WO2020056836A1 - 柔性射频振荡器 - Google Patents

柔性射频振荡器 Download PDF

Info

Publication number
WO2020056836A1
WO2020056836A1 PCT/CN2018/111232 CN2018111232W WO2020056836A1 WO 2020056836 A1 WO2020056836 A1 WO 2020056836A1 CN 2018111232 W CN2018111232 W CN 2018111232W WO 2020056836 A1 WO2020056836 A1 WO 2020056836A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
radio frequency
frequency oscillator
field effect
oscillator according
Prior art date
Application number
PCT/CN2018/111232
Other languages
English (en)
French (fr)
Inventor
原毅
张孟伦
庞慰
杨清瑞
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2020056836A1 publication Critical patent/WO2020056836A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator

Definitions

  • the present invention relates to the field of semiconductor technology, and particularly to a flexible radio frequency oscillator.
  • An oscillator is a module that can generate a periodic electrical signal under DC drive.
  • the oscillator can provide high-frequency signals for modulation and demodulation for communication devices, and it can also provide synchronization signals for the coordinated work of various modules in electronic systems. It is an indispensable and important part in communication and electronic systems.
  • Oscillators are widely used in mobile phones, computers, radars and other electronic equipment.
  • the oscillator can provide the clock signal as the system's synchronous clock circuit; in the wireless communication system, the oscillator is a key component of the phase-locked loop and frequency synthesizer.
  • the structure of the oscillator is shown in Figure 1. An alternating current signal of a certain frequency is generated by the oscillation circuit.
  • MEMS Micro-Electro-Mechanical System
  • the traditional MEMS oscillator is based on a silicon wafer, which makes the device unable to maintain good performance under deformation such as tension, compression, bending, and twisting. Therefore, if it is possible to design and manufacture a flexible MEMS oscillator, it will further expand the scope of application of flexible electronics and promote the further development of the field of flexible electronics.
  • the present invention provides a flexible radio frequency oscillator to solve the technical problems of poor flexibility and narrow application range in the prior art.
  • the flexible radio frequency oscillator of the present invention comprises: a flexible substrate, a frequency selection network, a flexible electrical component, and a flexible circuit connection, wherein the frequency selection network, the flexible electrical component, and the flexible circuit connection are all located on the flexible substrate;
  • the frequency selection network is used to obtain a signal in a required frequency range;
  • the flexible circuit connection is used to electrically connect the frequency selection network and the flexible electrical component.
  • the frequency selection network includes a thin-film bulk acoustic wave filter, a solid-mounted resonator, a silicon piezoelectric thin film, or a Lamb wave resonator.
  • the frequency selection network is the thin-film bulk acoustic wave filter, a solid-assembly resonator, or a Lamb wave resonator
  • a top of the flexible substrate has a cavity, and the position of the cavity is different from that of the cavity.
  • the frequency selection network position alignment is described.
  • the cross section of the cavity is circular, triangular or polygonal.
  • a cross-sectional size of the cavity is larger than a size of an effective working area of the frequency selection network, and is less than 80% of a plane size of the frequency selection network.
  • the cavity is processed by a hot stamping method or an etching method.
  • the cavity depth is greater than 2 ⁇ m.
  • the flexible electrical element includes one or more combinations of the following options: a flexible field effect tube, a flexible capacitor, a flexible inductor, and a flexible resistor.
  • the flexible field effect tube includes one or more combinations of the following options: a two-dimensional material field effect tube, an organic material field effect tube, a carbon nanotube field effect tube, and a heterojunction field effect tube.
  • the two-dimensional material flexible field effect tube is a graphene thin film field effect tube, a black phosphorus thin film field effect tube, a molybdenum disulfide field effect tube, a gallium arsenide field effect tube, or a gallium nitride field effect tube.
  • the cross-sectional width of the flexible circuit connection is less than 5 mm, the height is less than 1 mm, and the aspect ratio is less than 10: 1.
  • the thickness of the flexible substrate is 1 ⁇ m to 1 mm.
  • the thickness of the electrical element is 10 nm to 10 ⁇ m.
  • the frequency selection network is migrated from a hard substrate to the flexible substrate by means of stamp transfer.
  • the flexible radio frequency oscillator according to the embodiment of the present invention has the advantages of light weight, extensibility, flexibility, adaptability to complex undulating surfaces, convenient carrying, reliable performance, and good biocompatibility.
  • Figure 1 is a structural block diagram of an oscillator
  • FIG. 2A is a schematic structural diagram of a flexible MEMS oscillator in a normal state according to an embodiment of the present invention
  • 2B is a schematic structural diagram of a flexible MEMS oscillator in a bent state according to an embodiment of the present invention
  • FIG. 3 is a bending performance test chart of the device shown in FIG. 2A;
  • FIG. 4 is a schematic perspective view of a flexible MEMS oscillator according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an FBAR-type flexible MEMS oscillator according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an LWR-type flexible MEMS oscillator according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of "plurality” is two or more, unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and other terms shall be understood in a broad sense unless otherwise specified and defined, for example, they may be fixed connections or removable connections , Or integrally connected; it can be mechanical or electrical; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two elements.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • the "first" or “down” of the second feature may include the first and second features in direct contact, and may also include the first and second features. Not directly, but through another characteristic contact between them.
  • the first feature is “above”, “above”, and “above” the second feature, including that the first feature is directly above and obliquely above the second feature, or merely indicates that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” of the second feature.
  • the first feature is directly below and obliquely below the second feature, or simply indicates that the first feature is less horizontal than the second feature.
  • the invention provides a flexible radio frequency oscillator, which includes a flexible substrate, a frequency selection network, a flexible electrical component, and a flexible circuit connection.
  • the frequency selection network, the flexible electrical component, and the flexible circuit connection are all located on the flexible substrate.
  • Frequency selection networks are used to obtain signals in the desired frequency range.
  • the flexible circuit connection is used to electrically connect the frequency selection network and the flexible electrical element.
  • the flexible radio frequency oscillator according to the embodiment of the present invention has the advantages of light weight, extensibility, flexibility, adaptability to complex undulating surfaces, convenient carrying, reliable performance, and good biocompatibility.
  • the flexible substrate can be made of polyimide (PI), parylene, polypropylene (PP), polyacrylate, polycarbonate (PC), polyester resin (PET), polynaphthalene Diethylene glycol dicarboxylate (PEN), polyethersulfone (PES), polyetherimide (PEI), polydimethylsiloxane (PDMS), polyvinyl alcohol (PVA), polyurethane, polyamide, poly Polyethylene terephthalate, vinyl butyral, polyvinyl chloride, polyvinylidene fluoride, polyvinyl sulfide, various fluoropolymers (FEP), etc., but not limited to the above materials .
  • the thickness of the flexible substrate is 1 ⁇ m to 1 mm.
  • the frequency selection network is a kind of frequency-sensitive circuit, which can greatly reduce unwanted frequencies and separate the target frequency from the input signal to achieve the filtering effect.
  • the frequency selection network can be composed of a thin film bulk acoustic wave (FBAR) filter, a solid-mounted resonator (SMR), a thin-film piezoelectric-on-silicon (short for short) (TPOS) resonator, lamb-wave-resonator (LWR), etc., but not limited to the above components.
  • the thin film bulk acoustic resonator is a piezoelectric effect-based resonator composed of an electrode-piezoelectric layer-electrode.
  • the material of the electrode may be aluminum, gold, molybdenum, tungsten, titanium, etc., but is not limited to the above materials.
  • the material of the piezoelectric layer may be aluminum nitride, zinc oxide, lead zirconate titanate, etc., but is not limited to the above materials.
  • the solid-assembly resonator is formed by adding a Bragg reflection layer on the basis of a thin-film bulk acoustic resonator.
  • the Bragg reflection layer is formed by alternately stacking high and low acoustic impedance layers to reduce the leakage of sound waves.
  • the Lamb wave resonator is composed of a piezoelectric layer, an interdigital electrode and a reflective grid. The materials of the piezoelectric layer and the electrode are the same as those of the thin-film bulk acoustic wave resonator.
  • the frequency selection network is migrated from a hard substrate to the above-mentioned flexible substrate by means of seal transfer. Compared with the method of directly forming a frequency selection network on a flexible substrate, this method has lower process difficulty and higher yield.
  • the cavity should be manufactured at the corresponding position of the flexible substrate and the frequency selection network according to requirements to form an air interface.
  • the cross-sectional shape of the cavity includes a circle, a triangle, a polygon, or any combination thereof.
  • the cavity depth is greater than 2 ⁇ m.
  • the cross-sectional size of the cavity is larger than the effective working area size of the frequency selection network, but less than 80% of the plane size of the frequency selection network to avoid the deformation of the package during the bending and distortion process affecting its support for the frequency selection network.
  • hot embossing and etching There are two methods for preparing the cavity: hot embossing and etching.
  • the hot stamping method uses a stamper to create a corresponding cavity on a flexible substrate.
  • the etching rule is to process a cavity directly on a flexible substrate by using a method such as reactive ion etching (Reactive ion etching, RIE for short).
  • Flexible electrical components include field effect transistors (FETs), capacitors, inductors, resistors and other necessary electrical circuits for oscillator circuits. These components are responsible for complementing phase shift, adjusting gain, and frequency selection.
  • FETs field effect transistors
  • the types of flexible FETs include FETs made from two-dimensional materials (graphene, black phosphorus, MoS 2 , GaAs, GaN, etc.), organic FETs, FETs made with carbon nanotubes, heterojunction FETs, etc., but not limited to the above .
  • the thickness of the electrical element is between 10 nm and 10 ⁇ m.
  • the flexible circuit connection assumes the role of electrical connection between the frequency selection network and the electrical components and between the electrical components.
  • the cross-sectional shape of the flexible circuit connection is approximately rectangular.
  • the cross-section width of the flexible circuit connection is less than 5mm, the height is less than 1mm, and the aspect ratio is less than 10: 1.
  • the material for the flexible circuit connection is any one or a combination of two or more of copper, silver, aluminum, nickel, cobalt, and gold.
  • the above four parts of the flexible substrate, the frequency selection network, the flexible electrical component, and the flexible circuit connection are all flexible thin film structures.
  • FIG. 2A is a schematic structural diagram of a flexible MEMS oscillator in a normal state according to an embodiment of the present invention.
  • the flexible MEMS oscillator includes a flexible substrate 11, a frequency selection network 12, a flexible electrical component 13, and a flexible circuit connection 14.
  • a top of the flexible substrate 11 has a cavity 10 aligned with the frequency selection network 12.
  • the flexible MEMS shown in FIG. 2A is shown in FIG. 2B in a bent state.
  • the flexible MEMS oscillator can work normally when the minimum bending radius is less than 10 cm or the tensile limit is greater than 15%, and the flexible substrate does not show obvious cracks or damage.
  • the bending performance test chart is shown in FIG. 3.
  • FIG. 4 is a schematic perspective view of a flexible MEMS oscillator according to an embodiment of the present invention.
  • the flexible MEMS oscillator includes: a flexible substrate 11, a frequency selection network 12, flexible electrical components (specifically including a flexible field effect tube 13a, a flexible resistor 13b, a flexible capacitor 13c, and a flexible inductor 13d) and a flexible circuit connection. 14.
  • FIG. 5 is a schematic structural diagram of an FBAR-type flexible MEMS oscillator according to an embodiment of the present invention.
  • the flexible MEMS oscillator includes: a flexible substrate 11, an FBAR structure 12 a, a flexible electrical element (specifically including a flexible field effect tube 13 a, a flexible resistor 13 b, a flexible capacitor 13 c, and a flexible inductor 13 d) and a flexible circuit connection 14 .
  • the flexible field effect tube 13a is a black phosphorus thin film field effect tube.
  • the preparation method of the cavity is as follows: a stamper is made, and the stamper has protrusions corresponding to the cavity.
  • a substrate made of a flexible material is placed on a stamper, and a flexible substrate 11 with a cavity 10 is obtained by a hot embossing method (that is, applying a certain pressure at a certain temperature and holding it for a period of time).
  • the cavity 10 can also be directly etched on the flexible substrate 11 by the RIE method. The purpose is to ensure that the FBAR can work normally.
  • Both the flexible inductor 13d and the flexible capacitor 13c are thin film structures. Electrical components such as the flexible field-effect tube 13a, the flexible resistor 13b, the flexible capacitor 13c, and the flexible inductor 13d are all flexible components, and they are moved to the flexible substrate 11 from another place by a transfer method and fixed.
  • the FBAR structure 12a is transferred in the same manner.
  • the flexible circuit connection 14 is a gold wire deposited and etched by a photolithographic method. Except for the flexible substrate 11, all other components are thin film structures (thickness in micrometer to nanometer scale); the flexible substrate can be a thin film (thickness micrometer) or a thicker substrate (thickness millimeter and above).
  • FIG. 6 is a schematic structural diagram of an LWR-type flexible MEMS oscillator according to an embodiment of the present invention.
  • the flexible MEMS oscillator includes: a flexible substrate 11, an LWR structure 12b composed of interdigital electrodes, and a flexible electrical component (specifically including a flexible field effect tube 13a, a flexible resistor 13b, a flexible capacitor 13c, and a flexible inductor 13d).
  • a flexible electrical component specifically including a flexible field effect tube 13a, a flexible resistor 13b, a flexible capacitor 13c, and a flexible inductor 13d.
  • the flexible field effect tube 13a is a graphene thin film field effect tube.

Landscapes

  • Micromachines (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种柔性射频振荡器,其解决了现有技术中存在的柔韧性差、应用范围狭窄的技术问题。该柔性射频振荡器包括:柔性基底(11)、选频网络(12)、柔性电学元件(13)以及柔性电路连接(14),其中:选频网络(12)、柔性电学元件(13)以及柔性电路连接(14)均位于柔性基底(11)之上;选频网络(12)用于获得所需频率范围的信号;柔性电路连接(14)用于将选频网络(12)和柔性电学元件(13)进行电学连接。

Description

柔性射频振荡器 技术领域
本发明涉及半导体技术领域,特别地涉及一种柔性射频振荡器。
背景技术
振荡器是一种在直流驱动下可以产生周期性电信号的模块。一般来说,振荡器既可以为通讯装置提供高频信号用于调制和解调,也可以提供电子系统中各模块协调工作的同步信号,是通信和电子系统中不可或缺的重要部件。振荡器广泛应用于手机、电脑、雷达等电子设备中。在微处理器中,振荡器可以提供时钟信号,作为系统的同步时钟电路;在无线通信系统中,振荡器是锁相环和频率综合器的关键组成部分。振荡器的结构示意图如图1所示。由振荡电路振荡产生一定频率的交流电信号,经过放电电路之后信号的幅值和功率均得到提升,之后将电信号输出作为其他部分的基本信号。另外,微机电系统(Micro-Electro-Mechanical System,简称MEMS)也是最近研究的热点。MEMS具有功耗低、体积小、应用场景广泛等优点。
传统的MEMS振荡器以硅片为基底,使得器件在拉、压、弯、扭等变形下无法保持良好的性能。因此,如果能够设计并制造一种柔性MEMS振荡器将会进一步扩大柔性电子的适用范围,推动柔性电子领域的进一步发展。
发明内容
有鉴于此,本发明提供一种柔性射频振荡器,以解决现有技术中存在的柔韧性差、应用范围狭窄的技术问题。
本发明的柔性射频振荡器,包括:柔性基底、选频网络、柔性电 学元件以及柔性电路连接,其中:所述选频网络、柔性电学元件以及柔性电路连接均位于所述柔性基底之上;所述选频网络用于获得所需频率范围的信号;所述柔性电路连接用于将所述选频网络和所述柔性电学元件进行电学连接。
可选地,所述选频网络包括:薄膜体声波滤波器、固体装配型谐振器、硅压电薄膜或兰姆波谐振器。
可选地,当所述选频网络为所述薄膜体声波滤波器、固体装配型谐振器或者兰姆波谐振器时,所述柔性基底的顶部具有空腔,所述空腔的位置与所述选频网络位置对准。
可选地,所述空腔的横截面呈圆形、三角形或者多边形。
可选地,所述空腔的横截面尺寸大于所述选频网络的有效工作区域的尺寸,并且小于所述选频网络的平面尺寸的80%。
可选地,所述空腔由热压印法或者刻蚀法加工得到。
可选地,所述空腔深度大于2μm。
可选地,所述柔性电学元件包括如下选项的一种或多种的组合:柔性场效应管、柔性电容、柔性电感、柔性电阻。
可选地,所述柔性场效应管包括如下选项的一种或多种的组合:二维材料场效应管、有机材料场效应管、碳纳米管场效应管、异质结场效应管。
可选地,所述二维材料柔性场效应管为:石墨烯薄膜场效应管、黑磷薄膜场效应管、二硫化钼场效应管、砷化镓场效应管或者氮化镓 场效应管。
可选地,所述柔性电路连接的横截面宽度小于5mm,高度小于1mm,且宽高比小于10:1。
可选地,所述柔性基底的厚度为1μm至1mm。
可选地,所述电学元件的厚度为10nm至10μm。
可选地,所述选频网络是通过印章转移的方式从硬质基底上迁至上述柔性基底上的。
本发明实施例的柔性射频振荡器具有重量轻、可伸展、可挠曲、可适应复杂起伏表面、携带方便、性能可靠、生物相容性好等优点。
附图说明
附图用于更好地理解本发明,不构成对本发明的不当限定。其中:
图1是振荡器的结构框图;
图2A是本发明实施例的柔性MEMS振荡器的正常状态下的结构示意图;
图2B是本发明实施例的柔性MEMS振荡器的弯曲状态下的结构示意图;
图3是图2A所示的器件的弯曲性能测试图;
图4为本发明实施例的柔性MEMS振荡器的立体示意图;
图5为本发明实施例的FBAR型柔性MEMS振荡器的结构示意图;
图6为本发明实施例的LWR型柔性MEMS振荡器的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或 类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括 第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
本发明提出了一种柔性射频振荡器,包括:柔性基底、选频网络、柔性电学元件以及柔性电路连接。其中,选频网络、柔性电学元件以及柔性电路连接均位于所述柔性基底之上。选频网络用于获得所需频率范围的信号。所述柔性电路连接用于将所述选频网络和所述柔性电学元件进行电学连接。本发明实施例的柔性射频振荡器具有重量轻、可伸展、可挠曲、可适应复杂起伏表面、携带方便、性能可靠、生物相容性好等优点。
其中,柔性基底可以由聚酰亚胺(PI)、聚对二甲苯(Parylene)、聚丙烯(PP)、聚丙烯酸酯(Polyacrylate)、聚碳酸酯(PC)、涤纶树脂(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚砜(PES)、聚醚酰亚胺(PEI)、聚二甲基硅氧烷(PDMS)、聚乙烯醇(PVA)、聚氨酯、聚酰胺、聚对苯二甲酸乙二醇酯聚、乙烯醇缩丁醛、聚氯乙烯、聚偏二氟乙烯、聚乙烯硫醚、各种含氟聚合物(FEP)等构成,但并不局限于以上材料。柔性基底的厚度为1μm至1mm。
其中,选频网络是一种频率敏感电路,通过使不需要的频率大幅衰减,将目标频率从输入信号中分离出来,达到滤波的效果。选频网络可以由薄膜体声波(film bulk acoustic resonator,简称FBAR)滤波器、固体装配型谐振器(solid-mounted resonator,简称SMR)、硅压电薄膜(thin-film piezoelectric-on-silicon,简称TPOS)谐振器、兰姆波谐振器(lamb-wave-resonator,简称LWR)等组成,但不限于以上元件。薄膜体声波谐振器是一种由电极-压电层-电极构成的基于压电效应的谐振器。电极的材料可以是铝、金、钼、钨、钛等,但不限于以上材料。压电层材料可以是氮化铝、氧化锌、锆钛酸铅等,但不限于以上材料。固体装配型谐振器是在薄膜体声波谐振器的基础上增加布拉格反射层形成的。布拉格反射层由高、低声阻抗层交替叠加形成, 用于减少声波的泄露。兰姆波谐振器是由压电层、叉指电极和反射栅组成,压电层和电极的材料同薄膜体声波谐振器。
可选地,选频网络是通过印章转移的方式从硬质基底上迁至上述柔性基底上的。该方式与直接在柔性基底上形成选频网络相比,工艺难度更低,良率更高。
其中,FBAR、SMR、LWR等器件需要与空气交界,形成良好的声波限制边界以维持良好的工作性能。因此要根据需求在柔性基底与选频网络对应位置制造空腔,以形成空气交界。空腔的横截面形状包括圆形、三角形、多边形或其任意组合。空腔深度大于2μm。空腔横截面尺寸大于选频网络有效工作区域尺寸,但小于选频网络平面尺寸的80%,以避免封装在弯折扭曲的过程中产生的变形影响其对选频网络的支撑。空腔的制备方法有两种:热压印法和刻蚀法。热压印法是利用压模在柔性基底上产生相应的空腔。刻蚀法则是用反应离子刻蚀(Reactive Ion Etching,简称RIE)等方法直接在柔性衬底上加工空腔。
柔性电学元件包括场效应管(Field Effect Transistor,简称FET)、电容、电感、电阻等振荡器电路必须的电学元件。这些元件承担着补充相移、调节增益、选频等作用。柔性FET的类型包括利用二维材料(石墨烯、黑磷、MoS 2、GaAs、GaN等)制备的FET、有机FET、用碳纳米管制备的FET、异质结FET等,但不限于以上类型。电学元件的厚度在10nm至10μm。
柔性电路连接承担将选频网络和电学元件之间以及电学元件之间进行电学连接的作用。柔性电路连接的横截面形状为近似矩形。柔性电路连接的横截面宽度小于5mm,高度小于1mm,且宽高比小于10:1。柔性电路连接的材质为铜、银、铝、镍、钴、金中的任意一种或两种以上的组合。
以上柔性基底、选频网络、柔性电学元件以及柔性电路连接四部分均为柔性薄膜结构。
为使本领域技术人员更好地理解本发明,下面结合说明书附图进行具体详细说明。
图2A为本发明实施例的柔性MEMS振荡器的正常状态下的结构示意图。如图1所示,该柔性MEMS振荡器包括柔性基底11、选频网络12、柔性电学元件13以及柔性电路连接14,其中柔性基底11的顶部具有与选频网络12对齐的空腔10。图2A所示的柔性MEMS在弯曲状态下如图2B所示。该柔性MEMS振荡器可在最小弯曲半径小于10cm或拉伸极限大于15%的情况下正常工作,且柔性基底不出现明显的裂纹或破坏,其弯曲性能测试图如图3所示。
图4为本发明实施例的柔性MEMS振荡器的立体示意图。如图4所示,该柔性MEMS振荡器包括:柔性基底11、选频网络12、柔性电学元件(具体包括柔性场效应管13a、柔性电阻13b、柔性电容13c和柔性电感13d)以及柔性电路连接14。
图5为本发明实施例的FBAR型柔性MEMS振荡器的结构示意图。如图5所示,该柔性MEMS振荡器包括:柔性基底11、FBAR结构12a、柔性电学元件(具体包括柔性场效应管13a、柔性电阻13b、柔性电容13c和柔性电感13d)以及柔性电路连接14。优选地,柔性场效应管13a为黑磷薄膜场效应管。
需要说明的是,FBAR 12a的下方存在一个与FBAR形状对应的空腔10,该空腔10横截面尺寸为选频网络有效工作区域的尺寸的85%。空腔的制备方法为:制作一个压模,压模上有与空腔对应的凸起。将利用柔性材料制备的基板置于压模之上,通过热压印的方法(即在一定的温度下施加一定的压力并保持一段时间)得到带空腔10的柔性基 板11。另外也可以由RIE方法直接在柔性基底11上刻蚀得到空腔10,其目的是为了保证FBAR能够正常工作。
柔性电感13d、柔性电容13c均为薄膜结构。柔性场效应管13a、柔性电阻13b、柔性电容13c、柔性电感13d等电学元件均为柔性元件,通过转移的方式从其他地方移动到柔性基板11上并进行固定。FBAR结构12a采用同样的方式进行转移。柔性电路连接14为通过光刻方法沉积并刻蚀的金线。除柔性基底11外,其他元件均为薄膜结构(厚度在微米到纳米尺度);柔性基底可以为薄膜(厚度微米级)或者较厚的衬底(厚度毫米级及以上)。
图6为本发明实施例的LWR型柔性MEMS振荡器的结构示意图。如图6所示,该柔性MEMS振荡器包括:柔性基底11、叉指电极构成的LWR结构12b、柔性电学元件(具体包括柔性场效应管13a、柔性电阻13b、柔性电容13c和柔性电感13d)以及柔性电路连接14。优选地,柔性场效应管13a为石墨烯薄膜场效应管。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,取决于设计要求和其他因素,可以发生各种各样的修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (14)

  1. 一种柔性射频振荡器,其特征在于,包括:柔性基底、选频网络、柔性电学元件以及柔性电路连接,其中:
    所述选频网络、柔性电学元件以及柔性电路连接均位于所述柔性基底之上;
    所述选频网络用于获得所需频率范围的信号;
    所述柔性电路连接用于将所述选频网络和所述柔性电学元件进行电学连接。
  2. 根据权利要求1所述的柔性射频振荡器,其特征在于,所述选频网络包括:薄膜体声波滤波器、固体装配型谐振器、硅压电薄膜或兰姆波谐振器。
  3. 根据权利要求2所述的柔性射频振荡器,当所述选频网络为所述薄膜体声波滤波器、固体装配型谐振器或者兰姆波谐振器时,其特征在于,所述柔性基底的顶部具有空腔,所述空腔的位置与所述选频网络位置对准。
  4. 根据权利要求3所述的柔性射频振荡器,其特征在于,所述空腔的横截面呈圆形、三角形或者多边形。
  5. 根据权利要求3所述的柔性射频振荡器,其特征在于,所述空腔的横截面尺寸大于所述选频网络的有效工作区域的尺寸,并且小于所述选频网络的平面尺寸的80%。
  6. 根据权利要求3所述的柔性射频振荡器,其特征在于,所述空腔由热压印法或者刻蚀法加工得到。
  7. 根据权利要求3所述的柔性射频振荡器,其特征在于,所述空 腔深度大于2μm。
  8. 根据权利要求1所述的柔性射频振荡器,其特征在于,所述柔性电学元件包括如下选项的一种或多种的组合:柔性场效应管、柔性电容、柔性电感、柔性电阻。
  9. 根据权利要求8所述的柔性射频振荡器,其特征在于,所述柔性场效应管包括如下选项的一种或多种的组合:二维材料场效应管、有机材料场效应管、碳纳米管场效应管、异质结场效应管。
  10. 根据权利要求9所述的柔性射频振荡器,其特征在于,所述二维材料柔性场效应管为:石墨烯薄膜场效应管、黑磷薄膜场效应管、二硫化钼场效应管、砷化镓场效应管或者氮化镓场效应管。
  11. 根据权利要求1所述的柔性射频振荡器,其特征在于,所述柔性电路连接的横截面宽度小于5mm,高度小于1mm,且宽高比小于10:1。
  12. 根据权利要求1所述的柔性射频振荡器,其特征在于,所述柔性基底的厚度为1μm至1mm。
  13. 根据权利要求1所述的柔性射频振荡器,其特征在于,所述电学元件的厚度为10nm至10μm。
  14. 根据权利要求1所述的柔性射频振荡器,其特征在于,所述选频网络是通过印章转移的方式从硬质基底上迁至上述柔性基底上的。
PCT/CN2018/111232 2018-09-21 2018-10-22 柔性射频振荡器 WO2020056836A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811105149.0 2018-09-21
CN201811105149.0A CN109450379A (zh) 2018-09-21 2018-09-21 柔性射频振荡器

Publications (1)

Publication Number Publication Date
WO2020056836A1 true WO2020056836A1 (zh) 2020-03-26

Family

ID=65532637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111232 WO2020056836A1 (zh) 2018-09-21 2018-10-22 柔性射频振荡器

Country Status (2)

Country Link
CN (1) CN109450379A (zh)
WO (1) WO2020056836A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110068880A1 (en) * 2009-09-18 2011-03-24 Gavin Ho Micromechanical network
CN105337586A (zh) * 2015-12-03 2016-02-17 天津大学 兰姆波谐振器
CN106788318A (zh) * 2016-11-22 2017-05-31 山东科技大学 一种在柔性基底上制造薄膜体声波谐振器的方法
CN107073902A (zh) * 2014-10-20 2017-08-18 德莎欧洲公司 具有增强条的薄玻璃膜复合体幅面

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218783A (ja) * 2008-03-10 2009-09-24 Epson Toyocom Corp 圧電デバイス
CN105590932B (zh) * 2014-10-24 2019-04-23 中国科学院苏州纳米技术与纳米仿生研究所 一种基于柔性薄膜晶体管的cmos电路及其制作方法
US10312882B2 (en) * 2015-07-22 2019-06-04 Cindy X. Qiu Tunable film bulk acoustic resonators and filters
CN107221733A (zh) * 2017-06-06 2017-09-29 中国科学院声学研究所 一种hbar谐振器及可调谐微波振荡器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110068880A1 (en) * 2009-09-18 2011-03-24 Gavin Ho Micromechanical network
CN107073902A (zh) * 2014-10-20 2017-08-18 德莎欧洲公司 具有增强条的薄玻璃膜复合体幅面
CN105337586A (zh) * 2015-12-03 2016-02-17 天津大学 兰姆波谐振器
CN106788318A (zh) * 2016-11-22 2017-05-31 山东科技大学 一种在柔性基底上制造薄膜体声波谐振器的方法

Also Published As

Publication number Publication date
CN109450379A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
EP4089918A1 (en) Bulk acoustic wave resonator and manufacturing method, bulk acoustic wave resonator unit, filter and electronic device
EP2789099B1 (en) Bulk acoustic wave resonator and manufacturing method thereof, and radio frequency device using bulk acoustic wave resonator
Zhu et al. ScAlN-based LCAT mode resonators above 2 GHz with high FOM and reduced fabrication complexity
US7215061B2 (en) Micromechanical electrostatic resonator
CN103929149B (zh) 一种柔性压电薄膜体声波谐振器及其制备方法
CN110661506B (zh) 基于体声波振动模态耦合的rf-mems谐振器
TW201325082A (zh) 具有結合厚度及寬度振動模式之壓電共振器
JP2007535883A (ja) 温度ドリフトに対して周波数が安定性を有するfbarデバイス
EP1713100A1 (en) Low loss thin film capacitor structure and method of manufacturing the same
Yang et al. Advanced RF filters for wireless communications
CN111342803A (zh) 薄膜体声波谐振器
CN104917476B (zh) 一种声波谐振器的制造方法
CN110149102B (zh) 基于二维压电材料薄膜的声表面波器件
WO2020056836A1 (zh) 柔性射频振荡器
CN111600569B (zh) 体声波谐振器及其制造方法、滤波器及电子设备
CN112350681A (zh) 一种频率可调的薄膜体声波谐振器
CN115603698B (zh) 一种基于弹性软化效应的可调谐薄膜体声波谐振器
CN109889182B (zh) 一种柔性体声波滤波器
JP2008005443A (ja) 音響波共振子およびフィルタならびに通信装置
CN112688656B (zh) 一种二维高性能超高频谐振器
CN211744436U (zh) 薄膜体声波谐振器
KR20010097701A (ko) 고주파용 fbar 공진기 및 그 제조방법
CN111279613A (zh) 用于体声波谐振器的椭圆结构
JP2005236338A (ja) 圧電薄膜共振子
CN109889173B (zh) 柔性基底薄膜体声波滤波器的连接结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934435

Country of ref document: EP

Kind code of ref document: A1