WO2020054218A1 - Benzoxazine compound, curable resin composition, adhesive, adhesive film, cured object, circuit board, interlayer dielectric material, and multilayered printed wiring board - Google Patents

Benzoxazine compound, curable resin composition, adhesive, adhesive film, cured object, circuit board, interlayer dielectric material, and multilayered printed wiring board Download PDF

Info

Publication number
WO2020054218A1
WO2020054218A1 PCT/JP2019/028731 JP2019028731W WO2020054218A1 WO 2020054218 A1 WO2020054218 A1 WO 2020054218A1 JP 2019028731 W JP2019028731 W JP 2019028731W WO 2020054218 A1 WO2020054218 A1 WO 2020054218A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
resin composition
independently
substituent
formula
Prior art date
Application number
PCT/JP2019/028731
Other languages
French (fr)
Japanese (ja)
Inventor
さやか 脇岡
幸平 竹田
達史 林
誠実 新土
悠太 大當
悠子 川原
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201980051984.7A priority Critical patent/CN112533906A/en
Priority to KR1020217002680A priority patent/KR20210057004A/en
Priority to JP2019547158A priority patent/JP7474054B2/en
Publication of WO2020054218A1 publication Critical patent/WO2020054218A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/041,3-Oxazines; Hydrogenated 1,3-oxazines
    • C07D265/121,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems
    • C07D265/141,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D265/161,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring with only hydrogen or carbon atoms directly attached in positions 2 and 4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3437Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a benzoxazine compound that can be used for a curable resin composition having excellent flexibility before curing and having excellent dielectric properties after curing.
  • the present invention also provides a curable resin composition containing the benzoxazine compound, an adhesive, an adhesive film, a cured product, a circuit board, an interlayer insulating material, and a multilayer printed wiring board using the curable resin composition.
  • a curable resin composition containing the benzoxazine compound, an adhesive, an adhesive film, a cured product, a circuit board, an interlayer insulating material, and a multilayer printed wiring board using the curable resin composition.
  • Curable resins such as epoxy resins, which have low shrinkage and are excellent in adhesion, insulation, and chemical resistance, are used in many industrial products.
  • a curable resin composition used for an interlayer insulating material or the like of a printed wiring board requires dielectric properties such as a low dielectric constant and a low dielectric loss tangent.
  • Patent Documents 1 and 2 disclose curable resin compositions containing a curable resin and a compound having a specific structure as a curing agent. ing.
  • a curable resin composition has a problem that it is difficult to achieve both flexibility before curing and dielectric properties after curing.
  • An object of the present invention is to provide a benzoxazine compound which can be used for a curable resin composition having excellent flexibility before curing and having excellent dielectric properties after curing.
  • the present invention also provides a curable resin composition containing the benzoxazine compound, an adhesive, an adhesive film, a cured product, a circuit board, an interlayer insulating material, and a multilayer printed wiring board using the curable resin composition. The purpose is to provide.
  • the present invention is a benzoxazine compound having a diamine residue having an aliphatic skeleton having 4 or more carbon atoms and / or a triamine residue having an aliphatic skeleton having 4 or more carbon atoms and a benzoxazine ring in a molecule.
  • the present invention will be described in detail.
  • the present inventors have found that by using a benzoxazine compound having a specific structure, a curable resin composition having excellent flexibility before curing and having excellent dielectric properties after curing can be obtained. Was completed.
  • the benzoxazine compound of the present invention has a diamine residue having an aliphatic skeleton having 4 or more carbon atoms (hereinafter, also simply referred to as “diamine residue”) and / or an aliphatic skeleton having 4 or more carbon atoms in a molecule.
  • a triamine residue hereinafter, also simply referred to as “triamine residue”. Since the benzoxazine compound of the present invention has the above-mentioned diamine residue and / or the above-mentioned triamine residue, it improves the flexibility of the curable resin composition before curing when it is blended with the curable resin composition. Can be.
  • the resulting cured product of the curable resin composition has a low dielectric constant and low dielectric constant. It has excellent dielectric properties such as dielectric loss tangent.
  • the “residue” means a structure of a portion other than a functional group provided for bonding, for example, “diamine residue” means a structure of a portion other than an amino group in a raw material diamine. I do.
  • the lower limit of the number of carbon atoms in the aliphatic skeleton of the diamine residue and the triamine residue is 4.
  • the carbon number of the aliphatic skeleton of the diamine residue and the triamine residue is 4 or more, the resulting curable resin composition has excellent flexibility before curing and excellent dielectric properties after curing. It will be.
  • a preferred lower limit of the number of carbon atoms in the aliphatic skeleton of the diamine residue and the triamine residue is 7, and a more preferred lower limit is 8.
  • the upper limit of the number of carbon atoms in the aliphatic skeleton of the diamine residue and the triamine residue is not particularly limited, but is substantially 90.
  • the aliphatic skeleton of the diamine residue and the triamine residue may be substituted.
  • substituents include a halogen atom, an aryl group, an alkoxy group, a nitro group, and a cyano group.
  • an aliphatic diamine can be used as the diamine from which the diamine residue is derived.
  • the aliphatic diamine include an aliphatic diamine derived from dimer acid, a linear or branched aliphatic diamine, an aliphatic ether diamine, and an alicyclic diamine. Of these, aliphatic diamines derived from dimer acid are preferred.
  • the aliphatic diamine derived from the dimer acid include dimer acid which is a dimer of an aliphatic acid having 10 to 30 carbon atoms such as oleic acid, linoleic acid, linolenic acid, palmitoleic acid, and elaidic acid.
  • Examples include dimer diamines derived therefrom and hydrogenated dimer diamines thereof.
  • Examples of the linear or branched aliphatic diamine include 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 11-undecanediamine, 1,12-dodecanediamine, 1,14-tetradecanediamine, 1,16-hexadecanediamine, 1,18-octadecanediamine, 1,20-eicosanediamine, 2-methyl-1,8-octane Examples thereof include diamine, 2-methyl-1,9-nonanediamine, and 2,7-dimethyl-1,8-octanediamine.
  • Examples of the aliphatic ether diamine include 2,2′-oxybis (ethylamine), 3,3′-oxybis (propylamine), and 1,2-bis (2-aminoethoxy) ethane.
  • Examples of the alicyclic diamine include 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine.
  • the diamine from which the diamine residue is derived the main chain obtained by the reaction of the aliphatic diamine and the acid dianhydride has an acid dianhydride residue, and both ends have an aliphatic diamine.
  • a diamine having an amino group derived therefrom can also be used.
  • Examples of the acid dianhydride include pyromellitic anhydride, 3,3′-oxydiphthalic anhydride, 3,4′-oxydiphthalic anhydride, 4,4′-oxydiphthalic anhydride, and 4,4 ′ -(4,4'-isopropylidenediphenoxy) diphthalic anhydride, acid dianhydride of 4,4'-bis (2,3-dicarboxylphenoxy) diphenyl ether, p-phenylenebis (trimellitic acid monoester acid) Anhydride), 2,3,3 ', 4'-biphenyltetracarboxylic anhydride, and the like. Among them, 4,4 '-(4,4'-isopropylidenediphenoxy) diphthalic anhydride is preferred.
  • an aliphatic triamine can be used as the triamine from which the triamine residue is derived.
  • the aliphatic triamine include an aliphatic triamine derived from trimer acid, and a linear or branched aliphatic triamine. Of these, aliphatic triamines derived from the above trimer acids are preferred.
  • the aliphatic triamine derived from the trimer acid include trimer acid, which is a trimer of an aliphatic acid having 10 to 30 carbon atoms such as oleic acid, linoleic acid, linolenic acid, palmitoleic acid, and elaidic acid. Examples include a derived trimer triamine and its hydrogenated trimer triamine.
  • linear or branched aliphatic triamine examples include 3,3′-diamino-N-methyldipropylamine, 3,3′-diaminodipropylamine, diethylenetriamine, bis (hexamethylene) triamine, 2,2 '-Bis (methylamino) -N-methyldiethylamine and the like.
  • the aliphatic triamine may be used in a state of a mixture with the aliphatic diamine.
  • aliphatic diamines and / or aliphatic triamines include, for example, aliphatic diamines and / or aliphatic triamines manufactured by BASF, and aliphatic diamines and / or aliphatics manufactured by Crowda. Triamine and the like.
  • Examples of the aliphatic diamine and / or aliphatic triamine manufactured by BASF include Versamine 551 and Versamine 552.
  • Examples of the aliphatic diamine and / or aliphatic triamine manufactured by Croda include priamine 1071, priamine 1073, priamine 1074, priamine 1075, and the like.
  • the benzoxazine compound of the present invention has the following formula (1-1) or (1-2) or the following formula (2-) as a structure containing the diamine residue and / or the triamine residue and the benzoxazine ring. It preferably has a structure represented by 1) or (2-2), or the following formula (3).
  • the benzoxazine of the present invention has a structure represented by the following formula (1-1) or (1-2), the following formula (2-1) or (2-2), or the following formula (3):
  • the compounds have better flexibility before curing and dielectric properties after curing.
  • A is the above-mentioned diamine residue, and X and X 'are each independently a hydrogen atom or any substituent.
  • A is the above triamine residue, and X, X ′ and X ′′ are each independently a hydrogen atom or any substituent.
  • A is the diamine residue
  • B and B ′ are each independently any organic group
  • R and R ′ are each independently a hydrogen atom or Any substituent
  • B and each R may combine to form a ring structure
  • B 'and each R' may combine to form a ring structure
  • Y ′ are each independently a hydrogen atom or any substituent.
  • A is the above triamine residue
  • B, B ′ and B ′′ are each independently any organic group
  • R, R ′ and R '' Is each independently a hydrogen atom or an optional substituent
  • B and each R may be bonded to form a ring structure
  • B ′ and each R ′ are To form a ring structure
  • B '' and each R '' may be combined to form a ring structure
  • Y, Y ′ and Y ′′ are each independently And is a hydrogen atom or any substituent.
  • a and A ′ are each independently the above-mentioned diamine residue
  • B is any organic group
  • R and R ′ are each independently a hydrogen atom or any A substituent
  • B and R may be bonded to each other to form a ring structure
  • B and R ′ may be bonded to each other to form a ring structure
  • X and X ′ are Each is independently a hydrogen atom or any substituent.
  • examples of the substituent include: Examples thereof include a halogen atom, a linear or branched alkyl group, a linear or branched alkenyl group, an alicyclic group, an aryl group, an alkoxy group, a nitro group, and a cyano group.
  • the hydrogen atom of the aromatic ring is May be substituted with a plurality of the substituents.
  • examples of the substituent include: Examples thereof include a linear or branched alkyl group, a linear or branched alkenyl group, an alicyclic group, an aryl group, a phenyl group having an alkyl group or an alkoxy group as a substituent, and the like.
  • the hydrogen atom of the aromatic ring is May be substituted with a plurality of the substituents.
  • each R in the above formula (2-1), and B 'and each R', and B and each R, B 'and each R' and B 'in the above formula (2-2) 'And each R'' preferably form a ring structure.
  • the ring structure is preferably an imide ring.
  • the structure represented by the above formula (2-1) is preferably a structure represented by the following formula (4).
  • A is the above diamine residue
  • C and C ′ are acid dianhydride residues
  • Y and Y ′ are each independently a hydrogen atom or any substituent. is there.
  • examples of the substituent include a linear or branched alkyl group, a linear or branched alkenyl group, and an alicyclic group. Examples include a phenyl group having a formula group, an aryl group, an alkyl group, or an alkoxy group as a substituent.
  • the hydrogen atom of the aromatic ring may be substituted with a plurality of the substituents.
  • Examples of the acid dianhydrides derived from the acid dianhydride residues represented by C and C ′ in the formula (4) include the acid dianhydrides in the above-described reaction between the aliphatic diamine and the acid dianhydride. Similar ones can be mentioned.
  • substituents examples include a halogen atom, a linear or branched alkyl group, and a linear or branched alkenyl group. , An alicyclic group, an aryl group, an alkoxy group, a nitro group, a cyano group and the like.
  • the hydrogen atom of the aromatic ring may be substituted with a plurality of the substituents.
  • B and R and B and R ′ in the above formula (3) form a ring structure.
  • the ring structure is preferably an imide ring.
  • a structure represented by the following formula (5) is preferable.
  • a and A ′ are each independently the above-described diamine residue, C is an acid dianhydride residue, and X and X ′ are each independently a hydrogen atom or It is an optional substituent.
  • substituents examples include a halogen atom, a linear or branched alkyl group, and a linear or branched alkenyl group. , An alicyclic group, an aryl group, an alkoxy group, a nitro group, a cyano group and the like.
  • the hydrogen atom of the aromatic ring may be substituted with a plurality of the substituents.
  • the benzoxazine compound of the present invention has a repeating structural unit represented by the following formula (6), the following formula (7), or the following formula (8) as a structure containing the diamine residue and the benzoxazine ring. It is also preferred.
  • the benzoxazine compound of the present invention has flexibility before curing and after curing. Is excellent due to its dielectric properties and mechanical strength.
  • A is the diamine residue described above, and Z is a bond or any organic group. Some or all of the hydrogen atoms of the aromatic ring in the formula (6) may be substituted with any substituent.
  • A is the diamine residue
  • B and B ′ are each independently any organic group
  • R and R ′ are each independently a hydrogen atom or any A substituent
  • B and R may be bonded to each other to form a ring structure
  • B ′ and R ′ may be bonded to each other to form a ring structure
  • Organic group
  • a and A ′ are each independently the above-mentioned diamine residue
  • B is an optional organic group
  • R and R ′ are each independently a hydrogen atom or an optional A substituent
  • B and R may combine to form a ring structure
  • B and R ′ may combine to form a ring structure
  • Z represents a bond or Any organic group.
  • examples of the substituent include a halogen atom, a linear or branched alkyl group, a linear or branched alkyl group.
  • examples include a chain alkenyl group, an alicyclic group, an aryl group, an alkoxy group, a nitro group, and a cyano group.
  • W in the above formula (7) is preferably the diamine residue or a diamine residue having no aliphatic skeleton having 4 or more carbon atoms.
  • B and each R and B 'and each R' in the above formula (7) form a ring structure.
  • the ring structure is preferably an imide ring.
  • examples of the substituent include a halogen atom, a linear or branched alkyl group, a linear or branched Examples include a chain alkenyl group, an alicyclic group, an aryl group, an alkoxy group, a nitro group, and a cyano group.
  • B and R, and B and R 'in the above formula (8) form a ring structure.
  • the ring structure is preferably an imide ring.
  • the preferred lower limit of the molecular weight of the benzoxazine compound of the present invention is 300, and the preferred upper limit is 200,000.
  • the benzoxazine compound of the present invention is used in the curable resin composition, the obtained curable resin composition has flexibility before curing, and the dielectric properties of the cured product, when the molecular weight is within this range. Will be more excellent.
  • a more preferred lower limit of the molecular weight of the benzoxazine compound of the present invention is 400, and a more preferred upper limit is 100,000.
  • the above-mentioned ⁇ molecular weight '' is a molecular weight determined from the structural formula for a compound whose molecular structure is specified, but for a compound having a wide distribution of the degree of polymerization and a compound whose modification site is unspecified, It may be expressed using a number average molecular weight.
  • the above “number average molecular weight” is a value determined by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and measuring in terms of polystyrene. Examples of a column used for measuring the number average molecular weight in terms of polystyrene by GPC include JAIGEL-2HA (manufactured by Nippon Kagaku Kogyo Co., Ltd.).
  • a method for producing a benzoxazine compound having a structure represented by the above formula (1-1) or the above formula (1-2) includes, for example, the above diamine or the above triamine, Examples thereof include a method of reacting a monofunctional phenol compound with paraformaldehyde.
  • Examples of the monofunctional phenol compound include phenol, o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, and 2,6-dimethylphenol Phenol, 2-ethylphenol, 3-ethylphenol, 4-ethylphenol, 4-tert-butylphenol, p-octylphenol, p-cumylphenol, dodecylphenol, o-phenylphenol, p-phenylphenol, 1-naphthol, Examples thereof include 2-naphthol, m-methoxyphenol, p-methoxyphenol, m-ethoxyphenol, p-ethoxyphenol, 3,4-dimethylphenol, and 3,5-dimethylphenol. Of these, phenol is preferred. These monofunctional phenol compounds may be used alone or in combination of two or more.
  • examples of a method for producing a benzoxazine compound having a structure represented by the above formula (2-1) or the above formula (2-2) include the following methods. . That is, first, the diamine or the triamine is reacted with a twice molar amount of the acid dianhydride to obtain an imide oligomer having an acid anhydride group at all terminals. By reacting the obtained imide oligomer having an acid anhydride group at all terminals with a 2-fold molar amount of 3-aminophenol, an imide oligomer having a phenolic hydroxyl group at all terminals is obtained. A method of reacting the obtained imide oligomer having a phenolic hydroxyl group at all terminals, a monoamine compound, and paraformaldehyde, and the like can be given.
  • Examples of the monoamine compound include aniline, o-toluidine, m-toluidine, p-toluidine, 2,3-dimethylaniline, 2,4-dimethylaniline, 2,5-dimethylaniline, 3,4-dimethylaniline, 3,5-dimethylaniline, 2-tert-butylaniline, 3-tert-butylaniline, 4-tert-butylaniline, 1-naphthylamine, 2-naphthylamine, 1-aminoanthracene, 2-aminoanthracene, 9-aminoanthracene , 1-aminopyrene, 3-chloroaniline, o-anisidine, m-anisidine, p-anisidine, 1-amino-2-methylnaphthalene, 4-ethylaniline, 4-ethynylaniline, 4-isopropylaniline, 4- (methylthio ) Aniline and the like. Of these, ani
  • examples of a method for producing a benzoxazine compound having a structure represented by the above formula (3) include the following methods. That is, first, an acid dianhydride is reacted with twice the amount of the diamine to obtain an imide oligomer having amino groups at both ends. Next, a method of reacting the obtained imide oligomer having an amino group at both terminals, a monofunctional phenol compound, and paraformaldehyde, and the like are exemplified.
  • a method for producing a benzoxazine compound having a structure represented by the above formula (6) includes, for example, a method of reacting the above diamine, a bifunctional phenol compound, and paraformaldehyde. And the like.
  • bifunctional phenol compound examples include 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2- Bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 2,2-bis (4-hydroxyphenyl) hexafluoro Propane, 4,4′-dihydroxydiphenyl sulfone, 2-hydroxyphenyl ether, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,3 -Bis (2- (4-hydroxyphenyl) -2) propyl) benzene, 1,4-bis (2- (4 Hydroxyphenyl) -2) propyl) benzene.
  • a monofunctional phenol compound may be used together with the bifunctional phenol compound.
  • the monofunctional phenol compound those similar to the method for producing a benzoxazine compound having a structure represented by the above formula (1-1) or the above formula (1-2) can be used.
  • examples of a method for producing a benzoxazine compound having a structure represented by the above formula (7) include the following methods. That is, first, the above diamine is reacted with twice the amount of an acid dianhydride to obtain an imide oligomer having an acid anhydride group at both terminals. The resulting imide oligomer having an acid anhydride group at both ends is reacted with a 2-fold molar amount of 3-aminophenol to obtain an imide oligomer having a phenolic hydroxyl group at both ends.
  • the obtained imide oligomer having a phenolic hydroxyl group at both ends the above diamine (diamine having an aliphatic skeleton having 4 or more carbon atoms) or diamine having no aliphatic skeleton having 4 or more carbon atoms, and paraformaldehyde A reaction method and the like can be mentioned.
  • diamine having no aliphatic skeleton having 4 or more carbon atoms examples include, for example, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, bis (4- (4-aminophenoxy) phen
  • examples of a method for producing a benzoxazine compound having a structure represented by the above formula (8) include the following methods. That is, first, an acid dianhydride is reacted with twice the amount of the diamine to obtain an imide oligomer having amino groups at both ends. Next, a method of reacting the obtained imide oligomer having an amino group at both terminals, a bifunctional phenol compound, and paraformaldehyde, and the like can be mentioned.
  • the bifunctional phenol compound those similar to the method for producing a benzoxazine compound having a structure represented by the above formula (6) can be used.
  • a monofunctional phenol compound may be used together with the bifunctional phenol compound.
  • the monofunctional phenol compound those similar to the method for producing a benzoxazine compound having a structure represented by the above formula (1-1) or the above formula (1-2) can be used.
  • the reaction for forming the benzoxazine ring of the benzoxazine compound of the present invention can be performed in a solvent or without a solvent.
  • the reaction solvent to be used include aromatic nonpolar solvents and halogen solvents.
  • the aromatic nonpolar solvent include benzene, toluene, xylene, pseudocumene, and mesitylene.
  • the halogen solvent include chloroform, dichloromethane and the like. Among them, toluene and xylene are preferred, and toluene is more preferred, because the burden on the environment and the human body is small, and the versatility is high and the cost is low.
  • the above solvents may be used alone or in combination of two or more.
  • alcohols may be used in combination with the aromatic non-polar solvent.
  • the alcohol is not particularly limited, but is preferably an alcohol having a boiling point lower than that of the aromatic non-polar solvent.
  • examples of such alcohols include alcohols having 4 or less carbon atoms. Among them, methanol, ethanol, 1-propanol, isopropanol, 1-butanol, 2-butanol and isobutanol are preferred. These alcohols may be used alone or in combination of two or more.
  • the reaction solvent may be refluxed.
  • water is generated in the reaction system.
  • the water has an action of suppressing the progress of the synthesis reaction of the benzoxazine compound by solvation.
  • a solvent that azeotropes with water is used as a synthesis solvent, water generated during the reaction may be azeotropically distilled out of the system in order to allow the reaction to proceed efficiently.
  • water generated during the reaction can be distilled off by using, for example, a constant-pressure dropping funnel with a cock, a Dimroth condenser, a Dean-Stark apparatus, or the like.
  • a heating treatment is performed during the synthesis.
  • the heating treatment method include a method in which the temperature is raised to a predetermined temperature using a temperature controller such as an oil bath, and then the temperature is kept constant.
  • the predetermined temperature in the heating treatment is not particularly limited, but is preferably adjusted so that the temperature of the reaction solution is 50 ° C. to 150 ° C.
  • the temperature of the reaction solution is 50 ° C. or higher, the synthesis reaction of the benzoxazine compound can be prevented from slowing down, and the synthesis efficiency can be improved.
  • the temperature of the reaction solution is 150 ° C. or lower, gelation of the reaction solution during the synthesis reaction can be suppressed.
  • the duration of the heating treatment is not particularly limited, but it is preferable to continue the heating for about 1 hour to 10 hours after the start of the heating.
  • the duration of the heating treatment is 1 hour or more, the synthesis reaction can proceed sufficiently and the synthesis yield can be improved.
  • the duration of the heating treatment is 10 hours or less, gelation of the reaction solution and insolubilization of the benzoxazine compound as a synthetic product can be suppressed.
  • the reaction medium may be released from contact with a temperature controller such as an oil bath and allowed to cool, or may be cooled using a refrigerant or the like.
  • a temperature controller such as an oil bath and allowed to cool, or may be cooled using a refrigerant or the like.
  • the method of removing the benzoxazine compound from the reaction solution after cooling include poor solvent reprecipitation, concentration and solidification (solvent evaporation under reduced pressure), and spray drying.
  • the curable resin composition containing the benzoxazine compound of the present invention is also one of the present invention.
  • the curable resin composition of the present invention has excellent flexibility before curing and has excellent dielectric properties after curing.
  • the curable resin composition of the present invention is preferably a curable resin composition containing a curable resin, a curing agent, and the benzoxazine compound of the present invention.
  • the preferable lower limit of the content of the benzoxazine compound of the present invention is 100 parts by weight, and the preferable upper limit thereof is 80 parts by weight, based on 100 parts by weight of the total of the curable resin, the curing agent, and the benzoxazine compound of the present invention.
  • the content of the benzoxazine compound of the present invention is within this range, the obtained curable resin composition becomes more excellent in flexibility before curing and in dielectric properties after curing.
  • a more preferred lower limit of the content of the benzoxazine compound of the present invention is 10 parts by weight, and a more preferred upper limit is 60 parts by weight.
  • the curable resin composition of the present invention may contain other benzoxazine compounds other than the benzoxazine compound of the present invention in addition to the benzoxazine compound of the present invention as long as the object of the present invention is not impaired.
  • the curable resin examples include an epoxy resin, a cyanate resin, a phenol resin, an imide resin, a maleimide resin, a silicone resin, an acrylic resin, and a fluororesin.
  • the curable resin preferably contains at least one selected from the group consisting of an epoxy resin, a cyanate resin, a phenol resin, an imide resin, and a maleimide resin, and more preferably contains an epoxy resin.
  • the curable resin may be used alone or in combination of two or more.
  • epoxy resin examples include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol E epoxy resin, bisphenol S epoxy resin, 2,2′-diallylbisphenol A epoxy resin, hydrogenated bisphenol epoxy resin , Propylene oxide-added bisphenol A epoxy resin, resorcinol epoxy resin, biphenyl epoxy resin, sulfide epoxy resin, diphenyl ether epoxy resin, dicyclopentadiene epoxy resin, naphthalene epoxy resin, fluorene epoxy resin, naphthylene ether Epoxy resin, phenol novolak epoxy resin, ortho-cresol novolak epoxy resin, dicyclopentadiene novolak epoxy resin, biff Nirunoborakku type epoxy resins, naphthalene phenol novolac-type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber-modified epoxy resins, glycidyl ester compounds.
  • the curing agent examples include a phenol-based curing agent, a thiol-based curing agent, an amine-based curing agent, an acid anhydride-based curing agent, a cyanate-based curing agent, and an active ester-based curing agent.
  • phenol-based curing agents and active ester-based curing agents are preferred.
  • a preferred lower limit of the content of the curing agent in 100 parts by weight of the total of the curable resin, the curing agent, and the benzoxazine compound of the present invention is 5 parts by weight, and a preferred upper limit is 80 parts by weight.
  • a more preferred lower limit of the content of the curing agent is 10 parts by weight, and a more preferred upper limit is 60 parts by weight.
  • the curable resin composition of the present invention preferably contains a curing accelerator.
  • a curing accelerator By containing the curing accelerator, the curing time can be shortened and the productivity can be improved.
  • the curing accelerator examples include an imidazole-based curing accelerator, a tertiary amine-based curing accelerator, a phosphine-based curing accelerator, a photobase generator, and a sulfonium salt-based curing accelerator.
  • imidazole-based curing accelerators are preferred from the viewpoint of curability and storage stability.
  • the curing accelerators may be used alone or in combination of two or more.
  • a preferable lower limit of the content of the curing accelerator to 100 parts by weight of the total of the curable resin, the curing agent, and the benzoxazine compound of the present invention is 0.8 parts by weight.
  • the content of the curing accelerator is 0.8 parts by weight or more, the effect of shortening the curing time is more excellent.
  • a more preferable lower limit of the content of the curing accelerator is 1 part by weight.
  • a preferable upper limit of the content of the curing accelerator is 10 parts by weight, and a more preferable upper limit is 5 parts by weight.
  • the curable resin composition of the present invention preferably contains an inorganic filler.
  • the curable resin composition of the present invention becomes more excellent in moisture absorption reflow resistance and plating resistance while maintaining excellent adhesiveness and the like.
  • the inorganic filler is preferably at least one of silica and barium sulfate.
  • the curable resin composition of the present invention becomes more excellent in moisture absorption reflow resistance and plating resistance.
  • Examples of the inorganic filler other than the silica and the barium sulfate include alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, and inorganic ion exchanger.
  • the inorganic fillers may be used alone or in combination of two or more.
  • the preferable lower limit of the average particle diameter of the inorganic filler is 50 nm, and the preferable upper limit is 4 ⁇ m. When the average particle diameter of the inorganic filler is within this range, the curable resin composition obtained has better coatability.
  • a more preferred lower limit of the average particle size of the inorganic filler is 100 nm, and a more preferred upper limit is 3 ⁇ m.
  • a preferable lower limit of the content of the inorganic filler to 100 parts by weight of the total of the curable resin, the curing agent, and the benzoxazine compound of the present invention is 50 parts by weight, and a preferable upper limit is 500 parts by weight.
  • a preferable upper limit is 500 parts by weight.
  • the content of the inorganic filler is within this range, the obtained curable resin composition becomes more excellent in moisture absorption reflow resistance and plating resistance.
  • a more preferred lower limit of the content of the inorganic filler is 100 parts by weight.
  • the curable resin composition of the present invention may contain a flow modifier for the purpose of improving the wettability to an adherend in a short time and the shape retention.
  • a flow modifier for the purpose of improving the wettability to an adherend in a short time and the shape retention.
  • the flow regulator include fumed silica such as Aerosil and layered silicate.
  • the flow regulator may be used alone or in combination of two or more. Further, as the above-mentioned flow regulator, those having an average particle diameter of less than 100 nm are suitably used.
  • a preferred lower limit of the content of the flow modifier to 100 parts by weight of the total of the curable resin, the curing agent, and the benzoxazine compound of the present invention is 0.1 part by weight, and a preferred upper limit is 50 parts by weight.
  • a preferred lower limit of the content of the flow modifier is 0.5 part by weight, and a more preferred upper limit is 30 parts by weight.
  • the curable resin composition of the present invention may contain an organic filler for the purpose of stress relaxation, imparting toughness, and the like.
  • organic filler examples include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamideimide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Among them, polyamide particles, polyamideimide particles and polyimide particles are preferred.
  • the organic filler may be used alone or in combination of two or more.
  • the preferable upper limit of the content of the organic filler to 100 parts by weight of the total of the curable resin, the curing agent, and the benzoxazine compound of the present invention is 300 parts by weight.
  • the content of the organic filler is 300 parts by weight or less, the obtained cured product of the curable resin composition becomes more excellent in toughness and the like while maintaining excellent adhesiveness and the like.
  • a more preferred upper limit of the content of the organic filler is 200 parts by weight.
  • the curable resin composition of the present invention may contain a flame retardant.
  • the flame retardant include metal hydrates such as boehmite-type aluminum hydroxide, aluminum hydroxide, and magnesium hydroxide, halogen compounds, phosphorus compounds, and nitrogen compounds. Above all, boehmite-type aluminum hydroxide is preferred.
  • the flame retardants may be used alone or in combination of two or more.
  • the preferred lower limit of the content of the flame retardant to 100 parts by weight of the total of the curable resin, the curing agent and the benzoxazine compound of the present invention is 5 parts by weight, and the preferred upper limit is 200 parts by weight.
  • the content of the flame retardant is within this range, the resulting curable resin composition has excellent flame retardancy while maintaining excellent adhesiveness and the like.
  • a more preferred lower limit of the content of the flame retardant is 10 parts by weight, and a more preferred upper limit is 150 parts by weight.
  • the curable resin composition of the present invention may contain a thermoplastic resin as long as the object of the present invention is not impaired.
  • the curable resin composition of the present invention is more excellent in flow characteristics, it is easier to achieve both the filling property and the leaching prevention property at the time of thermocompression bonding, and the bending resistance after curing. It becomes more excellent by the property.
  • thermoplastic resin examples include a polyimide resin, a phenoxy resin, a polyamide resin, a polyamideimide resin, and a polyvinyl acetal resin.
  • phenoxy resins are preferred from the viewpoint of heat resistance and handleability.
  • the thermoplastic resins may be used alone or in combination of two or more.
  • a preferred lower limit of the number average molecular weight of the thermoplastic resin is 3,000, and a preferred upper limit is 100,000. When the number average molecular weight of the thermoplastic resin is in this range, the resulting curable resin composition has more excellent flow characteristics and flex resistance after curing.
  • a more preferred lower limit of the number average molecular weight of the thermoplastic resin is 5,000, and a more preferred upper limit is 50,000.
  • the preferable lower limit of the content of the thermoplastic resin to 100 parts by weight of the total of the above-mentioned curable resin, the above-mentioned curing agent and the benzoxazine compound of the present invention is 2 parts by weight, and the preferable upper limit thereof is 60 parts by weight.
  • the content of the thermoplastic resin is 2 parts by weight or more, the obtained curable resin composition becomes more excellent in flow characteristics and bending resistance after curing.
  • the content of the thermoplastic resin is 60 parts by weight or less, the obtained curable resin composition becomes more excellent in adhesiveness and heat resistance.
  • a more preferred lower limit of the content of the thermoplastic resin is 3 parts by weight, and a more preferred upper limit is 50 parts by weight.
  • the curable resin composition of the present invention may contain a solvent from the viewpoint of coatability and the like.
  • a solvent a non-polar solvent having a boiling point of 160 ° C. or less or an aprotic polar solvent having a boiling point of 160 ° C. or less is preferable from the viewpoint of coating properties and storage stability.
  • the non-polar solvent having a boiling point of 160 ° C. or less or an aprotic polar solvent having a boiling point of 160 ° C. or less include, for example, ketone solvents, ester solvents, hydrocarbon solvents, halogen solvents, ether solvents, and nitrogen-containing solvents. System solvents and the like.
  • Examples of the ketone-based solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and the like.
  • Examples of the ester solvent include methyl acetate, ethyl acetate, isobutyl acetate and the like.
  • Examples of the hydrocarbon solvent include benzene, toluene, normal hexane, isohexane, cyclohexane, methylcyclohexane, normal heptane and the like.
  • Examples of the halogen-based solvent include dichloromethane, chloroform, trichloroethylene and the like.
  • ether solvent examples include diethyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolan, and the like.
  • nitrogen-containing solvent examples include acetonitrile and the like.
  • a ketone-based solvent having a boiling point of 60 ° C or higher, an ester-based solvent having a boiling point of 60 ° C or higher, and an ether-based solvent having a boiling point of 60 ° C or higher are used. At least one selected from the group is preferred.
  • solvents examples include methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, isobutyl acetate, 1,4-dioxane, 1,3-dioxolan, tetrahydrofuran and the like.
  • boiling point means a value measured under a condition of 101 kPa or a value converted to 101 kPa in a boiling point conversion chart or the like.
  • a preferred lower limit of the content of the solvent in the curable resin composition of the present invention is 15% by weight, and a preferred upper limit is 80% by weight.
  • the content of the solvent is in this range, the curable resin composition of the present invention is more excellent in coatability and the like.
  • the more preferable lower limit of the content of the solvent is 20% by weight, and the more preferable upper limit is 70% by weight.
  • the curable resin composition of the present invention may contain a reactive diluent as long as the object of the present invention is not impaired.
  • a reactive diluent a reactive diluent having two or more reactive functional groups in one molecule is preferable from the viewpoint of adhesion reliability.
  • the curable resin composition of the present invention may further contain additives such as a coupling agent, a dispersant, a storage stabilizer, an anti-bleeding agent, a fluxing agent, and a leveling agent.
  • additives such as a coupling agent, a dispersant, a storage stabilizer, an anti-bleeding agent, a fluxing agent, and a leveling agent.
  • the curable resin composition of the present invention for example, using a homodisper, a universal mixer, a Banbury mixer, a mixer such as a kneader, a curable resin, a curing agent, and the benzoxazine compound of the present invention And a solvent or the like added as necessary.
  • the curable resin composition of the present invention can be obtained by applying the curable resin composition of the present invention on a base film and drying the curable resin composition.
  • the cured product can be obtained by curing the product film.
  • a cured product obtained by curing the curable resin composition of the present invention is also one of the present invention.
  • the preferable upper limit of the dielectric loss tangent at 23 ° C. of the cured product is 0.0045.
  • the curable resin composition of the present invention can be suitably used for an interlayer insulating material such as a multilayer printed wiring board.
  • a more preferred upper limit of the dielectric loss tangent of the cured product at 23 ° C. is 0.0040, and a still more preferred upper limit is 0.0035.
  • the “dielectric tangent” is a value measured under a condition of 1.0 GHz using a dielectric constant measuring device and a network analyzer.
  • the cured product for measuring the “dielectric tangent” can be obtained by heating the curable resin composition film having a thickness of 40 to 200 ⁇ m at 190 ° C. for 90 minutes.
  • the curable resin composition of the present invention can be used for a wide range of applications.
  • adhesives for printed wiring boards, adhesives for coverlays of flexible printed circuit boards, copper-clad laminates, adhesives for semiconductor bonding, interlayer insulating materials, prepregs, sealing agents for LEDs, adhesives for structural materials, etc. Can be used. Among them, it is suitably used for adhesives.
  • An adhesive containing the curable resin composition of the present invention is also one of the present invention.
  • the curable resin film can be suitably used as an adhesive film.
  • An adhesive film using the curable resin composition of the present invention is also one of the present invention.
  • a circuit board having the cured product of the present invention is also one of the present invention.
  • the curable resin composition of the present invention can be suitably used as an interlayer insulating material such as a multilayer printed wiring board because the cured product has a low dielectric constant, a low dielectric loss tangent, and excellent dielectric properties.
  • An interlayer insulating material using the curable resin composition of the present invention is also one of the present invention. Further, it has a circuit board, a plurality of insulating layers disposed on the circuit board, and a metal layer disposed between the plurality of insulating layers, wherein the insulating layer is a cured product of the interlayer insulating material of the present invention. Is also one of the present invention.
  • a benzoxazine compound that can be used for a curable resin composition having excellent flexibility before curing and having excellent dielectric properties after curing.
  • a curable resin composition containing the benzoxazine compound, an adhesive using the curable resin composition, an adhesive film, a cured product, a circuit board, an interlayer insulating material, and a multilayer print A wiring board can be provided.
  • the benzoxazine compound A was a benzoxazine compound having a structure represented by the above formula (1-1) (A is a hydrogenated dimer diamine residue). , X and X ′ contained a hydrogen atom). The benzoxazine compound A had a number average molecular weight of 800.
  • the benzoxazine compound C includes a benzoxazine compound having a structure represented by the above formula (1-2) (A is a trimer triamine residue, X, X ′, and X ′′ are hydrogen atoms) It was confirmed.
  • the number average molecular weight of the benzoxazine compound C was 850.
  • the benzoxazine compound D was a benzoxazine compound having a structure represented by the above formula (4) (A is a dimer diamine residue, C and C ′ Contains 4,4 ′-(4,4′-isopropylidene diphenoxy) diphthalic anhydride residue, and Y and Y ′ are phenyl groups.
  • the number average molecular weight of the benzoxazine compound D was 2,000.
  • a and A ′ in the above formula (5) are imide oligomer residues having amino groups at both ends, and C is 4,4 ′-(4,4′-isopropylidene diphenoxy) diphthal
  • the acid anhydride residues, X and X ', were hydrogen atoms.
  • the number average molecular weight of the benzoxazine compound E was 1960.
  • the benzoxazine compound F was a benzoxazine compound having a repeating structural unit represented by the above formula (6) (A is a hydrogenated dimer diamine residue). , And Z contain a group represented by the following formula (9)). The number average molecular weight of the benzoxazine compound F was 12,000.
  • the benzoxazine compound G was found to have a portion corresponding to A in the above formula (1-1) with 1,3-bis (3-aminophenoxy) benzene residue. It was confirmed that a benzoxazine compound which is a group and a portion corresponding to X and X ′ was a hydrogen atom was included. The number average molecular weight of the benzoxazine compound G was 600.
  • the obtained cured body was subjected to a cavity resonance method at 23 ° C.
  • the dielectric loss tangent was measured at 1.0 GHz.
  • when the dielectric loss tangent was more than 0.0035 and 0.0040 or less
  • when the dielectric loss tangent was more than 0.0040 and 0.0045 or less.
  • the dielectric properties were evaluated as “ ⁇ ” when there was, and “x” when the dielectric loss tangent exceeded 0.0045.
  • Laminate and semi-cured CCL substrate both sides immersed in copper surface roughening agent (Mec, "Mech etch bond CZ-8100"), copper surface was roughened.
  • copper surface roughening agent Mec, "Mech etch bond CZ-8100
  • MVLP-500 diaphragm type vacuum laminator
  • Lamination was performed by reducing the pressure to 13 hPa or less by reducing the pressure for 20 seconds, and then pressing at 100 ° C. and a pressure of 0.8 MPa for 20 seconds. After peeling the base PET film from the obtained uncured laminated sample A, the curable resin composition was cured under the curing conditions of 170 ° C. and 30 minutes to obtain a semi-cured laminated sample.
  • the obtained semi-cured laminated sample had a diameter of 60 ⁇ m at the upper end and 40 ⁇ m at the lower end (bottom).
  • a semi-cured product of the curable resin composition is laminated on the CCL substrate, and a via (through hole) is formed in the semi-cured product of the curable resin composition.
  • the obtained laminated body B was obtained.
  • the bottom of the via of the evaluation sample 1 was observed with a scanning electron microscope (SEM), and the maximum smear length from the wall surface of the via bottom was measured.
  • SEM scanning electron microscope
  • indicates that the maximum smear length was less than 2 ⁇ m
  • indicates that the maximum smear length was 2 ⁇ m or more and less than 2.5 ⁇ m
  • indicates that the maximum smear length was 2.5 ⁇ m or more and less than 3 ⁇ m.
  • the case where the maximum smear length was 3 ⁇ m or more was evaluated as “x”, and the desmear property (removability of the residue at the bottom of the via) was evaluated.
  • a semi-cured solution that has been swelled in a roughened aqueous solution of sodium permanganate at 80 ° C (aqueous solution prepared from “Concentrate Compact CP” manufactured by Atotech Japan and sodium hydroxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)).
  • the laminated sample was put and rocked for 30 minutes. Then, after washing for 2 minutes with a washing liquid of 25 ° C. (aqueous solution prepared from Atotech Japan, “Reduction Securiganto P” and sulfuric acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)), further washing with pure water
  • a roughened semi-cured product was formed on the CCL substrate.
  • the surface of the roughened semi-cured product was treated with an alkaline cleaner at 60 ° C. (“Cleaner Securigant 902” manufactured by Atotech Japan) for 5 minutes, and degreased and washed. After washing, the semi-cured product was treated with a pre-dip liquid at 25 ° C. (manufactured by Atotech Japan, “Pre-Dip Neo Gant B”) for 2 minutes. Thereafter, the semi-cured product was treated with an activator solution ("Activator Neo Gant 834", manufactured by Atotech Japan) at 40 ° C for 5 minutes to attach a palladium catalyst. Next, the semi-cured product is treated with a reducing solution at 30 ° C.
  • Electroless plating was performed until the plating thickness became about 0.5 ⁇ m. After the electroless plating, annealing was performed at a temperature of 120 ° C. for 30 minutes to remove the remaining hydrogen gas. All steps up to the step of electroless plating were performed while the semi-cured material was oscillated with a treatment liquid of 2 L on a beaker scale.
  • Electroplating was performed on the semi-cured material subjected to the electroless plating. Electroplating is performed using copper sulfate solution (copper sulfate pentahydrate (manufactured by Fujifilm Wako Pure Chemical), sulfuric acid (manufactured by Fujifilm Wako Pure Chemical), Atotech Japan, "Basic Leveler Capparaside HL", and Aqueous current of 0.6 A / cm 2 was passed using an aqueous solution prepared from “Correcting Agent Capalaside GS” manufactured by Atotech Japan Co., Ltd., and the plating was performed until the plating thickness became about 25 ⁇ m. After the electrolytic plating, the semi-cured product was heated at 190 ° C.
  • the adhesion strength between the cured product (insulating layer) and the metal layer (copper plating layer) was measured using a tensile tester (“AG-5000B” manufactured by Shimadzu Corporation) at a crosshead speed of 5 mm / min. 90 ° peel strength).
  • indicates that the peel strength was 0.50 kgf / cm or more
  • indicates that the peel strength was 0.45 kgf / cm or more and less than 0.50 kgf / cm
  • 0.40 kgf / cm The plating adhesion was evaluated as “ ⁇ ” when the value was less than 0.45 kgf / cm and “ ⁇ ” when the peel strength was less than 0.40 kgf / cm.
  • a benzoxazine compound that can be used for a curable resin composition having excellent flexibility before curing and having excellent dielectric properties after curing.
  • a curable resin composition containing the benzoxazine compound, an adhesive using the curable resin composition, an adhesive film, a cured product, a circuit board, an interlayer insulating material, and a multilayer print A wiring board can be provided.

Abstract

A purpose of the present invention is to provide a benzoxazine compound usable in a curable resin composition which has excellent pliability before curing and has excellent dielectric properties after curing. Another purpose of the present invention is to provide: a curable resin composition containing the benzoxazine compound; and an adhesive, adhesive film, cured object, circuit board, interlayer dielectric material, and multilayered printed wiring board each comprising or obtained using the curable resin composition. The benzoxazine compound of the present invention includes, in the molecule, both a benzoxazine ring and a diamine residue having a C4 or higher aliphatic skeleton and/or a triamine residue having a C4 or higher aliphatic skeleton.

Description

ベンゾオキサジン化合物、硬化性樹脂組成物、接着剤、接着フィルム、硬化物、回路基板、層間絶縁材料、及び、多層プリント配線板Benzoxazine compounds, curable resin compositions, adhesives, adhesive films, cured products, circuit boards, interlayer insulating materials, and multilayer printed wiring boards
本発明は、硬化前は可撓性に優れ、硬化後は誘電特性に優れる硬化性樹脂組成物に用いることができるベンゾオキサジン化合物に関する。また、本発明は、該ベンゾオキサジン化合物を含む硬化性樹脂組成物、該硬化性樹脂組成物を用いてなる接着剤、接着フィルム、硬化物、回路基板、層間絶縁材料、及び、多層プリント配線板に関する。 The present invention relates to a benzoxazine compound that can be used for a curable resin composition having excellent flexibility before curing and having excellent dielectric properties after curing. The present invention also provides a curable resin composition containing the benzoxazine compound, an adhesive, an adhesive film, a cured product, a circuit board, an interlayer insulating material, and a multilayer printed wiring board using the curable resin composition. About.
低収縮であり、接着性、絶縁性、及び、耐薬品性に優れるエポキシ樹脂等の硬化性樹脂は、多くの工業製品に使用されている。特に、プリント配線板の層間絶縁材料等に用いられる硬化性樹脂組成物には、低誘電率、低誘電正接といった誘電特性が必要となる。このような誘電特性に優れる硬化性樹脂組成物として、例えば、特許文献1、2には、硬化性樹脂と、硬化剤として特定の構造を有する化合物とを含有する硬化性樹脂組成物が開示されている。しかしながら、このような硬化性樹脂組成物は、硬化前の可撓性と硬化後の誘電特性とを両立することが困難であるという問題があった。 2. Description of the Related Art Curable resins, such as epoxy resins, which have low shrinkage and are excellent in adhesion, insulation, and chemical resistance, are used in many industrial products. In particular, a curable resin composition used for an interlayer insulating material or the like of a printed wiring board requires dielectric properties such as a low dielectric constant and a low dielectric loss tangent. As curable resin compositions having such excellent dielectric properties, for example, Patent Documents 1 and 2 disclose curable resin compositions containing a curable resin and a compound having a specific structure as a curing agent. ing. However, such a curable resin composition has a problem that it is difficult to achieve both flexibility before curing and dielectric properties after curing.
特開2017-186551号公報JP-A-2017-186551 国際公開第2016/114286号International Publication No. WO 2016/114286
本発明は、硬化前は可撓性に優れ、硬化後は誘電特性に優れる硬化性樹脂組成物に用いることができるベンゾオキサジン化合物を提供することを目的とする。また、本発明は、該ベンゾオキサジン化合物を含む硬化性樹脂組成物、該硬化性樹脂組成物を用いてなる接着剤、接着フィルム、硬化物、回路基板、層間絶縁材料、及び、多層プリント配線板を提供することを目的とする。 An object of the present invention is to provide a benzoxazine compound which can be used for a curable resin composition having excellent flexibility before curing and having excellent dielectric properties after curing. The present invention also provides a curable resin composition containing the benzoxazine compound, an adhesive, an adhesive film, a cured product, a circuit board, an interlayer insulating material, and a multilayer printed wiring board using the curable resin composition. The purpose is to provide.
本発明は、分子中に、炭素数4以上の脂肪族骨格を有するジアミン残基及び/又は炭素数4以上の脂肪族骨格を有するトリアミン残基と、ベンゾオキサジン環とを有するベンゾオキサジン化合物である。
以下に本発明を詳述する。
The present invention is a benzoxazine compound having a diamine residue having an aliphatic skeleton having 4 or more carbon atoms and / or a triamine residue having an aliphatic skeleton having 4 or more carbon atoms and a benzoxazine ring in a molecule. .
Hereinafter, the present invention will be described in detail.
本発明者らは、特定の構造を有するベンゾオキサジン化合物を用いることにより、硬化前は可撓性に優れ、硬化後は誘電特性に優れる硬化性樹脂組成物を得ることができることを見出し、本発明を完成させるに至った。 The present inventors have found that by using a benzoxazine compound having a specific structure, a curable resin composition having excellent flexibility before curing and having excellent dielectric properties after curing can be obtained. Was completed.
本発明のベンゾオキサジン化合物は、分子中に、炭素数4以上の脂肪族骨格を有するジアミン残基(以下、単に「ジアミン残基」ともいう)及び/又は炭素数4以上の脂肪族骨格を有するトリアミン残基(以下、単に「トリアミン残基」ともいう)とを有する。本発明のベンゾオキサジン化合物は、上記ジアミン残基及び/又は上記トリアミン残基を有するため、硬化性樹脂組成物に配合した場合に該硬化性樹脂組成物の硬化前における可撓性を向上させることができる。また、本発明のベンゾオキサジン化合物が上記ジアミン残基及び/又は上記トリアミン残基を有し、かつ、ベンゾオキサジン環を有することにより、得られる硬化性樹脂組成物の硬化物が低誘電率、低誘電正接といった誘電特性に優れるものとなる。
なお、本明細書において上記「残基」は、結合に供される官能基以外の部分の構造を意味し、例えば、「ジアミン残基」は、原料ジアミンにおけるアミノ基以外の部分の構造を意味する。
The benzoxazine compound of the present invention has a diamine residue having an aliphatic skeleton having 4 or more carbon atoms (hereinafter, also simply referred to as “diamine residue”) and / or an aliphatic skeleton having 4 or more carbon atoms in a molecule. A triamine residue (hereinafter, also simply referred to as “triamine residue”). Since the benzoxazine compound of the present invention has the above-mentioned diamine residue and / or the above-mentioned triamine residue, it improves the flexibility of the curable resin composition before curing when it is blended with the curable resin composition. Can be. Further, when the benzoxazine compound of the present invention has the diamine residue and / or the triamine residue and has a benzoxazine ring, the resulting cured product of the curable resin composition has a low dielectric constant and low dielectric constant. It has excellent dielectric properties such as dielectric loss tangent.
In the present specification, the “residue” means a structure of a portion other than a functional group provided for bonding, for example, “diamine residue” means a structure of a portion other than an amino group in a raw material diamine. I do.
上記ジアミン残基及び上記トリアミン残基の有する脂肪族骨格の炭素数の下限は4である。上記ジアミン残基及び上記トリアミン残基の有する脂肪族骨格の炭素数が4以上であることにより、得られる硬化性樹脂組成物が、硬化前における可撓性、及び、硬化後の誘電特性に優れるものとなる。上記ジアミン残基及び上記トリアミン残基の有する脂肪族骨格の炭素数の好ましい下限は7、より好ましい下限は8である。
また、上記ジアミン残基及び上記トリアミン残基の有する脂肪族骨格の炭素数の好ましい上限は特にないが、実質的な上限は90である。
The lower limit of the number of carbon atoms in the aliphatic skeleton of the diamine residue and the triamine residue is 4. When the carbon number of the aliphatic skeleton of the diamine residue and the triamine residue is 4 or more, the resulting curable resin composition has excellent flexibility before curing and excellent dielectric properties after curing. It will be. A preferred lower limit of the number of carbon atoms in the aliphatic skeleton of the diamine residue and the triamine residue is 7, and a more preferred lower limit is 8.
The upper limit of the number of carbon atoms in the aliphatic skeleton of the diamine residue and the triamine residue is not particularly limited, but is substantially 90.
上記ジアミン残基及び上記トリアミン残基の有する脂肪族骨格は、置換されていてもよい。
上記ジアミン残基及び上記トリアミン残基の有する脂肪族骨格が置換されている場合の置換基としては、例えば、ハロゲン原子、アリール基、アルコキシ基、ニトロ基、シアノ基等が挙げられる。
The aliphatic skeleton of the diamine residue and the triamine residue may be substituted.
When the aliphatic skeleton of the diamine residue and the triamine residue is substituted, examples of the substituent include a halogen atom, an aryl group, an alkoxy group, a nitro group, and a cyano group.
上記ジアミン残基の由来となるジアミンとしては、脂肪族ジアミンを用いることができる。
上記脂肪族ジアミンとしては、例えば、ダイマー酸から誘導される脂肪族ジアミンや、直鎖又は分岐鎖脂肪族ジアミンや、脂肪族エーテルジアミンや、脂環式ジアミン等が挙げられる。なかでも、ダイマー酸から誘導される脂肪族ジアミンが好ましい。
上記ダイマー酸から誘導される脂肪族ジアミンとしては、例えば、オレイン酸、リノール酸、リノレン酸、パルミトレイン酸、エライジン酸等の炭素数10以上30以下の脂肪族酸の二量体であるダイマー酸から誘導されるダイマージアミンやその水添型ダイマージアミン等が挙げられる。
上記直鎖又は分岐鎖脂肪族ジアミンとしては、例えば、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,14-テトラデカンジアミン、1,16-ヘキサデカンジアミン、1,18-オクタデカンジアミン、1,20-エイコサンジアミン、2-メチル-1,8-オクタンジアミン、2-メチル-1,9-ノナンジアミン、2,7-ジメチル-1,8-オクタンジアミン等が挙げられる。
上記脂肪族エーテルジアミンとしては、例えば、2,2’-オキシビス(エチルアミン)、3,3’-オキシビス(プロピルアミン)、1,2-ビス(2-アミノエトキシ)エタン等が挙げられる。
上記脂環式ジアミンとしては、例えば、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン等が挙げられる。
As the diamine from which the diamine residue is derived, an aliphatic diamine can be used.
Examples of the aliphatic diamine include an aliphatic diamine derived from dimer acid, a linear or branched aliphatic diamine, an aliphatic ether diamine, and an alicyclic diamine. Of these, aliphatic diamines derived from dimer acid are preferred.
Examples of the aliphatic diamine derived from the dimer acid include dimer acid which is a dimer of an aliphatic acid having 10 to 30 carbon atoms such as oleic acid, linoleic acid, linolenic acid, palmitoleic acid, and elaidic acid. Examples include dimer diamines derived therefrom and hydrogenated dimer diamines thereof.
Examples of the linear or branched aliphatic diamine include 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 11-undecanediamine, 1,12-dodecanediamine, 1,14-tetradecanediamine, 1,16-hexadecanediamine, 1,18-octadecanediamine, 1,20-eicosanediamine, 2-methyl-1,8-octane Examples thereof include diamine, 2-methyl-1,9-nonanediamine, and 2,7-dimethyl-1,8-octanediamine.
Examples of the aliphatic ether diamine include 2,2′-oxybis (ethylamine), 3,3′-oxybis (propylamine), and 1,2-bis (2-aminoethoxy) ethane.
Examples of the alicyclic diamine include 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine.
また、上記ジアミン残基の由来となるジアミンとしては、上記脂肪族ジアミンと酸二無水物との反応により得られる、主鎖に酸二無水物残基を有し、両末端に脂肪族ジアミンに由来するアミノ基を有するジアミンを用いることもできる。 Further, as the diamine from which the diamine residue is derived, the main chain obtained by the reaction of the aliphatic diamine and the acid dianhydride has an acid dianhydride residue, and both ends have an aliphatic diamine. A diamine having an amino group derived therefrom can also be used.
上記酸二無水物としては、例えば、ピロメリット酸無水物、3,3’-オキシジフタル酸無水物、3,4’-オキシジフタル酸無水物、4,4’-オキシジフタル酸無水物、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、4,4’-ビス(2,3-ジカルボキシルフェノキシ)ジフェニルエーテルの酸二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、2,3,3’,4’-ビフェニルテトラカルボン酸無水物等が挙げられる。なかでも、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物が好ましい。 Examples of the acid dianhydride include pyromellitic anhydride, 3,3′-oxydiphthalic anhydride, 3,4′-oxydiphthalic anhydride, 4,4′-oxydiphthalic anhydride, and 4,4 ′ -(4,4'-isopropylidenediphenoxy) diphthalic anhydride, acid dianhydride of 4,4'-bis (2,3-dicarboxylphenoxy) diphenyl ether, p-phenylenebis (trimellitic acid monoester acid) Anhydride), 2,3,3 ', 4'-biphenyltetracarboxylic anhydride, and the like. Among them, 4,4 '-(4,4'-isopropylidenediphenoxy) diphthalic anhydride is preferred.
上記トリアミン残基の由来となるトリアミンとしては、脂肪族トリアミンを用いることができる。
上記脂肪族トリアミンとしては、例えば、トリマー酸から誘導される脂肪族トリアミンや、直鎖又は分岐鎖脂肪族トリアミン等が挙げられる。なかでも、上記トリマー酸から誘導される脂肪族トリアミンが好ましい。
上記トリマー酸から誘導される脂肪族トリアミンとしては、例えば、オレイン酸、リノール酸、リノレン酸、パルミトレイン酸、エライジン酸等の炭素数10以上30以下の脂肪族酸の三量体であるトリマー酸から誘導されるトリマートリアミンやその水添型トリマートリアミン等が挙げられる。
上記直鎖又は分岐鎖脂肪族トリアミンとしては、例えば、3,3’-ジアミノ-N-メチルジプロピルアミン、3,3’-ジアミノジプロピルアミン、ジエチレントリアミン、ビス(ヘキサメチレン)トリアミン、2,2’-ビス(メチルアミノ)-N-メチルジエチルアミン等が挙げられる。
上記脂肪族トリアミンは、上記脂肪族ジアミンとの混合物の状態で用いられてもよい。
As the triamine from which the triamine residue is derived, an aliphatic triamine can be used.
Examples of the aliphatic triamine include an aliphatic triamine derived from trimer acid, and a linear or branched aliphatic triamine. Of these, aliphatic triamines derived from the above trimer acids are preferred.
Examples of the aliphatic triamine derived from the trimer acid include trimer acid, which is a trimer of an aliphatic acid having 10 to 30 carbon atoms such as oleic acid, linoleic acid, linolenic acid, palmitoleic acid, and elaidic acid. Examples include a derived trimer triamine and its hydrogenated trimer triamine.
Examples of the linear or branched aliphatic triamine include 3,3′-diamino-N-methyldipropylamine, 3,3′-diaminodipropylamine, diethylenetriamine, bis (hexamethylene) triamine, 2,2 '-Bis (methylamino) -N-methyldiethylamine and the like.
The aliphatic triamine may be used in a state of a mixture with the aliphatic diamine.
上記脂肪族ジアミン及び/又は上記脂肪族トリアミンのうち市販されているものとしては、例えば、BASF社製の脂肪族ジアミン及び/又は脂肪族トリアミンや、クローダ社製の脂肪族ジアミン及び/又は脂肪族トリアミン等が挙げられる。
上記BASF社製の脂肪族ジアミン及び/又は脂肪族トリアミンとしては、例えば、バーサミン551、バーサミン552等が挙げられる。
上記クローダ社製の脂肪族ジアミン及び/又は脂肪族トリアミンとしては、例えば、プリアミン1071、プリアミン1073、プリアミン1074、プリアミン1075等が挙げられる。
Commercially available aliphatic diamines and / or aliphatic triamines include, for example, aliphatic diamines and / or aliphatic triamines manufactured by BASF, and aliphatic diamines and / or aliphatics manufactured by Crowda. Triamine and the like.
Examples of the aliphatic diamine and / or aliphatic triamine manufactured by BASF include Versamine 551 and Versamine 552.
Examples of the aliphatic diamine and / or aliphatic triamine manufactured by Croda include priamine 1071, priamine 1073, priamine 1074, priamine 1075, and the like.
本発明のベンゾオキサジン化合物は、上記ジアミン残基及び/又は上記トリアミン残基、並びに、上記ベンゾオキサジン環を含む構造として、下記式(1-1)若しくは(1-2)、下記式(2-1)若しくは(2-2)、又は、下記式(3)で表される構造を有することが好ましい。下記式(1-1)若しくは(1-2)、下記式(2-1)若しくは(2-2)、又は、下記式(3)で表される構造を有することにより、本発明のベンゾオキサジン化合物は、硬化前の可撓性、及び、硬化後の誘電特性により優れるものとなる。 The benzoxazine compound of the present invention has the following formula (1-1) or (1-2) or the following formula (2-) as a structure containing the diamine residue and / or the triamine residue and the benzoxazine ring. It preferably has a structure represented by 1) or (2-2), or the following formula (3). The benzoxazine of the present invention has a structure represented by the following formula (1-1) or (1-2), the following formula (2-1) or (2-2), or the following formula (3): The compounds have better flexibility before curing and dielectric properties after curing.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
式(1-1)中、Aは、上記ジアミン残基であり、X及びX’は、それぞれ独立して、水素原子又は任意の置換基である。
式(1-2)中、Aは、上記トリアミン残基であり、X、X’、及び、X’’は、それぞれ独立して、水素原子又は任意の置換基である。
In the formula (1-1), A is the above-mentioned diamine residue, and X and X 'are each independently a hydrogen atom or any substituent.
In the formula (1-2), A is the above triamine residue, and X, X ′ and X ″ are each independently a hydrogen atom or any substituent.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
式(2-1)中、Aは、上記ジアミン残基であり、B及びB’は、それぞれ独立して、任意の有機基であり、R及びR’は、それぞれ独立して、水素原子又は任意の置換基であり、Bと各Rとは、結合して環構造を形成していてもよく、B’と各R’とは、結合して環構造を形成していてもよく、Y及びY’は、それぞれ独立して、水素原子又は任意の置換基である。
式(2-2)中、Aは、上記トリアミン残基であり、B、B’、及び、B’’は、それぞれ独立して、任意の有機基であり、R、R’、及び、R’’は、それぞれ独立して、水素原子又は任意の置換基であり、Bと各Rとは、結合して環構造を形成していてもよく、B’と各R’とは、結合して環構造を形成していてもよく、B’’と各R’’とは、結合して環構造を形成していてもよく、Y、Y’、及び、Y’’は、それぞれ独立して、水素原子又は任意の置換基である。
In the formula (2-1), A is the diamine residue, B and B ′ are each independently any organic group, and R and R ′ are each independently a hydrogen atom or Any substituent, B and each R may combine to form a ring structure, B 'and each R' may combine to form a ring structure, And Y ′ are each independently a hydrogen atom or any substituent.
In the formula (2-2), A is the above triamine residue, B, B ′ and B ″ are each independently any organic group, and R, R ′ and R '' Is each independently a hydrogen atom or an optional substituent, B and each R may be bonded to form a ring structure, and B ′ and each R ′ are To form a ring structure, B '' and each R '' may be combined to form a ring structure, and Y, Y ′ and Y ″ are each independently And is a hydrogen atom or any substituent.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
式(3)中、A及びA’は、それぞれ独立して、上記ジアミン残基であり、Bは、任意の有機基であり、R及びR’は、それぞれ独立して、水素原子又は任意の置換基であり、BとRとは、結合して環構造を形成していてもよく、BとR’とは、結合して環構造を形成していてもよく、X及びX’は、それぞれ独立して、水素原子又は任意の置換基である。 In the formula (3), A and A ′ are each independently the above-mentioned diamine residue, B is any organic group, and R and R ′ are each independently a hydrogen atom or any A substituent, B and R may be bonded to each other to form a ring structure, B and R ′ may be bonded to each other to form a ring structure, and X and X ′ are Each is independently a hydrogen atom or any substituent.
上記式(1-1)中のX及びX’、並びに、上記式(1-2)中のX、X’、及び、X’’が置換基である場合、当該置換基としては、例えば、ハロゲン原子、直鎖状又は分岐鎖状のアルキル基、直鎖状又は分岐鎖状のアルケニル基、脂環式基、アリール基、アルコキシ基、ニトロ基、シアノ基等が挙げられる。
また、上記式(1-1)中のX及びX’、並びに、上記式(1-2)中のX、X’、及び、X’’が置換基である場合、芳香環の水素原子は、複数の当該置換基で置換されていてもよい。
When X and X ′ in the above formula (1-1) and X, X ′ and X ″ in the above formula (1-2) are substituents, examples of the substituent include: Examples thereof include a halogen atom, a linear or branched alkyl group, a linear or branched alkenyl group, an alicyclic group, an aryl group, an alkoxy group, a nitro group, and a cyano group.
When X and X ′ in the above formula (1-1) and X, X ′ and X ″ in the above formula (1-2) are substituents, the hydrogen atom of the aromatic ring is May be substituted with a plurality of the substituents.
上記式(2-1)中のY及びY’、並びに、上記式(2-2)中のY、Y’、及び、Y’’が置換基である場合、当該置換基としては、例えば、直鎖状又は分岐鎖状のアルキル基、直鎖状又は分岐鎖状のアルケニル基、脂環式基、アリール基、アルキル基又はアルコキシ基を置換基として有するフェニル基等が挙げられる。
また、上記式(2-1)中のY及びY’、並びに、上記式(2-2)中のY、Y’、及び、Y’’が置換基である場合、芳香環の水素原子は、複数の当該置換基で置換されていてもよい。
When Y and Y ′ in the above formula (2-1) and Y, Y ′ and Y ″ in the above formula (2-2) are substituents, examples of the substituent include: Examples thereof include a linear or branched alkyl group, a linear or branched alkenyl group, an alicyclic group, an aryl group, a phenyl group having an alkyl group or an alkoxy group as a substituent, and the like.
When Y and Y ′ in the above formula (2-1) and Y, Y ′ and Y ″ in the above formula (2-2) are substituents, the hydrogen atom of the aromatic ring is May be substituted with a plurality of the substituents.
上記式(2-1)中のBと各R、及び、B’と各R’、並びに、上記式(2-2)中のBと各R、B’と各R’、及び、B’’と各R’’は、環構造を形成していることが好ましい。上記環構造は、イミド環であることが好ましい。
特に、上記式(2-1)で表される構造は、下記式(4)で表される構造であることが好ましい。
B and each R in the above formula (2-1), and B 'and each R', and B and each R, B 'and each R' and B 'in the above formula (2-2) 'And each R''preferably form a ring structure. The ring structure is preferably an imide ring.
In particular, the structure represented by the above formula (2-1) is preferably a structure represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
式(4)中、Aは、上記ジアミン残基であり、C及びC’は、酸二無水物残基であり、Y及びY’は、それぞれ独立して、水素原子又は任意の置換基である。 In the formula (4), A is the above diamine residue, C and C ′ are acid dianhydride residues, and Y and Y ′ are each independently a hydrogen atom or any substituent. is there.
上記式(4)中のY及びY’が置換基である場合、当該置換基としては、例えば、直鎖状又は分岐鎖状のアルキル基、直鎖状又は分岐鎖状のアルケニル基、脂環式基、アリール基、アルキル基又はアルコキシ基を置換基として有するフェニル基等が挙げられる。
また、上記式(4)中のY及びY’が置換基である場合、芳香環の水素原子は、複数の当該置換基で置換されていてもよい。
When Y and Y ′ in the above formula (4) are substituents, examples of the substituent include a linear or branched alkyl group, a linear or branched alkenyl group, and an alicyclic group. Examples include a phenyl group having a formula group, an aryl group, an alkyl group, or an alkoxy group as a substituent.
When Y and Y ′ in the above formula (4) are substituents, the hydrogen atom of the aromatic ring may be substituted with a plurality of the substituents.
式(4)中のC及びC’で表される酸二無水物残基の由来となる酸二無水物としては、上述した脂肪族ジアミンと酸二無水物との反応における酸二無水物と同様のものが挙げられる。 Examples of the acid dianhydrides derived from the acid dianhydride residues represented by C and C ′ in the formula (4) include the acid dianhydrides in the above-described reaction between the aliphatic diamine and the acid dianhydride. Similar ones can be mentioned.
上記式(3)中のX及びX’が置換基である場合、当該置換基としては、例えば、ハロゲン原子、直鎖状又は分岐鎖状のアルキル基、直鎖状又は分岐鎖状のアルケニル基、脂環式基、アリール基、アルコキシ基、ニトロ基、シアノ基等が挙げられる。
また、上記式(3)中のX及びX’が置換基である場合、芳香環の水素原子は、複数の当該置換基で置換されていてもよい。
When X and X ′ in the above formula (3) are substituents, examples of the substituent include a halogen atom, a linear or branched alkyl group, and a linear or branched alkenyl group. , An alicyclic group, an aryl group, an alkoxy group, a nitro group, a cyano group and the like.
When X and X ′ in the above formula (3) are substituents, the hydrogen atom of the aromatic ring may be substituted with a plurality of the substituents.
上記式(3)中のBとR、及び、BとR’は、環構造を形成していることが好ましい。上記環構造は、イミド環であることが好ましい。
特に、上記式(3)で表される構造としては、下記式(5)で表される構造が好ましい。
It is preferable that B and R and B and R ′ in the above formula (3) form a ring structure. The ring structure is preferably an imide ring.
In particular, as the structure represented by the above formula (3), a structure represented by the following formula (5) is preferable.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
式(5)中、A及びA’は、それぞれ独立して、上記ジアミン残基であり、Cは、酸二無水物残基であり、X及びX’は、それぞれ独立して、水素原子又は任意の置換基である。 In the formula (5), A and A ′ are each independently the above-described diamine residue, C is an acid dianhydride residue, and X and X ′ are each independently a hydrogen atom or It is an optional substituent.
上記式(5)中のX及びX’が置換基である場合、当該置換基としては、例えば、ハロゲン原子、直鎖状又は分岐鎖状のアルキル基、直鎖状又は分岐鎖状のアルケニル基、脂環式基、アリール基、アルコキシ基、ニトロ基、シアノ基等が挙げられる。
また、上記式(5)中のX及びX’が置換基である場合、芳香環の水素原子は、複数の当該置換基で置換されていてもよい。
When X and X ′ in the above formula (5) are substituents, examples of the substituent include a halogen atom, a linear or branched alkyl group, and a linear or branched alkenyl group. , An alicyclic group, an aryl group, an alkoxy group, a nitro group, a cyano group and the like.
When X and X ′ in the above formula (5) are substituents, the hydrogen atom of the aromatic ring may be substituted with a plurality of the substituents.
本発明のベンゾオキサジン化合物は、上記ジアミン残基及び上記ベンゾオキサジン環を含む構造として、下記式(6)、下記式(7)、又は、下記式(8)で表される繰り返し構造単位を有することも好ましい。下記式(6)、下記式(7)、又は、下記式(8)で表される繰り返し構造単位を有することにより、本発明のベンゾオキサジン化合物は、硬化前の可撓性、及び、硬化後の誘電特性及び機械強度により優れるものとなる。 The benzoxazine compound of the present invention has a repeating structural unit represented by the following formula (6), the following formula (7), or the following formula (8) as a structure containing the diamine residue and the benzoxazine ring. It is also preferred. By having a repeating structural unit represented by the following formula (6), the following formula (7), or the following formula (8), the benzoxazine compound of the present invention has flexibility before curing and after curing. Is excellent due to its dielectric properties and mechanical strength.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
式(6)中、Aは、上記ジアミン残基であり、Zは、結合手又は任意の有機基である。式(6)中の芳香環の水素原子は、一部又は全部が任意の置換基で置換されていてもよい。 In the formula (6), A is the diamine residue described above, and Z is a bond or any organic group. Some or all of the hydrogen atoms of the aromatic ring in the formula (6) may be substituted with any substituent.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
式(7)中、Aは、上記ジアミン残基であり、B及びB’は、それぞれ独立して、任意の有機基であり、R及びR’は、それぞれ独立して、水素原子又は任意の置換基であり、BとRとは、結合して環構造を形成していてもよく、B’とR’とは、結合して環構造を形成していてもよく、Wは、任意の有機基である。 In the formula (7), A is the diamine residue, B and B ′ are each independently any organic group, and R and R ′ are each independently a hydrogen atom or any A substituent, B and R may be bonded to each other to form a ring structure, B ′ and R ′ may be bonded to each other to form a ring structure; Organic group.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
式(8)中、A及びA’は、それぞれ独立して、上記ジアミン残基であり、Bは、任意の有機基であり、R及びR’は、それぞれ独立して、水素原子又は任意の置換基であり、BとRとは、結合して環構造を形成していてもよく、BとR’とは、結合して環構造を形成していてもよく、Zは、結合手又は任意の有機基である。式(8)中の芳香環の水素原子は、一部又は全部が任意の置換基で置換されていてもよい。 In the formula (8), A and A ′ are each independently the above-mentioned diamine residue, B is an optional organic group, and R and R ′ are each independently a hydrogen atom or an optional A substituent, B and R may combine to form a ring structure, B and R ′ may combine to form a ring structure, and Z represents a bond or Any organic group. Some or all of the hydrogen atoms of the aromatic ring in the formula (8) may be substituted with an arbitrary substituent.
上記式(6)中の芳香環の水素原子が任意の置換基で置換されている場合の置換基としては、例えば、ハロゲン原子、直鎖状又は分岐鎖状のアルキル基、直鎖状又は分岐鎖状のアルケニル基、脂環式基、アリール基、アルコキシ基、ニトロ基、シアノ基等が挙げられる。 When the hydrogen atom of the aromatic ring in the above formula (6) is substituted with an arbitrary substituent, examples of the substituent include a halogen atom, a linear or branched alkyl group, a linear or branched alkyl group. Examples include a chain alkenyl group, an alicyclic group, an aryl group, an alkoxy group, a nitro group, and a cyano group.
上記式(7)中のWは、上記ジアミン残基又は炭素数4以上の脂肪族骨格を有さないジアミン残基であることが好ましい。 W in the above formula (7) is preferably the diamine residue or a diamine residue having no aliphatic skeleton having 4 or more carbon atoms.
上記式(7)中のBと各R、及び、B’と各R’は、環構造を形成していることが好ましい。上記環構造は、イミド環であることが好ましい。 It is preferable that B and each R and B 'and each R' in the above formula (7) form a ring structure. The ring structure is preferably an imide ring.
上記式(8)中の芳香環の水素原子が任意の置換基で置換されている場合の置換基としては、例えば、ハロゲン原子、直鎖状又は分岐鎖状のアルキル基、直鎖状又は分岐鎖状のアルケニル基、脂環式基、アリール基、アルコキシ基、ニトロ基、シアノ基等が挙げられる。 When the hydrogen atom of the aromatic ring in the above formula (8) is substituted with an arbitrary substituent, examples of the substituent include a halogen atom, a linear or branched alkyl group, a linear or branched Examples include a chain alkenyl group, an alicyclic group, an aryl group, an alkoxy group, a nitro group, and a cyano group.
上記式(8)中のBとR、及び、BとR’は、環構造を形成していることが好ましい。上記環構造は、イミド環であることが好ましい。 It is preferable that B and R, and B and R 'in the above formula (8) form a ring structure. The ring structure is preferably an imide ring.
本発明のベンゾオキサジン化合物の分子量の好ましい下限は300、好ましい上限は20万である。上記分子量がこの範囲であることにより、本発明のベンゾオキサジン化合物を硬化性樹脂組成物に用いた場合に、得られる硬化性樹脂組成物が硬化前の可撓性、及び、硬化物の誘電特性により優れるものとなる。本発明のベンゾオキサジン化合物の分子量のより好ましい下限は400、より好ましい上限は10万である。
なお、本明細書において上記「分子量」は、分子構造が特定される化合物については、構造式から求められる分子量であるが、重合度の分布が広い化合物及び変性部位が不特定な化合物については、数平均分子量を用いて表す場合がある。本明細書において上記「数平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際に用いるカラムとしては、例えば、JAIGEL-2H-A(日本分析工業社製)等が挙げられる。
The preferred lower limit of the molecular weight of the benzoxazine compound of the present invention is 300, and the preferred upper limit is 200,000. When the benzoxazine compound of the present invention is used in the curable resin composition, the obtained curable resin composition has flexibility before curing, and the dielectric properties of the cured product, when the molecular weight is within this range. Will be more excellent. A more preferred lower limit of the molecular weight of the benzoxazine compound of the present invention is 400, and a more preferred upper limit is 100,000.
In the present specification, the above-mentioned `` molecular weight '' is a molecular weight determined from the structural formula for a compound whose molecular structure is specified, but for a compound having a wide distribution of the degree of polymerization and a compound whose modification site is unspecified, It may be expressed using a number average molecular weight. In the present specification, the above “number average molecular weight” is a value determined by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and measuring in terms of polystyrene. Examples of a column used for measuring the number average molecular weight in terms of polystyrene by GPC include JAIGEL-2HA (manufactured by Nippon Kagaku Kogyo Co., Ltd.).
本発明のベンゾオキサジン化合物のうち、上記式(1-1)又は上記式(1-2)で表される構造を有するベンゾオキサジン化合物を製造する方法としては、例えば、上記ジアミン又は上記トリアミンと、単官能フェノール化合物と、パラホルムアルデヒドとを反応させる方法等が挙げられる。 Among the benzoxazine compounds of the present invention, a method for producing a benzoxazine compound having a structure represented by the above formula (1-1) or the above formula (1-2) includes, for example, the above diamine or the above triamine, Examples thereof include a method of reacting a monofunctional phenol compound with paraformaldehyde.
上記単官能フェノール化合物としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-ジメチルフェノール、2,4-ジメチルフェノール、2,5-ジメチルフェノール、2,6-ジメチルフェノール、2-エチルフェノール、3-エチルフェノール、4-エチルフェノール、4-tert-ブチルフェノール、p-オクチルフェノール、p-クミルフェノール、ドデシルフェノール、o-フェニルフェノール、p-フェニルフェノール、1-ナフトール、2-ナフトール、m-メトキシフェノール、p-メトキシフェノール、m-エトキシフェノール、p-エトキシフェノール、3,4-ジメチルフェノール、3,5-ジメチルフェノール等が挙げられる。なかでも、フェノールが好ましい。
これらの単官能フェノール化合物は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
Examples of the monofunctional phenol compound include phenol, o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, and 2,6-dimethylphenol Phenol, 2-ethylphenol, 3-ethylphenol, 4-ethylphenol, 4-tert-butylphenol, p-octylphenol, p-cumylphenol, dodecylphenol, o-phenylphenol, p-phenylphenol, 1-naphthol, Examples thereof include 2-naphthol, m-methoxyphenol, p-methoxyphenol, m-ethoxyphenol, p-ethoxyphenol, 3,4-dimethylphenol, and 3,5-dimethylphenol. Of these, phenol is preferred.
These monofunctional phenol compounds may be used alone or in combination of two or more.
本発明のベンゾオキサジン化合物のうち、上記式(2-1)又は上記式(2-2)で表される構造を有するベンゾオキサジン化合物を製造する方法としては、例えば、以下の方法等が挙げられる。
即ち、まず、上記ジアミン又は上記トリアミンを、その2倍モル量の酸二無水物と反応させ、全ての末端に酸無水物基を有するイミドオリゴマーを得る。得られた全ての末端に酸無水物基を有するイミドオリゴマーを、その2倍モル量の3-アミノフェノールと反応させることにより、全ての末端にフェノール性水酸基を有するイミドオリゴマーを得る。得られた全ての末端にフェノール性水酸基を有するイミドオリゴマーと、モノアミン化合物と、パラホルムアルデヒドとを反応させる方法等が挙げられる。
Among the benzoxazine compounds of the present invention, examples of a method for producing a benzoxazine compound having a structure represented by the above formula (2-1) or the above formula (2-2) include the following methods. .
That is, first, the diamine or the triamine is reacted with a twice molar amount of the acid dianhydride to obtain an imide oligomer having an acid anhydride group at all terminals. By reacting the obtained imide oligomer having an acid anhydride group at all terminals with a 2-fold molar amount of 3-aminophenol, an imide oligomer having a phenolic hydroxyl group at all terminals is obtained. A method of reacting the obtained imide oligomer having a phenolic hydroxyl group at all terminals, a monoamine compound, and paraformaldehyde, and the like can be given.
上記モノアミン化合物としては、例えば、アニリン、o-トルイジン、m-トルイジン、p-トルイジン、2,3-ジメチルアニリン、2,4-ジメチルアニリン、2,5-ジメチルアニリン、3,4-ジメチルアニリン、3,5-ジメチルアニリン、2-tert-ブチルアニリン、3-tert-ブチルアニリン、4-tert-ブチルアニリン、1-ナフチルアミン、2-ナフチルアミン、1-アミノアントラセン、2-アミノアントラセン、9-アミノアントラセン、1-アミノピレン、3-クロロアニリン、o-アニシジン、m-アニシジン、p-アニシジン、1-アミノ-2-メチルナフタレン、4-エチルアニリン、4-エチニルアニリン、4-イソプロピルアニリン、4-(メチルチオ)アニリン等が挙げられる。なかでも、アニリンが好ましい。 Examples of the monoamine compound include aniline, o-toluidine, m-toluidine, p-toluidine, 2,3-dimethylaniline, 2,4-dimethylaniline, 2,5-dimethylaniline, 3,4-dimethylaniline, 3,5-dimethylaniline, 2-tert-butylaniline, 3-tert-butylaniline, 4-tert-butylaniline, 1-naphthylamine, 2-naphthylamine, 1-aminoanthracene, 2-aminoanthracene, 9-aminoanthracene , 1-aminopyrene, 3-chloroaniline, o-anisidine, m-anisidine, p-anisidine, 1-amino-2-methylnaphthalene, 4-ethylaniline, 4-ethynylaniline, 4-isopropylaniline, 4- (methylthio ) Aniline and the like. Of these, aniline is preferred.
本発明のベンゾオキサジン化合物のうち、上記式(3)で表される構造を有するベンゾオキサジン化合物を製造する方法としては、例えば、以下の方法等が挙げられる。
即ち、まず、酸二無水物を、その2倍モル量の上記ジアミンと反応させ、両末端にアミノ基を有するイミドオリゴマーを得る。次いで、得られた両末端にアミノ基を有するイミドオリゴマーと、単官能フェノール化合物と、パラホルムアルデヒドとを反応させる方法等が挙げられる。
Among the benzoxazine compounds of the present invention, examples of a method for producing a benzoxazine compound having a structure represented by the above formula (3) include the following methods.
That is, first, an acid dianhydride is reacted with twice the amount of the diamine to obtain an imide oligomer having amino groups at both ends. Next, a method of reacting the obtained imide oligomer having an amino group at both terminals, a monofunctional phenol compound, and paraformaldehyde, and the like are exemplified.
本発明のベンゾオキサジン化合物のうち、上記式(6)で表される構造を有するベンゾオキサジン化合物を製造する方法としては、例えば、上記ジアミンと、二官能フェノール化合物と、パラホルムアルデヒドとを反応させる方法等が挙げられる。 Among the benzoxazine compounds of the present invention, a method for producing a benzoxazine compound having a structure represented by the above formula (6) includes, for example, a method of reacting the above diamine, a bifunctional phenol compound, and paraformaldehyde. And the like.
上記二官能フェノール化合物としては、例えば、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、4,4’-ジヒドロキシジフェニルスルホン、2-ヒドロキシフェニルエーテル、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,3-ビス(2-(4-ヒドロキシフェニル)-2)プロピル)ベンゼン、1,4-ビス(2-(4-ヒドロキシフェニル)-2)プロピル)ベンゼン等が挙げられる。 Examples of the bifunctional phenol compound include 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2- Bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 2,2-bis (4-hydroxyphenyl) hexafluoro Propane, 4,4′-dihydroxydiphenyl sulfone, 2-hydroxyphenyl ether, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,3 -Bis (2- (4-hydroxyphenyl) -2) propyl) benzene, 1,4-bis (2- (4 Hydroxyphenyl) -2) propyl) benzene.
上記式(6)で表される構造を有するベンゾオキサジン化合物を製造する方法において、上記二官能フェノール化合物とともに単官能フェノール化合物を用いてもよい。
上記単官能フェノール化合物としては、上記式(1-1)又は上記式(1-2)で表される構造を有するベンゾオキサジン化合物を製造する方法と同様のものを用いることができる。
In the method for producing a benzoxazine compound having a structure represented by the formula (6), a monofunctional phenol compound may be used together with the bifunctional phenol compound.
As the monofunctional phenol compound, those similar to the method for producing a benzoxazine compound having a structure represented by the above formula (1-1) or the above formula (1-2) can be used.
本発明のベンゾオキサジン化合物のうち、上記式(7)で表される構造を有するベンゾオキサジン化合物を製造する方法としては、例えば、以下の方法等が挙げられる。
即ち、まず、上記ジアミンを、その2倍モル量の酸二無水物とを反応させ、両末端に酸無水物基を有するイミドオリゴマーを得る。得られた両末端に酸無水物基を有するイミドオリゴマーを、その2倍モル量の3-アミノフェノールと反応させることにより、両末端にフェノール性水酸基を有するイミドオリゴマーを得る。得られた両末端にフェノール性水酸基を有するイミドオリゴマーと、上記ジアミン(炭素数4以上の脂肪族骨格を有するジアミン)又は炭素数4以上の脂肪族骨格を有さないジアミンと、パラホルムアルデヒドとを反応させる方法等が挙げられる。
Among the benzoxazine compounds of the present invention, examples of a method for producing a benzoxazine compound having a structure represented by the above formula (7) include the following methods.
That is, first, the above diamine is reacted with twice the amount of an acid dianhydride to obtain an imide oligomer having an acid anhydride group at both terminals. The resulting imide oligomer having an acid anhydride group at both ends is reacted with a 2-fold molar amount of 3-aminophenol to obtain an imide oligomer having a phenolic hydroxyl group at both ends. The obtained imide oligomer having a phenolic hydroxyl group at both ends, the above diamine (diamine having an aliphatic skeleton having 4 or more carbon atoms) or diamine having no aliphatic skeleton having 4 or more carbon atoms, and paraformaldehyde A reaction method and the like can be mentioned.
炭素数4以上の脂肪族骨格を有さないジアミンとしては、例えば、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、3,3’-ジアミノジフェニルスルフォン、4,4’-ジアミノジフェニルスルフォン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス(4-(4-アミノフェノキシ)フェニル)メタン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、3,3’-ジアミノ-4,4’-ジヒドロキシフェニルメタン、4,4’-ジアミノ-3,3’-ジヒドロキシフェニルメタン、3,3’-ジアミノ-4,4’-ジヒドロキシフェニルエーテル、ビスアミノフェニルフルオレン、ビストルイジンフルオレン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシフェニルエーテル、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-2,2’-ジヒドロキシビフェニル等が挙げられる。 Examples of the diamine having no aliphatic skeleton having 4 or more carbon atoms include, for example, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, bis (4- (4-aminophenoxy) phenyl) Methane, 2,2-bis (4- (4-aminophenoxy) Enyl) propane, 1,3-bis (2- (4-aminophenyl) -2-propyl) benzene, 1,4-bis (2- (4-aminophenyl) -2-propyl) benzene, 3,3 ′ -Diamino-4,4'-dihydroxyphenylmethane, 4,4'-diamino-3,3'-dihydroxyphenylmethane, 3,3'-diamino-4,4'-dihydroxyphenyl ether, bisaminophenylfluorene, bis Toluidine fluorene, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-diamino-3,3'-dihydroxyphenyl ether, 3,3'-diamino-4,4'-dihydroxybiphenyl, 4, 4'-diamino-2,2'-dihydroxybiphenyl and the like.
本発明のベンゾオキサジン化合物のうち、上記式(8)で表される構造を有するベンゾオキサジン化合物を製造する方法としては、例えば、以下の方法等が挙げられる。
即ち、まず、酸二無水物を、その2倍モル量の上記ジアミンと反応させ、両末端にアミノ基を有するイミドオリゴマーを得る。次いで、得られた両末端にアミノ基を有するイミドオリゴマーと、二官能フェノール化合物と、パラホルムアルデヒドとを反応させる方法等が挙げられる。
上記二官能フェノール化合物としては、上記式(6)で表される構造を有するベンゾオキサジン化合物を製造する方法と同様のものを用いることができる。
Among the benzoxazine compounds of the present invention, examples of a method for producing a benzoxazine compound having a structure represented by the above formula (8) include the following methods.
That is, first, an acid dianhydride is reacted with twice the amount of the diamine to obtain an imide oligomer having amino groups at both ends. Next, a method of reacting the obtained imide oligomer having an amino group at both terminals, a bifunctional phenol compound, and paraformaldehyde, and the like can be mentioned.
As the bifunctional phenol compound, those similar to the method for producing a benzoxazine compound having a structure represented by the above formula (6) can be used.
上記式(8)で表される構造を有するベンゾオキサジン化合物を製造する方法において、上記二官能フェノール化合物とともに単官能フェノール化合物を用いてもよい。
上記単官能フェノール化合物としては、上記式(1-1)又は上記式(1-2)で表される構造を有するベンゾオキサジン化合物を製造する方法と同様のものを用いることができる。
In the method for producing a benzoxazine compound having a structure represented by the formula (8), a monofunctional phenol compound may be used together with the bifunctional phenol compound.
As the monofunctional phenol compound, those similar to the method for producing a benzoxazine compound having a structure represented by the above formula (1-1) or the above formula (1-2) can be used.
本発明のベンゾオキサジン化合物のベンゾオキサジン環を形成する反応は、溶媒中又は無溶媒で行うことができる。当該反応を溶媒中で行う場合、用いる反応溶媒としては、例えば、芳香族系の非極性溶媒、ハロゲン溶媒等が挙げられる。
上記芳香族系の非極性溶媒としては、例えば、ベンゼン、トルエン、キシレン、プソイドキュメン、メシチレン等が挙げられる。
上記ハロゲン溶媒としては、例えば、クロロホルム、ジクロロメタン等が挙げられる。
なかでも、環境及び人体への負荷が小さく、かつ、汎用性が高く安価であるため、トルエン、キシレンが好ましく、トルエンがより好ましい。
上記溶媒は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The reaction for forming the benzoxazine ring of the benzoxazine compound of the present invention can be performed in a solvent or without a solvent. When the reaction is performed in a solvent, examples of the reaction solvent to be used include aromatic nonpolar solvents and halogen solvents.
Examples of the aromatic nonpolar solvent include benzene, toluene, xylene, pseudocumene, and mesitylene.
Examples of the halogen solvent include chloroform, dichloromethane and the like.
Among them, toluene and xylene are preferred, and toluene is more preferred, because the burden on the environment and the human body is small, and the versatility is high and the cost is low.
The above solvents may be used alone or in combination of two or more.
上記反応溶媒として上記芳香族系の非極性溶媒を用いる場合は、アルコール類を該芳香族系の非極性溶媒と併用してもよい。
上記アルコール類としては特に限定されないが、上記芳香族系の非極性溶媒よりも沸点が低いアルコール類が好ましい。
このようなアルコール類としては、例えば、炭素数が4以下のアルコール類が挙げられる。なかでも、メタノール、エタノール、1-プロパノール、イソプロパノール、1-ブタノール、2-ブタノール、イソブタノールが好ましい。
これらのアルコール類は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
When the aromatic non-polar solvent is used as the reaction solvent, alcohols may be used in combination with the aromatic non-polar solvent.
The alcohol is not particularly limited, but is preferably an alcohol having a boiling point lower than that of the aromatic non-polar solvent.
Examples of such alcohols include alcohols having 4 or less carbon atoms. Among them, methanol, ethanol, 1-propanol, isopropanol, 1-butanol, 2-butanol and isobutanol are preferred.
These alcohols may be used alone or in combination of two or more.
反応中、上記反応溶媒は還流させてもよい。ベンゾオキサジン化合物を製造する反応においては、反応系中に水が生成する。その水は、アルコール類と同様に、溶媒和作用により、ベンゾオキサジン化合物の合成反応の進行を抑制する作用を有している。水と共沸する溶媒を合成溶媒として使用した際は、反応を効率よく進行させるため、反応中に生成する水を共沸により系外へ留去してもよい。その場合、例えば、コック付きの等圧滴下ロート、ジムロート冷却器、ディーン・スターク装置等を用いることで、反応中に生成する水を留去することができる。 During the reaction, the reaction solvent may be refluxed. In the reaction for producing a benzoxazine compound, water is generated in the reaction system. Like the alcohols, the water has an action of suppressing the progress of the synthesis reaction of the benzoxazine compound by solvation. When a solvent that azeotropes with water is used as a synthesis solvent, water generated during the reaction may be azeotropically distilled out of the system in order to allow the reaction to proceed efficiently. In this case, water generated during the reaction can be distilled off by using, for example, a constant-pressure dropping funnel with a cock, a Dimroth condenser, a Dean-Stark apparatus, or the like.
本発明のベンゾオキサジン化合物のベンゾオキサジン環を形成する反応においては、合成時に加温処理を行う。加温処理方法としては、例えば、油浴等の温度調節器を用いて、所定の温度まで上昇させた後に、その温度で一定に保つ方法等が挙げられる。
上記加温処理の際の所定の温度は特に限定されないが、反応溶液温度が50℃~150℃となるように調節することが好ましい。上記反応溶液温度が50℃以上であることにより、ベンゾオキサジン化合物の合成反応が遅くなることを防止し、合成効率を向上させることができる。上記反応溶液温度が150℃以下であることにより、合成反応時の反応溶液のゲル化を抑制することができる。
In the reaction for forming the benzoxazine ring of the benzoxazine compound of the present invention, a heating treatment is performed during the synthesis. Examples of the heating treatment method include a method in which the temperature is raised to a predetermined temperature using a temperature controller such as an oil bath, and then the temperature is kept constant.
The predetermined temperature in the heating treatment is not particularly limited, but is preferably adjusted so that the temperature of the reaction solution is 50 ° C. to 150 ° C. When the temperature of the reaction solution is 50 ° C. or higher, the synthesis reaction of the benzoxazine compound can be prevented from slowing down, and the synthesis efficiency can be improved. When the temperature of the reaction solution is 150 ° C. or lower, gelation of the reaction solution during the synthesis reaction can be suppressed.
上記加温処理の継続時間は特に制限されないが、加温開始後1時間~10時間程度加温を継続させることが好ましい。上記加温処理の継続時間が1時間以上であることにより、合成反応を充分に進行させ、合成収率を向上させることができる。上記加温処理の継続時間が10時間以下であることにより、反応溶液のゲル化及び合成物であるベンゾオキサジン化合物の不溶化を抑制することができる。 The duration of the heating treatment is not particularly limited, but it is preferable to continue the heating for about 1 hour to 10 hours after the start of the heating. When the duration of the heating treatment is 1 hour or more, the synthesis reaction can proceed sufficiently and the synthesis yield can be improved. When the duration of the heating treatment is 10 hours or less, gelation of the reaction solution and insolubilization of the benzoxazine compound as a synthetic product can be suppressed.
上記加温処理終了後は、反応媒体を、油浴等の温度調節器の接触から開放して放冷してもよいし、冷媒等を用いて冷却してもよい。
冷却後、反応溶液からベンゾオキサジン化合物を取り出す方法としては、例えば、貧溶媒再沈法、濃縮固化法(溶媒減圧留去)、スプレードライ法等が挙げられる。
After the completion of the heating treatment, the reaction medium may be released from contact with a temperature controller such as an oil bath and allowed to cool, or may be cooled using a refrigerant or the like.
Examples of the method of removing the benzoxazine compound from the reaction solution after cooling include poor solvent reprecipitation, concentration and solidification (solvent evaporation under reduced pressure), and spray drying.
本発明のベンゾオキサジン化合物を含有する硬化性樹脂組成物もまた、本発明の1つである。
本発明の硬化性樹脂組成物は、本発明のベンゾオキサジン化合物を含有することにより、硬化前は可撓性に優れ、硬化後は誘電特性に優れるものとなる。
本発明の硬化性樹脂組成物は、硬化性樹脂と硬化剤と本発明のベンゾオキサジン化合物とを含有する硬化性樹脂組成物であることが好ましい。
The curable resin composition containing the benzoxazine compound of the present invention is also one of the present invention.
By containing the benzoxazine compound of the present invention, the curable resin composition of the present invention has excellent flexibility before curing and has excellent dielectric properties after curing.
The curable resin composition of the present invention is preferably a curable resin composition containing a curable resin, a curing agent, and the benzoxazine compound of the present invention.
上記硬化性樹脂と上記硬化剤と本発明のベンゾオキサジン化合物との合計100重量部中における本発明のベンゾオキサジン化合物の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。本発明のベンゾオキサジン化合物の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が、硬化前の可撓性、及び、硬化後の誘電特性により優れるものとなる。本発明のベンゾオキサジン化合物の含有量のより好ましい下限は10重量部、より好ましい上限は60重量部である。 The preferable lower limit of the content of the benzoxazine compound of the present invention is 100 parts by weight, and the preferable upper limit thereof is 80 parts by weight, based on 100 parts by weight of the total of the curable resin, the curing agent, and the benzoxazine compound of the present invention. When the content of the benzoxazine compound of the present invention is within this range, the obtained curable resin composition becomes more excellent in flexibility before curing and in dielectric properties after curing. A more preferred lower limit of the content of the benzoxazine compound of the present invention is 10 parts by weight, and a more preferred upper limit is 60 parts by weight.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲において、本発明のベンゾオキサジン化合物に加えて、本発明のベンゾオキサジン化合物以外のその他のベンゾオキサジン化合物を含有してもよい。 The curable resin composition of the present invention may contain other benzoxazine compounds other than the benzoxazine compound of the present invention in addition to the benzoxazine compound of the present invention as long as the object of the present invention is not impaired.
上記硬化性樹脂としては、エポキシ樹脂、シアネート樹脂、フェノール樹脂、イミド樹脂、マレイミド樹脂、シリコーン樹脂、アクリル樹脂、フッ素樹脂等が挙げられる。なかでも、上記硬化性樹脂は、エポキシ樹脂、シアネート樹脂、フェノール樹脂、イミド樹脂、及び、マレイミド樹脂からなる群より選択される少なくとも1種を含むことが好ましく、エポキシ樹脂を含むことがより好ましい。上記硬化性樹脂は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the curable resin include an epoxy resin, a cyanate resin, a phenol resin, an imide resin, a maleimide resin, a silicone resin, an acrylic resin, and a fluororesin. In particular, the curable resin preferably contains at least one selected from the group consisting of an epoxy resin, a cyanate resin, a phenol resin, an imide resin, and a maleimide resin, and more preferably contains an epoxy resin. The curable resin may be used alone or in combination of two or more.
上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。 Examples of the epoxy resin include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol E epoxy resin, bisphenol S epoxy resin, 2,2′-diallylbisphenol A epoxy resin, hydrogenated bisphenol epoxy resin , Propylene oxide-added bisphenol A epoxy resin, resorcinol epoxy resin, biphenyl epoxy resin, sulfide epoxy resin, diphenyl ether epoxy resin, dicyclopentadiene epoxy resin, naphthalene epoxy resin, fluorene epoxy resin, naphthylene ether Epoxy resin, phenol novolak epoxy resin, ortho-cresol novolak epoxy resin, dicyclopentadiene novolak epoxy resin, biff Nirunoborakku type epoxy resins, naphthalene phenol novolac-type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber-modified epoxy resins, glycidyl ester compounds.
上記硬化剤としては、例えば、フェノール系硬化剤、チオール系硬化剤、アミン系硬化剤、酸無水物系硬化剤、シアネート系硬化剤、活性エステル系硬化剤等が挙げられる。なかでも、フェノール系硬化剤、活性エステル系硬化剤が好ましい。 Examples of the curing agent include a phenol-based curing agent, a thiol-based curing agent, an amine-based curing agent, an acid anhydride-based curing agent, a cyanate-based curing agent, and an active ester-based curing agent. Among them, phenol-based curing agents and active ester-based curing agents are preferred.
上記硬化性樹脂と上記硬化剤と本発明のベンゾオキサジン化合物との合計100重量部中における上記硬化剤の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。上記硬化剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が、硬化性及び保存安定性により優れるものとなる。上記硬化剤の含有量のより好ましい下限は10重量部、より好ましい上限は60重量部である。 A preferred lower limit of the content of the curing agent in 100 parts by weight of the total of the curable resin, the curing agent, and the benzoxazine compound of the present invention is 5 parts by weight, and a preferred upper limit is 80 parts by weight. When the content of the curing agent is within this range, the curable resin composition obtained will have better curability and storage stability. A more preferred lower limit of the content of the curing agent is 10 parts by weight, and a more preferred upper limit is 60 parts by weight.
本発明の硬化性樹脂組成物は、硬化促進剤を含有することが好ましい。上記硬化促進剤を含有することにより、硬化時間を短縮させて生産性を向上させることができる。 The curable resin composition of the present invention preferably contains a curing accelerator. By containing the curing accelerator, the curing time can be shortened and the productivity can be improved.
上記硬化促進剤としては、例えば、イミダゾール系硬化促進剤、3級アミン系硬化促進剤、ホスフィン系硬化促進剤、光塩基発生剤、スルホニウム塩系硬化促進剤等が挙げられる。なかでも、硬化性及び保存安定性の観点から、イミダゾール系硬化促進剤が好ましい。
上記硬化促進剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
Examples of the curing accelerator include an imidazole-based curing accelerator, a tertiary amine-based curing accelerator, a phosphine-based curing accelerator, a photobase generator, and a sulfonium salt-based curing accelerator. Among them, imidazole-based curing accelerators are preferred from the viewpoint of curability and storage stability.
The curing accelerators may be used alone or in combination of two or more.
上記硬化性樹脂と上記硬化剤と本発明のベンゾオキサジン化合物との合計100重量部に対する上記硬化促進剤の含有量の好ましい下限は0.8重量部である。上記硬化促進剤の含有量が0.8重量部以上であることにより、硬化時間を短縮させる効果により優れるものとなる。上記硬化促進剤の含有量のより好ましい下限は1重量部である。
また、接着性等の観点から、上記硬化促進剤の含有量の好ましい上限は10重量部、より好ましい上限は5重量部である。
A preferable lower limit of the content of the curing accelerator to 100 parts by weight of the total of the curable resin, the curing agent, and the benzoxazine compound of the present invention is 0.8 parts by weight. When the content of the curing accelerator is 0.8 parts by weight or more, the effect of shortening the curing time is more excellent. A more preferable lower limit of the content of the curing accelerator is 1 part by weight.
Further, from the viewpoint of adhesiveness and the like, a preferable upper limit of the content of the curing accelerator is 10 parts by weight, and a more preferable upper limit is 5 parts by weight.
本発明の硬化性樹脂組成物は、無機充填剤を含有することが好ましい。
上記無機充填剤を含有することにより、本発明の硬化性樹脂組成物は、優れた接着性等を維持したまま、吸湿リフロー耐性、及び、めっき耐性により優れるものとなる。
The curable resin composition of the present invention preferably contains an inorganic filler.
By containing the inorganic filler, the curable resin composition of the present invention becomes more excellent in moisture absorption reflow resistance and plating resistance while maintaining excellent adhesiveness and the like.
上記無機充填剤は、シリカ及び硫酸バリウムの少なくともいずれかであることが好ましい。上記無機充填剤としてシリカ及び硫酸バリウムの少なくともいずれかを含有することにより、本発明の硬化性樹脂組成物は、吸湿リフロー耐性、及び、めっき耐性に更に優れるものとなる。 The inorganic filler is preferably at least one of silica and barium sulfate. By containing at least one of silica and barium sulfate as the inorganic filler, the curable resin composition of the present invention becomes more excellent in moisture absorption reflow resistance and plating resistance.
上記シリカ及び上記硫酸バリウム以外のその他の無機充填剤としては、例えば、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素、ガラスパウダー、ガラスフリット、ガラス繊維、カーボンファイバー、無機イオン交換体等が挙げられる。 Examples of the inorganic filler other than the silica and the barium sulfate include alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frit, glass fiber, carbon fiber, and inorganic ion exchanger.
上記無機充填剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。 The inorganic fillers may be used alone or in combination of two or more.
上記無機充填剤の平均粒子径の好ましい下限は50nm、好ましい上限は4μmである。上記無機充填剤の平均粒子径がこの範囲であることにより、得られる硬化性樹脂組成物が塗布性により優れるものとなる。上記無機充填剤の平均粒子径のより好ましい下限は100nm、より好ましい上限は3μmである。 The preferable lower limit of the average particle diameter of the inorganic filler is 50 nm, and the preferable upper limit is 4 μm. When the average particle diameter of the inorganic filler is within this range, the curable resin composition obtained has better coatability. A more preferred lower limit of the average particle size of the inorganic filler is 100 nm, and a more preferred upper limit is 3 μm.
上記硬化性樹脂と上記硬化剤と本発明のベンゾオキサジン化合物との合計100重量部に対する上記無機充填剤の含有量の好ましい下限は50重量部、好ましい上限は500重量部である。上記無機充填剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が吸湿リフロー耐性、及び、めっき耐性により優れるものとなる。上記無機充填剤の含有量のより好ましい下限は100重量部である。 A preferable lower limit of the content of the inorganic filler to 100 parts by weight of the total of the curable resin, the curing agent, and the benzoxazine compound of the present invention is 50 parts by weight, and a preferable upper limit is 500 parts by weight. When the content of the inorganic filler is within this range, the obtained curable resin composition becomes more excellent in moisture absorption reflow resistance and plating resistance. A more preferred lower limit of the content of the inorganic filler is 100 parts by weight.
本発明の硬化性樹脂組成物は、被着体への短時間での塗れ性と形状保持性とを向上させる等の目的で流動調整剤を含有してもよい。
上記流動調整剤としては、例えば、アエロジル等のヒュームドシリカや層状ケイ酸塩等が挙げられる。
上記流動調整剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
また、上記流動調整剤としては、平均粒子径が100nm未満のものが好適に用いられる。
The curable resin composition of the present invention may contain a flow modifier for the purpose of improving the wettability to an adherend in a short time and the shape retention.
Examples of the flow regulator include fumed silica such as Aerosil and layered silicate.
The flow regulator may be used alone or in combination of two or more.
Further, as the above-mentioned flow regulator, those having an average particle diameter of less than 100 nm are suitably used.
上記硬化性樹脂と上記硬化剤と本発明のベンゾオキサジン化合物との合計100重量部に対する上記流動調整剤の含有量の好ましい下限は0.1重量部、好ましい上限は50重量部である。上記流動調整剤の含有量がこの範囲であることにより、被着体への短時間での塗れ性と形状保持性とを向上させる等の効果により優れるものとなる。上記流動調整剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は30重量部である。 A preferred lower limit of the content of the flow modifier to 100 parts by weight of the total of the curable resin, the curing agent, and the benzoxazine compound of the present invention is 0.1 part by weight, and a preferred upper limit is 50 parts by weight. When the content of the flow control agent is in this range, effects such as improvement in wettability to an adherend in a short time and shape retention are improved. A more preferred lower limit of the content of the flow regulator is 0.5 part by weight, and a more preferred upper limit is 30 parts by weight.
本発明の硬化性樹脂組成物は、応力緩和、靭性付与等を目的として有機充填剤を含有してもよい。
上記有機充填剤としては、例えば、シリコーンゴム粒子、アクリルゴム粒子、ウレタンゴム粒子、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子、ベンゾグアナミン粒子、及び、これらのコアシェル粒子等が挙げられる。なかでも、ポリアミド粒子、ポリアミドイミド粒子、ポリイミド粒子が好ましい。
上記有機充填剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
The curable resin composition of the present invention may contain an organic filler for the purpose of stress relaxation, imparting toughness, and the like.
Examples of the organic filler include silicone rubber particles, acrylic rubber particles, urethane rubber particles, polyamide particles, polyamideimide particles, polyimide particles, benzoguanamine particles, and core-shell particles thereof. Among them, polyamide particles, polyamideimide particles and polyimide particles are preferred.
The organic filler may be used alone or in combination of two or more.
上記硬化性樹脂と上記硬化剤と本発明のベンゾオキサジン化合物との合計100重量部に対する上記有機充填剤の含有量の好ましい上限は300重量部である。上記有機充填剤の含有量が300重量部以下であることにより、優れた接着性等を維持したまま、得られる硬化性樹脂組成物の硬化物が靭性等により優れるものとなる。上記有機充填剤の含有量のより好ましい上限は200重量部である。 The preferable upper limit of the content of the organic filler to 100 parts by weight of the total of the curable resin, the curing agent, and the benzoxazine compound of the present invention is 300 parts by weight. When the content of the organic filler is 300 parts by weight or less, the obtained cured product of the curable resin composition becomes more excellent in toughness and the like while maintaining excellent adhesiveness and the like. A more preferred upper limit of the content of the organic filler is 200 parts by weight.
本発明の硬化性樹脂組成物は、難燃剤を含有してもよい。
上記難燃剤としては、例えば、ベーマイト型水酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム等の金属水和物、ハロゲン系化合物、りん系化合物、窒素化合物等が挙げられる。なかでも、ベーマイト型水酸化アルミニウムが好ましい。
上記難燃剤は、単独で用いられてもよいし、2種類以上が組み合わせて用いられてもよい。
The curable resin composition of the present invention may contain a flame retardant.
Examples of the flame retardant include metal hydrates such as boehmite-type aluminum hydroxide, aluminum hydroxide, and magnesium hydroxide, halogen compounds, phosphorus compounds, and nitrogen compounds. Above all, boehmite-type aluminum hydroxide is preferred.
The flame retardants may be used alone or in combination of two or more.
上記硬化性樹脂と上記硬化剤と本発明のベンゾオキサジン化合物との合計100重量部に対する上記難燃剤の含有量の好ましい下限は5重量部、好ましい上限は200重量部である。上記難燃剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が優れた接着性等を維持したまま、難燃性に優れるものとなる。上記難燃剤の含有量のより好ましい下限は10重量部、より好ましい上限は150重量部である。 The preferred lower limit of the content of the flame retardant to 100 parts by weight of the total of the curable resin, the curing agent and the benzoxazine compound of the present invention is 5 parts by weight, and the preferred upper limit is 200 parts by weight. When the content of the flame retardant is within this range, the resulting curable resin composition has excellent flame retardancy while maintaining excellent adhesiveness and the like. A more preferred lower limit of the content of the flame retardant is 10 parts by weight, and a more preferred upper limit is 150 parts by weight.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲で熱可塑性樹脂を含有してもよい。上記熱可塑性樹脂を用いることにより、本発明の硬化性樹脂組成物は、流動特性により優れ、熱圧着時の充填性及び浸出防止性を両立することがより容易となり、かつ、硬化後の耐屈曲性により優れるものとなる。 The curable resin composition of the present invention may contain a thermoplastic resin as long as the object of the present invention is not impaired. By using the above-mentioned thermoplastic resin, the curable resin composition of the present invention is more excellent in flow characteristics, it is easier to achieve both the filling property and the leaching prevention property at the time of thermocompression bonding, and the bending resistance after curing. It becomes more excellent by the property.
上記熱可塑性樹脂としては、ポリイミド樹脂、フェノキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリビニルアセタール樹脂等が挙げられる。なかでも、耐熱性や取り扱い性の点から、フェノキシ樹脂が好ましい。
上記熱可塑性樹脂は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the thermoplastic resin include a polyimide resin, a phenoxy resin, a polyamide resin, a polyamideimide resin, and a polyvinyl acetal resin. Among them, phenoxy resins are preferred from the viewpoint of heat resistance and handleability.
The thermoplastic resins may be used alone or in combination of two or more.
上記熱可塑性樹脂の数平均分子量の好ましい下限は3000、好ましい上限は10万である。上記熱可塑性樹脂の上記数平均分子量がこの範囲であることにより、得られる硬化性樹脂組成物が流動特性や硬化後の耐屈曲性により優れるものとなる。上記熱可塑性樹脂の数平均分子量のより好ましい下限は5000、より好ましい上限は5万である。 A preferred lower limit of the number average molecular weight of the thermoplastic resin is 3,000, and a preferred upper limit is 100,000. When the number average molecular weight of the thermoplastic resin is in this range, the resulting curable resin composition has more excellent flow characteristics and flex resistance after curing. A more preferred lower limit of the number average molecular weight of the thermoplastic resin is 5,000, and a more preferred upper limit is 50,000.
上記硬化性樹脂と上記硬化剤と本発明のベンゾオキサジン化合物との合計100重量部に対する上記熱可塑性樹脂の含有量の好ましい下限は2重量部、好ましい上限は60重量部である。上記熱可塑性樹脂の含有量が2重量部以上であることにより、得られる硬化性樹脂組成物が流動特性や硬化後の耐屈曲性により優れるものとなる。上記熱可塑性樹脂の含有量が60重量部以下であることにより、得られる硬化性樹脂組成物が接着性や耐熱性により優れるものとなる。上記熱可塑性樹脂の含有量のより好ましい下限は3重量部、より好ましい上限は50重量部である。 The preferable lower limit of the content of the thermoplastic resin to 100 parts by weight of the total of the above-mentioned curable resin, the above-mentioned curing agent and the benzoxazine compound of the present invention is 2 parts by weight, and the preferable upper limit thereof is 60 parts by weight. When the content of the thermoplastic resin is 2 parts by weight or more, the obtained curable resin composition becomes more excellent in flow characteristics and bending resistance after curing. When the content of the thermoplastic resin is 60 parts by weight or less, the obtained curable resin composition becomes more excellent in adhesiveness and heat resistance. A more preferred lower limit of the content of the thermoplastic resin is 3 parts by weight, and a more preferred upper limit is 50 parts by weight.
本発明の硬化性樹脂組成物は、塗工性等の観点から溶媒を含有してもよい。
上記溶媒としては、塗工性や貯蔵安定性等の観点から、沸点が160℃以下の非極性溶媒又は沸点が160℃以下の非プロトン性極性溶媒が好ましい。
上記沸点が160℃以下の非極性溶媒又は沸点が160℃以下の非プロトン性極性溶媒としては、例えば、ケトン系溶媒、エステル系溶媒、炭化水素系溶媒、ハロゲン系溶媒、エーテル系溶媒、含窒素系溶媒等が挙げられる。
上記ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられる。
上記エステル系溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸イソブチル等が挙げられる。
上記炭化水素系溶媒としては、例えば、ベンゼン、トルエン、ノルマルヘキサン、イソヘキサン、シクロヘキサン、メチルシクロヘキサン、ノルマルヘプタン等が挙げられる。
上記ハロゲン系溶媒としては、例えば、ジクロロメタン、クロロホルム、トリクロロエチレン等が挙げられる。
上記エーテル系溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン等が挙げられる。
上記含窒素系溶媒としては、例えば、アセトニトリル等が挙げられる。
なかでも、取り扱い性や上記硬化剤の溶解性等の観点から、沸点が60℃以上のケトン系溶媒、沸点が60℃以上のエステル系溶媒、及び、沸点が60℃以上のエーテル系溶媒からなる群より選択される少なくとも1種が好ましい。このような溶媒としては、例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸イソブチル、1,4-ジオキサン、1,3-ジオキソラン、テトラヒドロフラン等が挙げられる。
なお、上記「沸点」は、101kPaの条件で測定される値、又は、沸点換算図表等で101kPaに換算された値を意味する。
The curable resin composition of the present invention may contain a solvent from the viewpoint of coatability and the like.
As the solvent, a non-polar solvent having a boiling point of 160 ° C. or less or an aprotic polar solvent having a boiling point of 160 ° C. or less is preferable from the viewpoint of coating properties and storage stability.
Examples of the non-polar solvent having a boiling point of 160 ° C. or less or an aprotic polar solvent having a boiling point of 160 ° C. or less include, for example, ketone solvents, ester solvents, hydrocarbon solvents, halogen solvents, ether solvents, and nitrogen-containing solvents. System solvents and the like.
Examples of the ketone-based solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and the like.
Examples of the ester solvent include methyl acetate, ethyl acetate, isobutyl acetate and the like.
Examples of the hydrocarbon solvent include benzene, toluene, normal hexane, isohexane, cyclohexane, methylcyclohexane, normal heptane and the like.
Examples of the halogen-based solvent include dichloromethane, chloroform, trichloroethylene and the like.
Examples of the ether solvent include diethyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolan, and the like.
Examples of the nitrogen-containing solvent include acetonitrile and the like.
Among them, from the viewpoints of handleability and solubility of the above-mentioned curing agent, a ketone-based solvent having a boiling point of 60 ° C or higher, an ester-based solvent having a boiling point of 60 ° C or higher, and an ether-based solvent having a boiling point of 60 ° C or higher are used. At least one selected from the group is preferred. Examples of such a solvent include methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, isobutyl acetate, 1,4-dioxane, 1,3-dioxolan, tetrahydrofuran and the like.
The above “boiling point” means a value measured under a condition of 101 kPa or a value converted to 101 kPa in a boiling point conversion chart or the like.
本発明の硬化性樹脂組成物中における上記溶媒の含有量の好ましい下限は15重量%、好ましい上限は80重量%である。上記溶媒の含有量がこの範囲であることにより、本発明の硬化性樹脂組成物は、塗工性等により優れるものとなる。上記溶媒の含有量のより好ましい下限は20重量%、より好ましい上限は70重量%である。 A preferred lower limit of the content of the solvent in the curable resin composition of the present invention is 15% by weight, and a preferred upper limit is 80% by weight. When the content of the solvent is in this range, the curable resin composition of the present invention is more excellent in coatability and the like. The more preferable lower limit of the content of the solvent is 20% by weight, and the more preferable upper limit is 70% by weight.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲で反応性希釈剤を含有してもよい。
上記反応性希釈剤としては、接着信頼性の観点から、1分子中に2つ以上の反応性官能基を有する反応性希釈剤が好ましい。
The curable resin composition of the present invention may contain a reactive diluent as long as the object of the present invention is not impaired.
As the reactive diluent, a reactive diluent having two or more reactive functional groups in one molecule is preferable from the viewpoint of adhesion reliability.
本発明の硬化性樹脂組成物は、更に、カップリング剤、分散剤、貯蔵安定化剤、ブリード防止剤、フラックス剤、レベリング剤等の添加剤を含有してもよい。 The curable resin composition of the present invention may further contain additives such as a coupling agent, a dispersant, a storage stabilizer, an anti-bleeding agent, a fluxing agent, and a leveling agent.
本発明の硬化性樹脂組成物を製造する方法としては、例えば、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー等の混合機を用いて、硬化性樹脂と、硬化剤と、本発明のベンゾオキサジン化合物と、必要に応じて添加する溶媒等とを混合する方法等が挙げられる。 As a method for producing the curable resin composition of the present invention, for example, using a homodisper, a universal mixer, a Banbury mixer, a mixer such as a kneader, a curable resin, a curing agent, and the benzoxazine compound of the present invention And a solvent or the like added as necessary.
本発明の硬化性樹脂組成物を基材フィルム上に塗工し、乾燥させることにより、本発明の硬化性樹脂組成物からなる硬化性樹脂組成物フィルムを得ることができ、該硬化性樹脂組成物フィルムを硬化させて硬化物を得ることができる。
本発明の硬化性樹脂組成物を硬化させてなる硬化物もまた、本発明の1つである。
The curable resin composition of the present invention can be obtained by applying the curable resin composition of the present invention on a base film and drying the curable resin composition. The cured product can be obtained by curing the product film.
A cured product obtained by curing the curable resin composition of the present invention is also one of the present invention.
本発明の硬化性樹脂組成物は、硬化物の23℃における誘電正接の好ましい上限が0.0045である。上記硬化物の23℃における誘電正接がこの範囲であることにより、本発明の硬化性樹脂組成物は、多層プリント配線板等の層間絶縁材料に好適に用いることができる。上記硬化物の23℃における誘電正接のより好ましい上限は0.0040、更に好ましい上限は0.0035である。
なお、上記「誘電正接」は、誘電率測定装置及びネットワークアナライザーを用いて1.0GHzの条件で測定される値である。なお、上記「誘電正接」を測定する硬化物は、厚さを40~200μmとした上記硬化性樹脂組成物フィルムを190℃で90分間加熱することにより得ることができる。
In the curable resin composition of the present invention, the preferable upper limit of the dielectric loss tangent at 23 ° C. of the cured product is 0.0045. When the dielectric loss tangent at 23 ° C. of the cured product falls within this range, the curable resin composition of the present invention can be suitably used for an interlayer insulating material such as a multilayer printed wiring board. A more preferred upper limit of the dielectric loss tangent of the cured product at 23 ° C. is 0.0040, and a still more preferred upper limit is 0.0035.
The “dielectric tangent” is a value measured under a condition of 1.0 GHz using a dielectric constant measuring device and a network analyzer. The cured product for measuring the “dielectric tangent” can be obtained by heating the curable resin composition film having a thickness of 40 to 200 μm at 190 ° C. for 90 minutes.
本発明の硬化性樹脂組成物は、広い用途に用いることができる。例えば、プリント配線基板用接着剤、フレキシブルプリント回路基板のカバーレイ用接着剤、銅張積層板、半導体接合用接着剤、層間絶縁材料、プリプレグ、LED用封止剤、構造材料用接着剤等に用いることができる。
なかでも、接着剤用途に好適に用いられる。本発明の硬化性樹脂組成物を含む接着剤もまた、本発明の1つである。
The curable resin composition of the present invention can be used for a wide range of applications. For example, adhesives for printed wiring boards, adhesives for coverlays of flexible printed circuit boards, copper-clad laminates, adhesives for semiconductor bonding, interlayer insulating materials, prepregs, sealing agents for LEDs, adhesives for structural materials, etc. Can be used.
Among them, it is suitably used for adhesives. An adhesive containing the curable resin composition of the present invention is also one of the present invention.
上記硬化性樹脂フィルムは、接着フィルムとして好適に用いることができる。本発明の硬化性樹脂組成物を用いてなる接着フィルムもまた、本発明の1つである。
また、本発明の硬化物を有する回路基板もまた、本発明の1つである。
The curable resin film can be suitably used as an adhesive film. An adhesive film using the curable resin composition of the present invention is also one of the present invention.
Further, a circuit board having the cured product of the present invention is also one of the present invention.
本発明の硬化性樹脂組成物は、硬化物が低誘電率、低誘電正接であり、誘電特性に優れるため、多層プリント配線板等の層間絶縁材料に好適に用いることができる。本発明の硬化性樹脂組成物を用いてなる層間絶縁材料もまた、本発明の1つである。
また、回路基板と、該回路基板上に配置された複数の絶縁層と、該複数の絶縁層間に配置された金属層とを有し、上記絶縁層は、本発明の層間絶縁材料の硬化物からなる多層プリント配線板もまた、本発明の1つである。
The curable resin composition of the present invention can be suitably used as an interlayer insulating material such as a multilayer printed wiring board because the cured product has a low dielectric constant, a low dielectric loss tangent, and excellent dielectric properties. An interlayer insulating material using the curable resin composition of the present invention is also one of the present invention.
Further, it has a circuit board, a plurality of insulating layers disposed on the circuit board, and a metal layer disposed between the plurality of insulating layers, wherein the insulating layer is a cured product of the interlayer insulating material of the present invention. Is also one of the present invention.
本発明によれば、硬化前は可撓性に優れ、硬化後は誘電特性に優れる硬化性樹脂組成物に用いることができるベンゾオキサジン化合物を提供することができる。また、本発明によれば、該ベンゾオキサジン化合物を含む硬化性樹脂組成物、該硬化性樹脂組成物を用いてなる接着剤、接着フィルム、硬化物、回路基板、層間絶縁材料、及び、多層プリント配線板を提供することができる。 According to the present invention, it is possible to provide a benzoxazine compound that can be used for a curable resin composition having excellent flexibility before curing and having excellent dielectric properties after curing. Further, according to the present invention, a curable resin composition containing the benzoxazine compound, an adhesive using the curable resin composition, an adhesive film, a cured product, a circuit board, an interlayer insulating material, and a multilayer print A wiring board can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(合成例1(ベンゾオキサジン化合物Aの作製))
還流管、コック付きの等圧滴下漏斗、及び、ジムロート冷却器を備えた500mL容のフラスコ内に、混合溶媒としてトルエン150mL及びメタノール50mLを25℃で一括して添加して混合した。次いで、フェノール(東京化成工業社製)18.8g(0.2モル)及び水添型ダイマージアミンであるプリアミン1074(クローダ社製)56.2g(0.1モル)を、25℃でフラスコ内に一括して添加して混合した。その後、パラホルムアルデヒド(東京化成工業社製)13.2g(0.44モル)を、25℃でフラスコ内に一括して添加して混合し、混合溶液を得た。
得られた混合溶液が入ったフラスコを、温度が120℃に設定された油浴中に浸し、還流しながら加温することで反応を進行させた。還流開始から1時間後、反応系中に生成された水を、トルエン及びメタノールと共沸させることで系外に留去した。
留去開始から4時間反応を進行させた後、フラスコを油浴中から取り出し、得られた反応溶液を25℃まで冷却した。冷却後、反応溶液を1Lのメタノール中に注ぎ入れ、反応物を沈殿析出させた。析出した沈殿固体を減圧乾燥することにより、ベンゾオキサジン化合物Aを得た。
なお、H-NMR、GPC、及び、FT-IR分析により、ベンゾオキサジン化合物Aは、上記式(1-1)で表される構造を有するベンゾオキサジン化合物(Aは水添型ダイマージアミン残基、X及びX’は水素原子)を含むことを確認した。また、該ベンゾオキサジン化合物Aの数平均分子量は800であった。
(Synthesis Example 1 (Preparation of Benzoxazine Compound A))
In a 500 mL flask equipped with a reflux tube, a constant pressure dropping funnel equipped with a cock, and a Dimroth condenser, 150 mL of toluene and 50 mL of methanol were added at once at 25 ° C as a mixed solvent and mixed. Next, 18.8 g (0.2 mol) of phenol (manufactured by Tokyo Chemical Industry Co., Ltd.) and 56.2 g (0.1 mol) of preamine 1074 (manufactured by Croda), which is a hydrogenated dimer diamine, were placed in a flask at 25 ° C. Was added all at once and mixed. Thereafter, 13.2 g (0.44 mol) of paraformaldehyde (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added all at once to the flask at 25 ° C. and mixed to obtain a mixed solution.
The flask containing the obtained mixed solution was immersed in an oil bath whose temperature was set to 120 ° C., and the reaction was allowed to proceed by heating while refluxing. One hour after the start of reflux, water produced in the reaction system was distilled off from the system by azeotropic distillation with toluene and methanol.
After the reaction was allowed to proceed for 4 hours from the start of the distillation, the flask was taken out of the oil bath, and the obtained reaction solution was cooled to 25 ° C. After cooling, the reaction solution was poured into 1 L of methanol to precipitate a reaction product. The precipitated solid was dried under reduced pressure to obtain benzoxazine compound A.
According to 1 H-NMR, GPC, and FT-IR analysis, the benzoxazine compound A was a benzoxazine compound having a structure represented by the above formula (1-1) (A is a hydrogenated dimer diamine residue). , X and X ′ contained a hydrogen atom). The benzoxazine compound A had a number average molecular weight of 800.
(合成例2(ベンゾオキサジン化合物Bの作製))
プリアミン1074に代えて、ダイマージアミンであるプリアミン1073(クローダ社製)56.8g(0.1モル)を用いたこと以外は合成例1と同様にして、ベンゾオキサジン化合物Bを得た。
なお、H-NMR、GPC、及び、FT-IR分析により、ベンゾオキサジン化合物Bは、上記式(1-1)で表される構造を有するベンゾオキサジン化合物(Aはダイマージアミン残基、X及びX’は水素原子)を含むことを確認した。また、該ベンゾオキサジン化合物Bの数平均分子量は800であった。
(Synthesis Example 2 (Preparation of Benzoxazine Compound B))
A benzoxazine compound B was obtained in the same manner as in Synthesis Example 1 except that 56.8 g (0.1 mol) of diamine diamine priamine 1073 (manufactured by Croda) was used instead of priamine 1074.
According to 1 H-NMR, GPC, and FT-IR analysis, the benzoxazine compound B was a benzoxazine compound having a structure represented by the above formula (1-1) (A is a dimer diamine residue, X and X ′ contained a hydrogen atom). The benzoxazine compound B had a number average molecular weight of 800.
(合成例3(ベンゾオキサジン化合物Cの作製))
プリアミン1074に代えて、ダイマージアミンとトリマートリアミンとの混合物であるプリアミン1071(クローダ社製)61.7g(0.1モル)を用いたこと以外は合成例1と同様にして、ベンゾオキサジン化合物Cを得た。
なお、H-NMR、GPC、及び、FT-IR分析により、ベンゾオキサジン化合物Cは、上記式(1-1)で表される構造を有するベンゾオキサジン化合物(Aはダイマージアミン残基、X及びX’は水素原子)を含むことを確認した。また、該ベンゾオキサジン化合物Cは、上記式(1-2)で表される構造を有するベンゾオキサジン化合物(Aはトリマートリアミン残基、X、X’、及び、X’’は水素原子)を含むことを確認した。また、該ベンゾオキサジン化合物Cの数平均分子量は850であった。
(Synthesis Example 3 (Preparation of Benzoxazine Compound C))
A benzoxazine compound C was prepared in the same manner as in Synthesis Example 1 except that 61.7 g (0.1 mol) of priamine 1071 (manufactured by Croda), which was a mixture of dimer diamine and trimer triamine, was used instead of priamine 1074. I got
According to 1 H-NMR, GPC, and FT-IR analysis, the benzoxazine compound C was a benzoxazine compound having a structure represented by the above formula (1-1) (A is a dimer diamine residue, X and X ′ contained a hydrogen atom). In addition, the benzoxazine compound C includes a benzoxazine compound having a structure represented by the above formula (1-2) (A is a trimer triamine residue, X, X ′, and X ″ are hydrogen atoms) It was confirmed. The number average molecular weight of the benzoxazine compound C was 850.
(合成例4(ベンゾオキサジン化合物Dの作製))
ダイマージアミンであるプリアミン1073(クローダ社製)56.8g(0.1モル)をN-メチルピロリドン(富士フイルム和光純薬社製、「NMP」)400gに溶解させた。得られた溶液に芳香族テトラカルボン酸として4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(東京化成工業社製)104.1g(0.2モル)を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、両末端に酸無水物基を有するイミドオリゴマーを得た。
3-アミノフェノール(東京化成工業社製)26.8g(0.2モル)をN-メチルピロリドン(富士フイルム和光純薬社製、「NMP」)400gに溶解させた。得られた溶液に両末端に酸無水物基を有するイミドオリゴマー157.3g(0.1モル)を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、両末端にフェノール性水酸基を有するイミドオリゴマーを得た。
還流管、コック付きの等圧滴下漏斗、及び、ジムロート冷却器を備えた500mL容のフラスコ内に、混合溶媒としてトルエン150mL及びメタノール50mLを25℃で一括して添加して混合した。次いで、両末端にフェノール性水酸基を有するイミドオリゴマー174.7g(0.1モル)及びアニリン(東京化成工業社製)18.6g(0.2モル)を、25℃でフラスコ内に一括して添加して混合した。その後、パラホルムアルデヒド(東京化成工業社製)13.2g(0.44モル)を、25℃でフラスコ内に一括して添加して混合し、混合溶液を得た。
得られた混合溶液が入ったフラスコを、温度が120℃に設定された油浴中に浸し、還流しながら加温することで反応を進行させた。還流開始から1時間後、反応系中に生成された水を、トルエン及びメタノールと共沸させることで系外に留去した。
留去開始から4時間反応を進行させた後、フラスコを油浴中から取り出し、得られた反応溶液を25℃まで冷却した。冷却後、反応溶液を1Lのメタノール中に注ぎ入れ、反応物を沈殿析出させた。析出した沈殿固体を減圧乾燥することにより、ベンゾオキサジン化合物Dを得た。
なお、H-NMR、GPC、及び、FT-IR分析により、ベンゾオキサジン化合物Dは、上記式(4)で表される構造を有するベンゾオキサジン化合物(Aはダイマージアミン残基、C及びC’は4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物残基、Y及びY’はフェニル基)を含むことを確認した。また、該ベンゾオキサジン化合物Dの数平均分子量は2000であった。
(Synthesis Example 4 (Preparation of Benzoxazine Compound D))
56.8 g (0.1 mol) of priamine 1073 (manufactured by Croda) which is a dimer diamine was dissolved in 400 g of N-methylpyrrolidone ("NMP" manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). 104.1 g (0.2 mol) of 4,4 ′-(4,4′-isopropylidene diphenoxy) diphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) as an aromatic tetracarboxylic acid was added to the obtained solution. The mixture was stirred at 25 ° C. for 2 hours to be reacted to obtain an amic acid oligomer solution. After N-methylpyrrolidone was removed from the obtained amic acid oligomer solution under reduced pressure, the solution was heated at 300 ° C. for 2 hours to obtain an imide oligomer having an acid anhydride group at both terminals.
26.8 g (0.2 mol) of 3-aminophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 400 g of N-methylpyrrolidone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., “NMP”). To the resulting solution, 157.3 g (0.1 mol) of an imide oligomer having an acid anhydride group at both terminals was added, and the mixture was stirred at 25 ° C. for 2 hours to be reacted to obtain an amic acid oligomer solution. After removing N-methylpyrrolidone from the obtained amic acid oligomer solution under reduced pressure, the mixture was heated at 300 ° C. for 2 hours to obtain an imide oligomer having phenolic hydroxyl groups at both ends.
In a 500 mL flask equipped with a reflux tube, a constant pressure dropping funnel equipped with a cock, and a Dimroth condenser, 150 mL of toluene and 50 mL of methanol were added at once at 25 ° C as a mixed solvent and mixed. Next, 174.7 g (0.1 mol) of an imide oligomer having phenolic hydroxyl groups at both ends and 18.6 g (0.2 mol) of aniline (manufactured by Tokyo Chemical Industry Co., Ltd.) were placed in a flask at 25 ° C. Added and mixed. Thereafter, 13.2 g (0.44 mol) of paraformaldehyde (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added all at once to the flask at 25 ° C. and mixed to obtain a mixed solution.
The flask containing the obtained mixed solution was immersed in an oil bath whose temperature was set to 120 ° C., and the reaction was allowed to proceed by heating while refluxing. One hour after the start of reflux, water produced in the reaction system was distilled off from the system by azeotropic distillation with toluene and methanol.
After the reaction was allowed to proceed for 4 hours from the start of distillation, the flask was taken out of the oil bath, and the obtained reaction solution was cooled to 25 ° C. After cooling, the reaction solution was poured into 1 L of methanol to precipitate a reaction product. The precipitated solid was dried under reduced pressure to obtain a benzoxazine compound D.
According to 1 H-NMR, GPC, and FT-IR analysis, the benzoxazine compound D was a benzoxazine compound having a structure represented by the above formula (4) (A is a dimer diamine residue, C and C ′ Contains 4,4 ′-(4,4′-isopropylidene diphenoxy) diphthalic anhydride residue, and Y and Y ′ are phenyl groups. The number average molecular weight of the benzoxazine compound D was 2,000.
(合成例5(ベンゾオキサジン化合物Eの作製))
ダイマージアミンであるプリアミン1073(クローダ社製)113.6g(0.2モル)をN-メチルピロリドン(富士フイルム和光純薬社製、「NMP」)400gに溶解させた。得られた溶液に芳香族テトラカルボン酸として4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(東京化成工業社製)52.0g(0.1モル)を添加し、25℃で2時間撹拌して反応させてアミック酸オリゴマー溶液を得た。得られたアミック酸オリゴマー溶液からN-メチルピロリドンを減圧除去した後、300℃で2時間加熱することにより、両末端にアミノ基を有するイミドオリゴマーを得た。
還流管、コック付きの等圧滴下漏斗、及び、ジムロート冷却器を備えた500mL容のフラスコ内に、混合溶媒としてトルエン150mL及びメタノール50mLを25℃で一括して添加して混合した。次いで、フェノール(東京化成工業社製)18.8g(0.2モル)、及び、得られた両末端にアミノ基を有するイミドオリゴマー160.7g(0.1モル)を、25℃でフラスコ内に一括して添加して混合した。その後、パラホルムアルデヒド(東京化成工業社製)13.2g(0.44モル)を、25℃でフラスコ内に一括して添加して混合し、混合溶液を得た。
得られた混合溶液が入ったフラスコを、温度が120℃に設定された油浴中に浸し、還流しながら加温することで反応を進行させた。還流開始から1時間後、反応系中に生成された水を、トルエン及びメタノールと共沸させることで系外に留去した。
留去開始から4時間反応を進行させた後、フラスコを油浴中から取り出し、得られた反応溶液を25℃まで冷却した。冷却後、反応溶液を1Lのメタノール中に注ぎ入れ、反応物を沈殿析出させた。析出した沈殿固体を減圧乾燥することにより、ベンゾオキサジン化合物Eを得た。
なお、H-NMR、GPC、及び、FT-IR分析により、ベンゾオキサジン化合物Eは、上記式(5)で表される構造を有するベンゾオキサジン化合物を含むことを確認した。該ベンゾオキサジン化合物Eにおいて、上記式(5)中のA及びA’は両末端にアミノ基を有するイミドオリゴマー残基、Cは4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物残基、X及びX’は水素原子であった。また、該ベンゾオキサジン化合物Eの数平均分子量は1960であった。
(Synthesis Example 5 (Preparation of Benzoxazine Compound E))
113.6 g (0.2 mol) of priamine 1073 (manufactured by Croda), which is a dimer diamine, was dissolved in 400 g of N-methylpyrrolidone (“NMP” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). 52.0 g (0.1 mol) of 4,4 ′-(4,4′-isopropylidene diphenoxy) diphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the resulting solution as an aromatic tetracarboxylic acid. The mixture was stirred at 25 ° C. for 2 hours to be reacted to obtain an amic acid oligomer solution. After N-methylpyrrolidone was removed from the obtained amic acid oligomer solution under reduced pressure, the solution was heated at 300 ° C. for 2 hours to obtain an imide oligomer having amino groups at both ends.
In a 500 mL flask equipped with a reflux tube, a constant pressure dropping funnel equipped with a cock, and a Dimroth condenser, 150 mL of toluene and 50 mL of methanol were added at once at 25 ° C as a mixed solvent and mixed. Next, 18.8 g (0.2 mol) of phenol (manufactured by Tokyo Chemical Industry Co., Ltd.) and 160.7 g (0.1 mol) of the obtained imide oligomer having an amino group at both terminals were placed in a flask at 25 ° C. Was added all at once and mixed. Thereafter, 13.2 g (0.44 mol) of paraformaldehyde (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added all at once to the flask at 25 ° C. and mixed to obtain a mixed solution.
The flask containing the obtained mixed solution was immersed in an oil bath whose temperature was set to 120 ° C., and the reaction was allowed to proceed by heating while refluxing. One hour after the start of reflux, water produced in the reaction system was distilled off from the system by azeotropic distillation with toluene and methanol.
After the reaction was allowed to proceed for 4 hours from the start of the distillation, the flask was taken out of the oil bath, and the obtained reaction solution was cooled to 25 ° C. After cooling, the reaction solution was poured into 1 L of methanol to precipitate a reaction product. The precipitated solid was dried under reduced pressure to obtain a benzoxazine compound E.
In addition, 1 H-NMR, GPC, and FT-IR analysis confirmed that the benzoxazine compound E contained a benzoxazine compound having a structure represented by the above formula (5). In the benzoxazine compound E, A and A ′ in the above formula (5) are imide oligomer residues having amino groups at both ends, and C is 4,4 ′-(4,4′-isopropylidene diphenoxy) diphthal The acid anhydride residues, X and X ', were hydrogen atoms. The number average molecular weight of the benzoxazine compound E was 1960.
(合成例6(ベンゾオキサジン化合物Fの作製))
還流管、コック付きの等圧滴下漏斗、及び、ジムロート冷却器を備えた500mL容のフラスコ内に、混合溶媒としてトルエン150mL及びメタノール50mLを25℃で一括して添加して混合した。次いで、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン(東京化成工業社製、「ビスフェノールM」)34.7g(0.1モル)及び水添型ダイマージアミンであるプリアミン1074(クローダ社製)56.2g(0.1モル)を、25℃でフラスコ内に一括して添加して混合した。その後、パラホルムアルデヒド(東京化成工業社製)13.2g(0.44モル)を、25℃でフラスコ内に一括して添加して混合し、混合溶液を得た。
得られた混合溶液が入ったフラスコを、温度が80℃に設定された油浴中に浸し、還流しながら加温することで反応を進行させた。還流開始から1時間後、反応系中に生成された水を、トルエン及びメタノールと共沸させることで系外に留去した。
留去開始から4時間反応を進行させた後、フラスコを油浴中から取り出し、得られた反応溶液を25℃まで冷却した。冷却後、反応溶液を1Lのメタノール中に注ぎ入れ、反応物を沈殿析出させた。析出した沈殿固体を減圧乾燥することにより、ベンゾオキサジン化合物Fを得た。
なお、H-NMR、GPC、及び、FT-IR分析により、ベンゾオキサジン化合物Fは、上記式(6)で表される繰り返し構造単位を有するベンゾオキサジン化合物(Aは水添型ダイマージアミン残基、Zは下記式(9)で表される基)を含むことを確認した。また、該ベンゾオキサジン化合物Fの数平均分子量は12000であった。
(Synthesis Example 6 (Preparation of Benzoxazine Compound F))
In a 500 mL flask equipped with a reflux tube, a constant pressure dropping funnel equipped with a cock, and a Dimroth condenser, 150 mL of toluene and 50 mL of methanol were added at once at 25 ° C as a mixed solvent and mixed. Next, 34.7 g (0.1 mol) of 1,3-bis (2- (4-hydroxyphenyl) -2-propyl) benzene (manufactured by Tokyo Chemical Industry Co., Ltd., “bisphenol M”) and hydrogenated dimer diamine were used. 56.2 g (0.1 mol) of a certain preamine 1074 (manufactured by Croda) were added all at once to the flask at 25 ° C. and mixed. Thereafter, 13.2 g (0.44 mol) of paraformaldehyde (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added all at once to the flask at 25 ° C. and mixed to obtain a mixed solution.
The flask containing the obtained mixed solution was immersed in an oil bath set at a temperature of 80 ° C., and the reaction was allowed to proceed by heating while refluxing. One hour after the start of reflux, water produced in the reaction system was distilled off from the system by azeotropic distillation with toluene and methanol.
After the reaction was allowed to proceed for 4 hours from the start of the distillation, the flask was taken out of the oil bath, and the obtained reaction solution was cooled to 25 ° C. After cooling, the reaction solution was poured into 1 L of methanol to precipitate a reaction product. The precipitated solid was dried under reduced pressure to obtain a benzoxazine compound F.
According to 1 H-NMR, GPC, and FT-IR analysis, the benzoxazine compound F was a benzoxazine compound having a repeating structural unit represented by the above formula (6) (A is a hydrogenated dimer diamine residue). , And Z contain a group represented by the following formula (9)). The number average molecular weight of the benzoxazine compound F was 12,000.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
式(9)中、*は、結合位置である。 In the formula (9), * is a bonding position.
(合成例7(ベンゾオキサジン化合物Gの作製))
プリアミン1074に代えて、炭素数4以上の脂肪族骨格を有さないジアミンである1,3-ビス(3-アミノフェノキシ)ベンゼン(三井化学ファイン社製、「APB-N」)29.2g(0.1モル)を用いたこと以外は合成例1と同様にして、ベンゾオキサジン化合物Gを得た。
なお、H-NMR、GPC、及び、FT-IR分析により、ベンゾオキサジン化合物Gは、上記式(1-1)におけるAに相当する部分が1,3-ビス(3-アミノフェノキシ)ベンゼン残基であり、X及びX’に相当する部分が水素原子であるベンゾオキサジン化合物を含むことを確認した。また、該ベンゾオキサジン化合物Gの数平均分子量は600であった。
(Synthesis Example 7 (Preparation of Benzoxazine Compound G))
Instead of the primamine 1074, 29.2 g of 1,3-bis (3-aminophenoxy) benzene (“APB-N”, manufactured by Mitsui Chemicals, Inc.), which is a diamine having no aliphatic skeleton having 4 or more carbon atoms, is used. Benzoxazine compound G was obtained in the same manner as in Synthesis Example 1 except that 0.1 mol) was used.
According to 1 H-NMR, GPC and FT-IR analyses, the benzoxazine compound G was found to have a portion corresponding to A in the above formula (1-1) with 1,3-bis (3-aminophenoxy) benzene residue. It was confirmed that a benzoxazine compound which is a group and a portion corresponding to X and X ′ was a hydrogen atom was included. The number average molecular weight of the benzoxazine compound G was 600.
(実施例1~7、比較例1、2)
表1に記載された配合比の各材料に溶媒としてメチルエチルケトンを加え、撹拌機を用いて1200rpmで4時間撹拌し、硬化性樹脂組成物を得た。なお、表1の組成には、溶媒を除く固形分について記載した。
アプリケーターを用いて、得られた硬化性樹脂組成物をPETフィルム(東レ社製「XG284」、厚み25μm)の離型処理面上に塗工した。その後、100℃のギアオーブン内で5分間乾燥し、溶媒を揮発させることにより、PETフィルムと、該PETフィルム上に厚さが40μmの硬化性樹脂組成物層とを有する未硬化積層フィルムを得た。
(Examples 1 to 7, Comparative Examples 1 and 2)
Methyl ethyl ketone was added as a solvent to each material having the compounding ratio shown in Table 1 and stirred with a stirrer at 1200 rpm for 4 hours to obtain a curable resin composition. In addition, in the composition of Table 1, the solid content excluding the solvent was described.
Using an applicator, the obtained curable resin composition was applied on a release-treated surface of a PET film (“XG284” manufactured by Toray Industries, Inc., thickness: 25 μm). Thereafter, the film is dried in a gear oven at 100 ° C. for 5 minutes to evaporate the solvent to obtain an uncured laminated film having a PET film and a curable resin composition layer having a thickness of 40 μm on the PET film. Was.
<評価>
実施例及び比較例で得られた各未硬化積層フィルムについて以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about each uncured laminated film obtained by the Example and the comparative example. The results are shown in Table 1.
(可撓性)
実施例及び比較例で得られた各未硬化積層フィルムを縦10cm×横5cmの長方形に切り抜いた。このフィルムをPETフィルム層が内側となるように90度又は180度折り曲げた後に平面状に戻し、フィルムの状態を目視にて確認した。なお、180度に折り曲げた場合は、90度に折り曲げた場合よりも割れやすい。
90度及び180度のいずれに折り曲げても割れがなかった場合を「○」、180度折り曲げると割れがあり、かつ、90度折り曲げると割れがなかった場合を「△」、90度及び180度のいずれに折り曲げても割れがあった場合を「×」として、可撓性を評価した。
(Flexibility)
Each of the uncured laminated films obtained in Examples and Comparative Examples was cut out into a rectangle of 10 cm long × 5 cm wide. This film was folded 90 ° or 180 ° so that the PET film layer was on the inside, and then returned to a flat shape, and the state of the film was visually checked. In addition, when bent at 180 degrees, it is easier to break than when bent at 90 degrees.
"○" indicates that there was no crack when bent at 90 or 180 degrees, "△" indicates that there was a crack when bent at 180 degrees, and "△" indicates that there was no crack when bent at 90 degrees. The sample was evaluated as "x" when there was a crack in any of them, and the flexibility was evaluated.
(誘電特性)
実施例及び比較例で得られた各未硬化積層フィルムを幅2mm、長さ80mmの大きさに裁断した。裁断後の未硬化積層フィルムの硬化性樹脂組成物層から基材PETフィルムを剥離し、ラミネーターを用いて硬化性樹脂組成物層を5層重ね合わせて厚さ約200μmの積層体を得た。得られた積層体を190℃で90分間加熱して、硬化体を得た。得られた硬化体について、空洞共振摂動法誘電率測定装置CP521(関東電子応用開発社製)及びネットワークアナライザーN5224A PNA(キーサイトテクノロジー社製)を用いて、空洞共振法で23℃にて、周波数1.0GHzにて誘電正接を測定した。
誘電正接が0.0035以下であった場合を「◎」、誘電正接が0.0035を超え0.0040以下であった場合を「○」、誘電正接が0.0040を超え0.0045以下であった場合を「△」、誘電正接が0.0045を超えた場合を「×」として誘電特性を評価した。
(Dielectric properties)
Each of the uncured laminated films obtained in Examples and Comparative Examples was cut into a size of 2 mm in width and 80 mm in length. The base PET film was peeled off from the curable resin composition layer of the uncured laminated film after cutting, and five layers of the curable resin composition layer were laminated using a laminator to obtain a laminate having a thickness of about 200 μm. The obtained laminate was heated at 190 ° C. for 90 minutes to obtain a cured product. Using the cavity resonance perturbation method dielectric constant measuring device CP521 (manufactured by Kanto Electronics Applied Development Co.) and the network analyzer N5224A PNA (manufactured by Keysight Technology), the obtained cured body was subjected to a cavity resonance method at 23 ° C. The dielectric loss tangent was measured at 1.0 GHz.
When the dielectric loss tangent was 0.0035 or less, “◎”, when the dielectric loss tangent was more than 0.0035 and 0.0040 or less, “○”, when the dielectric loss tangent was more than 0.0040 and 0.0045 or less. The dielectric properties were evaluated as “Δ” when there was, and “x” when the dielectric loss tangent exceeded 0.0045.
(デスミア性(ビア底の残渣の除去性))
(1)ラミネート及び半硬化処理
CCL基板(日立化成工業社製、「E679FG」)の両面を銅表面粗化剤(メック社製、「メックエッチボンドCZ-8100」)に浸漬して、銅表面を粗化処理した。実施例及び比較例で得られた各未硬化積層フィルムを、硬化性樹脂組成物層側から上記CCL基板の両面にセットして、ダイアフラム式真空ラミネーター(名機製作所社製、「MVLP-500」)を用いて、上記CCL基板の両面にラミネートし、未硬化積層サンプルAを得た。ラミネートは、20秒減圧して気圧を13hPa以下とし、その後100℃、圧力0.8MPaで20秒間プレスすることにより行った。
得られた未硬化積層サンプルAから基材PETフィルムを剥離した後、170℃及び30分の硬化条件で硬化性樹脂組成物を硬化させ、半硬化積層サンプルを得た。
(Desmearing property (removability of residue on via bottom))
(1) Laminate and semi-cured CCL substrate (Hitachi Kasei Kogyo Co., Ltd., "E679FG") both sides immersed in copper surface roughening agent (Mec, "Mech etch bond CZ-8100"), copper surface Was roughened. Each of the uncured laminated films obtained in Examples and Comparative Examples was set on both sides of the CCL substrate from the curable resin composition layer side, and a diaphragm type vacuum laminator (“MVLP-500” manufactured by Meiki Seisakusho Co., Ltd.) ) Was used to laminate on both sides of the CCL substrate to obtain an uncured laminated sample A. Lamination was performed by reducing the pressure to 13 hPa or less by reducing the pressure for 20 seconds, and then pressing at 100 ° C. and a pressure of 0.8 MPa for 20 seconds.
After peeling the base PET film from the obtained uncured laminated sample A, the curable resin composition was cured under the curing conditions of 170 ° C. and 30 minutes to obtain a semi-cured laminated sample.
(2)ビア(貫通孔)の形成
得られた半硬化積層サンプルに、COレーザー(日立ビアメカニクス社製)を用いて、上端での直径が60μm、下端(底部)での直径が40μmであるビア(貫通孔)を形成することにより、CCL基板に硬化性樹脂組成物の半硬化物が積層されており、かつ、該硬化性樹脂組成物の半硬化物にビア(貫通孔)が形成されている積層体Bを得た。
(2) Formation of Via (Through Hole) Using a CO 2 laser (manufactured by Hitachi Via Mechanics), the obtained semi-cured laminated sample had a diameter of 60 μm at the upper end and 40 μm at the lower end (bottom). By forming a certain via (through hole), a semi-cured product of the curable resin composition is laminated on the CCL substrate, and a via (through hole) is formed in the semi-cured product of the curable resin composition. The obtained laminated body B was obtained.
(3)ビアの底部の残渣の除去処理
(a)膨潤処理
70℃の膨潤液(アトテックジャパン社製、「スウェリングディップセキュリガントP」)に、得られた積層体Bを入れて、10分間揺動させた。その後、純水で洗浄した。
(3) Removal of Residue at the Bottom of Via (a) Swelling The obtained laminate B was placed in a swelling liquid at 70 ° C. (manufactured by Atotech Japan, “Swelling Dip Securiganto P”) for 10 minutes. Rocked. Thereafter, the substrate was washed with pure water.
(b)過マンガン酸塩処理(粗化処理及びデスミア処理)
80℃の過マンガン酸カリウム(アトテックジャパン社製、「コンセントレートコンパクトCP」)粗化水溶液に、膨潤処理後の積層体Bを入れて、30分間揺動させた。次に、25℃の洗浄液(アトテックジャパン社製、「リダクションセキュリガントP」)を用いて2分間処理した後、純水で洗浄を行い、評価サンプル1を得た。
(B) Permanganate treatment (roughening treatment and desmear treatment)
The swelled laminate B was placed in a roughened aqueous solution of potassium permanganate (“Concentrate Compact CP” manufactured by Atotech Japan) at 80 ° C. and shaken for 30 minutes. Next, the sample was treated for 2 minutes using a cleaning solution at 25 ° C. (“Reduction Securiganto P” manufactured by Atotech Japan), and then washed with pure water to obtain Evaluation Sample 1.
評価サンプル1のビアの底部を走査電子顕微鏡(SEM)にて観察し、ビア底の壁面からの最大スミア長を測定した。
最大スミア長が2μm未満であった場合を「◎」、最大スミア長が2μm以上2.5μm未満であった場合を「○」、最大スミア長が2.5μm以上3μm未満であった場合を「△」、最大スミア長が3μm以上であった場合を「×」として、デスミア性(ビア底の残渣の除去性)を評価した。
The bottom of the via of the evaluation sample 1 was observed with a scanning electron microscope (SEM), and the maximum smear length from the wall surface of the via bottom was measured.
"◎" indicates that the maximum smear length was less than 2 μm, "最大" indicates that the maximum smear length was 2 μm or more and less than 2.5 μm, and “○” indicates that the maximum smear length was 2.5 μm or more and less than 3 μm. Δ, the case where the maximum smear length was 3 μm or more was evaluated as “x”, and the desmear property (removability of the residue at the bottom of the via) was evaluated.
(めっき密着性)
70℃の膨潤液(アトテックジャパン社製、「スウェリングディップセキュリガントP」と水酸化ナトリウム(富士フイルム和光純薬社製)とから調製された水溶液)に、上記「(デスミア性(ビア底の残渣の除去性))」と同様にして作製した半硬化積層サンプルを入れて、10分間揺動させた。その後、純水で洗浄した。
80℃の過マンガン酸ナトリウム粗化水溶液(アトテックジャパン社製、「コンセントレートコンパクトCP」と水酸化ナトリウム(富士フイルム和光純薬社製)とから調製された水溶液)に、膨潤処理された半硬化積層サンプルを入れて、30分間揺動させた。その後、25℃の洗浄液(アトテックジャパン社製、「リダクションセキュリガントP」と硫酸(富士フイルム和光純薬社製)とから調製された水溶液)により2分間洗浄した後、純水で更に洗浄することにより、CCL基板上に、粗化処理された半硬化物を形成した。
該粗化処理された半硬化物の表面を、60℃のアルカリクリーナ(アトテックジャパン社製、「クリーナーセキュリガント902」)で5分間処理し、脱脂洗浄した。洗浄後、半硬化物を25℃のプリディップ液(アトテックジャパン社製、「プリディップネオガントB」)で2分間処理した。その後、半硬化物を40℃のアクチベーター液(アトテックジャパン社製、「アクチベーターネオガント834」)で5分間処理し、パラジウム触媒を付けた。
次に、30℃の還元液(アトテックジャパン社製、「リデューサーネオガントWA」)により、半硬化物を5分間処理した後、化学銅液(全てアトテックジャパン社製、「ベーシックプリントガントMSK-DK」、「カッパープリントガントMSK」、「スタビライザープリントガントMSK」、「リデューサーCu」)に入れた。無電解めっきをめっき厚さが0.5μm程度になるまで実施した。無電解めっき後、残留している水素ガスを除去するため、120℃の温度で30分間アニールを行った。無電解めっきの工程までの全ての工程は、ビーカースケールで処理液を2Lとし、半硬化物を揺動させながら実施した。
無電解めっき処理された半硬化物に、電解めっきを実施した。電解めっきは、硫酸銅溶液(硫酸銅五水和物(富士フイルム和光純薬社製)、硫酸(富士フイルム和光純薬社製)、アトテックジャパン社製、「ベーシックレベラーカパラシドHL」、及び、アトテックジャパン社製、「補正剤カパラシドGS」から調製された水溶液)を用い、0.6A/cmの電流を流しめっき厚さが約25μmとなるまで実施した。電解めっき後、半硬化物を190℃で90分間加熱し、半硬化物を更に硬化させ、銅めっき層が上面に積層された硬化物を得た。
得られた銅めっき層が積層された硬化物において、銅めっき層の表面に、10mm幅に切り欠きを入れた。その後、引張試験機(島津製作所社製、「AG-5000B」)を用いて、クロスヘッド速度5mm/分の条件で、硬化物(絶縁層)と金属層(銅めっき層)との密着強度(90°ピール強度)を測定した。
ピール強度が0.50kgf/cm以上であった場合を「◎」、ピール強度が0.45kgf/cm以上0.50kgf/cm未満であった場合を「○」、ピール強度が0.40kgf/cm以上0.45kgf/cm未満であった場合を「△」、ピール強度が0.40kgf/cm未満であった場合を「×」として、めっき密着性を評価した。
(Plating adhesion)
A 70 ° C. swelling solution (aqueous solution prepared from “Swelling Dip Securigant P” manufactured by Atotech Japan and sodium hydroxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)) was added to the above “(desmear property (via bottom (Removability of residue)) The semi-cured laminated sample produced in the same manner as in the above) was put into the container and rocked for 10 minutes. Thereafter, the substrate was washed with pure water.
A semi-cured solution that has been swelled in a roughened aqueous solution of sodium permanganate at 80 ° C (aqueous solution prepared from “Concentrate Compact CP” manufactured by Atotech Japan and sodium hydroxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)). The laminated sample was put and rocked for 30 minutes. Then, after washing for 2 minutes with a washing liquid of 25 ° C. (aqueous solution prepared from Atotech Japan, “Reduction Securiganto P” and sulfuric acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)), further washing with pure water Thus, a roughened semi-cured product was formed on the CCL substrate.
The surface of the roughened semi-cured product was treated with an alkaline cleaner at 60 ° C. (“Cleaner Securigant 902” manufactured by Atotech Japan) for 5 minutes, and degreased and washed. After washing, the semi-cured product was treated with a pre-dip liquid at 25 ° C. (manufactured by Atotech Japan, “Pre-Dip Neo Gant B”) for 2 minutes. Thereafter, the semi-cured product was treated with an activator solution ("Activator Neo Gant 834", manufactured by Atotech Japan) at 40 ° C for 5 minutes to attach a palladium catalyst.
Next, the semi-cured product is treated with a reducing solution at 30 ° C. (manufactured by Atotech Japan, “Reducer Neogant WA”) for 5 minutes, and then a chemical copper solution (all manufactured by Atotech Japan, “Basic Print Gant MSK-DK”). , "Copper Print Gant MSK", "Stabilizer Print Gant MSK", "Reducer Cu"). Electroless plating was performed until the plating thickness became about 0.5 μm. After the electroless plating, annealing was performed at a temperature of 120 ° C. for 30 minutes to remove the remaining hydrogen gas. All steps up to the step of electroless plating were performed while the semi-cured material was oscillated with a treatment liquid of 2 L on a beaker scale.
Electroplating was performed on the semi-cured material subjected to the electroless plating. Electroplating is performed using copper sulfate solution (copper sulfate pentahydrate (manufactured by Fujifilm Wako Pure Chemical), sulfuric acid (manufactured by Fujifilm Wako Pure Chemical), Atotech Japan, "Basic Leveler Capparaside HL", and Aqueous current of 0.6 A / cm 2 was passed using an aqueous solution prepared from “Correcting Agent Capalaside GS” manufactured by Atotech Japan Co., Ltd., and the plating was performed until the plating thickness became about 25 μm. After the electrolytic plating, the semi-cured product was heated at 190 ° C. for 90 minutes to further cure the semi-cured product, thereby obtaining a cured product having a copper plating layer laminated on the upper surface.
In the cured product on which the obtained copper plating layer was laminated, a notch having a width of 10 mm was formed on the surface of the copper plating layer. Thereafter, the adhesion strength between the cured product (insulating layer) and the metal layer (copper plating layer) was measured using a tensile tester (“AG-5000B” manufactured by Shimadzu Corporation) at a crosshead speed of 5 mm / min. 90 ° peel strength).
“◎” indicates that the peel strength was 0.50 kgf / cm or more, “○” indicates that the peel strength was 0.45 kgf / cm or more and less than 0.50 kgf / cm, and 0.40 kgf / cm. The plating adhesion was evaluated as “△” when the value was less than 0.45 kgf / cm and “×” when the peel strength was less than 0.40 kgf / cm.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
本発明によれば、硬化前は可撓性に優れ、硬化後は誘電特性に優れる硬化性樹脂組成物に用いることができるベンゾオキサジン化合物を提供することができる。また、本発明によれば、該ベンゾオキサジン化合物を含む硬化性樹脂組成物、該硬化性樹脂組成物を用いてなる接着剤、接着フィルム、硬化物、回路基板、層間絶縁材料、及び、多層プリント配線板を提供することができる。 According to the present invention, it is possible to provide a benzoxazine compound that can be used for a curable resin composition having excellent flexibility before curing and having excellent dielectric properties after curing. Further, according to the present invention, a curable resin composition containing the benzoxazine compound, an adhesive using the curable resin composition, an adhesive film, a cured product, a circuit board, an interlayer insulating material, and a multilayer print A wiring board can be provided.

Claims (13)

  1. 分子中に、炭素数4以上の脂肪族骨格を有するジアミン残基及び/又は炭素数4以上の脂肪族骨格を有するトリアミン残基と、ベンゾオキサジン環とを有することを特徴とするベンゾオキサジン化合物。 A benzoxazine compound having a diamine residue having an aliphatic skeleton having 4 or more carbon atoms and / or a triamine residue having an aliphatic skeleton having 4 or more carbon atoms and a benzoxazine ring in a molecule.
  2. 前記ジアミン残基及び/又は前記トリアミン残基の由来となるジアミン及び/又はトリアミンは、ダイマー酸及び/又はトリマー酸から誘導される脂肪族ジアミン及び/又は脂肪族トリアミンである請求項1記載のベンゾオキサジン化合物。 2. The benzo according to claim 1, wherein the diamine and / or triamine from which the diamine residue and / or the triamine residue is derived is an aliphatic diamine and / or an aliphatic triamine derived from dimer acid and / or trimer acid. Oxazine compounds.
  3. 下記式(1-1)若しくは(1-2)、下記式(2-1)若しくは(2-2)、又は、下記式(3)で表される構造を有する請求項1又は2記載のベンゾオキサジン化合物。
    Figure JPOXMLDOC01-appb-C000001
    式(1-1)中、Aは、前記ジアミン残基であり、X及びX’は、それぞれ独立して、水素原子又は任意の置換基である。
    式(1-2)中、Aは、前記トリアミン残基であり、X、X’、及び、X’’は、それぞれ独立して、水素原子又は任意の置換基である。
    Figure JPOXMLDOC01-appb-C000002
    式(2-1)中、Aは、前記ジアミン残基であり、B及びB’は、それぞれ独立して、任意の有機基であり、R及びR’は、それぞれ独立して、水素原子又は任意の置換基であり、Bと各Rとは、結合して環構造を形成していてもよく、B’と各R’とは、結合して環構造を形成していてもよく、Y及びY’は、それぞれ独立して、水素原子又は任意の置換基である。
    式(2-2)中、Aは、前記トリアミン残基であり、B、B’、及び、B’’は、それぞれ独立して、任意の有機基であり、R、R’、及び、R’’は、それぞれ独立して、水素原子又は任意の置換基であり、Bと各Rとは、結合して環構造を形成していてもよく、B’と各R’とは、結合して環構造を形成していてもよく、B’’と各R’’とは、結合して環構造を形成していてもよく、Y、Y’、及び、Y’’は、それぞれ独立して、水素原子又は任意の置換基である。
    Figure JPOXMLDOC01-appb-C000003
    式(3)中、A及びA’は、それぞれ独立して、前記ジアミン残基であり、Bは、任意の有機基であり、R及びR’は、それぞれ独立して、水素原子又は任意の置換基であり、BとRとは、結合して環構造を形成していてもよく、BとR’とは、結合して環構造を形成していてもよく、X及びX’は、それぞれ独立して、水素原子又は任意の置換基である。
    3. The benzole according to claim 1, which has a structure represented by the following formula (1-1) or (1-2), the following formula (2-1) or (2-2), or the following formula (3). Oxazine compounds.
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1-1), A is the diamine residue, and X and X ′ are each independently a hydrogen atom or any substituent.
    In the formula (1-2), A is the aforementioned triamine residue, and X, X ′ and X ″ are each independently a hydrogen atom or any substituent.
    Figure JPOXMLDOC01-appb-C000002
    In the formula (2-1), A is the diamine residue, B and B ′ are each independently any organic group, and R and R ′ are each independently a hydrogen atom or Any substituent, B and each R may combine to form a ring structure, B 'and each R' may combine to form a ring structure, And Y ′ are each independently a hydrogen atom or any substituent.
    In the formula (2-2), A is the triamine residue, B, B ′ and B ″ are each independently an arbitrary organic group, and R, R ′ and R '' Is each independently a hydrogen atom or an optional substituent, B and each R may be bonded to form a ring structure, and B ′ and each R ′ are And B '' and each R '' may combine to form a ring structure, and Y, Y ′ and Y ″ are each independently And is a hydrogen atom or any substituent.
    Figure JPOXMLDOC01-appb-C000003
    In the formula (3), A and A ′ are each independently the diamine residue, B is an optional organic group, and R and R ′ are each independently a hydrogen atom or an optional A substituent, B and R may be bonded to each other to form a ring structure, B and R ′ may be bonded to each other to form a ring structure, and X and X ′ are Each is independently a hydrogen atom or any substituent.
  4. 下記式(6)、下記式(7)、又は、下記式(8)で表される繰り返し構造単位を有する請求項1又は2記載のベンゾオキサジン化合物。
    Figure JPOXMLDOC01-appb-C000004
    式(6)中、Aは、前記ジアミン残基であり、Zは、結合手又は任意の有機基である。式(6)中の芳香環の水素原子は、一部又は全部が任意の置換基で置換されていてもよい。
    Figure JPOXMLDOC01-appb-C000005
    式(7)中、Aは、前記ジアミン残基であり、B及びB’は、それぞれ独立して、任意の有機基であり、R及びR’は、それぞれ独立して、水素原子又は任意の置換基であり、BとRとは、結合して環構造を形成していてもよく、B’とR’とは、結合して環構造を形成していてもよく、Wは、任意の有機基である。
    Figure JPOXMLDOC01-appb-C000006
    式(8)中、A及びA’は、それぞれ独立して、前記ジアミン残基であり、Bは、任意の有機基であり、R及びR’は、それぞれ独立して、水素原子又は任意の置換基であり、BとRとは、結合して環構造を形成していてもよく、BとR’とは、結合して環構造を形成していてもよく、Zは、結合手又は任意の有機基である。式(8)中の芳香環の水素原子は、一部又は全部が任意の置換基で置換されていてもよい。
    The benzoxazine compound according to claim 1 or 2, which has a repeating structural unit represented by the following formula (6), the following formula (7), or the following formula (8).
    Figure JPOXMLDOC01-appb-C000004
    In the formula (6), A is the diamine residue, and Z is a bond or any organic group. Some or all of the hydrogen atoms of the aromatic ring in the formula (6) may be substituted with any substituent.
    Figure JPOXMLDOC01-appb-C000005
    In the formula (7), A is the diamine residue, B and B ′ are each independently any organic group, and R and R ′ are each independently a hydrogen atom or any A substituent, B and R may be bonded to each other to form a ring structure, B ′ and R ′ may be bonded to each other to form a ring structure; Organic group.
    Figure JPOXMLDOC01-appb-C000006
    In the formula (8), A and A ′ are each independently the diamine residue, B is an optional organic group, and R and R ′ are each independently a hydrogen atom or an optional A substituent, B and R may combine to form a ring structure, B and R ′ may combine to form a ring structure, and Z represents a bond or Any organic group. Some or all of the hydrogen atoms of the aromatic ring in the formula (8) may be substituted with an arbitrary substituent.
  5. 請求項1、2、3又は4記載のベンゾオキサジン化合物を含有する硬化性樹脂組成物。 A curable resin composition containing the benzoxazine compound according to claim 1.
  6. 硬化性樹脂と硬化剤と請求項1、2、3又は4記載のベンゾオキサジン化合物とを含有する請求項5記載の硬化性樹脂組成物。 The curable resin composition according to claim 5, comprising a curable resin, a curing agent, and the benzoxazine compound according to claim 1.
  7. 前記硬化性樹脂は、エポキシ樹脂、シアネート樹脂、フェノール樹脂、イミド樹脂、及び、マレイミド樹脂からなる群より選択される少なくとも1種を含む請求項6記載の硬化性樹脂組成物。 The curable resin composition according to claim 6, wherein the curable resin includes at least one selected from the group consisting of an epoxy resin, a cyanate resin, a phenol resin, an imide resin, and a maleimide resin.
  8. 請求項5、6又は7記載の硬化性樹脂組成物を含む接着剤。 An adhesive comprising the curable resin composition according to claim 5, 6, or 7.
  9. 請求項5、6又は7記載の硬化性樹脂組成物を用いてなる接着フィルム。 An adhesive film using the curable resin composition according to claim 5, 6, or 7.
  10. 請求項5、6又は7記載の硬化性樹脂組成物を硬化させてなる硬化物。 A cured product obtained by curing the curable resin composition according to claim 5, 6, or 7.
  11. 請求項10記載の硬化物を有する回路基板。 A circuit board having the cured product according to claim 10.
  12. 請求項5、6又は7記載の硬化性樹脂組成物を用いてなる層間絶縁材料。 An interlayer insulating material comprising the curable resin composition according to claim 5, 6 or 7.
  13. 回路基板と、該回路基板上に配置された複数の絶縁層と、該複数の絶縁層間に配置された金属層とを有し、前記絶縁層は、請求項12記載の層間絶縁材料の硬化物からなる多層プリント配線板。 13. A cured product of the interlayer insulating material according to claim 12, comprising: a circuit board; a plurality of insulating layers disposed on the circuit board; and a metal layer disposed between the plurality of insulating layers. A multilayer printed wiring board consisting of:
PCT/JP2019/028731 2018-09-14 2019-07-23 Benzoxazine compound, curable resin composition, adhesive, adhesive film, cured object, circuit board, interlayer dielectric material, and multilayered printed wiring board WO2020054218A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980051984.7A CN112533906A (en) 2018-09-14 2019-07-23 Benzoxazine compound, curable resin composition, adhesive film, cured product, circuit board, interlayer insulating material, and multilayer printed wiring board
KR1020217002680A KR20210057004A (en) 2018-09-14 2019-07-23 Benzooxazine compound, curable resin composition, adhesive, adhesive film, cured product, circuit board, interlayer insulating material, and multilayer printed wiring board
JP2019547158A JP7474054B2 (en) 2018-09-14 2019-07-23 Benzoxazine compound, curable resin composition, adhesive, adhesive film, cured product, circuit board, interlayer insulating material, and multilayer printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-172559 2018-09-14
JP2018172559 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054218A1 true WO2020054218A1 (en) 2020-03-19

Family

ID=69778584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028731 WO2020054218A1 (en) 2018-09-14 2019-07-23 Benzoxazine compound, curable resin composition, adhesive, adhesive film, cured object, circuit board, interlayer dielectric material, and multilayered printed wiring board

Country Status (5)

Country Link
JP (1) JP7474054B2 (en)
KR (1) KR20210057004A (en)
CN (1) CN112533906A (en)
TW (1) TWI810337B (en)
WO (1) WO2020054218A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021152182A (en) * 2021-03-15 2021-09-30 晉一化工股▲ふん▼有限公司Chin Yee Chemical Industries Co., Ltd. Thermosetting resin composition, flame-retardant resin composition, liquid package material and use of the same, and film and use of the same
JPWO2020158202A1 (en) * 2019-01-31 2021-12-02 太陽インキ製造株式会社 Curable resin compositions, dry films, cured products, and electronic components
WO2022220253A1 (en) * 2021-04-14 2022-10-20 積水化学工業株式会社 Curable resin composition, cured product, adhesive agent, and adhesive film
WO2023037818A1 (en) * 2021-09-10 2023-03-16 本州化学工業株式会社 Curable resin composition, varnish, cured product, and production method for cured product

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100432A1 (en) * 2004-03-30 2005-10-27 Sekisui Chemical Co., Ltd. A thermosetting resin composition and its article
JP2006219566A (en) * 2005-02-09 2006-08-24 Sekisui Chem Co Ltd Molded form and method for producing the same
WO2007018110A1 (en) * 2005-08-05 2007-02-15 Sekisui Chemical Co., Ltd. Thermosetting compound, composition containing the same, and molding
JP2008195907A (en) * 2007-02-16 2008-08-28 Shikoku Chem Corp Thermosetting benzoxazine resin composition
JP2010053324A (en) * 2008-08-29 2010-03-11 Sekisui Chem Co Ltd Resin composition comprising benzoxadine ring-containing thermosetting resin
JP2013056863A (en) * 2011-09-09 2013-03-28 Toyohashi Univ Of Technology Benzoxazine compound and method of producing the same
JP2016014094A (en) * 2014-07-01 2016-01-28 国立大学法人東京工業大学 Polybenzoxazine-silica composite and method for producing the same
WO2017103375A1 (en) * 2015-12-16 2017-06-22 Compagnie Generale Des Etablissements Michelin Polybenzoxazine that can be used for coating metal and bonding of same to rubber
JP2017119361A (en) * 2014-12-26 2017-07-06 荒川化学工業株式会社 Copper foil with resin, copper-clad laminate, printed wiring board and multilayer wiring board
CN107417870A (en) * 2017-04-19 2017-12-01 中国科学院宁波材料技术与工程研究所 A kind of organosilicon benzoxazine resin prepolymer based on eugenol and its preparation method and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017218A1 (en) * 2007-08-02 2009-02-05 Sekisui Chemical Co., Ltd. Method for producing thermosetting resin having benzoxazine ring
KR102455920B1 (en) 2015-01-13 2022-10-17 쇼와덴코머티리얼즈가부시끼가이샤 Resin composition, support with resin layer, prepreg, laminated board, multilayer printed wiring board, and printed wiring board for millimeter wave radar
WO2016171101A1 (en) * 2015-04-20 2016-10-27 宇部興産株式会社 Polyimide, curable resin composition, and cured article
JP6939017B2 (en) 2016-03-30 2021-09-22 荒川化学工業株式会社 Polyimide, polyimide adhesive, film-like adhesive, adhesive layer, adhesive sheet, copper foil with resin, copper-clad laminate and printed wiring board, and multilayer wiring board and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100432A1 (en) * 2004-03-30 2005-10-27 Sekisui Chemical Co., Ltd. A thermosetting resin composition and its article
JP2006219566A (en) * 2005-02-09 2006-08-24 Sekisui Chem Co Ltd Molded form and method for producing the same
WO2007018110A1 (en) * 2005-08-05 2007-02-15 Sekisui Chemical Co., Ltd. Thermosetting compound, composition containing the same, and molding
JP2008195907A (en) * 2007-02-16 2008-08-28 Shikoku Chem Corp Thermosetting benzoxazine resin composition
JP2010053324A (en) * 2008-08-29 2010-03-11 Sekisui Chem Co Ltd Resin composition comprising benzoxadine ring-containing thermosetting resin
JP2013056863A (en) * 2011-09-09 2013-03-28 Toyohashi Univ Of Technology Benzoxazine compound and method of producing the same
JP2016014094A (en) * 2014-07-01 2016-01-28 国立大学法人東京工業大学 Polybenzoxazine-silica composite and method for producing the same
JP2017119361A (en) * 2014-12-26 2017-07-06 荒川化学工業株式会社 Copper foil with resin, copper-clad laminate, printed wiring board and multilayer wiring board
WO2017103375A1 (en) * 2015-12-16 2017-06-22 Compagnie Generale Des Etablissements Michelin Polybenzoxazine that can be used for coating metal and bonding of same to rubber
CN107417870A (en) * 2017-04-19 2017-12-01 中国科学院宁波材料技术与工程研究所 A kind of organosilicon benzoxazine resin prepolymer based on eugenol and its preparation method and application

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALVAREZ, M. ET AL.: "Structure-activity relationships among di-and tetramine disulfides related to benextramine", JOURNAL OF MEDICINAL CHEMISTRY, vol. 30, no. 7, 1987, pages 1186 - 1193, XP055692289, ISSN: 0022-2623 *
CHEN, J. ET AL.: "Design and Preparation of Benzoxazine Resin with High-Frequency Low Dielectric Constants and Ultralow Dielectric Losses", ACS APPLIED POLYMER MATERIALS, vol. 1, no. 4, 8 March 2019 (2019-03-08), pages 625 - 630, XP055692284, ISSN: 2637-6105 *
DEBNATH, R. K. ET AL.: "One-pot synthesis of benzoxazines through Mannich condensations", ASIAN JOURNAL OF CHEMISTRY, vol. 26, no. 19, 2014, pages 6519 - 6522, ISSN: 0970-7077 *
VELEZ-HERRERA, P. ET AL.: "Synthesis and characterization of highly fluorinated diamines and benzoxazines derived therefrom", JOURNAL OF FLUORINE CHEMISTRY, vol. 130, no. 6, 2009, pages 573 - 580, XP026121265, ISSN: 0022-1139, DOI: 10.1016/j.jfluchem.2009.04.002 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020158202A1 (en) * 2019-01-31 2021-12-02 太陽インキ製造株式会社 Curable resin compositions, dry films, cured products, and electronic components
JP2021152182A (en) * 2021-03-15 2021-09-30 晉一化工股▲ふん▼有限公司Chin Yee Chemical Industries Co., Ltd. Thermosetting resin composition, flame-retardant resin composition, liquid package material and use of the same, and film and use of the same
JP7155352B2 (en) 2021-03-15 2022-10-18 晉一化工股▲ふん▼有限公司 Thermosetting resin composition, flame-retardant resin composition, liquid packaging material and its use, and film and its use
WO2022220253A1 (en) * 2021-04-14 2022-10-20 積水化学工業株式会社 Curable resin composition, cured product, adhesive agent, and adhesive film
WO2023037818A1 (en) * 2021-09-10 2023-03-16 本州化学工業株式会社 Curable resin composition, varnish, cured product, and production method for cured product

Also Published As

Publication number Publication date
JP7474054B2 (en) 2024-04-24
TWI810337B (en) 2023-08-01
CN112533906A (en) 2021-03-19
TW202012494A (en) 2020-04-01
JPWO2020054218A1 (en) 2021-08-30
KR20210057004A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP7449318B2 (en) Curable resin compositions, adhesives, adhesive films, circuit boards, interlayer insulation materials, and printed wiring boards
JP7474054B2 (en) Benzoxazine compound, curable resin composition, adhesive, adhesive film, cured product, circuit board, interlayer insulating material, and multilayer printed wiring board
JP5343494B2 (en) Photosensitive siloxane polyimide resin composition
JP7184641B2 (en) Curable resin composition and adhesive
JP7365235B2 (en) Active ester compounds, curable resin compositions, adhesives, adhesive films, circuit boards, interlayer insulation materials, and multilayer printed wiring boards
JP7305315B2 (en) Curable resin composition, adhesive, adhesive film, coverlay film, and flexible copper-clad laminate
JP5332456B2 (en) Printed wiring board and manufacturing method thereof
JP2019081893A (en) Curable resin composition, cured product, adhesive, and adhesive film
JP7265474B2 (en) Curable resin composition, adhesive, adhesive film, coverlay film, and flexible copper-clad laminate
TWI826633B (en) Ester compounds, resin compositions, hardened materials and build-up films
WO2021193437A1 (en) Curable resin composition, adhesive agent, and adhesive film
JP2021155493A (en) Thermosetting adhesive film
JP2022188991A (en) Thermosetting resin composition, adhesive, adhesive varnish, adhesive film, and cured product
JP2022173783A (en) Curable resin composition, cured object, adhesive, and adhesive film
JP2021155494A (en) Curable resin composition, adhesive, and adhesive film
JP2023067452A (en) Curable resin composition, cured product, adhesive, and adhesive film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019547158

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860253

Country of ref document: EP

Kind code of ref document: A1