WO2020056542A1 - Two-part coating composition - Google Patents

Two-part coating composition Download PDF

Info

Publication number
WO2020056542A1
WO2020056542A1 PCT/CN2018/105921 CN2018105921W WO2020056542A1 WO 2020056542 A1 WO2020056542 A1 WO 2020056542A1 CN 2018105921 W CN2018105921 W CN 2018105921W WO 2020056542 A1 WO2020056542 A1 WO 2020056542A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
polysiloxane
polysilazane
weight
composition according
Prior art date
Application number
PCT/CN2018/105921
Other languages
French (fr)
Inventor
Guoguang Liu
Weizhong Jiang
Original Assignee
Henkel Ag & Co. Kgaa
Guangzhou Sysmyk New Material Tech Co., Ltd.
Henkel (China) Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa, Guangzhou Sysmyk New Material Tech Co., Ltd., Henkel (China) Company, Ltd. filed Critical Henkel Ag & Co. Kgaa
Priority to PCT/CN2018/105921 priority Critical patent/WO2020056542A1/en
Priority to CN201880097529.6A priority patent/CN112703241B/en
Publication of WO2020056542A1 publication Critical patent/WO2020056542A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/54Nitrogen-containing linkages

Definitions

  • This invention relates to a two-part coating composition, comprising a first part comprising at least one copolymer of polysilazane/polysiloxane, and at least one first organic solvent; and a second part comprising at least one coupling agent, and at least one second organic solvent.
  • the two-part coating composition according to the present invention exhibits high hardness, flexibility and adhesion strength to metal surface.
  • Polysiloxane based coating is generally recognized as a class of high performance protective coating, having the properties of low VOC, superior weatherability, and good corrosion protection. It can be applied on the surface of varies substrates such as metal, glass and plastics. Despite all the advantages, the application of polysiloxane based coatings, for example epoxy polysiloxane and acrylic polysiloxane, is limited because the pencil hardness of it is in general below 2B level. Modifications on the polysiloxane based coatings are therefore needed in order to enhance its hardness.
  • the coating on the substrate has high surface tolerance.
  • coatings with high hardness will have limited flexibility resulting in limited surface tolerance.
  • adhesion failures are often observed for high hardness coatings when the coated substrates are bent. Consequently, the hardness of the coatings is usually sacrificed to improve the flexibility in order to achieve the desired surface tolerance.
  • the coating formed by the two-part coating composition is able to adhere to the substrate well and has high hardness. It is more desirable that the coating is also flexible.
  • the present invention relates to a two-part coating composition, comprising:
  • polysilazane block comprises at least one nitrogen atom boned to three
  • the two-part coating composition of the invention exhibits high hardness, and adhesion strength to the substrate surface.
  • the present invention also relates to a cured product of the two-part coating composition.
  • the present invention also relates to a substrate bonded by the two-part coating composition.
  • optionally substituted univalent hydrocarbon group refers to an optionally substituted alkyl group, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, tertiary butyl, isobutyl, chloromethyl, 3, 3, 3-trifluoropropyl and the groups alike; an optionally substituted alkenyl group, such as vinyl, allyl, butenyl, pentenyl, hexenyl and the groups alike; an optionally substituted aralkyl group, such as benzyl, phenethyl, 2- (2, 4, 6-trimethylphenyl) propyl and the groups alike; or an optionally substituted aryl group, such as phenyl, tolyl, xyxyl and the groups alike.
  • an optionally substituted alkyl group such as methyl, ethyl, propyl, butyl, pentyl, hexyl, iso
  • nanoparticles used in the present invention refers to particles having an average diameter no greater than 500 nm.
  • diameter refers not only to the diameter of substantially spherical particles but also to the longest dimension of non-spherical particles.
  • the copolymer of polysilazane/polysiloxane in the first part of the present invention comprises:
  • polysilazane block comprises at least one nitrogen atom bonded to three silicon atoms.
  • the structure of nitrogen atom bonded to three silicon atoms which is contained in the polysilazane block of the present invention may be represented by the general formula (1) :
  • each R may be the same or different and independently represents a hydrogen atom, an optionally substituted univalent hydrocarbon group, an oxygen atom which may further link to the polysiloxane block, or a nitrogen atom that may be further bonded by a hydrogen atom, an optionally substituted univalent hydrocarbon group or another silicon atom.
  • at least one of the Rs in general formula (1) is a structural unit represented by general formula (2) which contains a nitrogen atom further boned by another two silicon atoms.
  • each R 1 may be the same or different and independently represents a hydrogen atom, an optionally substituted univalent hydrocarbon group, an oxygen atom which may further link to the polysiloxane block, or a nitrogen atom that may be further bonded by a hydrogen atom, an optionally substituted univalent hydrocarbon group or another silicon atom.
  • the copolymer of polysilazane/polysiloxane may be prepared by polymerizing polysilazane with polysiloxane that contains at least one nucleophilic group according to any common method known in the art, for example the method disclosed in patent US6534184 or US8598245.
  • nucleophilic group examples are hydroxyl groups, amine groups, acid groups and thiol groups.
  • the nucleophilic group will attack the Si-NH 2 or Si-NH-Si bonds of polysilazane resulting in the breaking of these bonds and the formation of new bonds.
  • the nitrogen atom which is bonded by three silicon atoms, in the structure of N (Si) 3 is much more stable than the nitrogen atom which is bonded by one or two hydrogen atoms and therefore will retain in the copolymer of polysilazane/polysiloxane.
  • the polysiloxane to prepare the copolymer of polysilazane/polysiloxane may contain a linear, branched or cross-linked structural unit of alternating silicon and oxygen atoms represented by the general formulas (3) , (4) , (5) or (6) , and also contain at least one nucleophilic group per molecule.
  • R 2 may be the same or different and includes, but is not limited to a hydrogen atom, and an optionally substituted univalent hydrocarbon group.
  • the polysiloxane contains at least 4 structural units per molecule selected from the group of structural units of (3) , (4) , (5) and (6) , and contains at least one nucleophilic group per molecule.
  • the polysiloxane contains at least one structural unit per molecule selected from the group of structural units of (3) and (4) , and contains at least one nucleophilic group per molecule. Even more preferably, the polysiloxane contains at least four structural units per molecule selected from the group of structural units represented by general formula of (3) and (4) , and contains at least two nucleophilic groups per molecule to ensure enough crosslinking between polysilazane and polysiloxane.
  • the structural units of (3) , (4) , (5) , and (6) contained in the polysiloxane will retain in the polysiloxane block of the copolymer of polysilazane/polysiloxane after the copolymerization of polysilazane and polysiloxane.
  • the polysilazane to prepare the copolymer of polysilazane/polysiloxane may contain a linear, branched or cross-linked structural unit represented by the general formula (7) , (8) or (9) .
  • R 3 may be identical or different, and includes, but is not limited to a hydrogen atom, an amine group, an optionally substituted univalent hydrocarbon group.
  • a is a number that indicates the ratio of polysilazane units expressed by the formula of (7) , and is greater than 0;
  • b is a number that indicates the ratio of polysilazane units expressed by the formula of (8) , and is greater than 0;
  • c is a number that indicates the ratio of polysilazane units expressed by the formula of (9) , and is greater than or equal to 0.
  • the polysilazane of the present invention comprises at least one nitrogen atom per molecule in the form of Si-NH2 and/or Si-NH-Si, and at least one nitrogen atom bonded to three silicon atoms per molecule.
  • the polysilazane of the present invention comprises at least one nitrogen atom per molecule in the form of Si-NH2 and/or Si-NH-Si, and at least two nitrogen atoms bonded to three silicon atoms per molecule. More preferably, the polysilazane of the present invention comprises at least two nitrogen atoms per molecule in the form of Si-NH2 and/or Si-NH-Si, and at least two nitrogen atoms bonded to three silicon atoms per molecule.
  • the nitrogen atom bonded to three silicon atoms will retain in the polysilazane block of the copolymer of polysilazane/polysiloxane after the copolymerization of polysilazane and polysiloxane.
  • Specific example of the polysilazane is shown below.
  • Examples of commercially available polysilazane are, for example, HTA 1500SC, HTA 1500RC from AZ Electronic Materials Co., Ltd.; and IOTA-OPSZ-9150 from Iota Silicone Oil (Anhui) Co., Ltd..
  • the copolymer of polysilazane/polysiloxane may be prepared by the steps of:
  • step b) adding polysilazane to the solution obtained from step a) in a temperature range of 45 to 75°Cunder nitrogen gas protection with stirring;
  • the third organic solvent in step a) is any common organic solvent not reacting with polysiloxane or polysilazane, preferably selected from an aromatic hydrocarbon solvent such as toluene and xylene, an aliphatic hydrocarbon solvent such as heptane and decane, an ether solvent such as tetrahydrofuran and anisole, an ester solvent such as hexyl acetate and butyl propionate, a ketone solvent such as acetone and methylethylketone, and the like.
  • the third organic solution can be used alone or in combination. Examples of commercially available third organic solvent is, for example, Solvesso 100 from Exxon Mobil Corporation.
  • Example of commercially available copolymer of polysilazane/polysiloxane in the first part of the two-part coating composition of the invention is, for example, Poly1800 from Guangzhou Sysmyk New Material Science &Technology Co., Ltd..
  • the polysiloxane block of the copolymer of polysilazane/polysiloxane preferably comprises at least one structural unit represented by the general formula (3) or (4) . More preferably, the polysiloxane block comprises at least four structural units represented by the general formula (3) or (4) . Even more preferably, the polysiloxane block comprises from four to eight structural units represented by the general formula (3) or (4) .
  • the crosslinked structure of structural units of (3) and (4) in the polysiloxane block of the copolymer of polysilazane/polysiloxane may contribute to the high hardness and vapor endurability of the coating layer made by the two-part coating composition of the present invention.
  • the polysilazane block of the copolymer of polysilazane/polysiloxane preferably contains at least two nitrogen atoms bonded to three silicon atoms. More preferably, the polysilazane block contains two to six nitrogen atoms bonded to three silicon atoms.
  • the content of nitrogen in the copolymer of polysilazane/polysiloxane is at least 0.5%, preferably at least 2%, more preferably from 2 to 10%and even more preferably from 2 to 5%by weight of the copolymer of polysilazane/polysiloxane measured by elemental analysis according to ASTM D 5373-02 (2007) .
  • the amount of copolymer of polysilazane/polysiloxane is from 30 to 90%, and preferably from 40 to 80%by weight based on the total weight of the first part of the two-part coating composition.
  • the first organic solvent in the first part of the present invention is any common organic solvent not reacting with polysiloxane or polysilazane, preferably selected from an aromatic hydrocarbon solvent such as toluene and xylene, an aliphatic hydrocarbon solvent such as heptane and decane, an ether solvent such as tetrahydrofuran and anisole, an ester solvent such as hexyl acetate and butyl propionate, a ketone solvent such as acetone and methylethylketone, and the like.
  • the first organic solution can be used alone or in combination.
  • Examples of commercially available first organic solvent of the invention are, for example, xylene from Nanjing refinery; and Solvesso100 from Exxon Mobil Corporation.
  • the amount of the first organic solvent is from 20 to 60%, and preferably from 30 to 50%by weight based on the total weight of the first part of the two-part coating composition.
  • the first part of the present invention may optionally further include at least one nanoparticle.
  • the nanoparticles can be of various sizes and shapes.
  • the nanoparticle of the present invention has an average diameter of less than or equal to 500 nm, preferably less than or equal to 100 nm, more preferably from 3 nm to 100 nm, and even more preferably from 3 nm to 50 nm. If the nanoparticles are aggregated, the maximum cross-sectional dimension of the aggregated particle can be within any of these ranges, and can also be greater than or equal 500 nm, such as greater than or equal to 800 nm, or in the range from 500nm to 1000nm.
  • the nanoparticles of the present invention can have any shape, such as sphere, rod, sheet, tube, wire, cube, cone, tetrahedron, and the like.
  • Suitable nanoparticle can be exemplified by metal oxide nanoparticles, such as nano-aluminum oxide, and nano-zirconium oxide; nano-semiconductor materials, such as nano-silicon carbide, and nano-silicon nitride; and nano-silicates, such as talc powder, and mica powder.
  • the nanoparticle can be used alone or in combination. It is surprisingly found that by incorporating the nanoparticles into the two-part coating composition, the vapor endurability of the coating layer formed by the two-part coating composition is greatly improved.
  • nanoparticle of the invention examples are, for example, MEK-EC-2104, MEK-ST, MEK-ST-L from Nissan Chemical America Corporation; NanoUse ZR from Nissan Chemical America Corporation; and Luzenac 10M0 from IMERYS.
  • the amount of the nanoparticle is from 2 to 15%, preferably from 2 to 10%, and even more preferably from 2 to 5%by weight based on the total weight of the first part of the two-part coating composition. If too much nanoparticles are added into the two-part coating composition, the adhesion strength of the coating layer formed by the two-part coating composition is deteriorated.
  • the first part of the present invention may optionally further include at least one pigment.
  • the pigment can be an inorganic pigment such as carbon black, chrome yellow, yellow iron oxide, red oxide, red iron oxide, and the like; an organic pigments such as phthalocyanine blue, phthalocyanine green, other phthalocyanine pigments, azo lake pigments, indigo pigments, perinone pigments, perylene pigments, quinophthalone pigments, dioxazine pigments, quinacridone red, and other quinacridone pigments; and pearlescent brightening agents such as aluminum flake, aluminum flake deposition, metal oxide coated aluminum flake, colored aluminum flake, other aluminum brightening agents, flake shaped mica and synthetic mica coated with a metal oxide such as titanium oxide or iron oxide or the like.
  • non-floating aluminum flake having an average diameter from 2 to 15 ⁇ m is added to the first part in order to further improve the vapor endurability of the coating layer formed by the two-part coating composition.
  • Examples of commercially available pigment of the invention are, for example, STAPA METALLIC 601, and STAPA METALLIC 201 from Eckart.
  • the amount of the pigment is from 2 to 15%, and preferably from 5 to 12%by weight based on the total weight of the first part of the two-part coating composition.
  • the first part of the present invention may optionally further include at least one surface conditioner to improve the anti-fouling property of the coating layer formed by the two-part coating composition.
  • the surface conditioner preferably has both hydrophobic and oleophobic property, and may be selected from a hydroxyl group containing polysiloxane, an acryl group containing polysiloxane or the like.
  • the surface conditioner of the present invention can be used alone or in combination.
  • Examples of commercially available surface conditioner of the invention are, for example, Tego 5000N, and Tego 5001 from Evonic Industries; and BYK 3710 and BYK 3720 from Altana Group.
  • the amount of the surface conditioner is from 1 to 5%, and preferably from 2 to 4%by weight based on the total weight of the first part of the two-part coating composition.
  • the first part of the present invention may optionally further include at least one leveling agent.
  • the leveling agent of the present invention can be any common leveling agent known in the art, for example, an acrylic-based leveling agent, a silicone leveling agent, a fluorine-based leveling agents, vinyl-based leveling agent, and siloxane-modified acrylic-based leveling agent and the like.
  • leveling agent can be a copolymer of polyoxyalkylene and polydimethylsiloxane, a copolymer of polyether and siloxane, and a copolymer of polyoxyalkylene and fluorocarbon.
  • the leveling agent of the present invention can be used alone or in combination.
  • leveling agent of the invention examples include Tego 245, Tego 270, Tego 410, Tego 432, Tego 440, Tego 450, Tego 550, and Tego 2100 from Evonic Industries; and BYK 301, BYK 302, BYK 303, BYK 304, BYK 305, and BYK 306 from Altana Group.
  • the amount of the leveling agent is from 0.1 to 2%, and preferably from 0.5 to 1%by weight based on the total weight of the first part of the two-part coating composition.
  • the first part of the present invention may optionally further include at least one dispersant to effectively disperse the nanoparticles and/or pigments in the first part.
  • the dispersant can be any common dispersant known in the art, and preferably selected from the group consisting of hyperbranched polymers, polyether-modified polydimethylsiloxanes, ionic and nonionic (meth) acrylate copolymers and the like.
  • the dispersant of the present invention can be used alone or in combination.
  • Examples of commercially available dispersant of the invention are, for example, 904S from Deuchem; and EFKA-5207 from BASF.
  • the amount of the dispersant is from 1 to 10%, and preferably from 3 to 6%by weight based on the total weight of the first part of the two-part coating composition.
  • the second part of the present invention comprises a coupling agent to improve the adhesion of the two-part coating composition to a substrate.
  • the coupling agent may be selected from a silane coupling agent, a titanate coupling agent, or the like.
  • the coupling agent of the present invention can be used alone or in combination.
  • the silane coupling agent can be exemplified by epoxy-containing alkoxysilane, such as 3 -glycidoxypropyl trimethoxysilane, 3 -glycidoxypropyl methyldiethoxysilane, and 3 -glycidoxypropyl triethoxysilane; amino-containing alkoxysilane, such as gamma-aminopropyl trimethoxysilane, gamma-aminopropyl triethoxysilane, gamma-aminopropyl triisopropoxysilane, and gamma-aminopropylmethyl dimethoxysilane; and mercapto-containing alkoxysilane, such as 3-mercaptopropyl trimethoxysilane.
  • the titanate coupling agent can be exemplified by i-propoxytitanium tri (i-isostearate) .
  • the coupling agent is a silane coupling agent
  • Examples of commercially available coupling agents are, for example, KBM403, KBM402, KBM802, KBM803, KBM602, KBM603 from Shin-Etsu Chemical Co., Ltd; Silquest A-171, Silquest A-187 from Momentive Performance Materials Group.
  • the amount of the coupling agent is from 50 to 90%, and preferably from 60 to 80%by weight based on the total weight of the second part of the two-part coating composition.
  • the second part of the present invention also comprises a second organic solvent.
  • the second organic solvent is any common organic solvent not reacting with polysiloxane or polysilazane, preferably selected from an aromatic hydrocarbon solvent such as toluene and xylene, an aliphatic hydrocarbon solvent such as heptane and decane, an ether solvent such as tetrahydrofuran and anisole, an ester solvent such as hexyl acetate and butyl propionate, a ketone solvent such as acetone and methylethylketone, and the like.
  • the second organic solution can be used alone or in combination.
  • Examples of commercially available second organic solvent of the invention are, for example, DOWANOL PMA from DOW; and Solvesso 100 from Exxon Mobil Corporation.
  • the amount of the second organic solvent is from 10%to 50%, and preferably from 30%to 40%by weight based on the total weight of the second part of the two-part coating composition.
  • the first organic solvent, the second organic solvent and the third organic solvent of the present invention may be the same or different from each other.
  • the first part should be used in a weight ratio to the second part, in the range of 100: 1 to 5: 1, such as 50: 1, 20: 1 or 10: 1.
  • a person skilled in the art will be able to make appropriate choices among the varies components based on the description, representative examples and guidelines of the present invention to prepare a composition to achieve desired effects.
  • the two-part coating composition comprises:
  • polysilazane block comprises at least one nitrogen atom bonded to three silicon atoms
  • the two-part coating composition of the present invention may be prepared by the steps of:
  • polysilazane/polysiloxane comprising:
  • polysilazane block comprises at least one nitrogen atom bonded to three silicon atoms
  • step b) optionally adding pigment, and/or surface conditioner, and/or leveling agent, and/or dispersant, and/or nanoparticle to the mixture obtained in step a) .
  • the two-part coating composition is preferably applied to a substrate within 30 minutes after the first part and the second part are mixed.
  • the two-part coating composition can be applied to a substrate by any common method, such as air spraying or electrostatic spraying.
  • the metal substrate is pre-treated by phosphate conversion coating, nano-ceramic conversion coating, or plasma before the two-part coating composition is applied to the metal substrate.
  • the metal substrate is pre-treated by nano-ceramic conversion coating before the two-part coating composition is applied to the metal substrate.
  • a coating layer of the present invention may be formed by curing the two-part coating composition at a temperature of at least 180 °C for 10 to 60 minutes, preferably at a temperature in a range from 230 to 280°C, and more preferably at a temperature in a range from 230 to 250°C.
  • the coating layer formed by the two-part coating composition of the present invention preferably has a pencil hardness from HB to H.
  • the pencil hardness of the coating layer may be assessed according to GB/T 6739-2006.
  • the coating layer formed by the two-part coating composition of the present invention preferably has good vapor endurability.
  • the vapor endurability of the coating layer may be assessed by placing a substrate painted with the coating layer above the surface of boiling water for a desirable time.
  • the coating layer formed by the two-part coating composition of the present invention preferably has an anti-pealing property of level 0 to 1.
  • the anti-pealing property of the coating layer may be assessed according to GB/T 9286.
  • the coating layer formed by the two-part coating composition of the present invention preferably has a good anti-impact property.
  • the anti-impact property of the coating layer may be assessed according to GB/T 1732.
  • the coating layer formed by the two-part coating composition of the present invention preferably has a good anti-fouling property.
  • the anti-fouling property of the coating layer may be assessed by drawing a line on the surface of the coating layer using a marker and checking to see if the line is removable from the surface or not.
  • the coating layer formed by the two-part coating composition of the present invention preferably has a good anti-scratch property.
  • the anti-scratch property of the coating layer may be assessed by scratching the surface of the coating layer a number of times and checking if any scratch left on the surface.
  • the coating layer formed by the two-part coating composition of the present invention preferably has a good heat resistant property and does not turn yellow after being baked at 250°C after 168 hours.
  • the heat resistant property of the coating layer may be assessed by heating the coating layer to a high temperature, for example 250°C, and checking the appearance change after a pre-determined time.
  • the coating layer formed by the two-part coating composition of the present invention preferably has a T-bent rating from 0 to 1.
  • the foldable property of the coating layer may be assessed according to GB/T 30791-2014.
  • the coating layer is not directly bent at an angle of 180 degree. Instead, a substrate needs to be bent at an angle of 120 degree first with a mandrel, and then the substrate is coated with the two-part coating composition. The substrate with the coating layer is bent again at an angle of 60 degree with the mandrel and the T-bent rating is evaluated.
  • the copolymer of polysilazane/polysiloxane of the present invention was prepared by the following steps: 25 grams of hydroxyl group containing polysiloxane (KR300 from Shin-Etsu Chemical Co., Ltd. ) and 45 grams of the xylene solvent (p-Xylene analytical standard from Sigma-Aldrich) were mixed in a flask. The flask was then filled with nitrogen gas. 8 grams of polysilazane (HTA 1500RC from AZ Electronic Materials Co., Ltd. ) was dropwisely added to the flask with stirring and the temperature of the flask was controlled at 55°C with a water bath. The reaction time was controlled to 120 minutes.
  • the number-average molecular weight (M n ) of the copolymer of polysilazane/polysiloxane is 7.3 x 10 4 g/mol measured by gel permeation chromatography (GPC) and the weight-average molecular weight (M w ) of the copolymer of polysilazane/polysiloxane is 1.32 x 10 5 g/mol measured by gel permeation chromatography (GPC) .
  • the molecular weight distribution (M w /M n ) of the copolymer of polysilazane/polysiloxane is 1.81.
  • the first part of the two-part coating composition was prepared by the steps of:
  • step c) the mixture from step a) and the mixture from step b) were combined with stirring for 5 minutes at a stirring speed of 2000 rpm;
  • the second part of the two-part coating composition was prepared by mixing 45 grams of 3-glycidoxypropyltrimethoxysilane and 5 grams of n-Butyl acetate.
  • the first part and the second part were further mixed by a weight ratio of 20: 1 to make the two-part coating composition.
  • An Al-Zn sheet (N5 with anti-finger print property, available from Baoshan Iron &Steel Co., Ltd. ) was pretreated by nano-ceramic conversion coating with Bonderite NT-1 primer (available from Henkel) before being coated with the two-part coating composition. More specifically, 50 ml of Bonderite NT-1 primer was slowly added to 1000 ml of deionized water with stirring. The Al-Zn sheet was soaked in the Bonderite NT-1 primer solution for 30 seconds and rinsed 4 times with deionized water. The Al-Zn sheet was then baked at 170°C for 20 minutes.
  • the two-part coating composition was then applied to the pre-treated Al-Zn sheet by electrostatic spraying (W-71-3G, available from ANEST IWATA Corporation) with a spraying pressure of 0.4MPa and a spraying distance of 20cm, and heated at 250°C for 20 minutes.
  • the dry film thickness of the coating layer formed by the two-part coating composition was controlled to be about 20 ⁇ m.
  • the coating layer was subjected to various tests below, and the results are reported in Table 3.
  • the pencil hardness of the coating layer was determined according to GB/T 6739-2006 with a set of pencils (available from Faber-Castell) .
  • the coated Al-Zn sheet was placed 5 cm above the surface of boiling water for 168 hours with the coating layer facing the boiling water and parallel to the surface of the boiling water. If no blister or crack was observed on the surface of the coating layer and the coating layer did not fall off from the Al-Zn sheet, the coating layer was ranked as “pass” . Otherwise, the coating layer was ranked as “fail” .
  • the anti-pealing property of the coating layer was assessed according to GB/T 9286.
  • the anti-pealing property of the coating layer was assessed according to GB/T 1732. If no crack or wrinkle was observed on the surface of coating layer and the coating layer did not fall off from the Al-Zn sheet, the coating layer was ranked as “pass” . Otherwise, the coating layer was ranked as “fail” .
  • MO-120-MC-BK produced by Zebra Co., Ltd., and left to stand at room temperature for 1 minute. If the line could be wiped off by a tissue paper, the coating layer sample was ranked as “pass” . Otherwise, the coating layer sample was ranked as “fail” .
  • the surface of the coating layer was scratched continuously for 20000 times with a scratching cloth (Miaojie sponge scouring pad, available from Top group daily chemicals (China) Co., Ltd. ) . If no scratch was observed on the surface of the coating layer, the coating layer was ranked as “pass” . Otherwise, the coating layer was ranked as “fail” .
  • a scratching cloth Miaojie sponge scouring pad, available from Top group daily chemicals (China) Co., Ltd.
  • the coated Al-Zn sheet was baked at 250°C for 168 hours.
  • the coating layer was ranked as “pass” if all of the following conditions were met: no blister or crack was observed on the coating layer; the coating layer did not fall off from the Al-Zn sheet; and the coating layer did not turn yellow. Otherwise, the coating layer was ranked as “fail” .
  • the foldable property of the coating layer was determined according to GB/T 30791-2014, but not through a direct bending of the coating layer at angle of 180 degree. Instead, an Al-Zn sheet (N5 with anti-finger print property, available from Baoshan Iron &Steel Co., Ltd. ) was firstly bent at an angle of 120 degree with a stainless steel having a thickness of 0.5mm as a mandrel. The two part-coating composition was then applied to the Al-Zn sheet by electrostatic spraying (W-71-3G, available from ANEST IWATA Corporation) with a spraying pressure of 0.4MPa and a spraying distance of 20cm, and was heated at 250°C for 20 minutes.
  • electrostatic spraying W-71-3G, available from ANEST IWATA Corporation
  • the dry film thickness of the coating layer formed by the two-part coating composition was controlled to be about 20 ⁇ m.
  • the coated Al-Zn sheet was then bent again at an angle of 60 degree with a stainless steel having a thickness of 0.5mm as a mandrel. If the T-bent rating of the coating layer was in the range of 0-1, the coating layer was ranked as “pass” . Otherwise, the coating layer was ranked as “fail” .
  • the two-part coating compositions were prepared in the same way as in Example 2, but different amount of each component was used according to Table 1 and Table 2.
  • the nanoparticles of nano-zirconium oxide, talc powder and mica powder were added to the first part of the two-part coating composition in step d) .
  • the two-part coating compositions were applied to the Al-Zn sheets in the same way as Example 2, and subjected to various tests in the same way as in Example 2. The test results are reported in Table 3.
  • the two-part coating composition was prepared in the same way as in Example 2, but different amount of each component was used according to Table 1 and Table 2.
  • Polysiloxane was added to the first part of the two-part coating composition in step a) instead of the copolymer of polysilazane/polysiloxane.
  • the two-part coating composition was applied to the Al-Zn sheet in the same way as Example 2 and subjected to various tests in the same way as in Example 2. The test results are reported in Table 3.
  • Nano-zirconium oxide size of 5 ⁇ 20 ⁇ m, 15 ⁇ 40 ⁇ m from Eckart;
  • Talc powder size of 10 ⁇ m from Sigma-Aldrich
  • the pencil hardness of the coating layers in Examples from 2 to 8 is reported in Table 3. It was found that the pencil hardness and anti-scratch of the coating layer made by the two-part coating composition containing copolymer of polysilazane/polysiloxane as in Examples from 2 to 7 was improved comparing with the coating layer made by the two-part coating composition containing polysiloxane as in Example 8.
  • the anti-fouling property of the coating layers in Examples from 2 to 8 is as well reported in Table 3.
  • the coating layer formed therefrom failed the anti-fouling test. It was further found that when the amount of the copolymer of polysilazane/polysiloxane was less than or equal to 20%as in Example 7, even if in the presence of surface conditioner, the coating layer still failed the anti-fouling test.

Abstract

This invention relates to a two-part coating composition, comprising a first part comprising at least one copolymer of polysilazane/polysiloxane, and at least one first organic solvent; and a second part comprising at least one coupling agent, and at least one second organic solvent. The two-part coating composition according to the present invention exhibits high hardness, flexibility and adhesion strength to metal surface.

Description

TWO-PART COATING COMPOSITION Technical field
This invention relates to a two-part coating composition, comprising a first part comprising at least one copolymer of polysilazane/polysiloxane, and at least one first organic solvent; and a second part comprising at least one coupling agent, and at least one second organic solvent. The two-part coating composition according to the present invention exhibits high hardness, flexibility and adhesion strength to metal surface.
Background of the invention
Polysiloxane based coating is generally recognized as a class of high performance protective coating, having the properties of low VOC, superior weatherability, and good corrosion protection. It can be applied on the surface of varies substrates such as metal, glass and plastics. Despite all the advantages, the application of polysiloxane based coatings, for example epoxy polysiloxane and acrylic polysiloxane, is limited because the pencil hardness of it is in general below 2B level. Modifications on the polysiloxane based coatings are therefore needed in order to enhance its hardness.
Under certain circumstances, a coated substrate needs to be bent for further processing.
Therefore, it is required that the coating on the substrate has high surface tolerance. Typically, coatings with high hardness will have limited flexibility resulting in limited surface tolerance. Hence, adhesion failures are often observed for high hardness coatings when the coated substrates are bent. Consequently, the hardness of the coatings is usually sacrificed to improve the flexibility in order to achieve the desired surface tolerance.
Therefore, there is a need for developing a two-part coating composition, and the coating formed by the two-part coating composition is able to adhere to the substrate well and has high hardness. It is more desirable that the coating is also flexible.
Summary of the invention
The present invention relates to a two-part coating composition, comprising:
(i) a first part comprising:
(a) at least one copolymer of polysilazane/polysiloxane, comprising:
1) at least one polysiloxane block; and
2) at least one polysilazane block
wherein the polysilazane block comprises at least one nitrogen atom boned to three
silicon atoms; and
(b) at least one first organic solvent;
(ii) a second part comprising:
(a) at least one coupling agent; and
(b) at least one second organic solvent.
The two-part coating composition of the invention exhibits high hardness, and adhesion strength to the substrate surface.
The present invention also relates to a cured product of the two-part coating composition.
The present invention also relates to a substrate bonded by the two-part coating composition.
Detailed description of the invention
In the following passages the present invention is described in more detail. Each aspect so  described may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous.
In the context of the present invention, the terms used are to be construed in accordance with the following definitions, unless a context dictates otherwise.
As used herein, the singular forms “a” , “an” and “the” include both singular and plural referents unless the context clearly dictates otherwise.
The terms “comprising” , “comprises” and “comprised of” as used herein are synonymous with “including” , “includes” or “containing” , “contains” , and are inclusive or open-ended and do not exclude additional, non-recited members, elements or process steps.
The recitation of numerical end points includes all numbers and fractions subsumed within the respective ranges, as well as the recited end points.
All references cited in the present specification are hereby incorporated by reference in their entirety.
Unless otherwise defined, all terms used in the disclosing the invention, including technical and scientific terms, have the meaning as commonly understood by one of the ordinary skill in the art to which this invention belongs to. By means of further guidance, term definitions are included to better appreciate the teaching of the present invention.
In the context of this disclosure, a number of terms shall be utilized.
The term “optionally substituted univalent hydrocarbon group” refers to an optionally substituted alkyl group, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, tertiary butyl, isobutyl, chloromethyl, 3, 3, 3-trifluoropropyl and the groups alike; an optionally substituted alkenyl group, such as vinyl, allyl, butenyl, pentenyl, hexenyl and the groups alike; an optionally substituted aralkyl group, such as benzyl, phenethyl, 2- (2, 4, 6-trimethylphenyl) propyl and the groups alike; or an optionally substituted aryl group, such as phenyl, tolyl, xyxyl and the groups alike.
The term "nanoparticles" used in the present invention refers to particles having an average diameter no greater than 500 nm.
The term "diameter" refers not only to the diameter of substantially spherical particles but also to the longest dimension of non-spherical particles.
The first part
<Copolymer of polysilazane/polysiloxane>
The copolymer of polysilazane/polysiloxane in the first part of the present invention comprises:
a) at least one polysiloxane block; and
b) at least one polysilazane block
wherein the polysilazane block comprises at least one nitrogen atom bonded to three silicon atoms.
The structure of nitrogen atom bonded to three silicon atoms which is contained in the polysilazane block of the present invention may be represented by the general formula (1) :
Figure PCTCN2018105921-appb-000001
In the general formula (1) , each R may be the same or different and independently represents a hydrogen atom, an optionally substituted univalent hydrocarbon group, an oxygen atom which may further link to the polysiloxane block, or a nitrogen atom that may be further bonded by a hydrogen atom, an optionally substituted univalent hydrocarbon group or another silicon atom. Preferably, at least one of the Rs in general formula (1) is a structural unit represented by general formula (2) which contains a nitrogen atom further boned by another two silicon atoms. In the general formula (2) , *represents a bonding position to the silicon atom in general formula (1) ; each R 1 may be the same or different and independently represents a hydrogen atom, an optionally substituted univalent hydrocarbon group, an oxygen atom which may further link to the polysiloxane block, or a nitrogen atom that may be further bonded by a hydrogen atom, an optionally substituted univalent hydrocarbon group or another silicon atom.
The copolymer of polysilazane/polysiloxane may be prepared by polymerizing polysilazane with polysiloxane that contains at least one nucleophilic group according to any common method known in the art, for example the method disclosed in patent US6534184 or US8598245.
Representative examples of the nucleophilic group are hydroxyl groups, amine groups, acid groups and thiol groups. As disclosed in the prior arts, the nucleophilic group will attack the Si-NH 2 or Si-NH-Si bonds of polysilazane resulting in the breaking of these bonds and the formation of new bonds. The nitrogen atom which is bonded by three silicon atoms, in the structure of N (Si)  3, is much more stable than the nitrogen atom which is bonded by one or two hydrogen atoms and therefore will retain in the copolymer of polysilazane/polysiloxane.
The polysiloxane to prepare the copolymer of polysilazane/polysiloxane may contain a linear, branched or cross-linked structural unit of alternating silicon and oxygen atoms represented by the general formulas (3) , (4) , (5) or (6) , and also contain at least one nucleophilic group per molecule. In the formulas from (3) to (6) , R 2 may be the same or different and includes, but is not limited to a hydrogen atom, and an optionally substituted univalent hydrocarbon group. Preferably, the polysiloxane contains at least 4 structural units per molecule selected from the group of structural units of (3) , (4) , (5) and (6) , and contains at least one nucleophilic group per molecule. More preferably, the polysiloxane contains at least one structural unit per molecule selected from the group of structural units of (3) and (4) , and contains at least one nucleophilic group per molecule. Even more preferably, the polysiloxane contains at least four structural units per molecule selected from the group of structural units represented by general formula of (3) and (4) , and contains at least two nucleophilic groups per molecule to ensure enough crosslinking between polysilazane and polysiloxane. The structural units of (3) , (4) , (5) , and (6) contained in the polysiloxane will retain in the polysiloxane block of the copolymer of polysilazane/polysiloxane after the copolymerization of polysilazane and polysiloxane.
Figure PCTCN2018105921-appb-000002
The polysilazane to prepare the copolymer of polysilazane/polysiloxane may contain a linear, branched or cross-linked structural unit represented by the general formula (7) , (8) or (9) . In the formulas of (7) , (8) and (9) , R 3 may be identical or different, and includes, but is not limited to a hydrogen atom, an amine group, an optionally substituted univalent hydrocarbon group. Also, in the formulas of (7) , (8) and (9) , “a” , “b” , and “c” are numbers that satisfy the following conditions: 0< “a” ≤0.8; 0< “b” ≤0.8; 0≤ “c” ≤0.8; and “a” + “b” + “c” =1. Herein, “a” is a number that indicates the ratio of polysilazane units expressed by the formula of (7) , and is greater than 0; “b” is a number that indicates the ratio of polysilazane units expressed by the formula of (8) , and is greater than 0; “c” is a number that indicates the ratio of polysilazane units expressed by the formula of (9) , and is greater than or equal to 0.
Figure PCTCN2018105921-appb-000003
The polysilazane of the present invention comprises at least one nitrogen atom per molecule in the form of Si-NH2 and/or Si-NH-Si, and at least one nitrogen atom bonded to three silicon atoms per molecule. Preferably, the polysilazane of the present invention comprises at least one nitrogen atom per molecule in the form of Si-NH2 and/or Si-NH-Si, and at least two nitrogen atoms bonded to three silicon atoms per molecule. More preferably, the polysilazane of the present invention comprises at least two nitrogen atoms per molecule in the form of Si-NH2 and/or Si-NH-Si, and at least two nitrogen atoms bonded to three silicon atoms per molecule. As indicated previously, the nitrogen atom bonded to three silicon atoms will retain in the polysilazane block of the copolymer of polysilazane/polysiloxane after the copolymerization of polysilazane and polysiloxane. Specific example of the polysilazane is shown below.
Figure PCTCN2018105921-appb-000004
Examples of commercially available polysilazane are, for example, HTA 1500SC, HTA 1500RC from AZ Electronic Materials Co., Ltd.; and IOTA-OPSZ-9150 from Iota Silicone Oil (Anhui) Co., Ltd..
In some embodiments of the present invention, the copolymer of polysilazane/polysiloxane may be prepared by the steps of:
a) combining polysiloxane with a third organic solvent to form a solution;
b) adding polysilazane to the solution obtained from step a) in a temperature range of 45 to 75℃under nitrogen gas protection with stirring;
c) keeping the reaction between polysilazane and polysiloxane going for at least 60 to 120 minutes; and
d) removing the third organic solvent to obtain the copolymer of polysilazane/polysiloxane.
The third organic solvent in step a) is any common organic solvent not reacting with polysiloxane or polysilazane, preferably selected from an aromatic hydrocarbon solvent such as toluene and xylene, an aliphatic hydrocarbon solvent such as heptane and decane, an ether solvent such as tetrahydrofuran and anisole, an ester solvent such as hexyl acetate and butyl propionate, a ketone solvent such as acetone and methylethylketone, and the like. The third organic solution can be used alone or in combination. Examples of commercially available third organic solvent is, for example, Solvesso 100 from Exxon Mobil Corporation.
Example of commercially available copolymer of polysilazane/polysiloxane in the first part of the two-part coating composition of the invention is, for example, Poly1800 from Guangzhou Sysmyk New Material Science &Technology Co., Ltd..
In some embodiments of the present invention, the polysiloxane block of the copolymer of polysilazane/polysiloxane preferably comprises at least one structural unit represented by the general formula (3) or (4) . More preferably, the polysiloxane block comprises at least four structural units represented by the general formula (3) or (4) . Even more preferably, the polysiloxane block comprises from four to eight structural units represented by the general formula (3) or (4) . Not binding by any theory, the crosslinked structure of structural units of (3) and (4) in the polysiloxane block of the copolymer of polysilazane/polysiloxane may contribute to the high hardness and vapor endurability of the coating layer made by the two-part coating composition of the present invention.
In some embodiments of the present invention, the polysilazane block of the copolymer of polysilazane/polysiloxane preferably contains at least two nitrogen atoms bonded to three silicon atoms. More preferably, the polysilazane block contains two to six nitrogen atoms bonded to three silicon atoms.
In some embodiments of the present invention, the content of nitrogen in the copolymer of polysilazane/polysiloxane is at least 0.5%, preferably at least 2%, more preferably from 2 to 10%and even more preferably from 2 to 5%by weight of the copolymer of polysilazane/polysiloxane measured by elemental analysis according to ASTM D 5373-02 (2007) .
In some embodiments of the present invention, the amount of copolymer of polysilazane/polysiloxane is from 30 to 90%, and preferably from 40 to 80%by weight based on the total weight of the first part of the two-part coating composition.
<The first organic solvent>
The first organic solvent in the first part of the present invention is any common organic solvent not reacting with polysiloxane or polysilazane, preferably selected from an aromatic hydrocarbon solvent such as toluene and xylene, an aliphatic hydrocarbon solvent such as heptane and decane, an ether solvent such as tetrahydrofuran and anisole, an ester solvent such as hexyl acetate and butyl propionate, a ketone solvent such as acetone and methylethylketone, and the like. The first organic solution can be used alone or in combination.
Examples of commercially available first organic solvent of the invention are, for example, xylene from Nanjing refinery; and Solvesso100 from Exxon Mobil Corporation.
In some embodiments of the present invention, the amount of the first organic solvent is from 20 to 60%, and preferably from 30 to 50%by weight based on the total weight of the first part of the two-part coating composition.
<Nanoparticle>
The first part of the present invention may optionally further include at least one nanoparticle. The nanoparticles can be of various sizes and shapes. The nanoparticle of the present invention has an average diameter of less than or equal to 500 nm, preferably less than or equal to 100 nm, more preferably from 3 nm to 100 nm, and even more preferably from 3 nm to 50 nm. If the nanoparticles are aggregated, the maximum cross-sectional dimension of the aggregated particle can be within any of these ranges, and can also be greater than or equal 500 nm, such as greater than or equal to 800 nm, or in the range from 500nm to 1000nm. The nanoparticles of the present invention can have any shape, such as sphere, rod, sheet, tube, wire, cube, cone, tetrahedron, and the like. Suitable nanoparticle can be exemplified by metal oxide nanoparticles, such as nano-aluminum oxide, and nano-zirconium oxide; nano-semiconductor materials, such as nano-silicon carbide, and nano-silicon nitride; and nano-silicates, such as talc powder, and mica powder. The nanoparticle can be used alone or in combination. It is surprisingly found that by  incorporating the nanoparticles into the two-part coating composition, the vapor endurability of the coating layer formed by the two-part coating composition is greatly improved.
Examples of commercially available nanoparticle of the invention are, for example, MEK-EC-2104, MEK-ST, MEK-ST-L from Nissan Chemical America Corporation; NanoUse ZR from Nissan Chemical America Corporation; and Luzenac 10M0 from IMERYS.
In some embodiments of the present invention, the amount of the nanoparticle is from 2 to 15%, preferably from 2 to 10%, and even more preferably from 2 to 5%by weight based on the total weight of the first part of the two-part coating composition. If too much nanoparticles are added into the two-part coating composition, the adhesion strength of the coating layer formed by the two-part coating composition is deteriorated.
<Pigment>
The first part of the present invention may optionally further include at least one pigment. The pigment can be an inorganic pigment such as carbon black, chrome yellow, yellow iron oxide, red oxide, red iron oxide, and the like; an organic pigments such as phthalocyanine blue, phthalocyanine green, other phthalocyanine pigments, azo lake pigments, indigo pigments, perinone pigments, perylene pigments, quinophthalone pigments, dioxazine pigments, quinacridone red, and other quinacridone pigments; and pearlescent brightening agents such as aluminum flake, aluminum flake deposition, metal oxide coated aluminum flake, colored aluminum flake, other aluminum brightening agents, flake shaped mica and synthetic mica coated with a metal oxide such as titanium oxide or iron oxide or the like. Preferably, non-floating aluminum flake having an average diameter from 2 to 15 μm is added to the first part in order to further improve the vapor endurability of the coating layer formed by the two-part coating composition.
Examples of commercially available pigment of the invention are, for example, STAPA METALLIC 601, and STAPA METALLIC 201 from Eckart.
In some embodiments of the present invention, the amount of the pigment is from 2 to 15%, and preferably from 5 to 12%by weight based on the total weight of the first part of the two-part coating composition.
<Surface conditioner>
The first part of the present invention may optionally further include at least one surface conditioner to improve the anti-fouling property of the coating layer formed by the two-part coating composition. The surface conditioner preferably has both hydrophobic and oleophobic property, and may be selected from a hydroxyl group containing polysiloxane, an acryl group containing polysiloxane or the like. The surface conditioner of the present invention can be used alone or in combination. It is surprisingly found that when the amount of the copolymer of polysilazane/polysiloxane was low in the first part, such as less than or equal to 20%by weight of the first part, even if in the presence of surface conditioner, the anti-fouling property of the coating layer formed by the two-part coating composition is still not good.
Examples of commercially available surface conditioner of the invention are, for example, Tego 5000N, and Tego 5001 from Evonic Industries; and BYK 3710 and BYK 3720 from Altana Group.
In some embodiments of the present invention, the amount of the surface conditioner is from 1 to 5%, and preferably from 2 to 4%by weight based on the total weight of the first part of the two-part coating composition.
<Leveling agent>
The first part of the present invention may optionally further include at least one leveling agent. The leveling agent of the present invention can be any common leveling agent known in the art, for example, an acrylic-based leveling agent, a silicone leveling agent, a fluorine-based leveling agents, vinyl-based leveling agent, and siloxane-modified acrylic-based leveling agent and the like.
Specific examples of the leveling agent can be a copolymer of polyoxyalkylene and polydimethylsiloxane, a copolymer of polyether and siloxane, and a copolymer of polyoxyalkylene and fluorocarbon. The leveling agent of the present invention can be used alone or in combination.
Examples of commercially available leveling agent of the invention are, for example, Tego 245, Tego 270, Tego 410, Tego 432, Tego 440, Tego 450, Tego 550, and Tego 2100 from Evonic Industries; and BYK 301, BYK 302, BYK 303, BYK 304, BYK 305, and BYK 306 from Altana Group.
In some embodiments of the present invention, the amount of the leveling agent is from 0.1 to 2%, and preferably from 0.5 to 1%by weight based on the total weight of the first part of the two-part coating composition.
<Dispersant>
The first part of the present invention may optionally further include at least one dispersant to effectively disperse the nanoparticles and/or pigments in the first part. The dispersant can be any common dispersant known in the art, and preferably selected from the group consisting of hyperbranched polymers, polyether-modified polydimethylsiloxanes, ionic and nonionic (meth) acrylate copolymers and the like. The dispersant of the present invention can be used alone or in combination.
Examples of commercially available dispersant of the invention are, for example, 904S from Deuchem; and EFKA-5207 from BASF.
In some embodiments of the present invention, the amount of the dispersant is from 1 to 10%, and preferably from 3 to 6%by weight based on the total weight of the first part of the two-part coating composition.
The second part
<Coupling agent>
The second part of the present invention comprises a coupling agent to improve the adhesion of the two-part coating composition to a substrate. The coupling agent may be selected from a silane coupling agent, a titanate coupling agent, or the like. The coupling agent of the present invention can be used alone or in combination. The silane coupling agent can be exemplified by epoxy-containing alkoxysilane, such as 3 -glycidoxypropyl trimethoxysilane, 3 -glycidoxypropyl methyldiethoxysilane, and 3 -glycidoxypropyl triethoxysilane; amino-containing alkoxysilane, such as gamma-aminopropyl trimethoxysilane, gamma-aminopropyl triethoxysilane, gamma-aminopropyl triisopropoxysilane, and gamma-aminopropylmethyl dimethoxysilane; and mercapto-containing alkoxysilane, such as 3-mercaptopropyl trimethoxysilane. The titanate coupling agent can be exemplified by i-propoxytitanium tri (i-isostearate) . Preferably, the coupling agent is a silane coupling agent.
Examples of commercially available coupling agents are, for example, KBM403, KBM402, KBM802, KBM803, KBM602, KBM603 from Shin-Etsu Chemical Co., Ltd; Silquest A-171, Silquest A-187 from Momentive Performance Materials Group.
In some embodiments of the present invention, the amount of the coupling agent is from 50 to 90%, and preferably from 60 to 80%by weight based on the total weight of the second part of the two-part coating composition.
<The second organic solvent>
The second part of the present invention also comprises a second organic solvent. The second organic solvent is any common organic solvent not reacting with polysiloxane or polysilazane, preferably selected from an aromatic hydrocarbon solvent such as toluene and xylene, an  aliphatic hydrocarbon solvent such as heptane and decane, an ether solvent such as tetrahydrofuran and anisole, an ester solvent such as hexyl acetate and butyl propionate, a ketone solvent such as acetone and methylethylketone, and the like. The second organic solution can be used alone or in combination.
Examples of commercially available second organic solvent of the invention are, for example, DOWANOL PMA from DOW; and Solvesso 100 from Exxon Mobil Corporation.
In some embodiments of the present invention, the amount of the second organic solvent is from 10%to 50%, and preferably from 30%to 40%by weight based on the total weight of the second part of the two-part coating composition.
The first organic solvent, the second organic solvent and the third organic solvent of the present invention may be the same or different from each other.
The first part should be used in a weight ratio to the second part, in the range of 100: 1 to 5: 1, such as 50: 1, 20: 1 or 10: 1. A person skilled in the art will be able to make appropriate choices among the varies components based on the description, representative examples and guidelines of the present invention to prepare a composition to achieve desired effects.
In a preferred embodiment, the two-part coating composition comprises:
(i) a first part comprising:
(a) from 30 to 90%by weight of at least one copolymer of polysilazane/polysiloxane,
comprising:
1) at least one polysiloxane block; and
2) at least one polysilazane block;
wherein the polysilazane block comprises at least one nitrogen atom bonded to three silicon atoms;
(b) from 2 to 15%by weight of at least one nanoparticle;
(c) from 2 to 15%by weight of at least one pigment;
(d) from 1 to 5%by weight of at least one surface conditioner;
(e) from 0.1 to 2%by weight of at least one leveling agent;
(f) from 1 to 10%by weight of at least one dispersion agent; and
(g) from 20 to 60%by weight of at least one first organic solvent;
wherein the weight percentages of all components in the first part add up to 100%.
(ii) a second part comprising:
(a) from 50 to 90%by weight of at least one coupling agent; and
(b) from 10 to 50%by weight of at least one second organic solvent;
wherein the weight percentages of all components in the second part add up to 100%.
The two-part coating composition of the present invention may be prepared by the steps of:
i) preparing a first part by the steps of:
a) obtaining a mixture by mixing a first organic solvent with a copolymer of
polysilazane/polysiloxane comprising:
1) at least one polysiloxane block; and
2) at least one polysilazane block;
wherein the polysilazane block comprises at least one nitrogen atom bonded to three silicon atoms;
b) optionally adding pigment, and/or surface conditioner, and/or leveling agent, and/or dispersant, and/or nanoparticle to the mixture obtained in step a) .
ii) preparing a second part by mixing a coupling agent with a second organic solvent; and
iii) mixing the first part with the second part at a desired ratio.
The two-part coating composition is preferably applied to a substrate within 30 minutes after the first part and the second part are mixed.
The two-part coating composition can be applied to a substrate by any common method, such as air spraying or electrostatic spraying. Preferably, when the substrate to be coated is a metal, the metal substrate is pre-treated by phosphate conversion coating, nano-ceramic conversion coating, or plasma before the two-part coating composition is applied to the metal substrate. More preferably, the metal substrate is pre-treated by nano-ceramic conversion coating before the two-part coating composition is applied to the metal substrate.
A coating layer of the present invention may be formed by curing the two-part coating composition at a temperature of at least 180 ℃ for 10 to 60 minutes, preferably at a temperature in a range from 230 to 280℃, and more preferably at a temperature in a range from 230 to 250℃.
The coating layer formed by the two-part coating composition of the present invention preferably has a pencil hardness from HB to H. The pencil hardness of the coating layer may be assessed according to GB/T 6739-2006.
The coating layer formed by the two-part coating composition of the present invention preferably has good vapor endurability. The vapor endurability of the coating layer may be assessed by placing a substrate painted with the coating layer above the surface of boiling water for a desirable time.
The coating layer formed by the two-part coating composition of the present invention preferably has an anti-pealing property of level 0 to 1. The anti-pealing property of the coating layer may be assessed according to GB/T 9286.
The coating layer formed by the two-part coating composition of the present invention preferably has a good anti-impact property. The anti-impact property of the coating layer may be assessed according to GB/T 1732.
The coating layer formed by the two-part coating composition of the present invention preferably has a good anti-fouling property. The anti-fouling property of the coating layer may be assessed by drawing a line on the surface of the coating layer using a marker and checking to see if the line is removable from the surface or not.
The coating layer formed by the two-part coating composition of the present invention preferably has a good anti-scratch property. The anti-scratch property of the coating layer may be assessed by scratching the surface of the coating layer a number of times and checking if any scratch left on the surface.
The coating layer formed by the two-part coating composition of the present invention preferably has a good heat resistant property and does not turn yellow after being baked at 250℃ after 168 hours. The heat resistant property of the coating layer may be assessed by heating the coating layer to a high temperature, for example 250℃, and checking the appearance change after a pre-determined time.
The coating layer formed by the two-part coating composition of the present invention preferably has a T-bent rating from 0 to 1. The foldable property of the coating layer may be assessed according to GB/T 30791-2014. The coating layer is not directly bent at an angle of 180 degree. Instead, a substrate needs to be bent at an angle of 120 degree first with a mandrel, and then the substrate is coated with the two-part coating composition. The substrate with the coating layer is bent again at an angle of 60 degree with the mandrel and the T-bent rating is evaluated.
Examples:
The present invention will be further described and illustrated in detail with reference to the following examples. The examples are intended to assist one skilled in the art to better understand  and practice the present invention, however, are not intended to restrict the scope of the present invention. All numbers in the examples are based on weight unless otherwise stated.
Example 1
The copolymer of polysilazane/polysiloxane of the present invention was prepared by the following steps: 25 grams of hydroxyl group containing polysiloxane (KR300 from Shin-Etsu Chemical Co., Ltd. ) and 45 grams of the xylene solvent (p-Xylene analytical standard from Sigma-Aldrich) were mixed in a flask. The flask was then filled with nitrogen gas. 8 grams of polysilazane (HTA 1500RC from AZ Electronic Materials Co., Ltd. ) was dropwisely added to the flask with stirring and the temperature of the flask was controlled at 55℃ with a water bath. The reaction time was controlled to 120 minutes. After the completion of the reaction, the xylene solvent was removed by distillation under the condition of 50℃ and 5 mmHg for 2 hours. 16.5 grams of liquid resin was obtained to be the copolymer of polysilazane/polysiloxane (88.2%yield) .
The number-average molecular weight (M n) of the copolymer of polysilazane/polysiloxane is 7.3 x 10 4 g/mol measured by gel permeation chromatography (GPC) and the weight-average molecular weight (M w) of the copolymer of polysilazane/polysiloxane is 1.32 x 10 5 g/mol measured by gel permeation chromatography (GPC) . The molecular weight distribution (M w/M n) of the copolymer of polysilazane/polysiloxane is 1.81. By elemental analysis according to ASTM D 5373-02 (2007) , it is found that the content of carbon is 49.38%, hydrogen is 5.76%and nitrogen is 2.05%by weight of the copolymer of polysilazane/polysiloxane.
Example 2
The first part of the two-part coating composition was prepared by the steps of:
a) 40 grams of copolymer of polysilazane/polysiloxane (obtained by the method in Example 1) and 9.5 grams of n-Butyl acetate were mixed in a flask with stirring for 20 minutes at a stirring speed of 1500 rpm;
b) 5 grams of aluminum powder and 10 grams of phorbol-12-myristate-13-acetate (PMA) were mixed in a flask with stirring for 45 minutes at a stirring speed of 500 rpm;
c) the mixture from step a) and the mixture from step b) were combined with stirring for 5 minutes at a stirring speed of 2000 rpm; and
d) 25 grams of PMA, 8 grams of n-Butyl acetate, 0.5 grams of polyether siloxane copolymer, and 2 grams of polyether modified hydroxy functional polydimethylsiloxane were further added into the mixture from step c) .
The second part of the two-part coating composition was prepared by mixing 45 grams of 3-glycidoxypropyltrimethoxysilane and 5 grams of n-Butyl acetate.
The first part and the second part were further mixed by a weight ratio of 20: 1 to make the two-part coating composition.
An Al-Zn sheet (N5 with anti-finger print property, available from Baoshan Iron &Steel Co., Ltd. ) was pretreated by nano-ceramic conversion coating with Bonderite NT-1 primer (available from Henkel) before being coated with the two-part coating composition. More specifically, 50 ml of Bonderite NT-1 primer was slowly added to 1000 ml of deionized water with stirring. The Al-Zn sheet was soaked in the Bonderite NT-1 primer solution for 30 seconds and rinsed 4 times with deionized water. The Al-Zn sheet was then baked at 170℃ for 20 minutes.
The two-part coating composition was then applied to the pre-treated Al-Zn sheet by electrostatic spraying (W-71-3G, available from ANEST IWATA Corporation) with a spraying pressure of 0.4MPa and a spraying distance of 20cm, and heated at 250℃ for 20 minutes. The dry film thickness of the coating layer formed by the two-part coating composition was controlled to be about 20 μm. The coating layer was subjected to various tests below, and the results are reported in Table 3.
<Pencil hardness test>
The pencil hardness of the coating layer was determined according to GB/T 6739-2006 with a set of pencils (available from Faber-Castell) .
<Vapor endurability Test>
The coated Al-Zn sheet was placed 5 cm above the surface of boiling water for 168 hours with the coating layer facing the boiling water and parallel to the surface of the boiling water. If no blister or crack was observed on the surface of the coating layer and the coating layer did not fall off from the Al-Zn sheet, the coating layer was ranked as “pass” . Otherwise, the coating layer was ranked as “fail” .
<Anti-peeling test>
The anti-pealing property of the coating layer was assessed according to GB/T 9286.
<Anti-impact test>
The anti-pealing property of the coating layer was assessed according to GB/T 1732. If no crack or wrinkle was observed on the surface of coating layer and the coating layer did not fall off from the Al-Zn sheet, the coating layer was ranked as “pass” . Otherwise, the coating layer was ranked as “fail” .
<Anti-fouling test>
A line was drawn using an oil-based marker, "Mckee Extra Fine" (black, product number:
MO-120-MC-BK) produced by Zebra Co., Ltd., and left to stand at room temperature for 1 minute. If the line could be wiped off by a tissue paper, the coating layer sample was ranked as “pass” . Otherwise, the coating layer sample was ranked as “fail” .
<Anti-scratch test>
The surface of the coating layer was scratched continuously for 20000 times with a scratching cloth (Miaojie sponge scouring pad, available from Top group daily chemicals (China) Co., Ltd. ) . If no scratch was observed on the surface of the coating layer, the coating layer was ranked as “pass” . Otherwise, the coating layer was ranked as “fail” .
<Heat resistance test>
The coated Al-Zn sheet was baked at 250℃ for 168 hours. The coating layer was ranked as “pass” if all of the following conditions were met: no blister or crack was observed on the coating layer; the coating layer did not fall off from the Al-Zn sheet; and the coating layer did not turn yellow. Otherwise, the coating layer was ranked as “fail” .
<Foldable property test>
The foldable property of the coating layer was determined according to GB/T 30791-2014, but not through a direct bending of the coating layer at angle of 180 degree. Instead, an Al-Zn sheet (N5 with anti-finger print property, available from Baoshan Iron &Steel Co., Ltd. ) was firstly bent at an angle of 120 degree with a stainless steel having a thickness of 0.5mm as a mandrel. The two part-coating composition was then applied to the Al-Zn sheet by electrostatic spraying (W-71-3G, available from ANEST IWATA Corporation) with a spraying pressure of 0.4MPa and a spraying distance of 20cm, and was heated at 250℃ for 20 minutes. The dry film thickness of the coating layer formed by the two-part coating composition was controlled to be about 20 μm. The coated Al-Zn sheet was then bent again at an angle of 60 degree with a stainless steel having a thickness of 0.5mm as a mandrel. If the T-bent rating of the coating layer was in the range of 0-1, the coating layer was ranked as “pass” . Otherwise, the coating layer was ranked as “fail” .
Example 3-7
The two-part coating compositions were prepared in the same way as in Example 2, but different amount of each component was used according to Table 1 and Table 2. The nanoparticles of  nano-zirconium oxide, talc powder and mica powder were added to the first part of the two-part coating composition in step d) .
The two-part coating compositions were applied to the Al-Zn sheets in the same way as Example 2, and subjected to various tests in the same way as in Example 2. The test results are reported in Table 3.
Example 8
The two-part coating composition was prepared in the same way as in Example 2, but different amount of each component was used according to Table 1 and Table 2. Polysiloxane was added to the first part of the two-part coating composition in step a) instead of the copolymer of polysilazane/polysiloxane.
The two-part coating composition was applied to the Al-Zn sheet in the same way as Example 2 and subjected to various tests in the same way as in Example 2. The test results are reported in Table 3.
Table 1. The first part of the two-part coating composition
Figure PCTCN2018105921-appb-000005
Table 2. The second part of the two-part coating composition
Figure PCTCN2018105921-appb-000006
*1 Copolymer of polysilazane/polysiloxane: produced using the same method as in Example 1;
*2 Polysiloxane: KR300 from Shin-Etsu Chemical Co., Ltd.;
*3 n-Butyl acetate: Analytical from Sigma-Aldrich;
*4 Phorbol-12-myristate-13-acetate: PMA from Sigma-Aldrich;
*5 Aluminum powder: size of 1~9μm, 8~15μm from Eckart;
*6 Nano-zirconium oxide: size of 5~20μm, 15~40μm from Eckart;
*7 Talc powder: size of 10μm from Sigma-Aldrich;
*8 Mica powder: size of 37.4μm, MICA 4-K from IMERYS;
*9 Polyether siloxane copolymer: Tego 410 from Evonic Industries;
*10 Polyether modified hydroxy functional polydimethylsiloxane: BYK 3720 from Altana Group; and
*11 3-Glycidoxypropyltrimethoxysilane: KBM403 from Shin-Etsu Chemical Co., Ltd.
The pencil hardness of the coating layers in Examples from 2 to 8 is reported in Table 3. It was found that the pencil hardness and anti-scratch of the coating layer made by the two-part coating composition containing copolymer of polysilazane/polysiloxane as in Examples from 2 to 7 was improved comparing with the coating layer made by the two-part coating composition containing polysiloxane as in Example 8.
It was further found that when the amount of the copolymer of polysilazane/polysiloxane was greater than 20%by weight of the first part as in Examples from 2 to 6, the pencil hardness, the foldable property, anti-peeling property, anti-impact property, and heat resistant property of the coating layers formed therefrom were all meliorated compared with the coating layer in Example 7.
The vapor endurability of the coating layers in Examples from 2 to 8 is also reported in Table 3. When the nano-particles were not incorporated in the two-part coating composition as in Example 2, the coating layer formed therefrom failed the vapor endurability test.
The anti-fouling property of the coating layers in Examples from 2 to 8 is as well reported in Table 3. When the surface conditioner was not incorporated in the two-part coating composition as in Example 3, the coating layer formed therefrom failed the anti-fouling test. It was further found that when the amount of the copolymer of polysilazane/polysiloxane was less than or equal to 20%as in Example 7, even if in the presence of surface conditioner, the coating layer still failed the anti-fouling test.
Table 3. Properties of the coating layer formed by the two-part coating composition
Figure PCTCN2018105921-appb-000007

Claims (15)

  1. A two-part coating composition, comprising:
    (i) a first part comprising:
    (a) at least one copolymer of polysilazane/polysiloxane, comprising:
    1) at least one polysiloxane block; and
    2) at least one polysilazane block;
    wherein the polysilazane block comprises at least one nitrogen atom bonded to three silicon atoms.
    (b) at least one first organic solvent;
    (ii) a second part comprising:
    (a) at least one coupling agent; and
    (b) at least one second organic solvent.
  2. The two-part coating composition according to claim 1, wherein the polysiloxane block preferably comprises at least one structural unit represented by the general formula (3) or (4) .
    Figure PCTCN2018105921-appb-100001
    wherein R 2 represents a hydrogen atom, or an optionally substituted univalent hydrocarbon group.
  3. The two-part coating composition according to claim 1 or claim 2, wherein the amount of the copolymer of polysilazane/polysiloxane is from 30%to 90%, and preferably from 40%to 80%by weight based on the total weight of the first part.
  4. The two-part coating composition according to any one of the proceeding claims, wherein the amount of nitrogen in the copolymer of polysilazane/polysiloxane is at least 0.5%, preferably at least 2%, more preferably from 2 to 10%, and even more preferably from 2 to 5%by weight of the copolymer of polysilazane/polysiloxane.
  5. The two-part coating composition according to any one of the proceeding claims, wherein the polysilazane block preferably comprises at least two nitrogen atoms bonded to three silicon atoms, and more preferably comprises from two to six nitrogen atoms that are bonded to three silicon atoms.
  6. The two-part coating composition according to any one of the proceeding claims, wherein the first organic solvent and the second organic solvent are the same or different, and are independently selected from an aromatic hydrocarbon solvent, an aliphatic hydrocarbon solvent, an ether solvent, an ester solvent, a ketone solvent, and any combination thereof.
  7. The two-part coating composition according to any one of the proceeding claims, wherein the coupling agent is a silane coupling agent, a titanate coupling agent, any combination thereof.
  8. The two-part coating composition according to any one of the proceeding claims, further comprising at least one nanoparticle, preferably selecting from a metal oxide nanoparticle, a nano-semiconductor material, a nano-silicates, and any combination thereof.
  9. The two-part coating composition according to any one of the proceeding claims, further comprising at least one surface conditioner, preferably selected from a hydroxyl group polysiloxane, an acryl group containing polysiloxane or the mixture thereof.
  10. The two-part coating composition according to any one of the proceeding claims, further  comprising at least one pigment.
  11. The two-part coating composition according to claim 10, the pigment is preferably non-floating aluminum flake.
  12. The two-part coating composition according to any one of the proceeding claims, further comprising at least one leveling agent, at least one dispersion agent, at least one coloring agent, or the mixture thereof.
  13. The two-part coating composition according to any one of the proceeding claims, comprising:
    (i) a first part comprising:
    (a) from 30 to 90%by weight of the first part of at least one copolymer of polysilazane/polysiloxane, comprising:
    1) at least one polysiloxane block; and
    2) at least one polysilazane block;
    wherein the polysilazane block comprises at least one nitrogen atom bonded to three silicon atoms.
    (b) from 2 to 15%by weight of the first part of at least one nanoparticle;
    (c) from 2 to 15%by weight of the first part of at least one pigment;
    (d) from 1 to 5%by weight of the first part of at least one surface conditioner;
    (e) from 0.1 to 2%by weight of the first part of at least one leveling agent;
    (f) from 1 to 10%by weight of the first part of at least one dispersion agent; and
    (g) from 20 to 60%by weight of the first part of at least one first organic solvent;
    wherein the weight percentages of all components in the first part add up to 100%;
    (ii) a second part comprising:
    (a) from 50 to 90%by weight of the second part of at least one coupling agent; and
    (b) from 10 to 50%by weight of the second part of at least one second organic solvent;
    wherein the weight percentages of all components in the second part add up to  100%.
  14. A cured product of the two-part coating composition according to any one of the proceeding claims.
  15. A substrate bonded by the two-part coating composition according to any one of the proceeding claims.
PCT/CN2018/105921 2018-09-17 2018-09-17 Two-part coating composition WO2020056542A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/105921 WO2020056542A1 (en) 2018-09-17 2018-09-17 Two-part coating composition
CN201880097529.6A CN112703241B (en) 2018-09-17 2018-09-17 Two-component coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/105921 WO2020056542A1 (en) 2018-09-17 2018-09-17 Two-part coating composition

Publications (1)

Publication Number Publication Date
WO2020056542A1 true WO2020056542A1 (en) 2020-03-26

Family

ID=69888010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105921 WO2020056542A1 (en) 2018-09-17 2018-09-17 Two-part coating composition

Country Status (2)

Country Link
CN (1) CN112703241B (en)
WO (1) WO2020056542A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7008894B1 (en) * 2021-06-10 2022-01-25 三菱電機株式会社 Time synchronization dependent device, time sharing system, time sharing method and program
US20220267617A1 (en) * 2021-02-23 2022-08-25 Thor Custom Steel Coatings LLC Steel Protective Coating Compositions, Methods of Their Manufacture, and Methods of Their Use
CN115772268A (en) * 2021-09-08 2023-03-10 涂创时代(苏州)科技开发有限公司 Modified polysilazane nanocomposite and preparation method and application thereof
US20230124254A1 (en) * 2021-02-23 2023-04-20 Thor Custom Steel Coatings LLC Steel Protective Coating Compositions, Methods of Their Manufacture, and Methods of Their Use
US20230212425A1 (en) * 2021-02-23 2023-07-06 Thor Custom Steel Coatings LLC Steel Protective Coating Compositions, Methods of Their Manufacture, and Methods of Their Use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402973A (en) * 2021-06-02 2021-09-17 佛山市顺德区美的洗涤电器制造有限公司 Easy-to-clean coating composition, easy-to-clean coating, preparation method and application of easy-to-clean coating

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068535A1 (en) * 2001-02-26 2002-09-06 Kion Corporation Polysilazane/polysiloxane block copolymers
WO2002090108A2 (en) * 2001-05-07 2002-11-14 Kion Corporation Thermally stable, moisture curable polysilazanes and polysiloxazanes
CN102634031A (en) * 2012-04-06 2012-08-15 中国科学院化学研究所 Heat-resisting poly (silazane-siloxane) polymer and preparation method thereof
CN103937369A (en) * 2014-04-16 2014-07-23 中山大桥化工集团有限公司 Environment-friendly anticorrosive coating material for automobile parts and preparation method thereof
US20140205804A1 (en) * 2012-06-25 2014-07-24 Ross Technology Corporation Elastomeric Coatings Having Hydrophobic and/or Oleophobic Properties
WO2017071788A1 (en) * 2015-10-30 2017-05-04 Az Electronic Materials (Luxembourg) S.A.R.L. Method for producing silazane-siloxane copolymers and the use of such copolymers
CN107828059A (en) * 2017-08-20 2018-03-23 湖南七纬科技有限公司 A kind of superhard organic silicon hydrophobic glass resin and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102775793A (en) * 2012-07-12 2012-11-14 中国恩菲工程技术有限公司 Preparation method of addition-type vulcanized rubber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068535A1 (en) * 2001-02-26 2002-09-06 Kion Corporation Polysilazane/polysiloxane block copolymers
WO2002090108A2 (en) * 2001-05-07 2002-11-14 Kion Corporation Thermally stable, moisture curable polysilazanes and polysiloxazanes
CN102634031A (en) * 2012-04-06 2012-08-15 中国科学院化学研究所 Heat-resisting poly (silazane-siloxane) polymer and preparation method thereof
US20140205804A1 (en) * 2012-06-25 2014-07-24 Ross Technology Corporation Elastomeric Coatings Having Hydrophobic and/or Oleophobic Properties
CN103937369A (en) * 2014-04-16 2014-07-23 中山大桥化工集团有限公司 Environment-friendly anticorrosive coating material for automobile parts and preparation method thereof
WO2017071788A1 (en) * 2015-10-30 2017-05-04 Az Electronic Materials (Luxembourg) S.A.R.L. Method for producing silazane-siloxane copolymers and the use of such copolymers
CN107828059A (en) * 2017-08-20 2018-03-23 湖南七纬科技有限公司 A kind of superhard organic silicon hydrophobic glass resin and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220267617A1 (en) * 2021-02-23 2022-08-25 Thor Custom Steel Coatings LLC Steel Protective Coating Compositions, Methods of Their Manufacture, and Methods of Their Use
US20230124254A1 (en) * 2021-02-23 2023-04-20 Thor Custom Steel Coatings LLC Steel Protective Coating Compositions, Methods of Their Manufacture, and Methods of Their Use
US20230212425A1 (en) * 2021-02-23 2023-07-06 Thor Custom Steel Coatings LLC Steel Protective Coating Compositions, Methods of Their Manufacture, and Methods of Their Use
JP7008894B1 (en) * 2021-06-10 2022-01-25 三菱電機株式会社 Time synchronization dependent device, time sharing system, time sharing method and program
CN115772268A (en) * 2021-09-08 2023-03-10 涂创时代(苏州)科技开发有限公司 Modified polysilazane nanocomposite and preparation method and application thereof
CN115772268B (en) * 2021-09-08 2023-09-15 涂创时代(苏州)科技开发有限公司 Modified polysilazane nanocomposite and preparation method and application thereof

Also Published As

Publication number Publication date
CN112703241A (en) 2021-04-23
CN112703241B (en) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2020056542A1 (en) Two-part coating composition
US11015083B2 (en) High performance silicon based coatings
US10689528B2 (en) High performance silicon based thermal coating compositions
JP4034579B2 (en) High durability multi-layer coating film, method for forming the same and exterior building material
JP5165156B2 (en) Weather-resistant coating composition and method for forming coated article having weather-resistant coating film
TWI624483B (en) Durable anti-fingerprint polymers and coating compositions
JP5437523B1 (en) Surface conditioner
JP6899702B2 (en) Room temperature curable weather resistant paint composition
JP3783453B2 (en) Composition for epoxy resin-silicon hybrid material, coating agent and method for surface coating of plastic
CN106232628B (en) The method for preparing acrylic acid series powder coating resin system
JP2014058612A (en) Weather-resistant coating composition, and method for forming coated article having weather-resistant coating film
WO2009085121A1 (en) Moisture cure alpha-silane modified acrylic coatings
WO2005044926A1 (en) Powder material containing needle single crystal inorganic powder, coating material, liquid powder dispersion and method for using them
JP2006143866A (en) Water repellent, method for forming water repellent coating using the same, and water repellent coating formed by the method
CN108300090A (en) Water-based paint compositions and coating film
JP2014058613A (en) Weather-resistant coating composition, and method for forming coated article having weather-resistant coating film
JPH10147743A (en) Finish coating composition
CN114867794B (en) Water-repellent coating composition for wet coating comprising silsesquioxane oligomer
JP5480664B2 (en) Hydrophilic coating material composition and outer housing member
CN103958181A (en) Photocatalyst-supporting structure
TWI665219B (en) Process for making acrylic powder coating resin systems
JPH10140086A (en) Inorganic coating material composition and coated product using the same
CN117730124A (en) Primer coating composition and coating film
EP3824033A1 (en) Weatherable and durable coating compositions
JP2000204260A (en) Alkoxysilane composition, coating agent and surface coating process for plastic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934165

Country of ref document: EP

Kind code of ref document: A1