 8 to the controller, and the controller controls the magnetism and the magnetic pole of the electromagnet according to the angle information.
  • the controller controls the magnetism and the magnetic pole of the electromagnet according to the angle information.
  • the electromagnets on the gears participate in the work, and their magnetic pole properties are all N poles.
  • Figure 15 When the arrangement of the permanent magnet poles on the cycloid wheel is shown in Figure 15, that is, the magnetic poles on the left and right sides of the same cycloid tooth 8-1 have the same properties. If the cycloid wheel 8 is set to rotate clockwise, the needle gear participates
  • the magnetic pole properties of the working electromagnet are shown in FIG. 15, and the magnetic pole properties on both sides of the electromagnet on the same pin tooth 7-1 are also the same.
  • the number of rotor teeth of the cycloid wheel is eight and the number of stator teeth of the pinion gear is nine.
  • the power generated by the rotation of the cycloid wheel is directly transmitted to the output shaft through the coupling shaft.
  • the output shaft rotates 1/8 of the reverse direction, so the transmission part is equivalent to a speed reducer, which can amplify torque and minimize mechanical loss.
  • the above transmission part is similar in structure and principle to the transmission part of the existing cycloid hydraulic motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Linear Motors (AREA)

Abstract

一种行星齿轮式增强型电动机,包括相互啮合的具有定子齿(1-1)的定子(1)和具有转子齿(2-1)的转子(2),该定子(1)和转子(2)偏心设置,定子(1)的中心轴上同轴设有输出轴(3),该输出轴(3)通过传动件与转子(2)的中心轴(5)相连接;所述定子齿(1-1)和转子齿(2-1)的齿两侧具有磁体,转子齿(2-1)与定子齿(1-1)啮合时,通过改变磁体的磁性和磁极产生磁力驱动转子(2)绕其中心轴(5)自转的同时绕定子(1)中心轴公转,从而使传动件将转子(2)的运动转换为输出轴动力。上述电动机和传统电动机对比,由于传统电动机磁极相互错开,而上述磁极相对,在相同条件下,可以产生原来的电磁力的数倍电磁力,大大提升电动机的扭矩和功率;同时由于产生相同电磁力所需电流更小,可以降低电动机热损耗,提升电动机效率。

Description

行星齿轮式增强型电动机 技术领域
本发明属于电动机领域,尤其涉及一种行星齿轮式增强型电动机。
背景技术
现有的电机功率密度低,重量大,是因为对于两个磁体而言,在其它条件都相同时,如图1和图2所示,当磁体的磁极相对所产生的磁力要大于磁极相互错开所产生的磁力。但是现在的电动机,无论是直线型电动机还是旋转型电动机,在利用磁力使其运转时,都无法实现磁极相对,从而不能产生更大的磁力,并最终限制了其功率大小,无法使电动机工作的动力不能达到最佳状态。以磁悬浮列车上用于驱动列车前进的直线型电动机为例,当列车需要前进时,位于列车前方轨道上的磁体的磁极A会和位于列车车头部分的磁体的磁极B相互作用产生磁力F1,位于列车后方轨道上的磁体的磁极D会和位于列车车尾部分的磁体的磁极C相互作用,产生磁力F2,磁悬浮列车在F1、F2共同作用下就会前进,如图3所示。显然,在此过程中产生驱动直线型电动机运转的磁力的磁极是相互错开的,无法做到磁极相对,从而也不能产生更大的磁力。
因此,亟需解决上述问题。
发明内容
发明目的:本发明的目的是提供一种磁极相对可产生更大磁力,从而增大电动机功率,提高工作效率的行星齿轮式增强型电动机。
技术方案:为实现以上目的,本发明公开了一种行星齿轮式增强型电动机,包括相互啮合的具有定子齿的定子和具有转子齿的转子,该定子和转子偏心设置,定子的中心轴上同轴设有输出轴,该输出轴通过传动件与转子的中心轴相连接;所述定子齿和转子齿的齿两侧具有磁体,转子齿与定子齿啮合时,通过改变磁体的磁性和磁极产生磁力驱动转子绕其中心轴自转的同时绕定子中心轴公转,从而使传动件将转子的运动转换为输出轴动力。
其中所述磁体为永磁体或电磁铁,且定子齿和转子齿上相对的两磁体至少有一侧为可改变磁性和磁极的电磁铁,通过控制电磁铁的磁性和磁极,使相对的磁体相吸或相斥产生磁力驱动转子运动。
进一步,所述定子为固定于壳体上且具有内齿圈的齿轮盘,所述转子为与齿轮盘内 啮合传动的至少一个齿轮,所述传动件为一端与齿轮中心轴相连接,另一端与输出轴垂直连接且可绕输出轴周向转动的连杆,齿轮与齿轮盘啮合时,齿轮自转的同时绕齿轮盘中心轴公转,从而使连杆绕输出轴转动,连杆将齿轮的公转转化为输出轴动力。
优选的,所述电磁铁上连接有用于控制电磁铁的磁性和磁极的控制器,该控制器与用于采集连杆与齿轮当前啮合转子齿之间的夹角的角度传感器相连接,控制器根据角度传感器采集的角度信息控制电磁铁。
再者,所述定子为固定于壳体上且具有内齿圈的齿轮盘,所述转子为与齿轮盘内啮合传动的至少一个齿轮,所述传动件为与输出轴同轴固连且与齿轮外啮合的传动齿轮,齿轮与齿轮盘啮合时,齿轮自转的同时绕齿轮盘中心轴公转,同时带动传动齿轮绕输出轴自转,传动齿轮将齿轮的公转和自转转化为输出轴动力。
优选的,所述电磁铁上连接有用于控制电磁铁的磁性和磁极的控制器,该控制器与用于采集传动齿轮中心和齿轮中心连线与齿轮当前啮合转子齿之间的夹角的角度传感器相连接,控制器根据角度传感器采集的角度信息控制电磁铁。
进一步,所述定子为固定于壳体上的针齿轮,所述转子为与针齿轮内啮合传动的摆线轮,所述传动件为一端与输出轴相连接,另一端与摆线轮相连接的联接轴,摆线轮与针齿轮啮合时,摆线轮自转的同时绕针齿轮中心轴公转,同时带动联接轴转动,联接轴将摆线轮的自转转化为输出轴动力。
再者,所述电磁铁上连接有用于控制电磁铁的磁性和磁极的控制器,该控制器与用于采集摆线轮转动角度的角度传感器相连接,控制器根据角度传感器采集的角度信息控制电磁铁。
优选的,所述针齿轮包括针齿机械层和与针齿机械层轴向固连的针齿磁体层,所述摆线轮包括摆线机械层和与摆线机械层轴向固连的摆线磁体层,其中针齿机械层与摆线机械层相啮合,针齿磁体层与摆线磁体层之间隔有间隙。
再者,所述转子的个数至少为1个。
有益效果:与现有技术相比,本发明具有以下显著优点:
(1)、本发明电动机和传统电动机对比,由于传统电动机磁极相互错开,而本发明磁极相对,在相同条件下,可以产生原来的电磁力的数倍电磁力,大大提升电动机的扭矩和功率;同时由于产生相同电磁力所需电流更小,本发明可以降低电动机热损耗,提升电动机效率;本发明的电机功率密度高,同等条件下可以大大减轻电机自身重量,使 其运用到汽车减震领域;
(2)、本发明的定子采用齿轮盘,转子采用与其内啮合的齿轮,传动件为连杆,控制器根据连杆与齿轮当前啮合转子齿之间的夹角信息控制电磁铁的磁极和磁性,使齿轮盘和齿轮上相对的磁体相吸或相斥产生磁力驱动驱动齿轮绕其中心轴自转的同时绕齿轮盘中心轴转,从而使连杆绕输出轴转动,连杆将齿轮的公转转化为输出轴动力;
(3)、本发明的定子采用齿轮盘,转子采用与其内啮合的齿轮,传动件为传动齿轮,控制器根据传动齿轮中心和齿轮中心连线与齿轮当前啮合转子齿之间的夹角信息控制电磁铁的磁极和磁性,使齿轮盘和齿轮上相对的磁体相吸或相斥产生磁力驱动齿轮与齿轮盘相啮合,齿轮自转的同时绕齿轮盘中心轴公转,同时带动传动齿轮绕输出轴自转,传动齿轮将齿轮的公转和自转转化为输出轴动力;
(4)、本发明的定子采用针齿轮,转子采用与针齿轮内啮合传动的摆线轮,传动件为联接轴,在针齿轮和摆线轮的齿上设置磁体,控制器根据摆线轮转动角度信息控制电磁铁的磁极和磁性,驱动摆线轮转动并与针齿轮相啮合,摆线轮自转的同时绕针齿轮中心轴公转,同时带动联接轴转动,联接轴将摆线轮的自转转化为输出轴动力;本发明的传动部分自带减速功能,且减速过程中几乎没有能量损耗;
(5)本发明的针齿轮包括针齿机械层和与针齿机械层轴向固连的针齿磁体层,摆线轮包括摆线机械层和与摆线机械层轴向固连的摆线磁体层,其中针齿机械层与摆线机械层相啮合从而达到径向固定,针齿磁体层与摆线磁体层之间隔有间隙,啮合时产生磁力驱动摆线轮转动。
附图说明
图1为磁极相对状态结构示意图;
图2为磁极相互错开状态结构示意图;
图3为磁悬浮列车行驶状态下磁极所对应的结构示意图;
图4为本发明实施例1中的结构示意图;
图5为本发明实施例1中定子和转子刚接触时的结构示意图;
图6为本发明实施例1中定子和转子完全啮合时的结构示意图;
图7为本发明实施例1中定子和转子刚脱离时的结构示意图;
图8为本发明实施例2中的结构示意图;
图9为本发明实施例3中的结构示意图;
图10为本发明实施例3中的剖视图;
图11为本发明实施例3中定子和转子的主视图;
图12为本发明实施例3中定子和转子的结构示意图;
图13为本发明实施例3中转子转动时磁极分布图一;
图14为本发明实施例3中转子转动时磁极分布图二;
图15为本发明实施例3中转子转动时磁极分布图三。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
实施例1
如图4所示,本发明一种行星齿轮式增强型电动机,包括偏心设置的定子和转子,且转子和定子的圆心位于同一平面内。转子的个数至少为1个,也可设置多个,且多个转子沿周向均布。定子为固定于壳体上且具有内齿圈的齿轮盘1,转子为与齿轮盘内啮合传动的至少一个齿轮2,为了提升电动机功率,可沿齿轮盘周向布置多个齿轮。齿轮盘上的内齿圈上布置有定子齿1-1,齿轮2的外圈布置有转子齿2-1,转子齿2-1可与定子齿1-1内啮合传动。齿轮盘1的中心轴上同轴设有输出轴3,输出轴3上垂直连接有可绕其周向转动的连杆4,该连杆4的另一端与齿轮2的中心轴5相连接。
本发明的定子齿1-1和转子齿2-1的齿两侧具有磁体,本发明的齿轮盘1上的定子齿1-1的齿轮2上的转子齿2-1为空心结构的齿,该空心结构的齿两侧内部填充有磁铁;或者本发明的齿轮盘1上的定子齿1-1的齿轮2上的转子齿2-1为实心结构的齿,该实心结构的齿两侧固连接有磁铁。
本发明的磁体可为永磁体或电磁铁,且定子齿和转子齿上相对的两磁体至少有一侧为可改变磁性和磁极的电磁铁,通过控制电磁铁的磁性和磁极,使相对的磁体相吸或相斥产生磁力驱动转子运动。电磁铁上连接有用于控制电磁铁的磁性和磁极的控制器,该控制器与用于采集连杆4与齿轮2当前啮合转子齿之间的夹角的角度传感器相连接,控制器根据角度传感器采集的角度信息控制电磁铁。本发明的定子齿1-1上的磁体选用电磁铁,转子齿2-1上的磁体选用永磁体;或者定子齿1-1上的磁体选用电磁铁,转子齿2-1上的磁体选用电磁体;或者定子齿1-1上的磁体选用永磁铁,转子齿2-1上的磁体选用电磁体。
本发明中当转子齿与定子齿啮合时,角度传感器将采集到的连杆4与齿轮2当前啮 合转子齿之间的夹角信息传输至控制器,控制器根据角度信息控制电磁铁的磁性和磁极,使齿轮盘1和齿轮2上相对的磁体相吸或相斥产生磁力驱动齿轮2绕其中心轴O'自转的同时绕齿轮盘1中心轴O公转,从而使连杆4绕输出轴转动,连杆将齿轮2的公转转化为输出轴3动力。
本发明以定子齿1-1上的磁体为电磁铁,转子齿2-1上的磁体为永磁体,齿轮2逆时针方向转动,从而带动连杆4顺时针方向转动为例,对于齿轮2中的任意一个转子齿2-1,从转子齿2-1与齿轮盘1上的定子齿1-1开始接触到完全啮合再到脱离接触的过程,如图5到图7所示。当齿轮2的某一转子齿2-1与齿轮盘1完全啮合时,设置连杆4与该齿轮2的转子齿2-1的夹角为0,当齿轮2的转子齿2-1与齿轮盘1的定子齿1-1刚接触或者将要脱离时,该转子齿2-1与连杆4产生夹角,通过角度传感器采集连杆4和齿轮2的转子齿2-1之间的夹角信息传递给控制器,从而控制齿轮盘1的定子齿1-1的通断电改变定子齿1-1的磁性和磁极。
如图5所示,转子齿2-1与定子齿1-1刚开始接触,如图6所示,转子齿2-1与定子齿1-1完全啮合,如图7所示,转子齿2-1与定子齿1-1将要脱离接触。本发明分别用a、b、c、d来代表齿轮和齿轮盘上齿的侧面。如图5所示,齿轮2上的转子齿2-1和齿轮盘1的定子齿1-1开始接触,连杆4与转子齿2-1之间产生相对应的夹角,控制器根据角度传感器的信息控制定子齿1-1的a侧电磁铁开始通电,并使a侧磁极与c侧磁极相异,a侧和c侧的电磁铁产生相互吸引力从而使齿轮2逆时针方向转动;从图5位置转至图6位置,在此过程中b侧电磁铁不通电,没有磁性。当齿轮2处于图6位置时,a侧电磁铁断电,失去磁性,b侧电磁铁开始通电,并使b侧磁极与d侧磁极相同,b侧和d侧的电磁铁产生相互排斥力,该排斥力继续推动齿轮2逆时针转动至图7位置,当齿轮2在图7中的位置基础上继续逆时针转动,从而b侧和d侧脱离接触,连杆4与转子齿2-1之间产生相对应的夹角,控制器控制b侧电磁铁断电,失去磁性;由于任意时刻,对于齿轮2和齿轮盘1而言,始终有转子齿处于啮合状态,根据图5、图6和图7中齿轮2的受力分析,齿轮2会始终受力,使其沿逆时针方向持续转动,从而使连杆4沿顺时针方向持续转动,并通过输出轴3进行动力输出。
本发明的电动机将电能转换为动能,也可以在本发明基础上反着用,利用本发明的结构设计增强型发电机,将动能转换为电能。
实施例2
如图8所示,实施例2与实施例1的结构相同,区别之处在于:取消连杆4,输出轴3上同轴固连有一传动齿轮6,该传动齿轮6与齿轮2外啮合传动,齿轮2与齿轮盘1啮合时,齿轮2自转的同时绕齿轮盘1中心轴公转,同时带动传动齿轮6绕输出轴3自转,传动齿轮6将齿轮2的公转和自转转化为输出轴3动力。实施例2的角度传感器用于采集传动齿轮中心和齿轮中心连线与齿轮当前啮合转子齿之间的夹角信息,电磁铁上连接控制器,控制器根据角度传感器采集的角度信息控制电磁铁。
实施例3
如图9和图10所示,实施例3中定子为固定于壳体上的针齿轮7,转子为与针齿轮7内啮合传动的摆线轮8,传动件为联接轴9。针齿轮7上的内齿圈上布置有定子齿,即针齿7-1,摆线轮8的外圈布置有转子齿,即摆线齿8-1,针齿7-1可与摆线齿8-1内啮合传动。针齿轮7的中心轴上同轴设有输出轴3,联接轴9两端均布有花键,右端花键与摆线轮8内孔花键联接,左端花键与输出轴3内孔花键联接。
如图11和图12所示,本发明的针齿7-1和摆线齿8-1的齿两侧具有磁体,本实施例3中针齿轮7包括针齿机械层和与针齿机械层轴向固连的针齿磁体层,即针齿轮7的针齿圈7-2为机械层结构,针齿7-1为磁体层结构。摆线轮8包括摆线机械层和与摆线机械层轴向固连的摆线磁体层,即摆线齿圈8-2为机械层结构,摆线齿8-1为磁体层结构。针齿圈7-2与摆线齿圈8-2相啮合从而达到径向固定,针齿7-1和摆线齿8-1近似啮合,中间隔有气隙,啮合时磁体相互产生磁力驱动摆线轮转动。针齿7-1和摆线齿8-1的磁体层结构可为空心结构的齿,该空心结构的齿两侧内部填充有磁铁;或者是实心结构的齿,该实心结构的齿两侧固连接有磁铁。本发明的磁体可为永磁体或电磁铁,且针齿7-1和摆线齿8-1上相对的两磁体至少有一侧为可改变磁性和磁极的电磁铁,通过控制电磁铁的磁性和磁极,使相对的磁体相吸或相斥产生磁力驱动转子运动。电磁铁上连接有用于控制电磁铁的磁性和磁极的控制器,该控制器与用于采集摆线轮的转动角度的角度传感器相连接,控制器根据角度传感器采集的角度信息控制电磁铁。本发明的针齿7-1上的磁体选用电磁铁,摆线齿8-1上的磁体选用永磁体;或者针齿7-1上的磁体选用电磁铁,摆线齿8-1上的磁体选用电磁体;或者针齿7-1上的磁体选用永磁铁,摆线齿8-1上的磁体选用电磁体。
本发明中当针齿7-1与摆线齿8-1啮合时,角度传感器将采集到摆线轮8的转动角度信息传输至控制器,控制器根据角度信息控制电磁铁的磁性和磁极,使针齿轮7和摆 线轮8上相对的磁体相吸或相斥产生磁力驱动摆线轮8绕其中心轴自转的同时绕针齿轮7中心轴公转,同时带动联接轴9转动,联接轴9将摆线轮8的自转转化为输出轴3动力。
以摆线轮8的摆线齿8-1为永磁体,针齿轮7的针齿7-1为电磁铁为例,当摆线轮上的永磁体磁极排布方式如图13所示,设定摆线轮8逆时针方向转动,则针齿轮上参与工作的电磁铁的磁极属性如图13所示,且只要针齿轮上的电磁铁参与工作,其磁极属性均为S极。当摆线轮上的永磁体磁极排布方式如图14所示,设定摆线轮8顺时针方向转动,则针齿轮上参与工作的电磁铁的磁极属性如图14所示,且只要针齿轮上的电磁铁参与工作,其磁极属性均为N极。当摆线轮上的永磁体磁极排布方式如图15所示,即同一摆线齿8-1左右两侧的磁极性质相同,设定摆线轮8顺时针方向转动,则针齿轮上参与工作的电磁铁的磁极属性如图15所示,且同一针齿7-1上电磁铁两侧的磁极性质也相同。
在本实施例中,摆线轮的转子齿的个数为8个,针齿轮的定子齿的个数为9个,摆线轮的自转产生的动力通过联接轴直接传输给输出轴。摆线轮每公转一圈,输出轴就反方向转动1/8圈,因此传动部分相当于一个减速器,可以放大扭矩,且机械损失极小。上述传动部分与现有摆线液压马达的传动部分结构、原理相类似。

Claims (10)

  1. 一种行星齿轮式增强型电动机,其特征在于:包括相互啮合的具有定子齿的定子和具有转子齿的转子,该定子和转子偏心设置,定子的中心轴上同轴设有输出轴,该输出轴通过传动件与转子的中心轴相连接;所述定子齿和转子齿的齿两侧具有磁体,转子齿与定子齿啮合时,通过改变磁体的磁性和磁极产生磁力驱动转子绕其中心轴自转的同时绕定子中心轴公转,从而使传动件将转子的运动转换为输出轴动力。
  2. 根据权利要求1所述的行星齿轮式增强型电动机,其特征在于:所述磁体为永磁体或电磁铁,且定子齿和转子齿上相对的两磁体至少有一侧为可改变磁性和磁极的电磁铁,通过控制电磁铁的磁性和磁极,使相对的磁体相吸或相斥产生磁力驱动转子运动。
  3. 根据权利要求2所述的行星齿轮式增强型电动机,其特征在于:所述定子为固定于壳体上且具有内齿圈的齿轮盘,所述转子为与齿轮盘内啮合传动的至少一个齿轮,所述传动件为一端与齿轮中心轴相连接,另一端与输出轴垂直连接且可绕输出轴周向转动的连杆,齿轮与齿轮盘啮合时,齿轮自转的同时绕齿轮盘中心轴公转,从而使连杆绕输出轴转动,连杆将齿轮的公转转化为输出轴动力。
  4. 根据权利要求3所述的行星齿轮式增强型电动机,其特征在于:所述电磁铁上连接有用于控制电磁铁的磁性和磁极的控制器,该控制器与用于采集连杆与齿轮当前啮合转子齿之间的夹角的角度传感器相连接,控制器根据角度传感器采集的角度信息控制电磁铁。
  5. 根据权利要求2所述的行星齿轮式增强型电动机,其特征在于:所述定子为固定于壳体上且具有内齿圈的齿轮盘,所述转子为与齿轮盘内啮合传动的至少一个齿轮,所述传动件为与输出轴同轴固连且与齿轮外啮合的传动齿轮,齿轮与齿轮盘啮合时,齿轮自转的同时绕齿轮盘中心轴公转,同时带动传动齿轮绕输出轴自转,传动齿轮将齿轮的公转和自转转化为输出轴动力。
  6. 根据权利要求5所述的行星齿轮式增强型电动机,其特征在于:所述电磁铁上连接有用于控制电磁铁的磁性和磁极的控制器,该控制器与用于采集传动齿轮中心和齿轮中心连线与齿轮当前啮合转子齿之间的夹角的角度传感器相连接,控制器根据角度传感器采集的角度信息控制电磁铁。
  7. 根据权利要求2所述的行星齿轮式增强型电动机,其特征在于:所述定子为固定于壳体上的针齿轮,所述转子为与针齿轮内啮合传动的摆线轮,所述传动件为一端与输出轴相连接,另一端与摆线轮相连接的联接轴,摆线轮与针齿轮啮合时,摆线轮自转 的同时绕针齿轮中心轴公转,同时带动联接轴转动,联接轴将摆线轮的自转转化为输出轴动力。
  8. 根据权利要求7所述的行星齿轮式增强型电动机,其特征在于:所述电磁铁上连接有用于控制电磁铁的磁性和磁极的控制器,该控制器与用于采集摆线轮转动角度的角度传感器相连接,控制器根据角度传感器采集的角度信息控制电磁铁。
  9. 根据权利要求7所述的行星齿轮式增强型电动机,其特征在于:所述针齿轮包括针齿机械层和与针齿机械层轴向固连的针齿磁体层,所述摆线轮包括摆线机械层和与摆线机械层轴向固连的摆线磁体层,其中针齿机械层与摆线机械层相啮合,针齿磁体层与摆线磁体层之间隔有间隙。
  10. 根据权利要求1所述的行星齿轮式增强型电动机,其特征在于:所述转子的个数至少为1个。
PCT/CN2019/102154 2018-09-21 2019-08-23 行星齿轮式增强型电动机 WO2020057321A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/277,743 US11817756B2 (en) 2018-09-21 2019-08-23 Enhanced electric motor using planetary gear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811110754.7 2018-09-21
CN201811110754 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020057321A1 true WO2020057321A1 (zh) 2020-03-26

Family

ID=66254990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102154 WO2020057321A1 (zh) 2018-09-21 2019-08-23 行星齿轮式增强型电动机

Country Status (3)

Country Link
US (1) US11817756B2 (zh)
CN (1) CN109713874A (zh)
WO (1) WO2020057321A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112104122A (zh) * 2020-08-14 2020-12-18 南京航空航天大学 一种摆线针轮星型电动传动机构

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713874A (zh) * 2018-09-21 2019-05-03 张朝刚 行星齿轮式增强型电动机
CN110011480A (zh) * 2019-05-11 2019-07-12 山西华顺源科技有限公司 一种降低输入动能的发电机结构
CN110439986B (zh) * 2019-09-16 2020-11-24 泉州市三兴机械工贸有限公司 一种带永磁铁可持续助力矩的惯性轮装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202918118U (zh) * 2012-07-10 2013-05-01 史炎 一种行星电机
US20160049855A1 (en) * 2013-03-14 2016-02-18 National Oilwell Varco, L.P. Magnetic cycloid gear
CN108071769A (zh) * 2017-12-27 2018-05-25 湖南铁路科技职业技术学院 齿轮传动装置、高速列车齿轮箱及高速列车
CN109318672A (zh) * 2018-09-21 2019-02-12 张朝刚 基于行星齿轮电动机的电磁减震器
CN109713874A (zh) * 2018-09-21 2019-05-03 张朝刚 行星齿轮式增强型电动机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753399A (zh) * 2015-04-25 2015-07-01 郑双慧 行星磁动力发电装置
US10177641B2 (en) * 2016-07-26 2019-01-08 The Boeing Company Stator assembly including stator elements with slotted stator cores for use in an electrical motor
CN108063534B (zh) * 2018-01-12 2024-04-02 重庆市仓兴达科技有限公司 一种可往复摆动的装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202918118U (zh) * 2012-07-10 2013-05-01 史炎 一种行星电机
US20160049855A1 (en) * 2013-03-14 2016-02-18 National Oilwell Varco, L.P. Magnetic cycloid gear
CN108071769A (zh) * 2017-12-27 2018-05-25 湖南铁路科技职业技术学院 齿轮传动装置、高速列车齿轮箱及高速列车
CN109318672A (zh) * 2018-09-21 2019-02-12 张朝刚 基于行星齿轮电动机的电磁减震器
CN109713874A (zh) * 2018-09-21 2019-05-03 张朝刚 行星齿轮式增强型电动机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112104122A (zh) * 2020-08-14 2020-12-18 南京航空航天大学 一种摆线针轮星型电动传动机构

Also Published As

Publication number Publication date
US11817756B2 (en) 2023-11-14
US20210351683A1 (en) 2021-11-11
CN109713874A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
WO2020057321A1 (zh) 行星齿轮式增强型电动机
WO2020057322A1 (zh) 基于行星齿轮式增强型电动机的电磁减震器
CN105346410B (zh) 双电机动力驱动总成
US20140183996A1 (en) Magnetic Powertrain and Components
US9016155B2 (en) Power transmission unit for an electromotively operated drive and magneto-rheological clutch
CN106677878B (zh) 具有改变风扇转动方向的驱动装置及控制方法
KR101369614B1 (ko) 복수의 보조동력 구조를 갖는 발전겸용 전동수단을 갖는 바퀴
US6762523B1 (en) Continuously variable electromagnetic transmission
JP2005232965A (ja) 運動エネルギー加速増幅装置
US8210980B2 (en) Orbital magnetic speed change
CN205017191U (zh) 混合动力车用少极差磁齿轮复合电机
CN106696679B (zh) 电磁粉制动式共转臂双行星排混合动力装置
WO2013056458A1 (zh) 电动机
CN214045200U (zh) 行星齿轮式开关磁阻电动机
CN105221671B (zh) 电动载具的动力传递机构
CN214564445U (zh) 有效降低簧下质量的车体电磁减震器
CN106523600A (zh) 一种定轴式双转子驱动装置
CN110566640A (zh) 一种多档电驱变速箱
CN110571996A (zh) 一种双转子电动机
CN206351628U (zh) 电磁粉制动式共转臂双行星排混合动力装置
CN104009602B (zh) 磁齿轮功率分配器
CN108488325A (zh) 三速输出行星齿轮减速机
CN212004123U (zh) 一种电磁调速无级变速器
CN101291096A (zh) 平动式啮合电机
CN214045318U (zh) 内置式行星齿轮电动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863017

Country of ref document: EP

Kind code of ref document: A1