WO2020057004A1 - 红外光谱仪附件 - Google Patents

红外光谱仪附件 Download PDF

Info

Publication number
WO2020057004A1
WO2020057004A1 PCT/CN2018/125076 CN2018125076W WO2020057004A1 WO 2020057004 A1 WO2020057004 A1 WO 2020057004A1 CN 2018125076 W CN2018125076 W CN 2018125076W WO 2020057004 A1 WO2020057004 A1 WO 2020057004A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
accessory
infrared spectrometer
cavity
horn
Prior art date
Application number
PCT/CN2018/125076
Other languages
English (en)
French (fr)
Inventor
李�赫
褚伍波
赵夙
江南
于磊
郭春娥
郭小咪
戴高乐
张晓轩
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811117886.2A external-priority patent/CN110954478A/zh
Priority claimed from CN201811107957.0A external-priority patent/CN110954477B/zh
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2020057004A1 publication Critical patent/WO2020057004A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands

Definitions

  • the invention relates to the field of analysis and detection, in particular to an infrared spectrometer accessory.
  • Infrared spectrometer is an instrument for detecting and analyzing the structure and chemical composition of substances based on the difference in infrared light absorption between different substances. It is widely used in materials science, polymer chemistry, petroleum industry, biomedicine, and daily chemical industry. However, the structure and shape of the substance to be measured in different fields are often very different, so the sample needs to be placed in a suitable accessory before testing so that the infrared light can fully contact the substance to be measured.
  • commonly used accessories can be divided into transmission accessories And Attenuated Total Internal Reflection (ATR) accessories, two of which are more commonly used.
  • ATR Attenuated Total Internal Reflection
  • Transmission accessories generally include two infrared windows and a window holder. The sample is carried between the two windows. Liquid samples are more common. Such transmission accessories can complete the test task at a certain point of time, but infrared Spectroscopy, as a spectroscopic technology, can provide continuous infrared light detection and analysis. At this time, the samples in the transmission accessory often settle to a certain degree due to gravity and other effects, and the actual reaction effect can hardly be obtained objectively by infrared light.
  • An infrared spectrometer accessory includes:
  • a sample chamber which is provided with a sample cavity and a detection optical path channel connected with the sample cavity;
  • An ultrasonic generator includes a transducer and a horn that transfers energy from the transducer to the sample cavity.
  • the infrared spectrometer accessory further includes a support, and the transducer is mounted on the support.
  • one end of the horn is connected to the transducer, and the other end is fixedly connected to the sample chamber, and the sample chamber is not in contact with the support and the transducer.
  • the horn doubles as a sample chamber, and the sample cavity is opened inside the horn.
  • the sample chamber is provided with at least two sample passages respectively communicating with the sample chamber, and an external passage sealedly connected to each of the sample passages is also installed on the outer wall of the sample. Sample tube.
  • a sample pump is provided on at least one sample tube.
  • the accessory of the infrared spectrometer further includes a flow monitoring device for monitoring the flow rate of the sample in and out of the sample chamber, and the flow monitoring device is installed on one of the sample passing tubes.
  • the horn is erected on the transducer, the bottom of the horn is connected to the transducer, and the sample cavity is opened on the top.
  • the sample passage includes a first sample passage and a second sample passage, the first sample passage and the second sample passage are on a first horizontal line, and the detection optical path The channel is on a second horizontal line, the first horizontal line being higher than the second horizontal line.
  • an ATR crystal is further included, and the ATR crystal is installed in the detection optical path channel and is hermetically connected to the sample cavity.
  • a translation stage is further included, and the transducer is mounted on the translation stage.
  • a side wall of the sample tank is provided with an avoiding portion, and the horn is extended into the sample tank via the avoiding portion.
  • the avoidance portion is an avoidance hole or an escape hole
  • the luffing rod extends into the sample slot through the avoidance hole, and the luffing rod and the hole wall of the avoidance hole are sealed and matched;
  • the horn extends into the sample slot through the avoidance opening, and the avoidance opening is positioned higher than a predetermined maximum height of the sample in the sample slot.
  • the sample chamber is provided with a displacement cavity, and the displacement stage and the transducer are both installed in the displacement cavity.
  • the accessory of the infrared spectrometer further includes a temperature control device for detecting and adjusting the temperature of the sample.
  • the sample is dispersed uniformly by the ultrasonic generator to ensure that the reactants react with each other uniformly during the detection process, so that the experimenter can observe the liquid-phase chemical reaction more accurately. Process and bacterial adhesion status to obtain more accurate experimental data.
  • FIG. 1 is a schematic structural diagram of an accessory of an infrared spectrometer in an embodiment of the present invention
  • Figure 2 is a top view of the accessory of the infrared spectrometer of Figure 1;
  • FIG. 3 is a longitudinal sectional view of an accessory of an infrared spectrometer in another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the accessory of the infrared spectrometer of FIG. 3.
  • a component when a component is called “installed on” another component, it may be directly on another component or a centered component may exist. When a component is considered to be “set on” another component, it can be directly set on another component or a centered component may exist at the same time. When a component is considered to be “fixed” to another component, it may be fixed directly to another component or there may be a centered component at the same time.
  • an infrared spectrometer accessory is provided.
  • the infrared spectrometer accessory is a transmission accessory and is mainly used in the field of analysis and detection for detecting functional group changes in a chemical reaction process in a liquid phase.
  • the accessory of the infrared spectrometer is used to assist the infrared spectrometer to detect the sample, so that the infrared spectrometer can obtain more accurate experimental data.
  • An infrared spectrometer accessory is used to detect functional group changes during a chemical reaction in a liquid phase, and includes: an ultrasonic generator 10 and a sample chamber 20.
  • the sample chamber 20 is provided with a sample cavity (not shown in the figure) and a detection light path channel 230 communicating with the sample cavity, so that the infrared light emitted by the infrared spectrometer can be irradiated to the sample and can receive the infrared light after the irradiation.
  • a detection light path channel 230 communicating with the sample cavity, so that the infrared light emitted by the infrared spectrometer can be irradiated to the sample and can receive the infrared light after the irradiation.
  • two ends of the detection light path channel 230 are further provided with transmission lenses (not shown in the figure), and the transmission lenses are parallel to each other to prevent foreign objects from entering the sample cavity and affect the detection result.
  • the distance between the transmission lens and the inner wall of the detection light path channel 230 is 0.01um-10000um.
  • the ultrasonic generator 10 includes a transducer 120 and a horn 110 for transmitting energy from the transducer 120 to the sample cavity.
  • One end of the horn 110 is connected to the transducer 120, and the other end is fixedly connected to the wall of the sample chamber 20.
  • the transducer 120 is used to control the horn 110 to apply ultrasonic waves to the transducer 120.
  • the sample in the sample cavity makes the overall distribution of the sample in the sample cavity more uniform, the chemical reaction between the samples is more sufficient, and the occurrence of sedimentation due to gravity is avoided or slowed down.
  • the vibration frequency adjustment range of the ultrasonic generator 10 is from 5 kHz to 50 kHz.
  • the horn 110 also serves as the sample chamber 20, the horn 110 is erected on the transducer 120, and the bottom of the horn 110 is connected to the transducer 120. And the top is provided with the sample cavity.
  • the sample cavity is opened inside the horn 110, and the transducer 120 directly applies ultrasonic waves to the sample through the horn 110 to reduce energy consumption during ultrasonic transmission.
  • the sample chamber 20 is a separate component, the horn 110 is erected on the transducer 120, the bottom of the horn 110 is connected to the transducer 120, and the top
  • the sample chamber 20 is fixedly connected to the sample chamber 20, and the fixed connection is welded to the top of the horn 110 by welding, and the sample chamber 20 is not connected to the support member 50 and the changer.
  • the transducer 120 is in contact with each other, and the transducer 120 applies ultrasonic waves to the sample in the sample chamber 20 through the horn 110.
  • the sample chamber 20 is provided with a first sample passage 210 and a second sample passage 220 respectively communicating with the sample chamber, and the other end is opened on the outer wall of the sample chamber 20 and the outer wall of the sample chamber 20
  • a first sample transfer tube 211 and a second sample transfer tube 221 corresponding to the first sample transfer channel 210 and the second sample channel 220 are also installed on the sample transfer channel and the sample transfer tube. Sealed fit.
  • a sample pump is connected to the sample tube connected to the first sample channel 210 and / or the second sample channel 220.
  • the arrangement of the sample tube includes two ways: open-loop and closed-loop.
  • a sample pump is arranged at the end of the second sampling pipeline; when the sample pipe is arranged in a closed loop, a sample pump is arranged on any sample pipe.
  • the sample transfer pump is disposed on the second sample transfer tube 221.
  • the first sample passage 210 and the second sample passage 220 are on a first horizontal line, and the detection light path channel 230 is on a second horizontal line.
  • the first horizontal line is perpendicular to the second horizontal line.
  • the first horizontal line is parallel to the second horizontal line.
  • the first horizontal line is perpendicular to the second horizontal line.
  • the infrared spectrometer accessory further includes a flow monitoring device 30 that monitors the flow rate of the sample in and out of the sample chamber 20.
  • the flow monitoring device 30 is installed on the sample tube.
  • the flow control range of the flow monitoring device 30 is 0.1 sccm to 10 sccm, and the control accuracy is 0.05 sccm.
  • the flow monitoring device 30 is installed on the second sample pipe 221 and is located between the temperature control device 40 and the sample chamber 20.
  • the flow monitoring device 30 is connected to the sample pump, and controls the sample pump to adjust the flow rate of the sample into and out of the sample chamber 20 based on the data monitored when the sample enters or leaves the sample chamber 20. .
  • the accessory of the infrared spectrometer further includes a temperature control device 40 for detecting and adjusting the temperature in the sample tank for accelerating or slowing down the reaction speed of the sample.
  • the temperature control range of the temperature control device 40 is -10 ° C to 60 ° C. °C, the temperature control accuracy is 0.2 °C.
  • the temperature control device 40 is located on an outer tube wall of the second sample tube 221 and can adjust the temperature at which the sample enters the sample chamber 20. It can be understood that the position of the temperature control device 40 is not limited, as long as the temperature in the sample chamber 20 can be adjusted.
  • the accessory of the infrared spectrometer further includes a support 50, and the ultrasonic generator 10, the temperature control device 40, and the flow monitoring device 30 are all fixedly connected to the support 50.
  • the fixed connection includes a snap connection, a bolt connection, an adhesive connection, or other fixed connection methods.
  • the supporting member 50 is provided with two columns, and the temperature control device 40 and the flow monitoring device 30 are respectively fixed on the columns to facilitate the flow of the sample in the sample tube.
  • the infrared spectrometer accessory further includes a power source, and the power source is configured to provide operating power of the infrared spectrometer accessory.
  • the ultrasonic generator 10 is used to disperse the sample uniformly, so that it avoids or slows down the settlement caused by gravity, and ensures that the reactants are uniformly mutually
  • the temperature control device 40 can control the temperature of the sample, so that the infrared spectrometer can capture the change of the infrared spectrum of the sample at different temperatures, so that the experimenter can more accurately observe the functional group changes of the liquid phase chemical reaction process and obtain a more accurate Experimental data.
  • an infrared spectrometer accessory is provided.
  • the infrared spectrometer accessory is an Attenuated Total Internal Reflection (ATR) accessory, which is mainly used in the field of analysis and detection to monitor liquid phase chemical reactions. Process and bacterial adhesion.
  • ATR Attenuated Total Internal Reflection
  • the accessory of the infrared spectrometer is used to assist the infrared spectrometer to detect the physical or chemical reaction of the sample or the sample, and to avoid the distortion of the spectral information obtained by the infrared spectrometer due to the sedimentation of the sample and other factors.
  • An infrared spectrometer accessory includes a sample chamber 20 and an ATR crystal 60.
  • the sample chamber 20 is provided with a sample cavity 240 therein, the sample cavity 240 is slot-shaped, and the sample chamber 20 is provided with the sample cavity 240.
  • the detection optical path channel 230 connected at the bottom, the ATR crystal 60 is installed in the detection optical path channel 230 and further includes an ultrasonic generator 10.
  • the ultrasonic generator 10 includes a horn 110 and a transducer 120.
  • One end of the horn 110 is connected to the transducer 120, and the other end extends into the sample cavity 240, which is the sample cavity.
  • the sample in 240 provides ultrasonic vibration, and the horn 110 is controlled by the transducer 120 to apply ultrasonic waves to the sample.
  • the horn 110 is suspended in the sample cavity 240, except that one end of the horn 110 is connected to the transducer 120, and the rest only contacts the sample.
  • the adjustment range of the vibration frequency of the ultrasonic wave is 40 kHz to 100 kHz.
  • the ATR crystal 60 is hermetically filled in the detection light path channel 230 and is hermetically matched with the sample cavity 240.
  • two ends of the detection light path channel 230 are further provided with a transmission window, and infrared light can penetrate the transmission window.
  • the transmission window is used to prevent the ATR crystal 60 from being contaminated by a foreign object and affect the detection result.
  • the accessory of the infrared spectrometer further includes a stage 130, and the transducer 120 is installed on the stage 130.
  • the stage 130 adjusts the position of the transducer 120 by adjusting the position of the transducer 120.
  • the position of the horn 110 allows the horn 110 to fully contact the sample, not only to disperse the sample at one place, but to make the entire sample in the sample cavity 240 more uniformly dispersed.
  • the adjustment range of the translation stage is 0 mm to 10 mm, and the adjustment accuracy is less than 20 nm.
  • the sample chamber 20 is provided with a displacement cavity 250 which is in communication with the sample cavity 240.
  • the displacement stage 130 and the transducer 120 are both installed in the displacement cavity 250.
  • the bottom of the displacement cavity 250 is higher than the ATR crystal 60
  • the horn 110 is in a zigzag shape
  • the two cross bars of the horn 110 are parallel to each other
  • one vertical bar is perpendicular to
  • the cross bar is fixedly connected to two cross bars.
  • the length and width of the horn 110 are smaller than the length and width of the sample cavity 240, respectively.
  • One end of the horn 110 connected to the transducer 120 is higher than the other end extending into the sample cavity 240, so that the horn 110 is in full contact with the sample.
  • the shape of the horn 110 is not limited, and only one end needs to be connected to the transducer 120 and the other end extends into the sample cavity 240 to contact the sample.
  • an avoiding portion 251 is located at a position where the displacement cavity 250 communicates with the sample cavity 240, and the avoiding portion 251 may be an avoidance hole or an escape opening.
  • a side wall of the sample cavity 240 is provided with an escape hole (not shown), the horn 110 extends into the sample cavity 240 through the escape hole, and the horn 110 It is tightly matched with the hole wall of the avoidance hole to prevent the sample from being spattered into the displacement cavity 250 during sample injection, thereby damaging the ultrasonic generator 10.
  • the horn 110 extends from the avoidance hole into the sample cavity 240, so that the displacement stage 130 drives the horn 110 to move relative to the direction of the passage of the avoidance hole.
  • a side wall of the sample cavity 240 is provided with an avoidance port (not shown), the horn 110 extends into the sample cavity 240 through the avoidance port, and the position of the avoidance port It is higher than the predetermined maximum height of the sample in the sample cavity 240.
  • the horn 110 extends from the avoidance port into the sample cavity 240, so that the displacement stage 130 drives the horn 110 to move through the avoidance port.
  • sample passages communicating with the sample chamber 240 are provided in the sample chamber 20, and a sample is inputted into or output from the sample chamber 240 through the sample passage.
  • sample passing tubes arranged on the sample passing channels.
  • the sample passages are a first sample passage 210 and a first sample passage 220, and a sample tube 20 is also installed on the sample chamber 20 to interface with each sample passage.
  • a sampling tube (not shown) provided with the sampling tube connected to the first sampling channel 210 and / or the first sampling channel 220 is provided.
  • the sampling pump provides flow for the sample.
  • the circulation flow mode is that the sample is circulated in the sample tube and the sample tank through the sample pump; the non-circulation flow mode is that the sample flows through the sample tank only once.
  • At least one opening of the first sample passage 210 and the first sample passage 220 in the sample cavity 240 is located in a portion of the sample cavity 240 that is lower than the displacement cavity 250.
  • one of the openings of the first sample passage 210 is located at the bottom of the sample cavity 240 to prevent the sample from being sputtered into the displacement cavity 250 when the sample enters the sample slot, thereby destroying the ultrasonic generation. ⁇ 10 ⁇ 10.
  • the top of the sample cavity 240 has an opening, and a sealing cover 241 detachably connected to the sample chamber 20 is provided at the opening portion, and the sealing cover 241 covers the opening of the sample cavity 240 to prevent The sample is spilled from the sample cavity 240.
  • the sample cavity 240 is sealedly connected to the sealing cover 241 for detecting a gas sample or a gas-phase chemical reaction of the detection gas, preventing the gas in the sample cavity 240 from flowing out, and reducing environmental interference during detection.
  • the accessory of the infrared spectrometer further includes a temperature control device 40 for detecting and adjusting the temperature in the sample cavity 240, for analyzing a specific correspondence between the physical or chemical reaction rate of the sample and the temperature, or adjusting the reaction rate.
  • the number of the temperature control devices 40 is two, which are respectively located on both sides of the outer wall of the sample cavity 240. It can be understood that the temperature control device 40 can also be 1, 3, 4, or other values, as long as the temperature control device 40 can adjust the temperature in the sample cavity 240.
  • the temperature monitoring response of the temperature control device 40 is -60 ° C to 200 ° C
  • the temperature control range is -30 ° C to 150 ° C
  • the temperature control accuracy is 0.1 ° C.
  • the infrared spectrometer accessory further includes a power source, and the power source is configured to provide operating power of the infrared spectrometer accessory.
  • the sample is dispersed uniformly by the ultrasonic generator 10 to ensure that the reactants react with each other uniformly during the detection process, so that the experimenter can observe the liquid more accurately. Phase chemical reaction process and bacterial adhesion, to obtain more accurate experimental data.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种红外光谱仪附件,红外光谱仪附件包括:样品室(20),开设有样品腔以及与样品腔连通的检测光路通道(230);超声波发生器(10),包括换能器(120)以及将来自换能器(120)的能量传递至样品腔内的变幅杆(110)。在红外光谱仪检测的同时,通过超声波发生器(10)将样品分散均匀,保证检测过程中反应物之间均匀地相互反应,让实验人员可以更加精确的观察液相化学反应过程和细菌粘附状况,获得更加准确的实验数据。

Description

红外光谱仪附件
相关申请
本申请要求2018年9月21日申请的,申请号为201811107957.0,名称为“红外光谱仪附件”的中国专利申请的优先权;以及本申请要求2018年9月21日申请的,申请号为201811117886.2,名称为“红外光谱仪附件”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及分析检测领域,具体涉及一种红外光谱仪附件。
背景技术
红外光谱仪是一种基于不同物质的红外光吸收差异对物质结构和化学组成进行检测分析的仪器,广泛应用于材料科学、高分子化学、石油工业、生物医学和日用化工等领域。不过,不同领域的待测物质结构和形态往往有很大差异,因而需要在测试之前将样品放置于合适的附件中以便红外光能够与待测物质充分接触,目前常用的附件可以分为透射附件和衰减全内反射(ATR)附件两大类,其中透射附件是较为常用的一类。
透射附件一般包括两个红外窗片和一个窗片托,样品承载于两个窗片之间,以液体样品较为常见,这类透射附件能够很好地完成某个时间点的测试任务,但是红外光谱作为一种光谱技术可以提供连续的红外光检测分析,此时透射附件中的样品往往会因重力等作用发生一定程度的沉降,实际的反应效果难以被红外光客观地获取。
常规的ATR附件除了无法较为客观地检测细菌在表面的粘附行为外,也 很难用于化学反应的监测,其主要原因包括反应物容易受重力影响发生沉降,静置的反应物之间很难均匀地相互反应等。
发明内容
基于此,有必要针对被检测的样品因重力等作用发生沉降,无法使样品之间充分反应等问题,提供一种红外光谱仪附件。
一种红外光谱仪附件,所述的红外光谱仪附件包括:
样品室,开设有样品腔以及与所述样品腔连通的检测光路通道;
超声波发生器,包括换能器以及将来自所述换能器的能量传递至所述样品腔内的变幅杆。
在其中一个实施例中,所述红外光谱仪附件还包括支撑件,所述换能器安装于所述支撑件上。
在其中一个实施例中,所述变幅杆一端与所述换能器连接,另一端与所述样品室固定连接,且所述样品室不与所述支撑件和所述换能器相接触。
在其中一个实施例中,所述变幅杆兼做样品室,所述样品腔开设在所述变幅杆的内部。
在其中一个实施例中,所述样品室开设有分别与所述样品腔连通的至少两条过样通道,在所述样品室外壁上还安装有与各所述过样通道密封连接的外接过样管。
在其中一个实施例中,至少一根过样管上设置有过样泵。
在其中一个实施例中,所述红外光谱仪附件还包括监测样品出入样品室流速的流量监测装置,所述流量监测装置安装于其中一条所述过样管上。
在其中一个实施例中,所述变幅杆立置于所述换能器,所述变幅杆底部 与所述换能器连接,且顶部开设有所述样品腔。
在其中一个实施例中,所述过样通道包括第一过样通道和第二过样通道,所述第一过样通道和所述第二过样通道处于第一水平线上,所述检测光路通道处于第二水平线上,所述第一水平线高于所述第二水平线。
在其中一个实施例中,还包括ATR晶体,所述ATR晶体安装于所述检测光路通道内,与所述样品腔密封连接。
在其中一个实施例中,还包括位移台,所述换能器安装于所述位移台。
在其中一个实施例中,所述样品槽侧壁设置有避让部,所述变幅杆经由所述避让部伸入所述样品槽内。
在其中一个实施例中,所述避让部为避让孔或避让口;
所述变幅杆经由所述避让孔伸入所述样品槽内,且所述变幅杆与所述避让孔的孔壁之间密封配合;
所述变幅杆经由所述避让口伸入所述样品槽内,且所述避让口的位置高于所述样品槽内预定的样品最高高度。
在其中一个实施例中,所述样品室开设有位移腔,所述位移台以及所述换能器均安装于所述位移腔内。
在其中一个实施例中,所述红外光谱仪附件还包括检测并调节样品温度的温控装置。
本发明提供的实施方式,在红外光谱仪检测的同时,通过所述超声波发生器将样品分散均匀,保证检测过程中反应物之间均匀地相互反应,让实验人员可以更加精确的观察液相化学反应过程和细菌粘附状况,获得更加准确的实验数据。
附图说明
图1为本发明一实施例中红外光谱仪附件的结构示意图;
图2为图1红外光谱仪附件的俯视图;
图3为本发明另一实施例中红外光谱仪附件的纵向剖视图;
图4为图3红外光谱仪附件的横向剖视图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“装设于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。当一个组件被认为是“固定于”另一个组件,它可以是直接固定在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
在一个实施例中,请参阅图1和图2,提供一种红外光谱仪附件,所述红外光谱仪附件属于透射附件,主要应用于分析检测领域,用于检测液相中化学反应过程中官能团变化。所述红外光谱仪附件用于辅助红外光谱仪对样品进行 检测,使所述红外光谱仪获得更加准确的实验数据。
一种红外光谱仪附件,用于检测液相中化学反应过程中官能团变化,包括:超声波发生器10以及样品室20。
可选地,所述样品室20开设有样品腔(图未标)以及与所述样品腔连通的检测光路通道230,让红外光谱仪发射的红外光线可以照射到样品,且可接收照射过后的红外光线。在本实施例中,所述检测光路通道230的两端还设置有透射镜片(图未标),各所述透射镜片相互平行,防止异物进入所述样品腔内,影响检测结果。所述透射镜片与所述检测光路通道230内壁之间的间距为0.01um-10000um。
可选地,所述超声波发生器10包括:换能器120以及将来自所述换能器120的能量传递至所述样品腔内变幅杆110。所述变幅杆110一端与所述换能器120连接,另一端与所述样品室20的室壁固定连接,通过所述换能器120控制所述变幅杆110将超声波作用于所述样品腔内的样品,使所述样品腔内的样品整体分布的更加均匀,样品之间的化学反应更加充分,避免或减缓受重力作用发生沉降。在一个实施例中,所述超声波发生器10的振动频率调节范围为5kHz~50kHz。
在本实施例中,所述变幅杆110兼做样品室20,所述变幅杆110立置于所述换能器120,所述变幅杆110底部与所述换能器120连接,且顶部开设有所述样品腔。所述样品腔开设在所述变幅杆110的内部,所述换能器120通过所述变幅杆110直接将超声波作用于样品,降低超声波传输时的能量消耗。
在另一个实施例中,所述样品室20为单独的部件,所述变幅杆110立置于所述换能器120,所述变幅杆110底部与所述换能器120连接,顶部与所述样品室20固定连接,所述固定连接采用焊接的方式将所述样品室20焊接在所述 变幅杆110顶部,且所述样品室20不与所述支撑件50和所述换能器120相接触,所述换能器120通过所述变幅杆110将超声波作用于所述样品室20内的样品。
可选地,所述样品室20开设有分别与所述样品腔连通的第一过样通道210以及第二样通道220,另一端开口开设于所述样品室20外壁在所述样品室20外壁上还安装有与所述第一过样通道210和所述第二样通道220对应的第一过样管211和所述第二过样管221,所述过样通道和所述过样管密封配合。具体地,所述第一过样通道210和/或所述第二样通道220连接的过样管设置有过样泵。根据检测需求,过样管的布置方式包括开环和闭环两种方式。过样管开环布置时,在所述第二进样管路端布置过样泵;过样管闭环布置时,在任一过样管上布置过样泵。在本实施例中,所述过样泵设置于所述第二过样管221。
可选地,所述第一过样通道210和所述第二过样通道220处于第一水平线上,所述检测光路通道230处于第二水平线上。在本实施例中,所述第一水平线垂直于所述第二水平线。在另一个实施例中,所述第一水平线平行于所述第二水平线。优选的,所述第一水平线垂直于所述第二水平线。
可选地,所述红外光谱仪附件还包括监控样品出入样品室20流速的流量监测装置30。具体地,所述流量监测装置30安装于过样管上,所述流量监测装置30的流量控制范围为0.1sccm~10sccm,控制精度为0.05sccm。在本实施例中,所述流量监测装置30安装于所述第二过样管221上,且位于所述温控装置40与所述样品室20之间。在另一个实施例中,所述流量监测装置30与所述过样泵连接,根据监测到样品出入所述样品室20内的数据控制所述过样泵调节样品出入所述样品室20的流速。
可选地,所述红外光谱仪附件还包括检测并调节样品槽内温度的温控装 置40,用于加快或减缓样品的反应速度,所述温控装置40的温控范围为-10℃~60℃,控温精度为0.2℃。在本实施例中,所述温控装置40位于所述第二过样管221的外管壁,可调节样品进入所述样品室20内的温度。可以理解,所述温控装置40位置不限,只需可调节所述样品室20内的温度即可。
可选地,所述红外光谱仪附件还包括支撑件50,所述超声波发生器10、所述温控装置40以及所述流量监测装置30均固定连接所述支撑件50上。所述固定连接包括卡扣连接、螺栓连接、胶黏剂连接或其他固定连接方式。在本实施例中,所述支撑件50设置有两个立柱,所述温控装置40以及所述流量监测装置30分别固定于各所述立柱上,便于样品在过样管中流动。
可选地,所述红外光谱仪附件还包括电源,所述电源用于提供所述红外光谱仪附件的运行电能。
上述红外光谱仪附件的实施方式中,在红外光谱仪检测的同时,通过所述超声波发生器10将样品分散均匀,使其避免或减缓受重力作用发生沉降,保证检测过程中反应物之间均匀地相互反应,布置的温控装置40能够控制样品的温度,使红外光谱仪能够捕捉样品在不同温度下的红外光谱变化,让实验人员可以更加精确的观察液相化学反应过程的官能团变化,获得更加准确的实验数据。
在一个实施例中,请参阅图3与图4,提供一种红外光谱仪附件,所述红外光谱仪附件属于衰减全内反射(ATR)附件,主要应用于分析检测领域,用以监测液相化学反应过程和细菌粘附状况。所述红外光谱仪附件用于辅助红外光谱仪对样品或样品的物理化学反应进行检测,避免红外光谱仪获得的光谱信息因样品的沉降作用等因素导致失真。
一种红外光谱仪附件,包括样品室20以及ATR晶体60,所述样品室20 内部开设有样品腔240,所述样品腔240为槽状,所述样品室20内开设有与所述样品腔240底部连通的检测光路通道230,所述ATR晶体60安装于所述检测光路通道230内,还包括:超声波发生器10。
所述超声波发生器10包括:变幅杆110以及换能器120,所述变幅杆110一端与所述换能器120连接,另一端延伸至所述样品腔240内,为所述样品腔240内的样品提供超声波振动,通过所述换能器120控制所述变幅杆110将超声波作用于样品。在本实施例中,所述变幅杆110悬置在所述样品腔240内,所述变幅杆110除了一端与所述换能器120连接,其余部分只与所述样品进行接触。在本实施例中,所述超声波的振动频率调节范围为40kHz~100kHz。
可选地,所述ATR晶体60密封填充在所述检测光路通道230中,与所述样品腔240密封配合。在本实施例中,所述检测光路通道230的两端还设置有透射窗片,红外光可穿透所述透射窗片。所述透射窗片用于防止所述ATR晶体60被异物沾染,影响检测结果。
可选地,所述红外光谱仪附件还包括位移台130,所述换能器120安装于所述位移台130,所述位移台130通过调节所述换能器120的位置以达到调节所述变幅杆110的位置,使所述变幅杆110与所述样品充分接触,不只在一处对所述样品进行分散,让所述样品腔240内的所述样品整体分散的更为均匀。在本实施例中,所述位移台的调节范围为0mm~10mm,调节精度小于20nm。
可选地,所述样品室20开设有位移腔250,所述位移腔250与所述样品腔240连通,所述位移台130以及所述换能器120均安装于所述位移腔250内。在本实施例中,所述位移腔250的底部高于所述ATR晶体60,所述变幅杆110为Z字型,所述变幅杆110两条横杆相互平行,一条竖杆垂直于横杆且与两条横杆固定连接,所述变幅杆110的长度和宽度分别小于所述样品腔240的长度 和宽度。所述变幅杆110与所述换能器120连接的一端高于延伸至所述样品腔240内的另一端,使所述变幅杆110与所述样品充分接触。可以理解,所述变幅杆110形状不限,只需一端与所述换能器120连接,另一端延伸至所述样品腔240内与所述样品接触。
可选地,所述位移腔250与所述样品腔240连通处为避让部251,所述避让部251可以为避让孔或避让口。在本实施例中,所述样品腔240侧壁设置有避让孔(图未标),所述变幅杆110经由所述避让孔伸入所述样品腔240内,且所述变幅杆110与所述避让孔的孔壁之间密封配合,防止进样时,样品溅射至所述位移腔250内,破坏所述超声波发生器10。所述变幅杆110从所述避让孔伸入所述样品腔240内,使所述位移台130带动所述变幅杆110相对于所述避让孔的孔道方向进行移动。在另一个实施例中,所述样品腔240侧壁设置避让口(图未标),所述变幅杆110经由所述避让口伸入所述样品腔240内,且所述避让口的位置高于所述样品腔240内预定的样品最高高度。所述变幅杆110从所述避让口伸入所述样品腔240内,使所述位移台130带动所述变幅杆110在所述避让口进行移动。
可选地,所述样品室20内至少设有两条与所述样品腔240连通的过样通道,通过所述过样通道将样品输入或输出所述样品腔240,在所述样品室20上还布置有与各过样通道对接的过样管。具体地,所述过样通道分别为第一过样通道210以及第一过样通道220,在样品室20上还安装有与各过样通道对接的过样管。在本实施例中,所述第一过样通道210和/或所述第一过样通道220连接的过样管设置有过样泵(图未示),所述过样泵为样品提供流动的动力,所述流动的方式包括循环流动和不循环流动两种。循环流动方式为所述样品在通过所述过样泵将在过样管和样品槽内循环;不循环流动方式为所述样品只在所述 样品槽内流经一次。
可选地,所述第一过样通道210和所述第一过样通道220样品腔240至少有一个开口位于所述样品腔240内低于所述位移腔250的部分。在本实施例中,所述第一过样通道210其中一个开口位于所述样品腔240底部,防止样品进入所述样品槽时,样品溅射至所述位移腔250内,破坏所述超声波发生器10。
可选地,所述样品腔240的顶部具有开口,在所述开口部位设有与所述样品室20可拆卸连接的密封盖241,所述密封盖241覆盖所述样品腔240的开口,防止所述样品从所述样品腔240中洒出。在本实施例中,所述样品腔240与所述密封盖241密封连接,用于检测气体样品或检测气体气相化学反应,防止所述样品腔240内气体流出,降低检测时的环境干扰。
可选地,所述红外光谱仪附件还包括检测并调节样品腔240内的温度的温控装置40,用于分析样品的物理或化学反应速率与温度的特定对应关系,或调整所述反应速率。在本实施例中,所述温控装置40数量为两个,分别位于所述样品腔240外壁两侧。可以理解,所述温控装置40也可以为1、3、4或其他数值,只需所述温控装置40可调节所述样品腔240内的温度即可。本实施例中,所述温控装置40的温度监测反应为-60℃~200℃,温控范围为-30℃~150℃,控温精度为0.1℃。
可选地,所述红外光谱仪附件还包括电源,所述电源用于提供所述红外光谱仪附件的运行电能。
上述红外光谱仪附件的实施方式中,在红外光谱仪检测的同时,通过所述超声波发生器10将样品分散均匀,保证检测过程中反应物之间均匀地相互反应,让实验人员可以更加精确的观察液相化学反应过程和细菌粘附状况,获得更加准确的实验数据。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种红外光谱仪附件,其特征在于,所述的红外光谱仪附件包括:
    样品室,开设有样品腔以及与所述样品腔连通的检测光路通道;
    超声波发生器,包括换能器以及将来自所述换能器的能量传递至所述样品腔内的变幅杆。
  2. 根据权利要求1所述的红外光谱仪附件,其特征在于,所述红外光谱仪附件还包括支撑件,所述换能器安装于所述支撑件上。
  3. 根据权利要求2所述的红外光谱仪附件,其特征在于,所述变幅杆一端与所述换能器连接,另一端与所述样品室固定连接,且所述样品室不与所述支撑件和所述换能器相接触。
  4. 根据权利要求1所述的红外光谱仪附件,其特征在于,所述变幅杆兼做样品室,所述样品腔开设在所述变幅杆的内部。
  5. 根据权利要求1或4任一项所述的红外光谱仪附件,其特征在于,所述样品室开设有分别与所述样品腔连通的至少两条过样通道,在所述样品室外壁上还安装有与各所述过样通道密封连接的外接过样管。
  6. 根据权利要求5所述的红外光谱仪附件,其特征在于,至少一根过样管上设置有过样泵。
  7. 根据权利要求5所述的红外光谱仪附件,其特征在于,所述红外光谱仪附件还包括监测样品出入样品室流速的流量监测装置,所述流量监测装置安装于其中一条所述过样管上。
  8. 根据权利要求5所述的红外光谱仪附件,其特征在于,所述变幅杆立置于所述换能器,所述变幅杆底部与所述换能器连接,且顶部开设有所述样品腔。
  9. 根据权利要求5所述的红外光谱仪附件,其特征在于,所述过样通道包 括第一过样通道和第二过样通道,所述第一过样通道和所述第二过样通道处于第一水平线上,所述检测光路通道处于第二水平线上,所述第一水平线高于所述第二水平线。
  10. 根据权利要求1所述的红外光谱仪附件,其特征在于,还包括ATR晶体,所述ATR晶体安装于所述检测光路通道内,与所述样品腔密封连接。
  11. 根据权利要求10所述的红外光谱仪附件,其特征在于,还包括位移台,所述换能器安装于所述位移台。
  12. 根据权利要求11所述的红外光谱仪附件,其特征在于,所述样品槽侧壁设置有避让部,所述变幅杆经由所述避让部伸入所述样品槽内。
  13. 根据权利要求12所述的红外光谱仪附件,其特征在于,所述避让部为避让孔或避让口;
    所述变幅杆经由所述避让孔伸入所述样品槽内,且所述变幅杆与所述避让孔的孔壁之间密封配合;
    所述变幅杆经由所述避让口伸入所述样品槽内,且所述避让口的位置高于所述样品槽内预定的样品最高高度。
  14. 根据权利要求12或13所述的红外光谱仪附件,其特征在于,所述样品室开设有位移腔,所述位移台以及所述换能器均安装于所述位移腔内。
  15. 根据权利要求1所述的红外光谱仪附件,其特征在于,所述红外光谱仪附件还包括检测并调节样品温度的温控装置。
PCT/CN2018/125076 2018-09-21 2018-12-28 红外光谱仪附件 WO2020057004A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811107957.0 2018-09-21
CN201811117886.2A CN110954478A (zh) 2018-09-21 2018-09-21 红外光谱仪附件
CN201811107957.0A CN110954477B (zh) 2018-09-21 2018-09-21 红外光谱仪附件
CN201811117886.2 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020057004A1 true WO2020057004A1 (zh) 2020-03-26

Family

ID=69888214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125076 WO2020057004A1 (zh) 2018-09-21 2018-12-28 红外光谱仪附件

Country Status (1)

Country Link
WO (1) WO2020057004A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188474B1 (en) * 1998-05-13 2001-02-13 Bayer Corporation Optical spectroscopy sample cell
CN201524640U (zh) * 2009-11-02 2010-07-14 邱永红 气动雾化与超声雾化相结合的高效雾化器
CN104180654A (zh) * 2014-08-21 2014-12-03 重庆科技学院 一种超声振动活化辅助烧结管式炉
CN104180655A (zh) * 2014-08-21 2014-12-03 重庆科技学院 一种超声振动活化辅助烧结箱式电阻炉
CN104729294A (zh) * 2015-03-20 2015-06-24 重庆科技学院 一种超声波振动活化辅助微波烧结炉
CN108169186A (zh) * 2017-12-26 2018-06-15 中国科学院宁波材料技术与工程研究所 一种衰减全内反射光谱仪及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188474B1 (en) * 1998-05-13 2001-02-13 Bayer Corporation Optical spectroscopy sample cell
CN201524640U (zh) * 2009-11-02 2010-07-14 邱永红 气动雾化与超声雾化相结合的高效雾化器
CN104180654A (zh) * 2014-08-21 2014-12-03 重庆科技学院 一种超声振动活化辅助烧结管式炉
CN104180655A (zh) * 2014-08-21 2014-12-03 重庆科技学院 一种超声振动活化辅助烧结箱式电阻炉
CN104729294A (zh) * 2015-03-20 2015-06-24 重庆科技学院 一种超声波振动活化辅助微波烧结炉
CN108169186A (zh) * 2017-12-26 2018-06-15 中国科学院宁波材料技术与工程研究所 一种衰减全内反射光谱仪及其应用

Similar Documents

Publication Publication Date Title
JP4569030B2 (ja) 外部光下で計測可能な蛍光検出方法、および装置
US6764651B2 (en) Fiber-optic dissolution systems, devices, and methods
EP1826548B1 (en) Fast microbiological analysis device and method
CN105158199B (zh) 一种测试太赫兹波在不同气体环境下吸收响应的装置
US10429307B2 (en) Spectrometric measuring device
CN105466778A (zh) 一种适用于多环境真空测试的设备
SE537365C2 (sv) Anordning, förfarande och utrustning för kalibrering av en anordning avsedd för alkoholutandningsprov
US20210310925A1 (en) Centrifugal sedimentation type particle size distribution measuring device
US11092521B2 (en) Method and system for acoustically treating material
WO2020057004A1 (zh) 红外光谱仪附件
CN204154640U (zh) 检测装置及具有该检测装置的水质在线检测系统
US20210371785A1 (en) Disposable Cell for In Situ Monitoring Probe
CN103582521A (zh) 反应装置
CN110954477B (zh) 红外光谱仪附件
US11921062B2 (en) Anti-frosting and anti-dew device for spectroscopic measurements
US11280730B2 (en) Bioprocess container having an optical measuring device
CN104353512B (zh) 一种全包围式水浴循环恒温加热装置
CN110954478A (zh) 红外光谱仪附件
CN104297178A (zh) 检测装置及具有该检测装置的水质在线检测系统
CN220323118U (zh) 一种太赫兹超材料集成微流控传感器的自动注液机
CN110726672B (zh) 一种太赫兹时域光谱分析室
US20160209321A1 (en) Flow Apparatus For A Spectrometer System And Method For Operating Same
US20210309957A1 (en) Apparatus for monitoring gas molecules in fermentation based processes
KR100354959B1 (ko) 분석영역 선택형 적외선 분광분석 진공장치
JP2001050892A (ja) 液状または流動状の被測定対象の特性を測定するセンサ、当該センサを用いた液状または流動状の被測定対象の特性を測定するセンサ装置、および、その方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933761

Country of ref document: EP

Kind code of ref document: A1