WO2020057077A1 - 一种高大空间空气参数全景监测系统 - Google Patents

一种高大空间空气参数全景监测系统 Download PDF

Info

Publication number
WO2020057077A1
WO2020057077A1 PCT/CN2019/078968 CN2019078968W WO2020057077A1 WO 2020057077 A1 WO2020057077 A1 WO 2020057077A1 CN 2019078968 W CN2019078968 W CN 2019078968W WO 2020057077 A1 WO2020057077 A1 WO 2020057077A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
measurement data
parameter measurement
air parameter
wireless communication
Prior art date
Application number
PCT/CN2019/078968
Other languages
English (en)
French (fr)
Inventor
余帆
牛洪海
李兵
陈俊
李忠柱
臧峰
陈霈
管晓晨
杨玉
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Publication of WO2020057077A1 publication Critical patent/WO2020057077A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the utility model relates to the field of air parameter monitoring in a building, and particularly relates to a panoramic monitoring system for air parameters in a large space.
  • Air conditioning provides an objective basis to improve personnel comfort or improve the production environment.
  • the commonly used methods for monitoring the air parameters inside buildings are manual inspection, air-conditioning system return air monitoring, and indoor sensor fixed-point monitoring.
  • the monitoring area for manual inspection is limited, and the monitoring time lacks continuity, which cannot reflect the panoramic distribution and change of air parameters.
  • the return air duct of the air conditioner has large inertia and is formed by mixing air from various areas of the room. Therefore, the return air state cannot completely represent the indoor air state, and there is data distortion.
  • Indoor sensors are limited by wired sensors and short wireless sensor transmission distances. Applications in tall buildings are still limited to single-point monitoring, which is difficult to meet the requirements of panoramic monitoring of air parameters.
  • the purpose of the embodiments of the present utility model is to provide a panoramic monitoring system for air parameters in a large space, so as to solve the problems of difficult sensor wiring and insufficient signal transmission distance caused by the structural characteristics of the large space.
  • An embodiment of the utility model provides a panoramic monitoring system for air parameters in a large space, including:
  • the wireless sensor is arranged according to the characteristics of the tall space building and the airflow organization form, acquires air parameter measurement data, and sends the air parameter measurement data to the wireless communication gateway;
  • the wireless communication gateway receives the air parameter measurement data, and forwards the air parameter measurement data to a switch;
  • the switch receives the air parameter measurement data, and forwards the air parameter measurement data to a host computer;
  • the host computer receives the air parameter measurement data, and restores a panoramic distribution of air parameters in a large space.
  • the wireless sensor is powered by a battery.
  • the wireless sensor has a wireless communication module, communicates with the wireless communication gateway, and sends the air parameter measurement data to the wireless communication gateway.
  • the wireless sensor includes:
  • Temperature sensor to measure space temperature
  • Humidity sensor to measure air humidity
  • Carbon dioxide concentration sensor which measures the carbon dioxide concentration in the air
  • the PM2.5 detection sensor measures the PM2.5 concentration in the air.
  • the distance between the wireless sensor and the wireless communication gateway is less than or equal to 300 meters.
  • the transmission network between the wireless sensor and the wireless communication gateway supports LoRa, NB-LoT, ZigBee, GPRS, and WIFI communication.
  • the time interval between the wireless sensor sending the air parameter measurement data to the wireless communication gateway is 1 second to 30 minutes.
  • the number of the wireless communication gateways is one or more, and the number of sensors that can be connected to each of the wireless communication gateways is greater than 30.
  • the host computer includes:
  • a data collection server receiving the air parameter measurement data
  • a database server based on the air parameter measurement data, restoring a panoramic distribution of air parameters in a large space
  • the application server graphically displays the panoramic distribution of the air parameters of the large space and provides historical data storage, analysis, and query functions.
  • the database server includes:
  • An interpolation calculation module which calculates an air parameter of each sensor test point in a large space based on the air parameter measurement data
  • the panorama reduction module restores the panoramic distribution of air parameters in a large space based on the air parameters of each sensor test point.
  • the technical solution provided by the embodiment of the present utility model avoids wiring construction such as communication lines and power lines in the building when installing air parameter sensors through long-distance wireless communication, wireless communication gateway data forwarding, and switch data collection means. Significantly reduce construction costs and greatly improve project implementation efficiency; at the same time, the panoramic distribution of air parameters in high and large spaces can be determined based on limited measurement points, making the monitoring results more comprehensive and accurate.
  • FIG. 1 is a schematic diagram of a panoramic monitoring system for a large space air parameter provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a panoramic monitoring system for a large space air parameter provided by another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a panoramic space air parameter monitoring system provided by an embodiment of the present utility model.
  • the system includes a wireless sensor 11, a wireless communication gateway 12, a switch 13, and a host computer 14.
  • the wireless sensor 11 acquires air parameter measurement data and sends the air parameter measurement data to a wireless communication gateway.
  • the wireless communication gateway 12 receives the air parameter measurement data and forwards the air parameter measurement data to the switch 13.
  • the switch 13 receives the air parameter measurement data and forwards the air parameter measurement data to the host computer 14.
  • the upper computer 14 receives the air parameter measurement data, and restores the panoramic distribution of the air parameters in the tall space.
  • the wireless sensor 11 is arranged at each monitoring point.
  • the air monitoring points are arranged on the ground, walls, pillars, important equipment and air-conditioning air supply areas, and the wireless sensors 11 are evenly distributed in the horizontal direction to reflect as few monitoring points as possible. Air parameters of the terminal.
  • Each wireless sensor 11 is assigned a number.
  • the types of the wireless sensor 11 include a temperature sensor, a humidity sensor, a carbon dioxide concentration sensor, and a PM2.5 detection sensor.
  • the temperature sensor is used to measure the temperature of the space.
  • Humidity sensors are used to measure air humidity.
  • the carbon dioxide concentration sensor is used to measure the carbon dioxide concentration in the air.
  • the PM2.5 detection sensor is used to measure the PM2.5 concentration in the air.
  • PM2.5 refers to particles with an aerodynamic equivalent diameter of 2.5 microns or less in the atmosphere.
  • the wireless sensor 11 is powered by a battery and does not require an external power source. It has a wireless communication module and sends air parameter measurement data to the wireless communication gateway 12 through the wireless communication module.
  • the transmission network between the wireless sensor 11 and the wireless communication gateway 12 supports LoRa, NB-LoT, ZigBee, GPRS, and WIFI communication.
  • the number of wireless communication gateways 12 is one or more, and the number of sensors that can be connected to each wireless communication gateway 12 is greater than 30.
  • the distance between the wireless sensor 11 and the wireless communication gateway 12 is less than or equal to 300 meters.
  • the number and location of the wireless communication gateways 12 are related to the number and location of the wireless sensors 11, and the number and location of the wireless communication gateways 12 are set according to the number and locations of the wireless sensors 11 to ensure that the communication distance between the two is not greater than 300 meters. .
  • the time interval for the wireless sensor 11 to send air parameter measurement data to the wireless communication gateway 12 is 1 second to 30 minutes.
  • the time for sending data can be set to 5 minutes.
  • the air parameter data is detected every 5 minutes, and the measurement data with the time stamp and the point number are sent to the wireless communication gateway 12 within 300 meters nearby.
  • the measurement point number can be set on the wireless sensor 11 or remotely through the wireless communication gateway 12. The measurement point number of the wireless sensor 11 in the same monitoring system is not allowed to be repeated.
  • the wireless communication gateway 12 receives air parameter measurement data from a wireless sensor 11 in a nearby 300-meter area. All the wireless communication gateways 12 forward the received data to the switch 13.
  • the upper computer 14 obtains air parameter measurement data by communicating with the switch 13 to restore the panoramic distribution of air parameters in the high space.
  • FIG. 2 is a schematic diagram of a high-spatial air parameter panoramic monitoring system according to another embodiment of the present invention.
  • the system includes a wireless sensor 21, a wireless communication gateway 22, a switch 23, and a host computer 24.
  • the wireless sensor 21 acquires air parameter measurement data and sends the air parameter measurement data to a wireless communication gateway.
  • the wireless communication gateway 22 receives the air parameter measurement data and forwards the air parameter measurement data to the switch 23.
  • the switch 23 receives the air parameter measurement data and forwards the air parameter measurement data to the host computer 24.
  • the upper computer 24 receives the air parameter measurement data, and restores the panoramic distribution of the air parameters in the tall space.
  • the wireless sensor 21, the wireless communication gateway 22, and the switch 23 are the same as the wireless sensor 11, the wireless communication gateway 12, and the switch 13 in the foregoing embodiment, and details are not described again.
  • the upper computer 24 includes a data collection server 241, a database server 242, and an application server 243.
  • the data acquisition server 241 receives air parameter measurement data.
  • the database server 242 restores the panoramic distribution of air parameters in the tall space based on the air parameter measurement data.
  • the application server 243 graphically displays the panoramic distribution of air parameters in tall and large spaces and provides historical data storage, analysis, and query functions.
  • the database server 242 includes an interpolation calculation module 2421 and a panorama restoration module 2422.
  • the interpolation calculation module 2421 calculates the air parameters of each sensor test point in the large space based on the air parameter measurement data interpolation.
  • the panorama reduction module 2422 restores the panoramic distribution of air parameters in a large space based on the air parameters of each sensor test point.
  • the interpolation calculation module 2421 adopts the inverse distance weighted interpolation method in the spatial interpolation method, and the predicted value Z (S 0 ) at the predicted point S0 can be obtained by the following formula.
  • Z (S i) indicates the point of air parameters S i at, right [lambda] i0 indicates that the calculated Z (S 0) during sample points S i of the weight, d distance i0 represents the point S 0 to point S i, p is the calculated Weight parameter in the process.
  • the attribute value of the sample point is given a weight corresponding to the distance.
  • the sample points that are closer to the prediction point can be considered to have a greater contribution to the prediction point, and their attribute values are given a relatively large weight, and the attribute values of the farther sample point are correspondingly given a smaller weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种高大空间空气参数全景监测系统。该系统包括:无线传感器(11,21),根据高大空间建筑特点和气流组织形式布置,获取空气参数测量数据,发送该空气参数测量数据到无线通信网关(12,22);该无线通信网关(21,22),接收该空气参数测量数据,转发该空气参数测量数据到交换机(13,23);该交换机(13,23),接收该空气参数测量数据,转发该空气参数测量数据到上位机(14,24);上位机(14,24),接收该空气参数测量数据,还原高大空间空气参数全景分布情况。避免了安装空气参数传感器时在建筑物内部进行通信线、电源线等布线施工,可大幅减少施工成本、极大提升工程实施效率;同时可以根据有限的测点确定高大空间空气参数全景分布情况,使监测结果更加全面准确。

Description

一种高大空间空气参数全景监测系统 技术领域
本实用新型涉及建筑物内部空气参数监测领域,具体涉及一种高大空间空气参数全景监测系统。
背景技术
为保证旅客舒适度或生产工艺参数,机场航站楼、高铁候车厅、大型工厂厂房等高大空间建筑需要监测建筑内部空气参数,如温度、湿度、二氧化碳浓度、PM2.5等,从而为建筑内部空气调节提供客观依据,提升人员舒适度或改善生产环境。
目前建筑物内部空气参数监测常用的手段是人工巡检、空调系统回风监测、室内传感器定点监测。其中,人工巡检的监测区域有限,监测时间缺乏连续性,无法反映空气参数全景分布和变化情况。空调回风道存在较大惯性且经室内各区域空气混合而成,因此回风状态不能完全代表室内空气状态,存在数据失真。室内传感器由于有线传感器布线困难,无线传感器传输距离较短等因素限制,在高大空间建筑内的应用仍局限于单点监测,难以满足空气参数全景监测的要求。
因此需要研究建立一种适用于高大空间的空气参数全景监测系统,实现测量数据的远距离传输,并对不同测点的数据进一步融合处理,最终得到高大空间的空气参数全景分布情况。
实用新型内容
本实用新型实施例的目的在于提供一种高大空间空气参数全景监测系统,以解决高大空间建筑结构特性导致的传感器布线困难、信号传 输距离不足等问题。
本实用新型实施例提供了一种高大空间空气参数全景监测系统,包括:
无线传感器,根据高大空间建筑特点和气流组织形式布置,获取空气参数测量数据,发送所述空气参数测量数据到无线通信网关;
所述无线通信网关,接收所述空气参数测量数据,转发所述空气参数测量数据到交换机;
所述交换机,接收所述空气参数测量数据,转发所述空气参数测量数据到上位机;
所述上位机,接收所述空气参数测量数据,还原高大空间空气参数全景分布情况。
进一步地,所述无线传感器使用电池供电。
进一步地,所述无线传感器自带无线通信模块,与所述无线通信网关通信,发送所述空气参数测量数据到所述无线通信网关。
进一步地,所述无线传感器包括:
温度传感器,测量空间温度;
湿度传感器,测量空气湿度;
二氧化碳浓度传感器,测量空气中二氧化碳浓度;
PM2.5检测传感器,测量空气中PM2.5浓度值。
进一步地,所述无线传感器与所述无线通信网关的距离小于等于300米。
进一步地,所述无线传感器与所述无线通信网关之间的传输网络支持LoRa、NB-LoT、ZigBee、GPRS、WIFI通信。
进一步地,所述无线传感器发送所述空气参数测量数据到所述无线通信网关的时间间隔为1秒至30分钟。
进一步地,所述无线通信网关的数量为1个或一个以上,每个所述无线通信网关可连接的传感器数量大于30个。
进一步地,所述上位机包括:
数据采集服务器,接收所述空气参数测量数据;
数据库服务器,基于所述空气参数测量数据,还原高大空间空气参数全景分布情况;
应用服务器,对所述高大空间空气参数全景分布情况进行图形化展示并提供历史数据存储、分析、查询功能。
进一步地,所述数据库服务器包括:
插值计算模块,基于所述空气参数测量数据插值计算高大空间各个传感器测试点的空气参数;
全景还原模块,基于所述各个传感器测试点的空气参数还原高大空间空气参数全景分布情况。
本实用新型的实施例提供的技术方案,通过长距离无线通信、无线通信网关数据转发、交换机数据汇集手段,避免了安装空气参数传感器时在建筑物内部进行通信线、电源线等布线施工,可大幅减少施工成本、极大提升工程实施效率;同时可以根据有限的测点确定高大空间空气参数全景分布情况,使监测结果更加全面准确。
附图说明
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本实用新型一实施例提供的一种高大空间空气参数全景监测系统组成示意图;
图2是本实用新型另一实施例提供的一种高大空间空气参数全景监测系统组成示意图。
具体实施方式
为使本实用新型实施例的目的、技术方案和优点更加清楚,以下将结合附图和实施例,对本实用新型技术方案的具体实施方式进行更加详细、清楚的说明。然而,以下描述的具体实施方式和实施例仅是说明的目的,而不是对本实用新型的限制。其只是包含了本实用新型一部分实施例,而不是全部的实施例,本领域技术人员对于本实用新型的各种变化获得的其他实施例,都属于本实用新型保护的范围。
图1是本实用新型一实施例提供的一种高大空间空气参数全景监测系统组成示意图,系统包括无线传感器11、无线通信网关12、交换机13、上位机14。
无线传感器11获取空气参数测量数据,发送空气参数测量数据到无线通信网关。无线通信网关12接收空气参数测量数据,转发空气参数测量数据到交换机13。交换机13接收空气参数测量数据,转发空气参数测量数据到上位机14。上位机14接收空气参数测量数据,还原高大空间空气参数全景分布情况。
根据高大空间建筑特点和气流组织形式,确定各区域空气监测点。无线传感器11在各监测点布置。在本实施例中,例如航站楼中,将空气监测点布置在地面、墙壁、支柱、重要设备以及空调送风区域,无线传感器11在水平方向上均匀分布,以尽量少的监测点数正确反映航站楼空气参数。
根据高大空间建筑特点和气流组织形式,设置一个或一个以上监测点。一般为多个监测点,在各个监测点安装无线传感器11。给各个无线传感器11设置编号。
无线传感器11的种类包括温度传感器、湿度传感器、二氧化碳浓度传感器、PM2.5检测传感器。其中温度传感器用于测量空间温度。湿 度传感器用于测量空气湿度。二氧化碳浓度传感器用于测量空气中二氧化碳浓度。PM2.5检测传感器用于测量空气中PM2.5浓度值。PM2.5是指大气中空气动力学当量直径小于或等于2.5微米的颗粒物。
无线传感器11使用电池供电,不需要外接电源,自带无线通信模块,通过无线通信模块发送空气参数测量数据到无线通信网关12。
无线传感器11与无线通信网关12之间的传输网络支持LoRa、NB-LoT、ZigBee、GPRS、WIFI通信。无线通信网关12的数量为1个或一个以上,每个无线通信网关12可连接的传感器数量大于30个。无线传感器11与所述无线通信网关12的距离小于等于300米。也就是说无线通信网关12的数量与位置设置与无线传感器11的数量及位置有关,根据无线传感器11的数量及位置设置无线通信网关12的数量与位置,保证二者的通信距离不大于300米。
无线传感器11发送空气参数测量数据到无线通信网关12的时间间隔为1秒至30分钟。
在本实施例中,对于发送数据的时间可以进行设置为5分钟。也就是说每隔5分钟检测一次空气参数数据,并将带有时间标记和测点编号的测量数据发送到附近300米内的无线通信网关12。其中,测点编号可以在无线传感器11上设置,也可以通过无线通信网关12远程连接设置,同一个监测系统内的无线传感器11测点编号不允许重复。
无线通信网关12接收附近300米区域内的无线传感器11传来的空气参数测量数据。所有的无线通信网关12均将接收到的数据转发至交换机13。
上位机14通过与交换机13通信,获取空气参数测量数据,还原高大空间空气参数全景分布情况。
图2是本实用新型另一实施例提供的一种高大空间空气参数全景监测系统组成示意图,系统包括无线传感器21、无线通信网关22、交换机23、上位机24。
无线传感器21获取空气参数测量数据,发送空气参数测量数据到 无线通信网关。无线通信网关22接收空气参数测量数据,转发空气参数测量数据到交换机23。交换机23接收空气参数测量数据,转发空气参数测量数据到上位机24。上位机24接收空气参数测量数据,还原高大空间空气参数全景分布情况。
本实施例中,无线传感器21、无线通信网关22、交换机23与上述实施例中的无线传感器11、无线通信网关12、交换机13一致,不再赘述。
上位机24包括数据采集服务器241、数据库服务器242、应用服务器243。
数据采集服务器241接收空气参数测量数据。数据库服务器242基于空气参数测量数据,还原高大空间空气参数全景分布情况。应用服务器243对高大空间空气参数全景分布情况进行图形化展示并提供历史数据存储、分析、查询功能。
其中,数据库服务器242包括插值计算模块2421、全景还原模块2422。
插值计算模块2421基于空气参数测量数据插值计算高大空间各个传感器测试点的空气参数。全景还原模块2422基于各个传感器测试点的空气参数还原高大空间空气参数全景分布情况。
在本实施例中,插值计算模块2421采用空间插值法中的反距离加权插值法,预测点S0处的预测值Z(S 0),可由以下公式得到。
Figure PCTCN2019078968-appb-000001
Figure PCTCN2019078968-appb-000002
其中,Z(S i)表示点S i处的空气参数,λ i0表示计算Z(S 0)过程中样本点S i的权重,d i0表示点S 0到点S i的距离,p为计算过程中的权重参数。
根据样本点和预测点之间的距离远近,分别给样本点的属性值赋予与距离对应的权重。距离预测点较近的样本点可以认为其对预测点的贡 献较大,其属性值被赋予相对较大的权重,距离较远的样本点的属性值则相应的被赋予较小的权重。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本实用新型而非限制本实用新型的范围,本领域的普通技术人员应当理解,在不脱离本实用新型的精神和范围的前提下对本实用新型进行的修改或者等同替换,均应涵盖在本实用新型的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (10)

  1. 一种高大空间空气参数全景监测系统,包括:
    无线传感器,根据高大空间建筑特点和气流组织形式布置,获取空气参数测量数据,发送所述空气参数测量数据到无线通信网关;
    所述无线通信网关,接收所述空气参数测量数据,转发所述空气参数测量数据到交换机;
    所述交换机,接收所述空气参数测量数据,转发所述空气参数测量数据到上位机;
    所述上位机,接收所述空气参数测量数据,还原高大空间空气参数全景分布情况。
  2. 根据权利要求1所述的系统,其特征在于,所述无线传感器使用电池供电。
  3. 根据权利要求1所述的系统,其特征在于,所述无线传感器自带无线通信模块,与所述无线通信网关通信,发送所述空气参数测量数据到所述无线通信网关。
  4. 根据权利要求1所述的系统,其特征在于,所述无线传感器包括:
    温度传感器,测量空间温度;
    湿度传感器,测量空气湿度;
    二氧化碳浓度传感器,测量空气中二氧化碳浓度;
    PM2.5检测传感器,测量空气中PM2.5浓度值。
  5. 根据权利要求1所述的系统,其特征在于,所述无线传感器与所述无线通信网关的距离小于等于300米。
  6. 根据权利要求1所述的系统,其特征在于,所述无线传感器与所述无线通信网关之间的传输网络支持LoRa、NB-LoT、ZigBee、GPRS、WIFI通信。
  7. 根据权利要求1所述的系统,其特征在于,所述无线传感器发送所述空气参数测量数据到所述无线通信网关的时间间隔为1秒至30分钟。
  8. 根据权利要求1所述的系统,其特征在于,所述无线通信网关的数量为1个或一个以上,每个所述无线通信网关可连接的传感器数量大于30个。
  9. 根据权利要求1所述的系统,其特征在于,所述上位机包括:
    数据采集服务器,接收所述空气参数测量数据;
    数据库服务器,基于所述空气参数测量数据,还原高大空间空气参数全景分布情况;
    应用服务器,对所述高大空间空气参数全景分布情况进行图形化展示并提供历史数据存储、分析、查询功能。
  10. 根据权利要求1所述的系统,其特征在于,所述数据库服务器包括:
    插值计算模块,基于所述空气参数测量数据插值计算高大空间各个传感器测试点的空气参数;
    全景还原模块,基于所述各个传感器测试点的空气参数还原高大空间空气参数全景分布情况。
PCT/CN2019/078968 2018-09-18 2019-03-21 一种高大空间空气参数全景监测系统 WO2020057077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821521622.9 2018-09-18
CN201821521622.9U CN208834480U (zh) 2018-09-18 2018-09-18 一种高大空间空气参数全景监测系统

Publications (1)

Publication Number Publication Date
WO2020057077A1 true WO2020057077A1 (zh) 2020-03-26

Family

ID=66313680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078968 WO2020057077A1 (zh) 2018-09-18 2019-03-21 一种高大空间空气参数全景监测系统

Country Status (2)

Country Link
CN (1) CN208834480U (zh)
WO (1) WO2020057077A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116007148B (zh) * 2023-01-09 2024-01-09 江苏悦达绿色建筑科技有限公司 一种基于物联网的智能家居空气净化系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969405A (zh) * 2014-05-13 2014-08-06 上海师范大学 基于物联网技术的智能气体传感器监测系统
EP2895798A1 (en) * 2012-08-03 2015-07-22 Synapsense Corporation Apparatus and method for controlling computer room air conditioning units (cracs) in data centers
CN205029698U (zh) * 2015-10-13 2016-02-10 浙江大学城市学院 一种面向农业物联网的无线传感数据采集装置
CN107295700A (zh) * 2017-01-10 2017-10-24 楚雄医药高等专科学校 一种基于彝族ZigBee无线传感网络的空气质量监测系统
US20170366988A1 (en) * 2014-05-13 2017-12-21 Senseware, Inc. System, Method and Apparatus for Wireless Sensor Network Configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2895798A1 (en) * 2012-08-03 2015-07-22 Synapsense Corporation Apparatus and method for controlling computer room air conditioning units (cracs) in data centers
CN103969405A (zh) * 2014-05-13 2014-08-06 上海师范大学 基于物联网技术的智能气体传感器监测系统
US20170366988A1 (en) * 2014-05-13 2017-12-21 Senseware, Inc. System, Method and Apparatus for Wireless Sensor Network Configuration
CN205029698U (zh) * 2015-10-13 2016-02-10 浙江大学城市学院 一种面向农业物联网的无线传感数据采集装置
CN107295700A (zh) * 2017-01-10 2017-10-24 楚雄医药高等专科学校 一种基于彝族ZigBee无线传感网络的空气质量监测系统

Also Published As

Publication number Publication date
CN208834480U (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
CN102879692B (zh) 一种多旋翼无人机检测绝缘子方法与装置
CN107355963A (zh) 一种基于三维模型用于建筑运维设备温度监测的检测系统
CN205301613U (zh) 一种可远程访问的自动气象站
CN103325225A (zh) 一种嵌入式无线机房监控系统及监控方法
CN107145156A (zh) 一种基于无人机的电网巡检方法及系统
CN105740351A (zh) 一种输电运维设备的数据融合方法和系统
CN101738975A (zh) 一种空调温度无线监测系统及其方法
CN112003938B (zh) 一种市政工程施工现场远程管理系统
CN106288233A (zh) 一种空调诊断及调试系统
CN103487365B (zh) 腐蚀性气体对数据中心设备影响的实时评估系统及方法
CN213120575U (zh) 室内定位导航系统和室内配电设备监测控制系统
CN111061321A (zh) 一种cems智能管家系统及管理方法
WO2020057077A1 (zh) 一种高大空间空气参数全景监测系统
CN104484988A (zh) 基于曲面爬壁机器人传感器的空间结构自动健康监测系统
CN115049798A (zh) 一种基于bim的金属屋面健康监测系统及方法
WO2021004276A1 (zh) 一种用于人防设备维护的监测方法及系统
CN117630913A (zh) 基于tgis的煤矿矿井多功能生命探测装置和探测方法
CN108806014A (zh) 一种基于云计算机的远程计算机机房智能巡检系统
CN109931986A (zh) 一种建筑物健康状态监测方法与系统
CN109194737A (zh) 一种建筑工程环境监控系统
CN210742765U (zh) 一种cems智能管家系统
CN106996763B (zh) 便携式电线积冰自动检测装置及积冰观测对比方法
CN111220205A (zh) 一种热环境参数分布测试装置
CN113552904A (zh) 一种改进的无人机桥底检测系统
CN207569519U (zh) 一种用于gis设备存放的实时监测补气装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862793

Country of ref document: EP

Kind code of ref document: A1