JP5621738B2 - Electrode active material, nickel iron battery using the same, and method for producing electrode active material - Google Patents

Electrode active material, nickel iron battery using the same, and method for producing electrode active material Download PDF

Info

Publication number
JP5621738B2
JP5621738B2 JP2011202726A JP2011202726A JP5621738B2 JP 5621738 B2 JP5621738 B2 JP 5621738B2 JP 2011202726 A JP2011202726 A JP 2011202726A JP 2011202726 A JP2011202726 A JP 2011202726A JP 5621738 B2 JP5621738 B2 JP 5621738B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
electrode
nickel
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011202726A
Other languages
Japanese (ja)
Other versions
JP2013065423A (en
Inventor
佐藤 茂樹
佐藤  茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011202726A priority Critical patent/JP5621738B2/en
Publication of JP2013065423A publication Critical patent/JP2013065423A/en
Application granted granted Critical
Publication of JP5621738B2 publication Critical patent/JP5621738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電極活物質及びこれを用いたニッケル鉄電池並びに電極活物質の製造方法に関する。   The present invention relates to an electrode active material, a nickel iron battery using the same, and a method for producing the electrode active material.

アルカリ性の水溶液を電解質に使用するアルカリ蓄電池には、ニッケルカドミウム蓄電池、ニッケル水素電池、ニッケル亜鉛電池、及び、ニッケル鉄電池(エジソン電池)等の種類がある。アルカリ蓄電池の中では、ニッケルカドミウム蓄電池やニッケル水素電池が主に用いられており、これらの電池では、活物質として、水酸化ニッケル、水酸化カドミウム、水素吸蔵合金が採用されている。   Examples of alkaline storage batteries that use an alkaline aqueous solution as an electrolyte include nickel cadmium storage batteries, nickel hydride batteries, nickel zinc batteries, and nickel iron batteries (Edison batteries). Among alkaline storage batteries, nickel cadmium storage batteries and nickel metal hydride batteries are mainly used. In these batteries, nickel hydroxide, cadmium hydroxide, and hydrogen storage alloy are employed as active materials.

一方、ニッケル鉄電池では、鉄を活物質として用いている。鉄電極の活物質としては、これまでに、カルボニル鉄粉、アトマイズド鉄粉、還元鉄粉、及び、電解鉄粉等が検討されてきている。   On the other hand, nickel-iron batteries use iron as an active material. As active materials for iron electrodes, carbonyl iron powder, atomized iron powder, reduced iron powder, electrolytic iron powder, and the like have been studied so far.

鉄を含有する活物質を用いた技術として、例えば、特許文献1には、活物質として還元鉄粉を主材とし、これに黒鉛粉末と酸化カドミウムと硫化カドミウムとを混合して成ると共に、その混合物中の黒鉛の配合量が7.5〜12.5重量%であるポケット式鉄電極が開示されている。また、特許文献2には、LiOH、MnOOH(マンガナイト)、FeOOH(ゲーサイト)を含む混合物にCr源の化合物、Co源の化合物、Al源の化合物の一種以上を加えた原料粉末を加圧してペレットにし、空気中で250〜600℃で1〜12時間加熱して予備仮焼し、この予備仮焼した材料を粉砕し、再度ペレットに成形し、空気中で700〜850℃で2〜24時間加熱して本焼成することを特徴とする、スピネル型構造マンガン鉄リチウム系複合酸化物からなるリチウムイオン二次電池用正極材料の製造方法が開示されている。なお、特許文献2では、スピネル型構造マンガン鉄リチウム系複合酸化物からなるリチウムイオン二次電池用正極材料を製造するための一原料としてFeOOH(ゲーサイト)を用いている。また、特許文献3には、粒子のアスペクト比が5以下のβ−FeOOHであって、さらにCuKα線を用いたX線回折法で、半値幅Yが0.3°<Y(2θ)の(110)面回折ピークを示すことを特徴とする二次電池用正極活物質が開示されている。   As a technique using an active material containing iron, for example, in Patent Document 1, a reduced iron powder is used as an active material as a main material, and graphite powder, cadmium oxide, and cadmium sulfide are mixed with this. A pocket type iron electrode in which the blending amount of graphite in the mixture is 7.5 to 12.5% by weight is disclosed. In Patent Document 2, a raw material powder obtained by adding one or more of a Cr source compound, a Co source compound, and an Al source compound to a mixture containing LiOH, MnOOH (manganite), and FeOOH (goethite) is pressurized. And pre-calcined by heating at 250 to 600 ° C. for 1 to 12 hours in the air. The pre-calcined material is pulverized and formed again into pellets. A method for producing a positive electrode material for a lithium ion secondary battery comprising a spinel-type structure manganese iron lithium-based composite oxide, characterized by heating for 24 hours and performing main firing is disclosed. In Patent Document 2, FeOOH (goethite) is used as one raw material for producing a positive electrode material for a lithium ion secondary battery made of a spinel type structure manganese iron lithium-based composite oxide. Further, Patent Document 3 discloses that β-FeOOH having a particle aspect ratio of 5 or less and an X-ray diffractometry using CuKα rays and a half width Y of 0.3 ° <Y (2θ) ( 110) A positive electrode active material for a secondary battery characterized by exhibiting a plane diffraction peak is disclosed.

特公昭62−26150号公報Japanese Examined Patent Publication No. 62-26150 特開2000−90923号公報JP 2000-90923 A 特開2002−208399号公報JP 2002-208399 A

特許文献1に開示されているような、還元鉄粉を用いる電池は、酸化鉄を水素ガス等で還元する工程が製造工程に含まれるため、製造コストが増大しやすいという問題があった。   A battery using reduced iron powder as disclosed in Patent Document 1 has a problem that the manufacturing cost is likely to increase because the manufacturing process includes a process of reducing iron oxide with hydrogen gas or the like.

そこで本発明は、従来のFe電極の活物質よりも製造コストを低減することが可能な電極活物質及びこれを用いたニッケル鉄電池並びに電極活物質の製造方法を提供することを課題とする。   Then, this invention makes it a subject to provide the manufacturing method of the electrode active material which can reduce manufacturing cost rather than the active material of the conventional Fe electrode, a nickel iron battery using the same, and an electrode active material.

上記課題を解決するために、本発明は以下の手段をとる。すなわち、
本発明の第1の態様は、ゲーサイト型構造を有するAl固溶FeOOHを含むことを特徴とする、電極活物質である。
In order to solve the above problems, the present invention takes the following means. That is,
According to a first aspect of the present invention, there is provided an electrode active material characterized by containing Al solid solution FeOOH having a goethite structure.

また、上記本発明の第1の態様において、電極活物質の組成が、Fe0.75Al0.25OOHで表されることが好ましい。 In the first aspect of the present invention, the composition of the electrode active material is preferably represented by Fe 0.75 Al 0.25 OOH.

本発明の第2の態様は、正極及び負極、並びに、正極と負極との間に配置された電解質を有し、上記本発明の第1の態様にかかる電極活物質が負極に含有されている、ニッケル鉄電池である。   A second aspect of the present invention includes a positive electrode and a negative electrode, and an electrolyte disposed between the positive electrode and the negative electrode, and the electrode active material according to the first aspect of the present invention is contained in the negative electrode. A nickel iron battery.

本発明の第3の態様は、鉄及びアルミニウムの混合水溶液を準備する工程と、塩基性に保ち、上記混合水溶液と水酸化物の水溶液とを合成する工程と、を有することを特徴とする、電極活物質の製造方法である。   A third aspect of the present invention is characterized by comprising a step of preparing a mixed aqueous solution of iron and aluminum, and a step of synthesizing the mixed aqueous solution and a hydroxide aqueous solution while maintaining basicity. It is a manufacturing method of an electrode active material.

本発明の第1の態様にかかる電極活物質は、ゲーサイト型構造を有するAl固溶FeOOHを含んでいる。ゲーサイト型構造を有するAl固溶FeOOHは、還元工程を経ることなく、湿式で作製することができるので、従来のFe電極の活物質よりも、製造コストを低減することができる。したがって、本発明の第1の態様によれば、従来のFe電極の活物質よりも製造コストを低減することが可能な、電極活物質を提供することができる。   The electrode active material according to the first aspect of the present invention contains Al solid solution FeOOH having a goethite structure. Since Al solid solution FeOOH having a goethite structure can be prepared by a wet process without passing through a reduction step, the manufacturing cost can be reduced as compared with the active material of the conventional Fe electrode. Therefore, according to the 1st aspect of this invention, the electrode active material which can reduce a manufacturing cost rather than the active material of the conventional Fe electrode can be provided.

また、本発明の第1の態様において、組成がFe0.75Al0.25OOHで表される電極活物質は、従来のFe電極の活物質よりも製造コストを低減することが可能である。 In the first aspect of the present invention, the electrode active material whose composition is represented by Fe 0.75 Al 0.25 OOH can reduce the manufacturing cost compared to the active material of the conventional Fe electrode. .

本発明の第2の態様にかかるニッケル鉄電池は、本発明の第1の態様にかかる電極活物質を含有する負極を備えている。したがって、本発明の第2の態様によれば、製造コストを低減することが可能な、ニッケル鉄電池を提供することができる。   The nickel iron battery according to the second aspect of the present invention includes a negative electrode containing the electrode active material according to the first aspect of the present invention. Therefore, according to the 2nd aspect of this invention, the nickel iron battery which can reduce manufacturing cost can be provided.

本発明の第3の態様にかかる電極活物質の製造方法によれば、還元工程を経ずに湿式で本発明の第1の態様にかかる電極活物質を製造することができる。したがって、本発明の第3の態様によれば、Fe電極の活物質を製造する従来の方法よりも製造コストを低減することが可能な、電極活物質の製造方法を提供することができる。加えて、本発明の第3の態様にかかる電極活物質の製造方法では、pHをコントロールし、従来の方法よりも速い生成速度で電極活物質を合成することができる。   According to the method for producing an electrode active material according to the third aspect of the present invention, the electrode active material according to the first aspect of the present invention can be produced in a wet manner without passing through the reduction step. Therefore, according to the 3rd aspect of this invention, the manufacturing method of an electrode active material which can reduce manufacturing cost rather than the conventional method of manufacturing the active material of Fe electrode can be provided. In addition, in the method for producing an electrode active material according to the third aspect of the present invention, the electrode active material can be synthesized at a higher production rate than in the conventional method by controlling the pH.

X線回折測定結果を示す図である。It is a figure which shows a X-ray-diffraction measurement result. 参照極に対する電位と放電時間との関係を示す図である。It is a figure which shows the relationship between the electric potential with respect to a reference pole, and discharge time. セル電圧と放電時間との関係を示す図である。It is a figure which shows the relationship between a cell voltage and discharge time.

以下、図面を参照しつつ、本発明について説明する。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されるものではない。   The present invention will be described below with reference to the drawings. In addition, the form shown below is an illustration of this invention and this invention is not limited to the form shown below.

1.電極活物質
本発明の電極活物質は、ゲーサイト型構造を有するAl固溶FeOOH(Fe1−xAlOOH。xは0<x<1。)を含んでいる。本発明の電極活物質は、例えば以下の過程(本発明の電極活物質の製造方法)を経て作製することができる。
1. Electrode Active Material The electrode active material of the present invention contains Al solid solution FeOOH having a goethite structure (Fe 1-x Al x OOH, where x is 0 <x <1). The electrode active material of the present invention can be produced, for example, through the following process (the method for producing the electrode active material of the present invention).

<混合水溶液作製工程>
硫酸鉄及び硫酸アルミニウムを純水に溶解して、鉄及びアルミニウムの混合水溶液(以下において、単に「混合水溶液」という。)を作製する。
<Mixed aqueous solution preparation process>
Iron sulfate and aluminum sulfate are dissolved in pure water to prepare a mixed aqueous solution of iron and aluminum (hereinafter simply referred to as “mixed aqueous solution”).

<水酸化工程>
反応容器に純水を加え、攪拌しながら、反応容器に水酸化ナトリウム溶液及び混合水溶液を滴下することにより、Al固溶FeOOHを合成する。
<Hydroxylation step>
Pure water is added to the reaction vessel, and while stirring, a sodium hydroxide solution and a mixed aqueous solution are added dropwise to the reaction vessel to synthesize Al solid solution FeOOH.

<分離洗浄乾燥工程>
水酸化工程後に、反応容器内の物質を冷却し濾別した後、純水で洗浄する。その後、純水で洗浄された物質を乾燥する。
<Separation washing drying process>
After the hydroxylation step, the substance in the reaction vessel is cooled and filtered off, and then washed with pure water. Thereafter, the substance washed with pure water is dried.

以上の過程を経ることにより、ゲーサイト型構造を有するAl固溶FeOOHの粉末(本発明の電極活物質)を得ることができる。上述のように、本発明の電極活物質は、還元工程を経ずに湿式で作製することができる。したがって、本発明によれば、従来のFe電極の活物質よりも製造コストを低減することが可能な、電極活物質を提供することができる。加えて、特許文献3に開示されているような二次電池用正極活物質は、ゆっくり時間をかけて生成するため、製造時間が増大しやすかったが、本発明の電極活物質の製造方法では、pHをコントロールし、従来の方法よりも速い生成速度で電極活物質を合成することができる。   Through the above process, an Al solid solution FeOOH powder (electrode active material of the present invention) having a goethite structure can be obtained. As described above, the electrode active material of the present invention can be prepared by a wet process without undergoing a reduction step. Therefore, according to the present invention, it is possible to provide an electrode active material that can be manufactured at a lower cost than the conventional Fe electrode active material. In addition, since the positive electrode active material for a secondary battery as disclosed in Patent Document 3 is slowly generated over time, the production time tends to increase. However, in the method for producing an electrode active material of the present invention, The electrode active material can be synthesized at a higher production rate than in the conventional method by controlling the pH.

2.ニッケル鉄電池
本発明のニッケル鉄電池は、正極及び負極と、これらの間に配置された電解質と、正極及び負極の短絡を防止するセパレータとを有し、本発明の電極活物質が負極活物質として用いられている。本発明の電極活物質は、従来のFe電極の活物質よりも製造コストを低減することが可能なので、本発明によれば、製造コストを低減することが可能なニッケル鉄電池を提供することができる。
2. Nickel iron battery The nickel iron battery of the present invention has a positive electrode and a negative electrode, an electrolyte disposed therebetween, and a separator that prevents a short circuit between the positive electrode and the negative electrode, and the electrode active material of the present invention is a negative electrode active material It is used as. Since the electrode active material of the present invention can reduce the manufacturing cost as compared with the active material of the conventional Fe electrode, according to the present invention, it is possible to provide a nickel iron battery capable of reducing the manufacturing cost. it can.

本発明において、ニッケル鉄電池の負極は、例えば、上記過程を経て作製した本発明の電極活物質と、Ni粉末と、バインダーとを純水に分散して混合することにより、スラリー状の負極組成物を作製した後、このスラリー状の負極組成物を、基材に塗布し乾燥する過程を経て、作製することができる。   In the present invention, the negative electrode of the nickel iron battery is, for example, a slurry-like negative electrode composition obtained by dispersing and mixing the electrode active material of the present invention produced through the above process, Ni powder, and a binder in pure water. After producing the product, this slurry-like negative electrode composition can be produced through a process of applying to a substrate and drying.

また、本発明において、ニッケル鉄電池の正極は、例えば、水酸化ニッケルと、酸化コバルト粉末と、バインダーとを純水に分散して混合することにより、スラリー状の正極組成物を作製した後、このスラリー状の正極組成物を、基材に塗布し乾燥する過程を経て、作製することができる。   In the present invention, the positive electrode of the nickel iron battery is prepared by, for example, preparing a slurry-like positive electrode composition by dispersing and mixing nickel hydroxide, cobalt oxide powder, and a binder in pure water. This slurry-like positive electrode composition can be produced through a process of applying to a substrate and drying.

このようにして正極及び負極を作製したら、正極と負極との間に公知の電池用セパレータを配置することにより、積層された正極、セパレータ、及び、負極を有する積層体を作製し、公知の電解液を入れた容器に積層体を含浸させる過程を経て、本発明のニッケル鉄電池を作製することができる。なお、本発明において、電解質は上記電解液に限定されず、イオンが移動できるものであれば既存の各種電解質を用いることができる。そのような電解質としては、例えば、ポリマー電解質、固体電解質、及び、イオン液体を含む電解質等を挙げることができる。   When the positive electrode and the negative electrode are prepared in this way, a known battery separator is disposed between the positive electrode and the negative electrode to produce a laminated body having a laminated positive electrode, separator, and negative electrode, and a known electrolytic process. The nickel iron battery of the present invention can be manufactured through the process of impregnating the laminate in the container containing the liquid. In the present invention, the electrolyte is not limited to the above electrolytic solution, and various existing electrolytes can be used as long as ions can move. Examples of such an electrolyte include a polymer electrolyte, a solid electrolyte, and an electrolyte containing an ionic liquid.

本発明の電極活物質を作製し、その構造を観察した。また、本発明の電極活物質を含有する電極を備えたニッケル鉄電池を作製し、その性能を評価した。   The electrode active material of the present invention was prepared and the structure was observed. Moreover, the nickel iron battery provided with the electrode containing the electrode active material of this invention was produced, and the performance was evaluated.

1.試料作製
<活物質の合成>
硫酸鉄と硫酸アルミニウムとを純水に溶解し、混合水溶液を作製した。次いで、10L反応容器に2Lの純水を加え、攪拌しながら、40℃、pH10を保ちながら、2780mlの混合水溶液と1500mlの水酸化ナトリウム溶液とを滴下した。続いて、室温に冷却した後、濾別し、5Lの純水で洗浄した。その後、80℃で48時間に亘って乾燥することにより、組成がFe0.75Al0.25OOHである粉末(以下において、「電極活物質」という。)を得た。
1. Sample preparation <Synthesis of active material>
Iron sulfate and aluminum sulfate were dissolved in pure water to prepare a mixed aqueous solution. Then, 2 L of pure water was added to the 10 L reaction vessel, and 2780 ml of the mixed aqueous solution and 1500 ml of sodium hydroxide solution were added dropwise while stirring and maintaining the pH at 10C. Subsequently, after cooling to room temperature, it was filtered and washed with 5 L of pure water. Thereafter, by drying for 48 hours at 80 ° C., (hereinafter, referred to. "Electrode active material") powder composition is Fe 0.75 Al 0.25 OOH was obtained.

<電極の作製>
・作用極
固形分重量比で、上記工程により作製した電極活物質:Ni粉末:カルボキシメチルセルロース(以下において、「CMC」という。)=50:45:5となる量の、電極活物質とNi粉末とCMCとを、純水中に入れ、混合することにより、スラリー状の組成物(以下において、「第1組成物」という。)を作製した。こうして作製した第1組成物を、Niリボン端子がついた発泡ニッケルに充填し、乾燥後に圧延することにより、電極(作用極、負極)を作製した。
<Production of electrode>
Working electrode Electrode active material and Ni powder prepared in the above-mentioned steps in an amount of solid content: Ni powder: carboxymethyl cellulose (hereinafter referred to as “CMC”) = 50: 45: 5 And CMC were placed in pure water and mixed to prepare a slurry-like composition (hereinafter referred to as “first composition”). An electrode (working electrode, negative electrode) was produced by filling the first composition thus produced in foamed nickel with a Ni ribbon terminal and rolling it after drying.

・対極
固形分重量比で、オキシ水酸化ニッケル(NiOOH):CoO粉末:CMC=90:5:5となる量の、オキシ水酸化ニッケルとCoO粉末とCMCとを、純水中に入れ、混合することにより、スラリー状の組成物(以下において、「第2組成物」という。)を作製した。こうして作製した第2組成物を、Niリボン端子がついた発泡ニッケルに充填し、乾燥後に圧延することにより、電極(対極、正極)を作製した。
・ Counter electrode Nickel oxyhydroxide (NiOOH): CoO powder: CMC = 90: 5: 5 In a solid weight ratio, nickel oxyhydroxide, CoO powder, and CMC were put in pure water and mixed. As a result, a slurry-like composition (hereinafter referred to as “second composition”) was produced. An electrode (counter electrode, positive electrode) was produced by filling the second composition thus produced in foamed nickel with a Ni ribbon terminal and rolling it after drying.

<電池の作製>
上記工程により作製した作用極1枚を中心に、上記工程により作製した対極2枚を作用極の両側に配置し(対極2枚の間に作用極1枚を配置し)、さらに、セパレータ(スルホン化処理不織布)を作用極と対極との間に巻いたものを、2枚のアクリル板で挟み、ネジで圧着することにより、積層体を作製した。
こうして作製した積層体を、電解液(6mol/LのKOHを含む電解液)が入ったアクリル製容器に含浸し、積層体の近傍に参照極としてHg/HgO電極を配置することにより、電池セルを作製した。
<Production of battery>
Centering on one working electrode produced by the above process, two counter electrodes produced by the above process are arranged on both sides of the working electrode (one working electrode is arranged between the two counter electrodes), and a separator (sulfone A laminate was prepared by sandwiching a non-woven fabric) between a working electrode and a counter electrode and sandwiching it between two acrylic plates and pressing them with screws.
The thus produced laminate is impregnated in an acrylic container containing an electrolytic solution (electrolytic solution containing 6 mol / L of KOH), and a Hg / HgO electrode is disposed as a reference electrode in the vicinity of the laminated body. Was made.

2.測定
<X線回折測定>
上記工程により作製した電極活物質を、CuKα線を用いてX線回折測定した。結果を図1に示す。図1の縦軸は回折強度[a.u.]、同横軸は回折角2θ[°]である。図1は、X線回折ピークが21.22°、33.24°、39.98°、41.19°、36.65°、及び、53.24°付近にあるため、作製した電極活物質はゲーサイト構造を有することが分かった。なお、ゲーサイト構造を具体的に特定するためには、X線データカードNo.00−029−0713(ICDD(PDF2008))を用いることができる。
2. Measurement <X-ray diffraction measurement>
The electrode active material produced by the above process was measured by X-ray diffraction using CuKα rays. The results are shown in FIG. 1 represents the diffraction intensity [a. u. The horizontal axis represents the diffraction angle 2θ [°]. FIG. 1 shows that the produced electrode active material has X-ray diffraction peaks in the vicinity of 21.22 °, 33.24 °, 39.98 °, 41.19 °, 36.65 °, and 53.24 °. Was found to have a goethite structure. In order to specifically specify the game site structure, an X-ray data card No. 00-029-0713 (ICDD (PDF2008)) can be used.

<電池性能測定>
上記工程により作製した電池セルに対して、温度25℃にて負荷電流150mAで6時間に亘って充電を行った後、電圧−0.1VvsHg/HgO電極(参照極)となるまで、負荷電流150mAで放電を行った。参照極に対する電位と放電時間との関係を示す放電曲線を図2に、セル電圧と放電時間との関係を示す放電曲線を図3に、それぞれ示す。図2の縦軸は参照極に対する電位[V]、同横軸は放電時間[min]であり、図3の縦軸はセル電圧[V]、同横軸は放電時間[min]である。
<Battery performance measurement>
The battery cell produced by the above process was charged for 6 hours at a load current of 150 mA at a temperature of 25 ° C., and then the load current of 150 mA until the voltage was −0.1 V vs Hg / HgO electrode (reference electrode). A discharge was performed. FIG. 2 shows a discharge curve showing the relationship between the potential with respect to the reference electrode and the discharge time, and FIG. 3 shows a discharge curve showing the relationship between the cell voltage and the discharge time. The vertical axis in FIG. 2 is the potential [V] with respect to the reference electrode, the horizontal axis is the discharge time [min], the vertical axis in FIG. 3 is the cell voltage [V], and the horizontal axis is the discharge time [min].

図2及び図3より、本発明の電極活物質を用いた電池セル(ニッケル鉄電池)は、アルカリ蓄電池として作動できることが確認された。   2 and 3, it was confirmed that the battery cell (nickel iron battery) using the electrode active material of the present invention can operate as an alkaline storage battery.

Claims (3)

正極及び負極、並びに、前記正極と前記負極との間に配置された電解質を有し、ゲーサイト型構造を有するAl固溶FeOOHを含む電極活物質が前記負極に含有されている、ニッケル鉄電池。 Nickel-iron battery comprising a positive electrode and a negative electrode, and an electrode active material containing an Al solid solution FeOOH having a goethite structure and having an electrolyte disposed between the positive electrode and the negative electrode . 前記電極活物質の組成が、FeThe composition of the electrode active material is Fe 0.750.75 AlAl 0.250.25 OOHで表されることを特徴とする、請求項1に記載のニッケル鉄電池。The nickel iron battery according to claim 1, wherein the nickel iron battery is represented by OOH. ニッケル鉄電池の負極活物質として用いられるゲーサイト型構造を有するAl固溶FeOOHの製造方法であって、
鉄及びアルミニウムの混合水溶液を準備する工程と、
塩基性に保ち、前記混合水溶液と水酸化物の水溶液とを合成する工程と、
を有することを特徴とする、製造方法。
A method for producing an Al solid solution FeOOH having a goethite structure used as a negative electrode active material of a nickel iron battery,
Preparing a mixed aqueous solution of iron and aluminum;
Maintaining the basicity, and synthesizing the mixed aqueous solution and the hydroxide aqueous solution;
And having a manufacturing method.
JP2011202726A 2011-09-16 2011-09-16 Electrode active material, nickel iron battery using the same, and method for producing electrode active material Active JP5621738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011202726A JP5621738B2 (en) 2011-09-16 2011-09-16 Electrode active material, nickel iron battery using the same, and method for producing electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011202726A JP5621738B2 (en) 2011-09-16 2011-09-16 Electrode active material, nickel iron battery using the same, and method for producing electrode active material

Publications (2)

Publication Number Publication Date
JP2013065423A JP2013065423A (en) 2013-04-11
JP5621738B2 true JP5621738B2 (en) 2014-11-12

Family

ID=48188768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011202726A Active JP5621738B2 (en) 2011-09-16 2011-09-16 Electrode active material, nickel iron battery using the same, and method for producing electrode active material

Country Status (1)

Country Link
JP (1) JP5621738B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2899333C (en) * 2013-02-01 2021-10-26 Encell Technology, Inc. Coated iron electrode and method of making same
US10319982B2 (en) 2013-02-01 2019-06-11 Encell Technology, Inc. Coated iron electrode and method of making same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340256A (en) * 1999-05-31 2000-12-08 Kansai Research Institute Aqueous lithium ion battery
JP2002110221A (en) * 2000-09-29 2002-04-12 Tdk Corp Lithium ion battery
JP4221483B2 (en) * 2000-11-01 2009-02-12 Dowaエレクトロニクス株式会社 Powder for coating type magnetic recording media
JP5216960B2 (en) * 2006-12-26 2013-06-19 日立マクセル株式会社 Positive electrode active material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP2013065423A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
Hwang et al. A comprehensive study of the role of transition metals in O3-type layered Na [Ni x Co y Mn z] O 2 (x= 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries
Chen et al. Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material for Li-ion batteries
Shaju et al. Nano-LiNi 0.5 Mn 1.5 O 4 spinel: a high power electrode for Li-ion batteries
JP6708326B2 (en) Positive electrode material for sodium secondary batteries
JP5218406B2 (en) Water-based lithium secondary battery
US8313721B2 (en) Lithium-oxygen (AIR) electrochemical cells and batteries
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
CN103872302B (en) Precursor of lithium ionic cell positive material and preparation method thereof
KR20130063868A (en) Positive active material for lithium secondary, method for preparing thereof, and lithium secondary battery containing the same
JP2003017057A (en) Lithium-vanadium compound oxide for negative electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery using the same
Zhang et al. Preferential occupation of Na in P3-type layered cathode material for sodium ion batteries
CN105684198B (en) Sode cell positive active material and sode cell
CN113889603A (en) Sodium ion battery positive electrode material and preparation method thereof
Liu et al. The synthesis and electrochemical properties of xLi2MnO3–(1− x) MO2 (M= Mn1/3Ni1/3Fe1/3) via co-precipitation method
Zhou et al. Irregular micro-sized Li1. 2Mn0. 54Ni0. 13Co0. 13O2 particles as cathode material with a high volumetric capacity for Li-ion batteries
CN111009654A (en) Mo-doped LiNi0.6Co0.2Mn0.2O2Positive electrode material and preparation method thereof
JP2021048137A (en) Cathode active material for lithium secondary battery
JP5516463B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
CN110380037B (en) Reaction infiltration modified lithium ion battery positive electrode material and preparation method thereof
CN109473636A (en) A kind of solid state lithium battery surface modified anode material and preparation method thereof
Feng et al. Facile design and synthesis of Co-free layered O3-type NaNi0. 2Mn0. 2Fe0. 6O2 as promising cathode material for sodium-ion batteries
JP6083556B2 (en) Cathode active material for sodium ion secondary battery
KR20140043320A (en) Two-phase positive electrode material for a lithium battery and method for the synthesis of same
CN107658441A (en) Alkaline secondary cell negative electrode material [CoxCuyZnzFe2O4] and using the negative material battery
Liu et al. The electrochemical properties of Fe-and Ni-cosubstituted Li 2 MnO 3 via combustion method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R151 Written notification of patent or utility model registration

Ref document number: 5621738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151