JP2011046196A - Mold - Google Patents

Mold Download PDF

Info

Publication number
JP2011046196A
JP2011046196A JP2010195253A JP2010195253A JP2011046196A JP 2011046196 A JP2011046196 A JP 2011046196A JP 2010195253 A JP2010195253 A JP 2010195253A JP 2010195253 A JP2010195253 A JP 2010195253A JP 2011046196 A JP2011046196 A JP 2011046196A
Authority
JP
Japan
Prior art keywords
insulating polymer
adhesive
film
molded
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010195253A
Other languages
Japanese (ja)
Inventor
Shu Iwasaki
周 岩崎
Takanori Yamazaki
孝則 山崎
Takeyoshi Taki
毅義 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010195253A priority Critical patent/JP2011046196A/en
Publication of JP2011046196A publication Critical patent/JP2011046196A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Insulating Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold wherein a corona generating voltage is high, and an interval between metal sheets is small, and the assembling work thereof is easy. <P>SOLUTION: For the mold, an adhesive material layer 1 is installed on both surfaces of an insulating polymer film 2, and a sheet-like metal body 3 is respectively bonded to each adhesive material layer 1. At the same time, those both surfaces are molded with an external layer insulating polymer 6. When the sheet-like metal body 3 is bonded to the insulating polymer film 2, the bonding is performed in such a manner that the end sections 5 of the sheet-like metal body 3 may be covered with an adhesive material, and then, the peripheries of the bonded articles are molded with the external layer insulating polymer 6. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複数の板状金属体間を絶縁ポリマフィルムを用いて所定間隔に保つモールド成形体であり、特に、板状金属体端部のボイドの抑制を目的としたものである。   The present invention is a molded product that maintains an interval between a plurality of plate-shaped metal bodies using an insulating polymer film, and is particularly intended to suppress voids at the end portions of the plate-shaped metal bodies.

従来、複数の板状金属体(金属板)の間を絶縁するには、図4に示すように、フィルム状の絶縁ポリマ(以下、絶縁ポリマフィルムという)2にエポキシ系の熱硬化性接着剤を数μm〜数十μmの厚みで事前に塗布し、その接着剤付き絶縁ポリマ15の接着剤面で金属板両面を接着(ラミネート)した形をとっている。   Conventionally, in order to insulate between a plurality of plate-like metal bodies (metal plates), as shown in FIG. 4, an epoxy-based thermosetting adhesive is applied to a film-like insulating polymer (hereinafter referred to as an insulating polymer film) 2. Is applied in advance with a thickness of several μm to several tens of μm, and both sides of the metal plate are bonded (laminated) with the adhesive surface of the insulating polymer 15 with adhesive.

これらの金属板を絶縁する方法には2つの形式がある。その1つは、図5(a)に示すように、絶縁ポリマ15でラミネートした金属板3同士を接着剤16を用いて接着させ、絶縁層を形成するものであり、「絶縁フィルム積層一体型」と呼ばれる。もう1つは、より高電圧で使用する場合に用いられる形式で、図5(b)に示すように、十分な絶縁距離を確保するために、絶縁ポリマ15でラミネートした金属板3間に絶縁スペーサ4を挿入するものであり、「絶縁スペーサ分離型」と呼ばれる。   There are two types of methods for insulating these metal plates. One of them is, as shown in FIG. 5 (a), in which metal plates 3 laminated with an insulating polymer 15 are bonded together using an adhesive 16 to form an insulating layer. Called. The other is a type used when used at a higher voltage. As shown in FIG. 5B, insulation is provided between the metal plates 3 laminated with the insulating polymer 15 in order to secure a sufficient insulation distance. The spacer 4 is inserted and is called “insulating spacer separation type”.

特開2005−32465号公報JP 2005-32465 A

従来技術では金属板を絶縁フィルムでラミネートした形状、構造であるために、次のような二つの問題があった。   The prior art has the following two problems because it has a shape and structure in which a metal plate is laminated with an insulating film.

(1) 図5(a)に示した絶縁フィルム積層一体型の場合には、金属板3の端部にボイド17が発生してしまう(形成される)ため、コロナ発生電圧が低いという問題があった。   (1) In the case of the insulating film laminated integrated type shown in FIG. 5A, the void 17 is generated (formed) at the end of the metal plate 3, so that there is a problem that the corona generation voltage is low. there were.

(2) 図5(b)に示した高電圧で使用する場合(絶縁スペーサ分離型の場合)には、金属板3間の距離を広く取らなければならないため、大きなスペースが必要であるという問題があった。そのため、金属板3間の距離を低減し、配線の低インダクタンス化を図ることが難しかった。   (2) When using the high voltage shown in FIG. 5B (insulating spacer separation type), a large space is required because the distance between the metal plates 3 must be wide. was there. For this reason, it has been difficult to reduce the distance between the metal plates 3 and reduce the inductance of the wiring.

また、金属板3同士が分離しているため、組立作業に手間がかかるという問題があった。   Further, since the metal plates 3 are separated from each other, there is a problem in that it takes time to assemble.

そこで本発明の目的は、コロナ発生電圧が高く、金属板間の間隔が狭小で、組立作業が容易なモールド成形体及びその製造方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a molded product having a high corona generation voltage, a narrow interval between metal plates, and an easy assembling work, and a method for manufacturing the same.

上記の目的を達成するために、請求項1の発明は、絶縁ポリマフィルムの両面に接着材料の層を設け、各接着材料の層に板状金属体をそれぞれ接着すると共に、これらの両面を絶縁ポリマでモールド成形したモールド成形体において、上記絶縁ポリマフィルムに上記板状金属体を接着する際に、その板状金属体の端部を接着材料で覆うように接着し、しかるのち、これら接着したものの周囲を外層絶縁ポリマでモールド成形したものである。   In order to achieve the above object, the invention of claim 1 is provided with layers of an adhesive material on both surfaces of an insulating polymer film, and a plate-like metal body is bonded to each of the layers of the adhesive material, and both surfaces are insulated. In a molded body molded with a polymer, when the plate-like metal body is bonded to the insulating polymer film, the end of the plate-like metal body is bonded so as to be covered with an adhesive material, and then bonded. The periphery of the object is molded with an outer insulating polymer.

請求項2の発明は、上記板状金属体端部を、上記接着材料で、板状金属体の厚さの1/10以上の厚さで覆うことが好ましい。   In the invention of claim 2, it is preferable to cover the end of the plate-shaped metal body with the adhesive material with a thickness of 1/10 or more of the thickness of the plate-shaped metal body.

請求項3の発明は、上記絶縁ポリマフィルムを、芳香環を有するエンジニアリングプラスチックスで構成してもよい。   In the invention of claim 3, the insulating polymer film may be made of engineering plastics having an aromatic ring.

請求項4の発明は、上記絶縁ポリマフィルムと上記板状金属体を接着したものを外層絶縁ポリマシートで挟み、各外層絶縁ポリマシートを加熱プレスで溶融させて接着物の周囲を外層絶縁ポリマでモールド成形することが好ましい。   According to a fourth aspect of the present invention, an outer layer insulating polymer sheet is sandwiched between the insulating polymer film and the plate-shaped metal body bonded, and each outer layer insulating polymer sheet is melted with a hot press, and the periphery of the adhesive is coated with an outer layer insulating polymer. It is preferable to mold.

請求項5の発明は、上記各外層絶縁ポリマシートの片面に接着層を設け、各外層絶縁ポリマシートと上記接着物を接着層を用いて接着することが好ましい。   In the invention of claim 5, it is preferable that an adhesive layer is provided on one side of each of the outer insulating polymer sheets, and the outer insulating polymer sheets and the adhesive are bonded using the adhesive layer.

本発明は、絶縁ポリマフィルムの両面に接着材料の層を設け、各接着材料の層に板状金属体をそれぞれ接着すると共に、これらの両面を外層絶縁ポリマでモールド成形したモールド成形体の製造方法において、上記絶縁ポリマフィルムの両面に接着材料の層を設け、その絶縁ポリマフィルムの両面に上記板状金属体を配置し、その後、加熱、加圧して接着層を溶融させると共に、溶融した接着材料の一部を板状金属体の厚さの1/10以上の厚さで盛り上がらせ、板状金属体端部の少なくとも一部を接着材料で覆うように接着し、しかるのち、これら接着物を外層絶縁ポリマシートで挟み、外層絶縁ポリマシートを加熱プレスで溶融させて接着物の周囲を外層絶縁ポリマでモールド成形するものである。   The present invention provides a method for producing a molded body in which layers of an adhesive material are provided on both surfaces of an insulating polymer film, and a plate-like metal body is bonded to each adhesive material layer, and these both surfaces are molded with an outer insulating polymer. In the above, a layer of an adhesive material is provided on both surfaces of the insulating polymer film, the plate-like metal body is disposed on both surfaces of the insulating polymer film, and then the adhesive layer is melted by heating and pressing, and the molten adhesive material Part of the metal plate is raised to a thickness of 1/10 or more of the thickness of the plate-like metal body, and at least a part of the end of the plate-like metal body is bonded with an adhesive material. The outer layer insulating polymer sheet is sandwiched between the outer layer insulating polymer sheets, and the outer layer insulating polymer sheet is melted with a hot press, and the periphery of the adhesive is molded with the outer layer insulating polymer sheet.

本発明は、絶縁ポリマフィルムの両面に接着材料の層を設け、各接着材料の層に板状金属体をそれぞれ接着すると共に、これらの両面を外層絶縁ポリマでモールド成形したモールド成形体の製造方法において、上記絶縁ポリマフィルムの両面に熱硬化性接着剤を塗布し、その絶縁ポリマフィルムの両面に上記板状金属体を配置し、その後、加熱プレスして、塗布した熱硬化性接着剤の一部を板状金属体の厚さの1/10以上の厚さで盛り上がらせて板状金属体端部の少なくとも一部を熱硬化性接着剤で覆うと共に、熱硬化性接着剤を熱硬化させて接着し、しかるのち、これら接着物を外層絶縁ポリマシートで挟み、外層絶縁ポリマシートを加熱プレスで溶融させて接着物の周囲を外層絶縁ポリマでモールド成形するものである。   The present invention provides a method for producing a molded body in which layers of an adhesive material are provided on both surfaces of an insulating polymer film, and a plate-like metal body is bonded to each adhesive material layer, and these both surfaces are molded with an outer insulating polymer. In this case, a thermosetting adhesive is applied to both sides of the insulating polymer film, the plate-like metal bodies are arranged on both sides of the insulating polymer film, and then heated and pressed, and one of the applied thermosetting adhesives is applied. The part is raised to a thickness of 1/10 or more of the thickness of the plate-like metal body, and at least a part of the end of the plate-like metal body is covered with a thermosetting adhesive, and the thermosetting adhesive is thermoset. After that, these adhesives are sandwiched between outer layer insulating polymer sheets, the outer layer insulating polymer sheet is melted with a hot press, and the periphery of the adhesive is molded with the outer layer insulating polymer.

本発明によれば、金属板端部を接着材料で覆ってモールドすることにより、外層絶縁ポリマと金属板端部の間にボイドが形成されるのを抑制することができ、電界の集中を緩和することができる。   According to the present invention, it is possible to suppress the formation of voids between the outer insulating polymer and the metal plate edge by covering and molding the metal plate edge with an adhesive material, thereby reducing the concentration of the electric field. can do.

以下、本発明の好適一実施の形態を添付図面に基いて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.

本実施の形態に係るモールド成形体は、図2に示すように、積層された絶縁ポリマフィルム2(以下、積層フィルムという)の両面に、所定層厚の接着材料の層(接着フィルム)1を設け、各接着フィルム1に金属板(板状金属体)3をそれぞれ接着すると共に、これらの両面(周囲)を外層絶縁ポリマ6でモールド成形したものである。   As shown in FIG. 2, the molded body according to the present embodiment has a layer (adhesive film) 1 of an adhesive material having a predetermined layer thickness on both surfaces of a laminated insulating polymer film 2 (hereinafter referred to as a laminated film). A metal plate (plate-like metal body) 3 is bonded to each adhesive film 1 and both surfaces (peripheries) thereof are molded with an outer insulating polymer 6.

積層フィルムは、複数枚、図2中では2枚の絶縁ポリマフィルム2を接着して形成され、金属板3,3が積層フィルムにより所定間隔に保たれる。積層フィルムにおける絶縁ポリマフィルム2の積層枚数は、金属板3,3の間隔(離間距離)に応じて適宜決定される。   The laminated film is formed by bonding a plurality of insulating polymer films 2 in FIG. 2, and the metal plates 3 and 3 are kept at a predetermined interval by the laminated film. The number of laminated insulating polymer films 2 in the laminated film is appropriately determined according to the interval (separation distance) between the metal plates 3 and 3.

積層フィルムと金属板3は、接着フィルム1を介して、かつ、金属板3の端部の少なくとも一部が接着材料で覆われるように接着される。より詳しくは、接着時の加圧圧力により、図1に示すように、接着材料の一部を、金属板3の厚さtのt/10以上の厚さ、幅で盛り上がらせて盛り上がり部5を形成し、金属板3の端部が盛り上がり部5で覆われる。つまり、金属板3の端部と積層フィルムの境界部が、接着材料による盛り上がり部5で覆われる。   The laminated film and the metal plate 3 are bonded via the adhesive film 1 so that at least a part of the end of the metal plate 3 is covered with an adhesive material. More specifically, as shown in FIG. 1, a part of the adhesive material is raised with a thickness and width equal to or greater than t / 10 of the thickness t of the metal plate 3 by the pressure applied at the time of bonding. The end of the metal plate 3 is covered with the raised portion 5. That is, the boundary between the end portion of the metal plate 3 and the laminated film is covered with the raised portion 5 made of the adhesive material.

金属板3、接着フィルム1、積層フィルムの接着物(以下、内部部品という)と外層絶縁ポリマ6は、接着層7を介して接着することが好ましい。   It is preferable that the metal plate 3, the adhesive film 1, the laminated film adhesive (hereinafter referred to as “inner part”) and the outer insulating polymer 6 are bonded via an adhesive layer 7.

盛り上がり部5の厚さ、幅を金属板3の厚さtのt/10以上としたのは、t/10未満だと、金属板3の端部と積層フィルムの境界部を、外気から遮断する効果が不十分となり、後述する電界の集中を緩和することができず、コロナ発生電圧が低くなってしまうためである。   When the thickness and width of the raised portion 5 are set to t / 10 or more of the thickness t of the metal plate 3, if less than t / 10, the end of the metal plate 3 and the boundary portion of the laminated film are shielded from the outside air. This is because the effect of this is insufficient, the concentration of the electric field, which will be described later, cannot be relaxed, and the corona generation voltage becomes low.

また、接着フィルム1の層厚は、その接着、溶融時、金属板3の端部に盛り上がり部5を形成することが可能な厚さであり、例えば金属板3の厚さtのt/10前後とされる。しかし、接着フィルム1の層厚は、後述するプレス成形条件(温度、圧力、時間)や金属板3の厚さにより変化するため、特にこれに限定するものではない。接着層7の層厚も、接着フィルム1の層厚と同様にすることが好ましい。   The layer thickness of the adhesive film 1 is such a thickness that the raised portion 5 can be formed at the end portion of the metal plate 3 at the time of bonding and melting. For example, t / 10 of the thickness t of the metal plate 3 It is supposed to be before and after. However, since the layer thickness of the adhesive film 1 varies depending on press molding conditions (temperature, pressure, time) described later and the thickness of the metal plate 3, it is not particularly limited thereto. The layer thickness of the adhesive layer 7 is preferably the same as the layer thickness of the adhesive film 1.

次に、本実施の形態に係るモールド成形体の製造方法を説明する。   Next, a method for manufacturing a molded body according to the present embodiment will be described.

金属板3、接着フィルム1、絶縁ポリマフィルム2が所定段数で積層配置される。例えば、図2に示すように、上から金属板3、接着フィルム1、積層フィルム、接着フィルム1、金属板3の順に、各層が積層配置される。接着材料の層1を構成する接着材料として、融点(あるいは軟化点)T1が絶縁ポリマフィルム2の融点(あるいは軟化点)T2よりも低い材料が用いられる。   The metal plate 3, the adhesive film 1, and the insulating polymer film 2 are laminated and arranged in a predetermined number of steps. For example, as shown in FIG. 2, each layer is laminated and disposed in the order of the metal plate 3, the adhesive film 1, the laminated film, the adhesive film 1, and the metal plate 3 from the top. As the adhesive material constituting the layer 1 of the adhesive material, a material having a melting point (or softening point) T1 lower than the melting point (or softening point) T2 of the insulating polymer film 2 is used.

次に、融点T1よりも高く、融点T2よりも低い温度でプレス成形、すなわち加熱プレスすることにより、接着フィルム1が溶融されると共に、溶融した接着材料の一部が金属板3の厚さの1/10以上の厚さで盛り上がり、盛り上がり部5が形成される。これによって、金属板3と絶縁ポリマフィルム2が接着され、かつ、金属板3の端部が接着材料で覆われるように接着され、内部部品が成形される。   Next, the adhesive film 1 is melted by press molding at a temperature higher than the melting point T1 and lower than the melting point T2, that is, heat-pressed, and a part of the melted adhesive material has the thickness of the metal plate 3. Swelling occurs at a thickness of 1/10 or more, and a swelled portion 5 is formed. As a result, the metal plate 3 and the insulating polymer film 2 are bonded to each other, and the end portions of the metal plate 3 are bonded so as to be covered with the adhesive material, thereby forming the internal component.

次に、片面に接着層7を設けた外層絶縁ポリマシート(図示せず)を用い、内部部品が挟み込まれる。外層絶縁ポリマシートを加熱プレスで溶融させることで、内部部品の周囲が外層絶縁ポリマ6でモールド成形され、モールド成形体が得られる。   Next, using an outer layer insulating polymer sheet (not shown) provided with an adhesive layer 7 on one side, the internal components are sandwiched. By melting the outer layer insulating polymer sheet with a hot press, the periphery of the inner part is molded with the outer layer insulating polymer 6, and a molded body is obtained.

金属板3、接着フィルム1、積層フィルム(絶縁ポリマフィルム2)のプレス成形を行う場合、絶縁ポリマフィルム2が熱や圧力により変形しないことが必要であるため、融点T1と融点T2の差が大きいことが望ましい。そのため、絶縁ポリマフィルム2としてはエンジニアリングプラスチックス(以下、エンプラという)などの耐熱性に優れたポリマ、接着材料としては変性されたポリオレフィン系のものが好ましい。   When press-molding the metal plate 3, the adhesive film 1, and the laminated film (insulating polymer film 2), it is necessary that the insulating polymer film 2 is not deformed by heat or pressure, so that the difference between the melting point T1 and the melting point T2 is large. It is desirable. For this reason, the insulating polymer film 2 is preferably a polymer having excellent heat resistance such as engineering plastics (hereinafter referred to as engineering plastic), and the adhesive material is preferably a modified polyolefin-based one.

金属板3、接着フィルム1、積層フィルムで構成される内部部品をモールドする外層絶縁ポリマ6としては、その融点(あるいは軟化点)T3が、前述した融点T2よりも低い材料が用いられる。たとえば、ポリエチレンや、ポリプロピレンなどのポリオレフィン系のポリマが好ましい。   As the outer layer insulating polymer 6 for molding the inner part composed of the metal plate 3, the adhesive film 1, and the laminated film, a material whose melting point (or softening point) T3 is lower than the melting point T2 described above is used. For example, polyolefin polymers such as polyethylene and polypropylene are preferable.

芳香環を有する剛直な材料であるエンプラの代表例としては、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリフェニレンエーテル(PPE)、ポリカーボネート(PC)、ポリアミド(PA)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマ(LCP)、ポリエーテルサルホン(PES)などがあるが、これに限るものではない。   Representative examples of engineering plastics that are rigid materials having aromatic rings include polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene ether (PPE), polycarbonate (PC), polyamide (PA), polyphenylene sulfide (PPS). , Polyether ether ketone (PEEK), liquid crystal polymer (LCP), polyether sulfone (PES), etc., but are not limited thereto.

接着材料の代表的な例としては、無水マレイン酸で変性されたポリエチレンやポリプロピレンなどが挙げられる。   Typical examples of the adhesive material include polyethylene and polypropylene modified with maleic anhydride.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

本実施の形態に係るモールド成形体においては、金属板3の端部の一方側(積層フィルム側)が、接着材料によって金属板3の厚さの1/10以上の厚さで覆われている。このため、たとえ外層絶縁ポリマ6の流動性が不十分で、金属板3の端部と積層フィルムの境界部に外層絶縁ポリマ6が充填されず、この境界部にボイド(図5(a)参照)が形成されたとしても、金属板3の端部の一方側は外気から完全に遮断される。よって、金属板3の端部の一方側において、電界が集中するのを緩和することができ、高電界での使用が可能となる。   In the molded product according to the present embodiment, one side (laminated film side) of the end portion of the metal plate 3 is covered with an adhesive material at a thickness of 1/10 or more of the thickness of the metal plate 3. . For this reason, even if the fluidity of the outer layer insulating polymer 6 is insufficient, the outer layer insulating polymer 6 is not filled in the boundary portion between the end portion of the metal plate 3 and the laminated film, and voids are formed in this boundary portion (see FIG. 5A). ) Is formed, one side of the end of the metal plate 3 is completely cut off from the outside air. Therefore, the concentration of the electric field on one side of the end portion of the metal plate 3 can be alleviated, and use with a high electric field is possible.

また、モールド成形体においては、外層絶縁ポリマ6を構成する外層絶縁ポリマシートの片面に接着層7を設けていることから、外層絶縁ポリマ6のモールド成形時に、金属板3の端部の他方側も、接着層7によって金属板3の厚さの1/10以上の厚さで覆われる。このため、金属板3の端部の他方側も外気から完全に遮断される。よって、金属板3の端部の他方側においても、電界が集中するのを緩和することができ、高電界での使用が可能となる。   In the molded product, since the adhesive layer 7 is provided on one side of the outer insulating polymer sheet constituting the outer insulating polymer 6, the other side of the end portion of the metal plate 3 is formed when the outer insulating polymer 6 is molded. Also, the adhesive layer 7 is covered with a thickness of 1/10 or more of the thickness of the metal plate 3. For this reason, the other side of the end of the metal plate 3 is also completely shielded from the outside air. Therefore, the concentration of the electric field can be alleviated also on the other side of the end portion of the metal plate 3, and the use with a high electric field becomes possible.

本実施の形態に係るモールド成形体のコロナ発生電圧を測定したところ、例えば、5kV以上の値が得られ、コロナ発生電圧は高かった。これと比較すると、金属板3の端部の一方側が接着材料によって覆われていないモールド成形体のコロナ発生電圧は低かった。このモールド成形体の断面を観察すると、金属板の端部の一方側周辺には外層絶縁ポリマ6が充填されておらず、ボイドが形成されていた。これらから、本実施の形態に係るモールド成形体のように、金属板3の端部を、接着材料によって金属板3の厚さの1/10以上の厚さで覆うことで、金属板3の端部におけるボイド形成を抑制できることがわかる。   When the corona generation voltage of the molded product according to the present embodiment was measured, for example, a value of 5 kV or more was obtained, and the corona generation voltage was high. Compared with this, the corona generation voltage of the molded body in which one side of the end portion of the metal plate 3 is not covered with the adhesive material was low. When the cross section of the molded body was observed, the outer insulating polymer 6 was not filled around one side of the end of the metal plate, and voids were formed. From these, like the molded body according to the present embodiment, the end of the metal plate 3 is covered with an adhesive material with a thickness of 1/10 or more of the thickness of the metal plate 3, thereby It can be seen that void formation at the end can be suppressed.

また、絶縁スペーサ分離型のように、金属板3,3間に絶縁スペーサを挿入する必要がないため、金属板3,3間の間隔を狭小にすることができ、配線の低インダクタンス化を図ることができる。   Further, unlike the insulating spacer separation type, it is not necessary to insert an insulating spacer between the metal plates 3 and 3, so that the interval between the metal plates 3 and 3 can be reduced, and the wiring can be reduced in inductance. be able to.

また、金属板3,3同士は積層フィルムを介して一体に接着しているため、モールド成形体における内部部品の取り扱いは簡単であり、組立作業も容易となる。   Moreover, since the metal plates 3 and 3 are bonded together via a laminated film, the handling of the internal components in the molded body is simple, and the assembly work is also easy.

本実施の形態に係るモールド成形体は、インバータ電源用ラミネートブスバー、例えば、HEV(ハイブリッド車)、電車、エレベータ・エスカレータなどのインバータ電源用ラミネートブスバーに適用することができる。   The molded body according to the present embodiment can be applied to a laminate bus bar for an inverter power source, for example, a laminate bus bar for an inverter power source such as an HEV (hybrid vehicle), a train, and an elevator / escalator.

次に、本発明の他の実施の形態を、図1、図2に基いて説明する。   Next, another embodiment of the present invention will be described with reference to FIGS.

前実施の形態に係るモールド成形体の製造方法は、積層フィルムの両面に接着フィルム1を設け、各接着フィルム1に金属板3をそれぞれ接着するものであった。これに対して、本実施の形態に係るモールド成形体の製造方法は、積層フィルムの両面に熱硬化性接着剤を塗布し、各熱硬化性接着剤の層に金属板3をそれぞれ接着するものである。   The manufacturing method of the molded object which concerns on previous embodiment provided the adhesive film 1 on both surfaces of the laminated | multilayer film, and adhere | attached the metal plate 3 on each adhesive film 1, respectively. On the other hand, the method for producing a molded body according to the present embodiment applies a thermosetting adhesive to both surfaces of a laminated film, and bonds the metal plate 3 to each thermosetting adhesive layer. It is.

先ず、積層フィルムの両面に所定層厚の熱硬化性接着剤を塗布する。熱硬化性接着剤として、その硬化温度T4が絶縁ポリマフィルム2の融点(あるいは軟化点)T2よりも低い材料が用いられる。熱硬化性接着剤としては硬化温度の低いものが好ましく、代表的な例として、エポキシ系のものやアクリル系のものなどが挙げられる。   First, a thermosetting adhesive having a predetermined layer thickness is applied to both surfaces of the laminated film. As the thermosetting adhesive, a material whose curing temperature T4 is lower than the melting point (or softening point) T2 of the insulating polymer film 2 is used. As the thermosetting adhesive, one having a low curing temperature is preferable, and representative examples include epoxy-based adhesives and acrylic-based adhesives.

次に、上から金属板3、両面に接着剤を塗布した積層フィルム、金属板3の順に、各層が積層配置される。その後、硬化温度T4よりも高く、融点T2よりも低い温度で加熱プレスすることにより、先ず、金属板3が積層フィルム側に押し付けられて、未硬化の熱硬化性接着剤の一部が金属板3の厚さの1/10以上の厚さに盛り上がり、盛り上がり部5が形成される。これによって、金属板3の端部の一方側が未硬化の熱硬化性接着剤で覆われる。続いて、熱硬化性接着剤が熱硬化される。これによって、金属板3と絶縁ポリマフィルム2が接着され、かつ、金属板3の端部の一方側が熱硬化性接着剤で覆われるように接着され、内部部品が成形される。   Next, the layers are laminated and arranged in the order of the metal plate 3, the laminated film with the adhesive applied to both surfaces, and the metal plate 3 from the top. Then, by heating and pressing at a temperature higher than the curing temperature T4 and lower than the melting point T2, first, the metal plate 3 is pressed against the laminated film side, and a part of the uncured thermosetting adhesive is metal plate. 3 swelled to a thickness of 1/10 or more of the thickness of 3, and a swelled portion 5 is formed. Thereby, one side of the end of the metal plate 3 is covered with the uncured thermosetting adhesive. Subsequently, the thermosetting adhesive is thermoset. As a result, the metal plate 3 and the insulating polymer film 2 are bonded, and one end of the metal plate 3 is bonded so as to be covered with the thermosetting adhesive, thereby forming the internal component.

次に、片面に接着層7を設けた外層絶縁ポリマシートを用い、内部部品が挟み込まれる。外層絶縁ポリマシートを加熱プレスで溶融させることで、内部部品の周囲が外層絶縁ポリマ6でモールド成形され、モールド成形体が得られる。   Next, using an outer insulating polymer sheet provided with an adhesive layer 7 on one side, the internal components are sandwiched. By melting the outer layer insulating polymer sheet with a hot press, the periphery of the inner part is molded with the outer layer insulating polymer 6, and a molded body is obtained.

本実施の形態に係る製造方法で得られたモールド成形体においても、前実施の形態に係る製造方法で得られたモールド成形体と同様の作用効果が得られる。   Also in the molded product obtained by the manufacturing method according to the present embodiment, the same effects as the molded product obtained by the manufacturing method according to the previous embodiment can be obtained.

(実施例1)
本発明の実施の一例を図3に示す。金属板として銅電極(大11:55mm×55mm、t=1mm(図3(a))、小12:55mm×35mm、t=1mm(図3(b))、絶縁フィルム(内層フィルム)としてLCP(ジャパンゴアテックス(株)製、ST225N−BT1、40mm×40mm、t=0.225mm)、絶縁ポリマ(外層材料)として難燃ポリオレフィン(直鎖状低密度ポリエチレン(LLDPE)/ポリプロピレン(PP)=1/1ブレンド、粒径1μmの水酸化マグネシウム(Mg(OH)2)をブレンドポリマ100重量部当り200重量部充填)、接着材料(接着フィルム)として酸変性ポリプロピレン(三菱化学(株)、モディックP594、t=0.1mm)を用いた。図3(a)、図3(b)中における14は、端子を通すための穴である。
Example 1
An example of the implementation of the present invention is shown in FIG. Copper electrode (large 11:55 mm × 55 mm, t = 1 mm (FIG. 3A)), small 12:55 mm × 35 mm, t = 1 mm (FIG. 3B) as metal plate, LCP as insulating film (inner layer film) (Japan Gore-Tex Co., Ltd., ST225N-BT1, 40 mm × 40 mm, t = 0.225 mm), flame retardant polyolefin (linear low density polyethylene (LLDPE) / polypropylene (PP)) as an insulating polymer (outer layer material) = 1/1 blend, magnesium hydroxide (Mg (OH) 2 ) with a particle size of 1 μm, 200 parts by weight per 100 parts by weight of blend polymer, acid-modified polypropylene (Mitsubishi Chemical Corporation, Modic) as adhesive material (adhesive film) P594, t = 0.1 mm) 14 in FIG.3 (a) and FIG.3 (b) is a hole for letting a terminal pass. .

絶縁フィルム2枚を接着フィルムを用いて、180℃で熱融着させ、2枚の絶縁フィルムからなる積層フィルム13(図3(c)参照)を作製した。この積層フィルム13の両面に、0.1mm厚の接着フィルムを同様に接着させた。   Two insulating films were heat-sealed at 180 ° C. using an adhesive film to produce a laminated film 13 (see FIG. 3C) composed of two insulating films. An adhesive film having a thickness of 0.1 mm was similarly adhered to both surfaces of the laminated film 13.

次に、図3(c)に示すように、銅電極小12の端部を5mmはみだした状態で積層フィルム13をセットし、その上から銅電極大11を載せ、180℃の加熱プレス成形により、加熱、加圧、冷却することで、積層フィルム13の接着フィルムを溶融、圧着、固化させ、銅電極小12、積層フィルム13、及び銅電極大11を接着し、内部部品を形成した。接着フィルムは、プレス成形時に加熱されて溶融し、銅電極端部に0.1mm以上の高さで盛り上がり部が形成された。   Next, as shown in FIG.3 (c), the laminated film 13 is set in the state which protruded 5 mm of the edge part of the copper electrode small 12, and the copper electrode large 11 was mounted | worn from it, and 180 degreeC hot press molding was carried out. By heating, pressurizing and cooling, the adhesive film of the laminated film 13 was melted, pressure-bonded and solidified, and the small copper electrode 12, the laminated film 13 and the large copper electrode 11 were adhered to form an internal part. The adhesive film was heated and melted during press molding, and a raised portion was formed at a height of 0.1 mm or more at the end of the copper electrode.

次に、外層材料のシート(厚さ2mm)に接着フィルムを180℃で接着させ、内部部品の両面に、接着フィルムを接着させた外層材料シートをそれぞれ配置し、180℃でプレスした。プレスにより、図2に示すように、内部部品が外層材料でモールドされたモールド絶縁電極(モールド成形体)が得られた。   Next, an adhesive film was adhered to the outer layer material sheet (thickness: 2 mm) at 180 ° C., and the outer layer material sheets with the adhesive film adhered were arranged on both surfaces of the internal component, and pressed at 180 ° C. As shown in FIG. 2, by pressing, a molded insulating electrode (molded body) in which the inner part was molded with the outer layer material was obtained.

このモールド絶縁電極は、その製造時、たとえ外層材料の流動性が悪くても、銅電極端部が接着材料(盛り上がり部)で覆われているため、ボイドは発生せず、完全に内部部品をモールドすることができた。   When this mold insulated electrode is manufactured, even if the fluidity of the outer layer material is poor, the end of the copper electrode is covered with the adhesive material (swelled part), so no voids are generated and the internal parts are completely covered. I was able to mold.

このような手法で得られたモールド絶縁電極で、コロナ発生電圧(コロナ放電開始電圧)を感度10pCで測定したところ、5kV以上の値が得られた。また、このモールド品の断面を観察したところ、銅電極端部周辺に、電気的絶縁に悪影響を与える大きさのボイドが発生していないことが確認された。   When the corona generation voltage (corona discharge start voltage) was measured at a sensitivity of 10 pC with the mold insulating electrode obtained by such a method, a value of 5 kV or more was obtained. Further, when the cross section of this molded product was observed, it was confirmed that no void having a size that adversely affects electrical insulation was generated around the end of the copper electrode.

(実施例2)
実施例1と同様に金属板として銅電極(大11:55mm×55mm、t=1mm、小12:55mm×35mm、t=1mm)、絶縁フィルム(内層フィルム)としてPPS(東レ(株)製、トレリナ、40mm×40mm、t=0.3mm)、絶縁ポリマ(外層材料)として難燃ポリオレフィン(リケンテクノス(株)製、トリニティANA9954N)、内層フィルムに用いる接着材料として、2液混合型シリコーン系接着剤(コニシ(株)製、ボンドMOS7、t=0.1mm)、外層材料に用いる接着材料として酸変性ポリプロピレン(三菱化学(株)、モディックP594、t=0.1mm)を用いた。
(Example 2)
As in Example 1, a copper electrode (large 11:55 mm × 55 mm, t = 1 mm, small 12:55 mm × 35 mm, t = 1 mm) as a metal plate, and PPS (manufactured by Toray Industries, Inc.) as an insulating film (inner layer film) Torelina, 40 mm × 40 mm, t = 0.3 mm), flame retardant polyolefin (outer layer material), flame retardant polyolefin (manufactured by Riken Technos Co., Ltd., Trinity ANA9954N), two-component mixed silicone adhesive as an adhesive material used for inner layer film (Manufactured by Konishi Co., Ltd., Bond MOS7, t = 0.1 mm), and acid-modified polypropylene (Mitsubishi Chemical Corporation, Modic P594, t = 0.1 mm) was used as an adhesive material used for the outer layer material.

絶縁フィルム2枚を、接着剤を用い、180℃で熱硬化させて接着し、2枚の絶縁フィルムからなる積層フィルム13を作製した。この積層フィルム13の両面に接着剤を0.1mm厚で塗布した。   Two insulating films were heat-cured at 180 ° C. using an adhesive and adhered to produce a laminated film 13 made of two insulating films. An adhesive was applied to both sides of the laminated film 13 with a thickness of 0.1 mm.

次に、銅電極小12の端部を5mmはみ出した状態で積層フィルム13をセットし、その上から銅電極大11を載せた。その後、180℃の加熱プレスにより、加熱することで、先ず、未硬化の接着剤が銅電極端部に0.1mm以上の高さで盛り上がり部を形成し、その後、接着剤が熱硬化され、銅電極小12、積層フィルム13、及び銅電極大11を接着し、内部部品を形成した。   Next, the laminated film 13 was set with the end of the copper electrode small 12 protruding 5 mm, and the copper electrode large 11 was placed thereon. Then, by heating with a 180 ° C. heating press, first, an uncured adhesive forms a raised portion at a height of 0.1 mm or more at the end of the copper electrode, and then the adhesive is thermally cured, The small copper electrode 12, the laminated film 13, and the large copper electrode 11 were bonded to form an internal part.

次に、外層材料のシート(厚さ2mm)に接着剤を180℃で接着させ、内部部品の両面に、接着剤を接着させた外層材料シートをそれぞれ配置し、180℃でプレスした。プレスにより、図2に示すように、内部部品が外層材料でモールドされたモールド絶縁電極(モールド成形体)が得られた。   Next, an adhesive was adhered to the sheet of outer layer material (thickness 2 mm) at 180 ° C., and the outer layer material sheet with the adhesive adhered was disposed on both surfaces of the internal component, and pressed at 180 ° C. As shown in FIG. 2, by pressing, a molded insulating electrode (molded body) in which the inner part was molded with the outer layer material was obtained.

実施例2のモールド絶縁電極においても、実施例1と同様にボイドは発生せず、完全に内部部品をモールドすることができた。   In the molded insulating electrode of Example 2, no void was generated as in Example 1, and the internal part could be completely molded.

このような手法で得られたモールド絶縁電極で、コロナ発生電圧を測定したところ、5kV以上の値が得られた。また、このモールド品の断面を観察したところ、銅電極端部周辺に、電気的絶縁に悪影響を与える大きさのボイドが発生していないことが確認された。   When the voltage generated by the corona was measured with the mold insulating electrode obtained by such a method, a value of 5 kV or more was obtained. Further, when the cross section of this molded product was observed, it was confirmed that no void having a size that adversely affects electrical insulation was generated around the end of the copper electrode.

(実施例3)
実施例1、2と同じ電極を用い、絶縁フィルム(内層フィルム)として変性PPE(旭化成(株)製、ザイロン540Z、t=0.3mm)、絶縁ポリマ(外層材料)として難燃ポリエチレン(宇部丸善ポリエチレン(株)製、UBEポリエチレンC790N)、接着材料としてホットメルト式接着剤(旭化成(株)製、SEBS(スチレン−エチレン−ブチレンブロック共重合体、t=0.3mm)と酸変性ポリエチレン(三菱化学(株)製、モディックM545、t=0.2mm)の積層フィルム)を用いた。
(Example 3)
Using the same electrode as in Examples 1 and 2, modified PPE (made by Asahi Kasei Co., Ltd., Zylon 540Z, t = 0.3 mm) as an insulating film (inner layer film), flame retardant polyethylene (Ube Maruzen) as an insulating polymer (outer layer material) Polyethylene Co., Ltd., UBE polyethylene C790N), hot melt adhesive (manufactured by Asahi Kasei Co., Ltd.), SEBS (styrene-ethylene-butylene block copolymer, t = 0.3 mm) and acid-modified polyethylene (Mitsubishi) A laminated film made by Chemical Co., Ltd., Modic M545, t = 0.2 mm) was used.

プレス温度を120℃とし、実施例1と同様な手順で内部部品を作製した。接着フィルム(積層フィルム13)は、プレス成形時に加熱されて溶融し、銅電極端部に0.1mm以上の高さで盛り上がり部が形成された。   The internal temperature was produced in the same procedure as in Example 1 with the pressing temperature set to 120 ° C. The adhesive film (laminated film 13) was heated and melted during press molding, and a raised portion was formed at a height of 0.1 mm or more at the end of the copper electrode.

次に、外層材料シートをプレス温度120℃でプレスし、実施例1と同様な手順でモールドし、モールド絶縁電極を作製した。   Next, the outer layer material sheet was pressed at a press temperature of 120 ° C. and molded in the same procedure as in Example 1 to produce a molded insulating electrode.

このような手法で得られたモールド絶縁電極のコロナ発生電圧を測定したところ、5kV以上の値が得られた。また、このモールド品の断面を観察したところ、銅電極端部周辺に、電気的絶縁に悪影響を与える大きさのボイドが発生していないことが確認された。   When the corona generation voltage of the mold insulating electrode obtained by such a method was measured, a value of 5 kV or more was obtained. Further, when the cross section of this molded product was observed, it was confirmed that no void having a size that adversely affects electrical insulation was generated around the end of the copper electrode.

(比較例1)
金属板として銅電極(大11:55mm×55mm、t=1mm、小12:55mm×35mm、t=1mm)、絶縁フィルム(内層フィルム)としてPPS(東レ(株)製、トレリナ、40mm×40mm、t=0.3mm)、絶縁ポリマ(外層材料)として難燃ポリオレフィン(リケンテクノス(株)製、トリニティANA9954N)、内層フィルムに用いる接着材料として、2液混合型シリコーン系接着剤(コニシ(株)製、ボンドMOS7、t=0.02mm)、外層材料に用いる接着材料として酸変性ポリプロピレン(三菱化学(株)、モディックP594、t=0.1mm)を用いた。
(Comparative Example 1)
Copper electrode (large 11:55 mm × 55 mm, t = 1 mm, small 12:55 mm × 35 mm, t = 1 mm) as a metal plate, PPS (Toray Industries, Torelina, 40 mm × 40 mm, as an insulating film (inner layer film), t = 0.3mm), flame retardant polyolefin (made by Riken Technos Co., Ltd., Trinity ANA9954N) as an insulating polymer (outer layer material), and two-component mixed silicone adhesive (made by Konishi Co., Ltd.) as an adhesive material used for the inner layer film , Bond MOS7, t = 0.02 mm), and acid-modified polypropylene (Mitsubishi Chemical Corporation, Modic P594, t = 0.1 mm) was used as the adhesive material used for the outer layer material.

絶縁フィルム2枚を接着剤を用いて、180℃で熱硬化させ、2枚の絶縁フィルムからなる積層フィルム13を作製した。この積層フィルム13の両面に接着材料を薄く(0.02mm厚で)塗布した。   Two insulating films were thermally cured at 180 ° C. using an adhesive to produce a laminated film 13 composed of two insulating films. The adhesive material was applied thinly (with a thickness of 0.02 mm) on both surfaces of the laminated film 13.

次に、銅電極小12の端部を5mmはみ出した状態で積層フィルム13をセットし、その上から銅電極大11を載せた。その後、180℃の加熱プレスにより、加熱することで、接着剤が熱硬化され、銅電極小12、積層フィルム13、及び銅電極大11を接着し、内部部品を形成した。この加熱プレス時、接着剤の塗布厚さが薄いため、銅電極端部に0.1mm以上の高さで盛り上がり部を形成することができなかった。   Next, the laminated film 13 was set with the end of the copper electrode small 12 protruding 5 mm, and the copper electrode large 11 was placed thereon. Then, the adhesive was thermally cured by heating with a 180 ° C. hot press, and the small copper electrode 12, the laminated film 13, and the large copper electrode 11 were bonded to form an internal part. At the time of this hot pressing, since the coating thickness of the adhesive was thin, it was impossible to form a raised portion at a height of 0.1 mm or more at the end of the copper electrode.

次に、外層材料のシート(厚さ2mm)に接着剤を180℃で接着させ、内部部品の両面に、接着剤を接着させた外層材料シートをそれぞれ配置し、180℃でプレスした。プレスにより、内部部品が外層材料でモールドされたモールド絶縁電極(モールド成形体)が得られた。   Next, an adhesive was adhered to the sheet of outer layer material (thickness 2 mm) at 180 ° C., and the outer layer material sheet with the adhesive adhered was disposed on both surfaces of the internal component, and pressed at 180 ° C. By pressing, a molded insulated electrode (molded article) in which the internal part was molded with the outer layer material was obtained.

このような手法で得られたモールド絶縁電極のコロナ発生電圧を測定したところ、2kV程度でコロナ放電が発生した。モールド絶縁電極を切断し、その断面を観察したところ、銅電極端部周辺に、ボイドが確認された。   When the corona generation voltage of the mold insulating electrode obtained by such a method was measured, corona discharge was generated at about 2 kV. When the mold insulating electrode was cut and the cross section was observed, voids were confirmed around the end of the copper electrode.

以上より、実施例1〜3の場合、銅電極端部が接着材料で覆われていることから、銅電極端部周辺においてボイドが形成されるのが抑制され、高いコロナ発生電圧(5kV以上)が得られた。   From the above, in Examples 1 to 3, since the copper electrode end portion is covered with the adhesive material, the formation of voids around the copper electrode end portion is suppressed, and a high corona generation voltage (5 kV or more). was gotten.

これに対して、接着材料で銅電極端部が覆われていない比較例1の場合、コロナ発生電圧は5kV未満(2kV程度)と低く、その断面を観察すると銅電極の端部周辺に外層材料が充填されておらず、銅電極端部周辺に、ボイドが形成されていた。   On the other hand, in the case of Comparative Example 1 in which the copper electrode end is not covered with the adhesive material, the corona generation voltage is as low as less than 5 kV (about 2 kV), and when the cross section is observed, the outer layer material is formed around the end of the copper electrode. Was not filled, and voids were formed around the edge of the copper electrode.

金属板の端部を接着材料で覆った状態を示す断面図である。It is sectional drawing which shows the state which covered the edge part of the metal plate with the adhesive material. 本発明の好適一実施の形態に係るモールド成形体の断面図である。1 is a cross-sectional view of a molded product according to a preferred embodiment of the present invention. [実施例]に用いた銅電極の平面図である。図3(a)は銅電極大、図3(b)は銅電極小、図3(c)は内部部品の平面図である。It is a top view of the copper electrode used for [Example]. 3A is a large copper electrode, FIG. 3B is a small copper electrode, and FIG. 3C is a plan view of internal components. フィルム状絶縁ポリマの断面図である。It is sectional drawing of a film-like insulating polymer. 従来の金属板の絶縁方法を説明するための図である。図5(a)は絶縁フィルム積層一体型の断面図、図5(b)は絶縁スペーサ分離型の断面図である。It is a figure for demonstrating the insulation method of the conventional metal plate. FIG. 5A is a cross-sectional view of an insulating film lamination integrated type, and FIG. 5B is a cross-sectional view of an insulating spacer separation type.

1 接着フィルム(接着材料の層)
2 絶縁ポリマフィルム
3 金属板(板状金属体)
5 盛り上がり部(板状金属体の端部)
6 外層絶縁ポリマ
1 Adhesive film (layer of adhesive material)
2 Insulating polymer film 3 Metal plate (plate metal body)
5 Swelling part (edge of plate metal)
6 Outer insulation polymer

Claims (5)

絶縁ポリマフィルムの両面に接着材料の層を設け、各接着材料の層に板状金属体をそれぞれ接着すると共に、これらの両面を外層絶縁ポリマでモールド成形したモールド成形体において、上記絶縁ポリマフィルムに上記板状金属体を接着する際に、その板状金属体の端部を接着材料で覆うように接着し、しかるのち、これら接着したものの周囲を外層絶縁ポリマでモールド成形したことを特徴とするモールド成形体。   In a molded product in which layers of adhesive material are provided on both sides of an insulating polymer film, and a plate-like metal body is bonded to each adhesive material layer, and both surfaces are molded with an outer layer insulating polymer, the insulating polymer film is coated with the insulating polymer film. When the plate-like metal body is bonded, the ends of the plate-like metal body are bonded so as to be covered with an adhesive material, and then the periphery of the bonded metal mold is molded with an outer insulating polymer. Molded body. 上記板状金属体端部を、上記接着材料で、板状金属体の厚さの1/10以上の厚さで覆った請求項1記載のモールド成形体。   The molded body according to claim 1, wherein the end of the plate-like metal body is covered with the adhesive material with a thickness of 1/10 or more of the thickness of the plate-like metal body. 上記絶縁ポリマフィルムを、芳香環を有するエンジニアリングプラスチックスで構成した請求項1又は2記載のモールド成形体。   The molded article according to claim 1 or 2, wherein the insulating polymer film is made of engineering plastics having an aromatic ring. 上記絶縁ポリマフィルムと上記板状金属体を接着したものを外層絶縁ポリマシートで挟み、各外層絶縁ポリマシートを加熱プレスで溶融させて接着物の周囲を外層絶縁ポリマでモールド成形した請求項1から3いずれかに記載のモールド成形体。   From what the said insulating polymer film and the said plate-shaped metal body were adhere | attached between outer-layer insulating polymer sheets, each outer-layer insulating polymer sheet was fuse | melted with the hot press, and the circumference | surroundings of the adhesive material were molded by the outer-layer insulating polymer. 3. The molded article according to any one of 3. 上記各外層絶縁ポリマシートの片面に接着層を設け、各外層絶縁ポリマシートと上記接着物を接着層を用いて接着した請求項1から4いずれかに記載のモールド成形体。   The molded article according to any one of claims 1 to 4, wherein an adhesive layer is provided on one side of each outer layer insulating polymer sheet, and each outer layer insulating polymer sheet and the adhesive are bonded using an adhesive layer.
JP2010195253A 2010-09-01 2010-09-01 Mold Pending JP2011046196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010195253A JP2011046196A (en) 2010-09-01 2010-09-01 Mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010195253A JP2011046196A (en) 2010-09-01 2010-09-01 Mold

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006208359A Division JP4618211B2 (en) 2006-07-31 2006-07-31 Method for producing molded body

Publications (1)

Publication Number Publication Date
JP2011046196A true JP2011046196A (en) 2011-03-10

Family

ID=43832989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010195253A Pending JP2011046196A (en) 2010-09-01 2010-09-01 Mold

Country Status (1)

Country Link
JP (1) JP2011046196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020043031A (en) * 2018-09-13 2020-03-19 藤森工業株式会社 Insulation film for bus bar and bus bar
JP7007512B1 (en) * 2021-05-31 2022-02-10 株式会社アテックス Conductive member and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196741A (en) * 2000-01-12 2001-07-19 Mitsubishi Electric Corp Circuit substrate and its manufacturing method
JP2005032465A (en) * 2003-07-08 2005-02-03 Mitsubishi Electric Corp Laminate substrate and electric apparatus using it
JP2008030392A (en) * 2006-07-31 2008-02-14 Hitachi Cable Ltd In-mold molded body and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196741A (en) * 2000-01-12 2001-07-19 Mitsubishi Electric Corp Circuit substrate and its manufacturing method
JP2005032465A (en) * 2003-07-08 2005-02-03 Mitsubishi Electric Corp Laminate substrate and electric apparatus using it
JP2008030392A (en) * 2006-07-31 2008-02-14 Hitachi Cable Ltd In-mold molded body and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020043031A (en) * 2018-09-13 2020-03-19 藤森工業株式会社 Insulation film for bus bar and bus bar
WO2020053747A1 (en) * 2018-09-13 2020-03-19 藤森工業株式会社 Insulating film for bus bar and bus bar
JP7007512B1 (en) * 2021-05-31 2022-02-10 株式会社アテックス Conductive member and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4815935B2 (en) Method for producing molded body
JP2006073763A (en) Manufacturing method for multilayer board
JP6103055B2 (en) Manufacturing method of resin multilayer substrate
WO2016149181A1 (en) Structurally integrating metal objects into additive manufactured structures
JP4618211B2 (en) Method for producing molded body
JP6123232B2 (en) Release polyimide film and method for producing multilayer printed wiring board
JP2011046196A (en) Mold
JP2009277623A (en) Method of manufacturing shield covered flexible flat cable
JP5333357B2 (en) Stack of semiconductor modules
JP2004311628A (en) Multilayer substrate and its manufacturing method
JP4842177B2 (en) Circuit board and power module
JP2009278048A (en) Method for producing shield-coating flexible printed wiring board
JP4973202B2 (en) Multilayer circuit board manufacturing method
KR20150014944A (en) Disc-shaped coil and method of manufacturing disc-shaped coil
JP2015018798A (en) Bus bar and method for producing the same
WO2016199700A1 (en) Reactor and method for manufacturing reactor
JP2014022583A (en) Method of manufacturing piezoelectric element device
WO2016006185A1 (en) Method for manufacturing wiring board
JP2006013076A (en) Laminate substrate and electric device using the same
WO2014038083A1 (en) Embedded printed circuit board and method for manufacturing same
JP6650616B2 (en) Manufacturing method of double-sided metal-clad laminate
JP5614575B2 (en) Multilayer circuit board manufacturing method
CN113707424A (en) Planar winding unit and manufacturing method thereof, planar winding and planar electronic device
JP2000252146A (en) Multilayer printed coil and manufacture thereof
JP2016127658A (en) Method of manufacturing stator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218