WO2020053747A1 - Insulating film for bus bar and bus bar - Google Patents

Insulating film for bus bar and bus bar Download PDF

Info

Publication number
WO2020053747A1
WO2020053747A1 PCT/IB2019/057601 IB2019057601W WO2020053747A1 WO 2020053747 A1 WO2020053747 A1 WO 2020053747A1 IB 2019057601 W IB2019057601 W IB 2019057601W WO 2020053747 A1 WO2020053747 A1 WO 2020053747A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
bus bar
insulating film
adhesive layer
test
Prior art date
Application number
PCT/IB2019/057601
Other languages
French (fr)
Japanese (ja)
Inventor
武井邦浩
飯塚宏和
Original Assignee
藤森工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤森工業株式会社 filed Critical 藤森工業株式会社
Publication of WO2020053747A1 publication Critical patent/WO2020053747A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09J161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/38Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto

Definitions

  • the present invention relates to an insulating film for a bus bar and a bus bar.
  • the bus bar is a component used for an operation panel, a switchboard, a battery, and the like, and is a conductor for conducting a large amount of current.
  • Busbars are mainly made of metals such as copper and aluminum.
  • An insulating film used for a laminated bus bar is required to have a high adhesive strength to metal.
  • the insulating film generally includes an insulating base layer made of a resin or the like as a constituent material, and an adhesive layer.
  • Patent Literature 1 describes a film-like adhesive for connecting circuit members, which includes a thermoplastic resin, an epoxy resin, a phenol resin, and an insulating spherical inorganic filler.
  • Bus bars may be used in high temperature environments. For this reason, the insulating film for bus bars is required to have an adhesive force that does not peel even under a high-temperature environment. Further, it is preferable that the insulating film for a bus bar is bonded to the bus bar by heating for a short time. In addition, when manufacturing a bus bar, bending is generally performed. The insulating film for a bus bar is required to be able to follow the bending process without peeling from the bus bar in the bending process.
  • the present invention has been made in view of the above circumstances, and is adhered by heating for a short time, can exhibit excellent adhesive strength to metal, and can follow a bending process for a bus bar insulation. It is an object to provide a film and a bus bar provided with the film.
  • the present invention employs the following configuration.
  • An insulating film for a bus bar to be attached to a surface of a bus bar the insulating film having a base layer and an adhesive layer, wherein the base layer contains a resin as a forming material, and the adhesive layer is formed of phenol.
  • An insulating film for a bus bar comprising a resin (A), wherein when a withstand voltage test described below is performed, current is not confirmed even when the average electric field intensity reaches 5 kV / mm.
  • [anti-voltage test] -Test laminate A busbar insulating film is laminated on both sides of an aluminum alloy plate having a thickness of 100 ⁇ m.
  • an aluminum alloy plate is laminated on the adhesive layer side of the bus bar insulating film.
  • a test laminate bonded at a temperature of 170 ° C. and a pressure of 0.4 MPa for 10 minutes is prepared.
  • This test laminate is bent with the base layer inside, with a bending angle of 90 ° and a radius of curvature R of 1 mm. Then, it heats at temperature 180 degreeC for 10 minutes.
  • the thickness of the base layer of the insulating film for a bus bar is 150 ⁇ m.
  • -Withstand voltage test Peel off the end of the test laminate after heating to expose the aluminum alloy plate, connect one terminal of the test circuit, and connect the other stainless steel terminal of the test circuit from above the base material layer. Make contact with the bent part.
  • the adhesive layer contains one or more crosslinking agents (C) selected from the group consisting of isocyanate resins, oxazoline group-containing resins, amino group-containing resins, polyamines, amide resins, melamine resins, and urea resins.
  • C crosslinking agents
  • the insulating film for a bus bar according to any one of [1] to [4].
  • the insulating film for a bus bar has a base layer containing a resin as a forming material and an adhesive layer, and has an adhesive layer on at least one surface of the base layer, [1] to [5].
  • the insulating film for a bus bar according to any one of the above.
  • the base layer is made of a fluororesin, a polyimide resin, a polyetheretherketone resin, a polyphenylenesulfide resin, a polyphenyleneether resin, a liquid crystal polyester resin, a polyester resin, a polyamide resin, a polyamideimide resin, an epoxy resin, an acrylic resin, and a polyketone.
  • a bus bar comprising a plate-shaped conductor and the insulating film for a bus bar according to any one of [1] to [7].
  • ADVANTAGE OF THE INVENTION According to this invention, it can adhere
  • short-time heating means heating at a heating temperature of 100 ° C. to 200 ° C. for 5 minutes to 15 minutes.
  • the present embodiment is an insulating film for a bus bar to be bonded to the surface of the bus bar.
  • the insulating film for a bus bar of the present embodiment has a base material layer and an adhesive layer.
  • the base material layer is made of resin. For this reason, when the bus bar insulating film of the present embodiment is bonded to the bus bar via the adhesive layer, the insulating property is exhibited.
  • the adhesive layer contains a phenol resin (A).
  • the expression “current is not confirmed” means that a current value of 1 mA is observed when a voltage of 5 kV / mm is applied and a voltage of 5 kV / mm is maintained for 60 seconds in a withstand voltage test described later. Means not being done.
  • dielectric breakdown means a case where the current suddenly increases to a state where the current cannot be controlled, or a case where the insulating portion cannot limit the current.
  • [anti-voltage test] -Test laminate A busbar insulating film is laminated on both sides of an aluminum alloy plate having a thickness of 100 ⁇ m. At this time, an aluminum alloy plate is laminated on the adhesive layer side of the bus bar insulating film. A test laminate bonded at a temperature of 170 ° C. and a pressure of 0.4 MPa for 10 minutes is prepared. This test laminate is bent with the base layer inside, with a bending angle of 90 ° and a radius of curvature R of 1 mm. Then, it heats at temperature 180 degreeC for 10 minutes. The thickness of the base layer of the insulating film for a bus bar is 150 ⁇ m.
  • the thickness of the base layer of the insulating film for a bus bar used for the test laminate may be 150 ⁇ m or less. If a test laminate is manufactured using a bus bar insulating film having a substrate layer thickness of 150 ⁇ m or less and a withstand voltage test is performed by the method described below, the effect of the present embodiment is obtained. Is played similarly. Examples of the thickness of 150 ⁇ m or less include 130 ⁇ m, 110 ⁇ m, 90 ⁇ m, 70 ⁇ m, 50 ⁇ m, and 30 ⁇ m.
  • the average electric field strength generally increases as the thickness of the substrate layer increases. For this reason, when energization is not confirmed when a similar withstand voltage test is performed using an insulating film for a bus bar in which the thickness of the base layer is 150 ⁇ m or less, if the thickness of the base layer is changed to 150 ⁇ m, It can be inferred that energization is not confirmed.
  • the insulating film for a bus bar of the present embodiment is manufactured using an adhesive composition described later.
  • An insulating film for a bus bar manufactured using the adhesive composition described below exhibits high adhesive strength to metal.
  • the bus bar insulating film of the present embodiment exhibits high adhesive strength to metal. For this reason, the insulating film for bus bars of the present embodiment can follow the bending process without peeling from the bus bar in the bending process. Thereby, insulation can be exhibited and insulation can be maintained.
  • the insulating film for a bus bar of the present embodiment can maintain the adhesive strength even when placed in a high temperature environment of, for example, 180 ° C.
  • the insulating film for a bus bar of the present embodiment can exhibit the insulating property without peeling and can maintain the insulating property even when used for a bus bar which is assumed to be used in a high temperature environment.
  • the insulating film for a bus bar according to the present embodiment has a base material layer made of resin and a bonding layer.
  • the busbar insulating film of the present embodiment includes an adhesive layer on at least one surface of the base layer.
  • the adhesive layer is composed of an adhesive composition described below.
  • the base material layer is a fluororesin, a polyimide resin, a polyetheretherketone resin, a polyphenylenesulfide resin, a polyphenyleneether resin, a liquid crystal polyester resin, a polyester resin, a polyamide resin, a polyamideimide resin, an epoxy resin, an acrylic resin, a polyketone resin, and a cyclic resin. It is preferable that at least one resin selected from the group consisting of an olefin resin, polymethylpentene, polypropylene, and polyethylene is included as a forming material.
  • Lamination example 1 A laminate in which an adhesive layer and a base layer are laminated.
  • Lamination example 2 A laminate in which a first adhesive layer / base layer / second adhesive layer is laminated in this order.
  • the first adhesive layer and the second adhesive layer are both composed of an adhesive composition described later.
  • the thickness of the adhesive layer is not particularly limited.
  • the thickness may be 10 ⁇ m or more and 50 ⁇ m or less, or 15 ⁇ m or more and 30 ⁇ m or less.
  • the thicknesses of the first adhesive layer and the second adhesive layer may be the same or different. .
  • an anchor coat agent may be applied to the surface of the base material layer to perform an easy adhesion treatment.
  • the insulating film for busbars can be manufactured by applying an adhesive composition dispersed or dissolved in water or a solvent on a base material and drying it.
  • the adhesive composition used in the present embodiment includes a phenol resin (A) (hereinafter, sometimes referred to as “component (A)”) as an essential component, and further includes a primer (B) (hereinafter, referred to as “component (B)”). ) And the crosslinking agent (C), which may be hereinafter referred to as “component (C)”, as optional components.
  • component (A) phenol resin
  • component (B) primer
  • component (C) crosslinking agent
  • Phenolic resin (A) is preferably a solid phenol resin.
  • the phenol resin (A) is more preferably a hot-melt phenol resin.
  • novolak type phenol resin hydroxyl equivalent: 100 g / eq to 110 g / eq, softening point: 75 ° C. to 125 ° C.
  • cresol type phenol resin hydroxyl equivalent: 110 g / eq to 120 g / eq, softening point: 80 ° C. to 130 ° C.
  • Examples of such a phenolic resin (A) include Bell Pearl S type manufactured by Air Water Bell Pearl Co., Ltd.
  • the weight average molecular weight of the phenol resin (A) is preferably 1,000 or more, more preferably 2,000 or more, and particularly preferably 3,000 or more. Further, the weight average molecular weight of the phenol resin (A) is preferably 10,000 or less, more preferably 9,000 or less, and particularly preferably 8,000 or less. The above upper limit and lower limit can be arbitrarily combined. When the weight average molecular weight of the phenolic resin (A) is in the above range, moisture resistance can be imparted to the adhesive composition.
  • the softening point of the phenolic resin (A) is preferably at least 30 ° C, more preferably at least 40 ° C. A temperature of 50 ° C. or higher is particularly preferred.
  • the softening point of the phenolic resin (A) is preferably 160 ° C. or lower, more preferably 150 ° C. or lower, and particularly preferably 140 ° C. or lower. The above upper limit and lower limit can be arbitrarily combined.
  • the primer (B) is a modified polyolefin obtained by introducing a functional group into a polyolefin.
  • the “functional group” is a functional group that interacts with the surface of the metal, and in the present embodiment, is preferably an acidic functional group such as a carboxy group or a carboxylic anhydride group.
  • the primer (B) is a component that contributes to adhesiveness.
  • "interact with the surface of the metal” means that a chemical bond such as a hydrogen bond is formed between the polar group on the metal surface and the acidic functional group of the primer (B).
  • the primer (B) in the present embodiment is a polyolefin resin modified with a carboxylic acid or an anhydride thereof, and preferably has an acid functional group such as a carboxy group or a carboxylic anhydride group in the polyolefin resin.
  • the primer (B) can be prepared by introducing a functional group into a polyolefin.
  • the introduction method include a copolymerization method and an acid modification method.
  • the copolymerization method include a method in which an acid functional group-containing monomer and an olefin are copolymerized.
  • the acid modification method include graft modification in which a polyolefin resin and an acid functional group-containing monomer are melt-kneaded in the presence of a radical polymerization initiator such as an organic peroxide or an aliphatic azo compound.
  • polystyrene resin examples include polyethylene, polypropylene, poly-1-butene, polyisobutylene, a copolymer of propylene and ethylene, and a copolymer of propylene and an olefin monomer.
  • olefin-based monomer for copolymerization examples include 1-butene, isobutylene, 1-hexene and the like.
  • primer (B) maleic anhydride-modified polypropylene is preferable from the viewpoints of adhesion, durability and the like.
  • the weight average molecular weight of the primer (B) is preferably 40,000 or more, more preferably 50,000 or more, and particularly preferably 60,000 or more. Further, it is preferably 140,000 or less, more preferably 130,000 or less, and particularly preferably 120,000 or less.
  • the above upper limit and lower limit can be arbitrarily combined.
  • carboxylic acids used for modification include acrylic acid, methacrylic acid, maleic acid, nadic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, sorbic acid, mesaconic acid, angelic acid and the like.
  • Can be The derivatives thereof include acid anhydrides, esters, amides, imides, metal salts and the like.
  • maleic anhydride, itaconic anhydride, citraconic anhydride, nadic anhydride, methyl acrylate, methyl acrylate examples include methyl methacrylate, ethyl acrylate, butyl acrylate, monoethyl maleate, acrylamide, maleic monoamide, maleimide, N-butylmaleimide, sodium acrylate, sodium methacrylate, and the like.
  • unsaturated dicarboxylic acids and derivatives thereof are preferred, and maleic anhydride or phthalic anhydride is particularly preferred.
  • the carboxylic acid addition amount of the primer (B) is preferably 0.5% by mass or more and 3.0% by mass or less.
  • the melting point of the primer (B) is preferably 50 ° C or higher, more preferably 55 ° C or higher.
  • a temperature of at least 60 ° C. is particularly preferred.
  • the upper limit of the melting point is preferably 110 ° C. or lower, more preferably 105 ° C. or lower, and particularly preferably 100 ° C. or lower.
  • the above upper limit and lower limit can be arbitrarily combined.
  • the temperature is more preferably 50 ° C. or more and 100 ° C. or less.
  • the content of the primer (B) is preferably 10 parts by mass or more and 40 parts by mass or less, and more preferably 15 parts by mass with respect to the total of 100 parts by mass of the phenol resin (A) and the primer (B). It is more preferable that the amount be from 35 parts by mass to 35 parts by mass.
  • the adhesive strength can be increased.
  • the adhesive strength is maintained even in a high temperature environment of, for example, about 180 ° C.
  • the content of the phenol resin (A) is preferably 60 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the total of the phenol resin (A) and the primer (B). It is more preferable that the amount be from not less than 85 parts by mass.
  • the adhesive strength is maintained even in a high temperature environment of, for example, about 180 ° C.
  • the adhesive strength can be increased.
  • the crosslinking agent (C) is preferably at least one selected from the group consisting of an isocyanate resin, an oxazoline group-containing resin, an amino group-containing resin, a polyamine, an amide resin, a melamine resin, and a urea resin. Among these, an isocyanate resin or an oxazoline group-containing resin is preferable.
  • isocyanate resin examples include hexamethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate, and isocyanurate modified diisocyanates such as xylylene diisocyanate.
  • isocyanate resin examples include polyisocyanate compounds such as adducts.
  • an oxazoline group-containing acrylic resin is preferable.
  • the primer (B) and the cross-linking agent (C) are such that the functional group of the cross-linking agent (C) exceeds 1.0 equivalent of the functional group of the primer (B). It is preferred to be blended so as to be not more than 0.0 equivalent.
  • the functional group of the primer (B) is an acidic functional group such as a carboxy group or a carboxylic anhydride group.
  • the functional group contained in the crosslinking agent (C) is an isocyanate group when the crosslinking agent (C) is an isocyanate resin, an oxazoline group when the oxazoline group-containing resin is used, and an amino group-containing resin.
  • Is an amino group a polyamine is an amine, an amide resin is an amide group, a melamine resin is an amide group, and a urea resin is an amino group.
  • the concentrations of the functional groups of the primer (B) and the crosslinking agent (C) are determined by potentiometric titration or indicator titration.
  • concentration of the functional group (acid value (-COOH) or hydroxyl value (-OH)) of the primer (B) is calculated by an indicator titration method is shown below.
  • Acid value (mg / g) (EP1-BL1) ⁇ FA1 ⁇ C1 ⁇ K1 / SIZE
  • each symbol means the following numerical value.
  • K1 Coefficient (1)
  • SIZE Sampling amount (g)
  • the concentration of the functional group obtained by the above method is such that the functional group of the crosslinking agent (C) is more than 1.0 equivalent and not more than 5.0 equivalent to 1.0 equivalent of the functional group of the primer (B). To be blended.
  • the specific amount (parts by mass) of the crosslinking agent (C) is calculated by the following method.
  • the functional group equivalent of the primer (B) is determined by the following equation.
  • Functional group equivalent of primer (B) molecular weight of KOH ⁇ 1000 / acid value
  • the functional group equivalent of the cross-linking agent (C) is, for example, epoxy, and can be determined by measurement according to JIS K-7236.
  • an isocyanate it is determined by measurement according to JIS K-7301. [Method for measuring isocyanate equivalent] 1) Collect 3 g of the sample in a 200 mL Erlenmeyer flask. 2) Add 20 mL of dehydrated toluene to dissolve the sample. 3) Add 20.0 mL of a 2 mol / L di-n-butylamine solution. 4) Shake to make uniform, and leave for 20 minutes or more. 5) Add 100 mL of isopropyl alcohol. 6) Perform titration using a 1 mol / L hydrochloric acid solution to determine the isocyanate equivalent.
  • Isocyanate equivalent (SIZE / ((BL1-EP1) ⁇ FA1)) ⁇ K2 EP1: titration (mL) BL1: Blank value (39.888 mL) FA1: Factor of titrant (1.00) K2: coefficient (1000) SIZE: Sampling amount (g)
  • the adhesive strength is maintained even in a high temperature environment of, for example, about 180 ° C.
  • the adhesive composition used in the present embodiment has the above configuration, and thus has a high reactivity of being adhered by heating for a short time. Further, the adhesive composition used in the present embodiment has a high adhesive strength to a metal, and maintains the adhesive strength to a metal even when placed in a high-temperature environment of, for example, 180 ° C.
  • the adhesive composition used in the present embodiment includes known components such as an antioxidant, a surfactant, a curing accelerator, a plasticizer, a filler, a crosslinking catalyst, a processing aid, an antioxidant, and the like. Can be appropriately compounded. These may be used alone or in combination of two or more.
  • the adhesive composition is prepared by combining the phenol resin (A), the primer (B), the crosslinking agent (C), and, if necessary, any components in a batch or in an appropriate order. It can be manufactured by mixing.
  • bus bar including the plate-shaped conductor and the bus bar insulating film according to the present embodiment.
  • an insulating film for a bus bar is adhered to a plate-shaped conductor via an adhesive layer, and an insulating resin base material is laminated.
  • the bus bar of the present embodiment has high insulation reliability.
  • Examples of the material for forming the plate-shaped conductor include metal materials such as copper, aluminum, stainless steel, and nickel-plated copper.
  • Acid value (mg / g) (EP1-BL1) ⁇ FA1 ⁇ C1 ⁇ K1 / SIZE
  • each symbol means the following numerical value.
  • K1 Coefficient (1)
  • SIZE Sampling amount (g)
  • the resulting aqueous dispersions of the adhesive compositions 1 to 10 are applied on a substrate by hand coating, and dried at 110 ° C. for 1 minute, and the substrate layer (film thickness 150 ⁇ m) / adhesive layer (film thickness 20 ⁇ m) (Examples 1 to 10 and Comparative Examples 1 to 4) were produced.
  • the materials shown in Table 3 were used for the base layer.
  • the manufactured test laminate 1 shown in FIG. 1 has an insulating film for a bus bar in which an adhesive layer and a base material layer are laminated in this order on both surfaces of an aluminum alloy plate 12 such that the adhesive layer is in contact with the aluminum alloy plate 12.
  • Laminate In the test laminate 1, a base layer 10B, an adhesive layer 11B, an aluminum alloy plate 12, an adhesive layer 11A, and a base layer 10A are laminated in this order.
  • the bus bar insulating film is designed to have a length whose end protrudes 0.5 mm, and the bus bar insulating films are adhered to both ends of the test laminate 1.
  • -Aluminum alloy plate A1050H-H1, dimensions were 100 ⁇ m x 10 mm x 30 mm.
  • -Insulating film for busbar The dimensions were 11 mm x 31 mm.
  • the conditions for the heat compression bonding were a temperature of 170 ° C., a pressure of 0.4 Mpa, and a compression bonding time of 10 minutes.
  • a test laminate bent at a bending angle of 90 ° was prepared in the same manner as in the above ⁇ Evaluation of floating at 180 ° C. ⁇ .
  • the insulating film for a bus bar at a position 10 mm or more away from the bent portion was peeled off to expose the aluminum alloy.
  • the test circuit 62 connected to the withstand voltage tester 6 was connected to the exposed aluminum alloy.
  • a stainless steel terminal 61 is connected to the withstand voltage tester 6 as the other connection terminal.
  • the stainless terminal 61 is a stainless terminal having a diameter of 1 mm, a length of 10 mm, and a tip having a curved surface with a radius of curvature of 1 mm.
  • the stainless steel terminal 61 was brought into contact with the bent portion.
  • the contact locations were three points of the aluminum alloy end 7A, the center 7B of the bent portion, and the aluminum alloy end 7C, and each was contacted from above the base material layer.
  • the aluminum alloy ends 7A and 7C are at a position of 0 mm from the end of the aluminum alloy plate, and the center 7B of the bent portion is at a position of 5 mm from the end of the aluminum alloy plate.
  • a voltage was applied to a voltage of 5 kV / mm in 20 seconds, and the voltage was maintained at a voltage of 5 kV / mm for 60 seconds.
  • the presence or absence of energization for 60 seconds was evaluated according to the following criteria.
  • the withstand voltage test was performed based on IEC-J60950-1.
  • the test laminate to which the present invention was applied was adhered by heating for a short time of 10 minutes, and exhibited a high adhesive strength. Furthermore, when the insulating film for a bus bar to which the present invention was applied was used, there was no lifting even in a high temperature environment of 180 ° C., and high adhesive strength was maintained. In addition, when the insulating film for a bus bar to which the present invention was applied was used, there was no dielectric breakdown, the bending followability was good, and the insulating property was maintained.
  • Test laminate 10A, 10B: base material layer, 11A, 11B: adhesive layer, 12: aluminum alloy plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Insulating Bodies (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Adhesive Tapes (AREA)

Abstract

The present invention provides: a bus bar insulating film that is adhered through brief heating and exerts excellent adhesive power with respect to metal; and a bus bar equipped with such a film. More specifically, the present invention pertains to: a bus bar insulating film that is to be bonded to the surface of a bus bar and that is characterized by having a base material layer and an adhesive layer, wherein the base material layer contains a resin as a formation material, the adhesive layer contains a phenolic resin (A), and, in a voltage tolerance test, the film is confirmed not to allow current to pass therethrough even at an average field intensity of 5 kV/mm; and a bus bar equipped with such an insulating film.

Description

バスバー用絶縁フィルム及びバスバーBusbar insulating film and busbar
本発明は、バスバー用絶縁フィルム及びバスバーに関する。 The present invention relates to an insulating film for a bus bar and a bus bar.
バスバーとは、操作盤、配電盤、電池等に使用される部品であり、大容量の電流を導電するための導体である。バスバーは、主に銅やアルミニウム等の金属で作られている。
 最近では、絶縁フィルムと金属導体とを積層ラミネートしたラミネートバスバーが実用化されている。ラミネートバスバーに使用される絶縁フィルムには、金属に対する高い接着力が求められる。絶縁フィルムは、一般的に、樹脂等を構成材料とする絶縁性の基材層と、接着層とを備えている。
The bus bar is a component used for an operation panel, a switchboard, a battery, and the like, and is a conductor for conducting a large amount of current. Busbars are mainly made of metals such as copper and aluminum.
Recently, a laminated bus bar in which an insulating film and a metal conductor are laminated and laminated has been put to practical use. An insulating film used for a laminated bus bar is required to have a high adhesive strength to metal. The insulating film generally includes an insulating base layer made of a resin or the like as a constituent material, and an adhesive layer.
絶縁フィルムを金属導体に接着させるため、接着層は金属に対して高い接着力を発揮する接着剤材料から構成される。従来、金属等の被着体に接着する材料としてホットメルト接着剤が用いられている。特許文献1には、熱可塑性樹脂と、エポキシ樹脂と、フェノール樹脂と、絶縁性球状無機質充填剤とを含む回路部材接続用フィルム状接着剤が記載されている。 In order to adhere the insulating film to the metal conductor, the adhesive layer is made of an adhesive material exhibiting high adhesive strength to metal. Conventionally, a hot-melt adhesive has been used as a material for bonding to an adherend such as a metal. Patent Literature 1 describes a film-like adhesive for connecting circuit members, which includes a thermoplastic resin, an epoxy resin, a phenol resin, and an insulating spherical inorganic filler.
日本国特許第3991268号公報Japanese Patent No. 3,991,268
バスバーは高温環境下で使用される場合がある。このため、バスバー用絶縁フィルムには高温環境下でも剥離しない接着力が求められる。さらに、バスバー用絶縁フィルムは、短時間の加熱でバスバーに接着されることが好ましい。また、バスバーを作製する際には、一般的に折り曲げ加工がなされる。バスバー用絶縁フィルムは、折り曲げ加工工程において、バスバーから剥離することなく折り曲げ加工に追従できることが求められる。 Bus bars may be used in high temperature environments. For this reason, the insulating film for bus bars is required to have an adhesive force that does not peel even under a high-temperature environment. Further, it is preferable that the insulating film for a bus bar is bonded to the bus bar by heating for a short time. In addition, when manufacturing a bus bar, bending is generally performed. The insulating film for a bus bar is required to be able to follow the bending process without peeling from the bus bar in the bending process.
本発明は上記事情に鑑みてなされたものであって、短時間の加熱で接着され、金属に対して優れた接着力を発揮することができ、折り曲げ加工にも追従することができるバスバー用絶縁フィルム及びこれを備えたバスバーを提供することを課題とする。 The present invention has been made in view of the above circumstances, and is adhered by heating for a short time, can exhibit excellent adhesive strength to metal, and can follow a bending process for a bus bar insulation. It is an object to provide a film and a bus bar provided with the film.
すなわち、本発明は、以下の構成を採用する。
[1]バスバーの表面に貼合するためのバスバー用絶縁フィルムであって、基材層と接着層とを有し、前記基材層は、形成材料として樹脂を含み、前記接着層は、フェノール樹脂(A)を含み、下記耐電圧試験を行ったとき、平均電界強度が5kV/mmに達しても通電が確認されないことを特徴とする、バスバー用絶縁フィルム。
[耐電圧試験]
・試験用積層体
 厚み100μmのアルミニウム合金板の両面に、バスバー用絶縁フィルムを積層する。このとき、バスバー用絶縁フィルムの接着層側にアルミニウム合金板を積層させる。温度170℃、圧力0.4MPaの条件で10分間接着させた試験用積層体を準備する。この試験用積層体を、基材層を内側にして、折り曲げ角度90°、曲率半径Rを1mmとして折り曲げる。その後、温度180℃で10分間加熱する。バスバー用絶縁フィルムの基材層の厚みは150μmとする。
・耐電圧試験
 加熱後の試験用積層体の端部をはがしてアルミニウム合金板を露出させ、試験回路の一方の端子を接続し、試験回路の他方のステンレス製端子を、基材層の上から折り曲げ部に接触させる。その後、直流電圧を印加し、印加電圧を除々に大きくして、通電を確認する。
[2]前記フェノール樹脂(A)は、固体フェノール樹脂であり、前記接着層は、さらにプライマー(B)を含む、[1]に記載のバスバー用絶縁フィルム。
[3]前記フェノール樹脂(A)は、軟化点が30℃以上の熱溶融型フェノール樹脂である、[1]又は[2]に記載のバスバー用絶縁フィルム。
[4]前記プライマー(B)は、官能基をポリオレフィンに導入した変性ポリオレフィン、エポキシ樹脂又はフェノキシ樹脂である、[2]又は[3]に記載のバスバー用絶縁フィルム。
[5]前記接着層は、イソシアネート樹脂、オキサゾリン基含有樹脂、アミノ基含有樹脂、ポリアミン、アミド樹脂、メラミン樹脂、及び尿素樹脂からなる群より選択される1種以上の架橋剤(C)を含む、[1]~[4]のいずれか1つに記載のバスバー用絶縁フィルム。
[6]前記バスバー用絶縁フィルムは、形成材料として樹脂を含む基材層と、接着層とを有し、前記基材層の少なくとも一方の面に接着層を備える、[1]~[5]のいずれか1つに記載のバスバー用絶縁フィルム。
[7]前記基材層は、フッ素樹脂、ポリイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂、液晶ポリエステル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、アクリル樹脂、ポリケトン樹脂、環状オレフィン樹脂、ポリメチルペンテン、ポリプロピレン、及びポリエチレンからなる群より選択される1種以上の樹脂を形成材料として含む、[1]~[6]のいずれか1つに記載のバスバー用絶縁フィルム。
[8]板状導体と、[1]~[7]のいずれか1つに記載のバスバー用絶縁フィルムとを備えたバスバー。
That is, the present invention employs the following configuration.
[1] An insulating film for a bus bar to be attached to a surface of a bus bar, the insulating film having a base layer and an adhesive layer, wherein the base layer contains a resin as a forming material, and the adhesive layer is formed of phenol. An insulating film for a bus bar, comprising a resin (A), wherein when a withstand voltage test described below is performed, current is not confirmed even when the average electric field intensity reaches 5 kV / mm.
[anti-voltage test]
-Test laminate A busbar insulating film is laminated on both sides of an aluminum alloy plate having a thickness of 100 µm. At this time, an aluminum alloy plate is laminated on the adhesive layer side of the bus bar insulating film. A test laminate bonded at a temperature of 170 ° C. and a pressure of 0.4 MPa for 10 minutes is prepared. This test laminate is bent with the base layer inside, with a bending angle of 90 ° and a radius of curvature R of 1 mm. Then, it heats at temperature 180 degreeC for 10 minutes. The thickness of the base layer of the insulating film for a bus bar is 150 μm.
-Withstand voltage test Peel off the end of the test laminate after heating to expose the aluminum alloy plate, connect one terminal of the test circuit, and connect the other stainless steel terminal of the test circuit from above the base material layer. Make contact with the bent part. Thereafter, a DC voltage is applied, the applied voltage is gradually increased, and the energization is checked.
[2] The busbar insulating film according to [1], wherein the phenolic resin (A) is a solid phenolic resin, and the adhesive layer further includes a primer (B).
[3] The busbar insulating film according to [1] or [2], wherein the phenolic resin (A) is a hot-melt phenolic resin having a softening point of 30 ° C or higher.
[4] The insulating film for a bus bar according to [2] or [3], wherein the primer (B) is a modified polyolefin having a functional group introduced into the polyolefin, an epoxy resin or a phenoxy resin.
[5] The adhesive layer contains one or more crosslinking agents (C) selected from the group consisting of isocyanate resins, oxazoline group-containing resins, amino group-containing resins, polyamines, amide resins, melamine resins, and urea resins. The insulating film for a bus bar according to any one of [1] to [4].
[6] The insulating film for a bus bar has a base layer containing a resin as a forming material and an adhesive layer, and has an adhesive layer on at least one surface of the base layer, [1] to [5]. The insulating film for a bus bar according to any one of the above.
[7] The base layer is made of a fluororesin, a polyimide resin, a polyetheretherketone resin, a polyphenylenesulfide resin, a polyphenyleneether resin, a liquid crystal polyester resin, a polyester resin, a polyamide resin, a polyamideimide resin, an epoxy resin, an acrylic resin, and a polyketone. The insulation for a bus bar according to any one of [1] to [6], which comprises, as a forming material, at least one resin selected from the group consisting of a resin, a cyclic olefin resin, polymethylpentene, polypropylene, and polyethylene. the film.
[8] A bus bar comprising a plate-shaped conductor and the insulating film for a bus bar according to any one of [1] to [7].
本発明によれば、短時間の加熱で接着され、金属に対して優れた接着力を発揮するバスバー用絶縁フィルム及びこれを備えたバスバーを提供することができる。
 ここで、「短時間の加熱」とは、100℃から200℃の加熱温度で5分間~15分間加熱することを意味する。
ADVANTAGE OF THE INVENTION According to this invention, it can adhere | attach by heating for a short time, and can provide the insulating film for bus bars which demonstrates the outstanding adhesive force with respect to metal, and the bus bar provided with this.
Here, “short-time heating” means heating at a heating temperature of 100 ° C. to 200 ° C. for 5 minutes to 15 minutes.
実施例で製造した試験用積層体の断面の模式図である。It is a schematic diagram of the cross section of the test laminate manufactured in the example. 実施例で製造した試験用積層体を折り曲げたときの断面の模式図である。It is a schematic diagram of the cross section when the test laminate manufactured in the example is bent. 比較例で製造した試験用積層体を折り曲げたときの断面の模式図である。It is a schematic diagram of the cross section when the test laminate manufactured in the comparative example is bent. 比較例で製造した試験用積層体を折り曲げたときの斜視図である。It is a perspective view when the test laminated body manufactured in the comparative example is bent. 比較例で製造した試験用積層体を折り曲げたときの斜視図である。It is a perspective view when the test laminated body manufactured in the comparative example is bent. 耐電圧試験の試験方法を説明するための模式図である。It is a schematic diagram for explaining the test method of the withstand voltage test. 耐電圧試験の試験方法を説明するための模式図である。It is a schematic diagram for explaining the test method of the withstand voltage test.
以下、好適な実施の形態に基づき、本発明を説明する。 Hereinafter, the present invention will be described based on preferred embodiments.
<バスバー用絶縁フィルム>
 本実施形態は、バスバーの表面に貼合するためのバスバー用絶縁フィルムである。本実施形態のバスバー用絶縁フィルムは、基材層と接着層とを有する。基材層は、樹脂を形成材料としている。このため、本実施形態のバスバー用絶縁フィルムを、接着層を介してバスバーに貼合すると、絶縁性が発揮される。接着層は、フェノール樹脂(A)を含む。
<Insulating film for busbar>
The present embodiment is an insulating film for a bus bar to be bonded to the surface of the bus bar. The insulating film for a bus bar of the present embodiment has a base material layer and an adhesive layer. The base material layer is made of resin. For this reason, when the bus bar insulating film of the present embodiment is bonded to the bus bar via the adhesive layer, the insulating property is exhibited. The adhesive layer contains a phenol resin (A).
本実施形態のバスバー用絶縁フィルムは、下記耐電圧試験を行ったとき、平均電界強度が5kV/mmに達しても通電が確認されない。ここで、「通電が確認されない」とは、後述する耐電圧試験において、5kV/mmとなる電圧まで印加し、電界強度5kV/mmとなる電圧で60秒間保持したときに1mAの電流値が観察されないことをいう。また、「絶縁破壊」とは、電流が制御できない状態に急激に増加した場合、又は絶縁部が電流を制限できなくなった場合を意味する。 In the insulating film for a bus bar according to the present embodiment, when the following withstand voltage test is performed, even when the average electric field intensity reaches 5 kV / mm, no current is confirmed. Here, the expression “current is not confirmed” means that a current value of 1 mA is observed when a voltage of 5 kV / mm is applied and a voltage of 5 kV / mm is maintained for 60 seconds in a withstand voltage test described later. Means not being done. Further, “dielectric breakdown” means a case where the current suddenly increases to a state where the current cannot be controlled, or a case where the insulating portion cannot limit the current.
[耐電圧試験]
・試験用積層体
 厚み100μmのアルミニウム合金板の両面に、バスバー用絶縁フィルムを積層する。このとき、バスバー用絶縁フィルムの接着層側にアルミニウム合金板を積層させる。温度170℃、圧力0.4MPaの条件で10分間接着させた試験用積層体を準備する。この試験用積層体を、基材層を内側にして、折り曲げ角度90°、曲率半径Rを1mmとして折り曲げる。その後、温度180℃で10分間加熱する。バスバー用絶縁フィルムの基材層の厚みは150μmとする。
[anti-voltage test]
-Test laminate A busbar insulating film is laminated on both sides of an aluminum alloy plate having a thickness of 100 µm. At this time, an aluminum alloy plate is laminated on the adhesive layer side of the bus bar insulating film. A test laminate bonded at a temperature of 170 ° C. and a pressure of 0.4 MPa for 10 minutes is prepared. This test laminate is bent with the base layer inside, with a bending angle of 90 ° and a radius of curvature R of 1 mm. Then, it heats at temperature 180 degreeC for 10 minutes. The thickness of the base layer of the insulating film for a bus bar is 150 μm.
試験用積層体に用いるバスバー用絶縁フィルムの基材層の厚みは、150μm以下であればよい。基材層の膜厚が150μm以下のバスバー用絶縁フィルムを使用して試験用積層体を作製し、後述の方法により耐電圧試験を行ったときに絶縁破壊しない場合には、本実施形態の効果が同様に奏される。150μm以下の厚みの例としては、130μm、110μm、90μm、70μm、50μm、30μmが挙げられる。 The thickness of the base layer of the insulating film for a bus bar used for the test laminate may be 150 μm or less. If a test laminate is manufactured using a bus bar insulating film having a substrate layer thickness of 150 μm or less and a withstand voltage test is performed by the method described below, the effect of the present embodiment is obtained. Is played similarly. Examples of the thickness of 150 μm or less include 130 μm, 110 μm, 90 μm, 70 μm, 50 μm, and 30 μm.
試験用積層体を用いて耐電圧試験を実施する場合、一般的には、基材層の厚みを厚くすると、平均電界強度は大きくなる。このため、基材層の厚みが150μm以下であるバスバー用絶縁フィルムを使用して同様の耐電圧試験を実施したときに通電が確認されなければ、基材層の厚みを150μmに変更した場合にも通電が確認されないと推察できる。 When a withstand voltage test is performed using a test laminate, the average electric field strength generally increases as the thickness of the substrate layer increases. For this reason, when energization is not confirmed when a similar withstand voltage test is performed using an insulating film for a bus bar in which the thickness of the base layer is 150 μm or less, if the thickness of the base layer is changed to 150 μm, It can be inferred that energization is not confirmed.
・耐電圧試験
 加熱後の試験用積層体の端部をはがしてアルミニウム合金板を露出させ、試験回路の一方の端子を接続し、試験回路の他方のステンレス製端子を、基材層の上から折り曲げ部の基材層に接触させる。その後、直流電圧を印加し、印加電圧を除々に大きくして、通電を確認する。
 一例を挙げると、折り曲げ部に浮きが生じていた場合、基材層の上からステンレス端子を押し当てても、アルミニウム合金板をカバーしきれず、通電して絶縁破壊してしまう。
-Withstand voltage test Peel off the end of the test laminate after heating to expose the aluminum alloy plate, connect one terminal of the test circuit, and connect the other stainless steel terminal of the test circuit from above the base material layer. It is brought into contact with the base material layer at the bent portion. Thereafter, a DC voltage is applied, the applied voltage is gradually increased, and the energization is checked.
To give an example, if a bend occurs in the bent portion, even if a stainless steel terminal is pressed from above the base material layer, the aluminum alloy plate cannot be completely covered, and the insulation will be caused by energization.
本実施形態のバスバー用絶縁フィルムは、後述する接着剤組成物を用いて製造される。後述の接着剤組成物を用いて製造したバスバー用絶縁フィルムは、金属に対して高い接着力を発揮する。 The insulating film for a bus bar of the present embodiment is manufactured using an adhesive composition described later. An insulating film for a bus bar manufactured using the adhesive composition described below exhibits high adhesive strength to metal.
バスバーを作製する際には、一般的に折り曲げ加工がなされる。本実施形態のバスバー用絶縁フィルムは、金属に対して高い接着力を発揮する。このため、本実施形態のバスバー用絶縁フィルムは、折り曲げ加工工程において、バスバーから剥離することなく折り曲げ加工に追従できる。これにより、絶縁性を発揮し、さらに絶縁性を維持できる。 When manufacturing a bus bar, bending is generally performed. The bus bar insulating film of the present embodiment exhibits high adhesive strength to metal. For this reason, the insulating film for bus bars of the present embodiment can follow the bending process without peeling from the bus bar in the bending process. Thereby, insulation can be exhibited and insulation can be maintained.
また、本実施形態のバスバー用絶縁フィルムは、例えば180℃の高温環境下に置かれた場合にも、接着力を維持できる。本実施形態のバスバー用絶縁フィルムは、高温環境下での使用が想定されるバスバーに用いた場合でも、剥離することなく絶縁性を発揮し、さらに絶縁性を維持することができる。 Further, the insulating film for a bus bar of the present embodiment can maintain the adhesive strength even when placed in a high temperature environment of, for example, 180 ° C. The insulating film for a bus bar of the present embodiment can exhibit the insulating property without peeling and can maintain the insulating property even when used for a bus bar which is assumed to be used in a high temperature environment.
本実施形態のバスバー用絶縁フィルムは、樹脂を形成材料とする基材層と、接着層とを有する。本実施形態のバスバー用絶縁フィルムは、前記基材層の少なくとも一方の面に接着層を備える。接着層は、後述する接着剤組成物から構成されるものである。 The insulating film for a bus bar according to the present embodiment has a base material layer made of resin and a bonding layer. The busbar insulating film of the present embodiment includes an adhesive layer on at least one surface of the base layer. The adhesive layer is composed of an adhesive composition described below.
前記基材層は、フッ素樹脂、ポリイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂、液晶ポリエステル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、アクリル樹脂、ポリケトン樹脂、環状オレフィン樹脂、ポリメチルペンテン、ポリプロピレン、及びポリエチレンからなる群より選択される1種以上の樹脂を形成材料として含むことが好ましい。 The base material layer is a fluororesin, a polyimide resin, a polyetheretherketone resin, a polyphenylenesulfide resin, a polyphenyleneether resin, a liquid crystal polyester resin, a polyester resin, a polyamide resin, a polyamideimide resin, an epoxy resin, an acrylic resin, a polyketone resin, and a cyclic resin. It is preferable that at least one resin selected from the group consisting of an olefin resin, polymethylpentene, polypropylene, and polyethylene is included as a forming material.
本実施形態のバスバー用絶縁フィルムの積層例を以下に記載する。
 ・積層例1
 接着層及び基材層を積層した積層体。
 ・積層例2
 第1の接着層/基材層/第2の接着層をこの順で積層した積層体。但し、第1の接着層及び第2の接着層は、ともに後述する接着剤組成物から構成されるものである。
An example of lamination of the insulating film for a bus bar of the present embodiment will be described below.
・ Lamination example 1
A laminate in which an adhesive layer and a base layer are laminated.
・ Lamination example 2
A laminate in which a first adhesive layer / base layer / second adhesive layer is laminated in this order. However, the first adhesive layer and the second adhesive layer are both composed of an adhesive composition described later.
接着層の厚みは特に限定されない。一例を挙げると、10μm以上50μm以下であってもよく、15μm以上30μm以下であってもよい。積層例2のように、第1の接着層及び第2の接着層を有する場合には、第1の接着層及び第2の接着層の厚みは同一であってもよく、異なっていてもよい。 The thickness of the adhesive layer is not particularly limited. For example, the thickness may be 10 μm or more and 50 μm or less, or 15 μm or more and 30 μm or less. When the first adhesive layer and the second adhesive layer are provided as in Lamination Example 2, the thicknesses of the first adhesive layer and the second adhesive layer may be the same or different. .
本実施形態においては、基材層の表面にアンカーコート剤を塗布し、易接着処理を施してもよい。 In the present embodiment, an anchor coat agent may be applied to the surface of the base material layer to perform an easy adhesion treatment.
<バスバー用絶縁フィルムの製造方法>
 バスバー用絶縁フィルムは、水又は溶剤に分散又は溶解させた接着剤組成物を、基材上に塗工して乾燥させることで製造できる。
<Production method of insulating film for busbar>
The insulating film for busbars can be manufactured by applying an adhesive composition dispersed or dissolved in water or a solvent on a base material and drying it.
≪接着剤組成物≫
 本実施形態で用いる接着剤組成物は、フェノール樹脂(A)(以下、「(A)成分」と称することがある)を必須成分とし、さらに、プライマー(B)(以下、「(B)成分」と称することがある)及び架橋剤(C)「以下、「(C)成分」と称することがある」を任意成分として含むことが好ましい。
≪Adhesive composition≫
The adhesive composition used in the present embodiment includes a phenol resin (A) (hereinafter, sometimes referred to as “component (A)”) as an essential component, and further includes a primer (B) (hereinafter, referred to as “component (B)”). ) And the crosslinking agent (C), which may be hereinafter referred to as “component (C)”, as optional components.
・フェノール樹脂(A)
 フェノール樹脂(A)は、固体フェノール樹脂であることが好ましい。フェノール樹脂(A)は、熱溶融型のフェノール樹脂がさらに好ましい。具体的には、ノボラック型フェノール樹脂(水酸基当量:100g/eq~110g/eq、軟化点:75℃~125℃)、クレゾール型フェノール樹脂(水酸基当量:110g/eq~120g/eq、軟化点:80℃~130℃)、またはこれらの混合物が挙げられる。このようなフェノール樹脂(A)の例としては、エア・ウォーターベルパール株式会社製のベルパールSタイプが挙げられる。このようなフェノール樹脂(A)を用いることにより、硬化後の接着層に剛直な構造を付与することができ、例えば180℃程度の高温環境下に置かれた場合でも接着力が維持される。
・ Phenolic resin (A)
The phenol resin (A) is preferably a solid phenol resin. The phenol resin (A) is more preferably a hot-melt phenol resin. Specifically, novolak type phenol resin (hydroxyl equivalent: 100 g / eq to 110 g / eq, softening point: 75 ° C. to 125 ° C.), cresol type phenol resin (hydroxyl equivalent: 110 g / eq to 120 g / eq, softening point: 80 ° C. to 130 ° C.), or a mixture thereof. Examples of such a phenolic resin (A) include Bell Pearl S type manufactured by Air Water Bell Pearl Co., Ltd. By using such a phenolic resin (A), a rigid structure can be imparted to the adhesive layer after curing, and the adhesive strength is maintained even when the adhesive layer is placed in a high temperature environment of, for example, about 180 ° C.
フェノール樹脂(A)の重量平均分子量は、1,000以上が好ましく、2,000以上がより好ましく、3,000以上が特に好ましい。また、フェノール樹脂(A)の重量平均分子量は、10,000以下が好ましく、9,000以下がより好ましく、8,000以下が特に好ましい。上記上限値及び下限値は任意に組み合わせることができる。
 フェノール樹脂(A)の重量平均分子量が上記の範囲であると、接着剤組成物に耐湿性を付与できる。
The weight average molecular weight of the phenol resin (A) is preferably 1,000 or more, more preferably 2,000 or more, and particularly preferably 3,000 or more. Further, the weight average molecular weight of the phenol resin (A) is preferably 10,000 or less, more preferably 9,000 or less, and particularly preferably 8,000 or less. The above upper limit and lower limit can be arbitrarily combined.
When the weight average molecular weight of the phenolic resin (A) is in the above range, moisture resistance can be imparted to the adhesive composition.
フェノール樹脂(A)の軟化点は、30℃以上が好ましく、40℃以上がより好ましく。50℃以上が特に好ましい。またフェノール樹脂(A)の軟化点は、160℃以下が好ましく、150℃以下がより好ましく、140℃以下が特に好ましい。上記上限値及び下限値は任意に組み合わせることができる。 The softening point of the phenolic resin (A) is preferably at least 30 ° C, more preferably at least 40 ° C. A temperature of 50 ° C. or higher is particularly preferred. The softening point of the phenolic resin (A) is preferably 160 ° C. or lower, more preferably 150 ° C. or lower, and particularly preferably 140 ° C. or lower. The above upper limit and lower limit can be arbitrarily combined.
・プライマー(B)
 プライマー(B)は、官能基をポリオレフィンに導入した変性ポリオレフィンである。ここで「官能基」とは、金属の表面と相互作用する官能基であり、本実施形態においては、カルボキシ基や無水カルボン酸基等の酸性官能基であることが好ましい。プライマー(B)は、接着性に寄与する成分である。ここで「金属の表面と相互作用する」とは、金属表面の極性基とプライマー(B)が有する酸性官能基との間で、水素結合等の化学結合を形成することを意味する。
・ Primer (B)
The primer (B) is a modified polyolefin obtained by introducing a functional group into a polyolefin. Here, the “functional group” is a functional group that interacts with the surface of the metal, and in the present embodiment, is preferably an acidic functional group such as a carboxy group or a carboxylic anhydride group. The primer (B) is a component that contributes to adhesiveness. Here, "interact with the surface of the metal" means that a chemical bond such as a hydrogen bond is formed between the polar group on the metal surface and the acidic functional group of the primer (B).
本実施形態におけるプライマー(B)は、カルボン酸またはその無水物で変性されたポリオレフィン樹脂であって、ポリオレフィン樹脂中に、カルボキシ基や無水カルボン酸基等の酸官能基を有するものが好ましい。 The primer (B) in the present embodiment is a polyolefin resin modified with a carboxylic acid or an anhydride thereof, and preferably has an acid functional group such as a carboxy group or a carboxylic anhydride group in the polyolefin resin.
プライマー(B)は、官能基をポリオレフィンに導入することにより調製できる。導入方法としては、共重合方法又は酸変性方法が挙げられる。
 共重合方法としては、酸官能基含有モノマーとオレフィン類とを共重合させる方法が挙げられる。
 酸変性方法としては、有機過酸化物や脂肪族アゾ化合物等のラジカル重合開始剤の存在下で、ポリオレフィン樹脂と酸官能基含有モノマーとを溶融混練するグラフト変性が挙げられる。
 本実施形態においては、ポリオレフィン樹脂を酸変性してプライマー(B)を調製することが好ましい。
The primer (B) can be prepared by introducing a functional group into a polyolefin. Examples of the introduction method include a copolymerization method and an acid modification method.
Examples of the copolymerization method include a method in which an acid functional group-containing monomer and an olefin are copolymerized.
Examples of the acid modification method include graft modification in which a polyolefin resin and an acid functional group-containing monomer are melt-kneaded in the presence of a radical polymerization initiator such as an organic peroxide or an aliphatic azo compound.
In the present embodiment, it is preferable to prepare the primer (B) by acid-modifying the polyolefin resin.
前記ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリ−1−ブテン、ポリイソブチレン、プロピレンとエチレンとの共重合体、プロピレンとオレフィン系モノマーとの共重合体等が挙げられる。
 共重合する場合の前記オレフィン系モノマーとしては、1−ブテン、イソブチレン、1−ヘキセン等が挙げられる。
Examples of the polyolefin resin include polyethylene, polypropylene, poly-1-butene, polyisobutylene, a copolymer of propylene and ethylene, and a copolymer of propylene and an olefin monomer.
Examples of the olefin-based monomer for copolymerization include 1-butene, isobutylene, 1-hexene and the like.
なかでも、プライマー(B)としては、接着性、耐久性等の観点から、無水マレイン酸変性ポリプロピレンが好ましい。 Above all, as the primer (B), maleic anhydride-modified polypropylene is preferable from the viewpoints of adhesion, durability and the like.
・・重量平均分子量
 本実施形態において、プライマー(B)の重量平均分子量は、40,000以上が好ましく、50,000以上がより好ましく、60,000以上が特に好ましい。また、140,000以下が好ましく、130,000以下がより好ましく、120,000以下が特に好ましい。上記上限値及び下限値は任意に組み合わせることができる。
··· Weight average molecular weight In this embodiment, the weight average molecular weight of the primer (B) is preferably 40,000 or more, more preferably 50,000 or more, and particularly preferably 60,000 or more. Further, it is preferably 140,000 or less, more preferably 130,000 or less, and particularly preferably 120,000 or less. The above upper limit and lower limit can be arbitrarily combined.
・・酸付加量
 変性に用いるカルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、ナジック酸、フマル酸、イタコン酸、クロトン酸、シトラコン酸、ソルビン酸、メサコン酸、アンゲリカ酸などが挙げられる。またその誘導体としては、酸無水物、エステル、アミド、イミド、金属塩などが挙げられ、具体的には、例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水ナジック酸、アクリル酸メチル、メタクル酸メチル、アクリル酸エチル、アクリル酸ブチル、マレイン酸モノエチルエステル、アクリルアミド、マレイン酸モノアミド、マレイミド、N−ブチルマレイミド、アクリル酸ナトリウム、メタクリル酸ナトリウムなどが挙げられる。これらの中でも、不飽和ジカルボン酸およびその誘導体が好ましく、特に無水マレイン酸または無水フタル酸が好適である。
 本実施形態において、プライマー(B)のカルボン酸付加量が、0.5質量%以上3.0質量%以下であることが好ましい。
..Acid addition amount Examples of carboxylic acids used for modification include acrylic acid, methacrylic acid, maleic acid, nadic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, sorbic acid, mesaconic acid, angelic acid and the like. Can be The derivatives thereof include acid anhydrides, esters, amides, imides, metal salts and the like.Specifically, for example, maleic anhydride, itaconic anhydride, citraconic anhydride, nadic anhydride, methyl acrylate, methyl acrylate, Examples include methyl methacrylate, ethyl acrylate, butyl acrylate, monoethyl maleate, acrylamide, maleic monoamide, maleimide, N-butylmaleimide, sodium acrylate, sodium methacrylate, and the like. Among these, unsaturated dicarboxylic acids and derivatives thereof are preferred, and maleic anhydride or phthalic anhydride is particularly preferred.
In the present embodiment, the carboxylic acid addition amount of the primer (B) is preferably 0.5% by mass or more and 3.0% by mass or less.
・・融点
 本実施形態において、プライマー(B)の融点は、50℃以上が好ましく、55℃以上がより好ましく。60℃以上が特に好ましい。また融点の上限値は、110℃以下が好ましく、105℃以下がより好ましく、100℃以下が特に好ましい。上記上限値及び下限値は任意に組み合わせることができる。本実施形態においては、50℃以上100℃以下であることがより好ましい。
··· Melting point In the present embodiment, the melting point of the primer (B) is preferably 50 ° C or higher, more preferably 55 ° C or higher. A temperature of at least 60 ° C. is particularly preferred. The upper limit of the melting point is preferably 110 ° C. or lower, more preferably 105 ° C. or lower, and particularly preferably 100 ° C. or lower. The above upper limit and lower limit can be arbitrarily combined. In the present embodiment, the temperature is more preferably 50 ° C. or more and 100 ° C. or less.
本実施形態において、フェノール樹脂(A)とプライマー(B)との合計100質量部に対して、プライマー(B)の含有量は、10質量部以上40質量部以下であることが好ましく、15質量部以上35質量部以下であることがより好ましい。 In the present embodiment, the content of the primer (B) is preferably 10 parts by mass or more and 40 parts by mass or less, and more preferably 15 parts by mass with respect to the total of 100 parts by mass of the phenol resin (A) and the primer (B). It is more preferable that the amount be from 35 parts by mass to 35 parts by mass.
プライマー(B)の含有量が上記下限値以上であると、接着力を高めることができる。プライマー(B)の含有量が上記上限値以下であると、例えば180℃程度の高温環境下に置かれた場合でも接着力が維持される。 When the content of the primer (B) is equal to or more than the lower limit, the adhesive strength can be increased. When the content of the primer (B) is equal to or less than the above upper limit, the adhesive strength is maintained even in a high temperature environment of, for example, about 180 ° C.
本実施形態において、フェノール樹脂(A)とプライマー(B)との合計100質量部に対して、フェノール樹脂(A)の含有量は、60質量部以上90質量部以下であることが好ましく、65質量部以上85質量部以下であることがより好ましい。 In the present embodiment, the content of the phenol resin (A) is preferably 60 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the total of the phenol resin (A) and the primer (B). It is more preferable that the amount be from not less than 85 parts by mass.
フェノール樹脂(A)の含有量が上記下限値以上であると、例えば180℃程度の高温環境下に置かれた場合でも接着力が維持される。フェノール樹脂(A)の含有量が上記上限値以下であると、接着力を高めることができる。 When the content of the phenolic resin (A) is equal to or more than the above lower limit, the adhesive strength is maintained even in a high temperature environment of, for example, about 180 ° C. When the content of the phenol resin (A) is equal to or less than the upper limit, the adhesive strength can be increased.
・架橋剤(C)
 架橋剤(C)は、イソシアネート樹脂、オキサゾリン基含有樹脂、アミノ基含有樹脂、ポリアミン、アミド樹脂、メラミン樹脂、及び尿素樹脂からなる群より選択される1種以上であることが好ましい。これらの中でも、イソシアネート樹脂又はオキサゾリン基含有樹脂が好ましい。
・ Crosslinking agent (C)
The crosslinking agent (C) is preferably at least one selected from the group consisting of an isocyanate resin, an oxazoline group-containing resin, an amino group-containing resin, a polyamine, an amide resin, a melamine resin, and a urea resin. Among these, an isocyanate resin or an oxazoline group-containing resin is preferable.
イソシアネート樹脂としては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート等のジイソシアネート類のビュレット変性体やイソシアヌレート変性体、トリメチロールプロパンやグリセリン等の3価以上のポリオールとのアダクト体などのポリイソシアネート化合物等が挙げられる。 Examples of the isocyanate resin include hexamethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate, and isocyanurate modified diisocyanates such as xylylene diisocyanate. Examples include polyisocyanate compounds such as adducts.
オキサゾリン基含有樹脂としては、オキサゾリン基含有アクリル樹脂が好ましい。 As the oxazoline group-containing resin, an oxazoline group-containing acrylic resin is preferable.
本実施形態において、プライマー(B)と架橋剤(C)とは、プライマー(B)が有する官能基1.0当量に対して、架橋剤(C)が有する官能基が1.0当量超5.0当量以下となるように配合されることが好ましい。 In this embodiment, the primer (B) and the cross-linking agent (C) are such that the functional group of the cross-linking agent (C) exceeds 1.0 equivalent of the functional group of the primer (B). It is preferred to be blended so as to be not more than 0.0 equivalent.
ここで、プライマー(B)が有する官能基とは、カルボキシ基や無水カルボン酸基等の酸性官能基である。
 また、架橋剤(C)が有する官能基とは、前記架橋剤(C)がイソシアネート樹脂である場合にはイソシアネート基であり、オキサゾリン基含有樹脂の場合にはオキサゾリン基であり、アミノ基含有樹脂の場合はアミノ基であり、ポリアミンの場合にはアミンであり、アミド樹脂の場合にはアミド基であり、メラミン樹脂の場合にはアミド基であり、尿素樹脂の場合にはアミノ基である。
Here, the functional group of the primer (B) is an acidic functional group such as a carboxy group or a carboxylic anhydride group.
The functional group contained in the crosslinking agent (C) is an isocyanate group when the crosslinking agent (C) is an isocyanate resin, an oxazoline group when the oxazoline group-containing resin is used, and an amino group-containing resin. Is an amino group, a polyamine is an amine, an amide resin is an amide group, a melamine resin is an amide group, and a urea resin is an amino group.
プライマー(B)に対する架橋剤(C)の配合量を決定するため、まず、プライマー(B)及び架橋剤(C)について、官能基の濃度を電位差滴定法又は指示薬滴定法により求める。プライマー(B)の官能基の濃度(酸価(−COOH)又は水酸基価(−OH))を指示薬滴定法により算出する場合の一例を以下に示す。 In order to determine the blending amount of the crosslinking agent (C) with respect to the primer (B), first, the concentrations of the functional groups of the primer (B) and the crosslinking agent (C) are determined by potentiometric titration or indicator titration. An example in which the concentration of the functional group (acid value (-COOH) or hydroxyl value (-OH)) of the primer (B) is calculated by an indicator titration method is shown below.
[酸価の測定方法]
 1)試料を約3g量りとり、200mLトールビーカに投入する。
 2)滴定溶剤20mLを添加する。
 3)ビーカ加熱装置にて液温を20℃に加熱し、試料を溶解させる。
 4)液温が20℃で一定になった後、0.1mol/L水酸化カリウム・エタノール溶液を用いて滴定を行い、酸価を求める。
[Method of measuring acid value]
1) Weigh about 3 g of a sample and put it into a 200 mL tall beaker.
2) Add 20 mL of titration solvent.
3) The liquid temperature is heated to 20 ° C. by a beaker heating device to dissolve the sample.
4) After the liquid temperature becomes constant at 20 ° C., titration is performed using a 0.1 mol / L potassium hydroxide / ethanol solution to obtain an acid value.
[酸価の算出]
 酸価(mg/g)=(EP1−BL1)×FA1×C1×K1/SIZE
 上記式において、各記号は以下の数値を意味する。
 EP1:滴定量(mL)
 BL1:ブランク値(0.0mL)
 FA1:滴定液のファクタ(1.00)
 C1 :濃度換算値(5.611mg/mL)
 (0.1mol/L KOH 1mLの水酸化カリウム相当量)
 K1 :係数(1)
 SIZE :試料採取量(g)
[Calculation of acid value]
Acid value (mg / g) = (EP1-BL1) × FA1 × C1 × K1 / SIZE
In the above formula, each symbol means the following numerical value.
EP1: titration (mL)
BL1: Blank value (0.0 mL)
FA1: Factor of titrant (1.00)
C1: concentration conversion value (5.611 mg / mL)
(0.1mol / L KOH 1mL potassium hydroxide equivalent)
K1: Coefficient (1)
SIZE: Sampling amount (g)
上記の方法により得られた官能基の濃度を、プライマー(B)が有する官能基1.0当量に対して、架橋剤(C)が有する官能基が1.0当量超5.0当量以下となるように配合する。 The concentration of the functional group obtained by the above method is such that the functional group of the crosslinking agent (C) is more than 1.0 equivalent and not more than 5.0 equivalent to 1.0 equivalent of the functional group of the primer (B). To be blended.
プライマー(B)の酸価から、架橋剤(C)の具体的な配合量(質量部)を下記の方法により算出する。まず、プライマー(B)の官能基当量を下記式より求める。
 プライマー(B)の官能基当量=KOHの分子量×1000/酸価
From the acid value of the primer (B), the specific amount (parts by mass) of the crosslinking agent (C) is calculated by the following method. First, the functional group equivalent of the primer (B) is determined by the following equation.
Functional group equivalent of primer (B) = molecular weight of KOH × 1000 / acid value
架橋剤(C)の官能基当量は、例えばエポキシであれば、JIS K−7236に準拠した測定により求められる。 The functional group equivalent of the cross-linking agent (C) is, for example, epoxy, and can be determined by measurement according to JIS K-7236.
イソシアネートであれば、JIS K−7301に準拠した測定により求められる。
 [イソシアネート当量の測定方法]
 1)試料3gを200mL三角フラスコに採取する。
 2)脱水トルエン20mLを加えて、試料を溶解させる。
 3)2mol/Lジノルマルブチルアミン溶液20.0mLを加える。
 4)振り混ぜて均一にしてから、20分以上放置する。
 5)イソプロピルアルコール100mLを加える。
 6)1mol/L 塩酸溶液を用いて滴定を行い、イソシアネート当量を求める。
In the case of an isocyanate, it is determined by measurement according to JIS K-7301.
[Method for measuring isocyanate equivalent]
1) Collect 3 g of the sample in a 200 mL Erlenmeyer flask.
2) Add 20 mL of dehydrated toluene to dissolve the sample.
3) Add 20.0 mL of a 2 mol / L di-n-butylamine solution.
4) Shake to make uniform, and leave for 20 minutes or more.
5) Add 100 mL of isopropyl alcohol.
6) Perform titration using a 1 mol / L hydrochloric acid solution to determine the isocyanate equivalent.
[イソシアネート当量の算出]
 イソシアネート当量=(SIZE/((BL1−EP1)×FA1))×K2
 EP1:滴定量(mL)
 BL1:ブランク値(39.888mL)
 FA1:滴定液のファクタ(1.00)
 K2 :係数(1000)
 SIZE:試料採取量(g)
[Calculation of isocyanate equivalent]
Isocyanate equivalent = (SIZE / ((BL1-EP1) × FA1)) × K2
EP1: titration (mL)
BL1: Blank value (39.888 mL)
FA1: Factor of titrant (1.00)
K2: coefficient (1000)
SIZE: Sampling amount (g)
プライマー(B)の配合量をXとすると、架橋剤(C)の配合量Yは下記式で示される。
 Y=架橋剤(C)の官能基当量×X/プライマー(B)の官能基当量
Assuming that the blending amount of the primer (B) is X, the blending amount Y of the crosslinking agent (C) is represented by the following formula.
Y = functional group equivalent of crosslinking agent (C) × X / functional group equivalent of primer (B)
架橋剤(C)を上記下限値超えるように配合すると、例えば180℃程度の高温環境下に置かれた場合でも接着力が維持される。 When the cross-linking agent (C) is blended so as to exceed the above lower limit, the adhesive strength is maintained even in a high temperature environment of, for example, about 180 ° C.
本実施形態で用いる接着剤組成物は、上記構成を備えることにより、短時間の加熱で接着されるという高い反応性を有する。また、本実施形態で用いる接着剤組成物は、金属に対する接着力が高く、例えば180℃の高温環境下に置かれた場合でも金属に対する接着力が維持される。 The adhesive composition used in the present embodiment has the above configuration, and thus has a high reactivity of being adhered by heating for a short time. Further, the adhesive composition used in the present embodiment has a high adhesive strength to a metal, and maintains the adhesive strength to a metal even when placed in a high-temperature environment of, for example, 180 ° C.
・任意成分
 本実施形態で用いる接着剤組成物は、任意の成分として、酸化防止剤、界面活性剤、硬化促進剤、可塑剤、充填剤、架橋触媒、加工助剤、老化防止剤などの公知の添加剤を適宜に配合することができる。これらは、単独で使用してもよく、2種以上併せて用いてもよい。
-Optional components The adhesive composition used in the present embodiment includes known components such as an antioxidant, a surfactant, a curing accelerator, a plasticizer, a filler, a crosslinking catalyst, a processing aid, an antioxidant, and the like. Can be appropriately compounded. These may be used alone or in combination of two or more.
・・接着剤組成物の製造方法
 接着剤組成物は、上記フェノール樹脂(A)、プライマー(B)、及び架橋剤(C)、並びに、必要に応じて任意の成分を一括又は適切な順序で混合することにより製造できる。
··· Method for producing adhesive composition The adhesive composition is prepared by combining the phenol resin (A), the primer (B), the crosslinking agent (C), and, if necessary, any components in a batch or in an appropriate order. It can be manufactured by mixing.
<バスバー>
 本実施形態によれば、板状導体と、上記本実施形態によるバスバー用絶縁フィルムとを備えたバスバーがさらに提供される。本実施形態のバスバーは、バスバー用絶縁フィルムが接着層を介して板状導体に接着し、絶縁性の樹脂基材が積層されている。本実施形態のバスバーは、高い絶縁信頼性を有する。
<Bus bar>
According to the present embodiment, there is further provided a bus bar including the plate-shaped conductor and the bus bar insulating film according to the present embodiment. In the bus bar of this embodiment, an insulating film for a bus bar is adhered to a plate-shaped conductor via an adhesive layer, and an insulating resin base material is laminated. The bus bar of the present embodiment has high insulation reliability.
板状導体の形成材料としては、銅、アルミニウム、ステンレス、ニッケルメッキを施した銅等の金属材料が挙げられる。 Examples of the material for forming the plate-shaped conductor include metal materials such as copper, aluminum, stainless steel, and nickel-plated copper.
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
<バスバー用絶縁フィルムの製造>
 下記表1に示すフェノール樹脂(A)、プライマー(B)、及び架橋剤(C)を、表1に示す配合比で含み、固形分が50質量%の接着剤組成物1~10の水分散液を得た。下記表1における架橋剤(C)の「当量比」とは、プライマー(B)が有する官能基1.0当量に対して、架橋剤(C)が有する官能基当量の比である。プライマー(B)の官能基量(酸価)は、下記の方法により算出した。
<Manufacture of insulating films for bus bars>
Aqueous dispersion of the adhesive compositions 1 to 10 containing the phenolic resin (A), the primer (B), and the cross-linking agent (C) shown in Table 1 at the compounding ratio shown in Table 1 and having a solid content of 50% by mass. A liquid was obtained. The "equivalent ratio" of the crosslinking agent (C) in Table 1 below is a ratio of the functional group equivalent of the crosslinking agent (C) to the 1.0 equivalent of the functional group of the primer (B). The functional group amount (acid value) of the primer (B) was calculated by the following method.
[酸価の測定方法]
 1)試料を約3g量りとり、200mLトールビーカに投入する。
 2)滴定溶剤20mLを添加する。
 3)ビーカ加熱装置にて液温を20℃に加熱し、試料を溶解させる。
 4)液温が20℃で一定になった後、0.1mol/L水酸化カリウム・エタノール溶液を用いて滴定を行い、酸価を求める。
[Method of measuring acid value]
1) Weigh about 3 g of a sample and put it into a 200 mL tall beaker.
2) Add 20 mL of titration solvent.
3) The liquid temperature is heated to 20 ° C. by a beaker heating device to dissolve the sample.
4) After the liquid temperature becomes constant at 20 ° C., titration is performed using a 0.1 mol / L potassium hydroxide / ethanol solution to obtain an acid value.
[酸価の算出]
 酸価(mg/g)=(EP1−BL1)×FA1×C1×K1/SIZE
 上記式において、各記号は以下の数値を意味する。
 EP1:滴定量(mL)
 BL1:ブランク値(0.0mL)
 FA1:滴定液のファクタ(1.00)
 C1 :濃度換算値(5.611mg/mL)
 (0.1mol/L KOH 1mLの水酸化カリウム相当量)
 K1 :係数(1)
 SIZE :試料採取量(g)
[Calculation of acid value]
Acid value (mg / g) = (EP1-BL1) × FA1 × C1 × K1 / SIZE
In the above formula, each symbol means the following numerical value.
EP1: titration (mL)
BL1: Blank value (0.0 mL)
FA1: Factor of titrant (1.00)
C1: concentration conversion value (5.611 mg / mL)
(0.1mol / L KOH 1mL potassium hydroxide equivalent)
K1: Coefficient (1)
SIZE: Sampling amount (g)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1中、各記号は以下の材料を意味する。 In Table 1, each symbol means the following materials.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
得られた接着剤組成物1~10の水分散液を、基材上にハンドコートにより塗布し、110℃で1分間乾燥させ、基材層(膜厚150μm)/接着層(膜厚20μm)の2層のバスバー用絶縁フィルム(実施例1~10、比較例1~4)を製造した。基材層には、表3に示す材料をそれぞれ用いた。 The resulting aqueous dispersions of the adhesive compositions 1 to 10 are applied on a substrate by hand coating, and dried at 110 ° C. for 1 minute, and the substrate layer (film thickness 150 μm) / adhesive layer (film thickness 20 μm) (Examples 1 to 10 and Comparative Examples 1 to 4) were produced. The materials shown in Table 3 were used for the base layer.
表3中、基材層の略語は下記材料を意味する。
 ・PI:ポリイミド
 ・PEN:ポリエチレンナフタレート
 ・PPS:ポリフェニレンサルファイド
 ・COC:シクロオレフィンコポリマー
 ・PP:ポリプロピレン
In Table 3, the abbreviations of the base material layers mean the following materials.
-PI: Polyimide-PEN: Polyethylene naphthalate-PPS: Polyphenylene sulfide-COC: Cycloolefin copolymer-PP: Polypropylene
<評価>
 ≪試験用積層体の製造≫
 製造した試験用積層体について、図1を参照して説明する。
 図1に示す試験用積層体1は、アルミニウム合金板12の両面に、接着層及び基材層がこの順で積層されてなるバスバー用絶縁フィルムを、接着層がアルミニウム合金板12と接するように積層する。
 試験用積層体1は、基材層10B、接着層11B、アルミニウム合金板12、接着層11A、及び基材層10Aがこの順で積層されている。
 バスバー用絶縁フィルムは、端部が0.5mmはみ出す長さに設計され、試験用積層体1の両端部は、バスバー用絶縁フィルム同士が接着している。
<Evaluation>
≫Production of test laminate 積 層
The manufactured test laminate will be described with reference to FIG.
The test laminate 1 shown in FIG. 1 has an insulating film for a bus bar in which an adhesive layer and a base material layer are laminated in this order on both surfaces of an aluminum alloy plate 12 such that the adhesive layer is in contact with the aluminum alloy plate 12. Laminate.
In the test laminate 1, a base layer 10B, an adhesive layer 11B, an aluminum alloy plate 12, an adhesive layer 11A, and a base layer 10A are laminated in this order.
The bus bar insulating film is designed to have a length whose end protrudes 0.5 mm, and the bus bar insulating films are adhered to both ends of the test laminate 1.
・アルミニウム合金板:A1050H−H1、寸法は100μm×10mm×30mmとした。
 ・バスバー用絶縁フィルム:寸法は11mm×31mmとした。
 加熱圧着の条件は、温度170℃、圧力0.4Mpa、圧着時間10分間とした。
-Aluminum alloy plate: A1050H-H1, dimensions were 100 µm x 10 mm x 30 mm.
-Insulating film for busbar: The dimensions were 11 mm x 31 mm.
The conditions for the heat compression bonding were a temperature of 170 ° C., a pressure of 0.4 Mpa, and a compression bonding time of 10 minutes.
≪180℃での浮き評価≫
 図1に示す試験用積層体1を折り曲げた。折り曲げ角度は90°とした。折り曲げた状態で、温度180℃で10分間加熱した。加熱後、折り曲げた状態での折り曲げ部分のバスバー用絶縁フィルムの接着性を下記の基準で評価した。
 ○:図2に示す断面2のように、折り曲げ部分のバスバー用絶縁フィルムの浮きがなく、アルミニウム合金板12に接着層11A、11Bが接着している。
 △:図3に示す断面3或いは図4に示す符号4のように、折り曲げ部分のバスバー用絶縁フィルムが一部剥離して浮きが確認され、アルミニウム合金板から接着層が一部剥離している。
 ×:図5に示す符号5のように、折り曲げ部分全体が剥離して浮きが確認され、折り曲げ部分全体においてアルミニウム合金板から接着層が完全に剥離している。
≫Floating evaluation at 180 ° C≫
The test laminate 1 shown in FIG. 1 was bent. The bending angle was 90 °. In the folded state, it was heated at a temperature of 180 ° C. for 10 minutes. After heating, the adhesiveness of the insulating film for a bus bar at the bent portion in the bent state was evaluated according to the following criteria.
:: As in the cross section 2 shown in FIG. 2, the insulating film for the bus bar does not float at the bent portion, and the adhesive layers 11A and 11B are adhered to the aluminum alloy plate 12.
Δ: As shown in section 3 in FIG. 3 or reference numeral 4 in FIG. 4, the insulating film for a bus bar at the bent portion was partially peeled and floating was confirmed, and the adhesive layer was partially peeled from the aluminum alloy plate. .
C: As indicated by reference numeral 5 in FIG. 5, the entire bent portion was peeled off and floating was confirmed, and the adhesive layer was completely separated from the aluminum alloy plate in the entire bent portion.
≪耐電圧試験≫
 上記≪180℃での浮き評価≫と同様の方法により、折り曲げ角度90°で折り曲げた試験用積層体を用意した。
 図6に示すように、折り曲げ部から10mm以上離れた位置のバスバー用絶縁フィルムを剥離し、アルミニウム合金を露出させた。露出させたアルミニウム合金に、耐電圧試験機6に接続された試験回路62を接続した。耐電圧試験機6には、他方の接続端子として、ステンレス端子61が接続されている。ステンレス端子61は、直径1mm、長さ10mm、先端は曲率半径が1mmの曲面を有するステンレス製端子である。
≪Dielectric strength test≫
A test laminate bent at a bending angle of 90 ° was prepared in the same manner as in the above {Evaluation of floating at 180 ° C.}.
As shown in FIG. 6, the insulating film for a bus bar at a position 10 mm or more away from the bent portion was peeled off to expose the aluminum alloy. The test circuit 62 connected to the withstand voltage tester 6 was connected to the exposed aluminum alloy. A stainless steel terminal 61 is connected to the withstand voltage tester 6 as the other connection terminal. The stainless terminal 61 is a stainless terminal having a diameter of 1 mm, a length of 10 mm, and a tip having a curved surface with a radius of curvature of 1 mm.
図7に示すように、ステンレス端子61を折り曲げ部に接触させた。接触場所は、アルミニウム合金端7A、折り曲げ部の中央7B、及びアルミニウム合金端7Cの3点であり、それぞれ基材層の上から接触させた。アルミニウム合金端7A及び7Cは、アルミニウム合金板の端から0mmの位置であり、折り曲げ部の中央7Bは、アルミニウム合金板の端部から5mmの位置である。 As shown in FIG. 7, the stainless steel terminal 61 was brought into contact with the bent portion. The contact locations were three points of the aluminum alloy end 7A, the center 7B of the bent portion, and the aluminum alloy end 7C, and each was contacted from above the base material layer. The aluminum alloy ends 7A and 7C are at a position of 0 mm from the end of the aluminum alloy plate, and the center 7B of the bent portion is at a position of 5 mm from the end of the aluminum alloy plate.
ステンレス端子61を接触させた状態で電圧を20秒間で5kV/mmとなる電圧まで印加し、電界強度5kV/mmとなる電圧で60秒間保持した。60秒間の通電の有無を下記の基準で評価した。耐電圧試験は、IEC−J60950−1に準拠して実施した。 With the stainless steel terminal 61 in contact, a voltage was applied to a voltage of 5 kV / mm in 20 seconds, and the voltage was maintained at a voltage of 5 kV / mm for 60 seconds. The presence or absence of energization for 60 seconds was evaluated according to the following criteria. The withstand voltage test was performed based on IEC-J60950-1.
[評価]
 ○:7A、7B、7Cの3点すべてにおいて通電が確認されず、絶縁破壊が無かった。
 ×:7A、7B、7Cのいずれか1点以上において通電が確認され、絶縁破壊があった。
[Evaluation]
:: No energization was confirmed at all three points of 7A, 7B and 7C, and there was no dielectric breakdown.
×: Energization was confirmed at any one or more of 7A, 7B and 7C, and dielectric breakdown occurred.
≪折り曲げ追従性≫
 図1に示す試験用積層体1を折り曲げた。折り曲げ角度は90°とした。このとき、折り曲げ追従性を目視で確認し、下記の基準で評価した。
 ○:折り曲げ部分のバスバー用絶縁フィルムに浮きが確認されない。
 ×:折り曲げ部分のバスバー用絶縁フィルムに浮きが確認される。
≪Bending followability≫
The test laminate 1 shown in FIG. 1 was bent. The bending angle was 90 °. At this time, the bending followability was visually checked and evaluated according to the following criteria.
:: No lifting was observed in the bent portion of the bus bar insulating film.
×: Floating is confirmed in the bent portion of the bus bar insulating film.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
上記結果に示したとおり、本発明を適用した試験用積層体は、10分間という短時間の加熱で接着され、高い接着力が発揮された。さらに、本発明を適用したバスバー用絶縁フィルムを使用すると、180℃の高温環境下においても浮きがなく、高い接着力が維持された。加えて、本発明を適用したバスバー用絶縁フィルムを使用すると、絶縁破壊が無く、折り曲げ追従性も良好であり、絶縁性が維持された。 As shown in the above results, the test laminate to which the present invention was applied was adhered by heating for a short time of 10 minutes, and exhibited a high adhesive strength. Furthermore, when the insulating film for a bus bar to which the present invention was applied was used, there was no lifting even in a high temperature environment of 180 ° C., and high adhesive strength was maintained. In addition, when the insulating film for a bus bar to which the present invention was applied was used, there was no dielectric breakdown, the bending followability was good, and the insulating property was maintained.
1:試験用積層体、10A、10B:基材層、11A、11B:接着層、12:アルミニウム合金板。 1: Test laminate, 10A, 10B: base material layer, 11A, 11B: adhesive layer, 12: aluminum alloy plate.

Claims (8)

  1.  バスバーの表面に貼合するためのバスバー用絶縁フィルムであって、
     基材層と、接着層とを有し、
     前記基材層は、形成材料として樹脂を含み、
     前記接着層は、フェノール樹脂(A)を含み、
     下記耐電圧試験を行ったとき、平均電界強度が5kV/mmに達しても通電が確認されないことを特徴とする、バスバー用絶縁フィルム。
    [耐電圧試験]
    ・試験用積層体
     厚み100μmのアルミニウム合金板の両面に、バスバー用絶縁フィルムを積層する。このとき、バスバー用絶縁フィルムの接着層側にアルミニウム合金板を積層させる。温度170℃、圧力0.4MPaの条件で10分間接着させた試験用積層体を準備する。この試験用積層体を、基材層を内側にして、折り曲げ角度90°、曲率半径Rを1mmとして折り曲げる。その後、温度180℃で10分間加熱する。バスバー用絶縁フィルムの基材層の厚みは150μmとする。
    ・耐電圧試験
     加熱後の試験用積層体の端部をはがしてアルミニウム合金板を露出させ、試験回路の一方の端子を接続し、試験回路の他方のステンレス製端子を、基材層の上から折り曲げ部に接触させる。その後、直流電圧を印加し、印加電圧を除々に大きくして、通電を確認する。
    An insulating film for a bus bar to be bonded to the surface of the bus bar,
    Having a base material layer and an adhesive layer,
    The base material layer contains a resin as a forming material,
    The adhesive layer contains a phenolic resin (A),
    An insulating film for a bus bar, characterized in that when the following withstand voltage test is carried out, even when the average electric field intensity reaches 5 kV / mm, energization is not confirmed.
    [anti-voltage test]
    -Test laminate A busbar insulating film is laminated on both sides of an aluminum alloy plate having a thickness of 100 µm. At this time, an aluminum alloy plate is laminated on the adhesive layer side of the bus bar insulating film. A test laminate bonded at a temperature of 170 ° C. and a pressure of 0.4 MPa for 10 minutes is prepared. This test laminate is bent with the base layer inside, with a bending angle of 90 ° and a radius of curvature R of 1 mm. Then, it heats at temperature 180 degreeC for 10 minutes. The thickness of the base layer of the insulating film for a bus bar is 150 μm.
    -Withstand voltage test Peel off the end of the test laminate after heating to expose the aluminum alloy plate, connect one terminal of the test circuit, and connect the other stainless steel terminal of the test circuit from above the base material layer. Make contact with the bent part. Thereafter, a DC voltage is applied, the applied voltage is gradually increased, and the energization is checked.
  2.  前記フェノール樹脂(A)は、固体フェノール樹脂であり、
     前記接着層は、さらにプライマー(B)を含む、請求項1に記載のバスバー用絶縁フィルム。
    The phenol resin (A) is a solid phenol resin,
    The insulating film for a bus bar according to claim 1, wherein the adhesive layer further includes a primer (B).
  3.  前記フェノール樹脂(A)は、軟化点が30℃以上の熱溶融型フェノール樹脂である、請求項1又は2に記載のバスバー用絶縁フィルム。 3. The busbar insulating film according to claim 1, wherein the phenolic resin (A) is a hot-melt phenolic resin having a softening point of 30 ° C. or higher. 4.
  4.  前記プライマー(B)は、官能基をポリオレフィンに導入した変性ポリオレフィン、エポキシ樹脂又はフェノキシ樹脂である、請求項2又は3に記載のバスバー用絶縁フィルム。 The insulating film for a bus bar according to claim 2 or 3, wherein the primer (B) is a modified polyolefin having a functional group introduced into the polyolefin, an epoxy resin, or a phenoxy resin.
  5.  前記接着層は、イソシアネート樹脂、オキサゾリン基含有樹脂、アミノ基含有樹脂、ポリアミン、アミド樹脂、メラミン樹脂、及び尿素樹脂からなる群より選択される1種以上の架橋剤(C)を含む、請求項1~4のいずれか1項に記載のバスバー用絶縁フィルム。 The said adhesive layer contains one or more crosslinking agents (C) selected from the group consisting of isocyanate resin, oxazoline group-containing resin, amino group-containing resin, polyamine, amide resin, melamine resin, and urea resin. 5. The insulating film for a bus bar according to any one of items 1 to 4.
  6.  前記バスバー用絶縁フィルムは、樹脂を形成材料として含む基材層と、接着層とを有し、前記基材層の少なくとも一方の面に接着層を備える、請求項1~5のいずれか1項に記載のバスバー用絶縁フィルム。 6. The busbar insulating film according to claim 1, further comprising: a base layer containing a resin as a forming material; and an adhesive layer, wherein at least one surface of the base layer is provided with an adhesive layer. 2. The insulating film for a bus bar according to item 1.
  7.  前記基材層は、フッ素樹脂、ポリイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂、液晶ポリエステル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、アクリル樹脂、ポリケトン樹脂、環状オレフィン樹脂、ポリメチルペンテン、ポリプロピレン、及びポリエチレンからなる群より選択される1種以上の樹脂を形成材料として含む、請求項1~6のいずれか1項に記載のバスバー用絶縁フィルム。 The base material layer is a fluororesin, a polyimide resin, a polyetheretherketone resin, a polyphenylenesulfide resin, a polyphenyleneether resin, a liquid crystal polyester resin, a polyester resin, a polyamide resin, a polyamideimide resin, an epoxy resin, an acrylic resin, a polyketone resin, and a cyclic resin. The insulating film for a bus bar according to any one of claims 1 to 6, wherein the insulating film contains at least one resin selected from the group consisting of an olefin resin, polymethylpentene, polypropylene, and polyethylene as a forming material.
  8.  板状導体と、請求項1~7のいずれか1項に記載のバスバー用絶縁フィルムとを備えたバスバー。 A bus bar comprising a plate-shaped conductor and the bus bar insulating film according to any one of claims 1 to 7.
PCT/IB2019/057601 2018-09-13 2019-09-10 Insulating film for bus bar and bus bar WO2020053747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018171483A JP7154905B2 (en) 2018-09-13 2018-09-13 Insulating film for busbars and busbars
JP2018-171483 2018-09-13

Publications (1)

Publication Number Publication Date
WO2020053747A1 true WO2020053747A1 (en) 2020-03-19

Family

ID=69778449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/057601 WO2020053747A1 (en) 2018-09-13 2019-09-10 Insulating film for bus bar and bus bar

Country Status (2)

Country Link
JP (1) JP7154905B2 (en)
WO (1) WO2020053747A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046196A (en) * 2010-09-01 2011-03-10 Hitachi Cable Ltd Mold
WO2017175397A1 (en) * 2016-04-08 2017-10-12 日立化成株式会社 Mica tape, cured product of mica tape, and insulating material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084621A (en) * 2000-09-04 2002-03-22 Sumitomo Wiring Syst Ltd Bus bar module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046196A (en) * 2010-09-01 2011-03-10 Hitachi Cable Ltd Mold
WO2017175397A1 (en) * 2016-04-08 2017-10-12 日立化成株式会社 Mica tape, cured product of mica tape, and insulating material

Also Published As

Publication number Publication date
JP2020043031A (en) 2020-03-19
JP7154905B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2020053746A1 (en) Hot-melt adhesive resin composition and hot-melt adhesive resin laminate
JP3342703B2 (en) Film adhesive for circuit connection and circuit board
JP3915512B2 (en) Circuit connecting adhesive, circuit connecting method and circuit connecting structure using the same
EP1076082B1 (en) Low-temperature setting adhesive and anisotropically electroconductive adhesive film using the same
CN111742029A (en) Adhesive composition, thermosetting adhesive sheet, and printed wiring board
JP5099284B2 (en) Anisotropic connection sheet material
TW201634644A (en) Thermosetting adhesive composition and thermosetting adhesive sheet
CN114174457B (en) Adhesive composition, thermosetting adhesive sheet, and printed wiring board
KR20120124470A (en) Anisotropic conductive film, bonded body and bonding method
JP2012116954A (en) Adhesive composition, adhesive film and wiring film using the same
US20070224397A1 (en) Connection Method of Conductive Articles, and Electric or Electronic Component with Parts Connected By the Connection Method
JP2021028388A (en) Electrically peelable type adhesive sheet, assembly and separation method of assembly
WO2020053747A1 (en) Insulating film for bus bar and bus bar
KR102336897B1 (en) Mounting body manufacturing method and anisotropic conductive film
CN114174459A (en) Adhesive composition, thermosetting adhesive sheet, and printed wiring board
JP2005194413A (en) Adhesive film for circuit connection and circuit connection structure
JPH07173448A (en) Anisotropically conductive film
JP4491852B2 (en) Interlayer insulating adhesive sheet and multilayer circuit board
JP7314377B2 (en) Hot-melt adhesive resin composition and hot-melt adhesive resin laminate
JP2007018760A (en) Anisotropic conduction film for glass base plate connection
JP4341673B2 (en) Circuit connecting adhesive, circuit connecting method and circuit connecting structure using the same
JPH0625632A (en) Adhesive composition and laminated film
CN114729234A (en) Method for producing film-wound body and connected body
CN113330082B (en) Conductive adhesive composition
KR20160050591A (en) Anisotropic conductive film and the semiconductor device using thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859280

Country of ref document: EP

Kind code of ref document: A1