WO2020053920A1 - Ion-conducting material, functional layer for battery, and method for producing same - Google Patents

Ion-conducting material, functional layer for battery, and method for producing same Download PDF

Info

Publication number
WO2020053920A1
WO2020053920A1 PCT/JP2018/033375 JP2018033375W WO2020053920A1 WO 2020053920 A1 WO2020053920 A1 WO 2020053920A1 JP 2018033375 W JP2018033375 W JP 2018033375W WO 2020053920 A1 WO2020053920 A1 WO 2020053920A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
conductive material
battery
anion
material according
Prior art date
Application number
PCT/JP2018/033375
Other languages
French (fr)
Japanese (ja)
Inventor
和樹 前田
山田 裕久
Original Assignee
共栄社化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 共栄社化学株式会社 filed Critical 共栄社化学株式会社
Priority to PCT/JP2018/033375 priority Critical patent/WO2020053920A1/en
Priority to JP2019160806A priority patent/JP7401889B2/en
Publication of WO2020053920A1 publication Critical patent/WO2020053920A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an ion conductive material exhibiting excellent ion conductivity, a functional layer for a battery, and a method for producing the same.
  • Layered double hydroxide (hereinafter, also referred to as LDH) is a substance having an exchangeable anion and H 2 O as an intermediate layer between layered hydroxide layers. It is used as a dispersant and a dispersant in a polymer for improving heat resistance.
  • LDH has recently attracted attention as an ion conductive material, and its addition to an electrolyte of an alkaline fuel cell and a catalyst layer of a zinc-air battery has been studied. Furthermore, the use as an electrolyte for fuel cells and secondary batteries using alkaline electrolytes (alkaline fuel cells, alcohol fuel cells, metal-air secondary batteries, nickel hydrogen secondary batteries and Zn-Ni secondary batteries) Expected.
  • LDHs which have been mainly studied for use as ion conductive materials are Mg / Al-based layered double hydroxides in which carbonate ions are intercalated between layers, and layered composites using Zn as a divalent metal.
  • hydroxides as ionic conductors This is presumed to be due to the fact that LDH containing Zn is more difficult to manufacture than Mg / Al-based ionic conductors, and is likely to generate zinc oxide as an impurity.
  • no sufficient study has been made on a layered double hydroxide in which ions other than carbonate ions are intercalated between layers. This is also presumed to be due to the ease of production of the layered double hydroxide in which carbonate ions were intercalated.
  • a method of heating a metal compound as a raw material in an aqueous medium containing urea is known. According to such a method, urea is gradually decomposed by heating, thereby changing the pH and forming a layered hydroxide, and carbonate ions generated by the decomposition of urea are intercalated between the layers.
  • Such a production method was considered suitable for a method for producing an LDH in which carbonate ions were intercalated, but was not suitable for a method for producing an LDH having a small content of carbonate ions. Therefore, an LDH in which carbonate ions are intercalated by such a production method is produced, and this carbonate ion is replaced with another anion. However, such a method cannot sufficiently reduce the amount of carbonate ions.
  • Patent Literature 1 discloses a layered double hydroxide that can be used as an ion conductor. However, disclosed herein is an Mg / Al-based layered double hydroxide, which is specifically described with respect to a double hydroxide-based layered double hydroxide using zinc as a divalent metal. Not.
  • Patent Document 2 describes a double hydroxide containing Ni, Al, Ti, and Zn. However, used herein are double hydroxides containing many types of metals. Further, although a method for producing a double hydroxide using urea is disclosed, it has been clarified that carbonate ions are trapped between layers.
  • Patent Literature 3 discloses a solid alkaline fuel cell using LDH as a separator. However, even here, only the Mg / Al-based LDH is specifically described, and the one using zinc as the divalent metal is not specifically described.
  • Patent Documents 1 to 3 described above disclose a method for producing LDH using urea.
  • JP 2018-100191 A JP 2018-58766 A JP, 2018-46017, A
  • An object of the present invention is to provide a novel ion conductive material having excellent ion conductivity and a method for producing the same.
  • the present invention is a layered double hydroxide wherein the divalent metal is Zn,
  • the intensity ratio (In / Ic) of the sum of the diffraction intensities (In) of the crystal phase incorporating anions other than carbonate ions and the diffraction intensity (Ic) of the crystal phase incorporating carbonate ions measured by X-ray diffraction is 1
  • An ion conductive material characterized by the above.
  • the ion conductive material preferably has a structural formula represented by the following composition formula. [Zn 1-x M III x (OH) 2] [A n- x / n] ⁇ mH 2 O M III is a trivalent metal and is at least one selected from Al, Fe and Co, and An- represents an n-valent anion. 0.25 ⁇ x ⁇ 0.50 0 ⁇ m ⁇ 2
  • the ion-conductive material the anion represented by A n- is nitrate ion, a hydroxide ion, a chloride ion, a bromine ion, an iodine ion, dodecylsulfate ion, selected from the group consisting of dodecylbenzene sulfonic acid ion It is preferably at least one anion.
  • the anion represented by A n- contains a nitrate ion.
  • the present invention also provides a functional layer for a battery, wherein the above-mentioned ion conductive material is partially or wholly used.
  • the present invention is also a battery having at least a part of the battery functional layer described above.
  • the present invention is also the method for producing an ionic conductive material, comprising a step of mixing the raw materials in an aqueous medium containing urea under heating and reflux conditions.
  • the ion conductive material of the present invention can obtain an ion conductivity superior to the conventional one. Further, it is a method for easily and inexpensively producing an ion conductive material having such performance.
  • the present invention is an ion-conductive material that is a layered double hydroxide in which the divalent metal is zinc. Further, it is characterized in that there are few phases derived from carbonate ions in ions taken in between layers.
  • the present invention has completed the present invention by finding that LDH in which the divalent metal is zinc and the amount of carbonate ions is reduced has a significantly improved ionic conductivity over known ionic conductive materials.
  • Zn in the general formula may be partially substituted with another divalent metal.
  • the divalent metal that may be substituted is not particularly limited, and examples thereof include Mg, Ca, Cu, Zr, Co, Ni, Fe, and Mn.
  • it is preferable that 50 mol% or more of the divalent metal is zinc. More preferably, at least 60 mol% is zinc, and at least 80 mol% is zinc.
  • M III represents a trivalent metal, and is preferably at least one selected from the group consisting of Al, Fe and Co.
  • Al is preferably at least 50 mol% of the trivalent metal. More preferably, at least 60 mol% is zinc, and at least 80 mol% is zinc.
  • the layered double oxide using Al is particularly preferable from the viewpoints of being inexpensive, having no change in valence, and having excellent stability.
  • a n- in the general formula is not particularly limited, and may be, for example, a group consisting of nitrate ion, hydroxide ion, chloride ion, bromide ion, iodine ion, dodecyl sulfate ion, and dodecylbenzene sulfonate ion.
  • nitrate ions are particularly preferred.
  • Nitrate ions are preferable in that they have excellent ionic conductivity and can be easily synthesized by the present method.
  • the LDH of the present invention has a low content of carbonate ions.
  • the sum of the diffraction intensities (It) of the (003) peak (Ic) of carbonate-type LDH and the (003) peak of other anion-type LDH obtained from powder X-ray diffraction measurement (It) ), And (It / Ic) is 1 or more.
  • Such a material is particularly excellent in ionic conduction performance.
  • the strength ratio is more preferably 3 or more, and further preferably 17 or more.
  • the anion contained between layers in the LDH of the present invention is preferably a nitrate ion.
  • the intensity ratio (In / Ic) between the diffraction intensity (In) of the crystal phase incorporating the nitrate ions and the diffraction intensity (Ic) of the crystal phase incorporating the carbonate ions, measured by X-ray diffraction, is as described above (It). / Ic).
  • the ion conductive material of the present invention is not particularly limited in its particle shape, particle size, and the like.
  • the particle diameter is preferably set to 10 ⁇ m or less.
  • the particle diameter is a value measured by measuring the major axis of 50 particles in an electron micrograph and averaging the major axes.
  • the method for producing a layered double hydroxide of the present invention is not particularly limited, but it is preferable to select production conditions such that carbonate ions are not taken in between layers.
  • urea is used in a reaction in an aqueous medium, and the pH is increased (for example, pH 7.0 or more) by ammonia generated by thermally decomposing the urea to form a layered double hydroxide. Is preferred.
  • the production method using urea is a known method for producing a layered double hydroxide. This is to control the pH by ammonia generated by the thermal decomposition of urea under heating. However, in the thermal decomposition of urea, carbonate ions are generated in addition to ammonia. If a layered double hydroxide in which carbonate ions are intercalated between layers is obtained, the presence of such carbonate ions is preferable, but the layered double hydroxide having a reduced amount of carbonate ions as in the present invention. In order to obtain an oxide, such generation of carbonate ions is not preferable.
  • a layered double hydroxide having a reduced amount of carbonate ions can be obtained by adopting a production method in which an open system reaction is performed in consideration of such points. That is, in the present invention, in order to exclude carbonate ions, it is preferable that carbon dioxide is distilled out of the system so that the carbonate ions do not remain in the system. Specifically, a method of heating and refluxing in an open system can be mentioned.
  • Heating / refluxing '' refers to conducting a reaction while heating a reaction solution at a temperature equal to or higher than the boiling point of water under open conditions, providing a cooling pipe in the outlet path of the open system, cooling the vaporized water vapor again to water Means that the reaction is carried out while returning to the reaction vessel. By reacting in this manner, carbon dioxide gas is removed, and a layered double hydroxide having a small amount of carbonate ions can be obtained.
  • the reaction is performed by dissolving and dispersing the metal compound as a raw material in water at a mixing ratio corresponding to the amount of metal in the target double hydroxide, further adding urea, and refluxing under heating conditions.
  • a mixing ratio corresponding to the amount of metal in the target double hydroxide
  • urea urea
  • the molar concentration of the divalent and trivalent metals in the reaction solution was 0.15 M. However, in principle, any concentration can be used to synthesize a layered double hydroxide without any problem.
  • urea / M III 3.0 to 9.0 (molar ratio).
  • zinc oxide may be generated.
  • carbonate ions it is preferable to use urea within the above range to make the change in pH moderate.
  • a salt compound of a metal and an anion intercalated between layers of the layered double hydroxide is preferable.
  • a nitrate compound as a raw material.
  • the use of a carbonate compound is not preferable because a carbonate compound easily becomes an intercalated compound between layers.
  • the reaction conditions it is important to select conditions under which carbonate ions are easily discharged out of the system as carbon dioxide gas. That is, it is preferable that the system at the time of the reaction be an open system and the reaction temperature be as high as 80 ° C. or higher. The processing time is preferably from 6 to 72 hours. It is preferable to use an open system container as the reaction container.
  • the reaction can be performed while bubbling an inert gas such as argon or nitrogen. With such a method, the amount of carbonate ions can be further reduced.
  • a compound corresponding to the structure may be mixed in the mixture. In this case, it can be carried out by adding the corresponding acid to the system.
  • the obtained layered double hydroxide can be made into a powdery state by filtering, washing and drying as necessary.
  • the present invention is also a functional layer formed by the above-mentioned layered double hydroxide. That is, the above-mentioned layered double hydroxide is formed into a layer shape by any known method.
  • the formation into such a layer structure is not particularly limited, and examples thereof include a method by compression molding, and a method of forming a layer structure by molding a resin by adding a binder resin.
  • a binder resin When a binder resin is used, it may be a thermoplastic resin or a curable resin such as a thermosetting resin or an energy ray-curable resin.
  • the functional layer is not particularly limited, and can be used for a solid electrolyte layer of a primary or secondary battery, a separator layer of a battery, an electrode active material layer, and the like. Further, a functional layer may be formed by mixing other components as necessary according to the purpose of use.
  • the present invention is also a battery including at least a part of the functional layer. Since the functional layer of the present invention is made of an ion conductive material, it can be particularly suitably used as a functional layer in a battery. In particular, it can be particularly suitably used as a solid electrolyte layer of an all-solid battery.
  • the types of batteries that can be used are not particularly limited, and fuel cells using an alkaline electrolyte (alkaline fuel cells, alcohol fuel cells), and secondary batteries (metal-air secondary batteries, nickel-metal hydride secondary batteries, Electrolytes for Zn-Ni secondary batteries). It can also be used as the above-mentioned primary battery having the same principle.
  • components constituting layers other than the functional layer of the present invention may have a layer configuration generally used in each battery.
  • Example 1 and Comparative Examples 1 and 2 were identified using an X-ray diffractometer (Smart Lab 3K / PD / INP manufactured by RIGAKU).
  • X-ray diffractometer Smart Lab 3K / PD / INP manufactured by RIGAKU.
  • measurement was performed by a 2 ⁇ / ⁇ method under the conditions of a scan range of 5 ° to 75 °, a tube voltage of 40 kV, a tube current of 30 mA, a scan speed of 10 ° min ⁇ 1 , and a sampling width of 0.01396 °.
  • Example 1 and Comparative Examples 1 and 2 The ionic conductivity of Example 1 and Comparative Examples 1 and 2 was measured using the electrochemical impedance method.
  • the powders of Example 1 and Comparative Examples 1 and 2 were filled in a mold, pressurized at 30 MPa, and formed into pellets having a thickness of about 1.0 mm and a radius of 7 mm.
  • a sample sputtered with Au at 30 mA for 120 seconds on both sides of the pellet is sandwiched between gold electrodes, and connected to an impedance analyzer (Bio-Logic-Science Instruments.
  • the ionic conductivity was measured under the following conditions. All ionic conductivity measurements were performed in a high temperature and humidity chamber at 80 ° C. and 80% RH.
  • the table below summarizes the results of the ionic conductivity of Example 1 and Comparative Examples 1 and 2.
  • Example 1 It is recognized that the ionic conductivity of Example 1 is higher than that of Comparative Example 1 of the carbonate ion type. Further, since it is also recognized that the ionic conductivity is higher than that of Comparative Example 2 which is a MgAl-based layered double hydroxide, Example 1 obtained by the present invention has high hydroxide conductivity. .
  • the LDH of Example 1 was formed into a compact as a compact.
  • a Pt sputtered film was formed on both surfaces of the electrolyte pellet and the contact surface of the gas diffusion electrode with the pellet, and a power generation test was performed while humidifying the fuel electrode under the same conditions at a temperature of 80 ° C. and a relative humidity of 80%. Was.
  • power generation of about 20 mW / cm 2 was achieved. From this result, it became clear that the LDH of the present invention has a function as a battery electrolyte.
  • the ion conductive material of the present invention is a fuel cell and a secondary battery using an alkaline electrolyte (alkaline fuel cell, alcohol fuel cell, metal-air secondary battery, nickel hydrogen secondary battery and Zn-Ni secondary battery). It can be used as an ion conductive material used as an electrolyte for use.
  • alkaline electrolyte alkaline fuel cell, alcohol fuel cell, metal-air secondary battery, nickel hydrogen secondary battery and Zn-Ni secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention addresses the problem of providing an ion-conducting material having excellent ionic conductivity. This ion-conducting material is a layered double hydroxide having Zn as the divalent metal. The intensity ratio (It/Ic) between the total of the diffraction intensities of the crystal phases incorporating anions other than carbonate ions (It) and the diffraction intensity of the crystal phase incorporating carbonate ions (Ic) is 1 or greater, as determined by X-ray diffraction.

Description

イオン伝導性材料、電池用機能層及びその製造方法Ion conductive material, functional layer for battery and method for producing the same
本発明は、優れたイオン伝導性を示すイオン伝導性材料、電池用機能層及びその製造方法に関する。 The present invention relates to an ion conductive material exhibiting excellent ion conductivity, a functional layer for a battery, and a method for producing the same.
層状複水酸化物(以下、LDHともいう)は、層状の水酸化物層の間に、中間層として交換可能な陰イオン及びHOを有する物質であり、その特徴を活かして触媒や吸着剤、耐熱性向上のための高分子中の分散剤等として利用されている。 Layered double hydroxide (hereinafter, also referred to as LDH) is a substance having an exchangeable anion and H 2 O as an intermediate layer between layered hydroxide layers. It is used as a dispersant and a dispersant in a polymer for improving heat resistance.
また、LDHは近年イオン伝導性材料としても注目され、アルカリ形燃料電池の電解質や亜鉛空気電池の触媒層への添加についても検討されている。更に、アルカリ電解質を用いる燃料電池および二次電池(アルカリ形燃料電池、アルコール型燃料電池、金属-空気二次電池、ニッケル水素二次電池およびZn-Ni二次電池) 用電解質としての使用についても期待されている。 In addition, LDH has recently attracted attention as an ion conductive material, and its addition to an electrolyte of an alkaline fuel cell and a catalyst layer of a zinc-air battery has been studied. Furthermore, the use as an electrolyte for fuel cells and secondary batteries using alkaline electrolytes (alkaline fuel cells, alcohol fuel cells, metal-air secondary batteries, nickel hydrogen secondary batteries and Zn-Ni secondary batteries) Expected.
しかしイオン伝導性材料としての使用に関して主に検討されているLDHは、層間に炭酸イオンをインターカレートしたMg/Al系の層状複水酸化物であり、二価金属としてZnを使用した層状複水酸化物のイオン伝導体としての検討はほとんど行われていない。これは、Znを含むLDHは、Mg/Al系のイオン伝導体に比べて製造が困難であり、不純物としての酸化亜鉛を生じやすいこと等が原因であると推測される。また、層間に炭酸イオン以外のイオンをインターカレートした層状複水酸化物についても十分な検討がなされていない。これもまた、炭酸イオンをインターカレートした層状複水酸化物は製造が容易であることによると推測される。 However, LDHs which have been mainly studied for use as ion conductive materials are Mg / Al-based layered double hydroxides in which carbonate ions are intercalated between layers, and layered composites using Zn as a divalent metal. Almost no studies have been made on hydroxides as ionic conductors. This is presumed to be due to the fact that LDH containing Zn is more difficult to manufacture than Mg / Al-based ionic conductors, and is likely to generate zinc oxide as an impurity. Further, no sufficient study has been made on a layered double hydroxide in which ions other than carbonate ions are intercalated between layers. This is also presumed to be due to the ease of production of the layered double hydroxide in which carbonate ions were intercalated.
イオン伝導性材料としての使用を実用化するためには、高いイオン伝導性を有することが好ましい。このため、従来検討されているMg/Al系の層状複水酸化物よりも高いイオン伝導性を有する層状複水酸化物が見いだされれば、これは電池への使用に際してより望ましい化合物になる。 For practical use as an ion conductive material, it is preferable to have high ion conductivity. For this reason, if a layered double hydroxide having higher ionic conductivity than the conventionally studied Mg / Al-based layered double hydroxide is found, it will be a more desirable compound for use in batteries.
従来の炭酸イオンがインターカレートした層状複水酸化物の製造方法としては、原料となる金属化合物を尿素を含有する水性媒体中で加熱する方法が公知である。このような方法に従うと、加熱することで徐々に尿素が分解され、これによってpHが変化して層状水酸化物が形成されるとともに、尿素の分解で発生した炭酸イオンが層間にインターカレートされる。 As a conventional method for producing a layered double hydroxide in which carbonate ions are intercalated, a method of heating a metal compound as a raw material in an aqueous medium containing urea is known. According to such a method, urea is gradually decomposed by heating, thereby changing the pH and forming a layered hydroxide, and carbonate ions generated by the decomposition of urea are intercalated between the layers. You.
このような製造方法は、炭酸イオンがインターカレートしたLDHの製造方法においては適しているが、炭酸イオンの含有量が小さいLDHの製造方法には適していないと考えられていた。このため、このような製造方法によって炭酸イオンがインターカレートしたLDHを製造し、この炭酸イオンを他の陰イオンに置換することが行われている。しかし、このような方法では、充分に炭酸イオン量を低減することができない。 Such a production method was considered suitable for a method for producing an LDH in which carbonate ions were intercalated, but was not suitable for a method for producing an LDH having a small content of carbonate ions. Therefore, an LDH in which carbonate ions are intercalated by such a production method is produced, and this carbonate ion is replaced with another anion. However, such a method cannot sufficiently reduce the amount of carbonate ions.
特許文献1においては、イオン伝導体として使用できる層状複水酸化物が開示されている。しかし、ここで開示されているのは、Mg/Al系の層状複水酸化物であり、2価金属として亜鉛を使用した複水酸化物系の層状複水酸化物に関して具体的には記載されていない。 Patent Literature 1 discloses a layered double hydroxide that can be used as an ion conductor. However, disclosed herein is an Mg / Al-based layered double hydroxide, which is specifically described with respect to a double hydroxide-based layered double hydroxide using zinc as a divalent metal. Not.
特許文献2においては、Ni,Al,Ti,Znを含む複水酸化物について記載されている。しかし、ここで使用されているのは、多くの種類の金属を含む複水酸化物である。また、尿素を使用した複水酸化物の製造方法が開示されているが、炭酸イオンが層間に取り込まれた状態になることが明らかにされている。 Patent Document 2 describes a double hydroxide containing Ni, Al, Ti, and Zn. However, used herein are double hydroxides containing many types of metals. Further, although a method for producing a double hydroxide using urea is disclosed, it has been clarified that carbonate ions are trapped between layers.
特許文献3においては、LDHをセパレータとする固体アルカリ形燃料電池が開示されている。しかし、ここでもLDHとしては、Mg/Al系のもののみが具体的に記載されており、2価金属として亜鉛を使用したものは具体的には記載されていない。 Patent Literature 3 discloses a solid alkaline fuel cell using LDH as a separator. However, even here, only the Mg / Al-based LDH is specifically described, and the one using zinc as the divalent metal is not specifically described.
更に、上述した特許文献1~3においては、尿素を使用したLDHの製造方法が記載されている。しかし、このような方法は、尿素の分解によって発生した炭酸イオンが層間に取り込まれたものを製造する方法として適用されている。したがって、層間における炭酸イオンの存在量が小さいLDHを直接製造する製造方法については記載されていない。 Further, Patent Documents 1 to 3 described above disclose a method for producing LDH using urea. However, such a method is applied as a method for producing a product in which carbonate ions generated by the decomposition of urea are taken in between layers. Therefore, there is no description of a manufacturing method for directly manufacturing an LDH having a small amount of carbonate ions between layers.
特開2018-100191号公報JP 2018-100191 A 特開2018-58766号公報JP 2018-58766 A 特開2018-46017号公報JP, 2018-46017, A
本発明は、優れたイオン伝導性を有する新規なイオン伝導性材料及びその製造方法を提供することを目的とするものである。 An object of the present invention is to provide a novel ion conductive material having excellent ion conductivity and a method for producing the same.
本発明は、2価の金属がZnである層状複水酸化物であり、
X線回折によって測定された炭酸イオン以外の陰イオンを取り込んだ結晶相の回折強度(In)の合計と炭酸イオンを取り込んだ結晶相の回折強度(Ic)の強度比(In/Ic)が1以上であることを特徴とするイオン伝導性材料である。
The present invention is a layered double hydroxide wherein the divalent metal is Zn,
The intensity ratio (In / Ic) of the sum of the diffraction intensities (In) of the crystal phase incorporating anions other than carbonate ions and the diffraction intensity (Ic) of the crystal phase incorporating carbonate ions measured by X-ray diffraction is 1 An ion conductive material characterized by the above.
上記イオン伝導性材料は、下記組成式で示される構造式を有することが好ましい。
[Zn1-xIII (OH)][An- x/n]・mHO  
IIIは、3価の金属でありAl、Fe及びCoから選択される少なくとも1であり、An-は、n価のアニオンを示す。
0.25≦x≦0.50
0≦m<2
The ion conductive material preferably has a structural formula represented by the following composition formula.
[Zn 1-x M III x (OH) 2] [A n- x / n] · mH 2 O
M III is a trivalent metal and is at least one selected from Al, Fe and Co, and An- represents an n-valent anion.
0.25 ≦ x ≦ 0.50
0 ≦ m <2
上記イオン伝導性材料は、An-で表されるアニオンが、硝酸イオン、水酸化物イオン、塩化物イオン、臭素イオン、ヨウ素イオン、ドデシル硫酸イオン、ドデシルベンゼンスルホン酸イオンからなる群より選択される少なくとも1のアニオンであることが好ましい。 The ion-conductive material, the anion represented by A n- is nitrate ion, a hydroxide ion, a chloride ion, a bromine ion, an iodine ion, dodecylsulfate ion, selected from the group consisting of dodecylbenzene sulfonic acid ion It is preferably at least one anion.
上記An-で表されるアニオンは、硝酸イオンが含まれているであることが好ましい。 It is preferable that the anion represented by A n- contains a nitrate ion.
本発明は、上述したイオン伝導性材料を一部又は全部とすることを特徴とする電池用機能層でもある。
本発明は、上述した電池用機能層を少なくとも一部に有することを特徴とする電池でもある。
The present invention also provides a functional layer for a battery, wherein the above-mentioned ion conductive material is partially or wholly used.
The present invention is also a battery having at least a part of the battery functional layer described above.
本発明は、尿素を含有する水性媒体中で加熱還流条件下で原料を混合する工程を有することを特徴とする上記イオン導電性材料の製造方法でもある。 The present invention is also the method for producing an ionic conductive material, comprising a step of mixing the raw materials in an aqueous medium containing urea under heating and reflux conditions.
本発明のイオン伝導性材料は、従来以上に優れたイオン伝導度を得ることができるものである。更に、そのような性能を有するイオン伝導性材料を簡便かつ安価に製造する方法でもある。 The ion conductive material of the present invention can obtain an ion conductivity superior to the conventional one. Further, it is a method for easily and inexpensively producing an ion conductive material having such performance.
以下、本発明を詳細に説明する。
本発明は、2価金属が亜鉛である層状複水酸化物であるイオン伝導性材料である。更に、層間に取り込まれるイオンにおいて、炭酸イオンに由来する相が少ないことに特徴を有する。
本発明は、2価金属が亜鉛であり、炭酸イオンの量を低減したLDHは、公知のイオン伝導性材料よりもイオン伝導度が大幅に改善されることを見出すことによって本発明を完成した。
Hereinafter, the present invention will be described in detail.
The present invention is an ion-conductive material that is a layered double hydroxide in which the divalent metal is zinc. Further, it is characterized in that there are few phases derived from carbonate ions in ions taken in between layers.
The present invention has completed the present invention by finding that LDH in which the divalent metal is zinc and the amount of carbonate ions is reduced has a significantly improved ionic conductivity over known ionic conductive materials.
本発明における層状複水酸化物は、
[Zn1-xIII (OH)][An- x/n]・mH
IIIは3価の金属種としてAl、Fe及びCoからなる群より選択される少なくとも1であり、An-は、n価のアニオンを示す。
0.25≦x≦0.50
0≦m<2
で表される化学構造を有するものであることが好ましい。
Layered double hydroxide in the present invention,
[Zn 1-x M III x (OH) 2] [A n- x / n] · mH 2 O
M III is at least 1 selected Al, from the group consisting of Fe and Co as a trivalent metal species, A n-represents an n-valent anion.
0.25 ≦ x ≦ 0.50
0 ≦ m <2
It is preferable to have a chemical structure represented by
また、一般式中のZnの一部がその他の2価の金属で置換されたものであってもよい。置換していてもよい2価の金属としては特に限定されず、Mg、Ca、Cu、Zr、Co、Ni、Fe、Mn等を挙げることができる。この場合、2価金属のうち、50モル%以上が亜鉛であることが好ましい。更に好ましくは、60モル%以上が亜鉛であることが好ましく、80モル%以上が亜鉛であることが好ましい。 Further, Zn in the general formula may be partially substituted with another divalent metal. The divalent metal that may be substituted is not particularly limited, and examples thereof include Mg, Ca, Cu, Zr, Co, Ni, Fe, and Mn. In this case, it is preferable that 50 mol% or more of the divalent metal is zinc. More preferably, at least 60 mol% is zinc, and at least 80 mol% is zinc.
上記一般式中、MIIIは3価の金属をあらわし、Al、Fe及びCoからなる群より選択される少なくとも1であることが好ましい。この場合、Alが3価金属のうち、50モル%以上であることが好ましい。更に好ましくは、60モル%以上が亜鉛であることが好ましく、80モル%以上が亜鉛であることが好ましい。Alを使用した層状複酸化物は、安価であること、価数変化がなく安定性に優れる等の観点から特に好ましいものである。 In the above general formula, M III represents a trivalent metal, and is preferably at least one selected from the group consisting of Al, Fe and Co. In this case, Al is preferably at least 50 mol% of the trivalent metal. More preferably, at least 60 mol% is zinc, and at least 80 mol% is zinc. The layered double oxide using Al is particularly preferable from the viewpoints of being inexpensive, having no change in valence, and having excellent stability.
一般式中のAn-は特に限定されるものではないが、例えば、硝酸イオン、水酸化物イオン、塩化物イオン、臭素イオン、ヨウ素イオン、ドデシル硫酸イオン、ドデシルベンゼンスルホン酸イオンからなる群より選択される1以上とすることができる。これらのなかでも、特に、硝酸イオンであることが好ましい。硝酸イオンは、イオン導電性に優れ、本法において容易に合成することができるという点で好ましいものである。 A n- in the general formula is not particularly limited, and may be, for example, a group consisting of nitrate ion, hydroxide ion, chloride ion, bromide ion, iodine ion, dodecyl sulfate ion, and dodecylbenzene sulfonate ion. One or more can be selected. Of these, nitrate ions are particularly preferred. Nitrate ions are preferable in that they have excellent ionic conductivity and can be easily synthesized by the present method.
本発明のLDHは炭酸イオンの含有量が少ないものである。この炭酸イオン量の指標としては、粉末X線回折測定より得られた炭酸イオン型LDHの(003)ピーク(Ic)及びその他の陰イオン型のLDHの(003)ピークの回折強度の合計(It)の比、(It/Ic)が1以上であることを特徴とするものである。このようなものは特に、イオン伝導性能において優れるものである。
上記強度比は、3以上であることがより好ましく、17以上であることが更に好ましい。
The LDH of the present invention has a low content of carbonate ions. As an index of the amount of carbonate ions, the sum of the diffraction intensities (It) of the (003) peak (Ic) of carbonate-type LDH and the (003) peak of other anion-type LDH obtained from powder X-ray diffraction measurement (It) ), And (It / Ic) is 1 or more. Such a material is particularly excellent in ionic conduction performance.
The strength ratio is more preferably 3 or more, and further preferably 17 or more.
なお、上記(It/Ic)の上限は、特に限定されるものではなく、Ic=0であっても何ら差し支えない。 The upper limit of (It / Ic) is not particularly limited, and there is no problem even if Ic = 0.
上述したように、本発明のLDHで層間に含まれる陰イオンは、硝酸イオンであることが好ましい。この場合、X線回折によって測定された硝酸イオンを取り込んだ結晶相の回折強度(In)と炭酸イオンを取り込んだ結晶相の回折強度(Ic)の強度比(In/Ic)が上述した(It/Ic)の範囲内であることが好ましい。 As described above, the anion contained between layers in the LDH of the present invention is preferably a nitrate ion. In this case, the intensity ratio (In / Ic) between the diffraction intensity (In) of the crystal phase incorporating the nitrate ions and the diffraction intensity (Ic) of the crystal phase incorporating the carbonate ions, measured by X-ray diffraction, is as described above (It). / Ic).
本発明のイオン伝導性材料は、その粒子形状や、粒子サイズ等を特に限定するものではないが、例えば、粒子径サイズの減少に伴い、イオン伝導度の向上が予測される。このため、粒子径10μm以下とすることが好ましい。ここでの粒子径は、電子顕微鏡写真中の50個の粒子についての長径を測定し、これらの長径を平均する方法で測定した値である。 The ion conductive material of the present invention is not particularly limited in its particle shape, particle size, and the like. For example, an increase in ion conductivity is expected as the particle size decreases. For this reason, the particle diameter is preferably set to 10 μm or less. Here, the particle diameter is a value measured by measuring the major axis of 50 particles in an electron micrograph and averaging the major axes.
本発明の層状複水酸化物の製造方法は、特に限定されるものではないが、炭酸イオンが層間に取り込まれないような製造条件を選択することが好ましい。更に、水性媒体中での反応において尿素を使用し、これを熱分解させることで、発生したアンモニアによって、pHを高くする(例えば、pH7.0以上)ことで、層状複水酸化物を形成することが好ましい。 The method for producing a layered double hydroxide of the present invention is not particularly limited, but it is preferable to select production conditions such that carbonate ions are not taken in between layers. Furthermore, urea is used in a reaction in an aqueous medium, and the pH is increased (for example, pH 7.0 or more) by ammonia generated by thermally decomposing the urea to form a layered double hydroxide. Is preferred.
尿素を使用した製造方法は、層状複水酸化物の製造方法としては公知の方法である。これは、加熱下で尿素が熱分解されることで生じたアンモニアによってpHをコントロールするものである。
しかし、尿素の熱分解においては、アンモニアに加えて炭酸イオンが発生する。層間に炭酸イオンがインターカレートされた層状複水酸化物を得るのであれば、このような炭酸イオンの存在は好ましいものであるが、本発明のように炭酸イオン量が低減された層状複水酸化物を得る上では、このような炭酸イオンの発生は好ましいものではない。
The production method using urea is a known method for producing a layered double hydroxide. This is to control the pH by ammonia generated by the thermal decomposition of urea under heating.
However, in the thermal decomposition of urea, carbonate ions are generated in addition to ammonia. If a layered double hydroxide in which carbonate ions are intercalated between layers is obtained, the presence of such carbonate ions is preferable, but the layered double hydroxide having a reduced amount of carbonate ions as in the present invention. In order to obtain an oxide, such generation of carbonate ions is not preferable.
本発明においては、このような点を考慮し、開放系での反応を行う製造方法を採用することで、炭酸イオン量が低減された層状複水酸化物を得ることができた。すなわち、本発明においては、炭酸イオンを含まないものとするため、系中から炭酸ガスを留出させることで、炭酸イオンが系中に残存しないようにすることが好ましい。具体的には、開放系で加熱・還流させる方法を挙げることができる。 In the present invention, a layered double hydroxide having a reduced amount of carbonate ions can be obtained by adopting a production method in which an open system reaction is performed in consideration of such points. That is, in the present invention, in order to exclude carbonate ions, it is preferable that carbon dioxide is distilled out of the system so that the carbonate ions do not remain in the system. Specifically, a method of heating and refluxing in an open system can be mentioned.
「加熱・還流」とは、反応溶液を開放条件下で水の沸点以上の温度で加熱しながら反応を行い、開放系の出口経路中に冷却管を設け、揮発した水蒸気を再度冷却して水として反応容器中に戻しながら反応を行うことを意味する。このような方法で反応させることによって、炭酸ガスが除去され、炭酸イオン量が小さい層状複水酸化物を得ることができる。 `` Heating / refluxing '' refers to conducting a reaction while heating a reaction solution at a temperature equal to or higher than the boiling point of water under open conditions, providing a cooling pipe in the outlet path of the open system, cooling the vaporized water vapor again to water Means that the reaction is carried out while returning to the reaction vessel. By reacting in this manner, carbon dioxide gas is removed, and a layered double hydroxide having a small amount of carbonate ions can be obtained.
反応は、原料となる金属化合物を、目的とする複水酸化物中の金属量に対応した混合比で水に溶解・分散させ、更に尿素を添加し、加熱条件下で還流させることによって行うことができる。 The reaction is performed by dissolving and dispersing the metal compound as a raw material in water at a mixing ratio corresponding to the amount of metal in the target double hydroxide, further adding urea, and refluxing under heating conditions. Can be.
反応溶液中の金属塩化合物濃度は、2価および3価の金属モル濃度を0.15Mとしたが、原理的にいかなる濃度においても問題なく層状複水酸化物の合成が可能である。 The molar concentration of the divalent and trivalent metals in the reaction solution was 0.15 M. However, in principle, any concentration can be used to synthesize a layered double hydroxide without any problem.
反応混合物中への尿素の添加量は、尿素/MIII=3.0~9.0(モル比)の範囲内であることが好ましい。本発明においては、亜鉛を含むものであることから、急激なpH変化を生じさせると、酸化亜鉛が生じるおそれがある。更に、炭酸イオンを含まないものとすることが好ましいため、上記範囲内で尿素を使用することによって、pHの変化を緩やかなものとすることが好ましい。 The amount of urea added to the reaction mixture is preferably in the range of urea / M III = 3.0 to 9.0 (molar ratio). In the present invention, since zinc is contained, if a sudden pH change is caused, zinc oxide may be generated. Furthermore, since it is preferable not to contain carbonate ions, it is preferable to use urea within the above range to make the change in pH moderate.
上記反応において、原料として使用される金属塩化合物としては、層状複水酸化物の層間にインターカレートされる陰イオンと金属との塩化合物が好ましい。具体的には、層間に硝酸イオンがインターカレートした化合物を得るためには、硝酸塩化合物を原料として使用することが好ましい。また、炭酸塩化合物を使用すると、層間に炭酸塩がインターカレートした化合物となりやすいため、好ましくない。 In the above reaction, as the metal salt compound used as a raw material, a salt compound of a metal and an anion intercalated between layers of the layered double hydroxide is preferable. Specifically, to obtain a compound in which nitrate ions are intercalated between layers, it is preferable to use a nitrate compound as a raw material. Also, the use of a carbonate compound is not preferable because a carbonate compound easily becomes an intercalated compound between layers.
反応条件としては、炭酸イオンが炭酸ガスとして系外に排出されやすい条件を選択することが重要である。すなわち、反応時の系を開放系として、反応温度も80℃以上の高温とすることが好ましい。処理時間は、6~72時間とすることが好ましい。反応容器としても開放系の容器を使用することが好ましい。 As the reaction conditions, it is important to select conditions under which carbonate ions are easily discharged out of the system as carbon dioxide gas. That is, it is preferable that the system at the time of the reaction be an open system and the reaction temperature be as high as 80 ° C. or higher. The processing time is preferably from 6 to 72 hours. It is preferable to use an open system container as the reaction container.
また、更に炭酸イオンの含有量を低減させるために、アルゴン、窒素等の不活性ガスをバブリングしながら反応を行うこともできる。このような手法とすることで、炭酸イオン量をより低減させることができる。 In order to further reduce the content of carbonate ions, the reaction can be performed while bubbling an inert gas such as argon or nitrogen. With such a method, the amount of carbonate ions can be further reduced.
また、上記一般式An-の構造を導入するために、当該構造に対応した化合物を上記混合物中に混合するものであってもよい。この場合、対応する酸を系中に添加することによって行うことができる。 Further, in order to introduce the structure of the general formula An- , a compound corresponding to the structure may be mixed in the mixture. In this case, it can be carried out by adding the corresponding acid to the system.
得られた層状複水酸化物は、必要に応じて濾過・水洗・乾燥することで、粉体の状態のものとすることができる。 The obtained layered double hydroxide can be made into a powdery state by filtering, washing and drying as necessary.
本発明は、上述した層状複水酸化物によって形成された機能層でもある。すなわち、上述した層状複水酸化物を公知の任意の方法によって層形状に成形したものでもある。このような層構造への形成は、特に限定されず、圧縮成形による方法、バインダー樹脂を添加して樹脂の成形によって層構造を形成する方法等を挙げることができる。バインダー樹脂を使用する場合、熱可塑性樹脂であってもよいし、熱硬化性樹脂、エネルギー線硬化性樹脂等の硬化性樹脂であってもよい。 The present invention is also a functional layer formed by the above-mentioned layered double hydroxide. That is, the above-mentioned layered double hydroxide is formed into a layer shape by any known method. The formation into such a layer structure is not particularly limited, and examples thereof include a method by compression molding, and a method of forming a layer structure by molding a resin by adding a binder resin. When a binder resin is used, it may be a thermoplastic resin or a curable resin such as a thermosetting resin or an energy ray-curable resin.
更に、機能層としては、特に限定されず、一次、二次電池の固体電解質層、電池のセパレータ層、電極活物質層等に使用することができる。また、使用する目的に対応して、必要に応じて、その他の成分を混合して機能層を形成したものであってもよい。 Further, the functional layer is not particularly limited, and can be used for a solid electrolyte layer of a primary or secondary battery, a separator layer of a battery, an electrode active material layer, and the like. Further, a functional layer may be formed by mixing other components as necessary according to the purpose of use.
本発明は、上記機能層を少なくとも一部に備えた電池でもある。本発明の機能層は、イオン伝導性材料からなるものであることから、電池における機能層として特に好適に使用することができる。特に、全固体電池の固体電解質層として、特に好適に使用することができる。 The present invention is also a battery including at least a part of the functional layer. Since the functional layer of the present invention is made of an ion conductive material, it can be particularly suitably used as a functional layer in a battery. In particular, it can be particularly suitably used as a solid electrolyte layer of an all-solid battery.
また、使用できる電池の種類としては特に限定されず、アルカリ電解質を用いる燃料電池 (アルカリ形燃料電池、アルコール型燃料電池)、および二次電池(金属-空気二次電池、ニッケル水素二次電池およびZn-Ni二次電池)用電解質等を挙げることができる。また、原理を同じくした上記一次電池としても使用できる。 The types of batteries that can be used are not particularly limited, and fuel cells using an alkaline electrolyte (alkaline fuel cells, alcohol fuel cells), and secondary batteries (metal-air secondary batteries, nickel-metal hydride secondary batteries, Electrolytes for Zn-Ni secondary batteries). It can also be used as the above-mentioned primary battery having the same principle.
電池を形成する場合、本発明の機能層以外の層を構成する成分としては、各電池において一般的に使用される層構成とすることができる。 When a battery is formed, components constituting layers other than the functional layer of the present invention may have a layer configuration generally used in each battery.
以下に、実施例によって本発明のイオン伝導性材料について更に詳細に説明する。本発明は、以下の実施例に限定されるものではない。 Hereinafter, the ion conductive material of the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.
(実施例1)
冷却器を備えた二つ口フラスコに、Zn(NO・6HOとAl(NO・9HOを[Zn2+ + Al3+] = 0.15 mol dm-3(Zn/Al モル比 =2.0)となるように超純水に完全に溶解させ、次に尿素をAl3+とのモル比Urea / Al3+ =3.0となるように添加し、水溶液を調製した。調製した溶液を還流下で、オイルバススターラーを用いて反応容器を120℃で一定に保ちながら24時間攪拌加熱した。生成した沈殿物は遠心分離後、超純水で十分に洗浄し、恒温槽中で70℃に保ちながら24時間乾燥させて実施例1の固体を得た。
(Example 1)
Double neck flask equipped with a condenser, Zn (NO 3) 2 · 6H 2 O and Al (NO 3) 3 · 9H the 2 O [Zn 2+ + Al 3+ ] = 0.15 mol dm -3 (Zn / Al molar ratio = 2.0) and completely dissolved in ultrapure water, and then urea was added so that the molar ratio to Al 3+ Urea / Al 3+ = 3.0 to prepare an aqueous solution. The prepared solution was stirred and heated under reflux for 24 hours using an oil bath stirrer while keeping the reaction vessel constant at 120 ° C. The resulting precipitate was sufficiently washed with ultrapure water after centrifugation, and dried in a thermostat at 70 ° C. for 24 hours to obtain a solid of Example 1.
(比較例1)
冷却器を備えた二つ口フラスコに、Zn(NO3)2・6HOとAl(NO3)3・9HOを[Zn2+ + Al3+] = 0.15 mol dm-3(Zn/Al モル比 =2.0)となるように超純水に完全に溶解させ、次に尿素をAl3+とのモル比Urea / Al3+ =9.0となるように添加し、水溶液を調製した。ウォーターバススターラーを用いて反応容器を120oCで一定に保ちながら24時間攪拌加熱した。生成した沈殿物は遠心分離後、超純水で十分に洗浄し、恒温槽中で70 oCに保ちながら24時間乾燥させて比較例1の固体を得た。
(Comparative Example 1)
In a two-necked flask equipped with a condenser, Zn (NO 3 ) 2 .6H 2 O and Al (NO 3 ) 3 .9H 2 O were charged with [Zn 2+ + Al 3+ ] = 0.15 mol dm −3 (Zn / Al molar ratio = 2.0) and completely dissolved in ultrapure water, and then urea was added so that the molar ratio to Al 3+ Urea / Al 3+ = 9.0 to prepare an aqueous solution. The reaction vessel was stirred and heated for 24 hours using a water bath stirrer while keeping the reaction vessel constant at 120 ° C. The resulting precipitate was sufficiently washed with ultrapure water after centrifugation, and dried in a thermostat at 70 ° C. for 24 hours to obtain a solid of Comparative Example 1.
(比較例2)
Mg(NO3)2・6HOとAl(NO3)3・9HOを[Zn2+ + Al3+] = 0.15 mol dm-3(Mg/Al モル比 =2.0)となるように超純水に完全に溶解させ混合金属水溶液を調製する。二つ口フラスコに炭酸ナトリウム0.15 mol dm-3となるように超純水に完全に溶解させた。炭酸ナトリウム水溶液を250~300rpmで攪拌させながら、混合金属水溶液を滴下速度30ml/minで滴下する。これと同時に1Nの水酸化ナトリウム水溶液をpH8~10となるように滴下する。混合金属水溶液を滴下後、密閉状態で80oCで一定に保ちながら24時間攪拌加熱した。生成した沈殿物は遠心分離後、超純水で十分に洗浄し、恒温槽中で70 oCに保ちながら24時間乾燥させて比較例2の固体を得た。
(Comparative Example 2)
Mg (NO 3 ) 2 .6H 2 O and Al (NO 3 ) 3 .9H 2 O are mixed so that [Zn 2+ + Al 3+ ] = 0.15 mol dm −3 (Mg / Al molar ratio = 2.0) Dissolve completely in ultrapure water to prepare a mixed metal aqueous solution. It was completely dissolved in ultrapure water so as to obtain 0.15 mol dm -3 of sodium carbonate in a two-necked flask. While stirring the sodium carbonate aqueous solution at 250 to 300 rpm, the mixed metal aqueous solution is dropped at a dropping rate of 30 ml / min. At the same time, a 1N aqueous solution of sodium hydroxide is added dropwise so as to have a pH of 8 to 10. After dropping the mixed metal aqueous solution, the mixture was stirred and heated for 24 hours while keeping the temperature at 80 ° C. in a closed state. The resulting precipitate was sufficiently washed with ultrapure water after centrifugation and dried in a thermostat at 70 ° C. for 24 hours to obtain a solid of Comparative Example 2.
実施例1、比較例1,2の結晶構造を、X線回折装置(RIGAKU製 Smart Lab 3K/PD/INP)を用いて同定した。またX線源としてCuKa線を用い、2θ/θ法にて走査範囲5°-75°、管電圧40kV、管電流30mA、スキャン速度10°min-1、サンプリング幅0.01396°の条件で測定した。 The crystal structures of Example 1 and Comparative Examples 1 and 2 were identified using an X-ray diffractometer (Smart Lab 3K / PD / INP manufactured by RIGAKU). In addition, using a CuKa ray as an X-ray source, measurement was performed by a 2θ / θ method under the conditions of a scan range of 5 ° to 75 °, a tube voltage of 40 kV, a tube current of 30 mA, a scan speed of 10 ° min −1 , and a sampling width of 0.01396 °.
実施例1のXRD回折パターンよりLDH特有の(003),(006),(009),(110)面ピークが得られたことからLDHであることを確認した。また、2θ=10°付近に観測される(003)面の基本面間隔より硝酸イオンをインターカレートしたLDHであることが確認され、2θ=11.7°付近に観測される炭酸イオンをインターカレートした相が認められず硝酸イオンをインターカレートした単相であることが認められた。更に、ここでの、It/Ic(Itは、硝酸イオンがインターカレートした相の強度である)は、17以上(実質的に炭酸イオンをインターカレートした相が観察されなかった)であった。 Since the (003), (006), (009), and (110) plane peaks unique to LDH were obtained from the XRD diffraction pattern of Example 1, it was confirmed to be LDH. Also, it was confirmed from the basic plane spacing of the (003) plane observed at about 2θ = 10 ° that the LDH was an intercalated nitrate ion, and the carbonate ion observed at about 2θ = 11.7 ° was intercalated. No callated phase was observed, and it was confirmed that it was a single phase in which nitrate ions were intercalated. Further, the value of It / Ic (It is the strength of the phase in which the nitrate ion was intercalated) was 17 or more (the phase in which the carbonate ion was substantially intercalated was not observed). Was.
比較例1及び2のXRD回折パターンからも(003),(006),(009),(110)面ピークが得られたことからLDHであることを確認した。2θ=11.7°付近に観測される(003)面の基本面間隔より炭酸イオンをインターカレートしたLDHであることが確認された。すなわち、実質的に、It=0に近いLDHであることから、更に、It/Icは、比較例1、2では約0であった Since the (003), (006), (009), and (110) plane peaks were obtained from the XRD diffraction patterns of Comparative Examples 1 and 2, it was confirmed that the substance was LDH. From the basic plane spacing of the (003) plane observed at around 2θ = 11.7 °, it was confirmed that the LDH was an intercalated carbonate ion. That is, since LDH is substantially close to It = 0, it / Ic was about 0 in Comparative Examples 1 and 2.
比較例1の結果より一般的に尿素を用いた合成法では、尿素の熱分解反応によって生じる炭酸イオンが層間に取り込まれ炭酸型LDHが生成する。一方、本発明法では開放型の試験容器を用いているため、熱分解によって生成する炭酸が熱分解初期の酸性雰囲気時に遊離し、原料由来の硝酸イオンのインターカレーションにより硝酸型LDHが生成することができると考える。 From the results of Comparative Example 1, in the synthesis method using urea generally, carbonate ions generated by the thermal decomposition reaction of urea are taken in between the layers to form carbonate type LDH. On the other hand, in the method of the present invention, since an open-type test container is used, carbonic acid generated by thermal decomposition is released in an acidic atmosphere at the initial stage of thermal decomposition, and nitrate-type LDH is generated by intercalation of nitrate ions derived from the raw material. Think you can do it.
電気化学インピーダンス法を用いて実施例1及び比較例1,2のイオン伝導度を測定した。実施例1及び比較例1,2の粉末を金型に充填し30MPaで加圧させ、厚さ約1.0 mm、半径 7 mmのペレットに成型した。ペレット両面に30mAで120秒間Auスパッタしたサンプルを金電極で挟み込み、四端子法でインピーダンスアナライザー( Bio-Logic - Science Instruments. SP-200 )に接続し、振幅を 100mV、周波数範囲を1M Hz - 1Hzの条件でイオン伝導率を測定した。すべてのイオン伝導度測定は80oC、80%RHの高温恒湿槽内で行った。
以下表に実施例1及び比較例1,2のイオン伝導度の結果を纏めた。
The ionic conductivity of Example 1 and Comparative Examples 1 and 2 was measured using the electrochemical impedance method. The powders of Example 1 and Comparative Examples 1 and 2 were filled in a mold, pressurized at 30 MPa, and formed into pellets having a thickness of about 1.0 mm and a radius of 7 mm. A sample sputtered with Au at 30 mA for 120 seconds on both sides of the pellet is sandwiched between gold electrodes, and connected to an impedance analyzer (Bio-Logic-Science Instruments. The ionic conductivity was measured under the following conditions. All ionic conductivity measurements were performed in a high temperature and humidity chamber at 80 ° C. and 80% RH.
The table below summarizes the results of the ionic conductivity of Example 1 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例1のイオン伝導率は炭酸イオン型の比較例1よりも高いイオン伝導率であることが認められる。また、MgAl系層状複水酸化物である比較例2よりも高いイオン伝導率であることも認められることから、本発明により得られる実施例1は、高い水酸化物伝導性を有している。 It is recognized that the ionic conductivity of Example 1 is higher than that of Comparative Example 1 of the carbonate ion type. Further, since it is also recognized that the ionic conductivity is higher than that of Comparative Example 2 which is a MgAl-based layered double hydroxide, Example 1 obtained by the present invention has high hydroxide conductivity. .
実施例1のLDHをペレット状に圧粉体として成形した。この電解質ペレットの両面およびガス拡散電極のペレットとの接触面にPtスパッタ膜を製膜し、温度80℃、相対湿度80%の条件で燃料極に水素を同条件で加湿しながら発電試験を行った。その結果、約20mW/cm2の発電を行うことができた。この結果から、本発明のLDHは、電池電解質としての機能を保有していることが明らかとなった。 The LDH of Example 1 was formed into a compact as a compact. A Pt sputtered film was formed on both surfaces of the electrolyte pellet and the contact surface of the gas diffusion electrode with the pellet, and a power generation test was performed while humidifying the fuel electrode under the same conditions at a temperature of 80 ° C. and a relative humidity of 80%. Was. As a result, power generation of about 20 mW / cm 2 was achieved. From this result, it became clear that the LDH of the present invention has a function as a battery electrolyte.
本発明のイオン伝導性材料は、アルカリ電解質を用いる燃料電池および二次電池(アルカリ形燃料電池、アルコール型燃料電池、金属-空気二次電池、ニッケル水素二次電池およびZn-Ni二次電池)用電解質として用いるイオン伝導性材料として使用することができる。 The ion conductive material of the present invention is a fuel cell and a secondary battery using an alkaline electrolyte (alkaline fuel cell, alcohol fuel cell, metal-air secondary battery, nickel hydrogen secondary battery and Zn-Ni secondary battery). It can be used as an ion conductive material used as an electrolyte for use.

Claims (7)

  1. 2価の金属がZnである層状複水酸化物であり、
    X線回折によって測定された炭酸イオン以外の陰イオンを取り込んだ結晶相の回折強度の合計(It)と炭酸イオンを取り込んだ結晶相の回折強度(Ic)の強度比(It/Ic)が1以上であることを特徴とするイオン伝導性材料。
    Divalent metal is a layered double hydroxide of Zn,
    The intensity ratio (It / Ic) of the total diffraction intensity (It) of the crystal phase incorporating the anion other than the carbonate ion measured by X-ray diffraction and the diffraction intensity (Ic) of the crystal phase incorporating the carbonate ion is 1 An ion conductive material characterized by the above.
  2. 下記組成式で示される構造式を有する請求項1に記載のイオン伝導性材料。
    [Zn1-xIII (OH)][An- x/n]・mHO  
    IIIは、3価の金属であり、Al、Fe及びCoから選択される少なくとも1であり、An-は、n価のアニオンを示す。
    0.25≦x≦0.50
    0≦m<2
    The ion conductive material according to claim 1, having a structural formula represented by the following composition formula.
    [Zn 1-x M III x (OH) 2] [A n- x / n] · mH 2 O
    M III is a trivalent metal and is at least one selected from Al, Fe and Co, and A n− represents an n-valent anion.
    0.25 ≦ x ≦ 0.50
    0 ≦ m <2
  3. n-で表されるアニオンは、硝酸イオン、水酸化物イオン、塩化物イオン、臭素イオン、ヨウ素イオン、ドデシル硫酸イオン、ドデシルベンゼンスルホン酸イオンからなる群より選択される少なくとも1のアニオンである請求項2記載のイオン伝導性材料。 Anion represented by A n- is nitrate ion, a hydroxide ion, is at least one anion chloride ion, a bromine ion, an iodine ion, dodecylsulfate ion, selected from the group consisting of dodecylbenzene sulfonic acid ion The ion conductive material according to claim 2.
  4. n-で表されるアニオンは、硝酸イオンが含まれている請求項2又は3記載のイオン伝導性材料。 Anion represented by A n- is an ion conducting material according to claim 2 or 3 wherein contains nitrate ions.
  5. 請求項1,2,3又は4のイオン伝導性材料を一部又は全部とすることを特徴とする電池用機能層。 A functional layer for a battery, comprising a part or all of the ion conductive material according to claim 1, 2, 3, or 4.
  6. 請求項5記載の電池用機能層を少なくとも一部に有することを特徴とする電池。 A battery comprising the battery functional layer according to claim 5 in at least a part thereof.
  7. 尿素を含有する水性媒体中で加熱還流条件下で原料を混合する工程を有することを特徴とする請求項1、2、3又は4記載のイオン導電性材料の製造方法。 5. The method for producing an ionic conductive material according to claim 1, further comprising a step of mixing the raw materials in an aqueous medium containing urea under heating and reflux conditions.
PCT/JP2018/033375 2018-09-10 2018-09-10 Ion-conducting material, functional layer for battery, and method for producing same WO2020053920A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/033375 WO2020053920A1 (en) 2018-09-10 2018-09-10 Ion-conducting material, functional layer for battery, and method for producing same
JP2019160806A JP7401889B2 (en) 2018-09-10 2019-09-04 Ion conductive material, functional layer for batteries, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033375 WO2020053920A1 (en) 2018-09-10 2018-09-10 Ion-conducting material, functional layer for battery, and method for producing same

Publications (1)

Publication Number Publication Date
WO2020053920A1 true WO2020053920A1 (en) 2020-03-19

Family

ID=69777703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033375 WO2020053920A1 (en) 2018-09-10 2018-09-10 Ion-conducting material, functional layer for battery, and method for producing same

Country Status (2)

Country Link
JP (1) JP7401889B2 (en)
WO (1) WO2020053920A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113906613B (en) * 2019-06-05 2024-04-09 日本碍子株式会社 Air electrode/separator assembly and metal-air secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069358A (en) * 1992-02-21 1994-01-18 Unilever Nv Sunburn stopping agent
WO2009072488A2 (en) * 2007-12-05 2009-06-11 National Institute For Materials Science Process for producing anion exchange layered double hydroxide
WO2010109670A1 (en) * 2009-03-27 2010-09-30 住友商事株式会社 Alkaline electrolyte membrane, electrode assembly and direct alcohol fuel cell
WO2016067884A1 (en) * 2014-10-28 2016-05-06 日本碍子株式会社 Method for forming layered double hydroxide dense membrane
JP2017114747A (en) * 2015-12-25 2017-06-29 共栄社化学株式会社 Layering double hydroxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069358A (en) * 1992-02-21 1994-01-18 Unilever Nv Sunburn stopping agent
WO2009072488A2 (en) * 2007-12-05 2009-06-11 National Institute For Materials Science Process for producing anion exchange layered double hydroxide
WO2010109670A1 (en) * 2009-03-27 2010-09-30 住友商事株式会社 Alkaline electrolyte membrane, electrode assembly and direct alcohol fuel cell
WO2016067884A1 (en) * 2014-10-28 2016-05-06 日本碍子株式会社 Method for forming layered double hydroxide dense membrane
JP2017114747A (en) * 2015-12-25 2017-06-29 共栄社化学株式会社 Layering double hydroxide

Also Published As

Publication number Publication date
JP2020040872A (en) 2020-03-19
JP7401889B2 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
US11072869B2 (en) Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery
US20190280296A1 (en) Lithium cobalt oxide positive electrode material, method for preparing same, and lithium-ion secondary battery
US11177502B2 (en) Solid electrolyte for all solid-state lithium-ion battery and manufacturing method therefor
TWI446611B (en) Non-homogeneous positive electrode materials combining high safety and high power in a li rechargeable battery
JP5409724B2 (en) Positive electrode material that combines high safety and high output in Li storage batteries
JP5320710B2 (en) Positive electrode active material, method for producing the same, and electrochemical device
EP4099466A2 (en) Sulfide solid electrolyte abd all-solid-state battery
JP3940788B2 (en) Lithium ferrite composite oxide and method for producing the same
WO2020096022A1 (en) Material for oxygen evolution (oer) electrode catalyst, and use thereof
Zhang et al. Synthesis of high crystalline nickel‐iron hydrotalcite‐like compound as an efficient electrocatalyst for oxygen evolution reaction
US9647266B2 (en) Amorphous titania/carbon composite electrode materials
CN104521041A (en) Positive-electrode active material for lithium secondary battery, manufacturing method therefor, positive electrode for lithium secondary battery, and lithium secondary battery provided with said positive electrode
US20160064732A1 (en) Methods for the preparation of lithium titanate
Ghorbani-Moghadam et al. Study of structural, electrical and electrochemical properties of La0. 7Sr1. 3Co1− xFexO4 (x= 0, 0.1, 0.3, 0.5) Ruddlesden-Popper oxides as promising cathode for intermediate solid oxide fuel cells
Brandt et al. Liquid-feed flame spray pyrolysis enabled synthesis of Co-and Cr-free, high-entropy spinel oxides as Li-ion anodes
Torardi et al. High lithium capacity MxV2O5Ay· nH2O for rechargeable batteries
Saadi-motaallegh et al. A novel Ni-doped ZnMn2O4/Mn2O3 nanocomposite synthesized by pulsed potential as superior zinc ion battery cathode material
JP7401889B2 (en) Ion conductive material, functional layer for batteries, and manufacturing method thereof
KR102076526B1 (en) Novel Precursor Granular for Preparation of Cathode Active Material for Secondary Battery and Novel Precursor Powder Including the Same
Javadian et al. Facile one step self-template synthesis of NixMgMn2O4 (X= 0.12 to 0.50) alloys as a promising cathode for magnesium ion battery
JPWO2019093441A1 (en) Amorphous transition metal oxides and their uses
Zide et al. Electrochemical studies of the nickel‐based hydroxide electrode for the oxygen evolution reaction and coulombic efficiency of the electrode
JP5621738B2 (en) Electrode active material, nickel iron battery using the same, and method for producing electrode active material
JP2018100191A (en) Ion conductor
US12024440B2 (en) Introduction of titanium homogeneously into a solid material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP