WO2020054322A1 - Hydraulic cylinder - Google Patents

Hydraulic cylinder Download PDF

Info

Publication number
WO2020054322A1
WO2020054322A1 PCT/JP2019/032236 JP2019032236W WO2020054322A1 WO 2020054322 A1 WO2020054322 A1 WO 2020054322A1 JP 2019032236 W JP2019032236 W JP 2019032236W WO 2020054322 A1 WO2020054322 A1 WO 2020054322A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure chamber
fluid
exhaust
cylinder
Prior art date
Application number
PCT/JP2019/032236
Other languages
French (fr)
Japanese (ja)
Inventor
▲高▼田芳行
高桑洋二
門田謙吾
名倉誠一
染谷和孝
風間晶博
Original Assignee
Smc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smc株式会社 filed Critical Smc株式会社
Priority to EP19859799.9A priority Critical patent/EP3835600B1/en
Priority to RU2021110015A priority patent/RU2769896C9/en
Priority to BR112021004709-3A priority patent/BR112021004709A2/en
Priority to KR1020217010956A priority patent/KR102531495B1/en
Priority to JP2020546791A priority patent/JP7137163B2/en
Priority to MX2021002864A priority patent/MX2021002864A/en
Priority to CN201980059806.9A priority patent/CN112689714B/en
Publication of WO2020054322A1 publication Critical patent/WO2020054322A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/204Control means for piston speed or actuating force without external control, e.g. control valve inside the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1428Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • F15B11/036Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of servomotors having a plurality of working chambers
    • F15B11/0365Tandem constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/027Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1447Pistons; Piston to piston rod assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1457Piston rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3058Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41554Flow control characterised by the connections of the flow control means in the circuit being connected to a return line and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7055Linear output members having more than two chambers
    • F15B2211/7056Tandem cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/775Combined control, e.g. control of speed and force for providing a high speed approach stroke with low force followed by a low speed working stroke with high force, e.g. for a hydraulic press
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/885Control specific to the type of fluid, e.g. specific to magnetorheological fluid
    • F15B2211/8855Compressible fluids, e.g. specific to pneumatics

Definitions

  • the present invention relates to a fluid pressure cylinder.
  • a booster piston is provided as a booster mechanism, and the thrust is increased by locking the booster piston to a piston rod during a stroke.
  • an object of the present invention is to provide a hydraulic cylinder with a boosting function that can reduce the consumption of working fluid without complicating the structure.
  • One aspect of the present invention is a cylinder body in which a sliding hole extending in the axial direction is formed, a partition separating the sliding hole into a working cylinder chamber on a head side, and an intensifying cylinder chamber on an end side, An operating piston disposed in the operating cylinder chamber and dividing the operating cylinder chamber into a first pressure chamber on the head side and a second pressure chamber on the end side; and an operating piston disposed in the boost cylinder chamber and connecting the boost cylinder chamber to the head side.
  • a pressure boosting piston partitioned into a third pressure chamber and a fourth pressure chamber on the end side, and a piston rod connected to the operating piston and the force boosting piston and extending to the end side through the partition wall.
  • High pressure fluid is sealed in two adjacent pressure chambers among the first pressure chamber, the second pressure chamber, the third pressure chamber, and the fourth pressure chamber, and the operating piston is closer to the head than a predetermined position. Second place While the high pressure fluid is allowed to flow between the two pressure chambers, when the working piston moves to the end side from the predetermined position, the high pressure fluid flows between the two pressure chambers.
  • a fluid pressure cylinder includes a boost switching mechanism for preventing conduction and discharging high-pressure fluid in one of the two pressure chambers.
  • a high-pressure fluid is sealed in two adjacent pressure chambers among the first to fourth pressure chambers.
  • the working piston When the working piston is located closer to the head than the predetermined position, the passage of the high-pressure fluid between two adjacent pressure chambers is allowed. In this case, no pressure difference occurs between the two adjacent pressure chambers, and the thrust does not increase.
  • the working piston moves near the end of the stroke, conduction between the two adjacent pressure chambers is blocked, and the high-pressure fluid in one of the pressure chambers is exhausted. As a result, a thrust corresponding to the pressure difference between two adjacent pressure chambers is generated, and the thrust of the piston rod can be increased near the stroke end. Since the exhaust of the high-pressure fluid is performed at the end of the stroke, the amount of fluid used for increasing the thrust can be suppressed.
  • FIG. 2 is a side view of an end side of the fluid pressure cylinder in FIG. 1.
  • 3A is an enlarged cross-sectional view of the vicinity of the partition wall of the fluid pressure cylinder of FIG. 1
  • FIG. 3B is an enlarged cross-sectional view of a state where the working piston approaches the vicinity of the partition wall of FIG. 3A.
  • FIG. 4A is a fluid circuit diagram showing a connection state in an operation process of the hydraulic cylinder according to the embodiment
  • FIG. 4B is a fluid circuit diagram showing a connection state in a return process of the hydraulic cylinder in FIG.
  • FIG. 2 is a cross-sectional view of an operation process of the hydraulic cylinder of FIG.
  • FIG. 2 is a cross-sectional view of the fluid pressure cylinder in FIG.
  • FIG. 2 is a cross-sectional view (part 1) of the fluid pressure cylinder in FIG. 1 in a return step.
  • FIG. 4 is a cross-sectional view (part 2) of the fluid pressure cylinder in FIG. 1 in a return step.
  • FIG. 9A is a plan view of the hydraulic cylinder according to the second embodiment
  • FIG. 9B is a side view of the hydraulic cylinder of FIG. 9A.
  • FIG. 10 is a cross-sectional view of the fluid pressure cylinder of FIG. 9A at a stroke start end position.
  • FIG. 10 is a cross-sectional view of the fluid pressure cylinder of FIG. 9A at a stroke start end position.
  • FIG. 11A is a fluid circuit diagram of the drive device of the fluid pressure cylinder of FIG. 9A, showing a connection state of the switching valve in a first position
  • FIG. 11B is a view of the switching device in a second position of the drive device of FIG. 11A.
  • FIG. 4 is a fluid circuit diagram showing a connection state of FIG.
  • FIG. 12 is a cross-sectional view of the fluid pressure cylinder in FIG. 9A in a boosting step.
  • the fluid pressure cylinder 10 includes a cylinder body 12 and a driving device 120 as shown in FIGS. 4A and 4B.
  • the fluid pressure cylinder 10 includes a cylinder body 12 that extends in the axial direction as shown in FIG. As shown in FIG. 2, the cylinder body 12 can be formed in a rectangular shape, and is formed of, for example, a metal material such as an aluminum alloy.
  • a circular sliding hole 12a (cylinder chamber) extending in the axial direction is formed inside the cylinder body 12.
  • the cylinder body 12 includes a head-side main body portion 14 provided on the head side, an end-side main body portion 16 provided on the end side, and a partition wall provided between the head-side main body portion 14 and the end-side main body portion 16. 26.
  • the head-side main body 14, the partition 26, and the end-side main body 16 are fastened in the axial direction by connecting rods or bolts 16b.
  • a circular working cylinder chamber 14 a is formed inside the head-side main body 14, and a circular booster cylinder chamber 16 a is formed inside the end-side main body 16.
  • the working cylinder chamber 14a and the booster cylinder chamber 16a are formed with the same inner diameter, and constitute a sliding hole 12a of the cylinder body 12.
  • the working cylinder chamber 14a and the booster cylinder chamber 16a are separated by a partition wall 26.
  • a working piston 20 is provided in the working cylinder chamber 14a, and a booster piston 22 is provided in the booster cylinder chamber 16a.
  • the working piston 20 and the booster piston 22 are connected to the piston rod 18 that extends through the partition wall 26 and the cylinder body 12 to the end side.
  • the head-side main body 14 is provided with a head-side port 28, a head cover 46, and a working piston 20.
  • the head cover 46 is attached to the end of the working cylinder chamber 14a on the head side, and the head cover 46 seals the head side of the working cylinder chamber 14a.
  • a head-side port 28 is formed near the head cover 46.
  • the head-side port 28 is formed through the head-side main body 14.
  • the head-side port 28 is provided near the head-side end of the working cylinder chamber 14a and communicates with the working cylinder chamber 14a (first pressure chamber 38) through an opening 28a.
  • the working piston 20 is accommodated in the working cylinder chamber 14a so as to be slidable in the axial direction.
  • An annular packing mounting groove 21a is formed on the outer peripheral surface of the working piston 20, and the packing 21 is mounted in the packing mounting groove 21a.
  • the packing 21 tightly contacts the inner peripheral surface of the working cylinder chamber 14a while being elastically deformed, thereby airtightly dividing the working cylinder chamber 14a into a first pressure chamber 38 and a second pressure chamber 40.
  • the first pressure chamber 38 is an empty chamber formed between the working piston 20 and the head cover 46 and is formed closer to the head than the working piston 20.
  • the second pressure chamber 40 is an empty chamber formed between the working piston 20 and the partition 26, and is formed on the end side of the working piston 20.
  • the first pressure chamber 38 communicates with the head-side port 28 via the opening 28a.
  • the working piston 20 is connected to the piston rod 18 at the head-side connecting portion 18a of the piston rod 18, and is configured to be displaced integrally with the piston rod 18.
  • the end-side main body 16 is provided with the booster piston 22, the rod cover 48, the end-side port 30, and the auxiliary flow path 76.
  • the booster piston 22 is disposed in the booster cylinder chamber 16a of the end-side main body 16 so as to be slidable in the axial direction.
  • an annular packing mounting groove 23a and an annular magnet mounting groove 24a are provided on the outer peripheral surface of the booster piston 22 .
  • An annular packing 23 made of an elastic material such as rubber is mounted in the packing mounting groove 23a.
  • a circular ring-shaped magnet 24 is mounted in the magnet mounting groove 24a.
  • a wear ring (not shown) is attached to the outer periphery of the magnet 24.
  • the booster piston 22 airtightly partitions the booster cylinder chamber 16a into a third pressure chamber 42 and a fourth pressure chamber 44 via the packing 23.
  • the third pressure chamber 42 is an empty chamber on the head side of the booster piston 22 and is formed between the booster piston 22 and the partition 26.
  • the fourth pressure chamber 44 is an empty chamber on the end side of the booster piston 22 and is formed between the booster piston 22 and the rod cover 48.
  • the fourth pressure chamber 44 communicates with the end-side port 30.
  • a ring-shaped damper mounting groove 25a is formed on the head-side end surface of the booster piston 22, and the damper 25 is mounted in the damper mounting groove 25a.
  • the damper 25 is made of an elastic material such as rubber, and is configured to prevent collision between the booster piston 22 and the partition 26.
  • the booster piston 22 is connected to a piston mounting portion 18b provided at the center of the piston rod 18, and is configured to be integrally displaced in the axial direction with the piston rod 18.
  • the rod cover 48 is mounted on the end side of the booster cylinder chamber 16a.
  • the rod cover 48 is formed in a disk shape, and an annular packing mounting groove 48d is formed in an outer peripheral portion thereof.
  • a circular ring-shaped packing 48c is mounted in the packing mounting groove 48d.
  • the packing 48c hermetically seals the packing mounting groove 48d.
  • an insertion hole 48a for inserting the piston rod 18 is formed extending in the axial direction.
  • a rod packing 48b for preventing air from leaking along the piston rod 18 is provided in the insertion hole 48a.
  • An annular damper mounting groove 47a is formed in the end surface of the rod cover 48 on the head side, and the damper 47 is mounted in the damper mounting groove 47a.
  • the damper 47 is made of an elastic member formed in a circular ring shape, and protrudes toward the booster cylinder chamber 16a to prevent collision between the booster piston 22 and the rod cover 48.
  • a retaining clip 49 for fixing the rod cover 48 is attached to the end side of the rod cover 48.
  • the retaining clip 49 is a plate member engaged with an engaging groove 49 a formed along the inner peripheral surface of the end-side main body 16.
  • the retaining clip 49 is an annular plate member with a part cut out in the circumferential direction, is engaged with the engaging groove 49 a by elastic restoring force, and comes into contact with the end face on the end side of the rod cover 48 so that the rod 49 The cover 48 is prevented from falling off.
  • the end-side port 30 is formed near the end of the end-side main body 16 on the end side.
  • the end-side port 30 is formed to penetrate from the outer periphery of the end-side main body 16 toward the booster cylinder chamber 16a, and communicates with the fourth pressure chamber 44 at the end-side end of the booster cylinder chamber 16a. I have.
  • the auxiliary flow path 76 is a flow path formed inside the end-side main body 16 and extends in the axial direction. One end of the auxiliary flow path 76 communicates with the end-side port 30, and the other end communicates with the adjustment port 32 of the partition 26 described later.
  • the third check valve 56 is provided in the middle of the auxiliary flow path 76.
  • the third check valve 56 has a hollow portion 56a having a diameter larger than that of the auxiliary flow passage 76, and a valve body 56b inserted into the hollow portion 56a. It is a member formed in a bottomed cylindrical cup shape, and the bottom 56c is arranged on the downstream side in the direction in which the flow of air is blocked.
  • An annular projection 56d is formed on the bottom 56c of the valve body 56b to abut the end face of the cavity 56a to close the auxiliary flow path 76 communicating with the cavity 56a.
  • a cutout portion 56e for passing air is formed on a side portion of the valve body 56b.
  • the annular projection 56d of the valve body 56b is separated from the end face of the cavity 56a, and the air is passed through the cutout 56e.
  • the bottom 56c of the valve body 56b receives the pressure of the air, and the annular projection 56d abuts against the end face of the cavity 56a to close the auxiliary flow path 76. And is configured to block the flow of air.
  • an urging member 56f such as a spring for urging the annular projection 56d of the valve body 56b in a direction of contacting the end face of the cavity 56a is inserted into the cavity 56a. It may be provided. Further, a first check valve 52 and a second check valve 54, which will be described later, have the same structure as the third check valve 56.
  • the partition 26 includes a plate-shaped main body 60 as shown in FIG. 3A.
  • the main body 60 is formed with a first connection portion 63 protruding toward the head and inserted into the working cylinder chamber 14a, and a second connection portion 64 protruding toward the end side and inserted into the booster cylinder chamber 16a.
  • the first connection portion 63 is formed in a cylindrical shape having an outer diameter substantially the same as the inner diameter of the working cylinder chamber 14a, and a packing 63a is mounted on an outer peripheral portion thereof.
  • the second connection portion 64 is formed in a cylindrical shape having an outer diameter substantially equal to the inner diameter of the booster cylinder chamber 16a, and a packing 64a is mounted on an outer peripheral portion thereof.
  • the packing 63a seals the gap between the working cylinder chamber 14a and the first connection portion 63, and the packing 64a seals the gap between the boost cylinder chamber 16a and the second connection portion 64.
  • a through portion 61 for inserting the piston rod 18 is formed extending in the axial direction.
  • the through portion 61 is provided with a packing 62 for preventing air from leaking along the piston rod 18.
  • the partition wall 26 includes a communication path 34, a conduction switching valve 35 provided in the communication path 34, an exhaust path 36, an exhaust path 36, and an exhaust switching valve 37 provided in the exhaust path 36. Having.
  • the communication path 34 is a flow path that allows air to flow between the second pressure chamber 40 and the third pressure chamber 42, and is inserted into the through hole 65 that passes through the partition wall 26 in the axial direction and the through hole 65. It is composed of an internal flow path 35e of the conduction switching pin 35a and a hole 66b of the stopper 66.
  • the through hole 65 is formed so as to penetrate the partition wall 26 in the axial direction.
  • the through hole 65 is formed in the large diameter portion 65a formed in the head side, the small diameter portion 65b formed in the center in the axial direction, and formed in the end side.
  • a stopper insertion hole 65c is formed.
  • the large diameter portion 65a and the stopper insertion hole 65c are formed with a larger inside diameter than the small diameter portion 65b.
  • the conduction switching pin 35a is inserted into the large diameter portion 65a and the small diameter portion 65b.
  • the stopper 66 is inserted into the stopper insertion hole 65c.
  • the stopper 66 is connected to the end of the conduction switching pin 35a of the conduction switching valve 35, and is displaced integrally with the conduction switching pin 35a. Further, the stopper 66 stops in the stopper insertion hole 65c, so that the movement of the conduction switching pin 35a toward the head is restricted.
  • the conduction switching valve 35 is provided with a conduction switching pin 35a.
  • the conduction switching pin 35a has a closing part 35c formed on the head side and a rod part 35d extending in the axial direction toward the end side.
  • the rod portion 35d is formed to have substantially the same diameter as the inner diameter of the small diameter portion 65b of the through hole 65, and is inserted into the small diameter portion 65b so as to be slidable in the axial direction.
  • the closing portion 35c is formed to have substantially the same diameter as the inner diameter of the large diameter portion 65a of the through hole 65, and is configured to be insertable into the large diameter portion 65a.
  • a ring-shaped packing 35b is attached to an outer peripheral portion of the closing portion 35c. The packing 35b is configured so as to be in close contact with the large diameter portion 65a to seal the communication path 34 when the closing portion 35c is pushed into the large diameter portion 65a.
  • an urging member 35f is mounted on the end side of the closing portion 35c of the conduction switching pin 35a.
  • the biasing member 35f is made of, for example, a spring or the like, and is inserted into a gap between the large-diameter portion 65a and the conduction switching pin 35a.
  • the urging member 35f urges the conduction switching pin 35a toward the head, and separates the closing portion 35c from the through hole 65 so as to project toward the second pressure chamber 40. That is, the conduction switching valve 35 is configured so as not to hinder the conduction of the communication passage 34 in a state where the conduction switching pin 35a is not pressed toward the head by the operating piston 20.
  • the exhaust passage 36 is opened at the end face of the partition wall 26 on the first connection portion 63 side, and extends in the axial direction. 71.
  • the detection pin housing hole 67 has a large-diameter portion 67a formed on the head side, a small-diameter portion 67b formed on the end side of the large-diameter portion 67a, and a stopper insertion hole 67c.
  • the stopper 68 is inserted into the stopper insertion hole 67c.
  • the stopper 68 is connected to the detection pin 37a and is displaced integrally with the detection pin 37a.
  • the stopper 68 stops at the end of the small-diameter portion 67b on the end side, thereby restricting the range of movement of the detection pin 37a toward the head.
  • connection channel 71 communicates with the detection pin housing hole 67 at an opening 71 a formed on the side of the small diameter portion 67 b.
  • the small-diameter portion 67b has a predetermined area around the opening 71a whose diameter is enlarged, and forms a gap between the small-diameter portion 67b and the exhaust switching valve 37.
  • connection flow path 71 is provided with a first check valve 52 that allows air to pass only in the direction from the opening 71 a to the adjustment port 32.
  • the first check valve 52 is arranged in a direction that allows exhaustion of air from the second pressure chamber 40.
  • the exhaust gas switching valve 37 includes a detection pin 37a.
  • the detection pin 37a includes a pin body 37b extending in a columnar shape in the axial direction, and a flange 37c extending radially outward at a head end of the pin body 37b.
  • the flange portion 37c is formed to have a diameter slightly smaller than the inner diameter of the large-diameter portion 67a, and is configured to be insertable into the large-diameter portion 67a.
  • a biasing member 37f made of a spring or the like is mounted on the large diameter portion 67a. The urging member 37f is configured to contact the flange portion 37c and urge the detection pin 37a toward the head so that the flange portion 37c projects toward the second pressure chamber 40.
  • the pin body 37b has a diameter slightly smaller than the inner diameter of the small diameter portion 67b, and is configured to be slidable in the axial direction along the small diameter portion 67b.
  • a packing 37d and a packing 37e are arranged on the outer peripheral portion of the pin body 37b at an interval in the axial direction.
  • the packing 37d and the packing 37e are disposed at positions where the detection pin 37a is in close contact with the small-diameter portion 67b and prevents communication between the detection pin housing hole 67 and the connection flow path 71 when the detection pin 37a is not pressed by the operating piston 20. I have. That is, the exhaust switching valve 37 prevents communication with the exhaust path 36 when not pressed by the working piston 20.
  • the head-side main body 14 near the adjustment port 32 is provided with a replenishment flow path 78 and a second check valve 54.
  • the refill channel 78 communicates with the adjustment port 32 and the second pressure chamber 40.
  • the replenishment flow path 78 is provided with a second check valve 54.
  • One end of the second check valve 54 communicates with the adjustment port 32 via the refill channel 78.
  • the other end of the second check valve 54 communicates with the second pressure chamber 40 via the refill channel 78.
  • the second check valve 54 allows the passage of air only in the direction from the adjustment port 32 to the second pressure chamber 40, and blocks the passage of air in the opposite direction. That is, the second check valve 54 is configured to allow the flow of the air supplied to the second pressure chamber 40 and block the air in the opposite direction.
  • the hydraulic cylinder 10 of the present embodiment is configured as described above, and is driven by the driving device 120 as shown in FIG. 4A.
  • the drive device 120 includes a fourth check valve 86, a throttle valve 88, a switching valve 102, a high-pressure air supply source (high-pressure fluid supply source) 104, and an exhaust port 106.
  • the driving device 120 is configured to supply high-pressure air to the first pressure chamber 38 of the operation cylinder chamber 14a in an operation process. Further, as shown in FIG. 4B, in the return step, the driving device 120 supplies a part of the air accumulated in the first pressure chamber 38 to the fourth pressure chamber 44 and also supplies the air to the second pressure chamber 40. It is configured to supply high-pressure air.
  • the switching valve 102 is, for example, a five-port two-position valve, has first to fifth ports 102a to 102e, and switches between a first position (see FIG. 4A) and a second position (see FIG. 4B). It is possible. As shown in FIGS. 4A and 4B, the first port 102a is connected to the head-side port 28 by piping. The second port 102b is connected to the adjustment port 32 by a pipe. The third port 102c is connected to the exhaust port 106 by a pipe. The fourth port 102d is connected to a high-pressure air supply source 104 by a pipe. The fifth port 102e is connected to the exhaust port 106 via a throttle valve 88 by a pipe, and is connected to the end port 30 via a fourth check valve 86.
  • the switching valve 102 when the switching valve 102 is at the first position, the first port 102a and the fourth port 102d are connected, and the second port 102b and the third port 102c are connected.
  • the switching valve 102 when the switching valve 102 is at the second position, the first port 102a and the fifth port 102e are connected, and the second port 102b and the fourth port 102d are connected, as shown in FIG. 4B.
  • the switching valve 102 is switched between a first position and a second position by a pilot pressure from a high-pressure air supply source 104 or an electromagnetic valve.
  • the fourth check valve 86 allows the air flow from the head-side port 28 to the end-side port 30, and allows the air to flow from the end-side port 30 to the head-side port 28. Block the flow.
  • the throttle valve 88 is provided to limit the amount of air in the first pressure chamber 38 exhausted from the exhaust port 106, and is a variable throttle valve capable of changing a passage area so that the exhaust flow rate can be adjusted. Is configured as
  • An air tank is provided in the middle of the pipe connecting the fourth check valve 86 and the fourth pressure chamber 44 so that the air supplied from the head-side port 28 to the end-side port 30 is accumulated in the return step. Is also good.
  • the capacity of the air tank may be set to, for example, about half of the maximum capacity of the first pressure chamber 38. If the capacity of the pipe can be sufficiently secured, the air tank is not required.
  • the fluid pressure cylinder 10 and the driving device 120 are configured as described above, and the operation and operation will be described below.
  • the second pressure chamber 40 and the third pressure chamber 42 are filled with high-pressure air before the use of the fluid pressure cylinder 10 is started.
  • the high-pressure air is air having a pressure higher than the atmospheric pressure.
  • the hydraulic cylinder 10 is set at the start position of the stroke as shown in FIG.
  • the switching valve 102 of the driving device 120 is set to the second position (see FIG. 4B).
  • the high-pressure air supply source 104 is connected to the adjustment port 32.
  • the high-pressure air from the high-pressure air supply source 104 is introduced into the second pressure chamber 40 via the second check valve 54.
  • the high-pressure air introduced into the second pressure chamber 40 is also introduced into the third pressure chamber 42 via the communication passage 34.
  • the second pressure chamber 40 and the third pressure chamber 42 are filled with the high-pressure air.
  • the activation process need only be performed once before the first stroke of the hydraulic cylinder 10.
  • the operation process of the hydraulic cylinder 10 is performed with the switching valve 102 of the driving device 120 as the first position.
  • the high-pressure air from the high-pressure air supply source 104 is supplied to the head-side port 28 via the first port 102a of the switching valve 102.
  • the fourth check valve 86 is connected to the fifth port 102e side, and high-pressure air does not flow to the fourth check valve 86 side.
  • the fourth pressure chamber 44 is connected to the exhaust port 106 via the third check valve 56, the adjustment port 32, and the second port 102b.
  • the high-pressure air from the high-pressure air supply source 104 flows into the first pressure chamber 38 as shown by the arrow B.
  • the force acting on the working piston by the high-pressure air in the second pressure chamber 40 and the force acting on the booster piston 22 by the high-pressure air filled in the third pressure chamber 42 have the same magnitude and are oppositely balanced. Does not contribute. Accordingly, a thrust corresponding to the pressure difference between the first pressure chamber 38 adjacent to the working piston 20 and the fourth pressure chamber 44 adjacent to the booster piston 22 is generated in the piston rod 18, and the piston rod 18 is moved toward the end. Stroke toward.
  • the packing 37d that has sealed the gap between the detection pin 37a and the detection pin receiving hole 67 moves to the opening 71a that is recessed. I do.
  • the exhaust path 36 is opened, and the adjustment port 32 and the second pressure chamber 40 communicate with each other through the exhaust path 36.
  • the high-pressure air stored in the second pressure chamber 40 is exhausted from the exhaust port 106 via the first check valve 52 and the adjustment port 32.
  • the internal pressure of the second pressure chamber 40 decreases, and a thrust corresponding to the difference between the internal pressures of the second pressure chamber 40 and the first pressure chamber 38 is generated in the working piston 20.
  • a thrust is generated according to the pressure difference between the high pressure air stored in the third pressure chamber 42 and the pressure in the fourth pressure chamber 44.
  • the hydraulic cylinder 10 can increase the thrust near the stroke end.
  • the increase in thrust in the hydraulic cylinder 10 is generated by the exhaust of the high-pressure air in the second pressure chamber 40 in a range where the conduction switching valve 35 and the exhaust switching valve 37 operate.
  • the return process of the hydraulic cylinder 10 is performed with the switching valve 102 of the driving device 120 set to the second position.
  • the high-pressure air from the high-pressure air supply source 104 is supplied to the adjustment port 32 via the second port 102b of the switching valve 102.
  • the first port 102a of the switching valve 102 is connected to the fifth port 102e, and the head port 28 is connected to the end port 30 via the fourth check valve 86.
  • the head-side port 28 is connected to an exhaust port 106 via a throttle valve 88.
  • part of the air stored in the first pressure chamber 38 is supplied to the fourth pressure chamber 44 via the fourth check valve 86. Further, the remaining part of the air stored in the first pressure chamber 38 is exhausted from the exhaust port 106.
  • high-pressure air from the high-pressure air supply source 104 is supplied to the adjustment port 32 of the hydraulic cylinder 10 as shown by an arrow B.
  • the high-pressure air supplied to the adjustment port 32 flows into the second pressure chamber 40 via the refill channel 78 and the second check valve 54.
  • the volume of the high-pressure air supplied to the second pressure chamber 40 is equal to the amount of the high-pressure air exhausted from the second pressure chamber 40 in the boosting step. That is, the high-pressure air required for the boosting step is supplemented in the return step.
  • the amount of high-pressure air supplied at that time is small compared to the amount of high-pressure air required for the stroke of the working piston 20, and only a small amount of high-pressure air needs to be added.
  • a part of the high-pressure air exhausted from the first pressure chamber 38 flows into the fourth pressure chamber 44 as shown by an arrow A.
  • the pressure difference between the fourth pressure chamber 44 and the first pressure chamber 38 increases, and the working piston 20, the booster piston 22, and the piston rod 18 move toward the head.
  • the conduction switching valve 35 returns to the original position, and the second pressure chamber 40 and the third pressure chamber 42 communicate with each other through the communication passage 34.
  • the exhaust switching valve 37 seals the exhaust passage 36 to prevent communication between the adjustment port 32 and the second pressure chamber 40.
  • the fluid pressure cylinder 10 according to the present embodiment has the following effects.
  • the fluid pressure cylinder 10 includes, in the fluid pressure cylinder 10, a communication path 34 communicating with the second pressure chamber 40 and the third pressure chamber 42, and an exhaust path 36 communicating with the second pressure chamber 40 as a boost switching mechanism 33.
  • a communication switching valve 35 that opens the communication passage 34 while the operating piston 20 is located closer to the head than the predetermined position, and closes the communication passage 34 when the operating piston 20 moves to the end side from the predetermined position; While the working piston 20 is located on the head side of the predetermined position, the exhaust path 36 is closed, and when the working piston 20 moves to the end side of the predetermined position, the exhaust path 36 is opened to open the second pressure chamber 40.
  • An exhaust switching valve 37 for exhausting the high-pressure fluid.
  • the second pressure chamber 40 and the third pressure chamber 42 are separated near the stroke end, and the high pressure air in the second pressure chamber 40 can be exhausted while maintaining the high pressure air in the third pressure chamber 42.
  • the thrust of the booster piston 22 is added to the thrust of the working piston 20, and the thrust can be increased in the latter half of the stroke.
  • the partition 26 may have the adjustment port 32, and the exhaust path 36 may exhaust the high-pressure fluid in the second pressure chamber 40 via the adjustment port 32.
  • the boost switching mechanism 33 may be configured such that the exhaust switching valve 37 opens the exhaust passage 36 after the conduction switching valve 35 closes the communication passage 34. Thereby, the outflow of the high-pressure air from the third pressure chamber 42 via the second pressure chamber 40 can be prevented, and the usage amount of the high-pressure air can be suppressed.
  • the conduction switching valve 35 has a conduction switching pin 35 a having one end protruding toward the second pressure chamber 40 and the other end inserted into the communication passage 34, and the conduction switching pin 35 a is pressed against the working piston 20.
  • the communication path 34 may be closed by being displaced toward the end side.
  • the exhaust switching valve 37 seals the exhaust passage 36, and has a detection pin 37 a having one end protruding into the second pressure chamber 40.
  • the sealing of the exhaust path 36 may be released by being displaced to the side.
  • the second pressure chamber 40 can be exhausted through the exhaust path 36 by using the stroke operation of the working piston 20, and the configuration of the apparatus is simplified.
  • the fluid pressure cylinder 10 further has a replenishment flow path 78 communicating with the adjustment port 32 and the second pressure chamber 40, and the replenishment flow path 78 has air only in a direction from the adjustment port 32 to the second pressure chamber 40. May be provided, and a second check valve 54 for blocking air in the opposite direction may be provided. By providing the second check valve 54, it is possible to suppress an excessive flow of high-pressure air into the second pressure chamber 40 in the return process.
  • the fluid pressure cylinder 10 may further include an auxiliary flow path 76 that communicates with the fourth pressure chamber 44 and the adjustment port 32. Thereby, in the operation step and the boosting step, the air in the fourth pressure chamber 44 can be exhausted through the adjustment port 32.
  • the auxiliary flow path 76 is provided with the third check valve 56 that allows only air in the direction from the fourth pressure chamber 44 toward the adjustment port 32 and blocks air in the opposite direction. May be.
  • the fluid pressure cylinder 10 further includes a driving device 120 connected to the first pressure chamber 38, the second pressure chamber 40, and the fourth pressure chamber 44 of the fluid pressure cylinder 10.
  • the driving device 120 includes a switching valve 102 and a high pressure It has an air supply source 104, an exhaust port 106, and a fourth check valve 86.
  • the first pressure chamber 38 communicates with the high-pressure air supply source 104 and the fourth pressure chamber
  • the first pressure chamber 38 communicates with the fourth pressure chamber 44 via the fourth check valve 86 at the second position of the switching valve 102.
  • the first pressure chamber 38 may communicate with the exhaust port 106
  • the second pressure chamber 40 may communicate with the high-pressure air supply source 104 via the adjustment port 32.
  • a throttle valve 88 may be provided between the first pressure chamber 38 and the exhaust port 106. Thereby, the amount of air supplied to the fourth pressure chamber 44 can be appropriately adjusted.
  • the fluid pressure cylinder 10A of this embodiment has a head-side main body 14A and an end-side main body 16A.
  • a high-pressure fluid is sealed in the end-side main body 16A.
  • the size (width and height) of the end-side main body 16A is made larger than the size of the head-side main body 14A.
  • the head-side main body 14A and the end-side main body 16A have a rectangular cross section.
  • the head-side main body 14A and the end-side main body 16A are connected in the axial direction by connecting rods or bolts.
  • the cylinder body 12A of the fluid pressure cylinder 10A includes a head-side main body 14A and an end-side main body 16A, both of which are connected in the axial direction via a partition wall 126.
  • the head-side main body 14A is provided with a head-side port 28A and an end-side port 30A.
  • An adjustment port 32A is provided near the end on the end side of the end-side main body 16A.
  • a storage air exhaust port 162 for discharging the high-pressure air sealed in the booster cylinder chamber 116a is formed near the outer periphery of the partition 126.
  • the storage air exhaust port 162 communicates with the third pressure chamber 42 via the adjustment valve 160.
  • the stored air exhaust port 162 discharges high-pressure air stored in the booster cylinder chamber 116a during maintenance of the fluid pressure cylinder 10A or the like, or introduces high-pressure air into the booster cylinder chamber 116a when starting up. Used for
  • an insertion hole 126c is formed for slidably inserting the piston rod 18A.
  • the insertion hole 126c is provided with a packing 118 for preventing leakage of fluid in the axial direction.
  • the partition part 126 is provided with a head-side connection part 126a that extends toward the head and is inserted into the working cylinder chamber 14a.
  • an end-side connection portion 126b inserted into the booster cylinder chamber 116a is provided on the end side of the partition wall 126.
  • An annular buffer member 124 for preventing collision with the booster piston 22A is attached to the end-side connection portion 126b.
  • the end-side main body 16A has a main body 116. Inside the main body 116, a booster cylinder chamber 116a composed of a circular hollow portion is formed. The boost cylinder chamber 116a extends in the axial direction. Inside the booster cylinder chamber 116a, a booster piston 22A is slidably disposed in the axial direction. The booster piston 22A is connected to the piston rod 18A. A magnet 24 and a packing 23 are mounted on an outer peripheral portion of the booster piston 22A. The booster piston 22A partitions the booster cylinder chamber 116a into a third pressure chamber 42 on the head side and a fourth pressure chamber 44 on the end side.
  • the booster piston 22A is provided with a conduction switching valve 35A that switches the conduction state of the high-pressure fluid between the third pressure chamber 42 and the fourth pressure chamber 44 that are adjacent in the axial direction.
  • the conduction switching valve 35A includes a through hole 122 that penetrates the booster piston 22A in the axial direction, and a conduction switching pin 35a inserted into the through hole 122.
  • the through hole 122 has an end-side enlarged diameter portion 122a, a reduced diameter portion 122b, and a head-side enlarged diameter portion 122c.
  • the conduction switching pin 35a of the conduction switching valve 35A is the same as the conduction switching pin 35a described with reference to FIG. 3A.
  • the rod portion 35d of the conduction switching pin 35a is inserted into the reduced diameter portion 122b.
  • a closing portion 35c of the conduction switching pin 35a is disposed on the end-side enlarged-diameter portion 122a side.
  • the conduction switching pin 35a projects to the end side by the urging force of the urging member 35f.
  • the high-pressure air is configured to be conducted between the third pressure chamber 42 and the fourth pressure chamber 44 via the through hole 122 and the internal flow path 35e of the conduction switching pin 35a. That is, in the present embodiment, a communication path is formed by the through hole 122 and the internal flow path 35e.
  • the rod cover 48A is provided near the end on the end side of the end-side main body 16A, and seals the end on the end side of the booster cylinder chamber 116a.
  • the rod cover 48A is provided with an exhaust switching valve 37A that switches exhaust of high-pressure air in the fourth pressure chamber 44.
  • the exhaust switching valve 37A includes a through hole 139 that penetrates the rod cover 48A in the axial direction, and a detection pin 137 inserted into the through hole 139.
  • the end of the through hole 139 on the end side is sealed by a lid member 150, and a detection pin 137 is provided on the head side of the lid member 150.
  • the detection pin 137 is urged toward the head by an urging member 140 such as a spring disposed between the lid member 150 and the detection pin 137. Therefore, the tip of the detection pin 137 on the head side protrudes into the fourth pressure chamber 44.
  • An annular packing 141 and a packing 142 are mounted on the outer peripheral portion of the base end 138 of the detection pin 137 so as to be spaced apart in the axial direction.
  • the packing 141 and the packing 142 seal a gap between the through hole 139 and the detection pin 137.
  • a flow path 143 is provided between the packing 141 and the packing 142.
  • the channel 143 has an inner side communicating with the through hole 139 and an outer side communicating with the ventilation groove 144.
  • the ventilation groove 144 is an annular groove formed over the entire circumferential area of the outer peripheral portion of the rod cover 48A, and communicates with the adjustment port 32A.
  • a packing 146 is provided on the head side of the ventilation groove 144, and a packing 148 is provided on the end side.
  • the adjustment port 32A can communicate with the fourth pressure chamber 44 via the ventilation groove 144, the flow path 143, and the through hole 139. That is, in this embodiment, the through hole 139, the flow path 143, and the ventilation groove 144 constitute an exhaust path.
  • the detection pin 137 When the detection pin 137 is moved to the head side, the through hole 139 is closed by the packings 141 and 142, and the high-pressure fluid in the fourth pressure chamber 44 is not exhausted.
  • the booster piston 22A moves to the end side, the detection pin 137 is pressed to the end side, and the packings 141 and 142 move to the end side with respect to the flow path 143.
  • the packings 141 and 142 move to the end side of the flow path 143, the fourth pressure chamber 44 and the adjustment port 32A communicate.
  • the hydraulic cylinder 10A of the present embodiment configured as described above is driven by the driving device 120A shown in FIGS. 11A and 11B.
  • the driving device 120A includes a fourth check valve 86, a throttle valve 88, a switching valve 102, a high-pressure air supply source 104, an exhaust port 106, and a fifth check valve 108.
  • the driving device 120A is configured to supply high-pressure air to the first pressure chamber 38 of the operation cylinder chamber 14a in an operation process. Further, as shown in FIG. 11B, the driving device 120A supplies a part of the air accumulated in the first pressure chamber 38 to the second pressure chamber 40 and supplies the air to the fourth pressure chamber 44 in the return step. It is configured to supply high-pressure air.
  • the switching valve 102 is, for example, a 5-port 2-position valve, has first to fifth ports 102a to 102e, and switches between a first position (see FIG. 11A) and a second position (see FIG. 11B). It is possible. As shown in FIGS. 11A and 11B, the first port 102a is connected to the head-side port 28A by piping. The second port 102b is connected to the adjustment port 32A and the downstream side of the fifth check valve 108 by piping. The third port 102c is connected to the exhaust port 106 by a pipe. The fourth port 102d is connected to a high-pressure air supply source 104 by a pipe. The fifth port 102e is connected to the exhaust port 106 via a throttle valve 88 by a pipe, and is connected to the end port 30A and the upstream side of the fifth check valve 108 via a fourth check valve 86. .
  • the switching valve 102 when the switching valve 102 is at the first position, the first port 102a and the fourth port 102d are connected, and the second port 102b and the third port 102c are connected.
  • the switching valve 102 when the switching valve 102 is at the second position, the first port 102a and the fifth port 102e are connected, and the second port 102b and the fourth port 102d are connected.
  • the switching valve 102 is switched between a first position and a second position by a pilot pressure from a high-pressure air supply source 104 or an electromagnetic valve.
  • the fourth check valve 86 allows the flow of air from the head-side port 28A to the end-side port 30A, and allows the air to flow from the end-side port 30A to the head-side port 28A. Block the flow. Further, when the switching valve 102 is at the second position, the fifth check valve 108 blocks the flow of the high-pressure air from the second port 102b toward the end-side port 30A.
  • the hydraulic cylinder 10A and its driving device 120A according to the present embodiment are configured as described above, and the operation and operation thereof will be described below.
  • the operation step of the hydraulic cylinder 10A is performed with the switching valve 102 of the driving device 120A as the first position.
  • the high-pressure air from the high-pressure air supply source 104 is supplied to the head-side port 28 via the first port 102a of the switching valve 102.
  • the fourth check valve 86 is connected to the fifth port 102e side, and high-pressure air does not flow to the fourth check valve 86 side.
  • the second pressure chamber 40 is connected to the exhaust port 106 via the end-side port 30A and the fifth check valve 108.
  • the adjustment port 32A is connected to the exhaust port 106.
  • high-pressure air corresponding to the volume of the first pressure chamber 38 is supplied to the hydraulic cylinder 10A from the high-pressure air supply source 104 (see FIG. 11A).
  • the pressure of the high-pressure air stored in the second pressure chamber 40 and the third pressure chamber 42 is kept constant.
  • the air in the second pressure chamber 40 is exhausted from the second pressure chamber 40 with the stroke of the working piston 20.
  • the air in the second pressure chamber 40 is exhausted from the exhaust port 106 through the end-side port 30A and the fifth check valve 108, as shown in FIG. 11A.
  • the closing portion 35c of the conduction switching pin 35a is inserted into the through hole 122 to close the through hole 122.
  • conduction of high-pressure air between the third pressure chamber 42 and the fourth pressure chamber 44 is prevented.
  • the thrust of the fluid pressure cylinder 10A increases near the stroke end. As described above, the increase in the thrust of the fluid pressure cylinder 10A is generated by exhausting the high-pressure air in the fourth pressure chamber 44 in a range where the conduction switching valve 35A and the exhaust switching valve 37A operate.
  • the return process of the hydraulic cylinder 10A is performed by setting the switching valve 102 of the driving device 120A to the second position.
  • the high-pressure air from the high-pressure air supply source 104 is supplied to the adjustment port 32A via the second port 102b of the switching valve 102.
  • the first port 102a of the switching valve 102 is connected to the fifth port 102e, and the head-side port 28A is connected to the end-side port 30A via the fourth check valve 86.
  • the head-side port 28A is connected to the exhaust port 106 via the throttle valve 88.
  • part of the air stored in the first pressure chamber 38 is supplied to the fourth pressure chamber 44 via the fourth check valve 86. Further, the remaining part of the air stored in the first pressure chamber 38 is exhausted from the exhaust port 106.
  • high-pressure air from the high-pressure air supply source 104 is supplied to the adjustment port 32A of the hydraulic cylinder 10A.
  • the high-pressure air supplied to the adjustment port 32A flows into the fourth pressure chamber 44.
  • the high-pressure air exhausted in the boosting step is replenished.
  • the amount of high-pressure air to be replenished at this time is small compared to the amount of high-pressure air required for the stroke of the working piston, and only a small amount of high-pressure air needs to be added.
  • the fluid pressure cylinder 10A according to the present embodiment has the following effects.
  • a high-pressure fluid is sealed in the third pressure chamber 42 and the fourth pressure chamber 44, and the boost switching mechanism 33A includes a conduction switching valve 35A provided on the boost piston 22A and a rod cover.
  • An exhaust switching valve 37A provided at 48A is provided. According to the fluid pressure cylinder 10A, the thrust can be increased at the stroke end without providing a complicated lock mechanism. Further, since a mechanical lock mechanism for connecting the piston and the piston rod is not required, incompatibility with respect to an axial impact is less likely to occur, and the reliability is excellent.
  • the diameter of the booster piston 22A can be larger than the diameter of the working piston 20. Therefore, by increasing the diameter of the booster piston 22A, the diameter of the working piston 20 can be reduced while maintaining the thrust at the stroke end, and the consumption of high-pressure air can be further reduced.
  • the present invention is not limited to this. .
  • Some or all of the members constituting the driving devices 120 and 120A may be built in the cylinder body 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Actuator (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

In a hydraulic cylinder (10) in which an operation piston (20) and a boosting piston (22) are disposed in tandem with a partition wall (26) provided therebetween, a high-pressure fluid is sealed in two axially adjacent pressure chambers. In an operation step, the high-pressure fluid is prepared so as to be able to flow between the pressure chambers in which the high-pressure fluid is sealed. Next, when the operation piston (20) has moved to an end side, the flow of the fluid between the two pressure chambers is blocked by a boost switching mechanism (33) such that the high-pressure fluid in one of the pressure chambers is discharged.

Description

流体圧シリンダFluid pressure cylinder
 本発明は、流体圧シリンダに関する。 The present invention relates to a fluid pressure cylinder.
 クランプ装置やロック装置などの作業機械において、通常、作業工程の前半にあまり大きな駆動力を必要とせず、作業工程の後半に大きな駆動力を必要とする場合がある。このため、これらの作業機械に使用される流体圧シリンダとして、増力機構によりピストンロッドの前進ストローク後半の推力を増大させるようにした増力機構付きの流体圧シリンダが提案されている。 (4) In working machines such as a clamp device and a lock device, usually, a large driving force is not required in the first half of the work process, and a large drive force is required in the second half of the work process. Therefore, as a hydraulic cylinder used in these work machines, a hydraulic cylinder with a booster mechanism has been proposed in which the thrust in the latter half of the forward stroke of the piston rod is increased by the booster mechanism.
 例えば、特開2018-17269号公報の流体圧シリンダでは、増力機構として、増力用ピストンを設け、ストロークの途中で、ピストンロッドに増力用ピストンをロックさせることで推力を増加させている。 For example, in the fluid pressure cylinder disclosed in JP-A-2018-17269, a booster piston is provided as a booster mechanism, and the thrust is increased by locking the booster piston to a piston rod during a stroke.
 増力機構付きの流体圧シリンダにおいて、エネルギー消費量を減らすべく、さらなる作動流体の消費量の削減が求められている。 流体 In a hydraulic cylinder with a booster mechanism, further reduction in the consumption of working fluid is required to reduce energy consumption.
 そこで、本発明は、構造を複雑化することなく、作動流体の消費量を削減できる増力機能付の流体圧シリンダを提供することを目的とする。 Therefore, an object of the present invention is to provide a hydraulic cylinder with a boosting function that can reduce the consumption of working fluid without complicating the structure.
 本発明の一観点は、軸方向に延在する摺動孔が形成されたシリンダボディと、前記摺動孔をヘッド側の作動シリンダ室と、エンド側の増力シリンダ室とに隔てる隔壁と、前記作動シリンダ室に配置され、前記作動シリンダ室をヘッド側の第1圧力室とエンド側の第2圧力室とに区画する作動ピストンと、前記増力シリンダ室に配置され、前記増力シリンダ室をヘッド側の第3圧力室とエンド側の第4圧力室とに区画する増力ピストンと、前記作動ピストン及び増力ピストンに接続されるとともに、前記隔壁を貫通してエンド側に伸び出たピストンロッドと、を備え、前記第1圧力室、第2圧力室、第3圧力室及び第4圧力室のうち、隣接する2つの圧力室に高圧流体が封入されるとともに、前記作動ピストンが所定位置よりもヘッド側に位置する間は、前記2つの圧力室の間で高圧流体の導通を許容する一方で、前記作動ピストンが所定位置よりもエンド側に移動した際に、前記2つの圧力室の間での高圧流体の導通を阻止し、かつ、前記2つの圧力室の一方の圧力室の高圧流体を排気させる増力切換機構を備えた、流体圧シリンダにある。 One aspect of the present invention is a cylinder body in which a sliding hole extending in the axial direction is formed, a partition separating the sliding hole into a working cylinder chamber on a head side, and an intensifying cylinder chamber on an end side, An operating piston disposed in the operating cylinder chamber and dividing the operating cylinder chamber into a first pressure chamber on the head side and a second pressure chamber on the end side; and an operating piston disposed in the boost cylinder chamber and connecting the boost cylinder chamber to the head side. A pressure boosting piston partitioned into a third pressure chamber and a fourth pressure chamber on the end side, and a piston rod connected to the operating piston and the force boosting piston and extending to the end side through the partition wall. High pressure fluid is sealed in two adjacent pressure chambers among the first pressure chamber, the second pressure chamber, the third pressure chamber, and the fourth pressure chamber, and the operating piston is closer to the head than a predetermined position. Second place While the high pressure fluid is allowed to flow between the two pressure chambers, when the working piston moves to the end side from the predetermined position, the high pressure fluid flows between the two pressure chambers. A fluid pressure cylinder includes a boost switching mechanism for preventing conduction and discharging high-pressure fluid in one of the two pressure chambers.
 本発明に係る流体圧シリンダによれば、第1~第4圧力室のうち、隣接する2つの圧力室に高圧流体が封入される。作動ピストンが所定位置よりもヘッド側に位置する場合には、隣接する2つの圧力室の間で高圧流体の導通を許容する。この場合には、隣接する2つの圧力室間で圧力差は生じず、推力は増加しない。一方、作動ピストンがストロークの終端付近に移動した場合には、隣接する2つの圧力室の間の導通を阻止し、一方の圧力室の高圧流体を排気させる。これにより、隣接する2つの圧力室間の圧力差に相応する推力が発生し、ストロークエンド付近でピストンロッドの推力を増加させることができる。高圧流体の排気はストロークのエンド側で行われるため、推力の増加に使用される流体量を抑制できる。 According to the fluid pressure cylinder of the present invention, a high-pressure fluid is sealed in two adjacent pressure chambers among the first to fourth pressure chambers. When the working piston is located closer to the head than the predetermined position, the passage of the high-pressure fluid between two adjacent pressure chambers is allowed. In this case, no pressure difference occurs between the two adjacent pressure chambers, and the thrust does not increase. On the other hand, when the working piston moves near the end of the stroke, conduction between the two adjacent pressure chambers is blocked, and the high-pressure fluid in one of the pressure chambers is exhausted. As a result, a thrust corresponding to the pressure difference between two adjacent pressure chambers is generated, and the thrust of the piston rod can be increased near the stroke end. Since the exhaust of the high-pressure fluid is performed at the end of the stroke, the amount of fluid used for increasing the thrust can be suppressed.
第1実施形態に係る流体圧シリンダの断面図である。なお、図中の部分拡大図は、第3チェック弁56を拡大した断面図である。It is a sectional view of a fluid pressure cylinder concerning a 1st embodiment. The partial enlarged view in the figure is a cross-sectional view in which the third check valve 56 is enlarged. 図1の流体圧シリンダのエンド側の側面図である。FIG. 2 is a side view of an end side of the fluid pressure cylinder in FIG. 1. 図3Aは、図1の流体圧シリンダの隔壁付近の拡大断面図であり、図3Bは図3Aの隔壁付近に作動ピストンが接近した状態における拡大断面図である。3A is an enlarged cross-sectional view of the vicinity of the partition wall of the fluid pressure cylinder of FIG. 1, and FIG. 3B is an enlarged cross-sectional view of a state where the working piston approaches the vicinity of the partition wall of FIG. 3A. 図4Aは、実施形態に係る流体圧シリンダの作動工程での接続状態を示す流体回路図であり、図4Bは図4Aの流体圧シリンダの復帰工程での接続状態を示す流体回路図である。FIG. 4A is a fluid circuit diagram showing a connection state in an operation process of the hydraulic cylinder according to the embodiment, and FIG. 4B is a fluid circuit diagram showing a connection state in a return process of the hydraulic cylinder in FIG. 4A. 図1の流体圧シリンダの作動工程における断面図である。FIG. 2 is a cross-sectional view of an operation process of the hydraulic cylinder of FIG. 図1の流体圧シリンダの増力工程における断面図である。FIG. 2 is a cross-sectional view of the fluid pressure cylinder in FIG. 図1の流体圧シリンダの復帰工程における断面図(その1)である。FIG. 2 is a cross-sectional view (part 1) of the fluid pressure cylinder in FIG. 1 in a return step. 図1の流体圧シリンダの復帰工程における断面図(その2)である。FIG. 4 is a cross-sectional view (part 2) of the fluid pressure cylinder in FIG. 1 in a return step. 図9Aは、第2実施形態に係る流体圧シリンダの平面図であり、図9Bは図9Aの流体圧シリンダの側面図である。FIG. 9A is a plan view of the hydraulic cylinder according to the second embodiment, and FIG. 9B is a side view of the hydraulic cylinder of FIG. 9A. 図10は、図9Aの流体圧シリンダのストローク始端位置での断面図である。FIG. 10 is a cross-sectional view of the fluid pressure cylinder of FIG. 9A at a stroke start end position. 図11Aは、図9Aの流体圧シリンダの駆動装置の流体回路図であり、切換弁の第1位置での接続状態を示し、図11Bは、図11Aの駆動装置の切換弁の第2位置での接続状態を示す流体回路図である。FIG. 11A is a fluid circuit diagram of the drive device of the fluid pressure cylinder of FIG. 9A, showing a connection state of the switching valve in a first position, and FIG. 11B is a view of the switching device in a second position of the drive device of FIG. 11A. FIG. 4 is a fluid circuit diagram showing a connection state of FIG. 図12は、図9Aの流体圧シリンダの増力工程での断面図である。FIG. 12 is a cross-sectional view of the fluid pressure cylinder in FIG. 9A in a boosting step.
 以下、本発明の好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。なお、図面の寸法比率は、説明の都合上、誇張されて実際の比率とは異なる場合がある。なお、本明細書において、ストロークの終端に向かう方向を「エンド方向」又は「エンド側」と呼び、そのストロークの始端の方向を「ヘッド方向」又は「ヘッド側」と呼ぶものとする。また、本明細書においては「エア」とは気体状の作動流体を意味し、特に空気に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensional ratios in the drawings may be exaggerated and different from the actual ratios for convenience of explanation. In this specification, the direction toward the end of the stroke is referred to as “end direction” or “end side”, and the direction of the start end of the stroke is referred to as “head direction” or “head side”. Further, in this specification, “air” means a gaseous working fluid, and is not particularly limited to air.
(第1実施形態)
 本実施形態に係る流体圧シリンダ10は、図4A及び図4Bに示すように、シリンダボディ12と、駆動装置120とを備える。
(1st Embodiment)
The fluid pressure cylinder 10 according to the present embodiment includes a cylinder body 12 and a driving device 120 as shown in FIGS. 4A and 4B.
 流体圧シリンダ10は、図1に示すように、軸方向に長く伸びたシリンダボディ12を備えている。図2に示すように、シリンダボディ12は、角型のものとすることができ、例えば、アルミニウム合金などの金属材料によって形成されている。 (1) The fluid pressure cylinder 10 includes a cylinder body 12 that extends in the axial direction as shown in FIG. As shown in FIG. 2, the cylinder body 12 can be formed in a rectangular shape, and is formed of, for example, a metal material such as an aluminum alloy.
 図1に示すように、シリンダボディ12の内部には、軸方向に延在する円形の摺動孔12a(シリンダ室)が形成されている。シリンダボディ12は、ヘッド側に設けられたヘッド側本体部14と、エンド側に設けられたエンド側本体部16と、ヘッド側本体部14及びエンド側本体部16との間に設けられた隔壁26と、を備える。ヘッド側本体部14と、隔壁26と、エンド側本体部16とは、図2に示すように、連結ロッド又はボルト16bにより、軸方向に締結されている。 円 形 As shown in FIG. 1, a circular sliding hole 12a (cylinder chamber) extending in the axial direction is formed inside the cylinder body 12. The cylinder body 12 includes a head-side main body portion 14 provided on the head side, an end-side main body portion 16 provided on the end side, and a partition wall provided between the head-side main body portion 14 and the end-side main body portion 16. 26. As shown in FIG. 2, the head-side main body 14, the partition 26, and the end-side main body 16 are fastened in the axial direction by connecting rods or bolts 16b.
 図1に示すように、ヘッド側本体部14の内部には、円形の作動シリンダ室14aが形成され、エンド側本体部16の内部には、円形の増力シリンダ室16aが形成されている。作動シリンダ室14aと増力シリンダ室16aとは同一の内径に形成されており、シリンダボディ12の摺動孔12aを構成する。作動シリンダ室14aと増力シリンダ室16aとは、隔壁26により隔てられている。 As shown in FIG. 1, a circular working cylinder chamber 14 a is formed inside the head-side main body 14, and a circular booster cylinder chamber 16 a is formed inside the end-side main body 16. The working cylinder chamber 14a and the booster cylinder chamber 16a are formed with the same inner diameter, and constitute a sliding hole 12a of the cylinder body 12. The working cylinder chamber 14a and the booster cylinder chamber 16a are separated by a partition wall 26.
 作動シリンダ室14aには、作動ピストン20が配設され、増力シリンダ室16aには増力ピストン22が配設されている。作動ピストン20及び増力ピストン22は、隔壁26及びシリンダボディ12をエンド側に貫通して伸びたピストンロッド18に連結されている。 作 動 A working piston 20 is provided in the working cylinder chamber 14a, and a booster piston 22 is provided in the booster cylinder chamber 16a. The working piston 20 and the booster piston 22 are connected to the piston rod 18 that extends through the partition wall 26 and the cylinder body 12 to the end side.
 ヘッド側本体部14には、ヘッド側ポート28と、ヘッドカバー46と、作動ピストン20とが設けられている。ヘッドカバー46は作動シリンダ室14aのヘッド側の端部に装着されており、このヘッドカバー46により作動シリンダ室14aのヘッド側が封じられている。 The head-side main body 14 is provided with a head-side port 28, a head cover 46, and a working piston 20. The head cover 46 is attached to the end of the working cylinder chamber 14a on the head side, and the head cover 46 seals the head side of the working cylinder chamber 14a.
 ヘッドカバー46の近傍には、ヘッド側ポート28が形成されている。ヘッド側ポート28は、ヘッド側本体部14を貫通して形成されている。ヘッド側ポート28は、作動シリンダ室14aのヘッド側端部の近傍に設けられ開口28aを介して作動シリンダ室14a(第1圧力室38)に連通している。 ヘ ッ ド A head-side port 28 is formed near the head cover 46. The head-side port 28 is formed through the head-side main body 14. The head-side port 28 is provided near the head-side end of the working cylinder chamber 14a and communicates with the working cylinder chamber 14a (first pressure chamber 38) through an opening 28a.
 作動ピストン20は、作動シリンダ室14a内を軸方向に摺動可能に収容されている。作動ピストン20の外周面には、環状のパッキン装着溝21aが形成されており、そのパッキン装着溝21aにはパッキン21が装着されている。パッキン21は、作動シリンダ室14aの内周面に弾性変形しながら密着することで、作動シリンダ室14aを第1圧力室38と第2圧力室40とに気密に区画する。第1圧力室38は、作動ピストン20とヘッドカバー46との間に形成される空室であり作動ピストン20よりもヘッド側に形成される。また、第2圧力室40は作動ピストン20と隔壁26との間に形成される空室であり、作動ピストン20よりもエンド側に形成される。第1圧力室38は、開口28aを介してヘッド側ポート28と連通している。 The working piston 20 is accommodated in the working cylinder chamber 14a so as to be slidable in the axial direction. An annular packing mounting groove 21a is formed on the outer peripheral surface of the working piston 20, and the packing 21 is mounted in the packing mounting groove 21a. The packing 21 tightly contacts the inner peripheral surface of the working cylinder chamber 14a while being elastically deformed, thereby airtightly dividing the working cylinder chamber 14a into a first pressure chamber 38 and a second pressure chamber 40. The first pressure chamber 38 is an empty chamber formed between the working piston 20 and the head cover 46 and is formed closer to the head than the working piston 20. The second pressure chamber 40 is an empty chamber formed between the working piston 20 and the partition 26, and is formed on the end side of the working piston 20. The first pressure chamber 38 communicates with the head-side port 28 via the opening 28a.
 作動ピストン20は、ピストンロッド18のヘッド側連結部18aにおいてピストンロッド18と連結されており、ピストンロッド18と一体的に変位するように構成されている。 The working piston 20 is connected to the piston rod 18 at the head-side connecting portion 18a of the piston rod 18, and is configured to be displaced integrally with the piston rod 18.
 一方、エンド側本体部16には、増力ピストン22と、ロッドカバー48と、エンド側ポート30と、補助流路76とが設けられている。 On the other hand, the end-side main body 16 is provided with the booster piston 22, the rod cover 48, the end-side port 30, and the auxiliary flow path 76.
 増力ピストン22は、エンド側本体部16の増力シリンダ室16a内に、軸方向に摺動可能に配設されている。増力ピストン22の外周面には、環状のパッキン装着溝23aと、環状のマグネット装着溝24aと、が設けられている。パッキン装着溝23aには、ゴムなどの弾性材料よりなる円環状のパッキン23が装着されている。また、マグネット装着溝24aには、円形リング状のマグネット24が装着される。また、マグネット24の外周部には、不図示のウエアリングが装着される。 The booster piston 22 is disposed in the booster cylinder chamber 16a of the end-side main body 16 so as to be slidable in the axial direction. On the outer peripheral surface of the booster piston 22, an annular packing mounting groove 23a and an annular magnet mounting groove 24a are provided. An annular packing 23 made of an elastic material such as rubber is mounted in the packing mounting groove 23a. A circular ring-shaped magnet 24 is mounted in the magnet mounting groove 24a. A wear ring (not shown) is attached to the outer periphery of the magnet 24.
 増力ピストン22は、パッキン23を介して増力シリンダ室16aを第3圧力室42と第4圧力室44とに気密に区画する。第3圧力室42は、増力ピストン22のヘッド側の空室であり、増力ピストン22と隔壁26との間に形成される。また、第4圧力室44は、増力ピストン22のエンド側の空室であり、増力ピストン22とロッドカバー48との間に形成される。第4圧力室44は、エンド側ポート30と連通している。 The booster piston 22 airtightly partitions the booster cylinder chamber 16a into a third pressure chamber 42 and a fourth pressure chamber 44 via the packing 23. The third pressure chamber 42 is an empty chamber on the head side of the booster piston 22 and is formed between the booster piston 22 and the partition 26. The fourth pressure chamber 44 is an empty chamber on the end side of the booster piston 22 and is formed between the booster piston 22 and the rod cover 48. The fourth pressure chamber 44 communicates with the end-side port 30.
 また、増力ピストン22のヘッド側の端面には円環状のダンパ装着溝25aが形成されており、そのダンパ装着溝25aにダンパ25が装着されている。ダンパ25は、ゴムなどの弾性材料よりなり、増力ピストン22と隔壁26との衝突を防ぐように構成されている。増力ピストン22は、ピストンロッド18の中央部に設けられたピストン装着部18bに連結され、ピストンロッド18と軸方向に一体的に変位するように構成されている。 A ring-shaped damper mounting groove 25a is formed on the head-side end surface of the booster piston 22, and the damper 25 is mounted in the damper mounting groove 25a. The damper 25 is made of an elastic material such as rubber, and is configured to prevent collision between the booster piston 22 and the partition 26. The booster piston 22 is connected to a piston mounting portion 18b provided at the center of the piston rod 18, and is configured to be integrally displaced in the axial direction with the piston rod 18.
 ロッドカバー48は、増力シリンダ室16aのエンド側に装着されている。ロッドカバー48は、円板状に形成されており、その外周部には、環状のパッキン装着溝48dが形成されている。パッキン装着溝48dには、円形リング状のパッキン48cが装着されている。パッキン48cは、パッキン装着溝48dを気密に封止する。 The rod cover 48 is mounted on the end side of the booster cylinder chamber 16a. The rod cover 48 is formed in a disk shape, and an annular packing mounting groove 48d is formed in an outer peripheral portion thereof. A circular ring-shaped packing 48c is mounted in the packing mounting groove 48d. The packing 48c hermetically seals the packing mounting groove 48d.
 ロッドカバー48の径方向の中心付近には、ピストンロッド18を挿通するための挿通孔48aが軸方向に延びて形成されている。挿通孔48aには、ピストンロッド18に沿ったエアの漏えいを防止するロッドパッキン48bが設けられている。また、ロッドカバー48のヘッド側の端面には、円環状のダンパ装着溝47aが形成されており、そのダンパ装着溝47aにダンパ47が装着されている。ダンパ47は、円形リング状に形成された弾性部材よりなり、増力シリンダ室16a側に突出することで、増力ピストン22とロッドカバー48との衝突を防止する。 Around the radial center of the rod cover 48, an insertion hole 48a for inserting the piston rod 18 is formed extending in the axial direction. A rod packing 48b for preventing air from leaking along the piston rod 18 is provided in the insertion hole 48a. An annular damper mounting groove 47a is formed in the end surface of the rod cover 48 on the head side, and the damper 47 is mounted in the damper mounting groove 47a. The damper 47 is made of an elastic member formed in a circular ring shape, and protrudes toward the booster cylinder chamber 16a to prevent collision between the booster piston 22 and the rod cover 48.
 また、ロッドカバー48のエンド側には、ロッドカバー48を固定する抜け止めクリップ49が取り付けられている。抜け止めクリップ49は、エンド側本体部16の内周面に沿って形成された係合溝49aに係合された板部材である。抜け止めクリップ49は、周方向の一部が切り欠かれた円環状の板部材であり、弾性復元力により係合溝49aに係合し、ロッドカバー48のエンド側の端面と当接してロッドカバー48の脱落を阻止する。 抜 け Further, a retaining clip 49 for fixing the rod cover 48 is attached to the end side of the rod cover 48. The retaining clip 49 is a plate member engaged with an engaging groove 49 a formed along the inner peripheral surface of the end-side main body 16. The retaining clip 49 is an annular plate member with a part cut out in the circumferential direction, is engaged with the engaging groove 49 a by elastic restoring force, and comes into contact with the end face on the end side of the rod cover 48 so that the rod 49 The cover 48 is prevented from falling off.
 エンド側ポート30は、エンド側本体部16のエンド側の端部付近に形成されている。エンド側ポート30は、エンド側本体部16の外周から増力シリンダ室16aに向けて貫通して形成されており、増力シリンダ室16aのエンド側の端部において、第4圧力室44と連通している。 The end-side port 30 is formed near the end of the end-side main body 16 on the end side. The end-side port 30 is formed to penetrate from the outer periphery of the end-side main body 16 toward the booster cylinder chamber 16a, and communicates with the fourth pressure chamber 44 at the end-side end of the booster cylinder chamber 16a. I have.
 補助流路76は、エンド側本体部16の内部に形成された流路であり、軸方向に延在している。補助流路76は、その一端がエンド側ポート30に連通し、他端が後述する隔壁26の調整ポート32に連通している。 The auxiliary flow path 76 is a flow path formed inside the end-side main body 16 and extends in the axial direction. One end of the auxiliary flow path 76 communicates with the end-side port 30, and the other end communicates with the adjustment port 32 of the partition 26 described later.
 第3チェック弁56は、補助流路76の途中に設けられている。第3チェック弁56は、補助流路76よりも大きな径の空洞部56aと、その空洞部56aに挿入された弁体56bとを有している。有底円筒状のカップ状に形成された部材であり、エアの流れを阻止する方向の下流側に底56cが配置される。弁体56bの底56cには、空洞部56aの端面と当接して、空洞部56aに連通する補助流路76を閉塞する環状突起部56dが形成されている。 The third check valve 56 is provided in the middle of the auxiliary flow path 76. The third check valve 56 has a hollow portion 56a having a diameter larger than that of the auxiliary flow passage 76, and a valve body 56b inserted into the hollow portion 56a. It is a member formed in a bottomed cylindrical cup shape, and the bottom 56c is arranged on the downstream side in the direction in which the flow of air is blocked. An annular projection 56d is formed on the bottom 56c of the valve body 56b to abut the end face of the cavity 56a to close the auxiliary flow path 76 communicating with the cavity 56a.
 また、弁体56bの側部には、エアを通すための切欠部56eが形成されている。底56c側から流れるエアに対しては、弁体56bの環状突起部56dが空洞部56aの端面から離間し、切欠部56eを介してエアを通過させるように構成されている。また、その逆向きのエアに対しては、弁体56bの底56cの部分がそのエアの圧力を受け、環状突起部56dが空洞部56aの端面に当接して、補助流路76を閉塞して、エアの流れを阻止するように構成されている。 切 Further, a cutout portion 56e for passing air is formed on a side portion of the valve body 56b. With respect to the air flowing from the bottom 56c side, the annular projection 56d of the valve body 56b is separated from the end face of the cavity 56a, and the air is passed through the cutout 56e. Also, for the air in the opposite direction, the bottom 56c of the valve body 56b receives the pressure of the air, and the annular projection 56d abuts against the end face of the cavity 56a to close the auxiliary flow path 76. And is configured to block the flow of air.
 なお、第3チェック弁56の作動をスムースにするべく、弁体56bの環状突起部56dを空洞部56aの端面に当接する方向に付勢するバネ等の付勢部材56fを空洞部56a内に設けてもよい。また、後述する、第1チェック弁52及び第2チェック弁54も第3チェック弁56と同様の構造となっている。 In order to make the operation of the third check valve 56 smooth, an urging member 56f such as a spring for urging the annular projection 56d of the valve body 56b in a direction of contacting the end face of the cavity 56a is inserted into the cavity 56a. It may be provided. Further, a first check valve 52 and a second check valve 54, which will be described later, have the same structure as the third check valve 56.
 隔壁26は、図3Aに示すように、板状の本体60を備えている。本体60には、ヘッド側に突出して作動シリンダ室14aに挿入される第1接続部63と、エンド側に突出して増力シリンダ室16aに挿入される第2接続部64とが形成されている。第1接続部63は、作動シリンダ室14aの内径と略同じ外径の円柱状に形成されおており、その外周部にはパッキン63aが装着されている。また、第2接続部64は、増力シリンダ室16aの内径と略同じ外径の円柱状に形成されており、その外周部にはパッキン64aが装着されている。パッキン63aは、作動シリンダ室14aと第1接続部63との隙間を封止し、パッキン64aは増力シリンダ室16aと第2接続部64との隙間を封止する。 The partition 26 includes a plate-shaped main body 60 as shown in FIG. 3A. The main body 60 is formed with a first connection portion 63 protruding toward the head and inserted into the working cylinder chamber 14a, and a second connection portion 64 protruding toward the end side and inserted into the booster cylinder chamber 16a. The first connection portion 63 is formed in a cylindrical shape having an outer diameter substantially the same as the inner diameter of the working cylinder chamber 14a, and a packing 63a is mounted on an outer peripheral portion thereof. The second connection portion 64 is formed in a cylindrical shape having an outer diameter substantially equal to the inner diameter of the booster cylinder chamber 16a, and a packing 64a is mounted on an outer peripheral portion thereof. The packing 63a seals the gap between the working cylinder chamber 14a and the first connection portion 63, and the packing 64a seals the gap between the boost cylinder chamber 16a and the second connection portion 64.
 隔壁26の径方向の中心付近には、ピストンロッド18を挿通するための貫通部61が軸方向に延びて形成されている。貫通部61には、ピストンロッド18に沿ったエアの漏えいを防止するパッキン62が設けられている。 貫通 Around the radial center of the partition wall 26, a through portion 61 for inserting the piston rod 18 is formed extending in the axial direction. The through portion 61 is provided with a packing 62 for preventing air from leaking along the piston rod 18.
 また、隔壁26は、増力切換機構33を構成する、連通路34と、連通路34に設けられた導通切換弁35と、排気路36と、排気路36に設けられた排気切換弁37と、を有する。 The partition wall 26 includes a communication path 34, a conduction switching valve 35 provided in the communication path 34, an exhaust path 36, an exhaust path 36, and an exhaust switching valve 37 provided in the exhaust path 36. Having.
 連通路34は、第2圧力室40と第3圧力室42との間でエアを流通させる流路であり、隔壁26を軸方向に貫通する貫通孔65と、その貫通孔65に挿入された導通切換ピン35aの内部流路35eと、ストッパ66の孔部66bとで構成される。 The communication path 34 is a flow path that allows air to flow between the second pressure chamber 40 and the third pressure chamber 42, and is inserted into the through hole 65 that passes through the partition wall 26 in the axial direction and the through hole 65. It is composed of an internal flow path 35e of the conduction switching pin 35a and a hole 66b of the stopper 66.
 貫通孔65は、隔壁26を軸方向に貫通して形成されており、ヘッド側に形成された大径部65aと、軸方向の中央に形成された小径部65bと、エンド側に形成されたストッパ挿入孔65cとを有している。大径部65a及びストッパ挿入孔65cは、小径部65bよりも大きな内径に形成されている。大径部65a及び小径部65bには、導通切換ピン35aが挿入される。ストッパ挿入孔65cには、ストッパ66が挿入される。ストッパ66は、導通切換弁35の導通切換ピン35aのエンド側に連結されており、導通切換ピン35aと一体的に変位する。また、ストッパ66が、ストッパ挿入孔65c内で停止することで、導通切換ピン35aのヘッド側への移動が規制される。 The through hole 65 is formed so as to penetrate the partition wall 26 in the axial direction. The through hole 65 is formed in the large diameter portion 65a formed in the head side, the small diameter portion 65b formed in the center in the axial direction, and formed in the end side. And a stopper insertion hole 65c. The large diameter portion 65a and the stopper insertion hole 65c are formed with a larger inside diameter than the small diameter portion 65b. The conduction switching pin 35a is inserted into the large diameter portion 65a and the small diameter portion 65b. The stopper 66 is inserted into the stopper insertion hole 65c. The stopper 66 is connected to the end of the conduction switching pin 35a of the conduction switching valve 35, and is displaced integrally with the conduction switching pin 35a. Further, the stopper 66 stops in the stopper insertion hole 65c, so that the movement of the conduction switching pin 35a toward the head is restricted.
 導通切換弁35は、導通切換ピン35aを備えて構成される。導通切換ピン35aは、ヘッド側に形成された閉塞部35cと、エンド側に向けて軸方向に延在するロッド部35dとを有する。ロッド部35dは、貫通孔65の小径部65bの内径と略同じ径に形成されており、小径部65bに軸方向に摺動可能に挿入されている。閉塞部35cは、貫通孔65の大径部65aの内径と略同じ径に形成され、大径部65aに挿入可能に構成されている。閉塞部35cの外周部には、リング状のパッキン35bが装着されている。パッキン35bは、閉塞部35cが大径部65a内に押し込まれた際に、大径部65aに密着して連通路34を封止するように構成されている。 The conduction switching valve 35 is provided with a conduction switching pin 35a. The conduction switching pin 35a has a closing part 35c formed on the head side and a rod part 35d extending in the axial direction toward the end side. The rod portion 35d is formed to have substantially the same diameter as the inner diameter of the small diameter portion 65b of the through hole 65, and is inserted into the small diameter portion 65b so as to be slidable in the axial direction. The closing portion 35c is formed to have substantially the same diameter as the inner diameter of the large diameter portion 65a of the through hole 65, and is configured to be insertable into the large diameter portion 65a. A ring-shaped packing 35b is attached to an outer peripheral portion of the closing portion 35c. The packing 35b is configured so as to be in close contact with the large diameter portion 65a to seal the communication path 34 when the closing portion 35c is pushed into the large diameter portion 65a.
 また、導通切換ピン35aの閉塞部35cのエンド側には、付勢部材35fが装着されている。付勢部材35fは、例えばバネ等よりなり、大径部65aと導通切換ピン35aとの隙間に挿入されている。付勢部材35fは、導通切換ピン35aをヘッド側に付勢し、閉塞部35cを貫通孔65から離間させて第2圧力室40側に突出させる。すなわち、導通切換弁35は、導通切換ピン35aが作動ピストン20によって、ヘッド側に押圧されない状態において、連通路34の導通を妨げないように構成されている。 付 Further, an urging member 35f is mounted on the end side of the closing portion 35c of the conduction switching pin 35a. The biasing member 35f is made of, for example, a spring or the like, and is inserted into a gap between the large-diameter portion 65a and the conduction switching pin 35a. The urging member 35f urges the conduction switching pin 35a toward the head, and separates the closing portion 35c from the through hole 65 so as to project toward the second pressure chamber 40. That is, the conduction switching valve 35 is configured so as not to hinder the conduction of the communication passage 34 in a state where the conduction switching pin 35a is not pressed toward the head by the operating piston 20.
 一方、排気路36は、隔壁26の第1接続部63側の端面に開口し、軸方向に延びた検知ピン収容孔67と、検知ピン収容孔67と調整ポート32とに連通した接続流路71とを有している。このうち、検知ピン収容孔67は、ヘッド側に形成された大径部67aと、大径部67aのエンド側に形成された小径部67bとストッパ挿入孔67cとを有している。ストッパ挿入孔67cには、ストッパ68が挿入される。ストッパ68は、検知ピン37aと連結されており、検知ピン37aと一体的に変位する。ストッパ68は、小径部67bのエンド側の端部で停止することで、検知ピン37aのヘッド側への移動範囲を規制する。 On the other hand, the exhaust passage 36 is opened at the end face of the partition wall 26 on the first connection portion 63 side, and extends in the axial direction. 71. The detection pin housing hole 67 has a large-diameter portion 67a formed on the head side, a small-diameter portion 67b formed on the end side of the large-diameter portion 67a, and a stopper insertion hole 67c. The stopper 68 is inserted into the stopper insertion hole 67c. The stopper 68 is connected to the detection pin 37a and is displaced integrally with the detection pin 37a. The stopper 68 stops at the end of the small-diameter portion 67b on the end side, thereby restricting the range of movement of the detection pin 37a toward the head.
 接続流路71は、小径部67bの側部に形成された開口部71aにおいて検知ピン収容孔67と連通している。小径部67bは、開口部71aの周囲の所定範囲が拡径されており、排気切換弁37との間に間隙を形成している。 The connection channel 71 communicates with the detection pin housing hole 67 at an opening 71 a formed on the side of the small diameter portion 67 b. The small-diameter portion 67b has a predetermined area around the opening 71a whose diameter is enlarged, and forms a gap between the small-diameter portion 67b and the exhaust switching valve 37.
 接続流路71には、開口部71aから調整ポート32への方向にのみエアを通過させる第1チェック弁52が設けられている。第1チェック弁52は、第2圧力室40からのエアの排気を許容する向きに配置されている。 The connection flow path 71 is provided with a first check valve 52 that allows air to pass only in the direction from the opening 71 a to the adjustment port 32. The first check valve 52 is arranged in a direction that allows exhaustion of air from the second pressure chamber 40.
 排気切換弁37は、検知ピン37aを備える。検知ピン37aは、軸方向に円柱状に延びたピン本体部37bとピン本体部37bのヘッド側端部において径方向外方に伸び出たフランジ部37cとを備える。フランジ部37cは、大径部67aの内径よりも僅かに小さい径に形成されており、大径部67a内に挿入可能に構成されている。大径部67aには、バネ等よりなる付勢部材37fが装着されている。付勢部材37fは、フランジ部37cと当接し、検知ピン37aをヘッド側に付勢することで、フランジ部37cを第2圧力室40側に突出させるように構成されている。 The exhaust gas switching valve 37 includes a detection pin 37a. The detection pin 37a includes a pin body 37b extending in a columnar shape in the axial direction, and a flange 37c extending radially outward at a head end of the pin body 37b. The flange portion 37c is formed to have a diameter slightly smaller than the inner diameter of the large-diameter portion 67a, and is configured to be insertable into the large-diameter portion 67a. A biasing member 37f made of a spring or the like is mounted on the large diameter portion 67a. The urging member 37f is configured to contact the flange portion 37c and urge the detection pin 37a toward the head so that the flange portion 37c projects toward the second pressure chamber 40.
 ピン本体部37bは、小径部67bの内径よりも僅かに小さな直径に形成されており、小径部67bに沿って軸方向に摺動可能に構成されている。ピン本体部37bの外周部にはパッキン37dとパッキン37eが軸方向に間隔を開けて配置されている。パッキン37d及びパッキン37eは、検知ピン37aが作動ピストン20に押圧されない状態において、小径部67bと密着して、検知ピン収容孔67と、接続流路71の連通を阻止する位置に配設されている。すなわち、排気切換弁37は、作動ピストン20に押圧されない状態において、排気路36の連通を阻止している。 The pin body 37b has a diameter slightly smaller than the inner diameter of the small diameter portion 67b, and is configured to be slidable in the axial direction along the small diameter portion 67b. A packing 37d and a packing 37e are arranged on the outer peripheral portion of the pin body 37b at an interval in the axial direction. The packing 37d and the packing 37e are disposed at positions where the detection pin 37a is in close contact with the small-diameter portion 67b and prevents communication between the detection pin housing hole 67 and the connection flow path 71 when the detection pin 37a is not pressed by the operating piston 20. I have. That is, the exhaust switching valve 37 prevents communication with the exhaust path 36 when not pressed by the working piston 20.
 調整ポート32の近傍のヘッド側本体部14には、補充流路78と、第2チェック弁54が設けられている。補充流路78は、調整ポート32と第2圧力室40とに連通している。補充流路78には、第2チェック弁54が設けられている。第2チェック弁54の一端は、補充流路78を介して調整ポート32に連通する。また、第2チェック弁54の他端は、補充流路78を介して第2圧力室40に連通する。第2チェック弁54は、調整ポート32から第2圧力室40へ向かう方向にのみエアの通過を許容し、その反対方向のエアの通過を阻止する。すなわち、第2チェック弁54は、第2圧力室40に補充されるエアの流通を許容し、その逆向きのエアを阻止するように構成されている。 補充 The head-side main body 14 near the adjustment port 32 is provided with a replenishment flow path 78 and a second check valve 54. The refill channel 78 communicates with the adjustment port 32 and the second pressure chamber 40. The replenishment flow path 78 is provided with a second check valve 54. One end of the second check valve 54 communicates with the adjustment port 32 via the refill channel 78. Further, the other end of the second check valve 54 communicates with the second pressure chamber 40 via the refill channel 78. The second check valve 54 allows the passage of air only in the direction from the adjustment port 32 to the second pressure chamber 40, and blocks the passage of air in the opposite direction. That is, the second check valve 54 is configured to allow the flow of the air supplied to the second pressure chamber 40 and block the air in the opposite direction.
 本実施形態の流体圧シリンダ10は以上のように構成され、図4Aに示すように、駆動装置120によって駆動される。 流体 The hydraulic cylinder 10 of the present embodiment is configured as described above, and is driven by the driving device 120 as shown in FIG. 4A.
 駆動装置120は、第4チェック弁86と、絞り弁88と、切換弁102と、高圧エア供給源(高圧流体供給源)104と、排気口106と、を備えている。この駆動装置120は、作動工程において、作動シリンダ室14aの第1圧力室38に高圧エアを供給するように構成されている。また駆動装置120は、図4Bに示すように、復帰工程では、第1圧力室38に蓄積されたエアの一部を、第4圧力室44に向けて供給するとともに、第2圧力室40に高圧エアを供給するように構成されている。 The drive device 120 includes a fourth check valve 86, a throttle valve 88, a switching valve 102, a high-pressure air supply source (high-pressure fluid supply source) 104, and an exhaust port 106. The driving device 120 is configured to supply high-pressure air to the first pressure chamber 38 of the operation cylinder chamber 14a in an operation process. Further, as shown in FIG. 4B, in the return step, the driving device 120 supplies a part of the air accumulated in the first pressure chamber 38 to the fourth pressure chamber 44 and also supplies the air to the second pressure chamber 40. It is configured to supply high-pressure air.
 切換弁102は、例えば5ポート2位置型のバルブであり、第1ポート102a~第5ポート102eを有し、第1位置(図4A参照)と、第2位置(図4B参照)とを切り換え可能となっている。図4A及び図4Bに示すように、第1ポート102aは、配管によりヘッド側ポート28に接続される。第2ポート102bは、配管により調整ポート32に接続される。第3ポート102cは、配管により排気口106に接続されている。第4ポート102dは、配管により高圧エア供給源104に接続されている。第5ポート102eは、配管により、絞り弁88を介して排気口106に接続されるとともに、第4チェック弁86を介してエンド側ポート30に接続されている。 The switching valve 102 is, for example, a five-port two-position valve, has first to fifth ports 102a to 102e, and switches between a first position (see FIG. 4A) and a second position (see FIG. 4B). It is possible. As shown in FIGS. 4A and 4B, the first port 102a is connected to the head-side port 28 by piping. The second port 102b is connected to the adjustment port 32 by a pipe. The third port 102c is connected to the exhaust port 106 by a pipe. The fourth port 102d is connected to a high-pressure air supply source 104 by a pipe. The fifth port 102e is connected to the exhaust port 106 via a throttle valve 88 by a pipe, and is connected to the end port 30 via a fourth check valve 86.
 図4Aに示すように、切換弁102が第1位置にあるときは、第1ポート102aと第4ポート102dとがつながり、かつ、第2ポート102bと第3ポート102cとがつながる。 As shown in FIG. 4A, when the switching valve 102 is at the first position, the first port 102a and the fourth port 102d are connected, and the second port 102b and the third port 102c are connected.
 また、図4Bに示すように、切換弁102が第2位置にあるときは、第1ポート102aと第5ポート102eとがつながり、かつ第2ポート102bと第4ポート102dとがつながる。切換弁102は、高圧エア供給源104からのパイロット圧又は電磁弁により、第1位置と第2位置とに切り替わる。 4B, when the switching valve 102 is at the second position, the first port 102a and the fifth port 102e are connected, and the second port 102b and the fourth port 102d are connected, as shown in FIG. 4B. The switching valve 102 is switched between a first position and a second position by a pilot pressure from a high-pressure air supply source 104 or an electromagnetic valve.
 第4チェック弁86は、切換弁102が第2位置にあるときは、ヘッド側ポート28からエンド側ポート30に向かうエアの流れを許容し、エンド側ポート30からヘッド側ポート28に向かうエアの流れを阻止する。 When the switching valve 102 is at the second position, the fourth check valve 86 allows the air flow from the head-side port 28 to the end-side port 30, and allows the air to flow from the end-side port 30 to the head-side port 28. Block the flow.
 絞り弁88は、排気口106から排気される第1圧力室38のエアの量を制限するために設けられており、排気流量を調整することができるよう、通路面積を変更可能な可変絞り弁として構成されている。 The throttle valve 88 is provided to limit the amount of air in the first pressure chamber 38 exhausted from the exhaust port 106, and is a variable throttle valve capable of changing a passage area so that the exhaust flow rate can be adjusted. Is configured as
 なお、第4チェック弁86と、第4圧力室44とをつなぐ配管の途中に、エアタンクを設けて、復帰工程においてヘッド側ポート28からエンド側ポート30に供給されるエアを蓄積するようにしてもよい。エアタンクを設けることにより、復帰動作時に第4圧力室44を満たすのに十分な量のエアを蓄積することができ、復帰動作を安定化させることができる。この場合、エアタンクの容量は、例えば、第1圧力室38の最大容量の約半分に設定してもよい。配管の容量が十分に確保できる場合には、エアタンクは不要である。 An air tank is provided in the middle of the pipe connecting the fourth check valve 86 and the fourth pressure chamber 44 so that the air supplied from the head-side port 28 to the end-side port 30 is accumulated in the return step. Is also good. By providing the air tank, a sufficient amount of air can be accumulated to fill the fourth pressure chamber 44 during the return operation, and the return operation can be stabilized. In this case, the capacity of the air tank may be set to, for example, about half of the maximum capacity of the first pressure chamber 38. If the capacity of the pipe can be sufficiently secured, the air tank is not required.
 流体圧シリンダ10及び駆動装置120は、以上のように構成されるものであり、以下その作用及び動作について説明する。 The fluid pressure cylinder 10 and the driving device 120 are configured as described above, and the operation and operation will be described below.
(起動工程)
 起動工程は、流体圧シリンダ10の使用開始に先立って、第2圧力室40及び第3圧力室42に高圧エアを充填する。なお、高圧エアとは、大気圧よりも高い圧力のエアのである。ここでは、流体圧シリンダ10を、図1に示すようにストロークの始端位置に設定する。また駆動装置120の切換弁102を第2位置(図4B参照)とする。これにより、高圧エア供給源104が、調整ポート32に接続される。図4Bに示すように、高圧エア供給源104の高圧エアは、第2チェック弁54を介して第2圧力室40に導入される。また、第2圧力室40に導入された高圧エアは、連通路34を介して、第3圧力室42にも導入される。これにより、第2圧力室40及び第3圧力室42に高圧エアが充填された状態となる。起動工程は、流体圧シリンダ10の最初のストロークの前に1度だけ行えばよい。
(Start-up process)
In the starting step, the second pressure chamber 40 and the third pressure chamber 42 are filled with high-pressure air before the use of the fluid pressure cylinder 10 is started. The high-pressure air is air having a pressure higher than the atmospheric pressure. Here, the hydraulic cylinder 10 is set at the start position of the stroke as shown in FIG. Further, the switching valve 102 of the driving device 120 is set to the second position (see FIG. 4B). Thereby, the high-pressure air supply source 104 is connected to the adjustment port 32. As shown in FIG. 4B, the high-pressure air from the high-pressure air supply source 104 is introduced into the second pressure chamber 40 via the second check valve 54. The high-pressure air introduced into the second pressure chamber 40 is also introduced into the third pressure chamber 42 via the communication passage 34. Thus, the second pressure chamber 40 and the third pressure chamber 42 are filled with the high-pressure air. The activation process need only be performed once before the first stroke of the hydraulic cylinder 10.
(作動工程)
 図4Aに示すように、流体圧シリンダ10の作動工程は、駆動装置120の切換弁102を第1位置として行う。高圧エア供給源104からの高圧エアは、切換弁102の第1ポート102aを介してヘッド側ポート28に供給される。第4チェック弁86は、第5ポート102e側に接続されており、第4チェック弁86側には高圧エアは流れない。第4圧力室44は、第3チェック弁56、調整ポート32、第2ポート102bを介して排気口106に接続されている。
(Operation process)
As shown in FIG. 4A, the operation process of the hydraulic cylinder 10 is performed with the switching valve 102 of the driving device 120 as the first position. The high-pressure air from the high-pressure air supply source 104 is supplied to the head-side port 28 via the first port 102a of the switching valve 102. The fourth check valve 86 is connected to the fifth port 102e side, and high-pressure air does not flow to the fourth check valve 86 side. The fourth pressure chamber 44 is connected to the exhaust port 106 via the third check valve 56, the adjustment port 32, and the second port 102b.
 図5に示すように、作動工程において、高圧エア供給源104からの高圧エアは、矢印Bに示すように、第1圧力室38に流れ込む。第2圧力室40の高圧エアにより作動ピストンに作用する力と、第3圧力室42に充填された高圧エアにより増力ピストン22に作用する力は同じ大きさで逆向きにバランスするため、推力には寄与しない。従って、ピストンロッド18には、作動ピストン20に隣接する第1圧力室38と増力ピストン22に隣接する第4圧力室44との圧力差に相応する推力が発生し、ピストンロッド18がエンド側に向けてストロークする。 高 圧 As shown in FIG. 5, in the operation step, the high-pressure air from the high-pressure air supply source 104 flows into the first pressure chamber 38 as shown by the arrow B. The force acting on the working piston by the high-pressure air in the second pressure chamber 40 and the force acting on the booster piston 22 by the high-pressure air filled in the third pressure chamber 42 have the same magnitude and are oppositely balanced. Does not contribute. Accordingly, a thrust corresponding to the pressure difference between the first pressure chamber 38 adjacent to the working piston 20 and the fourth pressure chamber 44 adjacent to the booster piston 22 is generated in the piston rod 18, and the piston rod 18 is moved toward the end. Stroke toward.
 作動ピストン20のストロークに伴い、流体圧シリンダ10には、第1圧力室38の容積に等しい量の高圧エアが、高圧エア供給源104(図4A参照)から供給される。作動ピストン20及び増力ピストン22のストロークにともなって、第2圧力室40内の高圧エアが連通路34を通じて第3圧力室42に移動する。作動工程の間、第2圧力室40及び第3圧力室42に蓄えられた高圧エアの圧力は一定に保たれる。また、第4圧力室44のエアは、増力ピストン22のストロークに伴って第4圧力室44から排気される。この場合、第4圧力室44のエアは、第3チェック弁56及び補助流路76を経て調整ポート32を通り、図4Aに示すように、切換弁102の第2ポート102bを通じて、排気口106から排気される。 With the stroke of the working piston 20, high-pressure air having an amount equal to the volume of the first pressure chamber 38 is supplied to the hydraulic cylinder 10 from the high-pressure air supply source 104 (see FIG. 4A). With the strokes of the working piston 20 and the booster piston 22, the high-pressure air in the second pressure chamber 40 moves to the third pressure chamber 42 through the communication passage 34. During the operation process, the pressure of the high-pressure air stored in the second pressure chamber 40 and the third pressure chamber 42 is kept constant. Further, the air in the fourth pressure chamber 44 is exhausted from the fourth pressure chamber 44 with the stroke of the booster piston 22. In this case, the air in the fourth pressure chamber 44 passes through the adjustment port 32 via the third check valve 56 and the auxiliary flow path 76, and as shown in FIG. 4A, the exhaust port 106 through the second port 102b of the switching valve 102. It is exhausted from.
(増力工程)
 図6に示すように、作動ピストン20のストロークに伴って、導通切換弁35の導通切換ピン35a(図3B参照)がエンド側に押圧されるとともに、排気切換弁37の検知ピン37a(図3B参照)もエンド側に押圧される。
(Strengthening process)
As shown in FIG. 6, with the stroke of the working piston 20, the conduction switching pin 35a (see FIG. 3B) of the conduction switching valve 35 is pressed to the end side, and the detection pin 37a of the exhaust switching valve 37 (FIG. 3B). ) Is also pushed to the end side.
 その結果、図3Bに示すように、導通切換ピン35aの閉塞部35cが貫通孔65の大径部65aに挿入される。そして、閉塞部35cのパッキン35bが大径部65aと閉塞部35cの隙間を封止することにより、連通路34を閉塞する。すなわち、導通切換弁35により、連通路34を通じた第2圧力室40と第3圧力室42との間のエアの流通が阻止される。 (3) As a result, as shown in FIG. 3B, the closing portion 35c of the conduction switching pin 35a is inserted into the large diameter portion 65a of the through hole 65. Then, the packing 35b of the closing portion 35c seals the gap between the large diameter portion 65a and the closing portion 35c, thereby closing the communication path 34. That is, the flow of air between the second pressure chamber 40 and the third pressure chamber 42 through the communication passage 34 is blocked by the conduction switching valve 35.
 また、排気切換弁37の検知ピン37aが、エンド側に変位することにより、検知ピン37aと検知ピン収容孔67との隙間を封止していたパッキン37dが凹状に窪んだ開口部71aに移動する。これにより、排気路36が開通し、調整ポート32と、第2圧力室40とが排気路36を通じて連通する。第2圧力室40に蓄えられた高圧エアは、第1チェック弁52、調整ポート32を介して排気口106から排気される。その結果、第2圧力室40の内圧が下がり、作動ピストン20には第2圧力室40と第1圧力室38との内圧の差に応じた推力が発生する。 When the detection pin 37a of the exhaust gas switching valve 37 is displaced toward the end, the packing 37d that has sealed the gap between the detection pin 37a and the detection pin receiving hole 67 moves to the opening 71a that is recessed. I do. Thereby, the exhaust path 36 is opened, and the adjustment port 32 and the second pressure chamber 40 communicate with each other through the exhaust path 36. The high-pressure air stored in the second pressure chamber 40 is exhausted from the exhaust port 106 via the first check valve 52 and the adjustment port 32. As a result, the internal pressure of the second pressure chamber 40 decreases, and a thrust corresponding to the difference between the internal pressures of the second pressure chamber 40 and the first pressure chamber 38 is generated in the working piston 20.
 また、増力ピストン22では、第3圧力室42に蓄えられた高圧エアの圧力と、第4圧力室44の圧力差に応じた推力が発生する。これにより、流体圧シリンダ10は、ストロークエンド付近において、推力を増大させることができる。流体圧シリンダ10における、推力の増大は、導通切換弁35及び排気切換弁37が作動する範囲での第2圧力室40の高圧エアの排気によって生み出される。 {Circle around (4)} In the booster piston 22, a thrust is generated according to the pressure difference between the high pressure air stored in the third pressure chamber 42 and the pressure in the fourth pressure chamber 44. Thereby, the hydraulic cylinder 10 can increase the thrust near the stroke end. The increase in thrust in the hydraulic cylinder 10 is generated by the exhaust of the high-pressure air in the second pressure chamber 40 in a range where the conduction switching valve 35 and the exhaust switching valve 37 operate.
(復帰工程)
 図4Bに示すように、流体圧シリンダ10の復帰工程は、駆動装置120の切換弁102を第2位置として行う。高圧エア供給源104からの高圧エアは、切換弁102の第2ポート102bを介して調整ポート32に供給される。切換弁102の第1ポート102aは第5ポート102eにつながり、ヘッド側ポート28が第4チェック弁86を介してエンド側ポート30につながる。またヘッド側ポート28は、絞り弁88を介して排気口106につながる。その結果、第1圧力室38に蓄えられたエアの一部は、第4チェック弁86側を介して、第4圧力室44に供給される。また、第1圧力室38に蓄えられたエアの残りの一部は、排気口106から排気される。
(Return process)
As shown in FIG. 4B, the return process of the hydraulic cylinder 10 is performed with the switching valve 102 of the driving device 120 set to the second position. The high-pressure air from the high-pressure air supply source 104 is supplied to the adjustment port 32 via the second port 102b of the switching valve 102. The first port 102a of the switching valve 102 is connected to the fifth port 102e, and the head port 28 is connected to the end port 30 via the fourth check valve 86. The head-side port 28 is connected to an exhaust port 106 via a throttle valve 88. As a result, part of the air stored in the first pressure chamber 38 is supplied to the fourth pressure chamber 44 via the fourth check valve 86. Further, the remaining part of the air stored in the first pressure chamber 38 is exhausted from the exhaust port 106.
 図7に示すように、復帰工程では、流体圧シリンダ10の調整ポート32には、矢印Bに示すように、高圧エア供給源104からの高圧エアが供給される。調整ポート32に供給された高圧エアは、補充流路78及び第2チェック弁54を経て、第2圧力室40に流入する。第2圧力室40に供給される高圧エアの容量は、増力工程において第2圧力室40から排気された高圧エアの量に等しい。すなわち、増力工程に要する高圧エアが復帰工程で補充されたことになる。その際に供給される高圧エアの量は、作動ピストン20のストロークに要する高圧エアの量に比べて僅かであり、少ない高圧エアの追加のみでよい。 で は As shown in FIG. 7, in the return step, high-pressure air from the high-pressure air supply source 104 is supplied to the adjustment port 32 of the hydraulic cylinder 10 as shown by an arrow B. The high-pressure air supplied to the adjustment port 32 flows into the second pressure chamber 40 via the refill channel 78 and the second check valve 54. The volume of the high-pressure air supplied to the second pressure chamber 40 is equal to the amount of the high-pressure air exhausted from the second pressure chamber 40 in the boosting step. That is, the high-pressure air required for the boosting step is supplemented in the return step. The amount of high-pressure air supplied at that time is small compared to the amount of high-pressure air required for the stroke of the working piston 20, and only a small amount of high-pressure air needs to be added.
 復帰工程では、第2圧力室40の内圧が第3圧力室42の内圧と等しくなるため、第2圧力室40が作動ピストン20に及ぼす力と、第3圧力室42が増力ピストン22に及ぼす力とがバランスして打ち消し合う。 In the return step, since the internal pressure of the second pressure chamber 40 is equal to the internal pressure of the third pressure chamber 42, the force exerted on the working piston 20 by the second pressure chamber 40 and the force exerted on the booster piston 22 by the third pressure chamber 42 And balance and cancel each other out.
 一方、第4圧力室44には、矢印Aに示すように、第1圧力室38から排気された高圧エアの一部が流入する。第1圧力室38のエアの排気が進むにつれて、第4圧力室44と第1圧力室38との圧力差が増大し、作動ピストン20、増力ピストン22及びピストンロッド18が、ヘッド側に移動を開始する。それに伴って、導通切換弁35が元の位置に復帰し、連通路34を通じて第2圧力室40と第3圧力室42とが連通する。また、排気切換弁37は、排気路36を封止して調整ポート32と第2圧力室40との連通を阻止する。 On the other hand, a part of the high-pressure air exhausted from the first pressure chamber 38 flows into the fourth pressure chamber 44 as shown by an arrow A. As the evacuation of the air in the first pressure chamber 38 proceeds, the pressure difference between the fourth pressure chamber 44 and the first pressure chamber 38 increases, and the working piston 20, the booster piston 22, and the piston rod 18 move toward the head. Start. Accordingly, the conduction switching valve 35 returns to the original position, and the second pressure chamber 40 and the third pressure chamber 42 communicate with each other through the communication passage 34. Further, the exhaust switching valve 37 seals the exhaust passage 36 to prevent communication between the adjustment port 32 and the second pressure chamber 40.
 その後、図8に示すように、第4圧力室44にエアが流入しつつ、第1圧力室38の排気が進み、作動ピストン20及び増力ピストン22がストロークの始端位置に復帰して、復帰工程が完了する。 Thereafter, as shown in FIG. 8, while the air flows into the fourth pressure chamber 44, the exhaust of the first pressure chamber 38 proceeds, and the working piston 20 and the booster piston 22 return to the starting position of the stroke. Is completed.
 本実施形態に係る流体圧シリンダ10は、以下の効果を奏する。 流体 The fluid pressure cylinder 10 according to the present embodiment has the following effects.
 流体圧シリンダ10は、流体圧シリンダ10において、増力切換機構33として、第2圧力室40と第3圧力室42とに連通した連通路34と、第2圧力室40に連通した排気路36と、作動ピストン20が所定位置よりもヘッド側に位置する間は、連通路34を開くとともに、作動ピストン20が所定位置よりもエンド側に移動した際に連通路34を閉じる導通切換弁35と、作動ピストン20が所定位置よりもヘッド側に位置する間は、排気路36を閉じるとともに、作動ピストン20が所定位置よりもエンド側に移動した際に排気路36を開いて第2圧力室40の高圧流体の排気を行う排気切換弁37と、を有する。これにより、ストロークエンド付近において、第2圧力室40と第3圧力室42とが分離され、第3圧力室42の高圧エアを維持しつつも、第2圧力室40の高圧エアを排気できる。これにより、作動ピストン20の推力に加えて、増力ピストン22の推力が加算され、ストローク後半で推力を増加させることができる。 The fluid pressure cylinder 10 includes, in the fluid pressure cylinder 10, a communication path 34 communicating with the second pressure chamber 40 and the third pressure chamber 42, and an exhaust path 36 communicating with the second pressure chamber 40 as a boost switching mechanism 33. A communication switching valve 35 that opens the communication passage 34 while the operating piston 20 is located closer to the head than the predetermined position, and closes the communication passage 34 when the operating piston 20 moves to the end side from the predetermined position; While the working piston 20 is located on the head side of the predetermined position, the exhaust path 36 is closed, and when the working piston 20 moves to the end side of the predetermined position, the exhaust path 36 is opened to open the second pressure chamber 40. An exhaust switching valve 37 for exhausting the high-pressure fluid. Thereby, the second pressure chamber 40 and the third pressure chamber 42 are separated near the stroke end, and the high pressure air in the second pressure chamber 40 can be exhausted while maintaining the high pressure air in the third pressure chamber 42. As a result, the thrust of the booster piston 22 is added to the thrust of the working piston 20, and the thrust can be increased in the latter half of the stroke.
 流体圧シリンダ10において、隔壁26は、調整ポート32を有し、排気路36は調整ポート32を介して第2圧力室40の高圧流体を排気するようにしてもよい。 In the fluid pressure cylinder 10, the partition 26 may have the adjustment port 32, and the exhaust path 36 may exhaust the high-pressure fluid in the second pressure chamber 40 via the adjustment port 32.
 流体圧シリンダ10において、増力切換機構33は、導通切換弁35が連通路34を閉じた後に、排気切換弁37が排気路36を開くようにしてもよい。これにより、第2圧力室40を介した第3圧力室42の高圧エアの流出を防ぐことができ、高圧エアの使用量を抑制できる。 In the hydraulic pressure cylinder 10, the boost switching mechanism 33 may be configured such that the exhaust switching valve 37 opens the exhaust passage 36 after the conduction switching valve 35 closes the communication passage 34. Thereby, the outflow of the high-pressure air from the third pressure chamber 42 via the second pressure chamber 40 can be prevented, and the usage amount of the high-pressure air can be suppressed.
 流体圧シリンダ10において、導通切換弁35は、一端が第2圧力室40側に突出し他端が連通路34に挿入された導通切換ピン35aを有し、導通切換ピン35aが作動ピストン20に押圧されてエンド側に変位することにより、連通路34を閉塞するようにしてもよい。これにより、作動ピストン20のストローク動作を利用して導通切換弁35を作動させることができ、装置構成を簡略化できる。 In the fluid pressure cylinder 10, the conduction switching valve 35 has a conduction switching pin 35 a having one end protruding toward the second pressure chamber 40 and the other end inserted into the communication passage 34, and the conduction switching pin 35 a is pressed against the working piston 20. The communication path 34 may be closed by being displaced toward the end side. Thus, the conduction switching valve 35 can be operated using the stroke operation of the operating piston 20, and the configuration of the device can be simplified.
 流体圧シリンダ10において、排気切換弁37は、排気路36を封止するとともに、一端が第2圧力室40に突出した検知ピン37aを有し、検知ピン37aが作動ピストン20に押圧されてエンド側に変位することにより、排気路36の封止が解除されるように構成してもよい。これにより、作動ピストン20のストローク動作を利用して、排気路36を介した第2圧力室40の排気を行うことができ、装置構成が簡素化される。 In the fluid pressure cylinder 10, the exhaust switching valve 37 seals the exhaust passage 36, and has a detection pin 37 a having one end protruding into the second pressure chamber 40. The sealing of the exhaust path 36 may be released by being displaced to the side. Thus, the second pressure chamber 40 can be exhausted through the exhaust path 36 by using the stroke operation of the working piston 20, and the configuration of the apparatus is simplified.
 流体圧シリンダ10において、排気路36には、第2圧力室40から調整ポート32に向かう方向にのみエアを通過させ、その逆向きのエアを阻止する第1チェック弁52が設けられていてもよい。これにより、復帰工程において、排気切換弁37の誤動作を防止できる。 In the fluid pressure cylinder 10, even if the exhaust passage 36 is provided with the first check valve 52 that allows air to pass only in the direction from the second pressure chamber 40 toward the adjustment port 32 and blocks air in the opposite direction. Good. Thereby, in the return process, malfunction of the exhaust gas switching valve 37 can be prevented.
 流体圧シリンダ10において、調整ポート32と第2圧力室40とに連通する補充流路78をさらに有し、補充流路78には、調整ポート32から第2圧力室40に向かう方向にのみエアを通過させ、その逆向きのエアを阻止する第2チェック弁54が設けられていてもよい。第2チェック弁54を設けることにより、復帰工程において、第2圧力室40への過剰な高圧エアの流入を抑制できる。 The fluid pressure cylinder 10 further has a replenishment flow path 78 communicating with the adjustment port 32 and the second pressure chamber 40, and the replenishment flow path 78 has air only in a direction from the adjustment port 32 to the second pressure chamber 40. May be provided, and a second check valve 54 for blocking air in the opposite direction may be provided. By providing the second check valve 54, it is possible to suppress an excessive flow of high-pressure air into the second pressure chamber 40 in the return process.
 上記の流体圧シリンダ10において、さらに第4圧力室44と調整ポート32とに連通する補助流路76を有してもよい。これにより、作動工程及び増力工程において、調整ポート32を通じて第4圧力室44のエアの排気を行うことができる。 The fluid pressure cylinder 10 may further include an auxiliary flow path 76 that communicates with the fourth pressure chamber 44 and the adjustment port 32. Thereby, in the operation step and the boosting step, the air in the fourth pressure chamber 44 can be exhausted through the adjustment port 32.
 上記の流体圧シリンダ10において、補助流路76には、第4圧力室44から調整ポート32に向かう方向のエアのみを通過させ、その逆向きのエアを阻止する第3チェック弁56が設けられていてもよい。これにより、復帰工程において、調整ポート32に高圧エアを供給した際に、第4圧力室44に高圧エアが流れ込むのを防いで、高圧エアの消費量を抑制できる。 In the above-described fluid pressure cylinder 10, the auxiliary flow path 76 is provided with the third check valve 56 that allows only air in the direction from the fourth pressure chamber 44 toward the adjustment port 32 and blocks air in the opposite direction. May be. Thus, in the return step, when high-pressure air is supplied to the adjustment port 32, high-pressure air is prevented from flowing into the fourth pressure chamber 44, and the consumption of high-pressure air can be suppressed.
 流体圧シリンダ10において、流体圧シリンダ10の第1圧力室38、第2圧力室40及び第4圧力室44に接続される駆動装置120をさらに備え、駆動装置120は、切換弁102と、高圧エア供給源104と、排気口106と、第4チェック弁86とを有し、切換弁102の第1位置において、第1圧力室38が高圧エア供給源104に連通するとともに、第4圧力室44及び調整ポート32(増力切換機構33)が排気口106に連通し、切換弁102の第2位置において、第1圧力室38が第4チェック弁86を介して第4圧力室44に連通するとともに第1圧力室38が排気口106に連通し、かつ、第2圧力室40が調整ポート32を介して高圧エア供給源104に連通するように構成してもよい。これにより、復帰工程において、第4圧力室44に第1圧力室38に蓄積されたエアを供給することができるので、高圧エアの消費量を抑制できる。 The fluid pressure cylinder 10 further includes a driving device 120 connected to the first pressure chamber 38, the second pressure chamber 40, and the fourth pressure chamber 44 of the fluid pressure cylinder 10. The driving device 120 includes a switching valve 102 and a high pressure It has an air supply source 104, an exhaust port 106, and a fourth check valve 86. At a first position of the switching valve 102, the first pressure chamber 38 communicates with the high-pressure air supply source 104 and the fourth pressure chamber The first pressure chamber 38 communicates with the fourth pressure chamber 44 via the fourth check valve 86 at the second position of the switching valve 102. In addition, the first pressure chamber 38 may communicate with the exhaust port 106, and the second pressure chamber 40 may communicate with the high-pressure air supply source 104 via the adjustment port 32. Thus, in the return step, the air accumulated in the first pressure chamber 38 can be supplied to the fourth pressure chamber 44, so that the consumption of high-pressure air can be suppressed.
 上記の流体圧シリンダ10において、第1圧力室38と排気口106との間に絞り弁88を設けてもよい。これにより、第4圧力室44に供給するエアの量を適切に調節できる。 In the above-described fluid pressure cylinder 10, a throttle valve 88 may be provided between the first pressure chamber 38 and the exhaust port 106. Thereby, the amount of air supplied to the fourth pressure chamber 44 can be appropriately adjusted.
(第2実施形態)
 本実施形態の流体圧シリンダ10Aは、図9Aに示すように、ヘッド側本体部14Aとエンド側本体部16Aとを有する。本実施形態では、エンド側本体部16Aに高圧流体を封入している。また、ストロークエンドでの推力をさらに増加させるべく、エンド側本体部16Aのサイズ(幅及び高さ)をヘッド側本体部14Aのサイズよりも大きくしている。
(2nd Embodiment)
As shown in FIG. 9A, the fluid pressure cylinder 10A of this embodiment has a head-side main body 14A and an end-side main body 16A. In the present embodiment, a high-pressure fluid is sealed in the end-side main body 16A. In order to further increase the thrust at the stroke end, the size (width and height) of the end-side main body 16A is made larger than the size of the head-side main body 14A.
 図9Bに示すように、ヘッド側本体部14A及びエンド側本体部16Aは、断面が角型に形成されている。ヘッド側本体部14A及びエンド側本体部16Aは、連結ロッド又はボルトにより軸方向に連結されている。 よ う As shown in FIG. 9B, the head-side main body 14A and the end-side main body 16A have a rectangular cross section. The head-side main body 14A and the end-side main body 16A are connected in the axial direction by connecting rods or bolts.
 図10に示すように、流体圧シリンダ10Aのシリンダボディ12Aは、ヘッド側本体部14Aとエンド側本体部16Aとを備え、両者が隔壁部126を介して軸方向に連結されている。ヘッド側本体部14Aには、ヘッド側ポート28Aとエンド側ポート30Aが設けられている。エンド側本体部16Aには、エンド側の端部付近に調整ポート32Aが設けられている。 As shown in FIG. 10, the cylinder body 12A of the fluid pressure cylinder 10A includes a head-side main body 14A and an end-side main body 16A, both of which are connected in the axial direction via a partition wall 126. The head-side main body 14A is provided with a head-side port 28A and an end-side port 30A. An adjustment port 32A is provided near the end on the end side of the end-side main body 16A.
 また、隔壁部126の外周付近には、増力シリンダ室116aに封入された高圧エアを排出するための貯蓄エア排気ポート162が形成されている。貯蓄エア排気ポート162は、調整弁160を介して第3圧力室42に連通している。貯蓄エア排気ポート162は、流体圧シリンダ10Aのメンテナンス等の際に増力シリンダ室116a内に貯蓄された高圧エアを排出したり、起動する際に、増力シリンダ室116aに高圧エアを導入したりするために用いられる。 A storage air exhaust port 162 for discharging the high-pressure air sealed in the booster cylinder chamber 116a is formed near the outer periphery of the partition 126. The storage air exhaust port 162 communicates with the third pressure chamber 42 via the adjustment valve 160. The stored air exhaust port 162 discharges high-pressure air stored in the booster cylinder chamber 116a during maintenance of the fluid pressure cylinder 10A or the like, or introduces high-pressure air into the booster cylinder chamber 116a when starting up. Used for
 隔壁部126の中央部には、ピストンロッド18Aを摺動自在に挿通させる挿通孔126cが形成されている。挿通孔126cには、軸方向への流体の漏えいを防ぐためのパッキン118が設けられている。隔壁部126には、ヘッド側に延び出て作動シリンダ室14a内に挿入されるヘッド側接続部126aが設けられている。また、隔壁部126のエンド側には、増力シリンダ室116aに挿入されるエンド側接続部126bが設けられている。エンド側接続部126bには、増力ピストン22Aとの衝突を避けための円環状の緩衝部材124が装着されている。 挿 In the center of the partition 126, an insertion hole 126c is formed for slidably inserting the piston rod 18A. The insertion hole 126c is provided with a packing 118 for preventing leakage of fluid in the axial direction. The partition part 126 is provided with a head-side connection part 126a that extends toward the head and is inserted into the working cylinder chamber 14a. On the end side of the partition wall 126, an end-side connection portion 126b inserted into the booster cylinder chamber 116a is provided. An annular buffer member 124 for preventing collision with the booster piston 22A is attached to the end-side connection portion 126b.
 エンド側本体部16Aは本体部116を有する。その本体部116の内方には、円形の空洞部よりなる増力シリンダ室116aが形成されている。増力シリンダ室116aは軸方向に延在している。その増力シリンダ室116aの内部には、増力ピストン22Aが軸方向に摺動自在に配設されている。増力ピストン22Aは、ピストンロッド18Aに連結されている。増力ピストン22Aの外周部には、マグネット24及びパッキン23が装着されている。増力ピストン22Aは、増力シリンダ室116aをヘッド側の第3圧力室42と、エンド側の第4圧力室44とに仕切る。 The end-side main body 16A has a main body 116. Inside the main body 116, a booster cylinder chamber 116a composed of a circular hollow portion is formed. The boost cylinder chamber 116a extends in the axial direction. Inside the booster cylinder chamber 116a, a booster piston 22A is slidably disposed in the axial direction. The booster piston 22A is connected to the piston rod 18A. A magnet 24 and a packing 23 are mounted on an outer peripheral portion of the booster piston 22A. The booster piston 22A partitions the booster cylinder chamber 116a into a third pressure chamber 42 on the head side and a fourth pressure chamber 44 on the end side.
 また、増力ピストン22Aには、軸方向に隣接する第3圧力室42と、第4圧力室44との間での高圧流体の導通状態を切り替える導通切換弁35Aが設けられている。導通切換弁35Aは、増力ピストン22Aを軸方向に貫通する貫通孔122と、貫通孔122に挿入された導通切換ピン35aとを備えている。 (4) The booster piston 22A is provided with a conduction switching valve 35A that switches the conduction state of the high-pressure fluid between the third pressure chamber 42 and the fourth pressure chamber 44 that are adjacent in the axial direction. The conduction switching valve 35A includes a through hole 122 that penetrates the booster piston 22A in the axial direction, and a conduction switching pin 35a inserted into the through hole 122.
 貫通孔122は、エンド側拡径部122aと、縮径部122bとヘッド側拡径部122cとを有している。導通切換弁35Aの導通切換ピン35aは、図3Aを参照しつつ説明した導通切換ピン35aと同様である。縮径部122bには、導通切換ピン35aのロッド部35dが挿入される。また、エンド側拡径部122a側には、導通切換ピン35aの閉塞部35cが配置される。導通切換ピン35aは、付勢部材35fの付勢力により、エンド側に突出する。 The through hole 122 has an end-side enlarged diameter portion 122a, a reduced diameter portion 122b, and a head-side enlarged diameter portion 122c. The conduction switching pin 35a of the conduction switching valve 35A is the same as the conduction switching pin 35a described with reference to FIG. 3A. The rod portion 35d of the conduction switching pin 35a is inserted into the reduced diameter portion 122b. Further, a closing portion 35c of the conduction switching pin 35a is disposed on the end-side enlarged-diameter portion 122a side. The conduction switching pin 35a projects to the end side by the urging force of the urging member 35f.
 そして、貫通孔122及び導通切換ピン35aの内部流路35eを介して、第3圧力室42と第4圧力室44との間の高圧エアの導通を可能とするように構成されている。すなわち、本実施形態では、貫通孔122及び内部流路35eにより連通路が構成されている。また、導通切換ピン35aは、増力ピストン22Aがエンド側へ移動すると、ロッドカバー48Aに押圧されて、閉塞部35c及びその外周部のパッキン35bが貫通孔122に挿入され、貫通孔122を塞いで、第3圧力室42と第4圧力室44との導通を阻止する。 (4) The high-pressure air is configured to be conducted between the third pressure chamber 42 and the fourth pressure chamber 44 via the through hole 122 and the internal flow path 35e of the conduction switching pin 35a. That is, in the present embodiment, a communication path is formed by the through hole 122 and the internal flow path 35e. When the booster piston 22A moves to the end side, the conduction switching pin 35a is pressed by the rod cover 48A, and the closing portion 35c and the packing 35b on the outer periphery thereof are inserted into the through-hole 122 to close the through-hole 122. , The conduction between the third pressure chamber 42 and the fourth pressure chamber 44 is prevented.
 ロッドカバー48Aは、エンド側本体部16Aのエンド側の端部付近に設けられており、増力シリンダ室116aのエンド側の端を封じている。ロッドカバー48Aには、第4圧力室44の高圧エアの排気を切り替える排気切換弁37Aが設けられている。排気切換弁37Aは、ロッドカバー48Aを軸方向に貫通する貫通孔139と、貫通孔139に挿入された検知ピン137とを備える。 The rod cover 48A is provided near the end on the end side of the end-side main body 16A, and seals the end on the end side of the booster cylinder chamber 116a. The rod cover 48A is provided with an exhaust switching valve 37A that switches exhaust of high-pressure air in the fourth pressure chamber 44. The exhaust switching valve 37A includes a through hole 139 that penetrates the rod cover 48A in the axial direction, and a detection pin 137 inserted into the through hole 139.
 貫通孔139は、エンド側の端部が蓋部材150により封じられており、その蓋部材150のヘッド側に検知ピン137が配設されている。検知ピン137は、蓋部材150と検知ピン137との間に配置されたバネ等の付勢部材140により、ヘッド側に付勢されている。そのため、検知ピン137のヘッド側の先端部は、第4圧力室44内に突出している。 The end of the through hole 139 on the end side is sealed by a lid member 150, and a detection pin 137 is provided on the head side of the lid member 150. The detection pin 137 is urged toward the head by an urging member 140 such as a spring disposed between the lid member 150 and the detection pin 137. Therefore, the tip of the detection pin 137 on the head side protrudes into the fourth pressure chamber 44.
 検知ピン137の基端部138の外周部には、環状のパッキン141及びパッキン142が軸方向に離間して装着されている。パッキン141及びパッキン142は、貫通孔139と検知ピン137との間の隙間を封止する。パッキン141及びパッキン142の間には、流路143が設けられている。流路143は、内側が貫通孔139に連通し、外側が通気溝144に連通している。通気溝144は、ロッドカバー48Aの外周部の周方向の全域に亘って形成された環状の溝であり、調整ポート32Aと連通している。通気溝144のヘッド側にはパッキン146が設けられ、エンド側はパッキン148が設けられている。これらのパッキン146、148により、通気溝144が気密に保たれる。調整ポート32Aは、通気溝144、流路143及び貫通孔139を介して第4圧力室44と連通可能となっている。すなわち、本実施形態では、貫通孔139、流路143、及び通気溝144が排気路を構成する。 環状 An annular packing 141 and a packing 142 are mounted on the outer peripheral portion of the base end 138 of the detection pin 137 so as to be spaced apart in the axial direction. The packing 141 and the packing 142 seal a gap between the through hole 139 and the detection pin 137. A flow path 143 is provided between the packing 141 and the packing 142. The channel 143 has an inner side communicating with the through hole 139 and an outer side communicating with the ventilation groove 144. The ventilation groove 144 is an annular groove formed over the entire circumferential area of the outer peripheral portion of the rod cover 48A, and communicates with the adjustment port 32A. A packing 146 is provided on the head side of the ventilation groove 144, and a packing 148 is provided on the end side. These packings 146 and 148 keep the ventilation groove 144 airtight. The adjustment port 32A can communicate with the fourth pressure chamber 44 via the ventilation groove 144, the flow path 143, and the through hole 139. That is, in this embodiment, the through hole 139, the flow path 143, and the ventilation groove 144 constitute an exhaust path.
 検知ピン137が、ヘッド側に移動した状態では、貫通孔139がパッキン141、142によって塞がれており、第4圧力室44の高圧流体は排気されることはない。一方、増力ピストン22Aがエンド側に移動すると、検知ピン137がエンド側に押圧されて、パッキン141、142が流路143よりもエンド側に移動するように構成されている。パッキン141、142が流路143よりもエンド側に移動すると、第4圧力室44と調整ポート32Aとが連通する。 When the detection pin 137 is moved to the head side, the through hole 139 is closed by the packings 141 and 142, and the high-pressure fluid in the fourth pressure chamber 44 is not exhausted. On the other hand, when the booster piston 22A moves to the end side, the detection pin 137 is pressed to the end side, and the packings 141 and 142 move to the end side with respect to the flow path 143. When the packings 141 and 142 move to the end side of the flow path 143, the fourth pressure chamber 44 and the adjustment port 32A communicate.
 以上のように構成された本実施形態の流体圧シリンダ10Aは、図11A及び図11Bに示す駆動装置120Aにより駆動される。 流体 The hydraulic cylinder 10A of the present embodiment configured as described above is driven by the driving device 120A shown in FIGS. 11A and 11B.
 図11Aに示すように、駆動装置120Aは、第4チェック弁86と、絞り弁88と、切換弁102と、高圧エア供給源104と、排気口106と、第5チェック弁108とを備えている。この駆動装置120Aは、作動工程において、作動シリンダ室14aの第1圧力室38に高圧エアを供給するように構成されている。また駆動装置120Aは、図11Bに示すように、復帰工程では、第1圧力室38に蓄積されたエアの一部を、第2圧力室40に向けて供給するとともに、第4圧力室44に高圧エアを供給するように構成されている。 As shown in FIG. 11A, the driving device 120A includes a fourth check valve 86, a throttle valve 88, a switching valve 102, a high-pressure air supply source 104, an exhaust port 106, and a fifth check valve 108. I have. The driving device 120A is configured to supply high-pressure air to the first pressure chamber 38 of the operation cylinder chamber 14a in an operation process. Further, as shown in FIG. 11B, the driving device 120A supplies a part of the air accumulated in the first pressure chamber 38 to the second pressure chamber 40 and supplies the air to the fourth pressure chamber 44 in the return step. It is configured to supply high-pressure air.
 切換弁102は、例えば5ポート2位置型のバルブであり、第1ポート102a~第5ポート102eを有し、第1位置(図11A参照)と、第2位置(図11B参照)とを切り換え可能となっている。図11A及び図11Bに示すように、第1ポート102aは、配管によりヘッド側ポート28Aに接続される。第2ポート102bは、配管により調整ポート32A及び第5チェック弁108の下流側に接続される。第3ポート102cは、配管により排気口106に接続されている。第4ポート102dは、配管により高圧エア供給源104に接続されている。第5ポート102eは、配管により、絞り弁88を介して排気口106に接続されるとともに、第4チェック弁86を介してエンド側ポート30A及び第5チェック弁108の上流側に接続されている。 The switching valve 102 is, for example, a 5-port 2-position valve, has first to fifth ports 102a to 102e, and switches between a first position (see FIG. 11A) and a second position (see FIG. 11B). It is possible. As shown in FIGS. 11A and 11B, the first port 102a is connected to the head-side port 28A by piping. The second port 102b is connected to the adjustment port 32A and the downstream side of the fifth check valve 108 by piping. The third port 102c is connected to the exhaust port 106 by a pipe. The fourth port 102d is connected to a high-pressure air supply source 104 by a pipe. The fifth port 102e is connected to the exhaust port 106 via a throttle valve 88 by a pipe, and is connected to the end port 30A and the upstream side of the fifth check valve 108 via a fourth check valve 86. .
 図11Aに示すように、切換弁102が第1位置にあるときは、第1ポート102aと第4ポート102dとがつながり、かつ、第2ポート102bと第3ポート102cとがつながる。 As shown in FIG. 11A, when the switching valve 102 is at the first position, the first port 102a and the fourth port 102d are connected, and the second port 102b and the third port 102c are connected.
 また、図11Bに示すように、切換弁102が第2位置にあるときは、第1ポート102aと第5ポート102eとがつながり、かつ第2ポート102bと第4ポート102dとがつながる。切換弁102は、高圧エア供給源104からのパイロット圧又は電磁弁により、第1位置と第2位置とに切り替わる。 11B, when the switching valve 102 is at the second position, the first port 102a and the fifth port 102e are connected, and the second port 102b and the fourth port 102d are connected. The switching valve 102 is switched between a first position and a second position by a pilot pressure from a high-pressure air supply source 104 or an electromagnetic valve.
 第4チェック弁86は、切換弁102が第2位置にあるときは、ヘッド側ポート28Aからエンド側ポート30Aに向かうエアの流れを許容し、エンド側ポート30Aからヘッド側ポート28Aに向かうエアの流れを阻止する。また、第5チェック弁108は、切換弁102が第2位置にあるときは、第2ポート102bからエンド側ポート30Aに向かう高圧エアの流れを阻止する。 When the switching valve 102 is at the second position, the fourth check valve 86 allows the flow of air from the head-side port 28A to the end-side port 30A, and allows the air to flow from the end-side port 30A to the head-side port 28A. Block the flow. Further, when the switching valve 102 is at the second position, the fifth check valve 108 blocks the flow of the high-pressure air from the second port 102b toward the end-side port 30A.
 本実施形態に係る流体圧シリンダ10A及びその駆動装置120Aは以上のように構成され、以下その作用について、動作とともに説明する。 流体 The hydraulic cylinder 10A and its driving device 120A according to the present embodiment are configured as described above, and the operation and operation thereof will be described below.
(作動工程)
 図11Aに示すように、流体圧シリンダ10Aの作動工程は、駆動装置120Aの切換弁102を第1位置として行う。高圧エア供給源104からの高圧エアは、切換弁102の第1ポート102aを介してヘッド側ポート28に供給される。第4チェック弁86は、第5ポート102e側に接続されており、第4チェック弁86側には高圧エアは流れない。第2圧力室40は、エンド側ポート30A及び第5チェック弁108を介して排気口106に接続される。また、調整ポート32Aは、排気口106に接続される。
(Operation process)
As shown in FIG. 11A, the operation step of the hydraulic cylinder 10A is performed with the switching valve 102 of the driving device 120A as the first position. The high-pressure air from the high-pressure air supply source 104 is supplied to the head-side port 28 via the first port 102a of the switching valve 102. The fourth check valve 86 is connected to the fifth port 102e side, and high-pressure air does not flow to the fourth check valve 86 side. The second pressure chamber 40 is connected to the exhaust port 106 via the end-side port 30A and the fifth check valve 108. The adjustment port 32A is connected to the exhaust port 106.
 図10に示すように、作動工程において、高圧エア供給源104からの高圧エアは、ヘッド側ポート28Aから第1圧力室38に流れ込む。これにより、作動ピストン20にエンド側に向かう推力が発生する。その結果、ピストンロッド18Aがエンド側に向けてストロークする。なお、第3圧力室42及び第4圧力室44に封入された高圧エアは、導通切換弁35Aを通じて導通するため、増力ピストン22Aには、推力は発生しない。 高 圧 As shown in FIG. 10, in the operation step, high-pressure air from the high-pressure air supply source 104 flows into the first pressure chamber 38 from the head-side port 28A. As a result, a thrust toward the end side is generated in the working piston 20. As a result, the piston rod 18A strokes toward the end side. Since the high-pressure air sealed in the third pressure chamber 42 and the fourth pressure chamber 44 is conducted through the conduction switching valve 35A, no thrust is generated in the booster piston 22A.
 作動ピストン20のストロークに伴い、流体圧シリンダ10Aには、第1圧力室38の容積分の高圧エアが、高圧エア供給源104(図11A参照)から供給される。作動工程の間、第2圧力室40及び第3圧力室42に蓄えられた高圧エアの圧力は一定に保たれる。また、第2圧力室40のエアは、作動ピストン20のストロークに伴って第2圧力室40から排気される。この場合、第2圧力室40のエアは、図11Aに示すように、エンド側ポート30A及び第5チェック弁108を通って排気口106から排気される。 With the stroke of the working piston 20, high-pressure air corresponding to the volume of the first pressure chamber 38 is supplied to the hydraulic cylinder 10A from the high-pressure air supply source 104 (see FIG. 11A). During the operation process, the pressure of the high-pressure air stored in the second pressure chamber 40 and the third pressure chamber 42 is kept constant. Further, the air in the second pressure chamber 40 is exhausted from the second pressure chamber 40 with the stroke of the working piston 20. In this case, the air in the second pressure chamber 40 is exhausted from the exhaust port 106 through the end-side port 30A and the fifth check valve 108, as shown in FIG. 11A.
(増力工程)
 図12に示すように、増力ピストン22Aのストロークに伴って、導通切換弁35Aの導通切換ピン35aがヘッド側に押圧されるとともに、排気切換弁37Aの検知ピン37aがエンド側に押圧される。
(Strengthening process)
As shown in FIG. 12, with the stroke of the boost piston 22A, the conduction switching pin 35a of the conduction switching valve 35A is pressed toward the head, and the detection pin 37a of the exhaust switching valve 37A is pressed toward the end.
 その結果、導通切換ピン35aの閉塞部35cが貫通孔122に挿入されて貫通孔122を閉塞する。これにより、第3圧力室42と第4圧力室44との間の高圧エアの導通が阻止される。 As a result, the closing portion 35c of the conduction switching pin 35a is inserted into the through hole 122 to close the through hole 122. Thus, conduction of high-pressure air between the third pressure chamber 42 and the fourth pressure chamber 44 is prevented.
 また、排気切換弁37Aの検知ピン37aが、エンド側に変位することにより、検知ピン37aと貫通孔139との隙間を封止していたパッキン141、142が流路143から外れて、調整ポート32Aと第4圧力室44とが連通する。その結果、第4圧力室44に蓄えられた高圧エアは、排気口106から排気される。すなわち、第3圧力室42に高圧エアが貯留された状態に保たれる一方で、第4圧力室44の内圧が下がる。これにより、増力ピストン22Aには第4圧力室44と第3圧力室42との内圧の差に応じた推力が発生する。この推力が、作動ピストン20の推力に加わるため、ストロークエンド付近において、流体圧シリンダ10Aの推力が増大する。このように、流体圧シリンダ10Aの推力の増大は、導通切換弁35A及び排気切換弁37Aが作動する範囲での第4圧力室44の高圧エアが排気されることによって生み出される。 When the detection pin 37a of the exhaust switching valve 37A is displaced to the end side, the packings 141 and 142 that have sealed the gap between the detection pin 37a and the through hole 139 come off the flow path 143, and the adjustment port 32A and the fourth pressure chamber 44 communicate with each other. As a result, the high-pressure air stored in the fourth pressure chamber 44 is exhausted from the exhaust port 106. That is, while the state where the high-pressure air is stored in the third pressure chamber 42 is maintained, the internal pressure of the fourth pressure chamber 44 decreases. Thus, a thrust corresponding to the difference between the internal pressures of the fourth pressure chamber 44 and the third pressure chamber 42 is generated in the booster piston 22A. Since this thrust is added to the thrust of the working piston 20, the thrust of the fluid pressure cylinder 10A increases near the stroke end. As described above, the increase in the thrust of the fluid pressure cylinder 10A is generated by exhausting the high-pressure air in the fourth pressure chamber 44 in a range where the conduction switching valve 35A and the exhaust switching valve 37A operate.
(復帰工程)
 図11Bに示すように、流体圧シリンダ10Aの復帰工程は、駆動装置120Aの切換弁102を第2位置として行う。高圧エア供給源104からの高圧エアは、切換弁102の第2ポート102bを介して調整ポート32Aに供給される。切換弁102の第1ポート102aは第5ポート102eにつながり、ヘッド側ポート28Aが第4チェック弁86を介してエンド側ポート30Aにつながる。またヘッド側ポート28Aは、絞り弁88を介して排気口106につながる。その結果、第1圧力室38に蓄えられたエアの一部は、第4チェック弁86側を介して、第4圧力室44に供給される。また、第1圧力室38に蓄えられたエアの残りの一部は、排気口106から排気される。
(Return process)
As shown in FIG. 11B, the return process of the hydraulic cylinder 10A is performed by setting the switching valve 102 of the driving device 120A to the second position. The high-pressure air from the high-pressure air supply source 104 is supplied to the adjustment port 32A via the second port 102b of the switching valve 102. The first port 102a of the switching valve 102 is connected to the fifth port 102e, and the head-side port 28A is connected to the end-side port 30A via the fourth check valve 86. The head-side port 28A is connected to the exhaust port 106 via the throttle valve 88. As a result, part of the air stored in the first pressure chamber 38 is supplied to the fourth pressure chamber 44 via the fourth check valve 86. Further, the remaining part of the air stored in the first pressure chamber 38 is exhausted from the exhaust port 106.
 復帰工程では、流体圧シリンダ10Aの調整ポート32Aに高圧エア供給源104からの高圧エアが供給される。調整ポート32Aに供給された高圧エアは、第4圧力室44に流入する。これにより、増力工程において排気された高圧エアの補充が行われる。その際に補充される高圧エアの量は、作動ピストンのストロークに要する高圧エアの量に比べて僅かであり、少ない高圧エアの追加のみでよい。 In the return step, high-pressure air from the high-pressure air supply source 104 is supplied to the adjustment port 32A of the hydraulic cylinder 10A. The high-pressure air supplied to the adjustment port 32A flows into the fourth pressure chamber 44. Thereby, the high-pressure air exhausted in the boosting step is replenished. The amount of high-pressure air to be replenished at this time is small compared to the amount of high-pressure air required for the stroke of the working piston, and only a small amount of high-pressure air needs to be added.
 一方、第2圧力室40には、第1圧力室38から排気された高圧エアの一部が流入する。第1圧力室38のエアの排気が進むにつれて、第4圧力室44と第1圧力室38との圧力差が増大し、作動ピストン20がヘッド側に移動する。そして、作動ピストン20及び増力ピストン22Aがストロークの始端位置に復帰して、復帰工程が完了する。このように、作動ピストン20の復帰に要するエアは第1圧力室38から供給されるため、第2圧力室40に高圧エアを供給する必要がない。 On the other hand, a part of the high-pressure air exhausted from the first pressure chamber 38 flows into the second pressure chamber 40. As the exhaust of the air in the first pressure chamber 38 progresses, the pressure difference between the fourth pressure chamber 44 and the first pressure chamber 38 increases, and the working piston 20 moves to the head side. Then, the working piston 20 and the booster piston 22A return to the starting position of the stroke, and the return process is completed. Thus, since the air required for returning the working piston 20 is supplied from the first pressure chamber 38, it is not necessary to supply high-pressure air to the second pressure chamber 40.
 本実施形態に係る流体圧シリンダ10Aは、以下の効果を奏する。 流体 The fluid pressure cylinder 10A according to the present embodiment has the following effects.
 本実施形態の流体圧シリンダ10Aは、第3圧力室42と第4圧力室44とに高圧流体が封入され、増力切換機構33Aは、増力ピストン22Aに設けられた導通切換弁35Aと、ロッドカバー48Aに設けられた排気切換弁37Aとを備えている。この流体圧シリンダ10Aによれば、複雑なロック機構を設けることなく、ストロークエンドで推力を増大させることができる。また、ピストンとピストンロッドを連結させる機械的なロック機構が不要であるため、軸方向の衝撃に対して不適合を起こしにくくなり、信頼性に優れる。 In the fluid pressure cylinder 10A of this embodiment, a high-pressure fluid is sealed in the third pressure chamber 42 and the fourth pressure chamber 44, and the boost switching mechanism 33A includes a conduction switching valve 35A provided on the boost piston 22A and a rod cover. An exhaust switching valve 37A provided at 48A is provided. According to the fluid pressure cylinder 10A, the thrust can be increased at the stroke end without providing a complicated lock mechanism. Further, since a mechanical lock mechanism for connecting the piston and the piston rod is not required, incompatibility with respect to an axial impact is less likely to occur, and the reliability is excellent.
 また、本実施形態の流体圧シリンダ10Aは、増力ピストン22Aの径を作動ピストン20の径よりも大きくすることができる。そのため、増力ピストン22Aの径を大きくすることでストロークエンドの推力を維持しつつ、作動ピストン20の径を小型化でき、高圧エアの消費量をさらに削減できる。 In addition, in the fluid pressure cylinder 10A of the present embodiment, the diameter of the booster piston 22A can be larger than the diameter of the working piston 20. Therefore, by increasing the diameter of the booster piston 22A, the diameter of the working piston 20 can be reduced while maintaining the thrust at the stroke end, and the consumption of high-pressure air can be further reduced.
 上記において、本発明について好適な実施形態を挙げて説明したが、本発明は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の改変が可能なことは言うまでもない。 Although the present invention has been described with reference to the preferred embodiments, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the spirit of the present invention. No.
 すなわち、上記の実施形態では、流体圧シリンダ10、10Aの駆動装置120、120Aを、流体圧シリンダ10、10Aの外部に配置する例を示したが、本発明はこれに限定されるものではない。駆動装置120、120Aを構成する部材の一部又は全部を、シリンダボディ12内に内蔵させてもよい。 That is, in the above-described embodiment, the example in which the driving devices 120 and 120A of the hydraulic cylinders 10 and 10A are arranged outside the hydraulic cylinders 10 and 10A has been described, but the present invention is not limited to this. . Some or all of the members constituting the driving devices 120 and 120A may be built in the cylinder body 12.
 また、流体圧シリンダ10の第1圧力室38及び第2圧力室40に高圧流体を封入し、増力ピストン22で作動ストロークを行い、増力工程において作動ピストン20から追加の推力を発生させるように構成してもよい。 Also, a configuration is adopted in which high-pressure fluid is sealed in the first pressure chamber 38 and the second pressure chamber 40 of the fluid pressure cylinder 10, an operating stroke is performed by the booster piston 22, and an additional thrust is generated from the working piston 20 in the boosting process. May be.

Claims (16)

  1.  軸方向に延在する摺動孔(12a)が形成されたシリンダボディ(12)と、
     前記摺動孔をヘッド側の作動シリンダ室(14a)と、エンド側の増力シリンダ室(16a)とに隔てる隔壁(26)と、
     前記作動シリンダ室に配置され、前記作動シリンダ室をヘッド側の第1圧力室(38)とエンド側の第2圧力室(40)とに仕切る作動ピストン(20)と、
     前記増力シリンダ室に配置され、前記増力シリンダ室をヘッド側の第3圧力室(42)とエンド側の第4圧力室(44)とに仕切る増力ピストン(22)と、
     前記作動ピストン及び前記増力ピストンに接続されるとともに、前記隔壁を貫通してエンド側に伸び出たピストンロッド(18)と、を備え、
     前記第1圧力室、前記第2圧力室、前記第3圧力室及び前記第4圧力室のうち、隣接する2つの圧力室に高圧流体が封入されるとともに、
     前記作動ピストンが所定位置よりもヘッド側に位置する間は、前記2つの圧力室の間で高圧流体の導通を許容する一方で、前記作動ピストンが所定位置よりもエンド側に移動した際に、前記2つの圧力室の間での高圧流体の導通を阻止し、かつ、前記2つの圧力室の一方の圧力室の高圧流体を排気させる増力切換機構(33)を備えた、
     流体圧シリンダ。
    A cylinder body (12) having a sliding hole (12a) extending in the axial direction;
    A partition (26) separating the sliding hole into a working cylinder chamber (14a) on the head side and a booster cylinder chamber (16a) on the end side;
    An operation piston (20) disposed in the operation cylinder chamber, and dividing the operation cylinder chamber into a first pressure chamber (38) on the head side and a second pressure chamber (40) on the end side;
    An intensifying piston (22) arranged in the intensifying cylinder chamber, and dividing the intensifying cylinder chamber into a third pressure chamber (42) on the head side and a fourth pressure chamber (44) on the end side;
    A piston rod (18) connected to the working piston and the booster piston and extending to the end side through the partition wall;
    Among the first pressure chamber, the second pressure chamber, the third pressure chamber, and the fourth pressure chamber, a high-pressure fluid is sealed in two adjacent pressure chambers,
    While the working piston is located closer to the head than the predetermined position, while permitting the passage of the high-pressure fluid between the two pressure chambers, when the working piston moves to the end side from the predetermined position, A booster switching mechanism (33) for preventing conduction of the high-pressure fluid between the two pressure chambers and exhausting the high-pressure fluid in one of the two pressure chambers;
    Fluid pressure cylinder.
  2.  請求項1記載の流体圧シリンダであって、前記第2圧力室と前記第3圧力室とに高圧流体が封入され、
     前記増力切換機構は、
     前記第2圧力室と前記第3圧力室とに連通した連通路(34)と、
     前記第2圧力室に連通した排気路(36)と、
     前記作動ピストンが所定位置よりもヘッド側に位置する間は、前記連通路を開くとともに、前記作動ピストンが所定位置よりもエンド側に移動した際に前記連通路を閉じる導通切換弁(35)と、
     前記作動ピストンが所定位置よりもヘッド側に位置する間は、前記排気路を閉じるとともに、前記作動ピストンが所定位置よりもエンド側に移動した際に前記排気路を開いて前記第2圧力室の高圧流体の排気を行う排気切換弁(37)と、
     を有する流体圧シリンダ。
    The fluid pressure cylinder according to claim 1, wherein a high-pressure fluid is sealed in the second pressure chamber and the third pressure chamber.
    The boost switching mechanism,
    A communication path (34) communicating with the second pressure chamber and the third pressure chamber;
    An exhaust passage (36) communicating with the second pressure chamber;
    A conduction switching valve (35) for opening the communication passage while the operation piston is located on the head side of the predetermined position, and closing the communication passage when the operation piston moves to the end side of the predetermined position; ,
    While the operating piston is located closer to the head than the predetermined position, the exhaust path is closed, and when the operating piston moves to the end side than the predetermined position, the exhaust path is opened to open the second pressure chamber. An exhaust switching valve (37) for exhausting the high-pressure fluid;
    A hydraulic cylinder having:
  3.  請求項2記載の流体圧シリンダであって、前記連通路、前記排気路、前記導通切換弁及び前記排気切換弁は前記隔壁に設けられている流体圧シリンダ。 The hydraulic cylinder according to claim 2, wherein the communication path, the exhaust path, the conduction switching valve, and the exhaust switching valve are provided in the partition.
  4.  請求項1記載の流体圧シリンダであって、前記第3圧力室と前記第4圧力室とに高圧流体が封入され、
     前記増力切換機構は、
     前記第3圧力室と前記第4圧力室とに連通した連通路(35e)と、
     前記第4圧力室に連通した排気路と、
     前記作動ピストンが所定位置よりもヘッド側に位置する間は、前記連通路を開くとともに、前記作動ピストンが所定位置よりもエンド側に移動した際に前記連通路を閉じる導通切換弁と、
     前記作動ピストンが所定位置よりもヘッド側に位置する間は、前記排気路を閉じるとともに、前記作動ピストンが所定位置よりもエンド側に移動した際に前記排気路を開いて前記第4圧力室の高圧流体の排気を行う排気切換弁と、
     を有する流体圧シリンダ。
    The hydraulic cylinder according to claim 1, wherein a high-pressure fluid is sealed in the third pressure chamber and the fourth pressure chamber,
    The boost switching mechanism,
    A communication path (35e) communicating with the third pressure chamber and the fourth pressure chamber;
    An exhaust passage communicating with the fourth pressure chamber;
    While the operating piston is located closer to the head than the predetermined position, while opening the communication path, when the operating piston moves to the end side than the predetermined position, a conduction switching valve that closes the communication path,
    While the operating piston is located closer to the head than the predetermined position, the exhaust path is closed, and when the operating piston moves to the end side from the predetermined position, the exhaust path is opened to open the fourth pressure chamber. An exhaust switching valve that exhausts high-pressure fluid;
    A hydraulic cylinder having:
  5.  請求項4記載の流体圧シリンダであって、前記増力ピストンに前記連通路及び前記導通切換弁が設けられている流体圧シリンダ。 The hydraulic cylinder according to claim 4, wherein the communication passage and the conduction switching valve are provided in the booster piston.
  6.  請求項5記載の流体圧シリンダであって、前記第4圧力室のエンド側の端部を封止するロッドカバー(48)を備え、前記ロッドカバーは、前記排気路と、前記排気切換弁を備える流体圧シリンダ。 The fluid pressure cylinder according to claim 5, further comprising: a rod cover (48) for sealing an end of the fourth pressure chamber on an end side, wherein the rod cover connects the exhaust passage and the exhaust switching valve. Equipped with a hydraulic cylinder.
  7.  請求項2又は4記載の流体圧シリンダであって、前記シリンダボディは、前記排気路に連通する調整ポート(32)を有し、前記排気路は前記調整ポートを介して高圧流体を排気する流体圧シリンダ。 5. The fluid pressure cylinder according to claim 2, wherein the cylinder body has an adjustment port (32) communicating with the exhaust path, and the exhaust path exhausts high-pressure fluid through the adjustment port. Pressure cylinder.
  8.  請求項2又は4記載の流体圧シリンダであって、前記増力切換機構は、前記導通切換弁が前記連通路を閉じた後に、前記排気切換弁が前記排気路を開く流体圧シリンダ。 5. The fluid pressure cylinder according to claim 2, wherein the exhaust switching valve opens the exhaust passage after the conduction switching valve closes the communication passage.
  9.  請求項2~8のいずれか1項に記載の流体圧シリンダであって、前記導通切換弁は、一端が前記2つの圧力室のいずれか一方に向けて突出し他端が前記連通路に挿入された導通切換ピン(35a)を有し、前記導通切換ピンが前記作動ピストンの変位に伴って軸方向に押圧されることにより、前記連通路を閉塞する流体圧シリンダ。 9. The fluid pressure cylinder according to claim 2, wherein one end of the conduction switching valve protrudes toward one of the two pressure chambers and the other end is inserted into the communication passage. A fluid pressure cylinder having a conduction switching pin (35a), wherein the conduction switching pin is axially pressed with the displacement of the working piston, thereby closing the communication passage.
  10.  請求項2~8のいずれか1項に記載の流体圧シリンダであって、前記排気切換弁は、基端部が前記排気路に挿入されて前記排気路を封止するとともに、先端部がヘッド側に突出した検知ピン(37a)を有し、前記検知ピンが前記作動ピストン又は前記増力ピストンに押圧されてエンド側に変位することにより、前記排気路の封止が解除される流体圧シリンダ。 9. The fluid pressure cylinder according to claim 2, wherein a base end of the exhaust switching valve is inserted into the exhaust passage to seal the exhaust passage, and a tip end of the exhaust switching valve is a head. A fluid pressure cylinder having a detection pin (37a) projecting to the side, wherein the detection pin is pressed by the operating piston or the booster piston and displaced to the end side, whereby the sealing of the exhaust passage is released.
  11.  請求項2又は3記載の流体圧シリンダであって、前記排気路には、排出される向きにのみ流体を通過させ、その逆向きの流体を阻止する第1チェック弁(52)が設けられている流体圧シリンダ。 4. The fluid pressure cylinder according to claim 2, wherein the exhaust passage is provided with a first check valve (52) that allows fluid to pass only in a direction in which the fluid is discharged and prevents fluid in the opposite direction. Fluid pressure cylinder.
  12.  請求項2又は3記載の流体圧シリンダであって、前記第2圧力室に連通する補充流路(78)をさらに有し、前記補充流路には、前記第2圧力室に向かう流体を通過させる第2チェック弁(54)が設けられている流体圧シリンダ。 4. The fluid pressure cylinder according to claim 2, further comprising a refill channel (78) communicating with the second pressure chamber, wherein the refill channel passes a fluid flowing toward the second pressure chamber. 7. A fluid pressure cylinder provided with a second check valve (54) to be operated.
  13.  請求項7記載の流体圧シリンダであって、さらに前記第4圧力室と前記調整ポートとに連通する補助流路(76)を有し、前記補助流路には、前記第4圧力室から前記調整ポートに向かう方向の流体のみを通過させ、その逆向きの流体を阻止する第3チェック弁(56)が設けられている流体圧シリンダ。 The fluid pressure cylinder according to claim 7, further comprising an auxiliary flow path (76) communicating with the fourth pressure chamber and the adjustment port, wherein the auxiliary flow path is provided from the fourth pressure chamber to the adjustment port. A fluid pressure cylinder provided with a third check valve (56) for passing only fluid in the direction toward the adjustment port and blocking fluid in the opposite direction.
  14.  請求項2記載の流体圧シリンダであって、前記第1圧力室、前記第2圧力室及び前記第4圧力室に接続される駆動装置(120)をさらに備え、
     前記駆動装置は、切換弁(102)と、高圧流体供給源(104)と、排気口(106)と、第4チェック弁(86)とを有し、
     前記切換弁の第1位置において、前記第1圧力室が前記高圧流体供給源に連通するとともに、前記第4圧力室及び前記増力切換機構が前記排気口に連通し、
     前記切換弁の第2位置において、前記第1圧力室が前記第4チェック弁を介して前記第4圧力室に連通するとともに前記第1圧力室が前記排気口に連通し、かつ、前記第2圧力室が前記高圧流体供給源に連通する、
     流体圧シリンダ。
    The fluid pressure cylinder according to claim 2, further comprising a driving device (120) connected to the first pressure chamber, the second pressure chamber, and the fourth pressure chamber,
    The driving device has a switching valve (102), a high-pressure fluid supply source (104), an exhaust port (106), and a fourth check valve (86),
    In a first position of the switching valve, the first pressure chamber communicates with the high-pressure fluid supply source, and the fourth pressure chamber and the boost switching mechanism communicate with the exhaust port.
    In the second position of the switching valve, the first pressure chamber communicates with the fourth pressure chamber via the fourth check valve, the first pressure chamber communicates with the exhaust port, and the second pressure chamber communicates with the exhaust port. A pressure chamber in communication with the high pressure fluid supply;
    Fluid pressure cylinder.
  15.  請求項4記載の流体圧シリンダであって、前記第1圧力室、前記第2圧力室及び前記第4圧力室に接続される駆動装置(120A)をさらに備え、
     前記駆動装置は、切換弁と、高圧流体供給源と、排気口と、第4チェック弁とを有し、
     前記切換弁の第1位置において、前記第1圧力室が前記高圧流体供給源に連通するとともに、前記第4圧力室及び前記第2圧力室が前記排気口に連通し、
     前記切換弁の第2位置において、前記第1圧力室が前記第4チェック弁を介して前記第2圧力室に連通するとともに前記第1圧力室が前記排気口に連通し、かつ、前記第4圧力室が前記高圧流体供給源に連通する、
     流体圧シリンダ。
    The fluid pressure cylinder according to claim 4, further comprising a driving device (120A) connected to the first pressure chamber, the second pressure chamber, and the fourth pressure chamber,
    The driving device has a switching valve, a high-pressure fluid supply source, an exhaust port, and a fourth check valve,
    In a first position of the switching valve, the first pressure chamber communicates with the high-pressure fluid supply source, and the fourth pressure chamber and the second pressure chamber communicate with the exhaust port.
    In a second position of the switching valve, the first pressure chamber communicates with the second pressure chamber via the fourth check valve, the first pressure chamber communicates with the exhaust port, and the fourth pressure chamber communicates with the exhaust port. A pressure chamber in communication with the high pressure fluid supply;
    Fluid pressure cylinder.
  16.  請求項14又は15記載の流体圧シリンダであって、前記第1圧力室と前記排気口との間に絞り弁(88)が設けられた流体圧シリンダ。 The hydraulic cylinder according to claim 14 or 15, wherein a throttle valve (88) is provided between the first pressure chamber and the exhaust port.
PCT/JP2019/032236 2018-09-13 2019-08-19 Hydraulic cylinder WO2020054322A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19859799.9A EP3835600B1 (en) 2018-09-13 2019-08-19 Hydraulic cylinder
RU2021110015A RU2769896C9 (en) 2018-09-13 2019-08-19 Fluid pressure cylinder
BR112021004709-3A BR112021004709A2 (en) 2018-09-13 2019-08-19 hydraulic cylinder
KR1020217010956A KR102531495B1 (en) 2018-09-13 2019-08-19 fluid pressure cylinder
JP2020546791A JP7137163B2 (en) 2018-09-13 2019-08-19 hydraulic cylinder
MX2021002864A MX2021002864A (en) 2018-09-13 2019-08-19 Hydraulic cylinder.
CN201980059806.9A CN112689714B (en) 2018-09-13 2019-08-19 Fluid pressure cylinder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018171907 2018-09-13
JP2018-171907 2018-09-13

Publications (1)

Publication Number Publication Date
WO2020054322A1 true WO2020054322A1 (en) 2020-03-19

Family

ID=69777801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032236 WO2020054322A1 (en) 2018-09-13 2019-08-19 Hydraulic cylinder

Country Status (9)

Country Link
EP (1) EP3835600B1 (en)
JP (1) JP7137163B2 (en)
KR (1) KR102531495B1 (en)
CN (1) CN112689714B (en)
BR (1) BR112021004709A2 (en)
MX (1) MX2021002864A (en)
RU (1) RU2769896C9 (en)
TW (1) TWI702344B (en)
WO (1) WO2020054322A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3896293A1 (en) * 2020-04-14 2021-10-20 SMC Corporation Fluid pressure cylinder
RU224941U1 (en) * 2023-12-13 2024-04-09 Общество с ограниченной ответственностью "ГИДРО-СТАР" HYDRAULIC CYLINDER

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT526647B1 (en) * 2022-10-20 2024-07-15 Stiwa Automation Gmbh Pneumatic cylinder for linear adjustment of a first component and a second component relative to each other

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224192U (en) * 1975-08-09 1977-02-19
JP2018017269A (en) 2016-07-26 2018-02-01 Smc株式会社 Fluid pressure cylinder with enforcing mechanism
JP2018054117A (en) * 2016-09-21 2018-04-05 Smc株式会社 Driving method and driving device for fluid pressure cylinder

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1165818A1 (en) * 1983-04-01 1985-07-07 Горьковский Конструкторско-Технологический Институт Booster
FR2575527B1 (en) * 1984-12-28 1988-08-26 Telemecanique Electrique PNEUMATIC OR HYDRAULIC CYLINDER
EP0738826B1 (en) * 1995-04-18 2000-11-29 Wärtsilä NSD Schweiz AG Hydraulic device with differential pistons and its application to a varible thrust drive
DE19925600A1 (en) * 1999-06-04 2000-12-14 Sbs Sondermaschinen Gmbh Light construction hydraulic cylinder has tie rod mounted in outer cylinder tube that bears peripheral forces of hydraulic internal pressure, either outside or inside working chamber
CN101655112B (en) * 2009-08-21 2011-11-16 东莞市安德丰电池有限公司 Series cylinder
GB0918364D0 (en) * 2009-10-21 2009-12-02 Proseal Uk Ltd Actuator assembly
WO2013192148A1 (en) * 2012-06-18 2013-12-27 Flowserve Management Company Fluid intensifier for a dry gas seal system
EP2952750B1 (en) * 2014-06-04 2018-09-05 MOOG GmbH Hydraulic system
JP6558582B2 (en) * 2016-08-10 2019-08-14 Smc株式会社 Fluid pressure device
JP6598079B2 (en) * 2016-12-06 2019-10-30 Smc株式会社 Rod assembly and fluid pressure device
JP6598083B2 (en) * 2016-12-06 2019-10-30 Smc株式会社 Piston assembly and fluid pressure device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224192U (en) * 1975-08-09 1977-02-19
JP2018017269A (en) 2016-07-26 2018-02-01 Smc株式会社 Fluid pressure cylinder with enforcing mechanism
JP2018054117A (en) * 2016-09-21 2018-04-05 Smc株式会社 Driving method and driving device for fluid pressure cylinder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3896293A1 (en) * 2020-04-14 2021-10-20 SMC Corporation Fluid pressure cylinder
JP2021169824A (en) * 2020-04-14 2021-10-28 Smc株式会社 Fluid pressure cylinder
US11261885B2 (en) 2020-04-14 2022-03-01 Smc Corporation Fluid pressure cylinder
JP7395131B2 (en) 2020-04-14 2023-12-11 Smc株式会社 fluid pressure cylinder
RU224941U1 (en) * 2023-12-13 2024-04-09 Общество с ограниченной ответственностью "ГИДРО-СТАР" HYDRAULIC CYLINDER

Also Published As

Publication number Publication date
TWI702344B (en) 2020-08-21
KR102531495B1 (en) 2023-05-11
EP3835600B1 (en) 2023-08-16
CN112689714A (en) 2021-04-20
BR112021004709A2 (en) 2021-06-01
RU2769896C9 (en) 2022-04-26
KR20210049935A (en) 2021-05-06
MX2021002864A (en) 2021-05-28
JPWO2020054322A1 (en) 2021-08-30
RU2769896C1 (en) 2022-04-07
JP7137163B2 (en) 2022-09-14
CN112689714B (en) 2023-05-16
TW202020318A (en) 2020-06-01
EP3835600A1 (en) 2021-06-16
EP3835600A4 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
EP2899400B1 (en) Compressed air driven reciprocating piston hydraulic pump
KR20180071261A (en) Fluid control valve
WO2020054322A1 (en) Hydraulic cylinder
JPH02102901A (en) Method and device for filling hydropneumatic intensifying type pressure transducer with pressure oil
WO2020054320A1 (en) Hydraulic cylinder
WO2021029236A1 (en) Motor, and hydraulic pump device comprising said motor
CN110271526A (en) The pulsation dampener of brake fluid system
JP6780820B2 (en) Air cylinder
CN113513554A (en) Cylinder device
KR20210120905A (en) Pressure-booster output stabilizer
WO2020054324A1 (en) Hydraulic cylinder
WO2020054323A1 (en) Drive device for hydraulic cylinder
JPH11325149A (en) Shock absorber
JP6796291B2 (en) Air cylinder
KR101243834B1 (en) Brake Actuator Unit
JP7436426B2 (en) Pressure booster
JPH116503A (en) Multistage type double acting cylinder device
JP5684166B2 (en) Fluid pressure cylinder
WO2020054321A1 (en) Hydraulic cylinder
KR20210039229A (en) Accumulator
JP2019183931A (en) Fluid pressure cylinder
JPH04132883A (en) Air-driven pump
JPH01279525A (en) Liquid pressure control device for circuit breaker
JP2005325931A (en) Piston type accumulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859799

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546791

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019859799

Country of ref document: EP

Effective date: 20210312

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021004709

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217010956

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021004709

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210312