JP2016014094A - Polybenzoxazine-silica composite and method for producing the same - Google Patents

Polybenzoxazine-silica composite and method for producing the same Download PDF

Info

Publication number
JP2016014094A
JP2016014094A JP2014136012A JP2014136012A JP2016014094A JP 2016014094 A JP2016014094 A JP 2016014094A JP 2014136012 A JP2014136012 A JP 2014136012A JP 2014136012 A JP2014136012 A JP 2014136012A JP 2016014094 A JP2016014094 A JP 2016014094A
Authority
JP
Japan
Prior art keywords
polybenzoxazine
perhydropolysilazane
pbz
resin composition
benzoxazine compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014136012A
Other languages
Japanese (ja)
Other versions
JP6198685B2 (en
Inventor
礼子 斎藤
Reiko Saito
礼子 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Eneos Corp
Original Assignee
Tokyo Institute of Technology NUC
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, JX Nippon Oil and Energy Corp filed Critical Tokyo Institute of Technology NUC
Priority to JP2014136012A priority Critical patent/JP6198685B2/en
Publication of JP2016014094A publication Critical patent/JP2016014094A/en
Application granted granted Critical
Publication of JP6198685B2 publication Critical patent/JP6198685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polybenzoxazine-silica composite which further improves heat resistance of a polybenzoxazine resin and further has excellent transparency.SOLUTION: There is provided a polybenzoxazine-silica composite having excellent heat resistance and transparency which is obtained by polymerizing a benzoxazine compound by subjecting a resin composition comprising a benzoxazine compound (A), perhydropolysilazane (B) and a solvent (C) for dissolving perhydropolysilazane to heat treatment and converting perhydropolysilazane to silica.

Description

本発明は、ベンゾオキサジン化合物、パーヒドロポリシラザンおよびパーヒドロポリシラザンを溶解する溶媒を含む樹脂組成物、および該樹脂組成物を加熱処理して得られるポリベンゾオキサジン−シリカ複合体、並びにポリベンゾオキサジン−シリカ複合体の製造方法に関する。   The present invention relates to a resin composition containing a benzoxazine compound, a perhydropolysilazane and a solvent for dissolving perhydropolysilazane, a polybenzoxazine-silica composite obtained by heat-treating the resin composition, and a polybenzoxazine- The present invention relates to a method for producing a silica composite.

ベンゾオキサジン化合物を熱により開環重合して得られるポリオキサジン樹脂は難燃性、寸法安定性、低吸水性、低誘電率、耐熱性に優れ、重合過程時や成形加工時に副生成物の発生もないためボイドフリーな寸法安定性のよい樹脂を得ることができる多様な分子設計が可能な樹脂である。その中でも耐熱性が高いことが特に注目されているが、ガラス転移温度は160℃程度とそれほど高くなく、さらに高い耐熱性が求められている。高耐熱樹脂は、宇宙・航空・自動車分野の構造材料をはじめとし、半導体・液晶などのエレクトロニクス分野においてもニーズが近年ますます高まっている。特に半導体封止剤や積層基板においては、耐熱性が要求されており、SiCパワー半導体などではガラス転移温度が250℃以上といった、構造材料分野でも従来以上に厳しい高耐熱の環境下での長期信頼性が要求されてきている。エレクトロニクス分野においては鉛フリーフローはんだに耐える300℃以上の高耐熱性と同時に低吸水性も求められている。特許文献1には、シロキサン骨格とイミド結合を有するシラン化合物を含むことでガラス転移温度(Tg)が向上し、耐熱分解温度も高くなることが報告されている。しかしながら、特許文献1に記載のシロキサン骨格とイミド結合を有するようなシラン化合物は合成が容易ではないためコストアップの要因となっている。
また、ポリベンゾオキサジン樹脂に微粒子を混合することにより耐熱性の向上を図ることも報告されている(特許文献2)。しかし、化学結合によりナノ微粒子として機能させることは知られていない。
Polyoxazine resins obtained by ring-opening polymerization of benzoxazine compounds with heat are excellent in flame retardancy, dimensional stability, low water absorption, low dielectric constant, and heat resistance, and generate by-products during the polymerization process and molding process. Therefore, it is a resin capable of various molecular designs that can obtain a void-free resin with good dimensional stability. Among them, high heat resistance is particularly noted, but the glass transition temperature is not so high as about 160 ° C., and higher heat resistance is required. In recent years, there is an increasing need for high heat-resistant resins in the fields of electronics such as semiconductors and liquid crystals, as well as structural materials in the fields of space, aviation, and automobiles. Especially for semiconductor encapsulants and laminated substrates, heat resistance is required, and for SiC power semiconductors, etc., the glass transition temperature is 250 ° C or higher. Sexuality has been demanded. In the electronics field, there is a demand for low water absorption as well as high heat resistance of 300 ° C. or higher that can withstand lead-free flow soldering. Patent Document 1 reports that inclusion of a silane compound having a siloxane skeleton and an imide bond improves the glass transition temperature (Tg) and increases the thermal decomposition temperature. However, a silane compound having a siloxane skeleton and an imide bond described in Patent Document 1 is not easy to synthesize, which causes an increase in cost.
It has also been reported that heat resistance is improved by mixing fine particles with polybenzoxazine resin (Patent Document 2). However, it is not known to function as nanoparticles by chemical bonding.

特開2013−185056号公報JP 2013-185056 A 特開2013−166853号公報JP 2013-166853 A

本発明は、ポリベンゾオキサジン樹脂の耐熱性をより一層高め、さらには透明性に優れたポリベンゾオキサジン−シリカ複合体を提供することを目的とする。   An object of the present invention is to provide a polybenzoxazine-silica composite that further enhances the heat resistance of the polybenzoxazine resin and is excellent in transparency.

本発明者らは、ベンゾオキサジン化合物(A)、パーヒドロポリシラザン(B)、およびパーヒドロポリシラザンを溶解する溶媒(C)を含む樹脂組成物を加熱処理して硬化させることにより、耐熱性に優れたポリベンゾオキサジン−シリカ複合体が得られることを見出し、本発明を完成させるに至った。   The inventors have excellent heat resistance by heat-treating and curing a resin composition containing a benzoxazine compound (A), perhydropolysilazane (B), and a solvent (C) that dissolves perhydropolysilazane. The present inventors have found that a polybenzoxazine-silica composite can be obtained and have completed the present invention.

すなわち、本発明は、ベンゾオキサジン化合物(A)、パーヒドロポリシラザン(B)、およびパーヒドロポリシラザン(B)を溶解する溶媒(C)を含む樹脂組成物に関する。   That is, this invention relates to the resin composition containing the solvent (C) which melt | dissolves a benzoxazine compound (A), perhydropolysilazane (B), and perhydropolysilazane (B).

また、本発明は、ベンゾオキサジン化合物(A)100重量部に対するパーヒドロポリシラザン(B)の含有割合が0.5〜50重量部であることを特徴とする前記の樹脂組成物に関する。   The present invention also relates to the above resin composition, wherein the content of perhydropolysilazane (B) is 0.5 to 50 parts by weight with respect to 100 parts by weight of the benzoxazine compound (A).

また、本発明は、前記の樹脂組成物を加熱処理して得られるポリベンゾオキサジン−シリカ複合体に関する。   Moreover, this invention relates to the polybenzoxazine-silica composite obtained by heat-processing the said resin composition.

さらに、本発明は、ベンゾオキサジン化合物(A)、パーヒドロポリシラザン(B)、およびパーヒドロポリシラザンを溶解する溶媒(C)を不活性雰囲気下で混合して樹脂組成物を調製する工程と、該樹脂組成物を加熱処理することにより、ベンゾオキサジン化合物を重合し、かつパーヒドロポリシラザンをシリカに転化させる工程とを含むことを特徴とするポリベンゾオキサジン−シリカ複合体の製造方法に関する。   Furthermore, the present invention includes a step of preparing a resin composition by mixing a benzoxazine compound (A), perhydropolysilazane (B), and a solvent (C) that dissolves perhydropolysilazane under an inert atmosphere; The present invention relates to a method for producing a polybenzoxazine-silica composite, which comprises a step of polymerizing a benzoxazine compound and converting perhydropolysilazane to silica by heat-treating a resin composition.

本発明のポリベンゾオキサジン−シリカ複合体は、ポリベンゾオキサジン樹脂単体に比べ耐熱性が一段と優れ、さらには透明性に優れる。
すなわち、ポリベンゾオキサジン樹脂単体を加熱すると、約400℃を超えたところから急激に質量が減少することがTG−DTAより分かる(図5参照)。これに対し、ポリベンゾオキサジン樹脂とシリカとのナノ複合体である本発明のポリベンゾオキサジン−シリカ複合体は、重量減少を抑制できるため、高耐熱性樹脂としての性能に優れる。
また、TEMでの観察によれば、シリカがナノスケールで分散されているため、複合体自体の強度低下などの樹脂物性への影響も少ない。さらには、ポリベンゾオキサジンとシリカは、化学結合しているため、衝撃破壊進展抑制材としても機能する。
The polybenzoxazine-silica composite of the present invention is more excellent in heat resistance than the polybenzoxazine resin alone, and further excellent in transparency.
That is, it can be seen from TG-DTA that when the polybenzoxazine resin alone is heated, the mass is suddenly reduced from a temperature exceeding about 400 ° C. (see FIG. 5). On the other hand, since the polybenzoxazine-silica composite of the present invention, which is a nanocomposite of a polybenzoxazine resin and silica, can suppress weight loss, it is excellent in performance as a high heat resistant resin.
Further, according to observation with a TEM, silica is dispersed on a nanoscale, and therefore, there is little influence on resin physical properties such as strength reduction of the composite itself. Furthermore, since polybenzoxazine and silica are chemically bonded, they also function as an impact fracture progress suppressing material.

PBz−PHPS3のFT−IRスペクトル図である。It is a FT-IR spectrum figure of PBz-PHPS3. PBz−PHPS4のFT−IRスペクトル図である。It is a FT-IR spectrum figure of PBz-PHPS4. PBz−PHPS5のFT−IRスペクトル図である。It is a FT-IR spectrum figure of PBz-PHPS5. PBzとPBz−PHPS1〜5のFT−IRスペクトル図である。It is a FT-IR spectrum figure of PBz and PBz-PHPS1-5. PBzとPBz−PHPS1〜5のTGAによる測定結果を示す図である。It is a figure which shows the measurement result by TGA of PBz and PBz-PHPS1-5. PBz−PHPS5とPBz−PHPS5aのTGAによる測定結果を示す図である。It is a figure which shows the measurement result by TGA of PBz-PHPS5 and PBz-PHPS5a. 実施例6で得られたB−hdaのNMRスペクトル図である。6 is a NMR spectrum diagram of B-hda obtained in Example 6. FIG. 実施例6で得られた複合体の外観を示す図である。6 is a view showing the appearance of a composite obtained in Example 6. FIG. 実施例6で得られた複合体の透明性を示す図である。FIG. 6 is a view showing the transparency of the composite obtained in Example 6.

以下、本発明について詳述する。   Hereinafter, the present invention will be described in detail.

本発明の樹脂組成物は、ベンゾオキサジン化合物(A)、パーヒドロポリシラザン(B)、およびパーヒドロポリシラザン(B)を溶解する溶媒(C)を含む。   The resin composition of the present invention contains a benzoxazine compound (A), perhydropolysilazane (B), and a solvent (C) that dissolves perhydropolysilazane (B).

本発明において用いられるベンゾオキサジン化合物としては、下記一般式(1)で示される化合物あるいは下記一般式(2)で示されるオキサジンオリゴマーが好ましい。   The benzoxazine compound used in the present invention is preferably a compound represented by the following general formula (1) or an oxazine oligomer represented by the following general formula (2).

式(1)および式(2)中、Xは下記一般式(3)に示される(a)〜(f)から選ばれる2価の基であり、特に式(c)が好ましい。Rは互いに独立に炭素数1〜20のアルキル基またはアリール基であり、フェニル基が好ましい。また式(2)中、mは1〜10、好ましくは2〜8であり、nは2〜30である。   In the formulas (1) and (2), X is a divalent group selected from (a) to (f) shown in the following general formula (3), and the formula (c) is particularly preferable. R independently represents an alkyl group having 1 to 20 carbon atoms or an aryl group, and is preferably a phenyl group. Moreover, in Formula (2), m is 1-10, Preferably it is 2-8, n is 2-30.

上記一般式(2)のオキサジンオリゴマーは、一般式(1)のベンゾオキサジン化合物に比べ、製膜性に優れた膜を作成することができる。   Compared with the benzoxazine compound of the general formula (1), the oxazine oligomer of the general formula (2) can form a film having excellent film forming properties.

本発明において用いられるパーヒドロポリシラザンとは、−SiH−NH−を基本ユニットとする有機溶剤に可溶な無機ポリマーである。なお、以降の明細書においては、パーヒドロポリシラザンをポリシラザンまたはPHPSと記載する。
本発明において用いられるポリシラザンは、分子量が400〜2000のものが好ましく、600〜1000のものがより好ましい。なお、2種類以上を混合して用いてもよい。
The perhydropolysilazane used in the present invention is an inorganic polymer soluble in an organic solvent having —SiH 2 —NH— as a basic unit. In the following specification, perhydropolysilazane is described as polysilazane or PHPS.
The polysilazane used in the present invention preferably has a molecular weight of 400 to 2000, more preferably 600 to 1000. Two or more types may be mixed and used.

ベンゾオキサジン化合物(A)とポリシラザン(B)の配合割合は、ベンゾオキサジン化合物(A)100重量部に対してポリシラザン(B)が0.5重量部以上であることが好ましく、1重量部以上がより好ましく、3重量部以上がさらに好ましい。また、50重量部以下であることが好ましく、40重量部以下がより好ましく、30重量部以下がさらに好ましく、20重量部以下が最も好ましい。0.5重量部より少ないと耐熱性向上効果が少なく、50重量部より多くなると複合体としての透明性が失われるため好ましくない。   The blending ratio of the benzoxazine compound (A) and the polysilazane (B) is preferably 0.5 parts by weight or more of polysilazane (B) with respect to 100 parts by weight of the benzoxazine compound (A). More preferred is 3 parts by weight or more. Further, it is preferably 50 parts by weight or less, more preferably 40 parts by weight or less, further preferably 30 parts by weight or less, and most preferably 20 parts by weight or less. If the amount is less than 0.5 parts by weight, the effect of improving heat resistance is small, and if it exceeds 50 parts by weight, the transparency of the composite is lost.

本発明の樹脂組成物は、ポリシラザン(B)を溶解する溶媒(C)を含む。
かかる溶媒(C)としては、水酸基を持たない溶媒であれば特に制限はないが、ベンゼン、トルエン、キシレン、メシチレン、メトキシベンゼンなどの芳香族類、テトラヒドフラン(THF)、ジオキサン、ジエチルエーテル、ジブチルエーテル、ジメトキシエタン、ジエトキシエタンなどのエーテル類、グリコールエーテル類、グリコールエステル類、エステル類、ケトン類、ハロゲン類、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)、ジメチルスルホキシド(DMSO)などを挙げることができ、これらの中でもTHFが特に好ましい。
溶媒(C)はベンゾオキサジン化合物(A)をも溶解する溶媒であることが好ましい。
The resin composition of the present invention contains a solvent (C) that dissolves polysilazane (B).
The solvent (C) is not particularly limited as long as it does not have a hydroxyl group, but is aromatic such as benzene, toluene, xylene, mesitylene, methoxybenzene, tetrahydrfuran (THF), dioxane, diethyl ether, Ethers such as dibutyl ether, dimethoxyethane, diethoxyethane, glycol ethers, glycol esters, esters, ketones, halogens, dimethylformamide (DMF), dimethylacetamide (DMA), dimethylsulfoxide (DMSO), etc. Among these, THF is particularly preferable.
The solvent (C) is preferably a solvent that also dissolves the benzoxazine compound (A).

本発明の樹脂組成物は、ベンゾオキサジン化合物(A)、ポリシラザン(B)、および溶媒(C)を、不活性雰囲気下で混合して調製する。
混合方法については特に限定されるものではないが、不活性雰囲気下に、ポリシラザン(B)を溶媒(C)で溶解した溶液を調製し、この溶液とベンゾオキサジン化合物(A)を不活性雰囲気下に混合する方法が挙げられる。
樹脂組成物の好ましい調製法としては、ベンゾオキサジン化合物(A)とポリシラザン(B)の両方を溶解する溶媒を用いて、ベンゾオキサジン化合物溶液とポリシラザン溶液をそれぞれ調製し、それらの溶液を混合する方法が挙げられる。このとき、ベンゾオキサジン化合物(A)に用いる溶媒と、ポリシラザン(B)に用いる溶媒は同一でも異なっていても良いが、同じ溶媒であるのが好ましい。異なる溶媒を用いるときは、それらの溶媒同士が良好に混合するものであることが好ましい。
溶液の濃度については特に限定はないが、あまり希薄すぎても、濃厚すぎても好ましくなく、通常、樹脂組成物における溶媒の量が2倍から1000倍となる範囲で調整する。
また、溶液の混合方法としては、一方の溶液を他方の溶液中に撹拌しながら滴下する方法が挙げられ、例えば、ベンゾオキサジン化合物溶液にポリシラザン溶液を滴下する方法、またはポリシラザン溶液にベンゾオキサジン化合物溶液を滴下する方法でも良い。滴下速度については特に制限はないが、0.1〜10mL/分が好ましい。
The resin composition of the present invention is prepared by mixing the benzoxazine compound (A), the polysilazane (B), and the solvent (C) under an inert atmosphere.
The mixing method is not particularly limited, but a solution in which polysilazane (B) is dissolved in a solvent (C) is prepared in an inert atmosphere, and this solution and the benzoxazine compound (A) are placed in an inert atmosphere. The method of mixing is mentioned.
As a preferred method for preparing the resin composition, a benzoxazine compound solution and a polysilazane solution are respectively prepared using a solvent that dissolves both the benzoxazine compound (A) and the polysilazane (B), and the solutions are mixed. Is mentioned. At this time, the solvent used for the benzoxazine compound (A) and the solvent used for the polysilazane (B) may be the same or different, but are preferably the same solvent. When different solvents are used, it is preferable that these solvents are mixed well.
The concentration of the solution is not particularly limited, but it is not preferable if it is too dilute or too thick, and is usually adjusted within a range where the amount of the solvent in the resin composition is 2 to 1000 times.
Moreover, as a mixing method of the solution, a method of dropping one solution into the other solution while stirring can be mentioned, for example, a method of dropping a polysilazane solution into a benzoxazine compound solution, or a benzoxazine compound solution into a polysilazane solution. The method of dripping may be used. Although there is no restriction | limiting in particular about dropping speed, 0.1-10 mL / min is preferable.

本発明は、前記の樹脂組成物を加熱処理して硬化させることによりポリベンゾオキサジン−シリカ複合体を形成する。
すなわち、該樹脂組成物を所定条件下に加熱処理することにより、ベンゾオキサジン化合物を開環重合させるとともに、ポリシラザンをシリカに転化させて、ポリベンゾオキサジンとシリカが化学結合したポリベンゾオキサジン−シリカ複合体を得ることができる。
In the present invention, a polybenzoxazine-silica composite is formed by curing the above resin composition by heat treatment.
That is, by heat-treating the resin composition under predetermined conditions, the benzoxazine compound is subjected to ring-opening polymerization, and polysilazane is converted to silica, so that a polybenzoxazine-silica composite in which polybenzoxazine and silica are chemically bonded. You can get a body.

加熱処理は、最終的に180℃〜350℃、好ましくは240℃〜300℃の温度にて加熱処理を行う。加熱処理操作は、室温乃至70℃程度から目的の温度まで連続的に、あるいは段階的に昇温して加熱処理する方法が挙げられる。熱処理時間については特に限定されるものではなく、目的とするポリベンゾオキサジン−シリカ複合体が得られるに足る時間であれば良い。通常0.5〜100時間、好ましくは1〜24時間である。
連続的に昇温する場合の昇温速度は、通常0.01〜10℃/分であり、好ましくは0.1〜3℃/分である。
段階的に昇温する場合は、例えば室温〜70℃で数時間(例えば、0.5〜10時間、好ましく1〜5時間。以下同じ。)、その後、例えば100℃〜300℃の範囲内で、数段階の適当な温度で、それぞれ数時間保持して加熱処理する態様が挙げられる。
なお、50μm以下の薄膜ではいきなり180℃〜200℃のような高い温度から反応を開始させると、急激に反応して、アンモニアなどの脱離による発泡が起こるため好ましくない。
加熱処理は、空気雰囲気下でも不活性雰囲気下でも特に制限はないが、空気中の水分の影響を回避する観点から、不活性雰囲気下で行うのが好ましい。
The heat treatment is finally performed at a temperature of 180 ° C. to 350 ° C., preferably 240 ° C. to 300 ° C. Examples of the heat treatment operation include a method in which the temperature is raised from room temperature to about 70 ° C. to the target temperature continuously or stepwise. The heat treatment time is not particularly limited as long as it is a time sufficient to obtain the target polybenzoxazine-silica composite. Usually 0.5 to 100 hours, preferably 1 to 24 hours.
The rate of temperature increase in the case of continuous temperature increase is usually 0.01 to 10 ° C./min, preferably 0.1 to 3 ° C./min.
When the temperature is raised stepwise, for example, at room temperature to 70 ° C. for several hours (for example, 0.5 to 10 hours, preferably 1 to 5 hours, the same shall apply hereinafter), and thereafter, for example, within a range of 100 ° C. to 300 ° C. A mode in which heat treatment is performed by holding at several appropriate temperatures for several hours, respectively.
Note that it is not preferable for a thin film of 50 μm or less to suddenly start the reaction from a high temperature such as 180 ° C. to 200 ° C. because it reacts rapidly and foaming occurs due to desorption of ammonia or the like.
The heat treatment is not particularly limited in an air atmosphere or an inert atmosphere, but is preferably performed in an inert atmosphere from the viewpoint of avoiding the influence of moisture in the air.

加熱処理によりポリベンゾオキサジン−シリカ複合体を形成する態様としては、例えば、ベンゾオキサジン化合物(A)およびポリシラザン(B)を含む樹脂組成物の溶液を、グローブボックスの中で、表面疎水化処理したガラス板上にキャストし、アンモニアガスによる泡の発生を防ぐため放置・乾燥した後、ホットプレートを用いてガラス板を加熱処理する方法が挙げられる。   As an aspect of forming a polybenzoxazine-silica composite by heat treatment, for example, a solution of a resin composition containing a benzoxazine compound (A) and a polysilazane (B) was subjected to surface hydrophobization treatment in a glove box. There is a method in which the glass plate is cast on a glass plate, left standing and dried to prevent generation of bubbles due to ammonia gas, and then heated using a hot plate.

加熱処理によりベンゾオキサジン化合物は下記のように開環重合する。なお、下記式中のRは式(2)中の−(CH−のことである。
The benzoxazine compound undergoes ring-opening polymerization by heat treatment as follows. Note that R in formula formula (2) in the - (CH 2) m - is that of.

そして、開環重合により形成されたOH基とポリシラザンが反応し、C−O−Si結合により化学的に結合する。また、ポリシラザンは加熱により、下記のようにシリカに転化して本発明のポリベンゾオキサジン−シリカ複合体が形成される。
Then, the OH group formed by ring-opening polymerization and polysilazane react and chemically bond with each other through a C—O—Si bond. In addition, polysilazane is converted to silica by heating to form the polybenzoxazine-silica composite of the present invention.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、以下において、PBzはポリベンゾオキサジンを、PBz−PHPSはポリベンゾオキサジン−シリカ複合体を表す。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In the following, PBz represents polybenzoxazine, and PBz-PHPS represents a polybenzoxazine-silica composite.

(実施例1〜5、比較例1)
N,N−120(AZ electronic materials社製、PHPS20wt%ジブチルエーテル溶液)の所定量を減圧下、室温で乾燥した。ベンゾオキサジンモノマー(Baモノマーと略す。)のTHF溶液(溶液A)、および、乾燥したPHPSをTHFに溶解した溶液Bを調製した。溶液Bの調製は窒素雰囲気下で行った。
窒素雰囲気下で、溶液Aを撹拌しながらこれに溶液Bを滴下し(滴下速度0.05mL/3秒)、その後1時間撹拌し、コート溶液とした。グローブボックスの中で表面疎水化処理したガラス板上にコート液をキャストし、グローブボックスの中に1時間放置し、乾燥した(アンモニアガスによる泡の発生を防ぐため)。次にコートしたガラス板を空気雰囲気下、ホットプレートを用いて70℃で5時間、100℃で5時間、150℃で2時間、200℃で2時間、そして240℃で2時間の加熱を行った。仕込み量を表1に示す。
(Examples 1-5, Comparative Example 1)
A predetermined amount of N, N-120 (manufactured by AZ electronic materials, PHPS 20 wt% dibutyl ether solution) was dried at room temperature under reduced pressure. A THF solution (solution A) of benzoxazine monomer (abbreviated as Ba monomer) and a solution B in which dried PHPS was dissolved in THF were prepared. Solution B was prepared under a nitrogen atmosphere.
In a nitrogen atmosphere, the solution B was added dropwise to the solution A while stirring (dropping rate 0.05 mL / 3 seconds), and then stirred for 1 hour to obtain a coating solution. The coating solution was cast on a glass plate that had been surface-hydrophobized in the glove box, left in the glove box for 1 hour, and dried (to prevent the generation of bubbles due to ammonia gas). Next, the coated glass plate is heated in an air atmosphere at 70 ° C. for 5 hours, 100 ° C. for 5 hours, 150 ° C. for 2 hours, 200 ° C. for 2 hours, and 240 ° C. for 2 hours. It was. The amount charged is shown in Table 1.

なお、解析は以下によった。
(1)FT−IR(JascoFT−IR4100ST)
各反応時間でサンプリングを行い、ATR法(ZnSeプリズム)で測定しATR補正をした。分解能:2.0cm−1、積算80回。
(2)TGA
熱重量測定装置(Shimazu,TGA−50)を用い、窒素雰囲気下、昇温速度10℃/分で25〜900℃で測定した。
(3)DSC
示差走査熱量計(Shimazu,DSC−60)を用い、窒素雰囲気下、昇温速度5℃/分で350℃まで測定した。
The analysis was based on the following.
(1) FT-IR (Jasco FT-IR4100ST)
Sampling was performed at each reaction time, and ATR method (ZnSe prism) was used to perform ATR correction. Resolution: 2.0 cm −1 , totaling 80 times.
(2) TGA
Using a thermogravimetric measuring device (Shimatsu, TGA-50), measurement was performed at 25 to 900 ° C. under a nitrogen atmosphere at a heating rate of 10 ° C./min.
(3) DSC
Using a differential scanning calorimeter (Shimazu, DSC-60), the temperature was measured up to 350 ° C. at a heating rate of 5 ° C./min in a nitrogen atmosphere.

(4)反応の進行
FT−IRにより反応の進行を測定した。PBz−PHPS3、PBz−PHPS4およびPBz−PHPS5の測定結果をそれぞれ図1、図2および図3に示す。
図中のピークの帰属は以下のとおりである。
・Si−H:2100cm−1、Si−O:1080cm−1、Si−N:840cm−1
・930cm−1と1505cm−1ピークの減少:ベンゾオキサジン環の開環
・1080cm−1ピークの増加:Si−O−Si結合の確認
・1480cm−1ピークの増加:開環重合の確認
・1635cm−1ピークの増加:水素結合されたフェノールのOH基の確認
・3400cm−1ピークの増加:OH基生成の確認
(4) Progress of reaction The progress of the reaction was measured by FT-IR. The measurement results of PBz-PHPS3, PBz-PHPS4, and PBz-PHPS5 are shown in FIG. 1, FIG. 2, and FIG. 3, respectively.
The attribution of peaks in the figure is as follows.
Si-H: 2100 cm < -1 >, Si-O: 1080 cm < -1 >, Si-N: 840 cm < -1 >
· 930 cm -1 and 1505cm -1 peak reduction of: increasing the opening · 1080 cm -1 peak of benzoxazine ring: Si-O-Si confirmation bonds · 1480 cm -1 peak increases of: Checking ring-opening polymerization · 1635 cm - 1 peak increase: confirmation of OH group of phenol bonded with hydrogen ・ 3400 cm −1 increase of peak: confirmation of OH group formation

図1〜3より、ポリマーの開環、PHPSの転化、およびポリマーとPHPSの反応が競争的に起こることが分かる。Si−H、Si−Oのピークが見当たらないことから加熱初期にPHPSはシリカに転化したと考えられる。PBz−PHPS4ではシリカのピークが150℃から明確になり、反応温度の増加に伴い、増大している。一方、モノマーは150℃で開環が起こりOH基が発生し、240℃で完全に開環し、SiOと反応しなかったOH基が一部残ると考えられる。 It can be seen from FIGS. 1 to 3 that the ring opening of the polymer, the conversion of PHPS, and the reaction between the polymer and PHPS occur competitively. Since no Si—H or Si—O peaks are observed, it is considered that PHPS was converted to silica in the early stage of heating. In PBz-PHPS4, the silica peak becomes clear from 150 ° C., and increases as the reaction temperature increases. On the other hand, it is considered that the monomer is ring-opened at 150 ° C. to generate OH groups, completely ring-opened at 240 ° C., and some OH groups that have not reacted with SiO 2 remain.

次に、240℃における複合体(PBz−PHPS1〜5)とPBzポリマーのFT−IRを図4に示す。
図4中、a〜fは、それぞれPBz、PBz−PHPS5、PBz−PHPS4、PBz−PHPS3、PBz−PHPS2及びPBz−PHPS1である。
図4により、3400cm−1のOH基のピークがポリマーと比べて大きくないことからフェニル基のOHとシラザンが化学結合してC−O−Si結合していると考えられる。PBz−PHPS1の複合体の場合、シリカの量が多く、凝集しやすいためポリマーより大きいOH基ピークを示すと考えられる。
Next, FIG. 4 shows the composite (PBz-PHPS 1 to 5) at 240 ° C. and the FT-IR of the PBz polymer.
In FIG. 4, a to f are PBz, PBz-PHPS5, PBz-PHPS4, PBz-PHPS3, PBz-PHPS2 and PBz-PHPS1, respectively.
According to FIG. 4, since the peak of the OH group at 3400 cm −1 is not as large as that of the polymer, it is considered that OH of the phenyl group and silazane are chemically bonded to form C—O—Si bonds. In the case of the PBz-PHPS1 composite, the amount of silica is large and the particles tend to aggregate, so it is considered that the OH group peak is larger than that of the polymer.

TGAによる測定結果を図5に示す。
図5の結果から、PBzは400℃を超えると急激に重量減少をするが、本発明の複合体はPBzに比べ重量減少が少なく、特にPBz−PHPS1は重量減少の程度はより小さいことが分かる。
The measurement result by TGA is shown in FIG.
From the results shown in FIG. 5, it can be seen that PBz rapidly loses weight when it exceeds 400 ° C., but the composite of the present invention has less weight loss than PBz, and in particular, PBz-PHPS1 has a smaller weight reduction degree. .

PBz−PHPS5について、反応開始温度を200℃として、240℃まで反応させたところ、ホットプレートに置いた直後に急激に発泡した。得られた複合体をPBz−PHPS5aとする。
PBz−PHPS5とPBz−PHPS5aのTGAによる測定結果を図6に示す。図6より、PBz−PHPS5aの方がPBz−PHPS5より耐熱性が低くなっていることが分かる。したがって、耐熱性の観点から、本系での合成は段階的加熱が好ましい。
About PBz-PHPS5, when reaction start temperature was 200 degreeC and it was made to react to 240 degreeC, it foamed rapidly immediately after putting on a hotplate. Let the obtained composite be PBz-PHPS5a.
The measurement result by TGA of PBz-PHPS5 and PBz-PHPS5a is shown in FIG. FIG. 6 shows that the heat resistance of PBz-PHPS5a is lower than that of PBz-PHPS5. Therefore, from the viewpoint of heat resistance, stepwise heating is preferable for the synthesis in this system.

(実施例6)
高分子量ベンゾオキサジン(B−hda)を以下により合成した。
クロロホルム50mLに、ヘキサメチレンジアミン(0.01mol,1.16g)、ビスフェノールA(0.01mol,2.28g)、およびパラホルムアルデヒド(0.04mol,1.20g)を加え、還流を5時間行った。無色透明の反応溶液をクロロホルム450mLに溶解させ、1000mLの分液漏斗を用いて0.5規定NaHCO水溶液で2回および蒸留水で3回洗浄し、無水硫酸ナトリウムで1日脱水した。溶液をエバポレータで濃縮し、減圧乾燥を1日行って薄黄色の高分子量ベンゾオキサジン(B−hda)を3.43g(収率:88%)得た。
(Example 6)
High molecular weight benzoxazine (B-hda) was synthesized as follows.
Hexamethylenediamine (0.01 mol, 1.16 g), bisphenol A (0.01 mol, 2.28 g), and paraformaldehyde (0.04 mol, 1.20 g) were added to 50 mL of chloroform, and refluxed for 5 hours. . The colorless and transparent reaction solution was dissolved in 450 mL of chloroform, washed twice with 0.5 N NaHCO 3 aqueous solution and 3 times with distilled water using a 1000 mL separatory funnel, and dehydrated with anhydrous sodium sulfate for 1 day. The solution was concentrated with an evaporator and dried under reduced pressure for 1 day to obtain 3.43 g (yield: 88%) of light yellow high molecular weight benzoxazine (B-hda).

得られたB−hdaのNMRスペクトルを図7に示す。
NMRより求めた構造は以下のとおりである。
すなわち、B−hadは両末端がNH基のポリマーと、両末端にOH基とNH基が一個ずつ結合しているポリマーとの混合物であり、x=11.15、y=11.15、x+y=22.3、Mw=8029であった。
The NMR spectrum of the obtained B-hda is shown in FIG.
The structure determined from NMR is as follows.
That is, B-had is a mixture of a polymer having NH 2 groups at both ends and a polymer having one OH group and one NH 2 group bonded to both ends, and x = 11.15 and y = 11.15. X + y = 22.3 and Mw = 8029.

上記で得られたB−hdaを用いて複合体を合成した。
B−hadとPHPSの仕込み量を表2に示した。樹脂組成物の溶媒量はTHF10mlである。
加熱処理は、空気雰囲気下、50℃で5時間、100℃で1時間、120℃で1時間、160℃で1時間、200℃で1時間、そして240℃で1時間の加熱を行った。
オリゴマーを用いることで製膜性が向上した。
複合体の外観(加熱温度の影響)を図8に、透明性(UV−Vis測定)を図9に示す。なお、図8および図9におけるaは50℃で5時間保持したときの複合体、bはその後さらに100℃で1時間保持したときの複合体、cはその後さらに120℃で1時間保持したときの複合体、dはその後さらに160℃で1時間保持したときの複合体、eはその後さらに200℃で1時間保持したときの複合体、fはその後さらに240℃で1時間保持したときの複合体である。
A complex was synthesized using the B-hda obtained above.
The amounts of B-had and PHPS charged are shown in Table 2. The solvent amount of the resin composition is 10 ml of THF.
The heat treatment was performed in an air atmosphere at 50 ° C. for 5 hours, 100 ° C. for 1 hour, 120 ° C. for 1 hour, 160 ° C. for 1 hour, 200 ° C. for 1 hour, and 240 ° C. for 1 hour.
The film forming property was improved by using the oligomer.
The appearance (effect of heating temperature) of the composite is shown in FIG. 8, and the transparency (UV-Vis measurement) is shown in FIG. 8 and 9, a is a composite when held at 50 ° C for 5 hours, b is a composite when further held at 100 ° C for 1 hour, and c is further held at 120 ° C for 1 hour. And d is a composite when further maintained at 160 ° C. for 1 hour, e is a composite when further maintained at 200 ° C. for 1 hour, and f is a composite when further maintained at 240 ° C. for 1 hour. Is the body.








Claims (4)

ベンゾオキサジン化合物(A)、パーヒドロポリシラザン(B)、およびパーヒドロポリシラザンを溶解する溶媒(C)を含む樹脂組成物。   A resin composition comprising a benzoxazine compound (A), perhydropolysilazane (B), and a solvent (C) that dissolves perhydropolysilazane. ベンゾオキサジン化合物(A)100重量部に対するパーヒドロポリシラザン(B)の含有割合が0.5〜50重量部であることを特徴とする請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the content ratio of perhydropolysilazane (B) to 100 parts by weight of the benzoxazine compound (A) is 0.5 to 50 parts by weight. 請求項1または2に記載の樹脂組成物を加熱処理して得られるポリベンゾオキサジン−シリカ複合体。   A polybenzoxazine-silica composite obtained by heat-treating the resin composition according to claim 1. ベンゾオキサジン化合物(A)、パーヒドロポリシラザン(B)、およびパーヒドロポリシラザンを溶解する溶媒(C)を不活性雰囲気下で混合して樹脂組成物を調製する工程と、該樹脂組成物を加熱処理することにより、ベンゾオキサジン化合物を重合し、かつパーヒドロポリシラザンをシリカに転化させる工程とを含むことを特徴とするポリベンゾオキサジン−シリカ複合体の製造方法。   A step of preparing a resin composition by mixing a benzoxazine compound (A), perhydropolysilazane (B), and a solvent (C) for dissolving perhydropolysilazane under an inert atmosphere, and heat-treating the resin composition And a step of polymerizing a benzoxazine compound and converting perhydropolysilazane to silica. A method for producing a polybenzoxazine-silica composite, comprising:
JP2014136012A 2014-07-01 2014-07-01 Polybenzoxazine-silica composite and method for producing the same Active JP6198685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014136012A JP6198685B2 (en) 2014-07-01 2014-07-01 Polybenzoxazine-silica composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014136012A JP6198685B2 (en) 2014-07-01 2014-07-01 Polybenzoxazine-silica composite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016014094A true JP2016014094A (en) 2016-01-28
JP6198685B2 JP6198685B2 (en) 2017-09-20

Family

ID=55230545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014136012A Active JP6198685B2 (en) 2014-07-01 2014-07-01 Polybenzoxazine-silica composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP6198685B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054218A1 (en) * 2018-09-14 2020-03-19 積水化学工業株式会社 Benzoxazine compound, curable resin composition, adhesive, adhesive film, cured object, circuit board, interlayer dielectric material, and multilayered printed wiring board
CN111154105A (en) * 2020-01-16 2020-05-15 陕西天策新材料科技有限公司 Low-temperature curable silicon-containing benzoxazine resin and preparation method thereof
CN112538235A (en) * 2020-12-03 2021-03-23 长沙新材料产业研究院有限公司 Benzoxazine composition and preparation method thereof
WO2021134604A1 (en) * 2019-12-31 2021-07-08 广州市白云化工实业有限公司 Organosilicon-modified phenolic resin composition, composite material, and preparation method thereof
WO2022045341A1 (en) * 2020-08-31 2022-03-03 積水化学工業株式会社 Near-infrared light transmitting black material
CN115403774A (en) * 2022-10-09 2022-11-29 齐鲁工业大学 Synthesis and reshaping method of reprocessable silicone resin containing dynamic covalent Si-O-Ph bond
CN115725110A (en) * 2022-11-16 2023-03-03 航天特种材料及工艺技术研究所 Silicon resin modified polybenzoxazine aerogel and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196987A (en) * 1993-12-28 1995-08-01 Tonen Corp Composition for coating
JP2006328220A (en) * 2005-05-26 2006-12-07 Toyota Industries Corp Coating composition, method for preparing coating composition, method for producing transparent protective film using coating composition and organic glass having transparent protective film
JP2009096901A (en) * 2007-10-18 2009-05-07 Toyota Industries Corp Coating composition, method for producing transparent protective film by using coating composition and organic glass having transparent protective film
JP2011142207A (en) * 2010-01-07 2011-07-21 Az Electronic Materials Kk Coating composition including polysilazane
JP2011256370A (en) * 2010-05-10 2011-12-22 Tokyo Institute Of Technology Coating composition, and silica-epoxy resin composite material
JP2013185056A (en) * 2012-03-07 2013-09-19 Nippon Shokubai Co Ltd Curable resin composition, method of manufacturing the same, and electronics mounting material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196987A (en) * 1993-12-28 1995-08-01 Tonen Corp Composition for coating
JP2006328220A (en) * 2005-05-26 2006-12-07 Toyota Industries Corp Coating composition, method for preparing coating composition, method for producing transparent protective film using coating composition and organic glass having transparent protective film
JP2009096901A (en) * 2007-10-18 2009-05-07 Toyota Industries Corp Coating composition, method for producing transparent protective film by using coating composition and organic glass having transparent protective film
JP2011142207A (en) * 2010-01-07 2011-07-21 Az Electronic Materials Kk Coating composition including polysilazane
JP2011256370A (en) * 2010-05-10 2011-12-22 Tokyo Institute Of Technology Coating composition, and silica-epoxy resin composite material
JP2013185056A (en) * 2012-03-07 2013-09-19 Nippon Shokubai Co Ltd Curable resin composition, method of manufacturing the same, and electronics mounting material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054218A1 (en) * 2018-09-14 2020-03-19 積水化学工業株式会社 Benzoxazine compound, curable resin composition, adhesive, adhesive film, cured object, circuit board, interlayer dielectric material, and multilayered printed wiring board
CN112533906A (en) * 2018-09-14 2021-03-19 积水化学工业株式会社 Benzoxazine compound, curable resin composition, adhesive film, cured product, circuit board, interlayer insulating material, and multilayer printed wiring board
JPWO2020054218A1 (en) * 2018-09-14 2021-08-30 積水化学工業株式会社 Benzoxazine compounds, curable resin compositions, adhesives, adhesive films, cured products, circuit boards, interlayer insulating materials, and multilayer printed wiring boards
JP7474054B2 (en) 2018-09-14 2024-04-24 積水化学工業株式会社 Benzoxazine compound, curable resin composition, adhesive, adhesive film, cured product, circuit board, interlayer insulating material, and multilayer printed wiring board
WO2021134604A1 (en) * 2019-12-31 2021-07-08 广州市白云化工实业有限公司 Organosilicon-modified phenolic resin composition, composite material, and preparation method thereof
CN111154105A (en) * 2020-01-16 2020-05-15 陕西天策新材料科技有限公司 Low-temperature curable silicon-containing benzoxazine resin and preparation method thereof
WO2022045341A1 (en) * 2020-08-31 2022-03-03 積水化学工業株式会社 Near-infrared light transmitting black material
CN112538235A (en) * 2020-12-03 2021-03-23 长沙新材料产业研究院有限公司 Benzoxazine composition and preparation method thereof
CN115403774A (en) * 2022-10-09 2022-11-29 齐鲁工业大学 Synthesis and reshaping method of reprocessable silicone resin containing dynamic covalent Si-O-Ph bond
CN115403774B (en) * 2022-10-09 2023-08-11 齐鲁工业大学 Synthesis and reforming method of reworkable silicone resin containing dynamic covalent Si-O-Ph bond
CN115725110A (en) * 2022-11-16 2023-03-03 航天特种材料及工艺技术研究所 Silicon resin modified polybenzoxazine aerogel and preparation method thereof
CN115725110B (en) * 2022-11-16 2024-03-26 航天特种材料及工艺技术研究所 Silicone resin modified polybenzoxazine aerogel and preparation method thereof

Also Published As

Publication number Publication date
JP6198685B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP6198685B2 (en) Polybenzoxazine-silica composite and method for producing the same
Teo et al. Epoxy/polyhedral oligomeric silsesquioxane (POSS) hybrid networks cured with an anhydride: Cure kinetics and thermal properties
Tao et al. Synthesis and characterization of imide ring and siloxane-containing cycloaliphatic epoxy resins
JP5160189B2 (en) Polysilazane compound-containing composition capable of obtaining a dense siliceous film
CN104024337B (en) Silane-containing compositions, hardening resin composition and sealing material
Wang et al. Phthalonitrile-terminated silicon-containing oligomers: synthesis, polymerization, and properties
JP4548855B2 (en) Thermosetting polyimide silicone resin composition and cured film thereof
JP2008512546A (en) Anhydride functional silsesquioxane resin
JP6271763B2 (en) Thermosetting resin composition
JP6236222B2 (en) Cyanate ester composition and use thereof
JP3468195B2 (en) Epoxy resin composition
Acebo et al. Novel epoxy-silica hybrid coatings by using ethoxysilyl-modified hyperbranched poly (ethyleneimine) with improved scratch resistance
JP6351757B2 (en) Thermosetting resin composition
Fu et al. Preparation and properties of hybrid materials originating from polybenzoxazines and silsesquioxanes
JP6832938B2 (en) Method for Producing Curable Resin Mixture and Curable Resin Composition
Lee et al. Thermally stable, flame retardant, low‐dielectric constants, and flexible thermosetting resins based on a tetra‐functional benzoxazine compound possessing a cyclic siloxane core
Imoto et al. Polymers and cyclic compounds based on a side‐opening type cage silsesquioxane
KR101456025B1 (en) Isocyanurate epoxy compound having alkoxysilyl group, preparing method thereof, composition comprising the same and cured product and use thereof
Lan et al. Synthesis, characterization and properties of the polysiloxane-based episulfide resin
Forchetti Casarino et al. Synthesis and characterization of polybenzoxazine/silica‐based hybrid nanostructures for flame retardancy applications
TW202200676A (en) Polyorganosilsesquioxane, curable composition containing same, and cured product thereof
JP3975305B2 (en) Epoxy resin composition and molded body
JP6620981B2 (en) Thermosetting molding material, method for producing the same, and semiconductor sealing material
JPH06157551A (en) Silicone-modified acid anhydride and its production
Chang et al. Synthesis, characterization, and properties of novel organic/inorganic epoxy hybrids containing nitrogen/silicon via the sol–gel method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170822

R150 Certificate of patent or registration of utility model

Ref document number: 6198685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250