JP5437523B1 - Surface conditioner - Google Patents

Surface conditioner Download PDF

Info

Publication number
JP5437523B1
JP5437523B1 JP2013170396A JP2013170396A JP5437523B1 JP 5437523 B1 JP5437523 B1 JP 5437523B1 JP 2013170396 A JP2013170396 A JP 2013170396A JP 2013170396 A JP2013170396 A JP 2013170396A JP 5437523 B1 JP5437523 B1 JP 5437523B1
Authority
JP
Japan
Prior art keywords
meth
acrylate
coating
monomer
acrylamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013170396A
Other languages
Japanese (ja)
Other versions
JP2014224219A (en
Inventor
貴行 佐藤
大輔 三冨
貴幸 津曲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoeisha Chemical Co Ltd
Original Assignee
Kyoeisha Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoeisha Chemical Co Ltd filed Critical Kyoeisha Chemical Co Ltd
Priority to JP2013170396A priority Critical patent/JP5437523B1/en
Priority to KR1020130099335A priority patent/KR102084794B1/en
Application granted granted Critical
Publication of JP5437523B1 publication Critical patent/JP5437523B1/en
Publication of JP2014224219A publication Critical patent/JP2014224219A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1637Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide

Abstract

【課題】被膜表面に親水性を付与と防汚性を付与できる表面調整剤を提供する。
【解決手段】ジメチル(メタ)アクリルアミド類、ジエチル(メタ)アクリルアミド類であるアクリルアミドモノマー80.00〜99.99量重部、化学式(I)

Figure 0005437523

の片末端(メタ)アクリル変性のシロキシ基含有モノ(メタ)アクリレートモノマー0.01〜20.00重量部、並びに、水酸基含有(メタ)アクリレート類、水酸基含有(メタ)アクリルアミド類、ブロックイソシアネート基含有(メタ)アクリレート類である官能基含有モノマーを最大で10重量部のうち、少なくともアクリルアミドモノマーとシロキシ基含有モノ(メタ)アクリレートモノマーとが共重合され重量平均分子量を1500〜50000とする共重合物を含有し、被膜表面に親水性を付与する。
【選択図】なしProvided is a surface conditioner capable of imparting hydrophilicity and antifouling property to a coating surface.
[MEANS FOR SOLVING PROBLEMS] An amount of 80.00 to 99.99 parts by weight of an acrylamide monomer which is dimethyl (meth) acrylamides or diethyl (meth) acrylamides, chemical formula (I)
Figure 0005437523

0.01 to 20.00 parts by weight of a mono- (meth) acrylate-modified mono (meth) acrylate monomer modified with a single terminal (meth) acryl, and a hydroxyl group-containing (meth) acrylate, a hydroxyl group-containing (meth) acrylamide, and a blocked isocyanate group A copolymer having a weight average molecular weight of 1500 to 50000 by copolymerizing at least an acrylamide monomer and a siloxy group-containing mono (meth) acrylate monomer out of a maximum of 10 parts by weight of a functional group-containing monomer that is a (meth) acrylate. And imparts hydrophilicity to the coating surface.
[Selection figure] None

Description

本発明は、被膜を形成するコーティング剤に少量配合することにより、そのコーティング剤で形成された被膜表面に親水性や防汚性を付与する表面調整剤に関するものである。   The present invention relates to a surface conditioner that imparts hydrophilicity or antifouling property to the surface of a film formed with the coating agent by blending in a small amount with the coating agent that forms the film.

近年、高付加価値化に伴い、水性・油性塗料、焼き付け塗料、インキ等の様々なコーティング剤で形成された被膜表面を親水化して、それの防汚性を向上させる要望がある。   In recent years, with the increase in added value, there is a demand for improving the antifouling property by hydrophilizing the coating surface formed with various coating agents such as aqueous / oil-based paints, baking paints, and inks.

一般に、被膜に親水性を付与する手法としては、被膜を形成するコーティング剤に含まれる樹脂自体やそれを形成する架橋性成分自体を親水性にすることで、形成された被膜表面を親水性にする場合が多い(例えば下記特許文献1〜5参照)。しかし、この場合、親水性の樹脂を選択したり樹脂や架橋性成分を官能基化したりして樹脂全体が親水性となることから、被膜の用途に応じ使用できる樹脂や架橋性成分が制限される。また、コーティング剤へ親水性を付与する結果、被膜全体が親水性となるので、被膜内部への水分の浸入が生じ易くなり、被膜そのものの耐久性に懸念が生じる。このように既存のコーティング剤を改良してそれへ親水性を付与する場合には、被膜を形成する樹脂や架橋性成分からの改善が必要であり、コーティング剤ごとに樹脂等の大幅な見直しが必要となる。   In general, as a method for imparting hydrophilicity to a film, the surface of the formed film is made hydrophilic by making the resin itself contained in the coating agent that forms the film and the crosslinkable component itself forming the film hydrophilic. (For example, refer to Patent Documents 1 to 5 below). However, in this case, since the entire resin becomes hydrophilic by selecting a hydrophilic resin or functionalizing the resin or crosslinkable component, the resin or crosslinkable component that can be used is limited depending on the application of the coating. The Further, as a result of imparting hydrophilicity to the coating agent, the entire coating becomes hydrophilic, so that moisture can easily enter the coating and there is a concern about the durability of the coating itself. In this way, when existing coating agents are improved and hydrophilicity is imparted to them, it is necessary to improve the resin and crosslinkable components that form the coating film. Necessary.

被膜に親水性を付与する別な手法としては、既存のコーティング剤によって形成されたコーティング膜に、上述した親水性のコーティング剤を上塗りして被膜を形成することで親水性を付与する場合もある。しかし、この場合、被膜は、既存のコーティング剤によって形成されたコーティング膜から分離した状態(積層状態)の親水性被膜であるため、層間剥離による被膜脱離により耐候性が得られ難い。しかも、被膜は、徐々に剥離していくために、被膜表面形状が変化し、光沢低下等の外観不良を生じる。また、近年、焼き付け塗料を親水化したいという要望が多く、その用途としては屋外設置用物置や屋根用のプレコートメタル等が挙げられる。これらの被膜へは、長期的な耐候性が求められる。   As another method for imparting hydrophilicity to the film, there is a case where hydrophilicity is imparted by coating the above-mentioned hydrophilic coating agent on the coating film formed by the existing coating agent to form a film. . However, in this case, since the film is a hydrophilic film separated (laminated) from a coating film formed by an existing coating agent, it is difficult to obtain weather resistance due to film delamination due to delamination. In addition, since the coating is gradually peeled off, the surface shape of the coating changes, resulting in poor appearance such as gloss reduction. In recent years, there are many requests to make the baking paint hydrophilic, and its uses include outdoor installation storage, roof pre-coated metal, and the like. These coatings are required to have long-term weather resistance.

一方、樹脂や架橋性成分を代えることなく被膜に親水性を付与する手法としては、既存のコーティング剤に親水性表面調整剤を添加する場合がある。この場合、少量の親水性表面調整剤を添加することで、形成された被膜の耐久性や硬度といった被膜に求められる物性を変えずに被膜表面を親水化できる。親水性表面調整剤として、多くは加水分解により親水性を発現するエチルシリケートで代表されるシリケート類が用いられる場合が多い。シリケート類が被膜表面での加水分解に概ね2〜3ヶ月間の時間を必要とすることから、被膜形成直後に被膜は未加水分解のシリケート類により疎水性表面となるため親油性の汚れが付着し易い状況下にある。シリケート類の加水分解により親水性発現後に長期的な親水性発現が可能であるが、長期的な親水性は、かえって徐々に被膜内部へ水分を侵入させ、被膜そのものの耐久性を低下させる恐れがある。さらに、シリケート類のような親水性表面調整剤を含有するコーティング剤の問題点として、親水性表面調整剤自身のゲル化、樹脂との架橋によるコーティング剤の増粘といった経時安定性の観点から不具合が生じやすいことも挙げられる。親水性表面調整剤自体が、空気中の水分による加水分解を生じて高極性化し、シリケート類の疎水性による表面配向性を失い、親水化性能を低下させてしまうこともある。   On the other hand, as a technique for imparting hydrophilicity to the film without changing the resin or the crosslinkable component, there is a case where a hydrophilic surface conditioner is added to an existing coating agent. In this case, by adding a small amount of a hydrophilic surface conditioner, the coating surface can be hydrophilized without changing the physical properties required of the coating, such as the durability and hardness of the formed coating. As the hydrophilic surface conditioner, in many cases, silicates represented by ethyl silicate that exhibits hydrophilicity by hydrolysis are often used. Since silicates require approximately 2-3 months to hydrolyze on the surface of the film, the film becomes a hydrophobic surface due to the unhydrolyzed silicates immediately after the film is formed, so that lipophilic soil adheres to it. It ’s easy to do. Hydrolysis of silicates allows long-term hydrophilic expression after hydrophilic expression, but long-term hydrophilicity may cause moisture to gradually enter the film and reduce the durability of the film itself. is there. Furthermore, as a problem of coating agents containing hydrophilic surface conditioners such as silicates, there are problems from the viewpoint of stability over time such as gelation of hydrophilic surface conditioners themselves and thickening of coating agents by crosslinking with resins. Is likely to occur. The hydrophilic surface conditioner itself may be hydrolyzed by moisture in the air and become highly polar, losing the surface orientation due to the hydrophobicity of the silicates, and reducing the hydrophilization performance.

被膜形成初期から親水性を発現させる親水性表面調整剤として、親水性セグメントであるポリアルキレンオキサイドを含有したものがある。このような親水性表面調整剤を含むコーティング剤は、常温で被膜を形成するのに比較的適しているが、焼き付け塗料のように高温焼き付けで被膜を形成する場合、ポリアルキレンオキサイドの耐熱性の低さから熱分解又は加水分解と考えられる親水性発現性能低下傾向が認められる。また、この親水性表面調整剤がコーティング剤中の泡を安定化させ易いため、コーティング剤の塗工時に巻き込まれた微細な泡が焼付け時に泡抜け痕(ワキ)を発生させることがある。   As a hydrophilic surface conditioner that develops hydrophilicity from the initial stage of film formation, there is one containing a polyalkylene oxide that is a hydrophilic segment. A coating agent containing such a hydrophilic surface conditioner is relatively suitable for forming a film at room temperature. However, when a film is formed by baking at a high temperature like a baking paint, the heat resistance of polyalkylene oxide is reduced. There is a tendency to lower the hydrophilic expression performance, which is considered to be thermal decomposition or hydrolysis from the low level. In addition, since the hydrophilic surface conditioner can easily stabilize the foam in the coating agent, fine bubbles entrained during the coating of the coating agent may cause bubbles to be removed during baking.

また、下記特許文献6に、シロキシ基含有アクリレート類のようなシリコーンマクロモノマーと不飽和ポリエーテル成分とアクリルアミド類とがラジカル重合した親水性有機官能性シリコーンポリマーを有している親水性表面調整剤が、記載されている。この親水性表面調整剤は、ポリマー中、ポリエーテル成分を30%以上含有する必要がある。この親水性表面調整剤を含有するコーティング剤が高温焼付け工程においてポリエーテル成分の熱分解を生じ易く、飛散した分解物が焼付け炉等の設備を汚染してしまう。また、このコーティング剤で形成した被膜は、疎水性であるシリコーン部と親水性であるポリエーテル部を有することで高極性両親媒骨格となり、コーティング剤中の気泡を安定化させ易く、ワキを発生させ易い。   Patent Document 6 listed below discloses a hydrophilic surface conditioner having a hydrophilic organofunctional silicone polymer obtained by radical polymerization of a silicone macromonomer such as a siloxy group-containing acrylate, an unsaturated polyether component, and acrylamides. Is described. This hydrophilic surface conditioner needs to contain 30% or more of a polyether component in the polymer. The coating agent containing the hydrophilic surface conditioner easily causes thermal decomposition of the polyether component in the high-temperature baking process, and the scattered decomposition product contaminates equipment such as a baking furnace. In addition, the coating formed with this coating agent has a hydrophobic silicone part and a hydrophilic polyether part, so that it becomes a highly polar amphiphile skeleton, which makes it easier to stabilize the bubbles in the coating agent and generate flares. Easy to do.

コーティング剤に、これら表面調整剤とさらに消泡剤とを添加しても、コーティング剤で形成した被膜にワキの問題が生じる場合がある。ワキの発生は被膜の外観を大きく損ねるだけではなく、欠陥個所からの被膜破壊や、基材の保護効果を損ねる。このように、従来の親水性表面調整剤を含有するコーティング剤によれば、形成した被膜に初期から親水性を発現できたとしても、ワキの完全な防止が非常に困難となってしまう。   Even if these surface conditioners and further antifoaming agents are added to the coating agent, there may be a problem with the film formed by the coating agent. The occurrence of wrinkles not only greatly impairs the appearance of the film, but also damages the film from the defective part and the protective effect of the substrate. Thus, according to the coating agent containing the conventional hydrophilic surface conditioner, even if hydrophilicity can be expressed in the formed film from the beginning, it is very difficult to completely prevent the crack.

特開平5−179145号公報JP-A-5-179145 特開平7−196977号公報Japanese Patent Laid-Open No. 7-196977 特開平9−31401号公報JP-A-9-31401 特開2002−80789号公報JP 2002-80789 A 特開平4−370176号公報JP-A-4-370176 特表2008−542462号公報Special table 2008-542462 gazette

本発明は前記の課題を解決するためになされたもので、被膜を形成する塗料等のコーティング剤に少量配合することにより、ワキを防止して平滑に形成された被膜表面に親水性を付与し、その結果として防汚性を付与できる表面調整剤、コーティング剤、及びそれを塗布され硬化させて形成された被膜を提供する。   The present invention has been made to solve the above-mentioned problems, and by adding a small amount to a coating agent such as a paint for forming a film, it prevents hydrophilicity and imparts hydrophilicity to the smoothly formed film surface. As a result, a surface conditioner capable of imparting antifouling property, a coating agent, and a film formed by applying and curing the surface preparation agent are provided.

前記の目的を達成するためになされた、特許請求の範囲の請求項1に記載された表面調整剤は、N,N−ジメチルアクリルアミドであるジメチル(メタ)アクリルアミド類と、N,N−ジエチルアクリルアミドであるジエチル(メタ)アクリルアミド類から選ばれる少なくとも一種のアクリルアミドモノマー80.00〜99.99重量部、下記化学式(I)

Figure 0005437523
(式(I)中、Rは水素原子又はメチル基、Rは炭素数1〜10のアルキレン基、Rは炭素数1〜12のアルキル基、mは2〜150の数を示す。)で表わされる片末端(メタ)アクリル変性のシロキシ基含有モノ(メタ)アクリレートモノマー0.01〜20.00重量部、並びに、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、又は水酸基を有する(メタ)アクリレートにε-カプロラクトンを付加したモノマーである水酸基含有(メタ)アクリレート類N−ヒドロキシエチルアクリルアミド、又はN−ヒドロキシメチルアクリルアミドである水酸基含有(メタ)アクリルアミド類と、エチルアルコール、イソプロピルアルコール、カプロラクタム、メチルエチルケトン−オキシム、ジメチルピラゾール、及びマロン酸ジエチルから選ばれるブロック剤を反応させたもので前記ブロック剤でブロック化されたイソシアネート基を有する(メタ)アクリレートモノマーであるブロックイソシアネート基含有(メタ)アクリレート類から選ばれる少なくとも何れかの官能基含有モノマーを最大で10重量部のうち、
少なくとも前記アクリルアミドモノマーと前記シロキシ基含有モノ(メタ)アクリレートモノマーとが共重合され重量平均分子量を1500〜50000とする共重合物を含有しており、被膜表面に親水性を付与することを特徴とする。 The surface conditioning agent according to claim 1, which has been made to achieve the above object, includes dimethyl (meth) acrylamides which are N, N-dimethylacrylamide , and N, N-diethylacrylamide. in a diethyl (meth) at least one acrylamide monomer from 80.00 to 99.99 parts by weight selected from acrylamides, following chemical formula (I)
Figure 0005437523
(In the formula (I), R 1 represents a hydrogen atom or a methyl group, R 2 is an alkylene group having 1 to 10 carbon atoms, R 3 is an alkyl group having 1 to 12 carbon atoms, m is a number of 2 to 150. 0.01 to 20.00 parts by weight of a mono (meth) acrylate-modified mono (meth) acrylate monomer modified with one end (meth) acrylic represented by 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate , 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, or a monomer obtained by adding ε-caprolactone to (meth) acrylate having a hydroxyl group and a hydroxyl group-containing (meth) acrylates, N- hydroxyethyl acrylamide, or N- hydroxy And a hydroxyl group-containing (meth) acrylamides is chill acrylamide, ethyl alcohol, isopropyl alcohol, caprolactam, methyl ethyl ketone - oxime, dimethylpyrazole, and is blocked by the blocking agent blocking agent selected from diethyl malonate in that reacted of most 10 parts by weight of at least one functional group-containing monomer selected from the blocked isocyanate group-containing (meth) acrylates are (meth) acrylate monomer having an isocyanate group was,
At least the acrylamide monomer and the siloxy group-containing mono (meth) acrylate monomer are copolymerized to contain a copolymer having a weight average molecular weight of 1500 to 50000, and impart hydrophilicity to the coating surface. To do.

請求項2に記載のコーティング剤は、請求項1に記載の表面調整剤と、被膜形成成分とを含有することを特徴とする。   The coating agent according to claim 2 contains the surface conditioner according to claim 1 and a film-forming component.

請求項3に記載の被膜は、請求項2に記載のコーティング剤で、基材上に塗布され硬化されて形成されたことを特徴とする。   The film according to claim 3 is the coating agent according to claim 2, and is formed by being applied onto a substrate and cured.

請求項4に記載の被膜は、請求項3に記載されているものであって、前記親水性によって前記被膜表面で防汚性を有することを特徴とする。   A film according to a fourth aspect is the film according to the third aspect, and is characterized by having an antifouling property on the surface of the film due to the hydrophilicity.

本発明の表面調整剤によれば、コーティング剤へ少量添加するだけで、加水分解等の反応を必要とせずに、被膜形成直後から親水性を被膜表面に付与でき、水接触角を小さくし雨水等の水による洗浄性を向上させて、防汚性を発現させることができる。
また、この表面調整剤を含有する本発明のコーティング剤は、貯蔵時の表面調整剤の性能変化、及び/又は表面調整剤に起因したコーティング剤の粘度変化がなく、貯蔵安定性に優れている。さらに、コーティング剤に配合された消泡剤による脱泡・破泡が促進され、ワキ防止が達成されて、平滑な被膜を形成することができる。
このコーティング剤で形成された被膜は、表面に親水性が付与されており、平滑であり、さらに上塗り特性に優れ、また焼き付け処理時にハジキやブツの発生が無く耐熱性に優れている。
According to the surface conditioner of the present invention, just by adding a small amount to the coating agent, it is possible to impart hydrophilicity to the surface of the coating immediately after the coating is formed without requiring a reaction such as hydrolysis, thereby reducing the water contact angle and rainwater. It is possible to improve the detergency with water such as antifouling property.
In addition, the coating agent of the present invention containing this surface conditioner is excellent in storage stability without any change in performance of the surface conditioner during storage and / or viscosity change of the coating agent due to the surface conditioner. . Furthermore, defoaming / breaking of bubbles by the antifoaming agent blended in the coating agent is promoted, prevention of cracking is achieved, and a smooth film can be formed.
The coating film formed with this coating agent has hydrophilicity on the surface, is smooth, and has excellent top coating characteristics, and has excellent heat resistance with no occurrence of repellency or unevenness during baking.

以下、本発明を実施するための形態について、詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。   Hereinafter, although the form for implementing this invention is demonstrated in detail, the scope of the present invention is not limited to these forms.

本発明の表面調整剤は、N,N−ジメチルアクリルアミドやN,N−ジメチルメタクリルアミドのようなジメチル(メタ)アクリルアミド類及びN,N−ジエチルアクリルアミドやN,N−ジエチルメタクリルアミドのようなジエチル(メタ)アクリルアミド類から選ばれる少なくとも一種のアクリルアミドモノマー80.00〜99.99量部と、シロキシ基含有モノ(メタ)アクリレートモノマー0.01〜20.00重量部との共重合物を含有するものである。表面調整剤は、硬化させて被膜を形成するために被膜形成組成物である各種コーティング剤に添加して含有されるのに用いられるものである。アクリルアミドモノマーが80重量部未満の場合、得られた表面調整剤は、被膜に十分な親水性を発現させることができない。また、表面調整剤を含有するコーティング剤中に配合される他成分との相溶性が極端に悪くなり、それの塗装の際にハジキが生じたり、塗装膜表面に凹みが生じたりするうえ、形成された被膜への上塗りのレベリング性を悪化させ、十分な上塗り付着性も得られなくなる。アクリルアミドモノマーが90〜99重量部及びシロキシ基含有モノ(メタ)アクリレートモノマーが1〜10重量部であることが好ましい。   The surface conditioning agent of the present invention includes dimethyl (meth) acrylamides such as N, N-dimethylacrylamide and N, N-dimethylmethacrylamide, and diethyl such as N, N-diethylacrylamide and N, N-diethylmethacrylamide. It contains a copolymer of 80.00 to 99.99 parts by weight of at least one acrylamide monomer selected from (meth) acrylamides and 0.01 to 20.00 parts by weight of a siloxy group-containing mono (meth) acrylate monomer. Is. The surface conditioner is used to be added to and contained in various coating agents that are film-forming compositions in order to cure and form a film. When the amount of the acrylamide monomer is less than 80 parts by weight, the obtained surface conditioning agent cannot exhibit sufficient hydrophilicity in the film. In addition, the compatibility with other components blended in the coating agent containing the surface conditioner becomes extremely poor, repelling occurs during coating, and dents are formed on the coating film surface. The leveling property of the top coat to the coated film is deteriorated, and sufficient top coat adhesion cannot be obtained. The acrylamide monomer is preferably 90 to 99 parts by weight and the siloxy group-containing mono (meth) acrylate monomer is preferably 1 to 10 parts by weight.

上述したアクリルアミドモノマーとシロキシ基含有モノ(メタ)アクリレートモノマーとの共重合物中に、水酸基含有(メタ)アクリレート類、水酸基含有(メタ)アクリルアミド類、及びブロックイソシアネート基含有(メタ)アクリレート類から選ばれる少なくとも何れかの官能基含有モノマーが共重合されていてもよい。この官能基含有モノマーは、(メタ)アクリルアミドモノマー及びシロキシ基含有モノ(メタ)アクリレートモノマーの総重量に対して10重量部以下であると好ましい。これにより、コーティング膜表面で塗料中の樹脂と反応するため雨水による表面調整剤の溶け出しがさらに生じ難くなり、防汚性に有利に働くことができる。10重量部以上では本来の性能を害する恐れがある。これらの官能基含有モノマーは、総重量が規定の配合量以下であれば単独で用いてもよく、併用して用いてもよい。   In the copolymer of the acrylamide monomer and the siloxy group-containing mono (meth) acrylate monomer, selected from hydroxyl group-containing (meth) acrylates, hydroxyl group-containing (meth) acrylamides, and blocked isocyanate group-containing (meth) acrylates At least any functional group-containing monomer may be copolymerized. This functional group-containing monomer is preferably 10 parts by weight or less based on the total weight of the (meth) acrylamide monomer and the siloxy group-containing mono (meth) acrylate monomer. Thereby, since it reacts with the resin in the paint on the surface of the coating film, the surface conditioner is not easily dissolved out by rainwater, which can advantageously work in antifouling properties. If it is 10 parts by weight or more, the original performance may be impaired. These functional group-containing monomers may be used alone or in combination as long as the total weight is not more than the prescribed blending amount.

この共重合物の重量平均分子量は、1500〜50000の範囲内のものである。その重量平均分子量が1500未満の場合は、共重合物含有のコーティング剤塗工時に泡の問題が生じ易くなる。一方、その重量平均分子量が50000を超える場合は、被膜表面への配向性が低下し、十分な親水性が得られなくなる。共重合物の重量平均分子量が、2500〜20000であることが好ましい。   The weight average molecular weight of this copolymer is in the range of 1500 to 50000. When the weight average molecular weight is less than 1500, a foam problem is likely to occur when a copolymer-containing coating agent is applied. On the other hand, when the weight average molecular weight exceeds 50000, the orientation to the coating surface is lowered and sufficient hydrophilicity cannot be obtained. It is preferable that the weight average molecular weight of a copolymer is 2500-20000.

シロキシ基含有モノ(メタ)アクリレートモノマーとして、下記化学式(I)で表される片末端(メタ)アクリル変性のシロキシ基含有モノ(メタ)アクリレートモノマーが用いられる。

Figure 0005437523
(式(I)中、Rは水素原子、又はメチル基、Rは炭素数1〜10のアルキレン基、Rは炭素数1〜12のアルキル基、mは2〜150の正数を示す。) As the siloxy group-containing mono (meth) acrylate monomer, a one-terminal (meth) acryl-modified siloxy group-containing mono (meth) acrylate monomer represented by the following chemical formula (I) is used.
Figure 0005437523
(In Formula (I), R 1 is a hydrogen atom or a methyl group, R 2 is an alkylene group having 1 to 10 carbon atoms, R 3 is an alkyl group having 1 to 12 carbon atoms, and m is a positive number of 2 to 150. Show.)

化学式(I)で表されるシロキシ基含有モノ(メタ)アクリレートモノマーは、例えば、サイラプレーンFM−0711、サイラプレーンFM−0721、サイラプレーンFM−0725(以上、チッソ株式会社の製品名;サイラプレーンはチッソ株式会社の登録商標)、X−22−174DX、X−22−2426、X−22−2475(以上、信越化学工業株式会社の製品名)が挙げられる。   Siloxy group-containing mono (meth) acrylate monomers represented by the chemical formula (I) are, for example, Silaplane FM-0711, Silaplane FM-0721, Silaplane FM-0725 (product name of Chisso Corporation; Silaplane) Are registered trademarks of Chisso Corporation, X-22-174DX, X-22-2426, X-22-2475 (the product name of Shin-Etsu Chemical Co., Ltd.).

アクリルアミドモノマーは、ジメチル(メタ)アクリルアミド類及びジエチル(メタ)アクリルアミド類として、例えばN,N−ジメチルアクリルアミドであるDMAA、N,N−ジエチルアクリルアミドであるDEAA(興人フィルム&ケミカルズ株式会社の製品名)が挙げられる。   Acrylamide monomers are dimethyl (meth) acrylamides and diethyl (meth) acrylamides, for example, DMAA which is N, N-dimethylacrylamide, DEAA which is N, N-diethylacrylamide (product name of Kojin Film & Chemicals Co., Ltd.) ).

水酸基含有(メタ)アクリレート類は、例えば2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、水酸基を有する(メタ)アクリレートにε-カプロラクトンを付加したモノマー(例えばプラクセルFMシリーズ)等が、挙げられる。
水酸基含有(メタ)アクリルアミド類は、例えばN−ヒドロキシエチルアクリルアミド、N−ヒドロキシメチルアクリルアミド等が挙げられる。
ブロックイソシアネート基含有(メタ)アクリレート類は、ブロック剤でブロック化されたイソシアネート基を有する(メタ)アクリレートモノマーであって、例えば2−イソシアナトエチル(メタ)アクリレートにブロック剤として、エチルアルコール、イソプロピルアルコール、カプロラクタム、MEK−オキシム、ジメチルピラゾール、マロン酸ジエチル、等を反応させたものが挙げられる。
Examples of the hydroxyl group-containing (meth) acrylates include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy- Examples thereof include 3-phenoxypropyl (meth) acrylate and monomers obtained by adding ε-caprolactone to (meth) acrylate having a hydroxyl group (for example, Plaxel FM series).
Examples of the hydroxyl group-containing (meth) acrylamides include N-hydroxyethyl acrylamide and N-hydroxymethyl acrylamide.
Blocked isocyanate group-containing (meth) acrylates are (meth) acrylate monomers having an isocyanate group blocked with a blocking agent. For example, 2-isocyanatoethyl (meth) acrylate is blocked with ethyl alcohol, isopropyl Examples include those obtained by reacting alcohol, caprolactam, MEK-oxime, dimethylpyrazole, diethyl malonate, and the like.

上述したアクリルアミドモノマーとシロキシ基含有モノ(メタ)アクリレートモノマーとの共重合物中に、アルキル(メタ)アクリレート類、(メタ)アクリルアミド類及びビニル基含有化合物類から選ばれる少なくとも一種の不飽和モノマーが共重合されていてもよい。但し、その不飽和モノマーの共重合量は、得られた共重合物が親水性付与性能を害しない程度とすべきであり、前記アクリルアミドモノマーとシロキシ基含有モノ(メタ)アクリレートモノマーの総重量に対し30重量%以下であると好ましい。   In the copolymer of the acrylamide monomer and the siloxy group-containing mono (meth) acrylate monomer, at least one unsaturated monomer selected from alkyl (meth) acrylates, (meth) acrylamides and vinyl group-containing compounds is present. It may be copolymerized. However, the copolymerization amount of the unsaturated monomer should be such that the obtained copolymer does not impair the hydrophilicity-imparting performance, and is the total weight of the acrylamide monomer and the siloxy group-containing mono (meth) acrylate monomer. However, it is preferably 30% by weight or less.

アルキル(メタ)アクリレート類は、例えば、アルキルアクリレート、又はアルキルメタクリレートであって、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、n−オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2−アクリロイロキシエチル−コハク酸、2−アクリロイロキシエチル−フタル酸、テトラヒドロフルフリル(メタ)アクリレート等が、挙げられる。   The alkyl (meth) acrylates are, for example, alkyl acrylates or alkyl methacrylates, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n- Butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, dodecyl ( (Meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 2-acryloyloxyethyl-succinic acid, 2-acryloyloxyethyl-phthalic acid, tet Tetrahydrofurfuryl (meth) acrylate, and the like.

(メタ)アクリルアミド類は、ジメチル(メタ)アクリルアミド類やジエチル(メタ)アクリルアミド類以外のもので、例えばジメチルアミノプロピル(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ダイアセトンアクリルアミド、(メタ)アクリルアミド−tert−ブチルスルホン酸、(メタ)アクリルアミド−tert−ブチルスルホン酸有機塩、(メタ)アクリルアミド−tert−ブチルスルホン酸無機塩等が、挙げられる。   (Meth) acrylamides are other than dimethyl (meth) acrylamides and diethyl (meth) acrylamides, such as dimethylaminopropyl (meth) acrylamide, isopropyl (meth) acrylamide, (meth) acryloylmorpholine, diacetone acrylamide, (Meth) acrylamide-tert-butylsulfonic acid, (meth) acrylamide-tert-butylsulfonic acid organic salt, (meth) acrylamide-tert-butylsulfonic acid inorganic salt, and the like.

ビニル基含有化合物類は、例えばn−ブチルビニルエーテル、イソブチルビニルエーテル、tert−ブチルビニルエーテル、シクロヘキシルビニルエーテル、ラウリルビニルエーテルのような炭素数1〜12の直鎖状、分岐状又は環状のアルキルビニルエーエルモノマー;酢酸ビニル、プロピオン酸ビニル、ラウリン酸ビニルのようなビニルエステルモノマーが挙げられる。   Examples of vinyl group-containing compounds include linear, branched or cyclic alkyl vinyl ether monomers having 1 to 12 carbon atoms such as n-butyl vinyl ether, isobutyl vinyl ether, tert-butyl vinyl ether, cyclohexyl vinyl ether, and lauryl vinyl ether; And vinyl ester monomers such as vinyl, vinyl propionate and vinyl laurate.

この共重合物は、ラジカル重合方法で得ることができる。ラジカル重合方法では、ジメチル(メタ)アクリルアミド及びジエチル(メタ)アクリルアミドから選ばれた少なくとも一種のアクリルアミドモノマーの所定量と、所定のシロキシ基含有モノ(メタ)アクリレートモノマーと、必要に応じて、所定量の水酸基含有(メタ)アクリレート類、水酸基含有(メタ)アクリルアミド類、及びブロックイソシアネート基含有(メタ)アクリレート類から選ばれる少なくとも何れかの官能基含有モノマーと、さらに必要に応じて、所定量のアルキル(メタ)アクリレート類、(メタ)アクリルアミド類及びビニル基含有化合物類から選ばれる少なくとも一種の不飽和モノマーとを、適宜溶媒中、ラジカル重合開始剤、必要に応じて連鎖移動剤の存在下でランダム共重合させて得ることができる。ラジカル重合開始剤としては、例えばtert−ブチルパーオキシ−2−エチルヘキサノエイトを用いることができ、連鎖移動剤としては、例えばドデシルメルカプタンを用いることができる。また、溶媒としては、例えばシクロヘキサノン等の不活性溶媒を用いることができる。尚、共重合物は、ラジカル重合で得られてもよく、アニオン重合のようなイオン重合で得られてもよい。共重合物は、ランダム共重合体であってもよく、ブロック共重合体であってもよく、グラフト共重合体であってもよく、交互共重合体であってもよい。   This copolymer can be obtained by a radical polymerization method. In the radical polymerization method, a predetermined amount of at least one acrylamide monomer selected from dimethyl (meth) acrylamide and diethyl (meth) acrylamide, a predetermined siloxy group-containing mono (meth) acrylate monomer, and a predetermined amount as required At least one functional group-containing monomer selected from hydroxyl group-containing (meth) acrylates, hydroxyl group-containing (meth) acrylamides, and blocked isocyanate group-containing (meth) acrylates, and, if necessary, a predetermined amount of alkyl At least one unsaturated monomer selected from (meth) acrylates, (meth) acrylamides and vinyl group-containing compounds is randomly selected in a solvent, optionally in the presence of a radical polymerization initiator, and optionally a chain transfer agent. It can be obtained by copolymerization. As the radical polymerization initiator, for example, tert-butylperoxy-2-ethylhexanoate can be used, and as the chain transfer agent, for example, dodecyl mercaptan can be used. Further, as the solvent, for example, an inert solvent such as cyclohexanone can be used. The copolymer may be obtained by radical polymerization or may be obtained by ionic polymerization such as anionic polymerization. The copolymer may be a random copolymer, a block copolymer, a graft copolymer, or an alternating copolymer.

得られた共重合物を含有する表面調整剤は、共重合物のみからなっていてもよく、共重合物を不活性溶媒で溶解又は懸濁させて用いてもよい。不活性溶媒は、この共重合物を溶解又は懸濁させることができるものである。具体的にはキシレン、トルエン、シクロヘキサンのような炭化水素溶媒;シクロヘキサノン、メチルイソブチルケトンのようなケトン溶媒;メチルセロソルブ、セロソルブ、ブチルセロソルブ、メチルカルビトール、カルビトール、ブチルカルビトール、ジエチルカルビトール、プロピレングリコールモノメチルエーテルのようなエーテル溶媒;酢酸n−ブチル、酢酸イソブチル、酢酸n−アミル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテートのようなエステル溶媒;n−ブチルアルコール、sec−ブチルアルコール、イソブチルアルコール、シクロヘキサノール、2−エチルヘキサノール、3−メチル−3−メトキシブタノールのようなアルコール溶媒が、挙げられる。これらの溶媒は、単独で用いてもよく、複数種混合して用いてもよい。   The obtained surface conditioning agent containing the copolymer may be composed only of the copolymer, or may be used by dissolving or suspending the copolymer in an inert solvent. An inert solvent is one that can dissolve or suspend the copolymer. Specifically, hydrocarbon solvents such as xylene, toluene and cyclohexane; ketone solvents such as cyclohexanone and methyl isobutyl ketone; methyl cellosolve, cellosolve, butyl cellosolve, methyl carbitol, carbitol, butyl carbitol, diethyl carbitol, propylene Ether solvents such as glycol monomethyl ether; ester solvents such as n-butyl acetate, isobutyl acetate, n-amyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate; n-butyl alcohol, sec-butyl Examples include alcohol solvents such as alcohol, isobutyl alcohol, cyclohexanol, 2-ethylhexanol, and 3-methyl-3-methoxybutanol. These solvents may be used alone or in combination of two or more.

コーティング剤は、表面調整剤と、被膜形成成分とを含有するものである。この表面調整剤を配合してコーティング剤を調製する場合、表面調整剤未含有で被膜形成成分含有の公知のコーティング剤を予め作製した後、表面調整剤を配合し、混練することにより、所望のコーティング剤が得られる。それらを同時に又は任意の順で混合してもよい。コーティング剤は、コーティング剤全量に対する固形分換算値で0.1〜10重量%、好ましくは0.5〜5.0重量%の共重合物となるよう表面調整剤が配合されることが好ましい。コーティング剤に、被膜形成成分や不活性溶媒以外の第三成分が配合されていてもよい。その第三成分は、特に限定されないが、例えば顔料・染料のような着色剤、樹脂、希釈溶媒、触媒、界面活性剤が挙げられる。また、必要に応じて、増感剤、帯電防止剤、消泡剤、分散剤、粘度調整剤が、この配合されてもよい。   The coating agent contains a surface conditioner and a film forming component. When preparing a coating agent by blending this surface conditioner, after preparing a known coating agent containing no surface conditioner and containing a film-forming component in advance, blending the surface conditioner and kneading to obtain a desired coating agent A coating agent is obtained. They may be mixed simultaneously or in any order. The coating agent is preferably blended with a surface conditioner so as to be a copolymer of 0.1 to 10% by weight, preferably 0.5 to 5.0% by weight in terms of solid content with respect to the total amount of the coating agent. The coating agent may contain a third component other than the film forming component and the inert solvent. The third component is not particularly limited, and examples thereof include colorants such as pigments and dyes, resins, diluent solvents, catalysts, and surfactants. Moreover, a sensitizer, an antistatic agent, an antifoamer, a dispersing agent, and a viscosity modifier may be blended as necessary.

コーティング剤中に配合される被膜形成成分である樹脂は、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、アルキッド樹脂、エポキシ樹脂、ポリアミン樹脂が挙げられる。この樹脂は、例えば、加熱硬化型、紫外線硬化型、電子線硬化型、酸化硬化型、光カチオン硬化型、過酸化物硬化型、及び酸/エポキシ硬化型のように、触媒存在下、又は触媒非存在下で化学反応を伴って硬化するものであってもよく、ガラス転移点が高い樹脂で、化学反応が伴わず、溶媒が揮発するだけで被膜となるものであってもよい。   Examples of the resin that is a film forming component blended in the coating agent include acrylic resins, polyester resins, urethane resins, alkyd resins, epoxy resins, and polyamine resins. This resin is, for example, in the presence of a catalyst, such as heat curable, ultraviolet curable, electron beam curable, oxidation curable, photocationic curable, peroxide curable, and acid / epoxy curable. It may be one that cures with a chemical reaction in the absence, or it may be a resin having a high glass transition point that does not involve a chemical reaction and forms a film only by volatilization of the solvent.

また、希釈溶媒は、一般的に用いられる水又は有機溶媒であれば、特に限定されないが、有機溶媒として例えば、キシレン、トルエン、シクロヘキサンのような炭化水素溶媒;シクロヘキサノン、メチルイソブチルケトンのようなケトン溶媒;メチルセロソルブ、セロソルブ、ブチルセロソルブ、メチルカルビトール、カルビトール、ブチルカルビトール、ジエチルカルビトール、プロピレングリコールモノメチルエーテルのようなエーテル溶媒;酢酸n−ブチル、酢酸イソブチル、酢酸n−アミル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテートのようなエステル溶媒;n−ブチルアルコール、sec−ブチルアルコール、イソブチルアルコール、シクロヘキサノール、2−エチルヘキサノール、3−メチル−3−メトキシブタノールのようなアルコール溶媒が挙げられる。これらの溶媒は、単独で用いてもよく、混合して用いてもよい。   The dilution solvent is not particularly limited as long as it is a commonly used water or organic solvent. Examples of the organic solvent include hydrocarbon solvents such as xylene, toluene and cyclohexane; ketones such as cyclohexanone and methyl isobutyl ketone. Solvent; ether solvent such as methyl cellosolve, cellosolve, butyl cellosolve, methyl carbitol, carbitol, butyl carbitol, diethyl carbitol, propylene glycol monomethyl ether; n-butyl acetate, isobutyl acetate, n-amyl acetate, cellosolve acetate, Ester solvents such as propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; n-butyl alcohol, sec-butyl alcohol, isobutyl alcohol, cyclohexanol, 2- Chill hexanol, alcohol solvents thereof such as 3-methyl-3-methoxybutanol. These solvents may be used alone or in combination.

この表面調整剤が含有されたコーティング剤を基材の表面に塗布し、得られた塗装膜を乾燥又は硬化して、表面が親水化した被膜を形成することができる。この被膜は、表面が親水化していることにより水と馴染み易くなって、塵埃が付着しても雨水等の水で洗浄され易くなるという防汚性を有する。   The coating agent containing this surface conditioner can be applied to the surface of the substrate, and the resulting coating film can be dried or cured to form a coating having a hydrophilic surface. This coating has an antifouling property that it becomes easy to become familiar with water due to its hydrophilic surface, and even if dust adheres, it is easily washed with water such as rainwater.

基材は、特に限定されないが、プラスチック、ゴム、紙、木材、ガラス、金属、石材、セメント材、モルタル材、セラミックスの素材で形成されたもので、家電製品や自動車の外装材、日用品、建材が挙げられる。   The base material is not particularly limited, but is made of plastic, rubber, paper, wood, glass, metal, stone, cement material, mortar material, ceramic material, home appliances, automobile exterior materials, daily necessities, building materials. Is mentioned.

また、コーティング剤の塗布方法は、例えば、スピンコート、スリットコート、スプレーコート、ディップコート、バーコート、ドクターブレード、ロールコート、フローコートが挙げられる。   Examples of the method for applying the coating agent include spin coating, slit coating, spray coating, dip coating, bar coating, doctor blade, roll coating, and flow coating.

このように本発明の表面調整剤が含有されたコーティング剤を基材表面に塗布し硬化して形成した被膜は、ワキ防止が達成され平滑であって、被膜形成直後から表面に親水性が付与されており、それによって雨水等の水による洗浄性が向上して防汚性を発現できる。すなわち、表面調整剤は、親水性を付与するための加水分解等の反応を必要とせず、被膜形成直後から親水性表面を付与できる。このように表面調整剤を含むコーティング剤で形成された被膜によれば、表面張力の低い疎水性樹脂のような被膜形成成分を用いても、形成された被膜表面を親水化でき、表面張力の高いコーティング剤を上塗りした際の濡れ広がり性を改善でき、その効果から上塗り被膜の平滑性を向上させることができる。また、被膜表面を親水化することで、結果として親水性表面は基材に対する水接触角が低くなり、雨水等の水による洗浄性が向上することで高い防汚性を発現できる。この防汚性も、被膜形成直後から発現する。   Thus, the coating formed by applying the coating agent containing the surface conditioner of the present invention to the surface of the substrate and curing is smooth and smooth, and imparts hydrophilicity to the surface immediately after the coating is formed. Accordingly, the detergency with water such as rainwater is improved, and the antifouling property can be expressed. That is, the surface conditioner does not require a reaction such as hydrolysis for imparting hydrophilicity, and can impart a hydrophilic surface immediately after the film formation. Thus, according to the film formed of the coating agent containing the surface conditioner, the formed film surface can be hydrophilized even if a film forming component such as a hydrophobic resin having a low surface tension is used. It is possible to improve wettability at the time of overcoating with a high coating agent, and to improve the smoothness of the topcoat film from the effect. Further, by hydrophilizing the coating surface, as a result, the hydrophilic surface has a low water contact angle with respect to the base material, and the high antifouling property can be expressed by improving the detergency with water such as rainwater. This antifouling property also appears immediately after the coating is formed.

この表面調整剤は、常温では前掲の特許文献6に記載された親水性有機官能性シリコーンコポリマーと同様に高極性両親媒骨格であることから被膜形成成分との相溶性に優れているが、気泡を安定化し難い状態になっている。その理由の詳細は必ずしも明らかでないが、以下のように推察される。この表面調整剤は、アクリルアミドを主成分とする共重合物を含有している。共重合物は、疎水性のポリシロキサンセグメントと親水性/疎水性のアクリルアミドに由来するセグメントとを有している。アクリルアミドはその構造内に疎水部と親水部を有しているから、ジメチル及び/またはジエチル(メタ)アクリルアミド由来のセグメントを有する共重合物は、水溶液中で感温性ポリマーとなる。これはある程度の比率までモノマーを共重合した場合でも同様に観察される。感温温度前後にてアクリルアミドを主成分とするポリマーは親水性/疎水性が相転換する。この特性により、ワキの発生する焼付け工程時に、この表面調整剤は親水性から疎水性へと変化し、安定化された気泡がこの表面調整剤の相転換により不安定になり、消泡剤による脱泡・破泡が促進され、ワキ防止が達成される。焼付け後、常温に戻ると疎水性が再び親水性となり、形成された被膜は親水性を有している。   This surface conditioner is excellent in compatibility with the film-forming component because it is a highly polar amphiphile skeleton at room temperature, as is the case with the hydrophilic organofunctional silicone copolymer described in Patent Document 6 described above. It is difficult to stabilize. The details of the reason are not necessarily clear, but are presumed as follows. This surface conditioner contains a copolymer having acrylamide as a main component. The copolymer has a hydrophobic polysiloxane segment and a segment derived from hydrophilic / hydrophobic acrylamide. Since acrylamide has a hydrophobic part and a hydrophilic part in its structure, a copolymer having a segment derived from dimethyl and / or diethyl (meth) acrylamide becomes a thermosensitive polymer in an aqueous solution. This is also observed when monomers are copolymerized to a certain degree. A polymer containing acrylamide as a main component before and after the temperature-sensitive temperature undergoes a phase change between hydrophilicity and hydrophobicity. Due to this characteristic, the surface conditioner changes from hydrophilic to hydrophobic during the baking process where the cracks occur, and the stabilized bubbles become unstable due to the phase change of the surface conditioner. Defoaming / breaking is promoted and prevention of cracking is achieved. After baking, when the temperature returns to room temperature, the hydrophobicity becomes hydrophilic again, and the formed film has hydrophilicity.

この表面調整剤を含むコーティング剤を基材上に塗布して被膜を形成したとき、表面調整剤は高い界面への配向性も有しており、表面張力の均一化効果からレベリング性も発現し、塗工ムラやユズ肌等の被膜表面の不具合が僅少である。しかも、この被膜はそれに上塗りする際にも塗装ムラが生じず、被膜と上塗り層との付着性を低下させることなく、しっかりと密着しており、被膜と上塗り層のいずれも剥がれ落ちないので、美的外観が良好である。また、プレコートメタル用コーティング剤を塗装した場合のように、高温で焼き付け処理をした場合でも耐熱性に優れるため、塗装膜表面にハジキやブツを生じず、平滑性に優れ、硬化させて形成した被膜への上塗り付着性の阻害がなく、耐久性に優れる。   When a coating agent containing this surface modifier is applied onto a substrate to form a film, the surface modifier also has a high orientation to the interface, and leveling properties are also manifested from the effect of uniform surface tension. There are few defects on the surface of the coating such as uneven coating and skin. In addition, this coating does not cause uneven coating even when it is overcoated, and it adheres firmly without reducing the adhesion between the coating and the topcoat layer, so neither the coating nor the topcoat layer peels off. Good aesthetic appearance. In addition, it has excellent heat resistance even when baked at a high temperature, as in the case of painting a coating agent for pre-coated metal. There is no hindrance to the adhesion of the top coat to the film, and it has excellent durability.

以下、本発明の表面調整剤を調製した例を実施例1〜9に示し、本発明を適用外の表面調整剤を調製した例を比較調例1〜7に示す。   Examples of preparing the surface conditioner of the present invention are shown in Examples 1 to 9 below, and examples of preparing the surface conditioner not applicable to the present invention are shown in Comparative Examples 1 to 7.

<実施例1>
撹拌装置、還流冷却管、滴下ロート、温度計及び窒素ガス吹き込み口を備えた1000mLの反応容器に、シクロヘキサノンを100重量部加えて、窒素ガス雰囲気下で110℃に昇温した。シクロヘキサノンの温度を110℃に維持し、下記表1に示す滴下溶液(a−1)を滴下ロートにより2時間で等速滴下して、モノマー溶液を調製した。滴下終了後、モノマー溶液を、115℃まで昇温させ、2時間反応させて共重合物を合成して表面調整剤を得た。異なる分子量の分子を分離できるゲル浸透クロマトグラフィー(カラムは東ソー株式会社製で製品名TSKGEL SUPERMULTIPORE HZ−M、溶出溶媒はTHF(テトラヒドロフラン))を用いて、得られた表面調整剤を分子量ごとに溶出し、分子量分布を求めた。予め分子量既知のポリスチレン標準物質から校正曲線を得ておき、表面調整剤の分子量分布と比較して、表面調整剤の重量平均分子量を求めた。その結果、この表面調整剤の重量平均分子量は、ポリスチレン換算で3500であった。
<Example 1>
100 parts by weight of cyclohexanone was added to a 1000 mL reaction vessel equipped with a stirrer, a reflux condenser, a dropping funnel, a thermometer and a nitrogen gas inlet, and the temperature was raised to 110 ° C. in a nitrogen gas atmosphere. The temperature of cyclohexanone was maintained at 110 ° C., and a dropping solution (a-1) shown in Table 1 below was dropped at a constant rate over 2 hours using a dropping funnel to prepare a monomer solution. After completion of dropping, the monomer solution was heated to 115 ° C. and reacted for 2 hours to synthesize a copolymer to obtain a surface conditioner. Using gel permeation chromatography that can separate molecules with different molecular weights (column is manufactured by Tosoh Corporation, product name TSKGEL SUPERMULTIPORE HZ-M, elution solvent is THF (tetrahydrofuran)), the obtained surface conditioning agent is eluted for each molecular weight. The molecular weight distribution was determined. A calibration curve was previously obtained from a polystyrene standard having a known molecular weight, and the weight average molecular weight of the surface modifier was determined by comparison with the molecular weight distribution of the surface modifier. As a result, the weight average molecular weight of this surface modifier was 3500 in terms of polystyrene.

<実施例2>
実施例1中の滴下溶液を下記表1の(а−2)に変更し、滴下温度を90℃に変更したこと以外は、実施例1と同様の方法で共重合物を合成して表面調整剤を得た。得られた表面調整剤の重量平均分子量を、実施例1と同様にしてゲル浸透クロマトグラフィーで求めたところ、ポリスチレン換算で8000であった。
<Example 2>
Surface adjustment by synthesizing a copolymer in the same manner as in Example 1 except that the dripping solution in Example 1 was changed to (а-2) in Table 1 below and the dripping temperature was changed to 90 ° C. An agent was obtained. When the weight average molecular weight of the obtained surface conditioning agent was determined by gel permeation chromatography in the same manner as in Example 1, it was 8000 in terms of polystyrene.

<実施例3>
実施例1中の滴下溶液を下記表1の(а−3)に変更し、滴下温度を90℃に変更したこと以外は、実施例1と同様の方法で共重合物を合成して表面調整剤を得た。得られた表面調整剤の重量平均分子量を、実施例1と同様にしてゲル浸透クロマトグラフィーで求めたところ、ポリスチレン換算で15000であった。
<Example 3>
Surface adjustment was carried out by synthesizing a copolymer in the same manner as in Example 1 except that the dripping solution in Example 1 was changed to (а-3) in Table 1 below and the dripping temperature was changed to 90 ° C. An agent was obtained. When the weight average molecular weight of the obtained surface conditioning agent was determined by gel permeation chromatography in the same manner as in Example 1, it was 15000 in terms of polystyrene.

<実施例4>
実施例1中の滴下溶液を下記表1の(а−4)に変更したこと以外は、実施例1と同様の方法で共重合物を合成して表面調整剤を得た。得られた表面調整剤の重量平均分子量を、実施例1と同様にしてゲル浸透クロマトグラフィーで求めたところ、ポリスチレン換算で3500であった。
<Example 4>
A surface adjuster was obtained by synthesizing a copolymer in the same manner as in Example 1 except that the dripping solution in Example 1 was changed to (а-4) in Table 1 below. When the weight average molecular weight of the obtained surface conditioning agent was determined by gel permeation chromatography in the same manner as in Example 1, it was 3500 in terms of polystyrene.

<実施例5>
実施例1中の滴下溶液を下記表1の(а−5)に変更し、滴下温度を90℃に変更したこと以外は、実施例1と同様の方法で共重合物を合成して表面調整剤を得た。得られた表面調整剤の重量平均分子量を、実施例1と同様にしてゲル浸透クロマトグラフィーで求めたところ、ポリスチレン換算で8000であった。
<Example 5>
Surface adjustment by synthesizing a copolymer in the same manner as in Example 1 except that the dripping solution in Example 1 was changed to (а-5) in Table 1 below and the dripping temperature was changed to 90 ° C. An agent was obtained. When the weight average molecular weight of the obtained surface conditioning agent was determined by gel permeation chromatography in the same manner as in Example 1, it was 8000 in terms of polystyrene.

<実施例6>
実施例1中の滴下溶液を下記表1の(а−6)に変更したこと以外は、実施例1と同様の方法で共重合物を合成して表面調整剤を得た。得られた表面調整剤の重量平均分子量を、実施例1と同様にしてゲル浸透クロマトグラフィーで求めたところ、ポリスチレン換算で4500あった。
<Example 6>
A surface adjuster was obtained by synthesizing a copolymer in the same manner as in Example 1 except that the dripping solution in Example 1 was changed to (а-6) in Table 1 below. When the weight average molecular weight of the obtained surface conditioning agent was determined by gel permeation chromatography in the same manner as in Example 1, it was 4500 in terms of polystyrene.

<実施例7>
実施例1中の滴下溶液を下記表1の(а−7)に変更し、滴下温度を90℃に変更したこと以外は、実施例1と同様の方法で共重合物を合成して表面調整剤を得た。得られた表面調整剤の重量平均分子量を、実施例1と同様にしてゲル浸透クロマトグラフィーで求めたところ、ポリスチレン換算で8000であった。
<Example 7>
Surface adjustment by synthesizing a copolymer in the same manner as in Example 1 except that the dripping solution in Example 1 was changed to (а-7) in Table 1 below and the dripping temperature was changed to 90 ° C. An agent was obtained. When the weight average molecular weight of the obtained surface conditioning agent was determined by gel permeation chromatography in the same manner as in Example 1, it was 8000 in terms of polystyrene.

<実施例8>
実施例1中の滴下溶液を下記表1の(а−8)に変更し、滴下温度を90℃に変更したこと以外は、実施例1と同様の方法で共重合物を合成して表面調整剤を得た。得られた表面調整剤の重量平均分子量を、実施例1と同様にしてゲル浸透クロマトグラフィーで求めたところ、ポリスチレン換算で2000であった。
<Example 8>
Surface adjustment by synthesizing a copolymer in the same manner as in Example 1 except that the dripping solution in Example 1 was changed to (а-8) in Table 1 below and the dripping temperature was changed to 90 ° C. An agent was obtained. When the weight average molecular weight of the obtained surface conditioning agent was determined by gel permeation chromatography in the same manner as in Example 1, it was 2000 in terms of polystyrene.

<実施例9>
実施例1中の滴下溶液を下記表1の(а−9)に変更し、滴下温度を90℃に変更したこと以外は、実施例1と同様の方法で共重合物を合成して表面調整剤を得た。得られた表面調整剤の重量平均分子量を、実施例1と同様にしてゲル浸透クロマトグラフィーで求めたところ、ポリスチレン換算で3500であった。
<Example 9>
Surface adjustment by synthesizing a copolymer in the same manner as in Example 1 except that the dripping solution in Example 1 was changed to (а-9) in Table 1 below and the dripping temperature was changed to 90 ° C. An agent was obtained. When the weight average molecular weight of the obtained surface conditioning agent was determined by gel permeation chromatography in the same manner as in Example 1, it was 3500 in terms of polystyrene.

Figure 0005437523
Figure 0005437523

<比較例1>
撹拌装置、還流冷却管、滴下ロート、温度計及び窒素ガス吹き込み口を備えた1000mLの反応容器に、シクロヘキサノンを100重量部加えて、窒素ガス雰囲気下で110℃に昇温した。シクロヘキサノンの温度を110℃に維持し、下記表2に示す滴下溶液(b−1)を滴下ロートにより2時間で等速滴下して、モノマー溶液を調製した。滴下終了後、モノマー溶液を、115℃まで昇温させ、2時間反応させて共重合物を合成して表面調整剤を得た。異なる分子量の分子を分離できるゲル浸透クロマトグラフィー(カラムは東ソー株式会社製で製品名TSKGEL SUPERMULTIPORE HZ−M、溶出溶媒はTHF)を用いて、得られた表面調整剤を分子量ごとに溶出し、分子量分布を求めた。予め分子量既知のポリスチレン標準物質から校正曲線を得ておき、表面調整剤の分子量分布と比較して、表面調整剤の重量平均分子量を求めた。その結果、この表面調整剤の重量平均分子量は、ポリスチレン換算で3500であった。比較例1では、モノマー溶液にアクリルアミドモノマーが添加されていなかった。
<Comparative Example 1>
100 parts by weight of cyclohexanone was added to a 1000 mL reaction vessel equipped with a stirrer, a reflux condenser, a dropping funnel, a thermometer and a nitrogen gas inlet, and the temperature was raised to 110 ° C. in a nitrogen gas atmosphere. The temperature of cyclohexanone was maintained at 110 ° C., and a dropping solution (b-1) shown in Table 2 below was added dropwise at a constant rate over 2 hours using a dropping funnel to prepare a monomer solution. After completion of dropping, the monomer solution was heated to 115 ° C. and reacted for 2 hours to synthesize a copolymer to obtain a surface conditioner. Using gel permeation chromatography (column is manufactured by Tosoh Corporation, product name TSKGEL SUPERMULTIPORE HZ-M, elution solvent is THF) that can separate molecules with different molecular weights, the obtained surface conditioning agent is eluted for each molecular weight, and molecular weight The distribution was determined. A calibration curve was previously obtained from a polystyrene standard having a known molecular weight, and the weight average molecular weight of the surface modifier was determined by comparison with the molecular weight distribution of the surface modifier. As a result, the weight average molecular weight of this surface modifier was 3500 in terms of polystyrene. In Comparative Example 1, no acrylamide monomer was added to the monomer solution.

<比較例2>
比較例1中の滴下溶液を下記表2の(b−2)に変更し、比較例1と同様の方法で共重合物を合成して表面調整剤を得た。得られた表面調整剤の重量平均分子量を、比較例1と同様にしてゲル浸透クロマトグラフィーで求めたところ、ポリスチレン換算で10000であった。比較例2では、モノマー溶液中のアクリルアミドモノマーが80重量部未満であり、シロキシ基含有モノ(メタ)アクリレートモノマーが20重量部を超えていた。
<Comparative example 2>
The dripped solution in Comparative Example 1 was changed to (b-2) in Table 2 below, and a copolymer was synthesized in the same manner as in Comparative Example 1 to obtain a surface conditioner. When the weight average molecular weight of the obtained surface conditioning agent was determined by gel permeation chromatography in the same manner as in Comparative Example 1, it was 10,000 in terms of polystyrene. In Comparative Example 2, the acrylamide monomer in the monomer solution was less than 80 parts by weight, and the siloxy group-containing mono (meth) acrylate monomer was more than 20 parts by weight.

<比較例3>
比較例1中の滴下溶液を下記表2の(b−3)に変更し、滴下温度を90℃に変更したこと以外は、比較例1と同様の方法で共重合物を合成して表面調整剤を得た。得られた表面調整剤の重量平均分子量を、比較例1と同様にしてゲル浸透クロマトグラフィーで求めたところ、ポリスチレン換算で70000であった。比較例3では、得られた表面調整剤の重量平均分子量が50000を超えていた。
<Comparative Example 3>
Surface adjustment by synthesizing a copolymer in the same manner as in Comparative Example 1 except that the dropping solution in Comparative Example 1 was changed to (b-3) in Table 2 below and the dropping temperature was changed to 90 ° C. An agent was obtained. When the weight average molecular weight of the obtained surface conditioning agent was determined by gel permeation chromatography in the same manner as in Comparative Example 1, it was 70000 in terms of polystyrene. In Comparative Example 3, the weight average molecular weight of the obtained surface conditioning agent exceeded 50000.

<比較例4>
比較例1中の滴下溶液を下記表2の(b−4)に変更し、比較例1と同様の方法で共重合物を合成して表面調整剤を得た。得られた表面調整剤の重量平均分子量を、比較例1と同様にしてゲル浸透クロマトグラフィーで求めたところ、ポリスチレン換算で4000であった。比較例4では、モノマー溶液中にアクリルアミドモノマーが添加されていなかった。
<Comparative Example 4>
The dripped solution in Comparative Example 1 was changed to (b-4) in Table 2 below, and a copolymer was synthesized in the same manner as in Comparative Example 1 to obtain a surface conditioner. When the weight average molecular weight of the obtained surface conditioning agent was determined by gel permeation chromatography in the same manner as in Comparative Example 1, it was 4000 in terms of polystyrene. In Comparative Example 4, no acrylamide monomer was added to the monomer solution.

<比較例5>
比較例1中の滴下溶液を下記表2の(b−5)に変更し、比較例1と同様の方法で共重合物を合成して表面調整剤を得た。得られた表面調整剤の重量平均分子量を、比較例1と同様にしてゲル浸透クロマトグラフィーで求めたところ、ポリスチレン換算で4000であった。比較例4では、モノマー溶液中にシロキシ基含有モノ(メタ)アクリレートモノマーが添加されていなかった。
<Comparative Example 5>
The dripped solution in Comparative Example 1 was changed to (b-5) in Table 2 below, and a copolymer was synthesized by the same method as in Comparative Example 1 to obtain a surface conditioner. When the weight average molecular weight of the obtained surface conditioning agent was determined by gel permeation chromatography in the same manner as in Comparative Example 1, it was 4000 in terms of polystyrene. In Comparative Example 4, no siloxy group-containing mono (meth) acrylate monomer was added to the monomer solution.

<比較例6>
表面調整剤としてエチルシリケート48(コルコート社製)を用いた。
<Comparative Example 6>
Ethyl silicate 48 (manufactured by Colcoat Co.) was used as a surface conditioner.

Figure 0005437523
Figure 0005437523

<実施例10、比較例8>
予め作製した準備塗料に、実施例1〜9及び比較例1〜6で得られた表面調整剤を配合して、コーティング剤として試験塗料を得た。この試験塗料を基材に塗布して得られた硬化被膜の特性、及び試験塗料の経時安定性等の評価を行った。
<Example 10, Comparative Example 8>
The surface coating agent obtained in Examples 1 to 9 and Comparative Examples 1 to 6 was blended with the prepared coating material prepared in advance to obtain a test coating material as a coating agent. The properties of the cured film obtained by applying the test paint to the substrate and the stability over time of the test paint were evaluated.

(準備塗料の調製)
ベッコライト M−6154−40(ポリエステルポリオール樹脂、不揮発分:50%、水酸基価50;大日本インキ化学工業株式会社製)324重量部とCR−93(酸化チタン 石原産業株式会社製)270重量部とのミルベースにガラスビーズを加え、ペイントシェーカーにより6時間攪拌した。更に、このミルベース594重量部に、ベッコライト M−6154−40(大日本インキ化学工業株式会社製)135重量部、スーパーベッカミンL−117−60(ブチル化メラミン樹脂、NV60%、大日本インキ化学工業株式会社製)22重量部、スーパーベッカミンL−105−60(メチル化メラミン樹脂 NV60% 大日本インキ化学工業株式会社製)45重量部及びシンナー(ソルベッソ150/シクロヘキサノン=50/50)204重量部からなるレッドダウンを配合した後、ガラスビーズを濾別して準備塗料を得た。
(Preparation of preparation paint)
Beckolite M-6154-40 (polyester polyol resin, nonvolatile content: 50%, hydroxyl value 50; manufactured by Dainippon Ink & Chemicals, Inc.) 324 parts by weight and CR-93 (titanium oxide manufactured by Ishihara Sangyo Co., Ltd.) 270 parts by weight Glass beads were added to the mill base and stirred for 6 hours with a paint shaker. Further, 594 parts by weight of this mill base, 135 parts by weight of Beckolite M-6154-40 (Dainippon Ink Chemical Co., Ltd.), Super Becamine L-117-60 (Butylated melamine resin, NV 60%, Dainippon Ink) Chemical Industry Co., Ltd.) 22 parts by weight, Super Becamine L-105-60 (Methylated Melamine Resin NV 60%, Dainippon Ink & Chemicals, Inc.) 45 parts by weight and thinner (Solvesso 150 / Cyclohexanone = 50/50) 204 After compounding red parts consisting of parts by weight, the glass beads were separated by filtration to obtain a preparation paint.

(試験塗料の調整及び被膜作成)
得られた準備塗料に、消泡剤(フローレンAC−300、共栄社化学株式会社製)0.5%と、固形分として実施例1〜9及び比較例1〜6で得られた表面調整剤1.5%とを添加し、ラボディスパーにて2000rpm×2分間撹拌して、焼き付け型ポリエステル塗料である試験塗料を得た。得られた試験塗料を直ちに基材上に♯42バーコーターにて塗装し、直ちに245℃×60秒(PMT:225℃)にて焼き付け、硬化させて硬化被膜を形成した。
尚、比較のため、比較例6の表面調整剤を用いて得た試験塗料から調製された硬化被膜を、1%硫酸水溶液に24時間浸し、加水分解を促進させて得た硬化被膜を比較例7として、親水性比較用の硬化被膜とした。
(Adjustment of test paint and creation of coating)
In the obtained preparation paint, 0.5% of antifoaming agent (Floren AC-300, manufactured by Kyoeisha Chemical Co., Ltd.) and the surface conditioner 1 obtained in Examples 1-9 and Comparative Examples 1-6 as solid content 0.5% was added and stirred with a lab disper at 2000 rpm for 2 minutes to obtain a test paint which was a baked-on polyester paint. The obtained test paint was immediately applied onto a substrate with a # 42 bar coater, and immediately baked at 245 ° C. for 60 seconds (PMT: 225 ° C.) and cured to form a cured film.
For comparison, a cured film prepared from a test paint obtained using the surface conditioner of Comparative Example 6 was immersed in a 1% aqueous sulfuric acid solution for 24 hours to promote hydrolysis, and a cured film obtained by accelerating the hydrolysis. 7 was used as a cured coating for hydrophilicity comparison.

(硬化被膜上に発生したワキの評価)
硬化被膜10cm当たりに発生しているワキ数を目視で数え、下記評価基準で評価した結果を、下記表3に記載した。
ワキ発生の評価基準
ワキの発生なし:◎
概ね3カ所以下:○
概ね7カ所以下:○〜△
10カ所以上 :△
全面にワキ発生:×
(Evaluation of armpits on the cured coating)
Table 3 below shows the results obtained by visually counting the number of arms generated per 10 cm 2 of the cured coating and evaluating it according to the following evaluation criteria.
Evaluation criteria for armpit occurrence No armpit occurrence: ◎
Approximately 3 or less: ○
Approximately 7 or less: ○ ~ △
10 or more places: △
Waki occurred on the entire surface: ×

(硬化被膜面のレべリング性の評価)
硬化後の塗装面の肌状態を目視にて観察し、下記評価基準で評価した結果を、下記表3に記載した。
レベリング性の評価基準
良好;○
バーコーターの塗装筋が僅かに残る:○〜△
バーコーターの塗装筋が顕著に残る:△
ハジキが発生:×
(Evaluation of leveling property of cured coating surface)
The skin state of the coated surface after curing was observed visually, and the results evaluated according to the following evaluation criteria are shown in Table 3 below.
Leveling evaluation criteria Good; ○
Bar coater paint remains slightly: ○ ~ △
Bar coater's paint streaks remain prominent: △
Repelling occurs: ×

(硬化被膜の水接触角測定)
硬化した直後の硬化被膜面に0.02μLの水滴を滴下し、接触角測定計(協和界面科学株式会社製)を用いて初期の水接触角を測定した。その結果を下記表3に記載した。尚、比較例7の硬化被膜を親水性比較用として水接触角を測定した
(Measurement of water contact angle of cured coating)
0.02 μL of water droplets were dropped on the cured coating surface immediately after curing, and the initial water contact angle was measured using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd.). The results are shown in Table 3 below. The water contact angle was measured using the cured film of Comparative Example 7 for hydrophilicity comparison.

(硬化被膜の実曝評価)
表面に硬化被膜を形成した塗装板を45°に折り曲げ垂直に立て、屋外南面に向けて2ヶ月間の曝露を行い、目視にて汚染の度合いを下記評価基準で評価した。その結果を下記表3に併記した。
汚染の評価基準
汚染が殆どなく良好:○
やや汚染がある:△
汚染が激しい:×
(Evaluation of actual exposure of cured film)
A coated plate with a cured coating formed on the surface was bent at 45 ° and placed vertically, exposed to the south surface outdoors for 2 months, and the degree of contamination was visually evaluated according to the following evaluation criteria. The results are also shown in Table 3 below.
Evaluation criteria for contamination Almost no contamination and good: ○
Somewhat contaminated: △
Heavy pollution: ×

Figure 0005437523
Figure 0005437523

表3から明らかなように、実施例1〜9の硬化被膜は、比較例1〜6の硬化被膜に比較して、ワキ発生量が少なく且つレベリング性も良好であって、被膜表面が平滑である。また、実施例1〜9の硬化被膜の水接触角及び実曝試験での汚れも、親水性比較用の比較例7の硬化被膜と同程度であって、良好な親水性と防汚性とを呈している。   As is clear from Table 3, the cured coatings of Examples 1 to 9 have less cracking and better leveling than the cured coatings of Comparative Examples 1 to 6, and the coating surface is smooth. is there. Further, the water contact angles of the cured coatings of Examples 1 to 9 and the stains in the actual exposure test were also similar to the cured coating of Comparative Example 7 for hydrophilicity comparison, and had good hydrophilicity and antifouling properties. Presents.

(試験塗料の経時安定性評価)
調製した試験塗料の初期、40℃×1ヶ月及び2ヶ月間貯蔵後の粘度(B型粘度計)を測定し、その結果を下記表4に記載した。また、初期及び40℃×1ヶ月間保管後のそれぞれについて、前述した被膜作成方法にて硬化被膜を作製し、前述した水接触角の測定方法で水接触角評価を行い、その結果を下記表4に併記した。尚、下記表4には、表3に示した水接触角を初期の水接触角として併記した。
(Evaluation of stability of test paint over time)
The viscosity (B-type viscometer) of the prepared test paint at the initial stage, 40 ° C. × 1 month and 2 months after storage was measured, and the results are shown in Table 4 below. In addition, for each of the initial stage and after storage at 40 ° C. for 1 month, a cured film was prepared by the above-described film forming method, and the water contact angle was evaluated by the above-described water contact angle measurement method. This is also shown in 4. In Table 4 below, the water contact angles shown in Table 3 are also shown as initial water contact angles.

Figure 0005437523
Figure 0005437523

表4から明らかなように、実施例1〜9の試験塗料を用いた硬化被膜は、その経時安定性が良好であり、増粘やゲル化することもない。また、40℃×1ヶ月間保管した試験塗料の硬化被膜でも、その水接触角が初期の水接触角と略同様であって、良好な親水性を呈している。一方、比較例1〜7の硬化被膜は、水接触角が高く、又はワキを生じており、表面特性が不十分であった。   As is clear from Table 4, the cured coatings using the test paints of Examples 1 to 9 have good temporal stability and do not thicken or gel. Further, even in the cured coating of the test paint stored at 40 ° C. for 1 month, the water contact angle is substantially the same as the initial water contact angle and exhibits good hydrophilicity. On the other hand, the cured coatings of Comparative Examples 1 to 7 had a high water contact angle or caused a crack and had insufficient surface characteristics.

本発明の表面調整剤は、プラスチック、ゴム、紙、木材、ガラス、金属、石材、セメント材、モルタル材、セラミックスの素材で形成された家電製品や自動車の外装材、日用品、建材の表面に塗布される塗料等のコーティング剤中に配合することができる。   The surface conditioner of the present invention is applied to the surfaces of home appliances, automobile exterior materials, daily necessities, and building materials formed of plastic, rubber, paper, wood, glass, metal, stone, cement, mortar, and ceramic materials. It can mix | blend in coating agents, such as a coating material.

Claims (4)

N,N−ジメチルアクリルアミドであるジメチル(メタ)アクリルアミド類と、N,N−ジエチルアクリルアミドであるジエチル(メタ)アクリルアミド類から選ばれる少なくとも一種のアクリルアミドモノマー80.00〜99.99重量部、下記化学式(I)
Figure 0005437523
(式(I)中、Rは水素原子又はメチル基、Rは炭素数1〜10のアルキレン基、Rは炭素数1〜12のアルキル基、mは2〜150の数を示す。)で表わされる片末端(メタ)アクリル変性のシロキシ基含有モノ(メタ)アクリレートモノマー0.01〜20.00重量部、並びに、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、又は水酸基を有する(メタ)アクリレートにε-カプロラクトンを付加したモノマーである水酸基含有(メタ)アクリレート類N−ヒドロキシエチルアクリルアミド、又はN−ヒドロキシメチルアクリルアミドである水酸基含有(メタ)アクリルアミド類と、エチルアルコール、イソプロピルアルコール、カプロラクタム、メチルエチルケトン−オキシム、ジメチルピラゾール、及びマロン酸ジエチルから選ばれるブロック剤を反応させたもので前記ブロック剤でブロック化されたイソシアネート基を有する(メタ)アクリレートモノマーであるブロックイソシアネート基含有(メタ)アクリレート類から選ばれる少なくとも何れかの官能基含有モノマーを最大で10重量部のうち、
少なくとも前記アクリルアミドモノマーと前記シロキシ基含有モノ(メタ)アクリレートモノマーとが共重合され重量平均分子量を1500〜50000とする共重合物を含有しており、被膜表面に親水性を付与することを特徴とする表面調整剤。
N, N- dimethyl (meth) acrylamides and dimethyl acrylamide, N, at least one acrylamide monomer from 80.00 to 99.99 parts by weight selected from diethyl (meth) acrylamides are N- diethyl acrylamide, following Chemical formula (I)
Figure 0005437523
(In the formula (I), R 1 represents a hydrogen atom or a methyl group, R 2 is an alkylene group having 1 to 10 carbon atoms, R 3 is an alkyl group having 1 to 12 carbon atoms, m is a number of 2 to 150. 0.01 to 20.00 parts by weight of a mono (meth) acrylate-modified mono (meth) acrylate monomer modified with one end (meth) acrylic represented by 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate , 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, or a monomer obtained by adding ε-caprolactone to (meth) acrylate having a hydroxyl group and a hydroxyl group-containing (meth) acrylates, N- hydroxyethyl acrylamide, or N- hydroxy And a hydroxyl group-containing (meth) acrylamides is chill acrylamide, ethyl alcohol, isopropyl alcohol, caprolactam, methyl ethyl ketone - oxime, dimethylpyrazole, and is blocked by the blocking agent blocking agent selected from diethyl malonate in that reacted of most 10 parts by weight of at least one functional group-containing monomer selected from the blocked isocyanate group-containing (meth) acrylates are (meth) acrylate monomer having an isocyanate group was,
At least the acrylamide monomer and the siloxy group-containing mono (meth) acrylate monomer are copolymerized to contain a copolymer having a weight average molecular weight of 1500 to 50000, and impart hydrophilicity to the coating surface. Surface conditioner.
請求項1に記載の表面調整剤と、被膜形成成分とを含有することを特徴とするコーティング剤。   A coating agent comprising the surface conditioning agent according to claim 1 and a film-forming component. 請求項2に記載のコーティング剤で、基材上に塗布され硬化されて形成されたことを特徴とする被膜。   The coating agent according to claim 2, wherein the coating agent is formed by being applied onto a substrate and cured. 前記親水性によって前記被膜表面で防汚性を有することを特徴とする請求項3に記載の被膜。   The coating film according to claim 3, wherein the coating film has an antifouling property due to the hydrophilicity.
JP2013170396A 2013-04-23 2013-08-20 Surface conditioner Active JP5437523B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013170396A JP5437523B1 (en) 2013-04-23 2013-08-20 Surface conditioner
KR1020130099335A KR102084794B1 (en) 2013-04-23 2013-08-21 Surface modifiers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013090240 2013-04-23
JP2013090240 2013-04-23
JP2013170396A JP5437523B1 (en) 2013-04-23 2013-08-20 Surface conditioner

Publications (2)

Publication Number Publication Date
JP5437523B1 true JP5437523B1 (en) 2014-03-12
JP2014224219A JP2014224219A (en) 2014-12-04

Family

ID=50396684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013170396A Active JP5437523B1 (en) 2013-04-23 2013-08-20 Surface conditioner

Country Status (2)

Country Link
JP (1) JP5437523B1 (en)
KR (1) KR102084794B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3147334A1 (en) 2015-09-25 2017-03-29 Tokyo Ohka Kogyo Co., Ltd. Surface treatment liquid
KR20170037543A (en) 2015-09-25 2017-04-04 도쿄 오카 고교 가부시키가이샤 Surface treatment liquid
US11041086B2 (en) 2018-07-10 2021-06-22 Tokyo Ohka Kogyo Co., Ltd. Hydrophilic treatment method and surface treatment liquid
US11066531B2 (en) 2018-07-10 2021-07-20 Tokyo Ohka Kogyo Co., Ltd. Surface treatment liquid and hydrophilic treatment method
US11279833B2 (en) 2017-03-23 2022-03-22 Tokyo Ohka Kogyo Co., Ltd. Surface treatment liquid and surface treatment method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6579578B2 (en) * 2015-09-18 2019-09-25 関西ペイント株式会社 Paint composition
TWI721228B (en) * 2016-11-24 2021-03-11 日商關西塗料股份有限公司 Surface conditioner, coating composition containing the surface conditioner, and coating film forming method
KR102147717B1 (en) * 2018-01-19 2020-08-25 주식회사 케이씨씨 Electrodeposition paint composition
KR20230110907A (en) 2022-01-17 2023-07-25 동우 화인켐 주식회사 A composition for surface treatment and an optical member coated by the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370176A (en) 1991-06-19 1992-12-22 Nippon Paint Co Ltd Resin composition for coating
JP3287475B2 (en) 1991-12-27 2002-06-04 日本ペイント株式会社 Curable resin composition
JPH07196977A (en) 1993-12-28 1995-08-01 Dainippon Toryo Co Ltd Coating composition and coated aluminum material
JP3202570B2 (en) 1995-05-16 2001-08-27 エスケー化研株式会社 Non-staining paint composition
JP2002080789A (en) 2000-09-08 2002-03-19 Nippon Paint Co Ltd Thermoset coating composition excellent in stainproofness
JP2004231758A (en) 2003-01-29 2004-08-19 Shiseido Co Ltd Reactive-silyl-containing copolymer and composition containing the same
DE102005042752A1 (en) 2005-09-08 2007-03-15 Wacker Chemie Ag Hydrophilic silicone organocopolymers
IN2012DN01333A (en) 2009-07-31 2015-06-05 Kyoeisha Chemical Co Ltd

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3147334A1 (en) 2015-09-25 2017-03-29 Tokyo Ohka Kogyo Co., Ltd. Surface treatment liquid
KR20170037543A (en) 2015-09-25 2017-04-04 도쿄 오카 고교 가부시키가이샤 Surface treatment liquid
US11279833B2 (en) 2017-03-23 2022-03-22 Tokyo Ohka Kogyo Co., Ltd. Surface treatment liquid and surface treatment method
US11041086B2 (en) 2018-07-10 2021-06-22 Tokyo Ohka Kogyo Co., Ltd. Hydrophilic treatment method and surface treatment liquid
US11066531B2 (en) 2018-07-10 2021-07-20 Tokyo Ohka Kogyo Co., Ltd. Surface treatment liquid and hydrophilic treatment method

Also Published As

Publication number Publication date
JP2014224219A (en) 2014-12-04
KR102084794B1 (en) 2020-03-04
KR20140126653A (en) 2014-10-31

Similar Documents

Publication Publication Date Title
JP5437523B1 (en) Surface conditioner
US5905109A (en) Water-type dispersion composition
US6103788A (en) Curable resin composition for use in water-based coating materials
JP5111665B2 (en) Surface conditioner for coating agent
TWI721228B (en) Surface conditioner, coating composition containing the surface conditioner, and coating film forming method
JP2006306994A (en) Water paint composition and method for painting the water paint composition
JP4771716B2 (en) Aqueous primer composition and coating method thereof
JP3073775B2 (en) Low-dyeing agent for water-based paint, low-contamination-type water-based paint composition and method of using the same
WO2005083006A1 (en) Silicon-containing liquid composition
JP6863569B2 (en) Surface conditioner for coating agents
JP4303566B2 (en) Surface conditioner for thermosetting film forming composition
JP2008239779A (en) Low staining aqueous coating composition and object coated with the same
JP2005154587A (en) Water-based curable resin composition, water-based coating material, and coated article
JP4522656B2 (en) Water-based low-contamination coating material
JP3470873B2 (en) Water-based low-contamination paint composition
JP4638072B2 (en) Application method of water-based paint
JPH02245067A (en) Water-repellent coating composition
JPWO2019098013A1 (en) Surface conditioner
JP2002188058A (en) Water-based coating composition
JP6425964B2 (en) Optical coating film and antireflective film
JP2002097417A (en) Organosiloxane-containing water-based resin composition
JP3374885B2 (en) Method for producing inorganic decorative board
JP5241076B2 (en) Forming method of coating film
JP2001240805A (en) Coating composition
JP2023150155A (en) Coated body and coating composition

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Ref document number: 5437523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250