WO2020054440A1 - Coating apparatus and coating method - Google Patents

Coating apparatus and coating method Download PDF

Info

Publication number
WO2020054440A1
WO2020054440A1 PCT/JP2019/033840 JP2019033840W WO2020054440A1 WO 2020054440 A1 WO2020054440 A1 WO 2020054440A1 JP 2019033840 W JP2019033840 W JP 2019033840W WO 2020054440 A1 WO2020054440 A1 WO 2020054440A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
processing chamber
solution
internal pressure
coating
Prior art date
Application number
PCT/JP2019/033840
Other languages
French (fr)
Japanese (ja)
Inventor
良則 五十川
Original Assignee
タツモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツモ株式会社 filed Critical タツモ株式会社
Priority to CN201980051182.6A priority Critical patent/CN112514038B/en
Publication of WO2020054440A1 publication Critical patent/WO2020054440A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C15/00Enclosures for apparatus; Booths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/02Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by evaporation of the solvent

Definitions

  • One embodiment of the present invention relates to a technique for forming a crystallized film by applying a solution.
  • Patent Document 1 a coating film is formed behind a liquid pool by moving the nozzle in a state in which a liquid pool is formed between a discharge portion of the nozzle and a surface of a substrate (a surface to be coated).
  • a technique of sequentially drying the coating film to grow a semiconductor material in crystal discloses a technique of sequentially drying the coating film to grow a semiconductor material in crystal.
  • Patent Document 1 discloses that a space sandwiched between these surfaces is formed between the lower end surface of the nozzle body and the surface of the substrate by providing an overhang portion in the nozzle body. It is proposed to form a liquid pool in the space. By forming such a space, the inside of the space (that is, the vicinity of the liquid pool) is filled with a solvent evaporating from the liquid pool to form a solvent atmosphere, whereby the solvent continues to evaporate from the liquid pool, resulting in supersaturation. The state (ie, crystallization of the semiconductor material in the liquid pool) is suppressed.
  • Patent Document 1 discloses a degree of crystal orientation of a semiconductor film to be formed (a degree (degree of orientation) indicating how much the crystal direction is aligned in a crystallized film such as a semiconductor film, and the like). Trying to raise it.
  • Patent Literature 1 the atmosphere in the space must be accurately controlled so that the liquid pool does not become oversaturated.
  • the position where the semiconductor material crystal grows that is, the position where the coating film comes out of the space
  • no special control is performed on the atmosphere, the temperature, and the like.
  • the change in the atmosphere, temperature, and the like at the position where the semiconductor material grows crystal has a great effect on the state of the semiconductor film (such as the degree of crystal orientation)
  • the change in the atmosphere, the temperature, and the like at that position does not. I can not cope. Therefore, it is difficult to stably form a semiconductor film having a high degree of crystal orientation by the technique disclosed in Patent Document 1.
  • an object of at least one embodiment of the present invention is to stably form a crystallized film having a high degree of crystal orientation in a technique of forming a crystallized film by applying a solution.
  • a coating apparatus includes a processing chamber, a nozzle that applies a solution of a crystallization material to the coating target surface while relatively moving along the coating target surface in the processing chamber, and an internal pressure of the processing chamber. And a control unit for adjusting the pressure. Then, when performing application of the solution by the nozzle, the control unit adjusts the internal pressure of the processing chamber by the internal pressure adjusting unit, thereby sequentially drying the solution applied to the application target surface and growing the crystallized material.
  • the drying speed of the solution applied to the surface to be applied can be adjusted by adjusting the internal pressure of the processing chamber. Specifically, by lowering the internal pressure of the processing chamber, the evaporation of the solvent in the solution can be promoted to increase the drying rate. Further, by increasing the internal pressure of the processing chamber, evaporation of the solvent in the solution can be suppressed and the drying speed can be reduced. By adjusting the drying rate to a desired rate, the degree of crystal orientation of the crystallized film can be increased under control.
  • a crystallized film having a high degree of crystal orientation can be stably formed.
  • FIG. 1 is a conceptual diagram illustrating a coating apparatus according to an embodiment of the present invention, and also illustrates a configuration inside a processing chamber.
  • FIG. 2 is a conceptual diagram of the coating apparatus viewed from a direction in which the nozzle is relatively moved with respect to the substrate (predetermined direction D1), and also shows a configuration inside the processing chamber.
  • FIG. 3 is a flowchart showing a control process (coating process) executed by the coating device.
  • FIG. 4 is a conceptual diagram showing a state of a liquid pool (meniscus) formed at the time of coating.
  • the coating technique is a technique for forming a crystallized film by applying a solution of a crystallized material to a surface to be coated and drying the crystallized material in the solution to grow crystals.
  • the crystallization material is a material that can be crystallized, such as a semiconductor material, and is a material that can be crystallized while being precipitated by drying a solution formed by dissolving in a liquid (solvent).
  • the inventor of the present invention has proposed that the drying speed of the solution and the evaporation direction of the solvent can be adjusted according to the state of the semiconductor film formed by crystal growth of the semiconductor material, which is one of the crystallized materials (mainly, the degree of crystal orientation and the film thickness).
  • the application technique according to an embodiment of the present invention is not limited to the case where the surface of the substrate is used as the application target surface, and can be applied to the case where various surfaces on which a semiconductor film can be formed are used as the application target surface.
  • the coating technique according to an embodiment of the present invention is not limited to the case where a semiconductor film is formed from a solution of a semiconductor material, and the crystallization is performed by using a crystallizable material capable of growing crystals by drying the solution.
  • the present invention is also applicable to the case where a crystallized film is formed from a solution of a material.
  • FIGS. 1 and 2 are conceptual views showing a coating apparatus according to an embodiment of the present invention.
  • the coating apparatus includes a processing chamber 1, a chuck section 2, a solution supply section 3, an internal pressure adjustment section 4, a control section 5, and a storage section 6.
  • FIG. 2 is a view of the coating apparatus viewed from a direction (predetermined direction D1) in which the nozzle 31 is relatively moved with respect to the substrate Tm. 1 and 2 also show the configuration inside the processing chamber 1.
  • the processing chamber 1 is a chamber used for forming a semiconductor film.
  • the processing chamber 1 is divided into an upper part and a lower part so that a substrate Tm on which a semiconductor film is to be formed can be carried in and out, and these can be vertically separated from each other. (Not shown).
  • the processing chamber 1 is hermetically sealed by bringing the upper part and the lower part close to each other and uniting them.
  • the chuck unit 2 includes a stage 21 and a stage driving unit 22.
  • the stage 21 is installed in the processing chamber 1 with the mounting surface 21a on which the substrate Tm is mounted facing upward, and sucks the substrate Tm mounted on a predetermined position on the mounting surface 21a, thereby the substrate Tm is suctioned. Tm is fixed so as not to deviate from a predetermined position. Note that the stage 21 is not limited to one that fixes the substrate Tm at a predetermined position by a suction force, and can be changed to various stages that can fix the substrate Tm at a predetermined position, such as one that fixes the substrate Tm by an electrostatic force.
  • the stage driving unit 22 is a mechanism that enables the movement of the stage 21 in the predetermined direction D1, and controls the operation (moving direction, moving speed, and the like) of the stage 21 according to a command from the control unit 5.
  • the stage 21 is slidably guided by two guide rails 210 extending in the predetermined direction D1 (see FIG. 2).
  • the stage driving section 22 includes a ball screw 221 and a motor 222 for rotating a shaft 221a of the ball screw 221 (see FIGS. 1 and 2).
  • the shaft portion 221a of the ball screw 221 is positioned at a position between the two guide rails 210 in a state where the axial direction thereof matches the moving direction of the stage 21 (that is, the predetermined direction D1). 21 is passed underneath.
  • Both ends of the shaft portion 221a are supported by the side walls 11A and 11B of the processing chamber 1, respectively, and one end thereof is connected to the motor 222 outside the processing chamber 1.
  • the nut portion 221b of the ball screw 221 is fixed to the back surface 21b of the stage 21 (the surface opposite to the mounting surface 21a).
  • the rotational movement of the motor 222 can be converted into the translation movement of the nut portion 221b, whereby the movement of the stage 21 in the predetermined direction D1 is realized.
  • the stage drive unit 22 controls the operation (moving direction, moving speed, and the like) of the stage 21 by controlling the rotation of the motor 222 according to a command from the control unit 5.
  • a normal motor can be used as the motor 222. That is, if the motor 222 is disposed in the processing chamber 1, a motor applicable to the environment (vacuum state, pressurized state, etc.) in the processing chamber 1 is required. Does not require a simple motor.
  • the solution supply unit 3 includes a nozzle 31, a nozzle driving unit 32, and a liquid sending pump 33.
  • the nozzle 31 applies the solution of the semiconductor material to the surface of the substrate Tm while moving relatively within the processing chamber 1 along the surface (application surface) of the substrate Tm.
  • the nozzle 31 is fixed at a predetermined position in the processing chamber 1 when the coating apparatus is viewed from above, and the movement of the stage 21 in the predetermined direction D1 causes a relationship with the stage 21 (that is, the stage 31). Relative to the substrate Tm placed on the substrate 21).
  • the nozzle 31 is a slit nozzle having a slit-shaped discharge port 31a (see FIGS. 1 and 2).
  • the longitudinal direction D2 of the discharge port 31a is parallel to the mounting surface 21a of the stage 21 (that is, parallel to the surface (application target surface) of the substrate Tm mounted on the mounting surface 21a), and This is a direction perpendicular to the direction in which the nozzle 31 moves relative to 21 (that is, the predetermined direction D1). That is, the nozzle 31 is arranged so that the longitudinal direction D2 of the discharge port 31a coincides with the width direction of the applied solution (coating film).
  • the nozzle drive unit 32 is a mechanism that allows the nozzle 31 to move in the vertical direction, and adjusts the height position of the nozzle 31 with respect to the substrate Tm according to a command from the control unit 5.
  • the nozzle driving unit 32 rotates the nozzle support 321 that supports the nozzle 31, the ball screw 322, the screw support 323 that supports the ball screw 322, and the shaft 322 a of the ball screw 322.
  • a motor 324 see FIGS. 1 and 2).
  • the nozzle support portion 321 is supported by the top wall 11C of the processing chamber 1 in a state where the nozzle support portion 321 can slide vertically.
  • the nozzle 31 is fixed to the end of the nozzle support 321 inside the processing chamber 1.
  • the ball screw 322, the screw support 323, and the motor 324 are arranged outside the processing chamber 1, and the shaft 322 a of the ball screw 322 moves its axial direction in the moving direction of the nozzle 31 (that is, the vertical direction).
  • the screw support portion 323 is pivotally supported at two upper and lower positions.
  • One end of the shaft 322 a is connected to the motor 324.
  • a nut 322b of a ball screw 322 is fixed to an end of the nozzle support 321 (an end opposite to the end to which the nozzle 31 is fixed) outside the processing chamber 1.
  • the rotational motion of the motor 324 can be converted into the translational motion of the nut portion 322b, whereby the vertical movement of the nozzle 31 is realized through the nozzle support portion 321. Then, the nozzle drive unit 32 controls the rotation of the motor 324 according to a command from the control unit 5 to adjust the height position of the nozzle 31 with respect to the substrate Tm. Further, according to the above configuration, since the motor 324 can be disposed outside the processing chamber 1, a normal motor can be used as the motor 324, similarly to the motor 222.
  • the liquid sending pump 33 sends the solution of the semiconductor material to the nozzle 31. Specifically, the liquid sending pump 33 adjusts the amount of solution supplied to the nozzle 31 according to a command from the control unit 5, thereby adjusting the amount of solution discharged from the nozzle 31.
  • the internal pressure adjusting unit 4 adjusts the internal pressure of the processing chamber 1 according to a command from the control unit 5.
  • the internal pressure adjusting unit 4 includes a pressure increasing / decreasing pump 41, a pressure regulator 42, and a pressure gauge 43 for measuring the internal pressure of the processing chamber 1 (see FIG. 1).
  • the pressurizing / depressurizing pump 41 selectively executes pressurization and depressurization in the processing chamber 1 according to a command from the control unit 5.
  • the pressure regulator 42 adjusts the internal pressure of the processing chamber 1 to a value according to a command from the control unit 5 based on the measurement result of the pressure gauge 43.
  • the control unit 5 includes a processing device such as a CPU (Central Processing Unit) or a microcomputer, and various operation units (a processing chamber 1, a chuck unit 2, a solution supply unit 3, an internal pressure adjustment unit 4) included in the coating device. Control). Specifically, the control unit 5 reads and executes a program stored in the storage unit 6 to function as a processing unit that controls each operation unit according to the program. That is, the processing unit is realized by software in the control unit 5. Thereby, in the coating apparatus, various operations necessary for forming the semiconductor film are realized.
  • the program is not limited to being stored in the storage unit 6 in the coating apparatus, but may be stored in an external storage medium (such as a flash memory) in a readable state. Further, the processing unit may be realized by hardware by configuring the control unit 5 with a circuit.
  • the control unit 5 executes a control process for forming a semiconductor film (hereinafter, referred to as “coating process”). The details of the coating process will be described later.
  • the storage unit 6 is configured by, for example, a flash memory, and stores various information.
  • the storage unit 6 stores not only the above-described program but also various information necessary for forming the semiconductor film (the height position of the nozzle 31, the discharge amount of the solution, the internal pressure of the processing chamber 1, the temperature of the heater, and the like). (Including the set values of the parameters of the above).
  • FIG. 3 is a flowchart showing the flow of the coating process.
  • the control unit 5 controls the internal pressure adjusting unit 4 to adjust the internal pressure of the processing chamber 1 (Step S11 in FIG. 3). Then, the control unit 5 adjusts the drying speed of the solution to be applied to the surface (application surface) of the substrate Tm in step S13 described later, by adjusting the internal pressure of the processing chamber 1. Specifically, when the drying speed of the solution at normal pressure is lower than the desired speed, the control unit 5 promotes the evaporation of the solvent in the solution by reducing the internal pressure of the processing chamber 1 by reducing the pressure. To increase the drying speed. On the other hand, when the drying speed of the solution at normal pressure is higher than the desired speed, the control unit 5 increases the internal pressure of the processing chamber 1 by applying pressure, thereby suppressing evaporation of the solvent in the solution and drying. Decrease speed.
  • step S11 the control unit 5 sets the nozzle 31 at the coating start position on the substrate Tm by controlling the stage driving unit 22 and the nozzle driving unit 32 (step S12 in FIG. 3). Step S12 may be executed before step S11.
  • the control unit 5 controls the stage drive unit 22 and the liquid feed pump 33 to relatively move the nozzle 31 in the predetermined direction D1 while discharging the solution from the discharge port 31a of the nozzle 31.
  • Step S13 in FIG. 3 the nozzle 31 relatively moves in a relationship with the stage 21 (that is, with the substrate Tm placed on the stage 21) by the movement of the stage 21 in the predetermined direction D1.
  • the liquid pool Sp is moved in a predetermined direction D1 along the surface (application target surface) of the substrate Tm. Move.
  • step S13 the solution applied to the surface of the substrate Tm (application surface) is dried in sequence, and the semiconductor material grows in crystal. Then, the drying speed of the solution at that time is regulated to a desired speed by the adjusted internal pressure of the processing chamber 1. That is, in the above steps S11 to S13, the control unit 5 adjusts the internal pressure of the processing chamber 1 by the internal pressure adjusting unit 4, thereby sequentially drying the solution applied on the surface (application target surface) of the substrate Tm at a desired speed. Then, the semiconductor material is crystal-grown.
  • FIG. 4 is a conceptual diagram showing a state of a liquid pool Sp formed at the time of coating.
  • the control unit 5 controls the liquid feed pump 33 so that the solution dries immediately after the application (immediately after the solution is discharged from the discharge port 31a of the nozzle 31) and crystallization of the semiconductor material proceeds.
  • the discharge amount of the solution By adjusting the discharge amount of the solution, the volume of the liquid pool Sp is reduced to such an extent that the shape of the liquid pool Sp does not become unstable (see FIG. 4).
  • the time during which the applied solution is left wet on the surface of the substrate Tm is shortened, for example, as compared with the technique disclosed in Patent Document 1. Therefore, there is no need to control the wet state of the solution on the surface of the substrate Tm, and thus the control required for the coating process is simplified.
  • the solution in the nozzle 31 is likely to ooze out of the discharge port 31a due to the pressure difference and form a liquid pool even before the application is started.
  • the liquid pool Sp formed between the discharge port 31a and the substrate Tm is increased by the amount of the solution exuding before the application in an initial stage immediately after the application is started. Become.
  • the pool Sp becomes large the drying of the solution is delayed and the crystal growth of the semiconductor material becomes unstable.
  • Other examples include removing the exuded solution with a liquid absorbing material such as cloth before starting the application, and performing application on the dummy substrate until the liquid pool Sp becomes small.
  • the control unit 5 controls the stage driving unit 22 to adjust the relative speed of the nozzle 31 to a speed corresponding to the crystal growth speed of the semiconductor material that crystallizes immediately after coating.
  • the control unit 5 has correlation data between the internal pressure of the processing chamber 1 and the relative speed of the nozzle 31, and when the internal pressure of the processing chamber 1 is adjusted (that is, the semiconductor material is adjusted through the adjustment of the internal pressure). (When the crystal growth speed is adjusted), the relative speed of the nozzle 31 is adjusted to be a speed derived from the adjusted internal pressure based on the correlation data.
  • the correlation data is obtained by quantifying the correlation between the internal pressure of the processing chamber 1 and the relative speed of the nozzle 31 satisfying a condition that the degree of crystal orientation of a semiconductor film to be formed is equal to or higher than a predetermined level.
  • the correlation data may be stored in the storage unit 6.
  • the control unit 5 reads out the correlation data from the storage unit 6 and uses it.
  • the control unit 5 controls the processing chamber 1 in step S11.
  • the internal pressure may be adjusted to be the internal pressure derived from the adjusted or set relative speed based on the correlation data.
  • the control unit 5 sets the other to a value derived from one of the adjusted values based on the correlation data. Can be adjusted. This allows the semiconductor material in the applied solution to grow in the predetermined direction D1 at the same speed as the relative speed of the nozzle 31. That is, the crystal growth of the semiconductor material can follow the nozzle 31 that moves relatively.
  • the formed semiconductor film can be prevented from being interrupted, and the thickness of the formed semiconductor film can be prevented from becoming unstable.
  • most of the solvent in the applied solution evaporates immediately after the nozzle 31 immediately after the application. Therefore, the evaporated solvent is easily guided backward in the moving direction of the nozzle 31 by using the nozzle 31 as a guide. Accordingly, the evaporation direction of the solvent is easily aligned, and as a result, the crystal directions are aligned and the degree of crystal orientation of the semiconductor film is easily increased.
  • the evaporation direction is indicated by an arrow illustrated behind the liquid pool Sp.
  • the nozzles 31 are arranged such that the longitudinal direction D2 of the discharge port 31a coincides with the width direction of the applied solution (coating film). Therefore, in the entire solution in the width direction, the solvent to be evaporated is guided by the nozzle 31 and guided backward. Therefore, the evaporation direction of the solvent is more likely to be uniform.
  • step S13 the control unit 5 determines whether or not the nozzle 31 has reached the coating end position (step S14 in FIG. 3), and continues until it is determined in step S14 that the nozzle 31 has arrived (Yes). S13 and S14 are repeated. If the controller 5 determines that “reached (Yes)” in step S14, the controller 5 controls the stage driving unit 22 and the liquid sending pump 33 to stop discharging the solution and move the nozzle 31 upward. It is moved backward (step S15 in FIG. 3). Thus, a series of flow of the coating process ends.
  • the drying speed of the solution applied on the surface of the substrate Tm (the surface to be coated) can be adjusted by adjusting the internal pressure of the processing chamber 1.
  • the degree of crystal orientation of the semiconductor film can be increased under control, and as a result, a semiconductor film having a high degree of crystal orientation can be formed stably.
  • the relative speed of the nozzle 31 so as to be a speed corresponding to the crystal growth speed of the semiconductor material that crystallizes immediately after coating, the uniformity of the film thickness of the semiconductor film is reduced.
  • Level ie, at the molecular level. According to the present embodiment, even when a semiconductor film having the number of molecules in the thickness direction of about 2 to 5 is formed, the number of molecules in the thickness direction can be made uniform in the entire semiconductor film.
  • step S11 when the internal pressure of the processing chamber 1 is reduced by reducing the pressure, the evaporation speed of the solvent in the solution is promoted and the drying speed is increased, so that the relative speed of the nozzle 31 with respect to the substrate Tm can be increased.
  • the formation speed of the semiconductor film can be improved.
  • the relative speed of the nozzle 31 is set to a solid value while the coating film is wet (for example, 300 mm / sec). In comparison, under normal pressure, it must be significantly reduced to about 0.02 mm / sec. Therefore, by slightly increasing the relative speed of the nozzle 31, the formation speed of the semiconductor film can be significantly improved.
  • step S11 the internal pressure of the processing chamber 1 may be reduced by the internal pressure adjusting unit 4 until the processing chamber 1 is evacuated.
  • the fluctuation of the solvent evaporated from the applied solution can be suppressed. Therefore, the moving direction (that is, the evaporation direction) of the evaporated solvent is more easily aligned, and as a result, the crystal direction is easily aligned in the entire semiconductor film to be formed.
  • the coating apparatus may further include a heater (not shown) for heating the stage 21 and the nozzle 31.
  • the controller 5 adjusts the temperature of the solution by controlling the heater, in addition to adjusting the drying speed of the solution by the internal pressure of the processing chamber 1, and controls the drying speed of the solution through the adjustment of the temperature. Can be adjusted. Specifically, when the drying speed of the solution at room temperature is lower than the desired speed, the control unit 5 increases the temperature of the solution by heating, thereby promoting the evaporation of the solvent in the solution to increase the drying speed. Can be increased.
  • the coating apparatus may include a cooler (not shown) for cooling the stage 21 and the nozzle 31.
  • the controller 5 adjusts the temperature of the solution by controlling the cooler, in addition to adjusting the drying speed of the solution by the internal pressure of the processing chamber 1, and adjusts the drying speed of the solution through the adjustment of the temperature. Can be adjusted. Specifically, when the drying speed of the solution at normal temperature is higher than the desired speed, the control unit 5 suppresses the evaporation of the solvent in the solution by lowering the temperature of the solution by cooling, thereby controlling the drying speed. Can be reduced.
  • control unit 5 may have correlation data between the temperature of the solution (or the temperature of the nozzle 31) and the relative speed of the nozzle 31. Then, when one of the temperature of the solution and the relative speed of the nozzle 31 is adjusted, the control unit 5 adjusts the other to a value derived from one of the adjusted values based on the correlation data. Is also good. Thereby, the drying speed of the solution can be adjusted by the two parameters of the internal pressure of the processing chamber 1 and the temperature of the solution, so that more precise control can be performed.
  • the drying speed is adjusted only by the temperature of the solution
  • the temperature of the solution must be increased to a temperature at which the semiconductor material can be deteriorated, and the drying speed cannot be adjusted to a desired speed only by the temperature of the solution. is there. Even in such a case, it is possible to adjust the drying speed of the solution to a desired speed while limiting the temperature rise of the solution by combining the adjustment of the internal pressure of the processing chamber 1.
  • the control unit 5 may control the nozzle driving unit 32 to control the relative speed of the nozzle 31 as follows. That is, the controller 5 relatively moves the nozzle 31 at the first relative speed V1 for a predetermined period after the application of the solution by the nozzle 31 is started.
  • the first relative speed V1 is a speed adjusted from the coating start position so that the film thickness of the semiconductor film becomes a desired film thickness. Specifically, when the first phenomenon occurs, the first relative speed V1 is set to a speed smaller than the constant relative speed V0. On the other hand, when the second phenomenon occurs, the first relative speed V1 is set to a speed higher than the constant relative speed V0.
  • control unit 5 relatively moves the nozzle 31 at a second relative speed V2 different from the first relative speed V1.
  • the second relative speed V2 is set to a speed equal to the constant relative speed V0.
  • control unit 5 may gradually increase or decrease the first relative speed V1 so as to become the second relative speed V2 when a predetermined period has elapsed.
  • the relative speed of the nozzle 31 immediately after the start of coating can be reduced or increased in accordance with the above-described phenomenon (first phenomenon or second phenomenon) that occurs at the application start position. Therefore, the semiconductor material can be crystal-grown to a desired thickness even immediately after the start of application, and as a result, the thickness of the entire semiconductor film to be formed can be made uniform.
  • control unit 5 changes various parameters such as the internal pressure of the processing chamber 1 and the temperature of the solution, not only the relative speed of the nozzle 31, so that the state of the semiconductor film to be formed is improved. You may.
  • the coating apparatus may further include a detachable slave pump (such as a diaphragm pump) that can be driven by the liquid sending pump 33 using the liquid sending pump 33 as a master pump.
  • a detachable slave pump such as a diaphragm pump
  • the solution can be supplied to the nozzle 31 by the slave pump. That is, the pump can be used properly according to the application.
  • a pump (such as a diaphragm pump) that does not need to take heat measures against heating by a heater or the like is used as a slave pump, so that only the slave pump is heated without heating the master pump. , The temperature of the solution can be increased.
  • an ordinary pump driven by a motor or the like that is not subjected to heat countermeasures can be used as the master pump.
  • the relative movement of the nozzle 31 with respect to the stage 21 is not limited to the case where the nozzle 31 is moved without moving the stage 21. It may be realized by moving the nozzle 31 without moving the stage 21. Further, the relative movement of the nozzle 31 may be realized by moving both the stage 21 and the nozzle 31. The relative movement of the nozzle 31 is not limited to one-dimensional movement, but may be two-dimensional movement along the mounting surface 21a of the stage 21.
  • the coating apparatus may be an apparatus that performs only one of decompression and pressurization on the processing chamber 1.
  • the nozzle 31 is not limited to the slit nozzle, and can be appropriately changed according to the shape of the semiconductor film to be formed.
  • the above-described coating process is not limited to the case where various parameters are controlled based on the correlation between the internal pressure of the processing chamber 1 (or the temperature of the solution) and the relative speed of the nozzle 31, but the internal pressure of the processing chamber 1 and the temperature of the solution (the nozzle 31). Temperature), a solution drying rate, a solution supersaturation degree, a crystal growth rate, a relative speed of the nozzle 31 and the like. Various parameters may be controlled based on this.
  • the above-described coating apparatus capable of adjusting the internal pressure of the processing chamber 1 can also be applied to a case where the coating film is formed by solid coating while the coating film is in a wet state. It can be uniform.
  • Such a coating apparatus is suitable for forming a functional film (a color filter, a conductive film, a polyimide film, or the like) whose film thickness is preferably uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

This coating apparatus is provided with: a processing chamber; a nozzle for coating, with a crystallization material solution, a surface to be coated, while relatively moving along the surface to be coated in the processing chamber; an inner pressure adjusting unit for adjusting an inner pressure of the processing chamber; and a control unit. In addition, when coating with the solution by the nozzle is performed, the control unit causes the solution coated on the surface being coated to be sequentially dried and causes the crystallization material to be crystal-grown, by adjusting the inner pressure of the processing chamber by means of the inner pressure adjusting unit.

Description

塗布装置及び塗布方法Coating device and coating method
 本発明の一実施形態は、溶液の塗布によって結晶化膜を形成する技術に関する。 の 一 One embodiment of the present invention relates to a technique for forming a crystallized film by applying a solution.
 結晶化膜を形成する技術として、半導体材料の溶液を塗布して乾燥させることで、溶液中の半導体材料を結晶成長させて半導体膜を形成する技術が提案されている。例えば、特許文献1は、ノズルの吐出部と基板の表面(塗布対象面)との間に溶液の液溜りを形成した状態でノズルを移動させることにより、液溜りの後方に塗膜を形成しつつ、その塗膜を順次乾燥させて半導体材料を結晶成長させる技術を開示している。 (4) As a technique for forming a crystallized film, a technique has been proposed in which a semiconductor material in a solution is crystal-grown by applying and drying a solution of a semiconductor material to form a semiconductor film. For example, in Patent Document 1, a coating film is formed behind a liquid pool by moving the nozzle in a state in which a liquid pool is formed between a discharge portion of the nozzle and a surface of a substrate (a surface to be coated). In addition, it discloses a technique of sequentially drying the coating film to grow a semiconductor material in crystal.
 より具体的には、特許文献1は、ノズル胴体部にオーバーハング部を設けることで、ノズル胴体部の下端面と基板の表面との間にこれらの面で挟まれた空間を形成し、その空間内に液溜りを形成することを提案している。そして、このような空間を形成することにより、当該空間内(即ち、液溜り近傍)を、液溜りから蒸発する溶媒で満たして溶媒雰囲気にし、これにより、液溜りから溶媒が蒸発し続けて過飽和状態になること(即ち、当該液溜り内で半導体材料が結晶化すること)を抑制している。又、そのような液溜りの状態を保ってノズルを移動させることにより、液溜りの後方にて塗膜を形成しつつ、溶媒雰囲気から解放される位置(上記空間から抜け出す位置)まで塗膜を相対的に移動させ、これにより、その位置で塗膜から溶媒を順次蒸発させて半導体材料を結晶成長させている。このようにして、特許文献1は、形成する半導体膜の結晶配向度(半導体膜などの結晶化膜において結晶の方向がどの程度揃っているかを表す度合い(配向の度合い)。以下において同様)を高めようとしている。 More specifically, Patent Document 1 discloses that a space sandwiched between these surfaces is formed between the lower end surface of the nozzle body and the surface of the substrate by providing an overhang portion in the nozzle body. It is proposed to form a liquid pool in the space. By forming such a space, the inside of the space (that is, the vicinity of the liquid pool) is filled with a solvent evaporating from the liquid pool to form a solvent atmosphere, whereby the solvent continues to evaporate from the liquid pool, resulting in supersaturation. The state (ie, crystallization of the semiconductor material in the liquid pool) is suppressed. In addition, by moving the nozzle while maintaining such a state of the liquid pool, the coating film is formed behind the liquid pool, and the coating film is moved to a position where it is released from the solvent atmosphere (a position at which the film comes out of the space). The semiconductor material is relatively moved, whereby the solvent is sequentially evaporated from the coating film at that position, and the semiconductor material is crystal-grown. As described above, Patent Document 1 discloses a degree of crystal orientation of a semiconductor film to be formed (a degree (degree of orientation) indicating how much the crystal direction is aligned in a crystallized film such as a semiconductor film, and the like). Trying to raise it.
特許第5891956号公報Japanese Patent No. 5891956
 しかし、特許文献1では、液溜りが過飽和状態にならないように上記空間内の雰囲気を精度良く制御しなければならない。一方、半導体材料が結晶成長する位置(即ち、塗膜が上記空間から抜け出す位置)では、雰囲気や温度等について特段の制御が行われているわけではない。このため、半導体材料が結晶成長する位置での雰囲気や温度等の変化が半導体膜の状態(結晶配向度など)に大きな影響を与えるにも拘らず、その位置での雰囲気や温度等の変化に対応できない。よって、特許文献1に開示の技術では、結晶配向度が高い半導体膜を安定的に形成することは難しい。 However, in Patent Literature 1, the atmosphere in the space must be accurately controlled so that the liquid pool does not become oversaturated. On the other hand, at the position where the semiconductor material crystal grows (that is, the position where the coating film comes out of the space), no special control is performed on the atmosphere, the temperature, and the like. For this reason, although the change in the atmosphere, temperature, and the like at the position where the semiconductor material grows crystal has a great effect on the state of the semiconductor film (such as the degree of crystal orientation), the change in the atmosphere, the temperature, and the like at that position does not. I can not cope. Therefore, it is difficult to stably form a semiconductor film having a high degree of crystal orientation by the technique disclosed in Patent Document 1.
 そこで本発明の少なくとも1つの実施形態の目的は、溶液の塗布によって結晶化膜を形成する技術において、結晶配向度が高い結晶化膜を安定的に形成することである。 Therefore, an object of at least one embodiment of the present invention is to stably form a crystallized film having a high degree of crystal orientation in a technique of forming a crystallized film by applying a solution.
 本発明の一実施形態に係る塗布装置は、処理室と、その処理室内において塗布対象面に沿って相対移動しながら当該塗布対象面に結晶化材料の溶液を塗布するノズルと、処理室の内圧を調整する内圧調整部と、制御部と、を備える。そして、制御部は、ノズルによる溶液の塗布を行う場合、処理室の内圧を内圧調整部で調整することにより、塗布対象面に塗布した溶液を順次乾燥させて結晶化材料を結晶成長させる。 A coating apparatus according to an embodiment of the present invention includes a processing chamber, a nozzle that applies a solution of a crystallization material to the coating target surface while relatively moving along the coating target surface in the processing chamber, and an internal pressure of the processing chamber. And a control unit for adjusting the pressure. Then, when performing application of the solution by the nozzle, the control unit adjusts the internal pressure of the processing chamber by the internal pressure adjusting unit, thereby sequentially drying the solution applied to the application target surface and growing the crystallized material.
 上記塗布装置によれば、処理室の内圧を調整することにより、塗布対象面に塗布した溶液の乾燥速度を調整できる。具体的には、処理室の内圧を低くすることにより、溶液中の溶媒の蒸発を促進して乾燥速度を大きくすることができる。又、処理室の内圧を高くすることにより、溶液中の溶媒の蒸発を抑制して乾燥速度を小さくすることができる。そして、乾燥速度を所望の速度に調整することにより、制御下で、結晶化膜の結晶配向度を高めることができる。 According to the coating apparatus, the drying speed of the solution applied to the surface to be applied can be adjusted by adjusting the internal pressure of the processing chamber. Specifically, by lowering the internal pressure of the processing chamber, the evaporation of the solvent in the solution can be promoted to increase the drying rate. Further, by increasing the internal pressure of the processing chamber, evaporation of the solvent in the solution can be suppressed and the drying speed can be reduced. By adjusting the drying rate to a desired rate, the degree of crystal orientation of the crystallized film can be increased under control.
 本発明の一実施形態によれば、結晶配向度が高い結晶化膜を安定的に形成できる。 According to one embodiment of the present invention, a crystallized film having a high degree of crystal orientation can be stably formed.
図1は、本発明の一実施形態に係る塗布装置を示した概念図であって、処理室の内側の構成も示したものである。FIG. 1 is a conceptual diagram illustrating a coating apparatus according to an embodiment of the present invention, and also illustrates a configuration inside a processing chamber. 図2は、基板に対してノズルを相対移動させる方向(所定方向D1)から見た塗布装置の概念図であって、処理室の内側の構成も示したものである。FIG. 2 is a conceptual diagram of the coating apparatus viewed from a direction in which the nozzle is relatively moved with respect to the substrate (predetermined direction D1), and also shows a configuration inside the processing chamber. 図3は、塗布装置で実行される制御処理(塗布処理)を示したフローチャートである。FIG. 3 is a flowchart showing a control process (coating process) executed by the coating device. 図4は、塗布時に形成される液溜り(メニスカス)の状態を示した概念図である。FIG. 4 is a conceptual diagram showing a state of a liquid pool (meniscus) formed at the time of coating.
 本発明の一実施形態に係る塗布技術は、結晶化材料の溶液を塗布対象面に塗布して乾燥させることで、溶液中の結晶化材料を結晶成長させて結晶化膜を形成する技術である。ここで、結晶化材料は、半導体材料など、結晶化させることが可能な材料であり、液体(溶媒)に溶かして生成した溶液を乾燥させることで析出させつつ結晶成長させることができる材料である。そして、本発明者は、溶液の乾燥速度や溶媒の蒸発方向が、結晶化材料の1つである半導体材料の結晶成長によって形成される半導体膜の状態(主に、結晶配向度と膜厚の均一度)に大きな影響を与えることを、研究によって見出した。又、本発明者は、溶液の乾燥速度や溶媒の蒸発方向を制御することにより、結晶配向度が高い半導体膜を安定的に形成できることを、更なる研究によって見出した。そして、以下に説明する塗布技術は、そのような研究成果を用いてなされたものである。 The coating technique according to one embodiment of the present invention is a technique for forming a crystallized film by applying a solution of a crystallized material to a surface to be coated and drying the crystallized material in the solution to grow crystals. . Here, the crystallization material is a material that can be crystallized, such as a semiconductor material, and is a material that can be crystallized while being precipitated by drying a solution formed by dissolving in a liquid (solvent). . The inventor of the present invention has proposed that the drying speed of the solution and the evaporation direction of the solvent can be adjusted according to the state of the semiconductor film formed by crystal growth of the semiconductor material, which is one of the crystallized materials (mainly, the degree of crystal orientation and the film thickness). It has been found through research that it has a significant effect on the uniformity). Further, the present inventors have further found that a semiconductor film having a high degree of crystal orientation can be stably formed by controlling the drying speed of the solution and the evaporation direction of the solvent. The coating technique described below is based on such research results.
 以下では、基板の表面を塗布対象面として、当該表面に半導体膜を形成する場合について説明する。尚、本発明の一実施形態に係る塗布技術は、基板の表面を塗布対象面とする場合に限らず、半導体膜を形成できる様々な表面を塗布対象面とする場合にも適用できる。又、本発明の一実施形態に係る塗布技術は、半導体材料の溶液から半導体膜を形成する場合に限らず、溶液の乾燥によって結晶成長させることが可能な結晶化材料を用いて、その結晶化材料の溶液から結晶化膜を形成する場合にも適用できる。 In the following, a case where a semiconductor film is formed on a surface of a substrate as a surface to be coated will be described. The application technique according to an embodiment of the present invention is not limited to the case where the surface of the substrate is used as the application target surface, and can be applied to the case where various surfaces on which a semiconductor film can be formed are used as the application target surface. Further, the coating technique according to an embodiment of the present invention is not limited to the case where a semiconductor film is formed from a solution of a semiconductor material, and the crystallization is performed by using a crystallizable material capable of growing crystals by drying the solution. The present invention is also applicable to the case where a crystallized film is formed from a solution of a material.
 [1]塗布装置の構成
 図1及び図2は、本発明の一実施形態に係る塗布装置を示した概念図である。図1及び図2に示されるように、塗布装置は、処理室1と、チャック部2と、溶液供給部3と、内圧調整部4と、制御部5と、記憶部6と、を備える。尚、図2は、基板Tmに対してノズル31を相対移動させる方向(所定方向D1)から塗布装置を見たものである。又、図1及び図2では、処理室1の内側の構成も図示されている。
[1] Configuration of Coating Apparatus FIGS. 1 and 2 are conceptual views showing a coating apparatus according to an embodiment of the present invention. As shown in FIGS. 1 and 2, the coating apparatus includes a processing chamber 1, a chuck section 2, a solution supply section 3, an internal pressure adjustment section 4, a control section 5, and a storage section 6. FIG. 2 is a view of the coating apparatus viewed from a direction (predetermined direction D1) in which the nozzle 31 is relatively moved with respect to the substrate Tm. 1 and 2 also show the configuration inside the processing chamber 1. FIG.
 <処理室1>
 処理室1は、半導体膜の形成に用いられるチャンバである。処理室1は、半導体膜の形成対象となる基板Tmの搬出入が可能となるように、上部と下部とに分割して構成されており、それらを上下方向において近接離間させることが可能である(不図示)。そして、上部と下部とを互いに近付けて合体させることにより、処理室1が密閉される。
<Processing room 1>
The processing chamber 1 is a chamber used for forming a semiconductor film. The processing chamber 1 is divided into an upper part and a lower part so that a substrate Tm on which a semiconductor film is to be formed can be carried in and out, and these can be vertically separated from each other. (Not shown). The processing chamber 1 is hermetically sealed by bringing the upper part and the lower part close to each other and uniting them.
 <チャック部2>
 チャック部2は、ステージ21と、ステージ駆動部22と、を含む。
<Chuck part 2>
The chuck unit 2 includes a stage 21 and a stage driving unit 22.
 ステージ21は、基板Tmを載せる載置面21aを上方へ向けた状態で処理室1内に設置されており、載置面21aの所定位置に載せられた基板Tmを吸引することにより、当該基板Tmを所定位置からずれないように固定する。尚、ステージ21は、吸引力で基板Tmを所定位置に固定するものに限らず、静電気力で固定するもの等、基板Tmを所定位置に固定できる様々なステージに変更可能である。 The stage 21 is installed in the processing chamber 1 with the mounting surface 21a on which the substrate Tm is mounted facing upward, and sucks the substrate Tm mounted on a predetermined position on the mounting surface 21a, thereby the substrate Tm is suctioned. Tm is fixed so as not to deviate from a predetermined position. Note that the stage 21 is not limited to one that fixes the substrate Tm at a predetermined position by a suction force, and can be changed to various stages that can fix the substrate Tm at a predetermined position, such as one that fixes the substrate Tm by an electrostatic force.
 ステージ駆動部22は、所定方向D1におけるステージ21の移動を可能にする機構であり、制御部5からの指令に従ってステージ21の動作(移動方向や移動速度など)を制御する。 The stage driving unit 22 is a mechanism that enables the movement of the stage 21 in the predetermined direction D1, and controls the operation (moving direction, moving speed, and the like) of the stage 21 according to a command from the control unit 5.
 本実施形態では、ステージ21は、所定方向D1に延びた2本のガイドレール210によってスライド自在にガイドされている(図2参照)。尚、図1では、ガイドレール210の図示が省略されている。又、ステージ駆動部22は、ボールねじ221と、当該ボールねじ221の軸部221aを回転させるモータ222と、から構成されている(図1、図2参照)。具体的には、ボールねじ221の軸部221aは、その軸方向をステージ21の移動方向(即ち、所定方向D1)に一致させた状態で、2本のガイドレール210の間の位置にてステージ21の下側に通されている。又、軸部221aの両端部がそれぞれ処理室1の側壁11A及び11Bに軸支されており、そのうちの一方の端部が、処理室1の外側でモータ222に連結されている。そして、ステージ21の裏面21b(載置面21aと反対側の面)にボールねじ221のナット部221bが固定されている。 In the present embodiment, the stage 21 is slidably guided by two guide rails 210 extending in the predetermined direction D1 (see FIG. 2). In FIG. 1, illustration of the guide rail 210 is omitted. The stage driving section 22 includes a ball screw 221 and a motor 222 for rotating a shaft 221a of the ball screw 221 (see FIGS. 1 and 2). Specifically, the shaft portion 221a of the ball screw 221 is positioned at a position between the two guide rails 210 in a state where the axial direction thereof matches the moving direction of the stage 21 (that is, the predetermined direction D1). 21 is passed underneath. Both ends of the shaft portion 221a are supported by the side walls 11A and 11B of the processing chamber 1, respectively, and one end thereof is connected to the motor 222 outside the processing chamber 1. The nut portion 221b of the ball screw 221 is fixed to the back surface 21b of the stage 21 (the surface opposite to the mounting surface 21a).
 この構成によれば、モータ222の回転運動をナット部221bの並進運動に変換でき、これにより、所定方向D1におけるステージ21の移動が実現される。そして、ステージ駆動部22は、制御部5からの指令に従ってモータ222の回転を制御することにより、ステージ21の動作(移動方向や移動速度など)を制御する。又、上記構成によれば、モータ222を処理室1の外側に配置できるので、モータ222として通常のモータを使用できる。即ち、処理室1内にモータ222を配置したとすれば、処理室1内の環境(真空状態や加圧状態など)に適用可能なモータが必要となるが、上記構成であれば、そのようなモータを必要としない。 According to this configuration, the rotational movement of the motor 222 can be converted into the translation movement of the nut portion 221b, whereby the movement of the stage 21 in the predetermined direction D1 is realized. Then, the stage drive unit 22 controls the operation (moving direction, moving speed, and the like) of the stage 21 by controlling the rotation of the motor 222 according to a command from the control unit 5. Further, according to the above configuration, since the motor 222 can be disposed outside the processing chamber 1, a normal motor can be used as the motor 222. That is, if the motor 222 is disposed in the processing chamber 1, a motor applicable to the environment (vacuum state, pressurized state, etc.) in the processing chamber 1 is required. Does not require a simple motor.
 <溶液供給部3>
 溶液供給部3は、ノズル31と、ノズル駆動部32と、送液ポンプ33と、を含む。
<Solution supply unit 3>
The solution supply unit 3 includes a nozzle 31, a nozzle driving unit 32, and a liquid sending pump 33.
 ノズル31は、処理室1内において基板Tmの表面(塗布対象面)に沿って相対移動しながら当該表面に半導体材料の溶液を塗布する。本実施形態では、ノズル31は、塗布装置を上面視したときの処理室1内の所定位置に固定されており、所定方向D1におけるステージ21の移動により、当該ステージ21との関係(即ち、ステージ21に載せられた基板Tmとの関係)で相対移動する。 The nozzle 31 applies the solution of the semiconductor material to the surface of the substrate Tm while moving relatively within the processing chamber 1 along the surface (application surface) of the substrate Tm. In the present embodiment, the nozzle 31 is fixed at a predetermined position in the processing chamber 1 when the coating apparatus is viewed from above, and the movement of the stage 21 in the predetermined direction D1 causes a relationship with the stage 21 (that is, the stage 31). Relative to the substrate Tm placed on the substrate 21).
 本実施形態では、ノズル31は、スリット状の吐出口31aを持ったスリットノズルである(図1、図2参照)。そして、吐出口31aの長手方向D2は、ステージ21の載置面21aに平行(即ち、載置面21aに載せられた基板Tmの表面(塗布対象面)に平行)であって、且つ、ステージ21に対してノズル31が相対移動する方向(即ち、所定方向D1)に対して垂直な方向である。即ち、ノズル31は、塗布した溶液(塗膜)の幅方向に吐出口31aの長手方向D2が一致するように配置されている。 In the present embodiment, the nozzle 31 is a slit nozzle having a slit-shaped discharge port 31a (see FIGS. 1 and 2). The longitudinal direction D2 of the discharge port 31a is parallel to the mounting surface 21a of the stage 21 (that is, parallel to the surface (application target surface) of the substrate Tm mounted on the mounting surface 21a), and This is a direction perpendicular to the direction in which the nozzle 31 moves relative to 21 (that is, the predetermined direction D1). That is, the nozzle 31 is arranged so that the longitudinal direction D2 of the discharge port 31a coincides with the width direction of the applied solution (coating film).
 ノズル駆動部32は、ノズル31の上下方向の移動を可能にする機構であり、制御部5からの指令に従って、基板Tmに対するノズル31の高さ位置を調整する。 The nozzle drive unit 32 is a mechanism that allows the nozzle 31 to move in the vertical direction, and adjusts the height position of the nozzle 31 with respect to the substrate Tm according to a command from the control unit 5.
 本実施形態では、ノズル駆動部32は、ノズル31を支持するノズル支持部321と、ボールねじ322と、当該ボールねじ322を支持するねじ支持部323と、ボールねじ322の軸部322aを回転させるモータ324と、から構成されている(図1、図2参照)。具体的には、ノズル支持部321は、上下方向のスライドが可能な状態で処理室1の天壁11Cに支持されている。そして、処理室1の内側で、ノズル支持部321の端部にノズル31が固定されている。ボールねじ322、ねじ支持部323、及びモータ324は、処理室1の外側に配置されており、ボールねじ322の軸部322aは、その軸方向をノズル31の移動方向(即ち、上下方向)に一致させた状態で、ねじ支持部323に上下2箇所で軸支されている。又、軸部322aの一方の端部が、モータ324に連結されている。そして、処理室1の外側で、ノズル支持部321の端部(ノズル31が固定された端部とは反対側の端部)にボールねじ322のナット部322bが固定されている。 In the present embodiment, the nozzle driving unit 32 rotates the nozzle support 321 that supports the nozzle 31, the ball screw 322, the screw support 323 that supports the ball screw 322, and the shaft 322 a of the ball screw 322. And a motor 324 (see FIGS. 1 and 2). Specifically, the nozzle support portion 321 is supported by the top wall 11C of the processing chamber 1 in a state where the nozzle support portion 321 can slide vertically. The nozzle 31 is fixed to the end of the nozzle support 321 inside the processing chamber 1. The ball screw 322, the screw support 323, and the motor 324 are arranged outside the processing chamber 1, and the shaft 322 a of the ball screw 322 moves its axial direction in the moving direction of the nozzle 31 (that is, the vertical direction). In the aligned state, the screw support portion 323 is pivotally supported at two upper and lower positions. One end of the shaft 322 a is connected to the motor 324. A nut 322b of a ball screw 322 is fixed to an end of the nozzle support 321 (an end opposite to the end to which the nozzle 31 is fixed) outside the processing chamber 1.
 この構成によれば、モータ324の回転運動をナット部322bの並進運動に変換でき、これにより、ノズル31の上下方向の移動がノズル支持部321を通じて実現される。そして、ノズル駆動部32は、制御部5からの指令に従ってモータ324の回転を制御することにより、基板Tmに対するノズル31の高さ位置を調整する。又、上記構成によれば、モータ324を処理室1の外側に配置できるので、モータ222と同様、モータ324として通常のモータを使用できる。 According to this configuration, the rotational motion of the motor 324 can be converted into the translational motion of the nut portion 322b, whereby the vertical movement of the nozzle 31 is realized through the nozzle support portion 321. Then, the nozzle drive unit 32 controls the rotation of the motor 324 according to a command from the control unit 5 to adjust the height position of the nozzle 31 with respect to the substrate Tm. Further, according to the above configuration, since the motor 324 can be disposed outside the processing chamber 1, a normal motor can be used as the motor 324, similarly to the motor 222.
 送液ポンプ33は、半導体材料の溶液をノズル31に送る。具体的には、送液ポンプ33は、制御部5からの指令に従ってノズル31への溶液の供給量を調整することにより、ノズル31からの溶液の吐出量を調整する。 液 The liquid sending pump 33 sends the solution of the semiconductor material to the nozzle 31. Specifically, the liquid sending pump 33 adjusts the amount of solution supplied to the nozzle 31 according to a command from the control unit 5, thereby adjusting the amount of solution discharged from the nozzle 31.
 <内圧調整部4>
 内圧調整部4は、制御部5からの指令に従って処理室1の内圧を調整する。本実施形態では、内圧調整部4は、加減圧ポンプ41と、調圧器42と、処理室1の内圧を計測する圧力計43と、から構成されている(図1参照)。具体的には、加減圧ポンプ41は、制御部5からの指令に従って処理室1内の加圧及び減圧を選択的に実行する。調圧器42は、圧力計43の計測結果に基づいて、処理室1の内圧が制御部5からの指令に応じた値となるように調整する。
<Internal pressure adjustment unit 4>
The internal pressure adjusting unit 4 adjusts the internal pressure of the processing chamber 1 according to a command from the control unit 5. In the present embodiment, the internal pressure adjusting unit 4 includes a pressure increasing / decreasing pump 41, a pressure regulator 42, and a pressure gauge 43 for measuring the internal pressure of the processing chamber 1 (see FIG. 1). Specifically, the pressurizing / depressurizing pump 41 selectively executes pressurization and depressurization in the processing chamber 1 according to a command from the control unit 5. The pressure regulator 42 adjusts the internal pressure of the processing chamber 1 to a value according to a command from the control unit 5 based on the measurement result of the pressure gauge 43.
 <制御部5>
 制御部5は、CPU(Central Processing Unit)やマイクロコンピュータなどの処理装置で構成されており、塗布装置が備える様々な動作部(処理室1、チャック部2、溶液供給部3、内圧調整部4を含む)を制御する。具体的には、制御部5は、記憶部6に記憶されているプログラムを読み出して実行することにより、当該プログラムに従って各動作部を制御する処理部として機能する。即ち、処理部が、制御部5にてソフトウェアで実現される。これにより、塗布装置において、半導体膜の形成に必要な様々な動作が実現される。尚、上記プログラムは、塗布装置内の記憶部6に記憶される場合に限らず、外部の記憶媒体(フラッシュメモリなど)に読取り可能な状態で記憶されてもよい。又、上記処理部は、制御部5を回路で構成することによりハードウェアで実現されてもよい。
<Control unit 5>
The control unit 5 includes a processing device such as a CPU (Central Processing Unit) or a microcomputer, and various operation units (a processing chamber 1, a chuck unit 2, a solution supply unit 3, an internal pressure adjustment unit 4) included in the coating device. Control). Specifically, the control unit 5 reads and executes a program stored in the storage unit 6 to function as a processing unit that controls each operation unit according to the program. That is, the processing unit is realized by software in the control unit 5. Thereby, in the coating apparatus, various operations necessary for forming the semiconductor film are realized. The program is not limited to being stored in the storage unit 6 in the coating apparatus, but may be stored in an external storage medium (such as a flash memory) in a readable state. Further, the processing unit may be realized by hardware by configuring the control unit 5 with a circuit.
 そして、ステージ21に基板Tmが固定され、且つ、処理室1が密閉された後、制御部5は、半導体膜を形成するための制御処理(以下、「塗布処理」を称す)を実行する。尚、塗布処理の詳細については後述する。 (4) After the substrate Tm is fixed to the stage 21 and the processing chamber 1 is sealed, the control unit 5 executes a control process for forming a semiconductor film (hereinafter, referred to as “coating process”). The details of the coating process will be described later.
 <記憶部6>
 記憶部6は、例えばフラッシュメモリなどで構成されており、各種情報を記憶する。本実施形態では、記憶部6は、上述したプログラムだけでなく、半導体膜の形成に必要な様々な情報(ノズル31の高さ位置、溶液の吐出量、処理室1の内圧、ヒータの温度などのパラメータの設定値を含む)を記憶する。
<Storage unit 6>
The storage unit 6 is configured by, for example, a flash memory, and stores various information. In the present embodiment, the storage unit 6 stores not only the above-described program but also various information necessary for forming the semiconductor film (the height position of the nozzle 31, the discharge amount of the solution, the internal pressure of the processing chamber 1, the temperature of the heater, and the like). (Including the set values of the parameters of the above).
 [2]塗布装置で実行される制御処理(塗布処理)
 次に、塗布装置にて制御部5が実行する塗布処理について説明する。図3は、塗布処理の流れを示したフローチャートである。
[2] Control process (coating process) executed by coating device
Next, a coating process performed by the control unit 5 in the coating device will be described. FIG. 3 is a flowchart showing the flow of the coating process.
 塗布処理が開始されると、制御部5は、内圧調整部4を制御することにより、処理室1の内圧を調整する(図3のステップS11)。そして、制御部5は、処理室1の内圧の調整を通じて、後述するステップS13にて基板Tmの表面(塗布対象面)に塗布する溶液の乾燥速度を調整する。具体的には、常圧での溶液の乾燥速度が所望の速度より小さい場合には、制御部5は、減圧によって処理室1の内圧を低くすることにより、溶液中の溶媒の蒸発を促進して乾燥速度を大きくする。一方、常圧での溶液の乾燥速度が所望の速度より大きい場合には、制御部5は、加圧によって処理室1の内圧を高くすることにより、溶液中の溶媒の蒸発を抑制して乾燥速度を小さくする。 When the coating process is started, the control unit 5 controls the internal pressure adjusting unit 4 to adjust the internal pressure of the processing chamber 1 (Step S11 in FIG. 3). Then, the control unit 5 adjusts the drying speed of the solution to be applied to the surface (application surface) of the substrate Tm in step S13 described later, by adjusting the internal pressure of the processing chamber 1. Specifically, when the drying speed of the solution at normal pressure is lower than the desired speed, the control unit 5 promotes the evaporation of the solvent in the solution by reducing the internal pressure of the processing chamber 1 by reducing the pressure. To increase the drying speed. On the other hand, when the drying speed of the solution at normal pressure is higher than the desired speed, the control unit 5 increases the internal pressure of the processing chamber 1 by applying pressure, thereby suppressing evaporation of the solvent in the solution and drying. Decrease speed.
 ステップS11の後、制御部5は、ステージ駆動部22及びノズル駆動部32を制御することにより、基板Tm上の塗布開始位置にノズル31をセットする(図3のステップS12)。尚、ステップS12は、ステップS11の前に実行されてもよい。 After step S11, the control unit 5 sets the nozzle 31 at the coating start position on the substrate Tm by controlling the stage driving unit 22 and the nozzle driving unit 32 (step S12 in FIG. 3). Step S12 may be executed before step S11.
 ステップS11及びS12の後、制御部5は、ステージ駆動部22及び送液ポンプ33を制御することにより、ノズル31の吐出口31aから溶液を吐出しつつ、ノズル31を所定方向D1へ相対移動させる(図3のステップS13)。本実施形態では、ノズル31は、所定方向D1におけるステージ21の移動により、当該ステージ21との関係(即ち、ステージ21に載せられた基板Tmとの関係)で相対移動する。これにより、吐出口31aと基板Tmとの間に液溜りSp(メニスカス。図4参照)を形成しつつ、その液溜りSpを、基板Tmの表面(塗布対象面)に沿って所定方向D1へ移動させる。 After steps S11 and S12, the control unit 5 controls the stage drive unit 22 and the liquid feed pump 33 to relatively move the nozzle 31 in the predetermined direction D1 while discharging the solution from the discharge port 31a of the nozzle 31. (Step S13 in FIG. 3). In the present embodiment, the nozzle 31 relatively moves in a relationship with the stage 21 (that is, with the substrate Tm placed on the stage 21) by the movement of the stage 21 in the predetermined direction D1. Thus, while forming a liquid pool Sp (meniscus; see FIG. 4) between the discharge port 31a and the substrate Tm, the liquid pool Sp is moved in a predetermined direction D1 along the surface (application target surface) of the substrate Tm. Move.
 これにより、ステップS13では、基板Tmの表面(塗布対象面)に塗布された溶液が順次乾燥していき、半導体材料が結晶成長していく。そして、そのときの溶液の乾燥速度が、調整された処理室1の内圧によって所望の速度に規定される。即ち、上記ステップS11~S13では、制御部5は、処理室1の内圧を内圧調整部4で調整することにより、基板Tmの表面(塗布対象面)に塗布した溶液を所望の速度で順次乾燥させて半導体材料を結晶成長させる。 Thereby, in step S13, the solution applied to the surface of the substrate Tm (application surface) is dried in sequence, and the semiconductor material grows in crystal. Then, the drying speed of the solution at that time is regulated to a desired speed by the adjusted internal pressure of the processing chamber 1. That is, in the above steps S11 to S13, the control unit 5 adjusts the internal pressure of the processing chamber 1 by the internal pressure adjusting unit 4, thereby sequentially drying the solution applied on the surface (application target surface) of the substrate Tm at a desired speed. Then, the semiconductor material is crystal-grown.
 図4は、塗布時に形成される液溜りSpの状態を示した概念図である。ステップS13では、塗布直後(ノズル31の吐出口31aから溶液が吐出された直後)に溶液が乾燥して半導体材料の結晶化が進むように、制御部5は、送液ポンプ33を制御して溶液の吐出量を調整することにより、液溜りSpの体積を、当該液溜りSpの形状が不安定にならない程度に小さくしている(図4参照)。これにより、塗布された溶液が基板Tmの表面上で濡れた状態のまま放置される時間が、例えば特許文献1に開示の技術に比べて短くなる。よって、基板Tmの表面上での溶液の濡れた状態を制御する必要がなく、従って塗布処理に必要な制御が簡略化される。 FIG. 4 is a conceptual diagram showing a state of a liquid pool Sp formed at the time of coating. In step S13, the control unit 5 controls the liquid feed pump 33 so that the solution dries immediately after the application (immediately after the solution is discharged from the discharge port 31a of the nozzle 31) and crystallization of the semiconductor material proceeds. By adjusting the discharge amount of the solution, the volume of the liquid pool Sp is reduced to such an extent that the shape of the liquid pool Sp does not become unstable (see FIG. 4). Thus, the time during which the applied solution is left wet on the surface of the substrate Tm is shortened, for example, as compared with the technique disclosed in Patent Document 1. Therefore, there is no need to control the wet state of the solution on the surface of the substrate Tm, and thus the control required for the coating process is simplified.
 尚、減圧によって処理室1の内圧を低くした場合、塗布開始前であっても、ノズル31内の溶液が、圧力差によって吐出口31aから滲み出て液溜りを形成しやすい。溶液が滲み出た状態のまま塗布を開始すると、塗布開始直後の初期段階において、吐出口31aと基板Tmとの間に形成される液溜りSpが、塗布前に滲み出た溶液の分だけ大きくなる。そして、液溜りSpが大きくなると、溶液の乾燥が遅れて半導体材料の結晶成長が不安定になる。このような問題を解決するための手段として、塗布開始前に、送液ポンプ33を逆回転させることで滲み出た溶液をノズル31内に吸引することが挙げられる。他の例として、塗布開始前に、滲み出た溶液を布などの吸液材で除去することや、液溜りSpが小さくなるまでダミー基板への塗布を行うことなどが挙げられる。 In the case where the internal pressure of the processing chamber 1 is reduced by reducing the pressure, the solution in the nozzle 31 is likely to ooze out of the discharge port 31a due to the pressure difference and form a liquid pool even before the application is started. When the application is started with the solution exuding, the liquid pool Sp formed between the discharge port 31a and the substrate Tm is increased by the amount of the solution exuding before the application in an initial stage immediately after the application is started. Become. When the pool Sp becomes large, the drying of the solution is delayed and the crystal growth of the semiconductor material becomes unstable. As a means for solving such a problem, it is possible to suck the solution that has oozed out by rotating the liquid feed pump 33 in the reverse direction before starting the coating. Other examples include removing the exuded solution with a liquid absorbing material such as cloth before starting the application, and performing application on the dummy substrate until the liquid pool Sp becomes small.
 又、制御部5は、ステージ駆動部22を制御することにより、ノズル31の相対速度を、塗布直後に結晶化する半導体材料の結晶成長速度に応じた速度となるように調整する。具体的には、制御部5は、処理室1の内圧とノズル31の相対速度との相関データを有しており、処理室1の内圧を調整したとき(即ち、当該内圧の調整を通じて半導体材料の結晶成長速度を調整したとき)、ノズル31の相対速度を、調整後の内圧から相関データに基づいて導出した速度になるように調整する。一例として、相関データは、形成する半導体膜の結晶配向度が所定水準以上になるという条件を満たす処理室1の内圧とノズル31の相対速度との相関を数値化したものである。尚、相関データは、記憶部6に記憶されていてもよい。この場合、制御部5は、相関データを記憶部6から読み出して用いる。 {Circle around (4)} The control unit 5 controls the stage driving unit 22 to adjust the relative speed of the nozzle 31 to a speed corresponding to the crystal growth speed of the semiconductor material that crystallizes immediately after coating. Specifically, the control unit 5 has correlation data between the internal pressure of the processing chamber 1 and the relative speed of the nozzle 31, and when the internal pressure of the processing chamber 1 is adjusted (that is, the semiconductor material is adjusted through the adjustment of the internal pressure). (When the crystal growth speed is adjusted), the relative speed of the nozzle 31 is adjusted to be a speed derived from the adjusted internal pressure based on the correlation data. As an example, the correlation data is obtained by quantifying the correlation between the internal pressure of the processing chamber 1 and the relative speed of the nozzle 31 satisfying a condition that the degree of crystal orientation of a semiconductor film to be formed is equal to or higher than a predetermined level. Note that the correlation data may be stored in the storage unit 6. In this case, the control unit 5 reads out the correlation data from the storage unit 6 and uses it.
 一方、処理室1の内圧を調整する前にノズル31の相対速度が調整された場合(或いは、予め相対速度が設定された場合)には、制御部5は、ステップS11にて処理室1の内圧を調整するときに、その内圧を、調整又は設定後の相対速度から相関データに基づいて導出した内圧となるように調整してもよい。 On the other hand, when the relative speed of the nozzle 31 is adjusted before adjusting the internal pressure of the processing chamber 1 (or when the relative speed is set in advance), the control unit 5 controls the processing chamber 1 in step S11. When adjusting the internal pressure, the internal pressure may be adjusted to be the internal pressure derived from the adjusted or set relative speed based on the correlation data.
 このように、制御部5は、処理室1の内圧及びノズル31の相対速度の何れか一方を調整したとき、他方を、調整後の一方の値から相関データに基づいて導出した値になるように調整できる。これにより、塗布した溶液中の半導体材料を、ノズル31の相対速度と同じ速度で所定方向D1へ結晶成長させることが可能になる。即ち、半導体材料の結晶成長を、相対移動するノズル31に追従させることができる。 As described above, when any one of the internal pressure of the processing chamber 1 and the relative speed of the nozzle 31 is adjusted, the control unit 5 sets the other to a value derived from one of the adjusted values based on the correlation data. Can be adjusted. This allows the semiconductor material in the applied solution to grow in the predetermined direction D1 at the same speed as the relative speed of the nozzle 31. That is, the crystal growth of the semiconductor material can follow the nozzle 31 that moves relatively.
 このように結晶成長をノズル31に追従させることにより、形成される半導体膜が途切れたり、形成される半導体膜の膜厚が不安定になったりすることを防止できる。そして、結晶成長をノズル31に追従させた場合、塗布した溶液中の溶媒は、その殆どが塗布直後にノズル31のすぐ後ろで蒸発するようになる。従って、蒸発した溶媒は、ノズル31がガイドとなって当該ノズル31の移動方向に対して後方へ導かれやすくなる。よって、溶媒の蒸発方向が揃いやすくなり、その結果として結晶方向が揃って半導体膜の結晶配向度が高まりやすくなる。尚、図4では、蒸発方向が、液溜りSpの後方に図示された矢印によって示されている。 結晶 By causing the crystal growth to follow the nozzle 31, the formed semiconductor film can be prevented from being interrupted, and the thickness of the formed semiconductor film can be prevented from becoming unstable. When crystal growth follows the nozzle 31, most of the solvent in the applied solution evaporates immediately after the nozzle 31 immediately after the application. Therefore, the evaporated solvent is easily guided backward in the moving direction of the nozzle 31 by using the nozzle 31 as a guide. Accordingly, the evaporation direction of the solvent is easily aligned, and as a result, the crystal directions are aligned and the degree of crystal orientation of the semiconductor film is easily increased. In FIG. 4, the evaporation direction is indicated by an arrow illustrated behind the liquid pool Sp.
 本実施形態では、ノズル31は、塗布した溶液(塗膜)の幅方向に吐出口31aの長手方向D2が一致するように配置されている。従って、その幅方向における溶液全体において、蒸発する溶媒がノズル31でガイドされて後方へ導かれる。よって、溶媒の蒸発方向がより揃いやすい。 In the present embodiment, the nozzles 31 are arranged such that the longitudinal direction D2 of the discharge port 31a coincides with the width direction of the applied solution (coating film). Therefore, in the entire solution in the width direction, the solvent to be evaporated is guided by the nozzle 31 and guided backward. Therefore, the evaporation direction of the solvent is more likely to be uniform.
 ステップS13の実行中、制御部5は、ノズル31が塗布終了位置に到達したか否かを判断し(図3のステップS14)、ステップS14にて「到達した(Yes)」と判断できるまでステップS13及びS14を繰り返す。そして、制御部5は、ステップS14にて「到達した(Yes)」と判断した場合、ステージ駆動部22及び送液ポンプ33を制御することにより、溶液の吐出を停止すると共にノズル31を上方へ後退させる(図3のステップS15)。これにより、塗布処理の一連の流れが終了する。 During the execution of step S13, the control unit 5 determines whether or not the nozzle 31 has reached the coating end position (step S14 in FIG. 3), and continues until it is determined in step S14 that the nozzle 31 has arrived (Yes). S13 and S14 are repeated. If the controller 5 determines that “reached (Yes)” in step S14, the controller 5 controls the stage driving unit 22 and the liquid sending pump 33 to stop discharging the solution and move the nozzle 31 upward. It is moved backward (step S15 in FIG. 3). Thus, a series of flow of the coating process ends.
 上記塗布処理によれば、処理室1の内圧を調整することにより、基板Tmの表面(塗布対象面)に塗布した溶液の乾燥速度を調整できる。そして、乾燥速度を所望の速度に調整することにより、制御下で、半導体膜の結晶配向度を高めることができ、その結果として結晶配向度が高い半導体膜を安定的に形成できる。 According to the above coating process, the drying speed of the solution applied on the surface of the substrate Tm (the surface to be coated) can be adjusted by adjusting the internal pressure of the processing chamber 1. By adjusting the drying rate to a desired rate, the degree of crystal orientation of the semiconductor film can be increased under control, and as a result, a semiconductor film having a high degree of crystal orientation can be formed stably.
 又、ノズル31の相対速度を、塗布直後に結晶化する半導体材料の結晶成長速度に応じた速度となるように調整することにより、半導体膜における膜厚の均一度を、半導体材料の構成単位のレベル(即ち、分子レベル)で高めることができる。本実施形態によれば、厚さ方向の分子数が2~5程度である半導体膜を形成する場合であっても、当該厚さ方向の分子数を半導体膜全体で揃えることができる。 Further, by adjusting the relative speed of the nozzle 31 so as to be a speed corresponding to the crystal growth speed of the semiconductor material that crystallizes immediately after coating, the uniformity of the film thickness of the semiconductor film is reduced. Level (ie, at the molecular level). According to the present embodiment, even when a semiconductor film having the number of molecules in the thickness direction of about 2 to 5 is formed, the number of molecules in the thickness direction can be made uniform in the entire semiconductor film.
 ステップS11において、減圧によって処理室1の内圧を低くする場合、溶液中の溶媒の蒸発が促進されて乾燥速度が大きくなるため、基板Tmに対するノズル31の相対速度を大きくすることができる。よって、半導体膜の形成速度を向上させることができる。本実施形態のように、塗布した溶液を順次乾燥させて半導体材料を結晶成長させる場合、ノズル31の相対速度を、塗膜を濡れた状態ままベタ塗りで形成する場合(例えば300mm/sec)に比べて、常圧であれば0.02mm/sec程度まで著しく小さくしなければならない。このため、ノズル31の相対速度を少しでも大きくすることで、半導体膜の形成速度を格段に向上させることができる。 (4) In step S11, when the internal pressure of the processing chamber 1 is reduced by reducing the pressure, the evaporation speed of the solvent in the solution is promoted and the drying speed is increased, so that the relative speed of the nozzle 31 with respect to the substrate Tm can be increased. Thus, the formation speed of the semiconductor film can be improved. When the semiconductor solution is crystal-grown by successively drying the applied solution as in the present embodiment, the relative speed of the nozzle 31 is set to a solid value while the coating film is wet (for example, 300 mm / sec). In comparison, under normal pressure, it must be significantly reduced to about 0.02 mm / sec. Therefore, by slightly increasing the relative speed of the nozzle 31, the formation speed of the semiconductor film can be significantly improved.
 又、ステップS11では、処理室1内が真空状態になるまで当該処理室1の内圧を内圧調整部4で低下させてもよい。処理室1内を真空状態にすることにより、塗布した溶液から蒸発する溶媒の揺らぎを抑制できる。よって、当該蒸発する溶媒の移動方向(即ち、蒸発方向)がより揃い易くなり、その結果として、形成される半導体膜全体において結晶方向が揃い易くなる。 In step S11, the internal pressure of the processing chamber 1 may be reduced by the internal pressure adjusting unit 4 until the processing chamber 1 is evacuated. By setting the inside of the processing chamber 1 in a vacuum state, the fluctuation of the solvent evaporated from the applied solution can be suppressed. Therefore, the moving direction (that is, the evaporation direction) of the evaporated solvent is more easily aligned, and as a result, the crystal direction is easily aligned in the entire semiconductor film to be formed.
 [3]変形例
 [3-1]第1変形例
 上記塗布装置は、ステージ21及びノズル31を加熱するヒータ(不図示)を更に備えていてもよい。この構成において、制御部5は、処理室1の内圧によって溶液の乾燥速度を調整することに加えて、ヒータを制御することにより溶液の温度を調整し、当該温度の調整を通じて溶液の乾燥速度を調整できる。具体的には、常温での溶液の乾燥速度が所望の速度より小さい場合には、制御部5は、加熱によって溶液の温度を高くすることにより、溶液中の溶媒の蒸発を促進して乾燥速度を大きくすることができる。
[3] Modification Example [3-1] First Modification Example The coating apparatus may further include a heater (not shown) for heating the stage 21 and the nozzle 31. In this configuration, the controller 5 adjusts the temperature of the solution by controlling the heater, in addition to adjusting the drying speed of the solution by the internal pressure of the processing chamber 1, and controls the drying speed of the solution through the adjustment of the temperature. Can be adjusted. Specifically, when the drying speed of the solution at room temperature is lower than the desired speed, the control unit 5 increases the temperature of the solution by heating, thereby promoting the evaporation of the solvent in the solution to increase the drying speed. Can be increased.
 又、塗布装置は、ステージ21及びノズル31を冷却する冷却器(不図示)を備えていてもよい。この構成において、制御部5は、処理室1の内圧によって溶液の乾燥速度を調整することに加えて、冷却器を制御することにより溶液の温度を調整し、当該温度の調整を通じて溶液の乾燥速度を調整できる。具体的には、常温での溶液の乾燥速度が所望の速度より大きい場合には、制御部5は、冷却によって溶液の温度を低くすることにより、溶液中の溶媒の蒸発を抑制して乾燥速度を小さくすることができる。 The coating apparatus may include a cooler (not shown) for cooling the stage 21 and the nozzle 31. In this configuration, the controller 5 adjusts the temperature of the solution by controlling the cooler, in addition to adjusting the drying speed of the solution by the internal pressure of the processing chamber 1, and adjusts the drying speed of the solution through the adjustment of the temperature. Can be adjusted. Specifically, when the drying speed of the solution at normal temperature is higher than the desired speed, the control unit 5 suppresses the evaporation of the solvent in the solution by lowering the temperature of the solution by cooling, thereby controlling the drying speed. Can be reduced.
 上記2つの例において、制御部5は、溶液の温度(ノズル31の温度であってもよい)とノズル31の相対速度との相関データを有していてもよい。そして、制御部5は、溶液の温度及びノズル31の相対速度の何れか一方を調整したとき、他方を、調整後の一方の値から相関データに基づいて導出した値になるように調整してもよい。これにより、溶液の乾燥速度を、処理室1の内圧と溶液の温度という2つのパラメータで調整できるため、より精度の高い制御が可能になる。 In the above two examples, the control unit 5 may have correlation data between the temperature of the solution (or the temperature of the nozzle 31) and the relative speed of the nozzle 31. Then, when one of the temperature of the solution and the relative speed of the nozzle 31 is adjusted, the control unit 5 adjusts the other to a value derived from one of the adjusted values based on the correlation data. Is also good. Thereby, the drying speed of the solution can be adjusted by the two parameters of the internal pressure of the processing chamber 1 and the temperature of the solution, so that more precise control can be performed.
 又、溶液の温度だけで乾燥速度を調整しようとした場合、半導体材料が変質し得る温度まで溶液の温度を高めなければならず、溶液の温度だけでは乾燥速度を所望の速度に調整できない場合がある。このような場合でも、処理室1の内圧の調整を組み合わせることにより、溶液の温度上昇を制限しつつも、その溶液の乾燥速度を所望の速度に調整することが可能になる。 In addition, when the drying speed is adjusted only by the temperature of the solution, the temperature of the solution must be increased to a temperature at which the semiconductor material can be deteriorated, and the drying speed cannot be adjusted to a desired speed only by the temperature of the solution. is there. Even in such a case, it is possible to adjust the drying speed of the solution to a desired speed while limiting the temperature rise of the solution by combining the adjustment of the internal pressure of the processing chamber 1.
 [3-2]第2変形例
 塗布時のノズル31の相対速度を一定の相対速度V0にした場合、形成される半導体膜の膜厚が、塗布開始位置で所望の膜厚より小さくなり、そこから徐々に大きくなっていって安定するといった現象(第1現象)が生じることがある。或いは、半導体膜の膜厚が、塗布開始位置で所望の膜厚より大きくなり、そこから徐々に小さくなっていって安定するといった現象(第2現象)が生じることがある。
[3-2] Second Modification When the relative speed of the nozzle 31 during coating is set to a constant relative speed V0, the film thickness of the semiconductor film to be formed becomes smaller than a desired film thickness at the coating start position. Phenomena (first phenomenon) may occur. Alternatively, a phenomenon (second phenomenon) may occur in which the film thickness of the semiconductor film becomes larger than a desired film thickness at a coating start position, and then gradually decreases and becomes stable.
 そこで、これらの現象が生じる場合には、制御部5は、ノズル駆動部32を制御することにより、ノズル31の相対速度を次のように制御してもよい。即ち、制御部5は、ノズル31による溶液の塗布を開始してから、所定期間、ノズル31を第1相対速度V1で相対移動させる。ここで、第1相対速度V1は、塗布開始位置から半導体膜の膜厚が所望の膜厚となるように調整された速度である。具体的には、上記第1現象が生じる場合には、第1相対速度V1は、上記一定の相対速度V0よりも小さい速度に設定される。一方、上記第2現象が生じる場合には、第1相対速度V1は、上記一定の相対速度V0よりも大きい速度に設定される。 Therefore, when these phenomena occur, the control unit 5 may control the nozzle driving unit 32 to control the relative speed of the nozzle 31 as follows. That is, the controller 5 relatively moves the nozzle 31 at the first relative speed V1 for a predetermined period after the application of the solution by the nozzle 31 is started. Here, the first relative speed V1 is a speed adjusted from the coating start position so that the film thickness of the semiconductor film becomes a desired film thickness. Specifically, when the first phenomenon occurs, the first relative speed V1 is set to a speed smaller than the constant relative speed V0. On the other hand, when the second phenomenon occurs, the first relative speed V1 is set to a speed higher than the constant relative speed V0.
 その後、制御部5は、ノズル31を、第1相対速度V1とは異なる第2相対速度V2で相対移動させる。一例として、第2相対速度V2は、上記一定の相対速度V0に等しい速度に設定される。尚、制御部5は、第1相対速度V1を、所定期間が経過したときに第2相対速度V2となるよう徐々に大きく又は小さくしてもよい。 After that, the control unit 5 relatively moves the nozzle 31 at a second relative speed V2 different from the first relative speed V1. As an example, the second relative speed V2 is set to a speed equal to the constant relative speed V0. Note that the control unit 5 may gradually increase or decrease the first relative speed V1 so as to become the second relative speed V2 when a predetermined period has elapsed.
 このような制御によれば、塗布開始位置で生じる上記現象(第1現象又は第2現象)に応じて、塗布開始直後のノズル31の相対速度を小さく又は大きくすることができる。よって、塗布開始直後においても所望の膜厚になるまで半導体材料を結晶成長させることができ、その結果として、形成される半導体膜全体において膜厚を均一にすることができる。 According to such control, the relative speed of the nozzle 31 immediately after the start of coating can be reduced or increased in accordance with the above-described phenomenon (first phenomenon or second phenomenon) that occurs at the application start position. Therefore, the semiconductor material can be crystal-grown to a desired thickness even immediately after the start of application, and as a result, the thickness of the entire semiconductor film to be formed can be made uniform.
 又、制御部5は、塗布過程において、ノズル31の相対速度に限らず、処理室1の内圧や溶液の温度などの様々なパラメータを、形成される半導体膜の状態が向上するように変更してもよい。 In the coating process, the control unit 5 changes various parameters such as the internal pressure of the processing chamber 1 and the temperature of the solution, not only the relative speed of the nozzle 31, so that the state of the semiconductor film to be formed is improved. You may.
 [3-3]第3変形例
 上記塗布装置は、送液ポンプ33をマスターポンプとして、当該送液ポンプ33で駆動できる着脱可能なスレイブポンプ(ダイヤフラムポンプなど)を更に備えていてもよい。これにより、吐出量を多くする場合には、スレイブポンプを取り外した状態で、送液ポンプ33によってノズル31への溶液の供給を行い、吐出量を少なくする場合には、スレイブポンプを取り付けることにより、当該スレイブポンプによってノズル31への溶液の供給を行うことができる。即ち、用途に応じてポンプを使い分けることができる。
[3-3] Third Modification The coating apparatus may further include a detachable slave pump (such as a diaphragm pump) that can be driven by the liquid sending pump 33 using the liquid sending pump 33 as a master pump. Thereby, when increasing the discharge amount, the solution is supplied to the nozzle 31 by the liquid sending pump 33 with the slave pump removed, and when the discharge amount is reduced, the slave pump is attached. The solution can be supplied to the nozzle 31 by the slave pump. That is, the pump can be used properly according to the application.
 又、この構成によれば、ヒータ等による加熱に対して熱対策を施す必要のないポンプ(ダイヤフラムポンプなど)をスレイブポンプとして用いることにより、マスターポンプを加熱せずにスレイブポンプだけを加熱して、溶液の温度を高めることができる。この場合、マスターポンプに対して熱対策を施す必要がないため、マスターポンプとして、熱対策が施されていないモータ等で駆動する通常のポンプを用いることができる。 Further, according to this configuration, a pump (such as a diaphragm pump) that does not need to take heat measures against heating by a heater or the like is used as a slave pump, so that only the slave pump is heated without heating the master pump. , The temperature of the solution can be increased. In this case, since it is not necessary to take heat countermeasures for the master pump, an ordinary pump driven by a motor or the like that is not subjected to heat countermeasures can be used as the master pump.
 [3-4]第4変形例
 上記塗布装置において、ステージ21との関係でのノズル31の相対移動は、ノズル31は移動させずにステージ21を移動させることで実現される場合に限らず、ステージ21を移動させずにノズル31を移動させることで実現されてもよい。更には、ステージ21及びノズル31の両方を移動させることで、ノズル31の相対移動が実現されてもよい。又、ノズル31の相対移動は、1次元的な移動に限らず、ステージ21の載置面21aに沿った2次元的な移動であってもよい。
[3-4] Fourth Modification In the above-described coating apparatus, the relative movement of the nozzle 31 with respect to the stage 21 is not limited to the case where the nozzle 31 is moved without moving the stage 21. It may be realized by moving the nozzle 31 without moving the stage 21. Further, the relative movement of the nozzle 31 may be realized by moving both the stage 21 and the nozzle 31. The relative movement of the nozzle 31 is not limited to one-dimensional movement, but may be two-dimensional movement along the mounting surface 21a of the stage 21.
 [3-5]第5変形例
 上記塗布装置は、処理室1に対して減圧又は加圧の何れかのみを行う装置であってもよい。又、ノズル31は、スリットノズルに限らず、形成する半導体膜の形状に応じて適宜変更できる。
[3-5] Fifth Modified Example The coating apparatus may be an apparatus that performs only one of decompression and pressurization on the processing chamber 1. Further, the nozzle 31 is not limited to the slit nozzle, and can be appropriately changed according to the shape of the semiconductor film to be formed.
 上記塗布処理では、処理室1の内圧(又は溶液の温度)とノズル31の相対速度との相関に基づいて各種パラメータを制御する場合に限らず、処理室1の内圧、溶液の温度(ノズル31の温度であってもよい)、溶液の乾燥速度、溶液の過飽和度、結晶成長速度、ノズル31の相対速度などのパラメータから選択した2つのパラメータの間に相関を持たせることで、その相関に基づいて各種パラメータを制御してもよい。 The above-described coating process is not limited to the case where various parameters are controlled based on the correlation between the internal pressure of the processing chamber 1 (or the temperature of the solution) and the relative speed of the nozzle 31, but the internal pressure of the processing chamber 1 and the temperature of the solution (the nozzle 31). Temperature), a solution drying rate, a solution supersaturation degree, a crystal growth rate, a relative speed of the nozzle 31 and the like. Various parameters may be controlled based on this.
 [3-6]他の変形例
 処理室1の内圧を調整できる上記塗布装置は、塗膜を濡れた状態ままベタ塗りで形成する場合にも適用でき、これにより、塗膜全体において膜厚を均一にすることができる。そして、このような塗布装置は、膜厚を均一にすることが好ましい機能性膜(カラーフィルタ、導電膜、ポリイミド膜など)の形成に適している。
[3-6] Other Modifications The above-described coating apparatus capable of adjusting the internal pressure of the processing chamber 1 can also be applied to a case where the coating film is formed by solid coating while the coating film is in a wet state. It can be uniform. Such a coating apparatus is suitable for forming a functional film (a color filter, a conductive film, a polyimide film, or the like) whose film thickness is preferably uniform.
 上述の実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。更に、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 説明 The above description of the embodiments is illustrative in all aspects and should not be construed as limiting. The scope of the present invention is defined by the terms of the claims, rather than the embodiments described above. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the claims.
1 処理室
2 チャック部
3 溶液供給部
4 内圧調整部
5 制御部
6 記憶部
11A、11B 側壁
11C 天壁
21 ステージ
21a 載置面
21b 裏面
22 ステージ駆動部
31 ノズル
31a 吐出口
32 ノズル駆動部
33 送液ポンプ
41 加減圧ポンプ
42 調圧器
43 圧力計
210 ガイドレール
221 ボールねじ
221a 軸部
221b ナット部
222 モータ
321 ノズル支持部
322 ボールねじ
322a 軸部
322b ナット部
323 ねじ支持部
324 モータ
D1 所定方向
D2 長手方向
Sp 液溜り
Tm 基板
V0 一定の相対速度
V1 第1相対速度
V2 第2相対速度
Reference Signs List 1 processing chamber 2 chuck unit 3 solution supply unit 4 internal pressure adjustment unit 5 control unit 6 storage unit 11A, 11B side wall 11C top wall 21 stage 21a mounting surface 21b back surface 22 stage drive unit 31 nozzle 31a discharge port 32 nozzle drive unit 33 Liquid pump 41 Pressurizing / depressurizing pump 42 Pressure regulator 43 Pressure gauge 210 Guide rail 221 Ball screw 221a Shaft 221b Nut 222 Motor 321 Nozzle support 322 Ball screw 322a Shaft 322b Nut 323 Screw support 324 Motor D1 Predetermined direction D2 Longitudinal Direction Sp Liquid pool Tm Substrate V0 Constant relative speed V1 First relative speed V2 Second relative speed

Claims (8)

  1.  処理室と、
     前記処理室内において塗布対象面に沿って相対移動しながら当該塗布対象面に結晶化材料の溶液を塗布するノズルと、
     前記処理室の内圧を調整する内圧調整部と、
     前記ノズルによる前記溶液の塗布を行う場合、前記処理室の内圧を前記内圧調整部で調整することにより、前記塗布対象面に塗布した前記溶液を順次乾燥させて前記結晶化材料を結晶成長させる制御部と、
    を備える、塗布装置。
    Processing room,
    A nozzle for applying a solution of a crystallization material to the application surface while relatively moving along the application surface in the processing chamber;
    An internal pressure adjusting unit for adjusting the internal pressure of the processing chamber,
    When the solution is applied by the nozzle, the internal pressure of the processing chamber is adjusted by the internal pressure adjusting unit, so that the solution applied to the application target surface is sequentially dried to control the crystal growth of the crystallized material. Department and
    A coating device comprising:
  2.  前記制御部は、前記ノズルによる前記溶液の塗布を行う場合、前記処理室内が真空状態になるまで当該処理室の内圧を前記内圧調整部で低下させる、請求項1に記載の塗布装置。 4. The coating apparatus according to claim 1, wherein, when performing the application of the solution by the nozzle, the control unit reduces the internal pressure of the processing chamber by the internal pressure adjusting unit until the processing chamber is in a vacuum state.
  3.  前記制御部は、前記処理室の内圧と前記ノズルの相対速度との相関データを有し、
     前記制御部は、前記処理室の内圧及び前記ノズルの相対速度の何れか一方を調整したとき、他方を、調整後の前記一方の値から前記相関データに基づいて導出した値になるように調整する、請求項1又は2に記載の塗布装置。
    The control unit has correlation data between the internal pressure of the processing chamber and the relative speed of the nozzle,
    The controller, when adjusting one of the internal pressure of the processing chamber and the relative speed of the nozzle, adjusts the other to a value derived from the one of the adjusted values based on the correlation data. The coating device according to claim 1, wherein the coating device performs coating.
  4.  前記相関データは、形成する結晶化膜の結晶配向度が所定水準以上になるという条件を満たす前記処理室の内圧と前記ノズルの相対速度との相関を数値化したものである、請求項3に記載の塗布装置。 4. The correlation data according to claim 3, wherein a correlation between an internal pressure of the processing chamber and a relative speed of the nozzle that satisfies a condition that a degree of crystal orientation of a crystallized film to be formed is equal to or higher than a predetermined level is used. The coating device according to the above.
  5.  前記ノズルは、スリット状の吐出口を持ったスリットノズルであり、
     前記吐出口の長手方向は、前記塗布対象面に平行であって、且つ、前記ノズルが相対移動する方向に対して垂直な方向である、請求項1~4の何れかに記載の塗布装置。
    The nozzle is a slit nozzle having a slit-shaped discharge port,
    5. The coating apparatus according to claim 1, wherein a longitudinal direction of the discharge port is parallel to the surface to be coated and perpendicular to a direction in which the nozzle relatively moves.
  6.  前記制御部は、
     前記ノズルによる前記溶液の塗布を開始してから、所定期間、前記ノズルを第1相対速度で相対移動させ、
     その後、前記ノズルを、前記第1相対速度とは異なる第2相対速度で相対移動させる、請求項1~5の何れかに記載の塗布装置。
    The control unit includes:
    After the application of the solution by the nozzle is started, the nozzle is relatively moved at a first relative speed for a predetermined period,
    The coating apparatus according to any one of claims 1 to 5, wherein the nozzle is relatively moved at a second relative speed different from the first relative speed.
  7.  前記結晶化材料は半導体材料である、請求項1~6の何れかに記載の塗布装置。 The coating device according to any one of claims 1 to 6, wherein the crystallization material is a semiconductor material.
  8.  結晶化膜の形成に用いる処理室の内圧を調整し、
     前記処理室内において塗布対象面に沿ってノズルを相対移動させながら当該塗布対象面に結晶化材料の溶液を塗布し、
     これにより、前記塗布対象面に塗布した前記溶液を順次乾燥させて前記結晶化材料を結晶成長させる、塗布方法。
    Adjust the internal pressure of the processing chamber used to form the crystallized film,
    Applying a solution of the crystallization material to the application target surface while relatively moving the nozzle along the application target surface in the processing chamber,
    Thereby, the solution applied to the application target surface is sequentially dried to grow the crystallized material in a crystal.
PCT/JP2019/033840 2018-09-12 2019-08-29 Coating apparatus and coating method WO2020054440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980051182.6A CN112514038B (en) 2018-09-12 2019-08-29 Coating device and coating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018170186A JP7112917B2 (en) 2018-09-12 2018-09-12 Coating device and coating method
JP2018-170186 2018-09-12

Publications (1)

Publication Number Publication Date
WO2020054440A1 true WO2020054440A1 (en) 2020-03-19

Family

ID=69777572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033840 WO2020054440A1 (en) 2018-09-12 2019-08-29 Coating apparatus and coating method

Country Status (4)

Country Link
JP (1) JP7112917B2 (en)
CN (1) CN112514038B (en)
TW (1) TWI726414B (en)
WO (1) WO2020054440A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762153B (en) * 2021-01-15 2022-04-21 陽程科技股份有限公司 Fine-tuning mechanism for coating thickness control of coating head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211734A (en) * 2004-01-28 2005-08-11 Toppan Printing Co Ltd Organic material applying apparatus and organic material applying method using the same apparatus
JP2014053587A (en) * 2012-08-09 2014-03-20 Denso Corp Organic semiconductor thin film manufacturing method, organic semiconductor device manufacturing method applying the same thereto and organic semiconductor device
JP2014135393A (en) * 2013-01-10 2014-07-24 Denso Corp Organic material coating apparatus and organic material coating method using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4587481B2 (en) * 2005-11-09 2010-11-24 東京エレクトロン株式会社 Coating film forming method and apparatus
JP2007264187A (en) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd Coating device and coating method
CN102387869B (en) * 2009-06-08 2015-07-08 中外炉工业株式会社 Application device, application method, and electronic device
KR101147654B1 (en) * 2009-11-26 2012-05-23 세메스 주식회사 Substrate treating method
JP6093172B2 (en) * 2012-12-26 2017-03-08 株式会社Screenホールディングス Vacuum drying apparatus and vacuum drying method
JP6498006B2 (en) * 2015-03-25 2019-04-10 株式会社Screenホールディングス Application method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211734A (en) * 2004-01-28 2005-08-11 Toppan Printing Co Ltd Organic material applying apparatus and organic material applying method using the same apparatus
JP2014053587A (en) * 2012-08-09 2014-03-20 Denso Corp Organic semiconductor thin film manufacturing method, organic semiconductor device manufacturing method applying the same thereto and organic semiconductor device
JP2014135393A (en) * 2013-01-10 2014-07-24 Denso Corp Organic material coating apparatus and organic material coating method using the same

Also Published As

Publication number Publication date
JP2020043244A (en) 2020-03-19
CN112514038A (en) 2021-03-16
TWI726414B (en) 2021-05-01
JP7112917B2 (en) 2022-08-04
CN112514038B (en) 2024-02-13
TW202030803A (en) 2020-08-16

Similar Documents

Publication Publication Date Title
JP4749830B2 (en) Resist coating method and resist coating apparatus
WO2020054440A1 (en) Coating apparatus and coating method
US11378728B2 (en) Coating processing apparatus, coating processing method, and storage medium
JP2001235277A (en) Vacuum dryer and vacuum drying method
US8677933B2 (en) Film forming apparatus forming a coating film using spiral coating while adjusting sound wave projected onto the coating film
US9623435B2 (en) Substrate processing apparatus for coating liquid composed of first coating liquid and second coating liquid on substrate with slit-shaped ejection port
KR20050000344A (en) Apparatus and method for applying coating
JP6295053B2 (en) Coating apparatus and coating method
JP5949635B2 (en) Organic semiconductor thin film manufacturing method, organic semiconductor device manufacturing method and organic semiconductor device using the same
JP4258663B2 (en) Coating apparatus and film forming apparatus
JP2011025229A (en) Device for coating with paste and method for coating with the same
JP6560072B2 (en) Vacuum drying apparatus and vacuum drying method
JPH1092726A (en) Resist coater and method of resist coating
JPH07328513A (en) Treating liquid coating apparatus
JP7154409B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP3487655B2 (en) Processing liquid coating device
JP5413727B2 (en) Coating apparatus and coating method
JP7312603B2 (en) Coating film forming method and coating film forming apparatus
JP2021084064A (en) Substrate processing method and substrate processing apparatus
JP5589343B2 (en) Coating apparatus and coating method
JP2004336070A (en) Treatment liquid coating device
JP2006071185A (en) Vacuum dryer
JP3840238B2 (en) Treatment liquid application equipment
KR100631475B1 (en) Automatic Wire Supply Feeder for Evaporator
JPH08150368A (en) Processing solution applicator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860190

Country of ref document: EP

Kind code of ref document: A1