WO2021004276A1 - 一种用于人防设备维护的监测方法及系统 - Google Patents

一种用于人防设备维护的监测方法及系统 Download PDF

Info

Publication number
WO2021004276A1
WO2021004276A1 PCT/CN2020/097942 CN2020097942W WO2021004276A1 WO 2021004276 A1 WO2021004276 A1 WO 2021004276A1 CN 2020097942 W CN2020097942 W CN 2020097942W WO 2021004276 A1 WO2021004276 A1 WO 2021004276A1
Authority
WO
WIPO (PCT)
Prior art keywords
target device
tilt angle
signal
communication interface
axis
Prior art date
Application number
PCT/CN2020/097942
Other languages
English (en)
French (fr)
Inventor
顾伟
闫晓春
徐根林
李成
Original Assignee
苏宁云计算有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏宁云计算有限公司 filed Critical 苏宁云计算有限公司
Priority to CA3150968A priority Critical patent/CA3150968C/en
Publication of WO2021004276A1 publication Critical patent/WO2021004276A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0428Safety, monitoring
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B19/00Alarms responsive to two or more different undesired or abnormal conditions, e.g. burglary and fire, abnormal temperature and abnormal rate of flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2612Data acquisition interface

Definitions

  • the present invention relates to the technical field of the Internet of Things, in particular to a monitoring method and system for maintenance of civil air defense equipment.
  • Civil air defense engineering is an important part of my country’s national defense engineering system. It is used to conceal people, materials and protect people’s lives and property during wartime or natural disasters. It is also an important part of modern city construction. It is used in many technology-intensive and intelligence-intensive For high-tech parks, the construction of civil air defense projects is the top priority, and a lot of resources need to be invested in construction and maintenance.
  • the civil air defense engineering Due to its special role, the civil air defense engineering has the characteristics of high reliability requirements, and it is idle for most of the duration. This requires reasonable operation and maintenance of various civil air defense equipment in the civil air defense engineering to ensure reliability. , The air defense door is the core equipment to realize the engineering three defense capabilities.
  • the embodiments of the present invention provide a monitoring method and system for maintenance of civil air defense equipment, which can avoid the problems of poor communication and signal attenuation in civil air defense buildings, realize unmanned operation and maintenance, and reduce operation and maintenance management costs.
  • a monitoring method for maintenance of civil air defense equipment including:
  • the sensing signal of the target device uploaded by the second power communication interface, wherein, after the sensing signal of the target device is collected by the sensor, the sensing signal is transmitted to the second power communication interface through the first power communication interface
  • the first power communication interface is connected to a power interface in the indoor space where the target device is located, and the power interface accessed by the first power communication interface and the power interface accessed by the second power communication interface are connected by a power line;
  • the gyroscope outputs an X-axis tilt angle signal, a Y-axis tilt angle signal, and a Z-axis tilt angle signal as the sensing signals.
  • the receiving the sensor signal of the target device uploaded by the second power communication interface includes:
  • the deformation signal includes the X-axis tilt angle signal and the Y-axis of the target device Tilt angle signal and Z-axis tilt angle signal.
  • the obtaining the analysis result according to the sensor signal and comparing the standard parameter data with the analysis result to obtain the comparison result includes:
  • the analysis result is compared with the initial value to obtain the difference, where the initial value includes: the X-axis tilt angle, the Y-axis tilt angle, and the output after the gyroscope is installed on the target device and initialized.
  • the value of the tilt angle of the Z axis includes: the X-axis tilt angle, the Y-axis tilt angle, and the output after the gyroscope is installed on the target device and initialized.
  • the sending an alarm to the operation and maintenance terminal includes:
  • the fault prompt information is generated according to the comparison result, and the map data of the location of the target device marked with the fault and the fault prompt information are sent to the operation and maintenance terminal.
  • a monitoring system for maintenance of civil air defense equipment including:
  • the sensor is used to collect the sensing signal of the target device and send the sensing signal to the first power communication interface.
  • the sensor is installed on the target device, and the first power communication interface is connected to the power source in the indoor space where the target device is located An interface, the power interface connected by the first power communication interface and the power interface connected by the second power communication interface are connected by a power line;
  • the first power communication interface is used to transmit the sensor signal to the second power communication interface
  • the second power communication interface is used to transmit the sensor signal to the server
  • the server is used to obtain the analysis result according to the sensor signal, and use the analysis result to compare the standard parameter data; when the target device failure is detected according to the comparison result, the alarm information is sent to the operation and maintenance terminal.
  • the sensor is a gyroscope, and is used to output an X-axis tilt angle signal, a Y-axis tilt angle signal, and a Z-axis tilt angle signal as the sensing signals.
  • the server is specifically configured to receive the deformation signal of the target device uploaded by the second power communication interface, wherein the gyroscope is installed on the target device, and the deformation signal includes the X of the target device.
  • the server is specifically configured to analyze the deformation signal to obtain the X-axis tilt angle, Y-axis tilt angle, and Z-axis tilt angle of the target device As the analysis result; compare the analysis result with the initial value to obtain a difference, where the initial value includes: the X-axis output after the gyroscope is installed on the target device and initialized The value of tilt angle, Y-axis tilt angle and Z-axis tilt angle;
  • the server is configured to read the location information and map data of the target device that has failed, and mark the location of the target device that has failed on the map data;
  • the fault prompt information is generated according to the comparison result, and the map data of the location of the target device marked with the fault and the fault prompt information are sent to the operation and maintenance terminal.
  • This embodiment uses sensors to realize the monitoring and operation and maintenance of civil air defense equipment, and transmits signals through the power communication interface, avoiding the problems of poor communication and signal attenuation in civil air defense buildings, thereby realizing unmanned operation and maintenance. Determine whether there are problems with the civil air defense equipment through background analysis and generate corresponding alarms. Thereby improving the support capability and level of civil air defense projects, and reducing operation and maintenance management costs.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method provided by an embodiment of the present invention.
  • the method flow in this embodiment can be specifically executed in a system as shown in FIG. 1, which includes: a sensor cluster, a server, and an operation and maintenance terminal.
  • the sensor cluster may be composed of multiple sensor groups, and each sensor group includes at least one sensor.
  • one or more sensors can usually be set on a target device that needs to be monitored, and one or more sensors for monitoring the same target device can be understood as a sensor group.
  • large civil air defense sites such as subways and underground garages
  • multiple security doors need to be installed. These security doors need to be monitored, so they are installed in these places.
  • the sensor groups used to monitor all target devices together form a sensor cluster.
  • the design of this embodiment lies in the architecture design of the system composed of the sensor cluster, the server and the operation and maintenance terminal and the method flow of putting it into practical application.
  • the sensor signal of the sensor is transmitted to the server after signal transmission through at least two power communication interfaces.
  • the power communication interface is a communication technology that uses wires to transmit data and media signals.
  • the power communication interface can load the high frequency carrying information on the electric current, and then use the wire to transmit the adapter that receives the information to separate the high frequency from the electric current and transmit it to the computer to realize the information transmission.
  • the power communication interface uses its own modulation technology to compile the data that needs to be transmitted when it is working, and then transmits the compiled information through the electric current on the wire circuit. After receiving the signal, the receiving end directly separates the compiled signal through a filter.
  • the original communication signal After decompilation, the original communication signal can be obtained, and then transmitted to the place where it needs to be used to realize the transmission of information.
  • the wireless signal In areas where the wireless signal is not good, such as underground civil air defense projects and subways, the attenuation of the air defense building communication signal is avoided through the power communication interface, and the signal is converted into data. There is also no need to re-lay dedicated communication lines, saving communication costs.
  • a general router also called a switch in some scenarios
  • the router will send the sensing signals to the server via the mobile network or the Internet.
  • the server disclosed in this embodiment may specifically be a blade machine, a workstation, a supercomputer, etc., or a server cluster system for data processing composed of multiple servers.
  • the server can be connected to the database.
  • the database mainly includes the storage map data, the location information of the target device, the initial value of each sensor and the value uploaded each time, among which these values can be stored in the form of a data table .
  • the operation and maintenance terminal disclosed in this embodiment can be implemented as a single device or integrated into various media data playback devices, such as smart phones, tablet computers (Tablet Personal Computer), and laptop computers. Laptop Computer), personal digital assistant (PDA) or wearable device (Wearable Device), etc.
  • the operation and maintenance terminal can communicate with the server system through the mobile wireless network.
  • a display unit such as a touch screen, a small display, etc., is installed on the operation and maintenance terminal.
  • the software system architecture can adopt: browser + middleware + database (B/S structure, that is, Browser/Server (browser/server) structure).
  • B/S structure adopts a star-shaped topology to establish an enterprise internal communication network or uses an Internet virtual private network (VPN).
  • VPN Internet virtual private network
  • the former is characterized by safety, speed and accuracy.
  • the latter has the advantages of saving investment and widening across regions. It depends on the size and geographic distribution of the company.
  • the enterprise is connected to the Internet through a firewall, and the entire network adopts the TCP/IP protocol.
  • B/S is built on the browser, which has a richer and more vivid way of communicating with users. And most of the difficulty is reduced, and the development cost is reduced.
  • the embodiment of the present invention provides a monitoring method for the maintenance of civil air defense equipment, which can be specifically implemented on a server as shown in Figure 1.
  • the method is specifically shown in Figure 2 and includes:
  • S101 Receive a sensor signal of a target device uploaded by a second power communication interface.
  • the sensing signal of the target device is collected by the sensor, the sensing signal is transmitted to the second power communication interface through the first power communication interface, wherein the first power communication interface is connected to the power interface in the indoor space where the target device is located.
  • the sensor transmits the sensing signal to the first power communication interface.
  • the first power communication interface transmits the sensing signal to the second power communication interface.
  • the first power communication interface is installed near the target device, and "nearby" means that the sensor can successfully transmit the sensing signal into the transmission range of the first power communication interface.
  • the second power communication interface is usually set outside the area where the target device is located, for example, in a computer room where a router is installed.
  • the first power communication interface and the second power communication interface are connected through a power line and transmit signals.
  • S102 Obtain an analysis result according to the sensor signal, and use the analysis result to compare the standard parameter data to obtain a comparison result.
  • the second power communication interface transmits the sensing signal to the analysis server.
  • the second power communication interface transmits the sensing signal to the analysis server through the router.
  • the analysis server obtains the analysis result according to the sensor signal, and compares the standard parameter data with the analysis result, and sends an alarm information to the operation and maintenance terminal when a failure of the target device is detected according to the comparison result.
  • This embodiment uses sensors to realize the monitoring and operation and maintenance of civil air defense equipment, and transmits signals through the power communication interface, avoiding the problems of poor communication and signal attenuation in civil air defense buildings, thereby realizing unmanned operation and maintenance. Determine whether there are problems with the civil air defense equipment through background analysis and generate corresponding alarms. Thereby improving the support capability and level of air defense engineering, and reducing operation and maintenance management costs.
  • This embodiment can be applied to monitoring safety doors, safety valves, etc., which need to detect physical location and deformation in space.
  • Such equipment often has such a problem that once a certain amount of deformation or displacement occurs, the equipment will fail.
  • the safety door cannot be closed after being deformed, the safety valve is deformed or the valve has displacement distortion, resulting in the valve.
  • the gyroscope can be used as a sensor to complete the monitoring of the physical position and deformation in space. It also includes:
  • the gyroscope outputs X-axis tilt angle signals, Y-axis tilt angle signals, and Z-axis tilt angle signals as sensing signals.
  • receiving the sensor signal of the target device uploaded by the second power communication interface specifically includes:
  • the gyroscope is installed on the target device, and the deformation signal includes the X-axis tilt angle signal, the Y-axis tilt angle signal and the Z-axis tilt angle signal of the target device.
  • the gyroscope is used to obtain and analyze the inclination angles of the security doors of air defense equipment to obtain the analytical results.
  • the inclination angles include X-axis inclination angle, Y-axis inclination angle and Z-axis inclination angle.
  • step S102 of this embodiment the comparison result is obtained by comparing the analysis result with the standard parameter data, which specifically includes:
  • the initial value includes: the X-axis tilt angle, the Y-axis tilt angle and the Z-axis tilt angle output after the gyroscope is installed on the target device and initialized.
  • the server may generate a corresponding log table for the analysis result obtained by analyzing the collected deformation signal each time, and store each state in the log table in the database and analyze and compare with the initial numerical value to obtain the comparison result.
  • the real-time status of the civil air defense door is obtained by the gyroscope installed on the air defense door, and the background analysis is used to determine whether the air defense equipment is damaged or tilted, and an alarm is generated if the tilt occurs.
  • sending an alarm to the operation and maintenance terminal includes:
  • the fault prompt information is generated according to the comparison result, and the map data and the fault prompt information of the location of the target device marked with the fault are sent to the operation and maintenance terminal. For example: Based on the software system architecture shown in Figure 4, when it is detected that the inclination value corresponding to at least one inclination data in the log table is greater than the set threshold, the corresponding data in the log table will be alerted and displayed in the corresponding modeling model. The alarm is posted to the map corresponding to the building where the modeling is located, and the message can also be pushed to the mailbox or SMS of the corresponding operation and maintenance personnel. As shown in Figure 4, at the bottom of the software system, through the network heartbeat + arbitration folder + virtual IP address, the cluster and high availability of the database are realized, and the continuity and reliability of the data are guaranteed.
  • each civil air defense facility is displayed on the map according to the entered address, and the address is located according to the longitude and latitude, and displayed on the map.
  • the operation and maintenance personnel can view according to their own authority. For the data in your jurisdiction, select the red dot marked on the map or directly search for the civil air defense facilities you need in the search box to see the basic information of the civil air defense facilities. And there are real-time alarm information prompts on the right side of the main page to facilitate early response measures.
  • the operation interface shown in Figure 6 after the operation and maintenance personnel click to confirm on the operation and maintenance terminal, they can enter the floor plan interface of the civil air defense facility, and display how many equipment in the facility, equipment information, and basic data of the air defense system (temperature and humidity) and many more).
  • the embodiment of the present invention also provides a monitoring system for maintenance of civil air defense equipment as shown in FIG. 1, which includes:
  • the sensor is used to collect the sensing signal of the target device and send the sensing signal to the first power communication interface.
  • the sensor is installed on the target device, and the first power communication interface is connected to the power source in the indoor space where the target device is located An interface, the power interface connected by the first power communication interface and the power interface connected by the second power communication interface are connected by a power line;
  • the first power communication interface is used to transmit the sensor signal to the second power communication interface
  • the second power communication interface is used to transmit the sensor signal to the server
  • the server is used to obtain the analysis result according to the sensor signal, and use the analysis result to compare the standard parameter data; when the target device failure is detected according to the comparison result, the alarm information is sent to the operation and maintenance terminal.
  • the senor is a gyroscope, and is used to output an X-axis tilt angle signal, a Y-axis tilt angle signal, and a Z-axis tilt angle signal as the sensing signals.
  • the server is specifically configured to receive the deformation signal of the target device uploaded by the second power communication interface, wherein the gyroscope is installed on the target device, and the deformation signal includes the X of the target device.
  • the server is specifically configured to analyze the deformation signal to obtain the X-axis inclination angle, Y-axis inclination angle, and Z-axis inclination angle of the target device as the analysis result;
  • the analysis result is compared with the initial value to obtain the difference, where the initial value includes: the X-axis tilt angle, the Y-axis tilt angle, and the Z-axis tilt output after the gyroscope is installed on the target device and initialized The value of the angle;
  • the server is configured to read the location information and map data of the target device that has failed, and mark the location of the target device that has failed on the map data; generate failure prompt information according to the comparison result, and Send the map data of the location of the target device marked with the failure and the failure prompt information to the operation and maintenance terminal.
  • This embodiment uses sensors to realize the monitoring and operation and maintenance of civil air defense equipment, and transmits signals through the power communication interface, avoiding the problems of poor communication and signal attenuation in civil air defense buildings, thereby realizing unmanned operation and maintenance. Determine whether there are problems with the civil air defense equipment through background analysis and generate corresponding alarms. Thereby improving the support capability and level of civil air defense projects, and reducing operation and maintenance management costs.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Alarm Systems (AREA)

Abstract

一种用于人防设备维护的监测方法,包括:接收第二电力通信接口上传的目标设备的传感信号,第一电力通信接口连接目标设备所在室内空间中电源接口,第一电力通信接口接入的电源接口与第二电力通信接口接入的电源接口通过电力线连接(S101);根据传感信号获取解析结果,并利用解析结果对比标准参数数据得到对比结果(S102);当根据对比结果检测到目标设备故障时,向运维终端发出告警(S103)。还公开了监测系统。适用于人防设备监控,能够避免人防建筑中通讯不好、信号衰减的问题,实现无人化运维,从而降低运维管理费用。

Description

一种用于人防设备维护的监测方法及系统 技术领域
本发明涉及物联网技术领域,尤其涉及一种用于人防设备维护的监测方法及系统。
背景技术
人防工程是我国国防工程体系的重要组成部分,用于战时或者自然灾害中掩蔽人员、物资、保护人民生命和财产安全,同时也是现代化城市建设的重要组成部分,在很多科技密集型、智力密集型的高新园区,人防工程的建设更是重中之重,需要投入大量的资源进行建设和维护。
人防工程由于其特殊的作用,具有可靠性要求高,存续期间大部分时间又处于闲置状态的特点,这就需要对人防工程中的各类人防设备进行合理运维,从而保证可靠性,这其中,人防门的则是实现工程三防能力最核心的设备。
由于大部分的人防工程中无线信号质量较差,甚至没有无线信号,因此目前对于人防门的监控和运维做法有两种,一种是传统的人工巡检排查或者被动故障上报,需要占用人力且耗费时间,投入成本大。而且不同的业务人员的能力层次不齐,并不能做到对故障的百分百发现,另一种是视频观察,观察的重点在于监控,只能发现一些显而易见的故障,但是很多时候人防门会由于一些不显而易见的原因导致不能关闭或者密闭性降低。
发明内容
本发明的实施例提供一种用于人防设备维护的监测方法及系统,能够避免人防建筑中通讯不好、信号衰减的问题,实现无人化运维,从而降低运维管理费用。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种用于人防设备维护的监测方法,包括:
接收第二电力通信接口上传的目标设备的传感信号,其中,在传感器采集到的所述目标设备的传感信号后,通过第一电力通信接口将所述传感信号向第二电力通信接口传输,所述第一电力通信接口连接所述目标设备所在室内空间中电源接口,所述第一电力通信接口接入的电源接口与所述第二电力通信接口接入的电源接口通过电力线连接;
根据所述传感信号获取解析结果,并利用所述解析结果对比标准参数数据得到对比结果;
当根据所述对比结果检测到所述目标设备故障时,向运维终端发出告警。
在第一方面的第一种可能的实现方式中,还包括:
所述目标设备上安装陀螺仪作为所述传感器;
所述陀螺仪输出X轴倾斜角度信号、Y轴倾斜角度信号和Z轴倾斜角度信号作为所述传感信号。
在第一方面的第二种可能的实现方式中,所述接收第二电力通信接口上传的目标设备的传感信号,包括:
接收第二电力通信接口上传的所述目标设备的形变量信号,其中,所述陀螺仪安装在所述目标设备上,所述形变量信号包括所述目标设备的X轴倾斜角度信号、Y轴倾斜角度信号和Z轴倾斜角度信号。
在第一方面的第三种可能的实现方式中,所述根据所述传感信号获取解析结果,并利用所述解析结果对比标准参数数据得到对比结果,包括:
对所述形变量信号进行解析,得到所述目标设备的X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的数值作为所述解析结果;
将所述解析结果与初始数值进行比对,得到差值,其中,所述初始数值包括:所述陀螺仪安装在所述目标设备上并初始化后输出的X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的数值。
在第一方面的第四种可能的实现方式中,还包括:
分别检测X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的差值是否大于各自的阈值,若大于则判定所述目标设备故障。
在第一方面的进一步可能的实现方式中,所述向运维终端发出告警,包括:
读取发生故障的目标设备的位置信息和地图数据,并在所述地图数据上标注发生故障的目标设备的位置;
根据所述对比结果生成故障提示信息,并将被标注发生故障的目标设备的位置的地图数据和所述故障提示信息向所述运维终端发送。
第二方面,提供一种用于人防设备维护的监测系统,包括:
传感器,用于采集目标设备的传感信号,并向第一电力通信接口发送传感信号,所述传感器安装在所述目标设备上,第一电力通信接口连接所述目标设备所在室内空间中电源接口,所述第一电力通信接口接入的电源接口与所述第二电力通信接口接入的电源接口通过电力线连接;
所述第一电力通信接口,用于将所述传感信号向第二电力通信接口传输;
所述第二电力通信接口,用于将所述传感信号向服务器传输;
所述服务器,用于根据传感信号获取解析结果,并利用解析结果对比标准参数数据;当根据对比结果检测到目标设备故障时,向运维终端发送告警信息。
在第二方面的第一种可能的实现方式中,还包括:
所述传感器为陀螺仪,用于输出X轴倾斜角度信号、Y轴倾斜角度信号和Z轴 倾斜角度信号作为所述传感信号。
所述服务器,具体用于接收第二电力通信接口上传的所述目标设备的形变量信号,其中,所述陀螺仪安装在所述目标设备上,所述形变量信号包括所述目标设备的X轴倾斜角度信号、Y轴倾斜角度信号和Z轴倾斜角度信号。
在第二方面的第二种可能的实现方式中,所述服务器,具体用于对所述形变量信号进行解析,得到所述目标设备的X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的数值作为所述解析结果;将所述解析结果与初始数值进行比对,得到差值,其中,所述初始数值包括:所述陀螺仪安装在所述目标设备上并初始化后输出的X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的数值;
分别检测X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的差值是否大于各自的阈值,若大于则判定所述目标设备故障。
在第二方面的第三种可能的实现方式中,所述服务器,用于读取发生故障的目标设备的位置信息和地图数据,并在所述地图数据上标注发生故障的目标设备的位置;根据所述对比结果生成故障提示信息,并将被标注发生故障的目标设备的位置的地图数据和所述故障提示信息向所述运维终端发送。
针对人防工程中无线信号质量差,传统的人工巡检排查或者被动故障上报需要占用人力、成本大的问题。本实施例利用传感器实现了对人防设备的监控和运维,通过电力通信接口传输信号,避免了人防建筑中通讯不好、信号衰减的问题,从而实现了无人化运维。通过后台分析判断人防设备是否存在问题并产生相应的告警。从而提高人防工程的保障能力和保障水平、降低运维管理费用。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要 使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的系统架构示意图;
图2为本发明实施例提供的方法流程示意图;
图3、图4、图5、图6为本发明实施例提供的具体实例的示意图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。下文中将详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的任一单元和全部组合。本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的 上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
本实施例中的方法流程,具体可以执行在一种如图1所示的系统中,其中包括:传感器集群、服务器和运维终端。
其中,传感器集群可以由多个传感器组所组成,每一个传感器组中包括了至少一个传感器。在实际应用中,一个需要被监控的目标设备上,通常可以设置一个或者多个传感器,则为了监控同一个目标设备的一个或者多个传感器可以理解为一个传感器组。而在人防场所、大型建筑中,又存在不止一个需要监控的目标设备,比如在地铁、地下车库等大型的人防场所,需要设置多道安全门,这些安全门都需要进行监控,则设置在这些场所中的、用于监控所有的目标设备的传感器组共同组成了传感器集群。
具体的,传感器的类型可以有很多种,可以依照应用场景从目前市面上已有的产品中进行采购。本实施例的设计在于传感器集群、服务器和运维终端所共同组成的系统的架构设计和投入实际应用的方法流程。
如图3所示的,传感器的传感信号通过至少两个电力通信接口进行信号传递后,向服务器传输。其中,电力通信接口是一种利用电线传输数据和媒体信号的通信技术。电力通信接口可以把载有信息的高频加载于电流,然后用电线传输接受信息的适配器再把高频从电流中分离出来并传送到计算机从而实现信息传递。电力通信接口在工作时利用本身的调制技术把需要传输的数据进行编译,然后把编译好的信息通过电流在电线电路上进行传输。接收端收到信号之后直接经过滤波器将编译的信号分离出来,经过反编译可以得到原始的通讯信号,然后传输到需要使用的地方,实现信息的传递。在地下人防工程、地铁等无线信号不好的区域,通过电力通信接口避免了人防建筑通信信号衰减,将信号转 化为数据。也不需要重新铺设专用的通信线路,节约了通信成本。
在实际应用中,可以通过一个总的路由器(在一些场景中也可以称为交换机),接收电力通信接口传出的传感信号,并由路由器将传感信号通过移动网络或者互联网向服务器发送。
本实施例中所揭示的服务器,具体可以是刀片机、工作站、超级计算机等设备,或者是由多个服务器组成的一种用于数据处理的服务器集群系统。在实际应用中,服务器可以连接数据库,数据库主要包括用于存储地图数据、目标设备的位置信息、各个传感器的初始数值以及每一次上传的数值等,其中,这些数值可以以数据表的形式进行存储。
本实施例中所揭示的运维终端具体可以实做成单独一台装置,或整合于各种不同的媒体数据播放装置中,诸如智能手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)或可穿戴式设备(Wearable Device)等。运维终端可以通过移动无线网络与服务端系统进行通信。具体的,运维终端上安装有显示单元,比如触摸屏、小型显示器等。
在系统的软件实现上,软件系统架构可以采用:浏览器+中间件+数据库(B/S结构,即Browser/Server(浏览器/服务器)结构)。B/S结构采用星形拓扑结构建立企业内部通信网络或利用Internet虚拟专网(VPN)。前者的特点是安全、快捷、准确。后者则具有节省投资、跨地域广的优点。须视企业规模和地理分布确定。企业内部通过防火墙接入Internet,整个网络采用TCP/IP协议。
B/S建立在浏览器上,有更加丰富和生动的表现方式与用户交流.并且大部分难度减低,减低开发成本。
本发明实施例提供用于人防设备维护的监测方法,具体可以实现在如图1所 示的服务器上,该方法具体如图2所示的,包括:
S101,接收第二电力通信接口上传的目标设备的传感信号。
其中,在传感器采集到的目标设备的传感信号后,通过第一电力通信接口将传感信号向第二电力通信接口传输,其中,第一电力通信接口连接目标设备所在室内空间中电源接口。
具体的,传感器将传感信号传入第一电力通信接口。第一电力通信接口将传感信号向第二电力通信接口传输。其中,第一电力通信接口安装在目标设备附近,“附近”指的是:传感器可以将传感信号成功传入第一电力通信接口的传输范围内。第二电力通信接口通常设置在目标设备所在区域以外,比如设置在安装了路由器的机房内,第一电力通信接口与第二电力通信接口之间通过电力线连接并传输信号。
S102,根据传感信号获取解析结果,并利用解析结果对比标准参数数据得到对比结果。
S103,当根据对比结果检测到目标设备故障时,向运维终端发出告警。
具体的,第二电力通信接口将传感信号向分析服务器传输,在实际应用中,第二电力通信接口通过路由器将传感信号向分析服务器传输。分析服务器根据传感信号获取解析结果,并利用解析结果对比标准参数数据,当根据对比结果检测到目标设备故障时,向运维终端发送告警信息。
针对人防工程中无线信号质量差,传统的人工巡检排查或者被动故障上报需要占用人力、成本大的问题。本实施例利用传感器实现了对人防设备的监控和运维,通过电力通信接口传输信号,避免了人防建筑中通讯不好、信号衰减的问题,从而实现了无人化运维。通过后台分析判断人防设备是否存在问题并产生相应的告警。从而提高人防工程的保障能力和保障水平、降低运维管理费 用。
本实施例可以应用于监控安全门、安全阀等,需要检测空间物理位置以及形变情况的设备,这类设备往往存在这样的问题,即一旦出现一定量的形变或者位移,则就会导致设备失效,比如安全门形变后无法关上,安全阀形变或者阀门发生位移畸变,导致阀门。其中,可以通过陀螺仪作为传感器完成空间物理位置以及形变情况的监控。其中还包括:
目标设备上安装陀螺仪作为传感器。陀螺仪输出X轴倾斜角度信号、Y轴倾斜角度信号和Z轴倾斜角度信号作为传感信号。
本实施例的步骤S101中,接收第二电力通信接口上传的目标设备的传感信号,具体包括:
接收第二电力通信接口上传的目标设备的形变量信号。
其中,陀螺仪安装在目标设备上,形变量信号包括目标设备的X轴倾斜角度信号、Y轴倾斜角度信号和Z轴倾斜角度信号。以人防设施的场景为例,具体利用陀螺仪获取并解析人防设备安全门各个角度倾斜角度,得到解析结果,其中,倾斜角度包括为X轴倾斜角度,Y轴倾斜角度及Z轴倾斜角度。
本实施例的步骤S102中,并利用解析结果对比标准参数数据得到对比结果,具体包括:
对形变量信号进行解析,得到目标设备的X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的数值作为解析结果。将解析结果与初始数值进行比对,得到差值。
其中,初始数值包括:陀螺仪安装在目标设备上并初始化后输出的X轴倾斜 角度、Y轴倾斜角度和Z轴倾斜角度的数值。具体的,对每一次采集到的形变量信号解析得到的解析结果,服务器可以生成对应的日志表,并将日志表中每条状态存入数据库并与初始数值解析对比,得到对比结果。
之后,分别检测X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的差值是否大于各自的阈值,若大于则判定目标设备故障。
针对现有方案中不同的业务人员的能力层次不齐,并不能做到对故障的百分百发现的问题,以及针对视频观察只能发现一些显而易见的故障,难以发现不显而易见的原因导致门、阀不能关闭或者密闭性降低的问题。
本实施例通过安装在人防门上的陀螺仪获取人防门的实时状态,通过后台分析判断人防设备是否损坏或倾斜,若发生倾斜则产生告警。从而提高人防工程的保障能力和保障水平、降低工程运行管理费用。
本实施例的步骤S103中,向运维终端发出告警,包括:
读取发生故障的目标设备的位置信息和地图数据,并在地图数据上标注发生故障的目标设备的位置。根据对比结果生成故障提示信息,并将被标注发生故障的目标设备的位置的地图数据和故障提示信息向运维终端发送。例如:基于如图4所示的软件系统架构,当检测到日志表中的至少一条倾角数据所对应倾角值大于设置阈值,对日志表中对应的数据告警,显示到相应的建模模型中,并将告警发布到该建模所在建筑物对应的地图中,亦可推送消息至相应的运维人员邮箱或短信。如图4所示的,在软件系统底层通过网络心跳+仲裁文件夹+虚拟IP地址的方案,实现了数据库的集群和高可用,保证了数据的连续性和可靠性。
如图5所示的,每个人防设施根据录入好的地址在地图显示,地址根据经度 和纬度来定位,显示在地图上,使用离线地图的策略,运维人员可以根据自己权限的不同,查看自己管辖范围内的数据,选择地图上标好的红点或者是直接在搜索框搜索自己所需的人防设施,即可看见人防设施的基本信息。并且在主页面的右侧有实时告警信息提示,方便做好及早做好应对的措施。
如图6所示的操作界面,运维人员在运维终端上点击确认以后可进入人防设施的平面图界面,并在界面显示设施中有多少设备、设备的信息以及人防系统的基本数据(温湿度等等)。
本发明实施例还提供一种如图1所示的,用于人防设备维护的监测系统,其中包括:
传感器,用于采集目标设备的传感信号,并向第一电力通信接口发送传感信号,所述传感器安装在所述目标设备上,第一电力通信接口连接所述目标设备所在室内空间中电源接口,所述第一电力通信接口接入的电源接口与所述第二电力通信接口接入的电源接口通过电力线连接;
所述第一电力通信接口,用于将所述传感信号向第二电力通信接口传输;
所述第二电力通信接口,用于将所述传感信号向服务器传输;
所述服务器,用于根据传感信号获取解析结果,并利用解析结果对比标准参数数据;当根据对比结果检测到目标设备故障时,向运维终端发送告警信息。
具体的,所述传感器为陀螺仪,用于输出X轴倾斜角度信号、Y轴倾斜角度信号和Z轴倾斜角度信号作为所述传感信号。
所述服务器,具体用于接收第二电力通信接口上传的所述目标设备的形变量信号,其中,所述陀螺仪安装在所述目标设备上,所述形变量信号包括所述目标设备的X轴倾斜角度信号、Y轴倾斜角度信号和Z轴倾斜角度信号。
进一步的,所述服务器,具体用于对所述形变量信号进行解析,得到所述目标设备的X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的数值作为所述解析结果;将所述解析结果与初始数值进行比对,得到差值,其中,所述初始数值包括:所述陀螺仪安装在所述目标设备上并初始化后输出的X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的数值;
分别检测X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的差值是否大于各自的阈值,若大于则判定所述目标设备故障。
进一步的,所述服务器,用于读取发生故障的目标设备的位置信息和地图数据,并在所述地图数据上标注发生故障的目标设备的位置;根据所述对比结果生成故障提示信息,并将被标注发生故障的目标设备的位置的地图数据和所述故障提示信息向所述运维终端发送。
针对人防工程中无线信号质量差,传统的人工巡检排查或者被动故障上报需要占用人力、成本大的问题。本实施例利用传感器实现了对人防设备的监控和运维,通过电力通信接口传输信号,避免了人防建筑中通讯不好、信号衰减的问题,从而实现了无人化运维。通过后台分析判断人防设备是否存在问题并产生相应的告警。从而提高人防工程的保障能力和保障水平、降低运维管理费用。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于设备实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发 明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (10)

  1. 一种用于人防设备维护的监测方法,其特征在于,包括:
    接收第二电力通信接口上传的目标设备的传感信号,其中,在传感器采集到的所述目标设备的传感信号后,通过第一电力通信接口将所述传感信号向第二电力通信接口传输,所述第一电力通信接口连接所述目标设备所在室内空间中电源接口,所述第一电力通信接口接入的电源接口与所述第二电力通信接口接入的电源接口通过电力线连接;
    根据所述传感信号获取解析结果,并利用所述解析结果对比标准参数数据得到对比结果;
    当根据所述对比结果检测到所述目标设备故障时,向运维终端发出告警。
  2. [根据细则91更正 31.07.2020]
    根据权利要求1所述的方法,其特征在于,还包括:
    所述目标设备上安装陀螺仪作为所述传感器;
    所述陀螺仪输出X轴倾斜角度信号、Y轴倾斜角度信号和Z轴倾斜角度信号作为所述传感信号。
  3. 根据权利要求2所述的方法,其特征在于,所述接收第二电力通信接口上传的目标设备的传感信号,包括:
    接收第二电力通信接口上传的所述目标设备的形变量信号,其中,所述陀螺仪安装在所述目标设备上,所述形变量信号包括所述目标设备的X轴倾斜角度信号、Y轴倾斜角度信号和Z轴倾斜角度信号。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述传感信号获取解析结果,并利用所述解析结果对比标准参数数据得到对比结果,包括:
    对所述形变量信号进行解析,得到所述目标设备的X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的数值作为所述解析结果;
    将所述解析结果与初始数值进行比对,得到差值,其中,所述初始数值包 括:所述陀螺仪安装在所述目标设备上并初始化后输出的X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的数值。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    分别检测X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的差值是否大于各自的阈值,若大于则判定所述目标设备故障。
  6. 根据权利要求1或5所述的方法,其特征在于,所述向运维终端发出告警,包括:
    读取发生故障的目标设备的位置信息和地图数据,并在所述地图数据上标注发生故障的目标设备的位置;
    根据所述对比结果生成故障提示信息,并将被标注发生故障的目标设备的位置的地图数据和所述故障提示信息向所述运维终端发送。
  7. 一种用于人防设备维护的监测系统,其特征在于,包括:
    传感器,用于采集目标设备的传感信号,并向第一电力通信接口发送传感信号,所述传感器安装在所述目标设备上,第一电力通信接口连接所述目标设备所在室内空间中电源接口,所述第一电力通信接口接入的电源接口与所述第二电力通信接口接入的电源接口通过电力线连接;
    所述第一电力通信接口,用于将所述传感信号向第二电力通信接口传输;
    所述第二电力通信接口,用于将所述传感信号向服务器传输;
    所述服务器,用于根据传感信号获取解析结果,并利用解析结果对比标准参数数据;当根据对比结果检测到目标设备故障时,向运维终端发送告警信息。
  8. 根据权利要求7所述的监测系统,其特征在于,还包括:
    所述传感器为陀螺仪,用于输出X轴倾斜角度信号、Y轴倾斜角度信号和Z轴 倾斜角度信号作为所述传感信号。
    所述服务器,具体用于接收第二电力通信接口上传的所述目标设备的形变量信号,其中,所述陀螺仪安装在所述目标设备上,所述形变量信号包括所述目标设备的X轴倾斜角度信号、Y轴倾斜角度信号和Z轴倾斜角度信号。
  9. 根据权利要求8所述的监测系统,其特征在于,所述服务器,具体用于对所述形变量信号进行解析,得到所述目标设备的X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的数值作为所述解析结果;将所述解析结果与初始数值进行比对,得到差值,其中,所述初始数值包括:所述陀螺仪安装在所述目标设备上并初始化后输出的X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的数值;
    分别检测X轴倾斜角度、Y轴倾斜角度和Z轴倾斜角度的差值是否大于各自的阈值,若大于则判定所述目标设备故障。
  10. 根据权利要求9所述的监测系统,其特征在于,所述服务器,用于读取发生故障的目标设备的位置信息和地图数据,并在所述地图数据上标注发生故障的目标设备的位置;根据所述对比结果生成故障提示信息,并将被标注发生故障的目标设备的位置的地图数据和所述故障提示信息向所述运维终端发送。
PCT/CN2020/097942 2019-07-08 2020-06-24 一种用于人防设备维护的监测方法及系统 WO2021004276A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3150968A CA3150968C (en) 2019-07-08 2020-06-24 Method of and system for monitoring civil air defense equipment maintenance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910608185.7A CN110646030A (zh) 2019-07-08 2019-07-08 一种用于人防设备维护的监测方法及系统
CN201910608185.7 2019-07-08

Publications (1)

Publication Number Publication Date
WO2021004276A1 true WO2021004276A1 (zh) 2021-01-14

Family

ID=69009433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097942 WO2021004276A1 (zh) 2019-07-08 2020-06-24 一种用于人防设备维护的监测方法及系统

Country Status (3)

Country Link
CN (1) CN110646030A (zh)
CA (1) CA3150968C (zh)
WO (1) WO2021004276A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110646030A (zh) * 2019-07-08 2020-01-03 苏宁云计算有限公司 一种用于人防设备维护的监测方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621946A (zh) * 2012-03-07 2012-08-01 冶金自动化研究设计院 一种基于Lonworks电力载波通讯的智能控制装置
CN203708245U (zh) * 2014-01-23 2014-07-09 冶金自动化研究设计院 人防用电力载波多相信号耦合器
CN105933658A (zh) * 2016-05-18 2016-09-07 冶金自动化研究设计院 一种基于图像识别的人防阀门密闭状态监测装置
CN106052687A (zh) * 2016-07-11 2016-10-26 中国人民解放军理工大学 用于平战转换设备无线定位寻踪的监测传感器及监测方法
US20170115672A1 (en) * 2015-10-23 2017-04-27 The Toro Company Two-Wire Irrigation Communication System
CN110646030A (zh) * 2019-07-08 2020-01-03 苏宁云计算有限公司 一种用于人防设备维护的监测方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938195B (zh) * 2012-11-14 2014-05-28 天津市翔晟远电力设备实业有限公司 一种基于架空线路的智能电网无线通讯走廊系统
CN103037600A (zh) * 2013-01-10 2013-04-10 四川创境科技有限公司 Zigbee和电力载波双路冗余的LED路灯控制系统
CN103118075B (zh) * 2013-01-11 2015-06-24 江庆 将采集的数据进行多种方式传输的采集服务器
GB2533523A (en) * 2013-10-29 2016-06-22 Schlumberger Holdings Power cable based multi-sensor unit signal transmission
CN105035900A (zh) * 2015-07-06 2015-11-11 成都金亚云媒互联网科技有限公司 基于电力线传输的电梯物联网监控系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621946A (zh) * 2012-03-07 2012-08-01 冶金自动化研究设计院 一种基于Lonworks电力载波通讯的智能控制装置
CN203708245U (zh) * 2014-01-23 2014-07-09 冶金自动化研究设计院 人防用电力载波多相信号耦合器
US20170115672A1 (en) * 2015-10-23 2017-04-27 The Toro Company Two-Wire Irrigation Communication System
CN105933658A (zh) * 2016-05-18 2016-09-07 冶金自动化研究设计院 一种基于图像识别的人防阀门密闭状态监测装置
CN106052687A (zh) * 2016-07-11 2016-10-26 中国人民解放军理工大学 用于平战转换设备无线定位寻踪的监测传感器及监测方法
CN110646030A (zh) * 2019-07-08 2020-01-03 苏宁云计算有限公司 一种用于人防设备维护的监测方法及系统

Also Published As

Publication number Publication date
CN110646030A (zh) 2020-01-03
CA3150968A1 (en) 2021-01-14
CA3150968C (en) 2023-08-29

Similar Documents

Publication Publication Date Title
CN103048965B (zh) 一种动态机房承载视频的可视化集中监控系统
CN108141390B (zh) 用于管理关于电缆测试设备操作的消息的基于云的系统和方法
US20200387576A1 (en) Configuration of a digital twin for a building or other facility via bim data extraction and asset register mapping
CN103532782B (zh) 一种wlan无线网络测试仪及其测试方法
WO2018223598A1 (zh) 一种远程调试方法、机顶盒和服务器
US11632320B2 (en) Centralized analytical monitoring of IP connected devices
CN108039015A (zh) 一种核电厂火警联动视频监控系统
US10540886B2 (en) Network diagnostic tool for testing and commissioning building systems
TW201525710A (zh) 適用於電信應用之雲端化服務彈性組裝系統及方法
CN105513156A (zh) 一种基于搭载gps和地图信息的智能终端进行巡检工作的方法
AU2016250382A1 (en) System and method for utilizing machine-readable codes for testing a communication network
Wu et al. Enterprise Digital Intelligent Remote Control System Based on Industrial Internet of Things
WO2021004276A1 (zh) 一种用于人防设备维护的监测方法及系统
CN104881022A (zh) 一种基于变电站数字化模型的监视系统
CN107241580B (zh) 一种安防监控系统的施工辅助方法及系统
CN110913362A (zh) 通过客户端与测试设备来实现无线信号测试的方法和装置
US10361945B2 (en) System and method to reconcile cabling test results with cabling test configurations
CN104967667B (zh) 一种基于云服务的软件稳定性测试远程监控系统
US20220245290A1 (en) Systems and methods for modeling buildings and risk assessment
CN113269521A (zh) 一种建筑工程多功能后期服务系统
Fadhil et al. A survey on Internet of Things (IoT) testing
CN204836232U (zh) 一种服务器信息安全基线配置快速检测装置
CN114745616A (zh) 一种地下热信息远程监控预警系统和方法
CN110730163B (zh) 一种变电站主辅控联动方法及变电站辅控设备
CN205847321U (zh) 一种基于linux系统的信息传输终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3150968

Country of ref document: CA

122 Ep: pct application non-entry in european phase

Ref document number: 20837623

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837623

Country of ref document: EP

Kind code of ref document: A1