WO2020053701A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2020053701A1
WO2020053701A1 PCT/IB2019/057395 IB2019057395W WO2020053701A1 WO 2020053701 A1 WO2020053701 A1 WO 2020053701A1 IB 2019057395 W IB2019057395 W IB 2019057395W WO 2020053701 A1 WO2020053701 A1 WO 2020053701A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
voltage
display device
circuit
wiring
Prior art date
Application number
PCT/IB2019/057395
Other languages
English (en)
French (fr)
Inventor
山崎舜平
高橋圭
川島進
楠紘慈
渡邉一徳
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2020546535A priority Critical patent/JPWO2020053701A1/ja
Priority to KR1020217009247A priority patent/KR20210046063A/ko
Priority to CN201980057734.4A priority patent/CN112639944A/zh
Priority to US17/271,221 priority patent/US11501695B2/en
Publication of WO2020053701A1 publication Critical patent/WO2020053701A1/ja
Priority to US17/975,920 priority patent/US11869417B2/en
Priority to US18/380,819 priority patent/US20240046857A1/en
Priority to JP2024076890A priority patent/JP2024096421A/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3659Control of matrices with row and column drivers using an active matrix the addressing of the pixel involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependant on signal of two data electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD

Definitions

  • One embodiment of the present invention relates to a semiconductor device, a display device, and a driving method thereof.
  • the technical field of one embodiment of the present invention disclosed in this specification and the like includes a semiconductor device, a display device, a light-emitting device, a power storage device, a storage device, an electronic device, a lighting device, an input device, an input / output device, and a driving method thereof. Or a method for producing the same, as an example.
  • a semiconductor device generally refers to a device that can function by utilizing semiconductor characteristics.
  • display devices included in mobile phones such as smartphones, tablet information terminals, notebook PCs (personal computers), portable game machines, and the like.
  • display devices have been developed for increasing the resolution, increasing the color reproducibility, reducing the size of the driving circuit, reducing the power consumption, and the like.
  • Patent Document 1 discloses an invention in which a transistor including an In-Ga-Zn-based oxide in a channel formation region is used for a pixel circuit of a display device.
  • Patent Document 2 discloses an invention of a source driver IC that uses a multi-gradation linear digital-to-analog conversion circuit to display a multi-gradation image on a display device having a light-emitting element, for example.
  • JP 2010-156963 A U.S. Pat. No. 8,462,145
  • a display device In order to display a high-quality image, a display device is required to have, for example, high resolution, multiple gradations, a wide color gamut, and the like.
  • a display device including a light-emitting element such as a liquid crystal element or an organic EL (Electro Luminescence) element
  • a source driver circuit needs to be appropriately designed to realize a multi-tone image.
  • a circuit portion that handles analog signals such as a digital-to-analog converter circuit included in the source driver circuit, requires a higher power supply voltage than a circuit portion that generates digital signals. Therefore, it has been difficult to reduce the power consumption of the source driver circuit. Further, a device on which a display panel is mounted needs a circuit for generating at least two types of power supply voltages.
  • One object of one embodiment of the present invention is to reduce power consumption of a display device. Another object is to reduce power consumption of a driver circuit of a display device. Another object is to provide a display device including a source driver circuit which can be driven by a single power supply voltage. Another object is to reduce power consumption of a device including a display device. Another object is to simplify the structure of a display device, a driver circuit, or a device including the display device.
  • Another object is to provide a pixel circuit (also referred to as a semiconductor device in this specification and the like) that can generate multi-gradation image data. Another object is to provide a display device including the semiconductor device. Another object is to provide an electronic device including the display device.
  • Another object is to provide a display device including a source driver circuit with a small circuit area. Another object is to provide a display device including a source driver circuit with low power consumption.
  • One embodiment of the present invention is a display device including a pixel, the pixel including a display element, the pixel having a function of holding a first voltage corresponding to an input first pulse signal, and a function of receiving a first voltage. And a function of driving a display element with a third voltage obtained by adding a second voltage corresponding to the second pulse signal to the first voltage.
  • the display element is a light emitting element. At this time, it is preferable that the light emitting element emits light at a luminance corresponding to the third voltage. Further, it is preferable to use an organic EL element or a light emitting diode as the light emitting element. Further, it is preferable to use a micro LED or a mini LED as the light emitting diode.
  • the display element is preferably a liquid crystal element.
  • the orientation of the liquid crystal changes in accordance with the third voltage.
  • the first drive circuit for supplying a first pulse signal.
  • the first power supply voltage for generating the first pulse signal is preferably lower than the maximum value of the third voltage.
  • the first drive circuit preferably generates the first pulse signal without boosting the first power supply voltage.
  • the first power supply voltage is a voltage that is a half of the maximum value of the third voltage or a voltage in the vicinity thereof.
  • the system circuit for controlling the first drive circuit.
  • the system circuit preferably has a function of supplying a first power supply voltage to the first drive circuit.
  • one of the drive voltages of the system circuit is 1.8 V, 2.5 V, 3.3 V, or a vicinity thereof, and the system circuit uses the same voltage as the drive voltage as the first power supply voltage. It is preferable to have a function of supplying one drive circuit.
  • the first power supply voltage supplied from the system circuit to the first drive circuit be supplied without being boosted.
  • power consumption of a display device can be reduced.
  • power consumption of a driver circuit of a display device can be reduced.
  • a display device including a source driver circuit which can be driven by a single power supply voltage can be provided.
  • power consumption of a device including a display device can be reduced.
  • the structure of a display device, a driver circuit, or a device including the display device can be simplified.
  • a semiconductor device which can generate multi-gradation image data can be provided. Further, a display device including a source driver circuit with a small circuit area can be provided. Alternatively, a display device including a source driver circuit with low power consumption can be provided.
  • FIG. 1 is a block diagram illustrating an example of a display device.
  • 2A and 2B are circuit diagrams illustrating an example of a pixel.
  • FIG. 3 is a circuit diagram illustrating an example of a pixel.
  • FIG. 4 is a timing chart for explaining an operation example of the pixel.
  • 5A to 5C are circuit diagrams illustrating an example of a pixel.
  • 6A and 6B are circuit diagrams each illustrating an example of a pixel.
  • 7A and 7B are top views illustrating an example of a display device.
  • 8A and 8B are perspective views illustrating an example of the touch panel.
  • FIG. 9 is a cross-sectional view illustrating an example of a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a display device.
  • FIG 11 is a cross-sectional view illustrating an example of a display device.
  • 12A1 to 12C2 are cross-sectional views illustrating a configuration example of a transistor.
  • FIGS. 13A1 to 13C2 are cross-sectional views illustrating a configuration example of a transistor.
  • 14A to 14F are perspective views illustrating an example of an electronic device.
  • 15A and 15B are perspective views illustrating an example of an electronic device.
  • a display panel which is one embodiment of a display device has a function of displaying (outputting) an image or the like on a display surface. Therefore, the display panel is one mode of an output device.
  • a display panel substrate to which a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package) is attached, or an IC by COG (Chip On Glass) method or the like is attached to the substrate.
  • a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package) is attached, or an IC by COG (Chip On Glass) method or the like is attached to the substrate.
  • a display panel module a display module, or simply a display panel.
  • FIG. 1 is a block diagram illustrating an example of the display device DD.
  • the display device DD includes a display unit PA, a source driver circuit SD, and a gate driver circuit GD.
  • the display unit PA has a plurality of pixels PIX.
  • FIG. 1 illustrates only one of the plurality of pixels PIX included in the display unit PA, and omits other pixels PIX. It is preferable that the plurality of pixels PIX included in the display unit PA be arranged in a matrix.
  • the pixel PIX is electrically connected to the source driver circuit SD via the wiring DL.
  • the pixel PIX is electrically connected to a gate driver circuit GD via a wiring GL. Since the display unit PA includes a plurality of pixels PIX, the plurality of pixels PIX may be electrically connected to the wiring DL and the wiring GL. Further, a plurality of wirings DL and wirings GL may be provided in accordance with the number of pixels PIX included in the display portion PA. Further, depending on the circuit configuration of the pixel PIX, a configuration in which a plurality of wirings DL or a plurality of wirings GL are electrically connected to one pixel PIX may be employed.
  • the pixel PIX can be configured to have one or more sub-pixels.
  • the pixel PIX has a configuration including one sub-pixel (any one color such as red (R), green (G), blue (B), and white (W)), and a configuration including three sub-pixels.
  • three colors of red (R), green (G), and blue (B)) or a configuration having four or more sub-pixels (for example, red (R), green (G), blue (B), and white) (W) or four colors (red (R), green (G), blue (B), yellow (Y), etc.
  • the color elements applied to the sub-pixels are not limited to the above, and may be a combination of cyan (C) and magenta (M) as needed.
  • the pixel PIX includes at least one or more display elements.
  • various display elements such as a light-emitting element, a liquid crystal element, a microcapsule, an electrophoresis element, an electrowetting element, an electrofluidic element, an electrochromic element, and a MEMS element can be used.
  • an organic EL element As the light emitting element, an organic EL element, an LED (Light Emitting Diode) element, an inorganic EL element, or the like can be used.
  • LED Light Emitting Diode
  • an inorganic EL element As the light emitting element, an organic EL element, an LED (Light Emitting Diode) element, an inorganic EL element, or the like can be used.
  • the LED element there are a macro LED (also called a giant LED), a mini LED, a micro LED, and the like from a large size.
  • a macro LED also called a giant LED
  • a mini LED a LED chip having a size of more than 100 ⁇ m and 1 mm or less
  • a micro LED a LED having a size of 100 ⁇ m or less
  • micro LEDs an extremely high-definition display device can be realized.
  • the source driver circuit SD has a function of generating image data to be input to the pixel PIX included in the display unit PA, and a function of transmitting the image data to the pixel PIX.
  • the source driver circuit SD can include, for example, a shift register SR, a latch circuit LAT, a level shift circuit LVS, a digital-to-analog conversion circuit DAC, an amplifier circuit AMP, and a data bus wiring DB.
  • the output terminal of the shift register SR is electrically connected to the clock input terminal of the latch circuit LAT
  • the input terminal of the latch circuit LAT is electrically connected to the data bus line DB
  • the output terminal of the latch circuit LAT is
  • the input terminal of the level shift circuit LVS is electrically connected
  • the output terminal of the level shift circuit LVS is electrically connected to the input terminal of the digital / analog conversion circuit DAC
  • the output terminal of the digital / analog conversion circuit DAC is connected to the amplifier circuit AMP.
  • the input terminal is electrically connected, and the output terminal of the amplifier circuit AMP is electrically connected to the display unit PA.
  • the latch circuit LAT, the level shift circuit LVS, the digital-to-analog conversion circuit DAC, and the amplifier circuit AMP shown in FIG. 1 are provided for one wiring DL. That is, it is necessary to provide a plurality of latch circuits LAT, level shift circuits LVS, digital-to-analog conversion circuits DAC, and amplifier circuits AMP in accordance with the number of wirings DL.
  • the shift register SR may be configured to sequentially transmit a pulse signal to each of the clock input terminals of the plurality of latch circuits LAT.
  • the data bus wiring DB is a wiring for transmitting a digital signal including image data to be input to the display unit PA.
  • the image data has a gradation. As the gradation increases, the change in color or brightness can be represented by a smooth gradation, and an image close to nature can be displayed on the display unit PA. However, the larger the gradation, the larger the data amount of the image data, and it is necessary to use a digital-to-analog conversion circuit with high resolution.
  • a digital signal including image data is input to the input terminal of the latch circuit LAT from the data bus wiring DB. Then, the latch circuit LAT performs either operation of holding the image data or outputting the held image data from an output terminal according to a signal transmitted from the shift register SR.
  • the level shift circuit LVS has a function of converting an input signal into an output signal having a larger amplitude voltage or a smaller amplitude voltage.
  • the level shift circuit LVS has a role of converting an amplitude voltage of a digital signal including image data sent from the latch circuit LAT into an amplitude voltage at which the digital-to-analog conversion circuit DAC operates properly.
  • the digital-to-analog conversion circuit DAC has a function of converting a digital signal including input image data into an analog signal, and a function of outputting the analog signal from an output terminal.
  • the digital-to-analog conversion circuit DAC needs to be a high-resolution digital-to-analog conversion circuit.
  • the amplifier circuit AMP has a function of amplifying (for example, amplifying a voltage or a current) an analog signal input to an input terminal and outputting the amplified signal to an output terminal.
  • amplifying for example, amplifying a voltage or a current
  • image data can be stably transmitted to the display PA.
  • a voltage follower circuit having an operational amplifier or the like can be used. Note that when a circuit having a differential input circuit is used as the amplifier circuit, it is preferable that the offset voltage of the differential input circuit be as close to 0 V as possible.
  • the source driver circuit SD can convert a digital signal including image data, which is sent from the data bus wiring DB, into an analog signal by performing the above-described operation, and transmit the analog signal to the display unit PA.
  • the source driver circuit SD has a function of generating the first signal S1 and the second signal S2, which are analog signals, and supplying the generated signals to the pixel PIX via the wiring DL.
  • the first signal S1 and the second signal S2 are pulse signals each having an amplitude corresponding to the image data.
  • the gate driver circuit GD has a function of selecting a pixel PIX to which image data is to be input, from among a plurality of pixels PIX included in the display unit PA.
  • the gate driver circuit GD transmits a selection signal to a plurality of pixels PIX electrically connected to a certain wiring GL to generate a plurality of pixels.
  • the switching element for writing the image data of PIX may be turned on, and then the image data may be transmitted from the source driver circuit SD to the plurality of pixels PIX via the wiring DL to perform writing.
  • one embodiment of the present invention is not limited to the structure of the display device DD illustrated in FIG.
  • components of the display device DD can be appropriately changed depending on circumstances such as design specifications and purposes.
  • the resolution of the digital-to-analog conversion circuit DAC may be increased. In this case, however, the size of the digital-to-analog conversion circuit DAC increases, so that the circuit area of the source driver circuit SD May be large.
  • circuit elements such as transistors and capacitors included in a circuit included in the source driver circuit SD are reduced in order to reduce the circuit area of the source driver circuit SD, influence of parasitic resistance and variation in structure due to manufacturing of the circuit element are reduced. The electrical characteristics of the circuit element may be impaired due to influence or the like.
  • one embodiment of the present invention has a structure in which the potential of the image data holding unit of the pixel PIX is changed to a potential with a higher resolution than that of the digital-to-analog conversion circuit DAC by capacitive coupling.
  • FIG. 1 shows an example in which the display device DD includes a system circuit SYS.
  • the system circuit SYS has a function of controlling the operation of the source driver circuit SD.
  • the system circuit SYS has a function of supplying a data signal, a clock signal, various signals such as a start pulse signal, and a power supply voltage to the source driver circuit SD.
  • the control unit CU has at least a logic circuit.
  • a configuration including a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit) can be employed.
  • the power generation unit PU has a function of generating a power supply voltage VDD to be supplied to the control unit CU and the source driver circuit SD.
  • the power generation unit PU can generate power supply voltage VDD by converting power supplied from a battery, a power plug, or the like.
  • the pixel PIX included in the display device DD uses two signals (the first signal S1 and the second signal S2) to generate a voltage obtained by adding the amplitudes of the two signals, and drives the display element. can do. Therefore, when the pixel PIX is displayed at the maximum gradation value, the voltage of the first signal S1 and the voltage of the second signal S2 supplied by the source driver circuit SD are half or more of the voltage obtained by adding these signals. It can be a voltage.
  • the source driver circuit SD does not require a high power supply voltage for generating an analog signal, and can be operated with a single power supply voltage VDD.
  • the power supply voltage VDD supplied from the system circuit SYS to the source driver circuit SD can be shared with the power supply voltage VDD for driving the control unit CU.
  • the power supply voltage VDD supplied from the system circuit SYS is supplied to the shift register SR, the latch circuit LAT, the level shift circuit LVS, the digital / analog conversion circuit DAC, and the amplifier circuit AMP in the source driver circuit SD.
  • the level shift circuit LVS can be omitted.
  • a booster circuit such as a DCDC converter for boosting the power supply voltage is not required between the system circuit SYS and the source driver circuit SD. That is, the power supply voltage VDD supplied from the system circuit SYS to the source driver circuit SD is supplied to the source driver circuit SD without being boosted and used for generating the first signal S1 and the second signal S2. .
  • the source driver circuit SD since there is no need to provide a booster circuit for boosting the power supply voltage VDD in the source driver circuit SD, not only the circuit configuration of the source driver circuit SD can be simplified, but also the power consumption of the source driver circuit SD is reduced. be able to. That is, the source driver circuit SD can generate the first signal S1 and the second signal S2 without increasing the power supply voltage VDD.
  • the voltage is set as the power supply voltage VDD.
  • the power supply generation unit PU in the system circuit SYS to generate a high power supply voltage to be supplied to the source driver circuit SD, so that the circuit configuration can be simplified.
  • the source driver circuit SD can be driven at a low voltage, so that the power consumption of the source driver circuit SD and the display device DD can be significantly reduced.
  • a voltage in the vicinity of a certain voltage is a voltage including a range of ⁇ 20% of the voltage.
  • the pixel PIX exemplified below has a function of holding a first voltage corresponding to a first pulse signal (first signal S1) input from the source driver circuit SD, and a function of holding a second pulse signal (second signal).
  • the display device has a function of driving a display element with a third voltage obtained by adding a second voltage corresponding to the signal S2) to the first voltage. That is, the pixel PIX can drive the display element with a voltage higher than the maximum voltage of the first pulse signal and the second pulse signal input from the source driver circuit SD.
  • a light emitting element when used as a display element, an image can be displayed by causing the light emitting element to emit light at a luminance corresponding to the third voltage.
  • a liquid crystal element when used as the display element, the transmittance of light from a light source such as a backlight is changed by changing the orientation of the liquid crystal in accordance with the third voltage to display an image. can do.
  • the power supply voltage VDD used by the source driver circuit SD shown in FIG. 1 to generate the first signal S1 and the second signal S2 is the maximum value of the third voltage (for example, The voltage can be lower than the value of the third voltage in the case of displaying with a high gradation.
  • the power supply voltage VDD may be a voltage that is half (1 /) of the maximum value of the third voltage, or a voltage near the half (1 /).
  • the pixel PIX shown in FIG. 2A is an example in which a light emitting element is applied as a display element.
  • the pixel PIX illustrated in FIG. 2A includes transistors Tr1 to Tr5, a capacitor C1, a capacitor C2, and a light emitting element LD.
  • the wiring DL, the wiring WDL, the wirings GL1 to GL3, the wiring VL, the wiring AL, and the wiring CAT are electrically connected to the pixel PIX.
  • Each of the transistors Tr1, Tr2, Tr4, and Tr5 functions as a switching element.
  • the transistor Tr3 functions as a drive transistor that controls a current flowing through the light emitting element LD.
  • the structure described in Embodiment 3 can be applied to the transistors Tr1 to Tr5.
  • Each of the wiring DL and the wiring WDL is a wiring for transmitting image data to the pixel PIX, and is a wiring corresponding to the wiring DL of the display device DD in FIG.
  • each of the wirings GL1 to GL3 is a selection signal line for the pixel PIX, and is a wiring corresponding to the wiring GL of the display device DD in FIG.
  • the wiring VL is a wiring for applying a predetermined potential to a specific node in the pixel PIX.
  • the wiring AL is a wiring for supplying a current for flowing to the light emitting element LD.
  • the wiring CAT is a wiring for applying a predetermined potential to the cathode terminal of the light emitting element LD.
  • the predetermined potential can be, for example, a reference potential, a low-level potential, or a potential lower than these.
  • a first terminal of the transistor Tr1 is electrically connected to a first terminal of the capacitor C1, a second terminal of the transistor Tr1 is electrically connected to a wiring DL, and a gate of the transistor Tr1 is electrically connected to a wiring GL1. It is connected to the.
  • a first terminal of the transistor Tr2 is electrically connected to a gate of the transistor Tr3, a second terminal of the capacitor C1, and a first terminal of the capacitor C2, and a second terminal of the transistor Tr2 is connected to the wiring WDL.
  • the transistor Tr2 is electrically connected, and the gate of the transistor Tr2 is electrically connected to the wiring GL2.
  • the electrical connection point between the first terminal of the transistor Tr1 and the first terminal of the capacitor C1 is referred to as a node ND1, and the first terminal of the transistor Tr2 and the gate of the transistor Tr3 are connected to each other.
  • the electrical connection point between the second terminal of the capacitor C1 and the first terminal of the capacitor C2 is referred to as a node ND2.
  • the voltage (potential) written from the wiring WDL to the node ND2 via the transistor Tr2 corresponds to the first voltage (potential). Further, the voltage written from the wiring DL to the node ND1 through the transistor Tr1 corresponds to the second voltage.
  • the second voltage is written to the node ND1
  • the second voltage is added to the first voltage by capacitive coupling via the capacitor C1
  • the voltage of the node ND2 changes.
  • the voltage of the node ND2 generated as a result corresponds to the third voltage.
  • a first terminal of the transistor Tr3 is electrically connected to the wiring AL, and a second terminal of the transistor Tr3 is connected to a first terminal of the transistor Tr4, a first terminal of the transistor Tr5, a second terminal of the capacitor C2, Is electrically connected to A second terminal of the transistor Tr4 is electrically connected to the wiring VL, and a gate of the transistor Tr4 is electrically connected to the wiring GL1.
  • the second terminal of the transistor Tr5 is electrically connected to the anode terminal of the light emitting element LD, and the gate of the transistor Tr5 is electrically connected to the wiring GL3.
  • the cathode terminal of the light emitting element LD is electrically connected to the wiring CAT.
  • the transistors Tr1, Tr2, and Tr5 are preferably OS transistors.
  • the OS transistor is preferably an oxide including at least one of indium, an element M (the element M is aluminum, gallium, yttrium, or tin) and zinc in a channel formation region.
  • the oxide is described in detail in Embodiment 4.
  • the off-state current can be reduced by using the transistor Tr2 as an OS transistor. Can prevent the data held in the node ND2 from being destroyed.
  • the light emission of the light emitting element LD is temporarily stopped, the light emission of the light emitting element LD due to off-state current can be prevented by using the transistor Tr5 as an OS transistor.
  • a transistor including silicon in a channel formation region can be used (hereinafter, referred to as a Si transistor).
  • silicon for example, hydrogenated amorphous silicon, microcrystalline silicon, polycrystalline silicon, or the like can be used.
  • an OS transistor can be used as the transistor Tr3 and the transistor Tr4.
  • the respective transistors can be formed at the same time; thus, the manufacturing process of the display portion PA can be shortened in some cases. That is, since the production time of the display unit PA can be reduced, the number of products per fixed time can be increased.
  • FIG. 4 is a timing chart showing an operation example of the pixel PIX shown in FIG. 2A.
  • the timing chart illustrated in FIG. 4 illustrates changes in potentials of the wiring DL, the wiring WDL, the wiring VL, the wiring GL1 to the wiring GL3, the node ND1, and the node ND2 at time T1 to time T8 and a time near the time T1. Note that high in FIG. 4 indicates a high-level potential, and low indicates a low-level potential. V GND illustrated in FIG. 4 indicates a reference potential.
  • V GND is constantly applied to the wiring VL from time T1 to time T8 and a time in the vicinity thereof.
  • the transistors Tr1, Tr2, Tr4, and Tr5 operate in the linear region unless otherwise specified. That is, it is assumed that the gate voltage, the source voltage, and the drain voltage of the transistor Tr1, the transistor Tr2, the transistor Tr4, and the transistor Tr5 are appropriately biased to a voltage in a range in which the transistor operates in a linear region.
  • the transistor Tr3 operates in a saturation region unless otherwise specified. That is, it is assumed that the gate voltage, the source voltage, and the drain voltage of the transistor Tr3 are appropriately biased to voltages in a range where the transistor Tr3 operates in a saturation region. Note that even if the operation of the transistor Tr3 deviates from the operation in the ideal saturation region, as long as the accuracy of the output current can be obtained within a desired range, the gate voltage, source voltage, And the drain voltage is assumed to be properly biased.
  • a low-level potential is applied to the wirings GL1 and GL2, and a high-level potential is applied to the wiring GL3.
  • a low-level potential is applied to each gate of the transistor Tr1 and the transistor Tr4, so that the transistor Tr1 and the transistor Tr4 are turned off. That is, the wiring DL is not electrically connected to the node ND1.
  • a low-level potential is applied to the gate of the transistor Tr2; thus, the transistor Tr2 is turned off. That is, the wiring WDL and the node ND2 are not electrically connected.
  • the potential of the node ND2 is a potential at which the transistor Tr3 is turned off, are described to V 0 (i.e., a V 0, and the source potential of the transistor Tr3, Is lower than the threshold voltage of the transistor Tr3, and the light emitting element LD does not emit light.)
  • the wiring DL is electrically connected to the node ND1. Therefore, the potential of the node ND1 becomes V GND .
  • the wiring VL is electrically connected to the second terminal of the capacitor C2. Therefore, the potential of the second terminal of the capacitor C2 becomes V GND .
  • the second terminal (node ND2) of the capacitor C1 is in a floating state, when the potential of the node ND1 changes, the potential of the node ND2 also changes due to capacitive coupling. Note that the amount of change in the potential of the node ND2 depends on the amount of change in the potential of the node ND1, the capacitance of the capacitor C1, and the like. In this operation example, since the potential of the node ND1 drops V GND from V 0, the potential of the node ND2 drops from V 0.
  • the wiring WDL is electrically connected to the node ND2. Therefore, the potential of the node ND2 becomes V GND . Note that since the transistor Tr1 is on, the potential of the node ND1 does not change due to a change in the potential of the node ND2. Similarly, since the transistor Tr4 is on, the potential of the second terminal of the capacitor C2 does not change due to a change in the potential of the node ND2.
  • V data is applied from the wiring DL to the first terminal (node ND1) of the capacitor C1. Since the transistor Tr2 is also on, V data is applied from the wiring WDL to the gate of the transistor Tr3, the second terminal of the capacitor C1, and the first terminal (node ND2) of the capacitor C2. . Note that the potential of the second terminal of the capacitor C2 does not change due to changes in the potentials of the nodes ND1 and ND2 because the transistor Tr4 is on.
  • V data + ⁇ V data is applied to the node ND1 from the wiring DL. That is, the potential of the node ND1 changes from V data during the period from the time T4 to the time T6 to V data + ⁇ V data .
  • V data + ⁇ V data is not applied to the node ND2 from the wiring WDL.
  • the potential of the node ND1 has changed from V data to V data + ⁇ V data and the node ND2 is in a floating state, the potential of the node ND1 fluctuates.
  • the potential of ND2 also fluctuates.
  • the amount of change in the potential of the node ND2 is described as ⁇ V g , but ⁇ V g can be estimated by the following equation (E1).
  • the potential of the wiring WDL is set to V data + ⁇ V data .
  • the potential V data + ⁇ V data of the wiring WDL is not input to any element. For this reason, in the configuration example of the circuit illustrated in FIG. 2A, the potential of the wiring WDL does not have to be set to V data + ⁇ V data at time T6.
  • a low-level potential is applied to the gate of the transistor Tr4, so that the transistor Tr4 is turned off.
  • the potential of the second terminal of the capacitor C2 is V GND
  • the potential of the gate (node ND2) of the transistor Tr3 is V ND2 , so that V ND2 ⁇ V GND is higher than the threshold voltage.
  • the transistor Tr3 is turned on. The current flowing between the source and the drain of the transistor Tr3 is determined according to V ND2 ⁇ V GND .
  • the luminance of the light emitting element LD is determined by the current flowing through the light emitting element LD. According to Kirchhoff's law, the current flowing through the light-emitting element LD is substantially equal to the current flowing between the source and the drain of the transistor Tr3. Therefore, the luminance of the light-emitting element LD is determined by the voltage between the gate and the source of the transistor Tr3.
  • V data written to the nodes ND1 and ND2 of the pixel PIX is a value from “000000” to “111111” in binary notation. Can be taken.
  • the voltage value of “111111” is 6.3 V
  • the possible voltage value of V data that can be output by the digital-to-analog conversion circuit DAC ranges from 0 V to 6.3 V in 0.1 V steps.
  • V data in the range from 0 V to 6.3 V can be written to the nodes ND1 and ND2 of the pixel PIX.
  • V data takes a value from 0 V to 4.8 V
  • V data in a range from 0 V to 4.8 V (from “000000” to “110000” in binary notation) is written to the nodes ND1 and ND2 of the pixel PIX will be described.
  • ⁇ V data can take a value from “000000” to “001111” in binary notation, for example.
  • the voltage value that ⁇ V data can take is in a range from 0 V to 1.5 V in 0.1 V steps. That is, from equation (E3), ⁇ V g can take a value from 0 V to 0.09375 V in 0.00625 V steps.
  • the potential of the node ND2 of the pixel PIX is changed from 0 V to 4.8 + 0 .0 in steps of 0.00625 V from the equations (E2) and (E3) from the time T6 to the time T7. Values up to 09375V can be taken.
  • V data takes a value from 4.9 V to 6.3 V
  • V data in a range from 4.9 V to 6.3 V (from “110001” to “111111” in binary notation) is written to the nodes ND1 and ND2 of the pixel PIX will be described.
  • ⁇ V data takes a voltage value in a range from ⁇ 1.5 V to 0 V in 0.1 V steps, for example. That is, ⁇ V data is a negative value, and V data + ⁇ V data can take a value from 3.4 V to 6.3 V (from “100010” to “111111” in binary notation).
  • ⁇ V g can take a value from ⁇ 0.09375 V to 0 V in 0.00625 V steps.
  • the potential of the node ND2 of the pixel PIX is determined to be 4.9-0. Values from 09375V to 6.3V can be taken.
  • a digital-to-analog conversion circuit (6-bit) capable of outputting an analog value from 0 V to 6.3 V in 0.1 V steps is provided as a digital-to-analog conversion circuit DAC, and is included in the pixel PIX.
  • DAC digital-to-analog conversion circuit
  • a finer voltage value that cannot be output by the 6-bit digital-to-analog conversion circuit DAC can be supplied to the node ND2.
  • the digital-to-analog conversion circuit DAC outputs a potential in steps of 0.1 V, but a potential in steps of 0.00625 V can be written to the node ND2 of the pixel PIX.
  • a potential (image data) having a higher resolution than the 6-bit digital-to-analog conversion circuit DAC can be written to the pixel PIX.
  • ⁇ V data given by the 6-bit digital-to-analog conversion circuit DAC corresponds to the upper 6 bits of the image data
  • ⁇ V g given to the node ND2 by capacitive coupling of the pixel PIX is lower than the image data.
  • the structure of the pixel PIX according to one embodiment of the present invention and the structure of a wiring electrically connected to the pixel PIX are not limited to the structure illustrated in FIG. 2A.
  • components of the pixel PIX and each wiring can be appropriately changed in accordance with a situation such as a design specification and a purpose.
  • At least one of the transistors Tr1 to Tr5 included in the pixel PIX in FIG. 2A may be a transistor having a back gate. By applying a potential to the back gate of a transistor, the threshold voltage of the transistor can be increased or decreased.
  • FIG. 2B illustrates a configuration in which all of the transistors Tr1 to Tr5 included in the pixel PIX in FIG. 2A are transistors having a back gate, and the gate and the back gate are electrically connected in the same transistor.
  • the wiring DL and the wiring WDL may be combined into one wiring (see FIG. 3).
  • the operation example of the pixel PIX illustrated in FIG. 3 refers to the above operation example.
  • FIGS. 2A, 2B, and 3 illustrate a pixel circuit including a light-emitting element such as an EL element in this embodiment as an example. It is not limited to this.
  • a capacitor is provided for a pixel circuit including a liquid crystal element in a manner similar to that in FIGS. 2A, 2B, and 3, and the potential of one terminal of the liquid crystal element is changed by capacitive coupling. It may be configured to increase or decrease to give an analog value finer than the resolution of the digital-to-analog conversion circuit DAC.
  • FIG. 5A shows an example in which a liquid crystal element LC is used as a display element.
  • a description will be given mainly of a portion different from the above, and the above description can be referred to for a duplicate portion.
  • the pixel PIX illustrated in FIG. 5A includes a transistor Tr1, a transistor Tr2, a transistor Tr6, a capacitor C1, a capacitor C3, and a liquid crystal element LC.
  • the pixel PIX is connected to the wiring GL1, the wiring GL2, the wiring GL4, the wiring DL, the wiring WDL, the wiring VCC, and the wiring CAT.
  • the transistor Tr6 has a gate electrically connected to the wiring GL4, one of a source and a drain electrically connected to a node ND2, and the other electrically connected to one electrode of a capacitor C3 and one electrode of a liquid crystal element LC. Connection.
  • the other electrode of the capacitor C3 is electrically connected to the wiring VCC.
  • the other electrode of the liquid crystal element LC is electrically connected to the wiring CAT.
  • the wiring VCC is a wiring that applies a predetermined potential to the other electrode of the capacitor C3.
  • a potential applied to the wiring VCC for example, a fixed potential such as a common potential, a reference potential, or a ground potential can be given.
  • the wiring VCC may be shared with the wiring CAT and may have the same potential.
  • the transistor Tr6 can have a function as a switch for controlling the operation of the liquid crystal element LC.
  • a signal written to the node ND2 from the wiring WDL is larger than a threshold value for operating the liquid crystal element LC
  • the liquid crystal element LC may operate before an image signal is written from the wiring DL. Therefore, it is preferable that the transistor Tr6 be provided, and after the potential of the node ND2 is determined, the transistor Tr6 be turned on by a signal supplied to the wiring GL4 to operate the liquid crystal element LC.
  • the pixel PIX illustrated in FIG. 5B has a configuration in which the transistor Tr6 and the wiring GL4 are omitted from the configuration illustrated in FIG. 5A.
  • the transistor Tr6 in FIG. 5A is a switch for preventing the liquid crystal element LC from being operated carelessly.
  • the transistor Tr6 can be omitted if visual recognition can be prevented even when the liquid crystal element LC operates. For example, an operation of turning off the backlight in a period in which a signal is supplied from the wiring WDL to the node ND2 may be used together.
  • a configuration in which the capacitor C3 is omitted may be employed.
  • An OS transistor can be used as a transistor connected to the node ND2. Since the OS transistor has extremely low leakage current in the off state, image data can be held for a relatively long time even if the capacitor C3 functioning as a storage capacitor is omitted.
  • the configuration is also effective when the frame frequency is high and the image data holding period is relatively short, such as in field sequential driving.
  • the aperture ratio can be improved.
  • the transmittance of the pixel can be improved. Note that the configuration in which the capacitor C3 is omitted may be applied to the configurations of other pixel circuits described in this specification.
  • 6A has a configuration in which the transistor Tr7 and the wiring VL are added to the configuration of FIG. 5A.
  • the reset operation of the liquid crystal element LC can be performed by supplying a reset potential to the wiring VL and turning on the transistor Tr7.
  • the rewriting operation can be independently controlled by the node ND2 and the potential applied to the liquid crystal element LC, and the display operation period of the liquid crystal element LC can be extended.
  • an image signal may be supplied from the wiring VL and the display operation of the liquid crystal element LC may be performed by controlling the conduction and non-conduction of the transistor Tr7. At this time, the transistor Tr6 may be kept off at all times.
  • the pixel PIX illustrated in FIG. 6B has a configuration in which a back gate is provided for each transistor.
  • the back gate is electrically connected to the front gate, and has an effect of increasing on-current.
  • a configuration in which a constant potential different from that of the front gate is supplied to the back gate may be employed. With such a structure, the threshold voltage of the transistor can be controlled.
  • FIG. 6B illustrates a structure in which a back gate is provided for all transistors; however, a transistor without a back gate may be provided.
  • the structure in which the transistor has a back gate is also effective for another pixel circuit in this embodiment.
  • One embodiment of the present invention disclosed in this specification and the like is a semiconductor device including first to third transistors and first and second capacitors.
  • the first terminal of the first transistor is electrically connected to the first terminal of the first capacitor
  • the first terminal of the second transistor is connected to the gate of the third transistor
  • the second terminal of the first capacitor
  • the first terminal of the second capacitor is electrically connected to the first terminal of the second capacitor
  • the first terminal of the third transistor is electrically connected to the second terminal of the second capacitor.
  • the semiconductor device has the following first to fourth functions.
  • the first function is to turn on the first transistor to write the first potential to the first terminal of the first capacitor, and to turn on the second transistor to turn on the gate of the third transistor and the first capacitor.
  • a function of writing a first potential to the second terminal of the element and the second terminal of the second capacitor has a function of turning off the second transistor and holding the potential of the gate of the third transistor by the second terminal of the first capacitor and the second terminal of the second capacitor.
  • the third function is to write the sum of the first potential and the third potential to the first terminal of the first capacitor, and to write the sum of the first potential and the third potential to the first terminal of the first capacitor.
  • the first potential held at the gate of the third transistor, the second terminal of the first capacitor, and the first terminal of the second capacitor becomes the first potential and the fourth potential.
  • the fourth function has a function of flowing a current between the first terminal and the second terminal of the third transistor in accordance with the sum of the first potential and the fourth potential.
  • At least one of the first to third transistors preferably includes a metal oxide in a channel formation region.
  • the first terminal of the fourth transistor is electrically connected to the first terminal of the third transistor and the second terminal of the second capacitor, and the anode terminal of the light emitting element is connected to the fourth terminal of the fourth transistor. It is preferable to be electrically connected to the two terminals.
  • the fourth transistor preferably includes a metal oxide in a channel formation region.
  • the first potential corresponds to data of an upper bit
  • the fourth potential corresponds to data of a lower bit
  • Another embodiment of the present invention is a display device including the semiconductor device having the above structure and a digital-to-analog converter circuit.
  • the output terminal of the digital-to-analog conversion circuit is electrically connected to the first terminal of the first transistor and the first terminal of the second transistor. It is preferable to have a function of generating the sum of the potential and the third potential and outputting the first potential or the sum of the first potential and the third potential from the output terminal of the digital-to-analog converter circuit.
  • Another embodiment of the present invention is an electronic device including the display device having the above structure and a housing.
  • the method for operating the semiconductor device or the display device of one embodiment of the present invention is not limited to the above operation examples or specific examples.
  • the order of applying potentials to elements, circuits, wirings, and the like, and the value of the potentials can be changed as appropriate.
  • the structure of the semiconductor device or the display device of one embodiment of the present invention can be changed as appropriate; accordingly, an operation method of the semiconductor device or the display device may be changed depending on the structure.
  • a sealant 4005 is provided so as to surround the display portion 215 provided over the first substrate 4001, and the display portion 215 is sealed with the sealant 4005 and the second substrate 4006.
  • the display portion 215 is provided with a pixel array having the pixel PIX described in Embodiment 1.
  • the scan line driver circuit 221a, the signal line driver circuit 231a, the signal line driver circuit 232a, and the common line driver circuit 241a each include a plurality of integrated circuits 4042 provided over a printed board 4041.
  • the integrated circuit 4042 is formed using a single crystal semiconductor or a polycrystalline semiconductor.
  • the signal line driver circuit 231a and the signal line driver circuit 232a have the function of the source driver circuit SD described in Embodiment 1.
  • the scan line driver circuit 221a has the function of the gate driver circuit GD described in Embodiment 1.
  • the common line driver circuit 241a has a function of supplying a prescribed potential to the wiring CAT described in Embodiment 1.
  • the integrated circuit 4042 included in the scan line driver circuit 221a and the common line driver circuit 241a has a function of supplying a selection signal to the display portion 215.
  • the integrated circuit 4042 included in the signal line driver circuits 231a and 232a has a function of supplying an image signal to the display portion 215.
  • the integrated circuit 4042 is mounted in a region on the first substrate 4001 which is different from a region surrounded by the sealant 4005.
  • connection method of the integrated circuit 4042 is not particularly limited, and a wire bonding method, a COG method, a TCP method, a COF (Chip On Film) method, or the like can be used.
  • FIG. 7B illustrates an example in which the integrated circuit 4042 included in the signal line driver circuit 231a and the signal line driver circuit 232a is mounted by a COG method. By providing part or the whole of the driver circuit over the same substrate as the display portion 215, a system-on-panel can be realized.
  • FIG. 7B shows an example in which the scan line driver circuit 221a and the common line driver circuit 241a are formed over the same substrate as the display portion 215.
  • a sealant 4005 is provided so as to surround the display portion 215 provided over the first substrate 4001, the scan line driver circuit 221a, and the common line driver circuit 241a.
  • a second substrate 4006 is provided over the display portion 215, the scan line driver circuit 221a, and the common line driver circuit 241a. Therefore, the display portion 215, the scan line driver circuit 221a, and the common line driver circuit 241a are sealed with the display element by the first substrate 4001, the sealant 4005, and the second substrate 4006.
  • FIG. 7B illustrates an example in which the signal line driver circuit 231a and the signal line driver circuit 232a are separately formed and mounted on the first substrate 4001, but this embodiment is not limited to this structure.
  • the scan line driver circuit may be formed separately and mounted, or a part of the signal line driver circuit or a part of the scan line driver circuit may be formed separately and mounted.
  • the display device may include a panel in which a display element is sealed, and a module in which an IC or the like including a controller is mounted on the panel.
  • the display portion 215 and the scan line driver circuit 221a provided over the first substrate 4001 have a plurality of transistors.
  • the transistor an OS transistor or a Si transistor can be used.
  • the structure of the transistor included in the peripheral driver circuit and the structure of the transistor included in the pixel circuit of the display portion 215 may be the same or different. All the transistors included in the peripheral driver circuit may have the same structure, or two or more types of structures may be used in combination. Similarly, all the transistors included in the pixel circuit may have the same structure, or two or more types of structures may be used in combination.
  • an input device 4200 described later can be provided over the second substrate 4006.
  • the structure in which the input device 4200 is provided in the display device illustrated in FIG. 7A or 7B can function as a touch panel.
  • a sensing element also referred to as a sensor element
  • Various sensors capable of detecting the proximity or contact of a detection target such as a finger or a stylus can be applied as the detection element.
  • a sensor system various systems such as a capacitance system, a resistance film system, a surface acoustic wave system, an infrared system, an optical system, and a pressure-sensitive system can be used.
  • a touch panel having a capacitance type sensing element will be described as an example.
  • the capacitance type there are a surface type capacitance type, a projection type capacitance type and the like.
  • the projection type capacitance method there are a self capacitance method, a mutual capacitance method, and the like. It is preferable to use the mutual capacitance method because simultaneous multipoint detection becomes possible.
  • the touch panel of one embodiment of the present invention has a structure in which a separately manufactured display device and a sensing element are attached to each other, a structure in which an electrode or the like constituting a sensing element is provided on one or both of a substrate supporting the display element and a counter substrate, or the like.
  • Various configurations can be applied.
  • FIGS. 8A and 8B show an example of a touch panel.
  • FIG. 8A is a perspective view of the touch panel 4210.
  • FIG. 8B is a schematic perspective view of the input device 4200. Note that only representative components are shown for clarity.
  • the touch panel 4210 has a configuration in which a display device and an input device which are separately manufactured are attached to each other.
  • the touch panel 4210 has an input device 4200 and a display device, which are provided in an overlapping manner.
  • the input device 4200 includes a substrate 4263, an electrode 4227, an electrode 4228, a plurality of wirings 4237, a plurality of wirings 4238, and a plurality of wirings 4239.
  • the electrode 4227 can be electrically connected to the wiring 4237 or the wiring 4239.
  • the electrode 4228 can be electrically connected to the wiring 4238.
  • the FPC 4272b is electrically connected to each of the plurality of wirings 4237, the plurality of wirings 4238, and the plurality of wirings 4239.
  • the FPC 4272b can be provided with an IC 4273b.
  • a touch sensor may be provided between the first substrate 4001 and the second substrate 4006 of the display device.
  • a touch sensor is provided between the first substrate 4001 and the second substrate 4006, an optical touch sensor using a photoelectric conversion element may be used in addition to a capacitive touch sensor.
  • FIG. 9 is a cross-sectional view corresponding to a portion indicated by a chain line of N1-N2 in FIG. 7B.
  • the display device illustrated in FIG. 9 includes an electrode 4015.
  • the electrode 4015 is electrically connected to a terminal included in the FPC 4018 through an anisotropic conductive layer 4019.
  • the electrode 4015 is electrically connected to the wiring 4014 through openings formed in the insulating layer 4112, the insulating layer 4111, and the insulating layer 4110.
  • the electrode 4015 is formed using the same conductive layer as the first electrode layer 4030, and the wiring 4014 is formed using the same conductive layer as the source and drain electrodes of the transistor 4010 and the transistor 4011.
  • the display portion 215 and the scan line driver circuit 221a provided over the first substrate 4001 have a plurality of transistors.
  • FIG. 9 illustrates a transistor 4010 included in the display portion 215 and a transistor 4011 included in the scan line driver circuit 221a. Note that although a bottom-gate transistor is illustrated as the transistor 4010 and the transistor 4011 in FIG. 9, a top-gate transistor may be used. Further, the transistor 4011 can be a transistor included in the gate driver circuit GD described in Embodiment 1.
  • an insulating layer 4112 is provided over the transistors 4010 and 4011.
  • a partition 4510 is formed over the insulating layer 4112.
  • the transistor 4010 and the transistor 4011 are provided over the insulating layer 4102.
  • the transistor 4010 and the transistor 4011 each include an electrode 4017 formed over the insulating layer 4111.
  • the electrode 4017 can function as a back gate electrode.
  • the display device illustrated in FIG. 9 includes the capacitor 4020.
  • the capacitor 4020 includes an electrode 4021 formed in the same step as the gate electrode of the transistor 4010, and an electrode formed in the same step as the source electrode and the drain electrode. Each electrode overlaps with an insulating layer 4103 interposed therebetween.
  • the capacitor 4020 can be, for example, the capacitor C1 or the capacitor C2 of the pixel PIX described in Embodiment 1.
  • the capacitance of the capacitor provided in the pixel portion of the display device is set so that electric charge can be held for a predetermined period in consideration of a leak current of a transistor provided in the pixel portion.
  • the capacitance of the capacitor may be set in consideration of the off-state current of the transistor and the like.
  • the transistor 4010 provided in the display portion 215 is electrically connected to a display element.
  • the display device illustrated in FIG. 9 includes an insulating layer 4111 and an insulating layer 4102.
  • As the insulating layers 4111 and 4102 insulating layers through which an impurity element is not easily transmitted are used. By sandwiching the transistor between the insulating layer 4111 and the insulating layer 4102, entry of impurities from the outside into the semiconductor layer can be prevented.
  • a light-emitting element utilizing electroluminescence
  • An EL element includes a layer containing a light-emitting compound (also referred to as an “EL layer”) between a pair of electrodes.
  • a potential difference larger than the threshold voltage of the EL element is generated between the pair of electrodes, holes are injected from the anode side into the EL layer and electrons are injected from the cathode side. The injected electrons and holes are recombined in the EL layer, and the light-emitting substance contained in the EL layer emits light.
  • ELEL elements are classified according to whether the luminescent material is an organic compound or an inorganic compound. Generally, the former is called an organic EL element and the latter is called an inorganic EL element.
  • the organic EL element by applying a voltage, electrons are injected from one electrode and holes are injected from the other electrode into the EL layer. Then, by recombination of the carriers (electrons and holes), the light-emitting organic compound forms an excited state and emits light when the excited state returns to the ground state. Due to such a mechanism, such a light-emitting element is called a current-excitation light-emitting element.
  • the EL layer is formed using a substance having a high hole-injection property, a substance having a high hole-transport property, a hole-blocking material, a substance having a high electron-transport property, a substance having a high electron-injection property, or a bipolar substance. (A substance having a high electron-transport property and a high hole-transport property) or the like.
  • the EL layer can be formed by a method such as an evaporation method (including a vacuum evaporation method), a transfer method, a printing method, an inkjet method, and a coating method.
  • a method such as an evaporation method (including a vacuum evaporation method), a transfer method, a printing method, an inkjet method, and a coating method.
  • the inorganic EL elements are classified according to their element structures into a dispersion-type inorganic EL element and a thin-film inorganic EL element.
  • the dispersion-type inorganic EL element has a light-emitting layer in which particles of a light-emitting material are dispersed in a binder.
  • the light-emission mechanism is donor-acceptor recombination light emission using a donor level and an acceptor level.
  • the thin-film inorganic EL device has a structure in which a light-emitting layer is sandwiched between dielectric layers and further sandwiched between electrodes.
  • the light-emitting mechanism is localized light emission using inner-shell electron transition of metal ions. Note that description is made here using an organic EL element as a light-emitting element.
  • the light-emitting element only needs to have at least one of a pair of electrodes transparent in order to extract light emission. Then, a transistor and a light emitting element are formed over a substrate, and a top emission (top emission) structure for extracting light emission from a surface opposite to the substrate, a bottom emission (bottom emission) structure for extracting light emission from a surface on the substrate side, and the like. There is a light-emitting element having a dual emission structure in which light is emitted from both sides, and a light-emitting element having any emission structure can be applied.
  • FIG. 9 illustrates an example of a light-emitting display device using a light-emitting element as a display element (also referred to as an “EL display device”).
  • a light-emitting element 4513 which is a display element is electrically connected to the transistor 4010 provided in the display portion 215. That is, the transistor 4010 corresponds to the transistor Tr5 described in Embodiment 1, and the light-emitting element 4513 corresponds to the light-emitting element LD described in Embodiment 1.
  • the structure of the light-emitting element 4513 is a stacked structure of the first electrode layer 4030, the light-emitting layer 4511, and the second electrode layer 4031; however, the structure is not limited to this.
  • the structure of the light-emitting element 4513 can be changed as appropriate depending on the direction of light extracted from the light-emitting element 4513 and the like.
  • the partition 4510 is formed using an organic insulating material or an inorganic insulating material.
  • an opening be formed over the first electrode layer 4030 using a photosensitive resin material, and that the side surface of the opening be formed to have an inclined surface having a continuous curvature.
  • the light-emitting layer 4511 may be formed of a single layer, or may be formed so that a plurality of layers are stacked.
  • the light-emitting color of the light-emitting element 4513 can be white, red, green, blue, cyan, magenta, yellow, or the like depending on the material of the light-emitting layer 4511.
  • a method for realizing color display there are a method of combining a light-emitting element 4513 emitting white light and a coloring layer, and a method of providing a light-emitting element 4513 having a different emission color for each pixel.
  • the latter method it is necessary to separately form the light emitting layer 4511 for each pixel, so that the productivity is inferior to the former method.
  • a luminescent color with higher color purity can be obtained than in the former method.
  • color purity can be further increased.
  • the light-emitting layer 4511 may include an inorganic compound such as a quantum dot.
  • an inorganic compound such as a quantum dot.
  • a quantum dot for a light emitting layer, it can be made to function as a light emitting material.
  • a protective layer may be formed over the second electrode layer 4031 and the partition wall 4510 so that oxygen, hydrogen, moisture, carbon dioxide, or the like does not enter the light-emitting element 4513.
  • the protective layer silicon nitride, silicon nitride oxide, aluminum oxide, aluminum nitride, aluminum oxynitride, aluminum nitride oxide, DLC (Diamond Like Carbon), or the like can be formed.
  • a filler 4514 is provided and sealed.
  • a protective film laminated film, ultraviolet curable resin film, or the like
  • a cover material that has high airtightness and low degassing so as not to be exposed to the outside air.
  • an ultraviolet curable resin or a thermosetting resin in addition to an inert gas such as nitrogen or argon, an ultraviolet curable resin or a thermosetting resin can be used.
  • PVC polyvinyl chloride
  • acrylic resin polyimide
  • epoxy resin epoxy resin
  • silicone resin silicone resin
  • PVB Polyvinyl butyral
  • EVA ethylene vinyl acetate
  • a desiccant may be included in the filler 4514.
  • a glass material such as a glass frit, a resin material such as a two-component resin that cures at room temperature, a photocurable resin, a thermosetting resin, or the like can be used for the sealant 4005. Further, a desiccant may be included in the sealant 4005.
  • an optical film such as a polarizing plate, a circular polarizing plate (including an elliptically polarizing plate), a retardation plate ( ⁇ / 4 plate, ⁇ / 2 plate), and a color filter may be provided on the emission surface of the light emitting element. It may be provided as appropriate. Further, an antireflection film may be provided on a polarizing plate or a circularly polarizing plate. For example, anti-glare treatment can be performed in which reflected light is diffused by unevenness on the surface to reduce glare.
  • the light emitting element has a microcavity structure
  • light with high color purity can be extracted.
  • reflection can be reduced and visibility of a displayed image can be increased.
  • first electrode layer and a second electrode layer (also referred to as a pixel electrode layer, a common electrode layer, a counter electrode layer, and the like) for applying a voltage to a display element, a direction of light to be extracted, a place where the electrode layer is provided, and Light transmission and reflection may be selected depending on the pattern structure of the electrode layer.
  • the first electrode layer 4030 and the second electrode layer 4031 are formed using indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide, and indium containing titanium oxide.
  • a light-transmitting conductive material such as tin oxide, indium zinc oxide, or indium tin oxide to which silicon oxide is added can be used.
  • the first electrode layer 4030 and the second electrode layer 4031 are made of tungsten (W), molybdenum (Mo), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), and tantalum (Ta).
  • Metals such as chromium (Cr), cobalt (Co), nickel (Ni), titanium (Ti), platinum (Pt), aluminum (Al), copper (Cu), silver (Ag), or alloys thereof, or It can be formed using one or more kinds of metal nitride.
  • the first electrode layer 4030 and the second electrode layer 4031 can be formed using a conductive composition containing a conductive high molecule (also referred to as a conductive polymer).
  • a conductive polymer a so-called ⁇ -electron conjugated conductive polymer can be used.
  • polyaniline or a derivative thereof, polypyrrole or a derivative thereof, polythiophene or a derivative thereof, and a copolymer of two or more of aniline, pyrrole, and thiophene or a derivative thereof, and the like can be given.
  • a protection circuit for protecting a driver circuit is preferably provided.
  • the protection circuit is preferably formed using a non-linear element.
  • FIG. 10 shows an example in which a light-emitting diode chip (hereinafter, also referred to as an LED chip) is used as a display element.
  • a light-emitting diode chip hereinafter, also referred to as an LED chip
  • the LED chip has a light emitting diode.
  • the configuration of the light-emitting diode is not particularly limited, and a MIS (Metal Insulator Semiconductor) junction may be used, and a homo structure, a hetero structure, a double hetero structure, or the like having a PN junction or a PIN junction may be used. Further, it may have a superlattice structure, a single quantum well structure in which thin films that produce a quantum effect are stacked, or a multiple quantum well (MQW: Multi Quantum Well) structure.
  • MQW Multi Quantum Well
  • the LED chip 4600 includes a substrate 4601, an n-type semiconductor layer 4611, a light-emitting layer 4612, a p-type semiconductor layer 4613, an electrode 4615, an electrode 4621, an electrode 4622, an insulating layer 4603, and the like.
  • the LED chip 4600 includes an electrode 4621 functioning as a cathode over the n-type semiconductor layer 4611, an electrode 4615 functioning as a contact electrode over the p-type semiconductor layer 4613, and an electrode 4622 functioning as an anode over the electrode 4615.
  • an electrode 4621 functioning as a cathode over the n-type semiconductor layer 4611
  • an electrode 4615 functioning as a contact electrode over the p-type semiconductor layer 4613
  • an electrode 4622 functioning as an anode over the electrode 4615.
  • the upper surface of the n-type semiconductor layer 4611 and the upper surface and side surfaces of the electrode 4615 be covered with an insulating layer 4603.
  • the insulating layer 4603 functions as a protective film of the LED chip 4600.
  • LED chip 4600 the area of a region for emitting light 1 mm 2 or less, preferably 10000 2 or less, more preferably 3000 .mu.m 2 or less, more preferably to a 700 .mu.m 2 or less.
  • a macro LED having a dimension of one side exceeding 1 mm may be used, but it is preferable to use an LED having a smaller size.
  • a mini LED having one side dimension larger than 100 ⁇ m and 1 mm or less, more preferably a micro LED having one side dimension of 100 ⁇ m or less can be used.
  • micro LEDs an extremely high-definition display device can be realized.
  • the n-type semiconductor layer 4611 may have a configuration in which an n-type contact layer is stacked on the substrate 4601 side and an n-type clad layer is stacked on the light emitting layer 4612 side.
  • the p-type semiconductor layer 4613 may have a configuration in which a p-type cladding layer is stacked on the light-emitting layer 4612 side and a p-type contact layer is stacked on the electrode 4615 side.
  • the light emitting layer 4612 can have a multiple quantum well (MQW) structure in which a barrier layer and a well layer are stacked a plurality of times. It is preferable to use a material having a larger band gap energy than the well layer for the barrier layer. With such a structure, energy can be confined in the well layer, quantum efficiency can be improved, and luminous efficiency of the LED chip 4600 can be improved.
  • MQW multiple quantum well
  • the LED chip 4600 is a face-down type LED chip in which light is mainly emitted to the substrate 4601 side.
  • a material that reflects light can be used for the electrode 4615; for example, a metal such as silver, aluminum, or rhodium can be used.
  • a light-transmitting material may be used for the electrode 4615; for example, ITO (In 2 O 3 —SnO 2 ), AZO (Al 2 O 3 —ZnO), An oxide such as IZO (In 2 O 3 —ZnO), GZO (GeO 2 —ZnO), or ICO (In 2 O 3 —CeO 2 ) can be used.
  • the substrate 4601 As the substrate 4601, a single crystal of oxide such as sapphire single crystal (Al 2 O 3 ), spinel single crystal (MgAl 2 O 4), ZnO single crystal, LiAlO 2 single crystal, LiGaO 2 single crystal, MgO single crystal, or Si single crystal crystal, SiC single crystal, GaAs single crystal, AlN single crystal, it is possible to use a GaN single crystal, boride single crystals such as ZrB 2.
  • the substrate 4601 is preferably formed using a material that transmits light. For example, sapphire single crystal or the like can be used.
  • a buffer layer (not shown) may be provided between the substrate 4601 and the n-type semiconductor layer 4611.
  • the buffer layer has a function of reducing a difference in lattice constant between the substrate 4601 and the n-type semiconductor layer 4611.
  • the electrode 4621 and the electrode 4622 of the LED chip 4600 are connected to the first electrode layer 4030 or the second electrode layer 4031 through the bumps 4605, respectively.
  • a light-shielding resin layer 4607 so as to cover the side surface of the LED chip 4600. Accordingly, light emitted from the LED chip 4600 in the horizontal direction can be blocked, and a decrease in contrast due to guided light can be prevented.
  • FIG. 10 illustrates an example in which a substrate 4006 is further provided over the substrate 4601.
  • the bonding of the LED chip 4600 can be further strengthened, and the bonding failure of the LED chip 4600 occurs. Can be suitably prevented.
  • FIG. 11 illustrates an example of a liquid crystal display device using a liquid crystal element as a display element.
  • a liquid crystal element 4013 which is a display element includes a first electrode layer 4030, a second electrode layer 4031, and a liquid crystal layer 4008. Note that an insulating layer 4032 and an insulating layer 4033 functioning as alignment films are provided so as to sandwich the liquid crystal layer 4008.
  • the second electrode layer 4031 is provided on the second substrate 4006 side, and the first electrode layer 4030 and the second electrode layer 4031 overlap with each other with the liquid crystal layer 4008 interposed therebetween.
  • the spacer 4035 is a columnar spacer obtained by selectively etching an insulating layer, and is provided to control a distance (cell gap) between the first electrode layer 4030 and the second electrode layer 4031. I have. Note that a spherical spacer may be used.
  • an optical member such as a black matrix (light-shielding layer), a coloring layer (color filter), a polarizing member, a retardation member, an anti-reflection member, and the like may be appropriately provided.
  • an optical member such as a black matrix (light-shielding layer), a coloring layer (color filter), a polarizing member, a retardation member, an anti-reflection member, and the like
  • circularly polarized light from a polarizing substrate and a phase difference substrate may be used.
  • a backlight, a sidelight, or the like may be used as a light source.
  • a micro LED or the like may be used as the backlight and the sidelight.
  • a light-blocking layer 4132, a coloring layer 4131, and an insulating layer 4133 are provided between the substrate 4006 and the second electrode layer 4031.
  • Examples of a material that can be used for the light-blocking layer 4132 include carbon black, titanium black, a metal, a metal oxide, and a composite oxide containing a solid solution of a plurality of metal oxides.
  • the light-blocking layer 4132 may be a film containing a resin material or a thin film of an inorganic material such as a metal.
  • a stacked film of a film containing the material of the coloring layer 4131 can be used for the light-blocking layer 4132.
  • a stacked structure of a film containing a material used for a coloring layer transmitting light of a certain color and a film containing a material used for a coloring layer transmitting light of another color can be used. It is preferable to use the same material for the coloring layer and the light-shielding layer, because the device can be shared and the process can be simplified.
  • a material that can be used for the coloring layer 4131 a metal material, a resin material, a resin material containing a pigment or a dye, or the like can be given.
  • the method for forming the light shielding layer and the colored layer may be the same as the method for forming each layer described above. For example, it may be performed by an inkjet method or the like.
  • the semiconductor device or the display device of one embodiment of the present invention can be manufactured using various types of transistors such as a bottom-gate transistor and a top-gate transistor. Therefore, the material of the semiconductor layer and the transistor structure to be used can be easily replaced according to the existing manufacturing line.
  • FIG. 12A1 is a cross-sectional view of a channel-protection transistor 810 which is a kind of bottom-gate transistor.
  • the transistor 810 is formed over a substrate 771. Further, the transistor 810 includes an electrode 746 over a substrate 771 with an insulating layer 772 interposed therebetween. Further, a semiconductor layer 742 is provided over the electrode 746 with an insulating layer 726 interposed therebetween.
  • the electrode 746 can function as a gate electrode.
  • the insulating layer 726 can function as a gate insulating layer.
  • the semiconductor layer 742 includes the insulating layer 741 over the channel formation region. Further, an electrode 744a and an electrode 744b are provided over the insulating layer 726 in contact with part of the semiconductor layer 742.
  • the electrode 744a can function as one of a source electrode and a drain electrode.
  • the electrode 744b can function as the other of the source electrode and the drain electrode. Part of the electrode 744a and part of the electrode 744b are formed over the insulating layer 741.
  • the insulating layer 741 can function as a channel protective layer. Providing the insulating layer 741 over the channel formation region can prevent the semiconductor layer 742 from being exposed when the electrodes 744a and 744b are formed. Therefore, the channel formation region of the semiconductor layer 742 can be prevented from being etched when the electrodes 744a and 744b are formed. According to one embodiment of the present invention, a transistor with favorable electric characteristics can be realized.
  • the transistor 810 includes the insulating layer 728 over the electrode 744a, the electrode 744b, and the insulating layer 741, and the insulating layer 729 over the insulating layer 728.
  • an oxide semiconductor used for the semiconductor layer 742
  • a material which can remove oxygen from part of the semiconductor layer 742 and generate oxygen vacancies is used for at least a portion of the electrode 744a and the electrode 744b which is in contact with the semiconductor layer 742.
  • the carrier concentration increases, the region becomes n-type, and the region becomes an n-type region (n + layer). Therefore, the region can function as a source region or a drain region.
  • tungsten, titanium, or the like can be given as an example of a material which can remove oxygen from the semiconductor layer 742 and cause oxygen vacancies.
  • the source region and the drain region in the semiconductor layer 742 By forming the source region and the drain region in the semiconductor layer 742, the contact resistance between the electrodes 744a and 744b and the semiconductor layer 742 can be reduced. Thus, favorable electric characteristics of the transistor, such as the field-effect mobility and the threshold voltage, can be obtained.
  • a layer which functions as an n-type semiconductor or a p-type semiconductor is preferably provided between the semiconductor layer 742 and the electrode 744a and between the semiconductor layer 742 and the electrode 744b.
  • a layer functioning as an n-type semiconductor or a p-type semiconductor can function as a source region or a drain region of a transistor.
  • the insulating layer 729 is preferably formed using a material having a function of preventing or reducing diffusion of impurities from the outside to the transistor. Note that the insulating layer 729 can be omitted as necessary.
  • the transistor 811 illustrated in FIG. 12A2 includes an electrode 723 which can function as a back gate electrode over the insulating layer 729.
  • the electrode 723 can be formed using a material and a method similar to those of the electrode 746.
  • the back gate electrode is formed of a conductive layer, and is arranged so as to sandwich the channel formation region of the semiconductor layer between the gate electrode and the back gate electrode. Therefore, the back gate electrode can function similarly to the gate electrode.
  • the potential of the back gate electrode may be the same potential as the gate electrode, a ground potential (GND potential), or an arbitrary potential. Further, the threshold voltage of the transistor can be changed by independently changing the potential of the back gate electrode without interlocking with the gate electrode.
  • Both the electrode 746 and the electrode 723 can function as gate electrodes. Therefore, each of the insulating layers 726, 728, and 729 can function as a gate insulating layer. Note that the electrode 723 may be provided between the insulating layer 728 and the insulating layer 729.
  • the other is referred to as a “back gate electrode”.
  • the electrode 746 when the electrode 723 is referred to as a “gate electrode”, the electrode 746 is referred to as a “back gate electrode”.
  • the transistor 811 can be considered as a kind of top-gate transistor.
  • one of the electrode 746 and the electrode 723 may be referred to as a “first gate electrode”, and the other may be referred to as a “second gate electrode”.
  • the electrode 746 and the electrode 723 With the electrode 746 and the electrode 723 with the semiconductor layer 742 interposed therebetween, and further by setting the electrode 746 and the electrode 723 to the same potential, a region where carriers flow in the semiconductor layer 742 becomes larger in the thickness direction. The amount of carrier movement increases. As a result, the on-state current of the transistor 811 increases and the field-effect mobility increases.
  • the transistor 811 is a transistor having a large on-state current with respect to the occupied area. That is, the area occupied by the transistor 811 can be reduced with respect to the required on-state current. According to one embodiment of the present invention, the area occupied by a transistor can be reduced. Therefore, according to one embodiment of the present invention, a highly integrated semiconductor device can be realized.
  • the gate electrode and the back gate electrode are formed using a conductive layer, the gate electrode and the back gate electrode have a function of preventing an electric field generated outside the transistor from acting on a semiconductor layer in which a channel is formed (particularly, a function of shielding an electric field against static electricity or the like). . Note that by forming the back gate electrode larger than the semiconductor layer and covering the semiconductor layer with the back gate electrode, the electric field shielding function can be improved.
  • the back gate electrode is formed using a conductive film having a light-blocking property
  • light can be prevented from entering the semiconductor layer from the back gate electrode side. Accordingly, light deterioration of the semiconductor layer can be prevented, and deterioration of electrical characteristics such as a shift in threshold voltage of the transistor can be prevented.
  • a highly reliable transistor can be realized. Further, a highly reliable semiconductor device can be realized.
  • FIG. 12B1 is a cross-sectional view of a channel protection transistor 820 which is one of bottom-gate transistors.
  • the transistor 820 has substantially the same structure as the transistor 810, except that an insulating layer 741 covers an end portion of the semiconductor layer 742.
  • the semiconductor layer 742 and the electrode 744a are electrically connected to each other at an opening portion formed by selectively removing part of the insulating layer 741 which overlaps with the semiconductor layer 742.
  • the semiconductor layer 742 and the electrode 744b are electrically connected.
  • a region of the insulating layer 741 which overlaps with the channel formation region can function as a channel protective layer.
  • the transistor 821 illustrated in FIG. 12B2 includes an electrode 723 which can function as a back gate electrode over the insulating layer 729.
  • the insulating layer 741 By providing the insulating layer 741, exposure of the semiconductor layer 742 which is generated when the electrodes 744a and 744b are formed can be prevented. Therefore, the thickness of the semiconductor layer 742 can be prevented from being reduced when the electrodes 744a and 744b are formed.
  • the distance between the electrodes 744a and 746 and the distance between the electrodes 744b and 746 are longer than those of the transistors 810 and 811. Therefore, parasitic capacitance generated between the electrode 744a and the electrode 746 can be reduced. Further, parasitic capacitance generated between the electrode 744b and the electrode 746 can be reduced. According to one embodiment of the present invention, a transistor with favorable electric characteristics can be realized.
  • the transistor 825 illustrated in FIG. 12C1 is a channel-etched transistor which is one of bottom-gate transistors.
  • the electrodes 744a and 744b are formed without using the insulating layer 741. Therefore, part of the semiconductor layer 742 exposed when the electrodes 744a and 744b are formed may be etched. On the other hand, since the insulating layer 741 is not provided, the productivity of the transistor can be increased.
  • the transistor 826 illustrated in FIG. 12C2 includes an electrode 723 which can function as a back gate electrode over the insulating layer 729.
  • the transistor 842 illustrated in FIG. 13A1 is one of top-gate transistors.
  • the transistor 842 is different from the transistors 810, 811, 820, 821, 825, and 826 in that an electrode 744a and an electrode 744b are formed after the insulating layer 729 is formed.
  • the electrodes 744a and 744b are electrically connected to the semiconductor layer 742 in openings formed in the insulating layers 728 and 729.
  • the transistor 842 has a region in which the insulating layer 726 extends beyond the edge of the electrode 746.
  • the region of the semiconductor layer 742 in which the impurity 755 is introduced through the insulating layer 726 has a lower impurity concentration than the region in which the impurity 755 is introduced without passing through the insulating layer 726. Accordingly, in the semiconductor layer 742, an LDD (Lightly Doped Drain) region is formed in a region which does not overlap with the electrode 746.
  • LDD Lightly Doped Drain
  • a transistor 843 illustrated in FIG. 13A2 is different from the transistor 842 in having an electrode 723.
  • the transistor 843 has an electrode 723 formed over a substrate 771.
  • the electrode 723 overlaps with the semiconductor layer 742 with the insulating layer 772 interposed therebetween.
  • the electrode 723 can function as a back gate electrode.
  • the insulating layer 726 in a region which does not overlap with the electrode 746 may be entirely removed. Further, the insulating layer 726 may be left as in the transistor 846 illustrated in FIG. 13C1 and the transistor 847 illustrated in FIG. 13C2.
  • the impurity regions can be formed in the semiconductor layer 742 in a self-aligned manner by forming the electrode 746 and then introducing the impurity 755 into the semiconductor layer 742 using the electrode 746 as a mask.
  • a transistor with favorable electric characteristics can be realized.
  • a highly integrated semiconductor device can be realized.
  • CAAC c-axis aligned crystal
  • CAC Cloud-Aligned Composite
  • the CAC-OS or CAC-metal oxide includes a conductive function in part of a material, an insulating function in part of a material, and a semiconductor function as a whole material.
  • the conductive function is a function of flowing electrons (or holes) serving as carriers
  • the insulating function is a carrier. This function does not allow electrons to flow.
  • a switching function on / off function
  • both functions can be maximized.
  • the CAC-OS or CAC-metal oxide includes a conductive region and an insulating region.
  • the conductive region has the above-described conductive function
  • the insulating region has the above-described insulating function.
  • a conductive region and an insulating region are separated at a nanoparticle level in a material. Further, the conductive region and the insulating region may be unevenly distributed in the material. In some cases, the conductive region is observed with its periphery blurred and connected in a cloud shape.
  • the conductive region and the insulating region each have a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm, and are dispersed in a material. There is.
  • the CAC-OS or CAC-metal oxide includes components having different band gaps.
  • a CAC-OS or a CAC-metal oxide includes a component having a wide gap due to an insulating region and a component having a narrow gap due to a conductive region.
  • the carrier when the carrier flows, the carrier mainly flows in the component having the narrow gap.
  • the component having the narrow gap acts complementarily to the component having the wide gap, and the carrier flows to the component having the wide gap in conjunction with the component having the narrow gap. Therefore, in the case where the CAC-OS or CAC-metal oxide is used for a channel formation region of a transistor, high current driving capability, that is, a high on-state current and high field-effect mobility can be obtained when the transistor is on.
  • the CAC-OS or the CAC-metal oxide can be referred to as a matrix composite or a metal matrix composite.
  • An oxide semiconductor is classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor.
  • a non-single-crystal oxide semiconductor for example, a CAAC-OS (c-axis aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), or a pseudo-amorphous oxide semiconductor (a-like) OS includes amorphous-like oxide semiconductor (OS) and an amorphous oxide semiconductor.
  • the CAAC-OS has a c-axis orientation and a crystal structure in which a plurality of nanocrystals are connected in an ab plane direction and has a strain.
  • the strain refers to a region where the orientation of the lattice arrangement changes between a region where the lattice arrangement is uniform and a region where another lattice arrangement is uniform in a region where a plurality of nanocrystals are connected.
  • Nanocrystals are basically hexagonal, but are not limited to regular hexagons, and may be non-regular hexagons.
  • distortion may have a lattice arrangement such as a pentagon and a heptagon.
  • a clear crystal grain boundary also referred to as a grain boundary
  • the formation of the crystal grain boundaries is suppressed by the distortion of the lattice arrangement. This is because the CAAC-OS can tolerate distortion because the arrangement of oxygen atoms is not dense in the ab plane direction, or the bonding distance between atoms changes by substitution with a metal element. It is thought to be.
  • the CAAC-OS is a layered crystal in which a layer containing indium and oxygen (hereinafter, an In layer) and a layer containing elements M, zinc, and oxygen (hereinafter, a (M, Zn) layer) are stacked. It tends to have a structure (also called a layered structure).
  • indium and the element M can be replaced with each other, and when the element M in the (M, Zn) layer is replaced with indium, it can also be referred to as an (In, M, Zn) layer.
  • indium in the In layer is replaced with the element M, it can be referred to as an (In, M) layer.
  • CAAC-OS is an oxide semiconductor with high crystallinity.
  • the CAAC-OS in the CAAC-OS, a crystal grain boundary cannot be clearly observed, so that a decrease in electron mobility due to the crystal grain boundary is unlikely to occur. Further, the crystallinity of the oxide semiconductor may be reduced due to entry of impurities, generation of defects, or the like; thus, the CAAC-OS can be regarded as an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, an oxide semiconductor including a CAAC-OS has stable physical properties. Therefore, an oxide semiconductor including a CAAC-OS is resistant to heat and has high reliability. Further, the CAAC-OS is stable even at a high temperature (so-called thermal budget) in a manufacturing process. Therefore, when a CAAC-OS is used for an OS transistor, the degree of freedom in a manufacturing process can be increased.
  • the nc-OS has a periodic atomic arrangement in a minute region (for example, a region from 1 nm to 10 nm inclusive, particularly a region from 1 nm to 3 nm inclusive).
  • a minute region for example, a region from 1 nm to 10 nm inclusive, particularly a region from 1 nm to 3 nm inclusive.
  • the nc-OS may not be distinguished from an a-like @ OS or an amorphous oxide semiconductor depending on an analysis method.
  • the ⁇ a-like ⁇ OS is an oxide semiconductor having a structure between the nc-OS and an amorphous oxide semiconductor.
  • a-like @ OS has voids or low density regions. That is, a-like @ OS has lower crystallinity than the nc-OS and the CAAC-OS.
  • Oxide semiconductors have various structures, each having different characteristics.
  • the oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like @ OS, an nc-OS, and a CAAC-OS.
  • the oxide semiconductor has a carrier density of less than 8 ⁇ 10 11 / cm 3 , preferably less than 1 ⁇ 10 11 / cm 3 , more preferably less than 1 ⁇ 10 10 / cm 3 , and 1 ⁇ 10 ⁇ 9 / cm 3. cm 3 or more.
  • the density of trap states may be low.
  • the charge trapped in the trap level of the oxide semiconductor requires a long time to disappear, and may behave like a fixed charge. Therefore, a transistor in which a channel formation region is formed in an oxide semiconductor with a high trap state density may have unstable electric characteristics in some cases.
  • the impurities include hydrogen, nitrogen, an alkali metal, an alkaline earth metal, iron, nickel, and silicon.
  • the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon in the vicinity of the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the concentration of an alkali metal or an alkaline earth metal in an oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • the concentration of nitrogen in an oxide semiconductor is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, more preferably 1 ⁇ 10 18 atoms / cm 3 or less in SIMS. Preferably, it is 5 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor reacts with oxygen bonded to a metal atom to become water, which may form oxygen vacancies.
  • an electron serving as a carrier may be generated.
  • part of hydrogen may bond with oxygen which is bonded to a metal atom to generate an electron serving as a carrier. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to have normally-on characteristics. Therefore, it is preferable that hydrogen in the oxide semiconductor be reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is lower than 1 ⁇ 10 20 atoms / cm 3 , preferably lower than 1 ⁇ 10 19 atoms / cm 3 , and more preferably lower than 5 ⁇ 10 18 atoms / cm 3. It is set to less than 3 , more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • FIG. 14A illustrates a laptop personal computer, which is a type of information terminal device, including a housing 5401, a display portion 5402, a keyboard 5403, a pointing device 5404, and the like.
  • FIG. 14B illustrates a smartwatch which is a kind of wearable terminal and includes a housing 5901, a display portion 5902, operation buttons 5903, operators 5904, a band 5905, and the like.
  • a display device in which a function as a position input device is added to the display portion 5902 may be used.
  • the function as the position input device can be added by providing a touch panel on the display device.
  • the function as the position input device can be added by providing a photoelectric conversion element also called a photosensor in a pixel portion of a display device.
  • the operation button 5903 can include any of a power switch for starting a smartwatch, a button for operating an application of the smartwatch, a volume control button, and a switch for turning on or off the display portion 5902.
  • the number of operation buttons 5903 is two, but the number of operation buttons of the smartwatch is not limited to this.
  • the operator 5904 functions as a crown for adjusting the time of the smartwatch.
  • the operator 5904 may be used as an input interface for operating an application of the smart watch other than the time adjustment. Note that the smart watch illustrated in FIG. 14B has a configuration including the operation element 5904, but is not limited thereto, and may have a configuration without the operation element 5904.
  • the semiconductor device or the display device of one embodiment of the present invention can be applied to a video camera.
  • the video camera illustrated in FIG. 14C includes a first housing 5801, a second housing 5802, a display portion 5803, operation keys 5804, a lens 5805, a connection portion 5806, and the like.
  • the operation keys 5804 and the lens 5805 are provided on the first housing 5801, and the display portion 5803 is provided on the second housing 5802.
  • the first housing 5801 and the second housing 5802 are connected by a connection portion 5806, and the angle between the first housing 5801 and the second housing 5802 can be changed by the connection portion 5806. is there.
  • the image on the display portion 5803 may be switched according to the angle between the first housing 5801 and the second housing 5802 in the connection portion 5806.
  • FIG. 14D illustrates a mobile phone having an information terminal function, which includes a housing 5501, a display portion 5502, a microphone 5503, a speaker 5504, and operation buttons 5505.
  • a display device in which a function as a position input device is added to the display portion 5502 may be used.
  • the function as the position input device can be added by providing a touch panel on the display device.
  • the function as the position input device can be added by providing a photoelectric conversion element also called a photosensor in a pixel portion of a display device.
  • the operation button 5505 can include a power switch for starting a mobile phone, a button for operating a mobile phone application, a volume control button, a switch for turning on or off the display portion 5502, and the like.
  • the number of the operation buttons 5505 is two, but the number of the operation buttons included in the mobile phone is not limited to this.
  • the mobile phone illustrated in FIG. 14D may have a structure including a flashlight or a light-emitting device for illumination.
  • the semiconductor device or the display device of one embodiment of the present invention can be applied to a television device.
  • the television device illustrated in FIG. 14E includes a housing 9000, a display portion 9001, a speaker 9003, operation keys 9005 (including a power switch or an operation switch), a connection terminal 9006, and the like.
  • the television device can incorporate a display portion 9001 with a large screen, for example, 50 inches or more, or 100 inches or more.
  • the semiconductor device or the display device of one embodiment of the present invention can be applied to the vicinity of the driver's seat of an automobile which is a mobile object.
  • FIG. 14F is a diagram illustrating the vicinity of a windshield in a vehicle.
  • FIG. 14F illustrates a display panel 5701 attached to a pillar, in addition to a display panel 5701, a display panel 5702, and a display panel 5703 attached to a dashboard.
  • the display panels 5701 to 5703 can provide various kinds of information by displaying navigation information, a speedometer, a tachometer, a mileage, a fuel gauge, a gear state, an air conditioner setting, and the like. Further, display items, layout, and the like displayed on the display panel can be appropriately changed according to the user's preference, so that design can be improved.
  • the display panels 5701 to 5703 can also be used as lighting devices.
  • the display panel 5704 can complement the field of view (blind spot) blocked by pillars by displaying an image from the imaging means provided on the vehicle body. That is, by displaying an image from the image pickup means provided outside the automobile, blind spots can be compensated for and safety can be improved. In addition, by displaying an image that complements the invisible part, it is possible to more naturally confirm safety without a sense of incongruity.
  • the display panel 5704 can be used as a lighting device.
  • FIG. 15A shows an example of an electronic signboard (digital signage) that can be attached to a wall.
  • FIG. 15A shows a state where the electronic signboard 6200 is attached to the wall 6201.
  • FIG. 15B illustrates a tablet-type information terminal having a foldable structure.
  • the information terminal illustrated in FIG. 15B includes a housing 5321a, a housing 5321b, a display portion 5322, and operation buttons 5223.
  • the display portion 5322 has a flexible base material, so that a structure which can be folded with the base material can be realized.
  • the housing 5321a and the housing 5321b are connected to each other by a hinge 5321c, and the hinge 5321c can be folded in two.
  • the display portion 5322 is provided in the housing 5321a, the housing 5321b, and the hinge portion 5321c.
  • the electronic devices shown in FIGS. 14A to 14C, 14E, 15A, and 15B may have a configuration including a microphone and a speaker. With this configuration, for example, the electronic device described above can be provided with a voice input function.
  • the electronic devices shown in FIGS. 14A, 14B, 14D, 15A, and 15B may have a configuration including a camera.
  • the electronic devices shown in FIGS. 14A to 14F, 15A, and 15B include sensors (force, displacement, position, speed, acceleration, angular velocity, rotation speed, distance, , Including functions to measure light, liquid, magnetism, temperature, chemicals, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, smell or infrared) It may be a configuration.
  • sensors force, displacement, position, speed, acceleration, angular velocity, rotation speed, distance, , Including functions to measure light, liquid, magnetism, temperature, chemicals, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, smell or infrared
  • the screen display of the display portion 5502 can be automatically switched in accordance with the orientation of the mobile phone.
  • the electronic devices illustrated in FIGS. 14A to 14F, 15A, and 15B may have a configuration including a device that acquires biological information such as a fingerprint, a vein, an iris, or a voiceprint. .
  • a biometric authentication function can be realized.
  • a flexible base material may be used for the display portion of the electronic device illustrated in FIGS. 14A to 14E and 15A.
  • the display portion may have a structure in which a transistor, a capacitor, a display element, and the like are provided over a flexible base material.
  • a flexible base material that can be applied to the display portion of FIG. 14B is, for example, a material having a property of transmitting visible light, such as polyethylene terephthalate resin (PET). , Polyethylene naphthalate resin (PEN), polyether sulfone resin (PES), polyacrylonitrile resin, acrylic resin, polyimide resin, polymethyl methacrylate resin, polycarbonate resin, polyamide resin, polycycloolefin resin, polystyrene resin, polyamide imide resin , A polypropylene resin, a polyester resin, a polyvinyl halide resin, an aramid resin, an epoxy resin, a urethane resin, and the like. Further, these materials may be mixed or laminated.
  • PET polyethylene terephthalate resin
  • PEN Polyethylene naphthalate resin
  • PES polyether sulfone resin
  • polyacrylonitrile resin acrylic resin, polyimide resin, polymethyl methacrylate resin, polycarbonate resin, polyamide resin
  • DD display device
  • PA display unit
  • GD gate driver circuit
  • SD source driver circuit
  • PIX pixel
  • SR shift register
  • LAT latch circuit
  • LVS level shift circuit
  • DAC digital-analog conversion circuit
  • AMP Amplifier circuit
  • GL wiring
  • DL wiring
  • DB data bus wiring
  • Tr1 to 7 transistor
  • C1, C2, C3 capacitance element
  • LD light emitting element
  • GL1 to 4 wiring
  • DL wiring
  • WDL Wiring
  • VL Wiring
  • AL Wiring
  • CAT Wiring
  • ND1 Node
  • ND2 Node

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

表示装置の消費電力を低減する。表示装置の駆動回路の消費電力を低減する。 表示装置が備える画素は、表示素子を備え、画素は、入力される第1のパルス信号に応じた第1の 電圧を保持する機能と、入力される第2のパルス信号に応じた第2の電圧を、第1の電圧に足し合 わせて得られる第3の電圧により、表示素子を駆動する機能と、を有する構成とする。

Description

表示装置
 本発明の一態様は、半導体装置、表示装置、及びその駆動方法に関する。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、またはそれらの製造方法、を一例として挙げることができる。半導体装置は、半導体特性を利用することで機能しうる装置全般を指す。
 近年、スマートフォンなどの携帯電話、タブレット型情報端末、ノート型PC(パーソナルコンピュータ)、携帯ゲーム機等が有する表示装置において、様々な面で改良が進められている。例えば、解像度を大きくする、色再現性を高くする、駆動回路を小さくする、消費電力を低減する、等の表示装置の開発が行われている。
 例えば、表示装置が有する画素回路に含まれるスイッチング素子として、金属酸化物がチャネル形成領域に含まれるトランジスタを適用する技術などが挙げられる。特に、当該金属酸化物としては、In−Ga−Zn系酸化物を用いることができる。特許文献1には、In−Ga−Zn系酸化物をチャネル形成領域に含むトランジスタを、表示装置の画素回路に用いる発明が開示されている。
 また、例えば、発光素子を有する表示装置に多階調の画像を表示するため、多階調リニアデジタルアナログ変換回路を用いた、ソースドライバICの発明が、特許文献2に記載されている。
特開2010−156963号公報 米国特許第8462145号明細書
 表示装置は、高品位な画像を表示するために、例えば、高解像度、多階調、広色域などであることが求められる。例えば、液晶素子や、有機EL(Electro Luminescence)素子などの発光素子を含む表示装置において、多階調の画像を実現するには、ソースドライバ回路を好適に設計する必要がある。
 しかし、多階調の画像データを扱うには、ソースドライバ回路に含まれる、デジタルアナログ変換回路の分解能を高くする必要がある。一方、分解能の高いデジタルアナログ変換回路を設計する場合、回路面積が増大してしまう。
 また、ソースドライバ回路が有するデジタルアナログ変換回路などの、アナログ信号を扱う回路部では、デジタル信号を生成する回路部に比べて高い電源電圧を必要とする。そのため、ソースドライバ回路の消費電力を低減することが困難であった。また、表示パネルが実装される機器には、少なくとも2種類の電源電圧を生成する回路が必要となる。
 本発明の一態様は、表示装置の消費電力を低減することを課題の一とする。または、表示装置の駆動回路の消費電力を低減することを課題の一とする。または、単一の電源電圧で駆動可能なソースドライバ回路を備える表示装置を提供することを課題の一とする。または、表示装置を備える機器の消費電力を低減することを課題の一とする。または、表示装置、駆動回路、または表示装置を備える機器の構成を簡略化することを課題の一とする。
 または、多階調の画像データを生成できる画素回路(本明細書等では半導体装置とも記載する。)を提供することを課題の一とする。または、当該半導体装置を有する表示装置を提供することを課題の一とする。または、当該表示装置を有する電子機器を提供することを課題の一とする。
 または、回路面積の小さいソースドライバ回路を有する表示装置を提供することを課題の一とする。または、消費電力の小さいソースドライバ回路を有する表示装置を提供することを課題の一とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から抽出することが可能である。
 本発明の一態様は、画素を備える表示装置であって、画素は、表示素子を備え、画素は、入力される第1のパルス信号に応じた第1の電圧を保持する機能と、入力される第2のパルス信号に応じた第2の電圧を、第1の電圧に足し合わせて得られる第3の電圧により、表示素子を駆動する機能と、を有する。
 また、上記において、表示素子は、発光素子であることが好ましい。このとき、発光素子は、第3の電圧に応じた輝度で発光することが好ましい。また、発光素子は、有機EL素子、または発光ダイオードを用いることが好ましい。また、発光ダイオードは、マイクロLED、またはミニLEDを用いることが好ましい。
 または、上記において、表示素子は、液晶素子であることが好ましい。このとき、液晶素子は、第3の電圧に応じて、液晶の配向が変化することが好ましい。
 また、上記において、第1のパルス信号を供給する第1の駆動回路を有することが好ましい。このとき、第1の駆動回路において、第1のパルス信号の生成のための第1の電源電圧は、第3の電圧の最大値よりも低いことが好ましい。さらに、第1の駆動回路は、第1の電源電圧を昇圧することなく、第1のパルス信号を生成することが好ましい。また、第1の電源電圧は、第3の電圧の最大値の半分、またはその近傍の電圧であることが好ましい。
 また、上記において、第1の駆動回路を制御するシステム回路を有することが好ましい。このとき、システム回路は、第1の駆動回路に第1の電源電圧を供給する機能を有することが好ましい。
 また、上記において、システム回路の駆動電圧の一が、1.8V、2.5V、3.3V、またはその近傍であり、システム回路は、駆動電圧と同じ電圧を、第1の電源電圧として第1の駆動回路に供給する機能を有することが好ましい。
 また、上記において、システム回路から第1の駆動回路に供給される第1の電源電圧は、昇圧されることなく供給されることが好ましい。
 本発明の一態様によれば、表示装置の消費電力を低減できる。または、表示装置の駆動回路の消費電力を低減できる。または、単一の電源電圧で駆動可能なソースドライバ回路を備える表示装置を提供できる。または、表示装置を備える機器の消費電力を低減できる。または、表示装置、駆動回路、または表示装置を備える機器の構成を簡略化できる。
 また、本発明の一態様によれば、多階調の画像データを生成できる半導体装置を提供できる。また、回路面積の小さいソースドライバ回路を有する表示装置を提供できる。または、消費電力の小さいソースドライバ回路を有する表示装置を提供できる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から抽出することが可能である。
図1は、表示装置の一例を示すブロック図である。
図2A及び図2Bは、画素の一例を示す回路図である。
図3は、画素の一例を示す回路図である。
図4は、画素の動作例を説明するためのタイミングチャートである。
図5A乃至図5Cは、画素の一例を示す回路図である。
図6A及び図6Bは、画素の一例を示す回路図である。
図7A及び図7Bは、表示装置の一例を示す上面図である。
図8A及び図8Bは、タッチパネルの一例を示す斜視図である。
図9は、表示装置の一例を示す断面図である。
図10は、表示装置の一例を示す断面図である。
図11は、表示装置の一例を示す断面図である。
図12A1乃至図12C2は、トランジスタの構成例を示す断面図である。
図13A1乃至図13C2は、トランジスタの構成例を示す断面図である。
図14A乃至図14Fは、電子機器の一例を示す斜視図である。
図15A及び図15Bは、電子機器の一例を示す斜視図である。
 以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
 なお、本明細書で説明する各図において、各構成要素の大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
 なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、数的に限定するものではない。
 本明細書等において、表示装置の一態様である表示パネルは表示面に画像等を表示(出力)する機能を有するものである。したがって表示パネルは出力装置の一態様である。
 また、本明細書等では、表示パネルの基板に、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)などのコネクターが取り付けられたもの、または基板にCOG(Chip On Glass)方式等によりICが実装されたものを、表示パネルモジュール、表示モジュール、または単に表示パネルなどと呼ぶ場合がある。
(実施の形態1)
 本実施の形態では、本発明の一態様の半導体装置、及び当該半導体装置を有する表示装置について説明する。
<表示装置の回路構成>
 図1は、表示装置DDの一例を示したブロック図である。表示装置DDは、表示部PAと、ソースドライバ回路SDと、ゲートドライバ回路GDと、を有する。
 表示部PAは、複数の画素PIXを有する。図1では、表示部PA内が有する複数の画素PIXのうち一つのみが図示され、他の画素PIXは省略されている。表示部PAが有する複数の画素PIXは、マトリクス状に配置されていることが好ましい。
 画素PIXは、配線DLを介して、ソースドライバ回路SDと電気的に接続されている。画素PIXは、配線GLを介して、ゲートドライバ回路GDと電気的に接続されている。表示部PAは、画素PIXを複数有しているため、配線DL及び配線GLには、複数の画素PIXが電気的に接続されていてもよい。また、配線DL及び配線GLのそれぞれは、表示部PAに含まれる画素PIXの個数に応じて、複数設けてもよい。更に、画素PIXの回路構成によっては、一つの画素PIXに対して、複数の配線DL、または複数の配線GLを電気的に接続する構成としてもよい。
 画素PIXは、1つ以上の副画素を有する構成とすることができる。例えば、画素PIXには、副画素を1つ有する構成(赤色(R)、緑色(G)、青色(B)、白色(W)などのいずれか一つの色)、副画素を3つ有する構成(赤色(R)、緑色(G)、及び青色(B)の3色など)、あるいは、副画素を4つ以上有する構成(例えば赤色(R)、緑色(G)、青色(B)、白色(W)の4色、または、赤色(R)、緑色(G)、青色(B)、黄色(Y)の4色など)を適用できる。なお、副画素に適用される色要素は、上記に限定されず、必要に応じて、シアン(C)及びマゼンタ(M)などを組み合わせてもよい。
 画素PIXは、少なくとも一以上の表示素子を備える。表示素子としては、発光素子、液晶素子、マイクロカプセル、電気泳動素子、エレクトロウェッティング素子、エレクトロフルイディック素子、エレクトロクロミック素子、MEMS素子等、様々な表示素子を用いることができる。
 上記発光素子としては、有機EL素子、LED(Light Emitting Diode)素子、無機EL素子などを用いることができる。
 LED素子としては、サイズの大きいものからマクロLED(巨大LEDともいう)、ミニLED、マイクロLEDなどがある。ここで、LEDチップの一辺の寸法が1mmを超えるものをマクロLED、100μmより大きく1mm以下のものをミニLED、100μm以下のものをマイクロLEDと呼ぶ。画素PIXに適用するLED素子として、特にミニLEDまたはマイクロLEDを用いることが好ましい。マイクロLEDを用いることで、極めて高精細な表示装置を実現できる。
 ソースドライバ回路SDは、表示部PAに含まれる画素PIXに入力するための画像データを生成する機能と、当該画像データを画素PIXに送信する機能と、を有する。
 ソースドライバ回路SDは、例えば、シフトレジスタSRと、ラッチ回路LATと、レベルシフト回路LVSと、デジタルアナログ変換回路DACと、アンプ回路AMPと、データバス配線DBと、を有することができる。図1では、シフトレジスタSRの出力端子がラッチ回路LATのクロック入力端子に電気的に接続され、ラッチ回路LATの入力端子がデータバス配線DBに電気的に接続され、ラッチ回路LATの出力端子がレベルシフト回路LVSの入力端子に電気的に接続され、レベルシフト回路LVSの出力端子がデジタルアナログ変換回路DACの入力端子に電気的に接続され、デジタルアナログ変換回路DACの出力端子がアンプ回路AMPの入力端子に電気的に接続され、アンプ回路AMPの出力端子が表示部PAに電気的に接続されている。
 なお、図1に図示しているラッチ回路LATと、レベルシフト回路LVSと、デジタルアナログ変換回路DACと、アンプ回路AMPと、は1本の配線DLに対して設けられている。つまり、配線DLの本数に応じて、ラッチ回路LATと、レベルシフト回路LVSと、デジタルアナログ変換回路DACと、アンプ回路AMPと、のそれぞれを複数設ける必要がある。なお、この場合、シフトレジスタSRは、複数のラッチ回路LATのクロック入力端子のそれぞれに対して、順次パルス信号を送信する構成とすればよい。
 データバス配線DBは、表示部PAに入力するための画像データを含むデジタル信号を送信するための配線である。当該画像データは、階調度を有しており、階調度が大きいほど、色または明るさの変化をなめらかなグラデーションで表現でき、自然に近い画像を表示部PAに表示することができる。但し、階調度が大きいほど、当該画像データのデータ量は大きくなり、且つ分解能の高いデジタルアナログ変換回路を用いる必要がある。
 ラッチ回路LATの入力端子には、データバス配線DBから画像データを含むデジタル信号が入力される。そして、ラッチ回路LATは、シフトレジスタSRから送信される信号によって、当該画像データの保持、または保持した当該画像データを出力端子から出力、のどちらか一方の動作を行う。
 レベルシフト回路LVSは、入力信号をより大きい振幅電圧またはより小さい振幅電圧の出力信号に変換する機能を有する。図1では、レベルシフト回路LVSは、ラッチ回路LATから送られる画像データを含むデジタル信号の振幅電圧を、デジタルアナログ変換回路DACが適切に動作する振幅電圧に変換する役割を有する。
 デジタルアナログ変換回路DACは、入力された画像データを含むデジタル信号をアナログ信号に変換する機能と、当該アナログ信号を出力端子から出力する機能と、を有する。特に、表示部PAに多階調の画像データを表示する場合、デジタルアナログ変換回路DACは高分解能のデジタルアナログ変換回路とする必要がある。
 アンプ回路AMPは、入力端子に入力されたアナログ信号を増幅(例えば電圧または電流を増幅)して、出力端子に出力する機能を有する。デジタルアナログ変換回路DACと表示部PAとの間にアンプ回路AMPを設けることにより、画像データを安定的に表示部PAに送ることができる。アンプ回路AMPとしては、オペアンプなどを有するボルテージフォロワ回路などを適用することができる。なお、アンプ回路として差動入力回路を有する回路を用いる場合、当該差動入力回路のオフセット電圧は、限りなく0Vに近い電圧とすることが好ましい。
 ソースドライバ回路SDは、上述の動作を行うことによって、データバス配線DBから送られる、画像データを含むデジタル信号をアナログ信号に変換して、表示部PAに送信することができる。ソースドライバ回路SDは、アナログ信号である第1の信号S1、及び第2の信号S2を生成し、配線DLを介して、画素PIXに供給する機能を有する。ここで第1の信号S1及び第2の信号S2は、それぞれ画像データに応じた振幅を有するパルス信号である。
 ゲートドライバ回路GDは、表示部PAに含まれる複数の画素PIXのうち、画像データの入力先となる画素PIXを選択する機能を有する。
 表示部PAに画像データを入力する方法としては、例えば、ゲートドライバ回路GDが、ある一本の配線GLに電気的に接続されている複数の画素PIXに選択信号を送信して、複数の画素PIXの画像データの書き込みスイッチング素子をオン状態とし、その後、ソースドライバ回路SDから、配線DLを介して、複数の画素PIXに画像データを送信して、書き込みを行えばよい。
 なお、本発明の一態様は、図1に示した表示装置DDの構成に限定されない。本発明の一態様は、例えば、設計仕様、目的などの状況に応じて、表示装置DDの構成要素を適宜変更したものとすることができる。
 ところで、多階調の画像を表示部PAに表示する場合、デジタルアナログ変換回路DACの分解能を高くすればよいが、この場合、デジタルアナログ変換回路DACが大きくなるため、ソースドライバ回路SDの回路面積が大きくなる場合がある。ソースドライバ回路SDの回路面積を小さくするため、ソースドライバ回路SDが有する回路に含まれるトランジスタや容量素子などの回路素子を小さくすると、寄生抵抗の影響や回路素子の作製時に起因する構造のバラつきの影響などによって、回路素子の電気的特性が損なわれる可能性がある。
 本発明の一態様は、上記を鑑み、画素PIXの画像データの保持部の電位を、容量結合によって、デジタルアナログ変換回路DACよりも大きい分解能の電位に変動させる構成となっている。これにより、デジタルアナログ変換回路の分解能を大きくする必要がなくなるため、分解能の小さいデジタルアナログ変換回路を用いることができる。そのため、デジタルアナログ変換回路DACを含むソースドライバ回路SDの回路面積を小さくすることができ、またソースドライバ回路SDの消費電力を低減することができる。
 図1では、表示装置DDがシステム回路SYSを有する例を示している。システム回路SYSは、ソースドライバ回路SDの動作を制御する機能を有する。例えば、システム回路SYSは、ソースドライバ回路SDにデータ信号、クロック信号、スタートパルス信号等の各種信号、及び電源電圧を供給する機能を有する。
 ここでは、システム回路SYSとして、電源生成部PUと、制御部CUを備える例を示している。
 制御部CUは、少なくとも論理回路を有する。例えばCPU(Central Processing Unit)や、GPU(Graphics Processing Unit)などのプロセッサを有する構成とすることができる。
 電源生成部PUは、制御部CU及びソースドライバ回路SDに供給するための電源電圧VDDを生成する機能を有する。例えば電源生成部PUは、バッテリーや、電源プラグなどから供給される電力を変換して、電源電圧VDDを生成することができる。
 後述するように、表示装置DDが有する画素PIXは、2つの信号(第1の信号S1及び第2の信号S2)を用いて、これらの振幅を足し合わせた電圧を生成し、表示素子を駆動することができる。そのため、画素PIXを最大の階調値で表示させたとき、ソースドライバ回路SDが供給する第1の信号S1と第2の信号S2の電圧は、これらを足し合わせた電圧の半分またはその近傍の電圧とすることができる。
 したがって、ソースドライバ回路SDは、アナログ信号を生成するための高い電源電圧が不要であり、単一の電源電圧VDDで動作させることができる。図1では、システム回路SYSからソースドライバ回路SDに供給される電源電圧VDDは、制御部CUを駆動させるための電源電圧VDDと共通化することができる。システム回路SYSから供給される電源電圧VDDは、ソースドライバ回路SD内の、シフトレジスタSR、ラッチ回路LAT、レベルシフト回路LVS、デジタルアナログ変換回路DAC、及びアンプ回路AMPに供給される。なお、このときレベルシフト回路LVSを省略することもできる。
 このような構成とすることで、システム回路SYSとソースドライバ回路SDとの間には、電源電圧を昇圧するためのDCDCコンバータなどの昇圧回路を必要としない。すなわち、システム回路SYSからソースドライバ回路SDに供給される電源電圧VDDは、昇圧されることなく、そのままソースドライバ回路SDに供給され、第1の信号S1及び第2の信号S2の生成に用いられる。
 また、ソースドライバ回路SD内に、電源電圧VDDを昇圧するための昇圧回路を設ける必要がないため、ソースドライバ回路SDの回路構成を簡略化できるだけでなく、ソースドライバ回路SDの消費電力を低減することができる。すなわちソースドライバ回路SDは、電源電圧VDDを昇圧させることなく、第1の信号S1及び第2の信号S2を生成することができる。
 例えば、システム回路SYS内の制御部CUをはじめとする各回路の駆動電圧の1つが1.8V、2.5V、3.3V、またはその近傍の電圧であるとき、その電圧を電源電圧VDDとして、ソースドライバ回路SDに供給することが可能となる。これにより、システム回路SYS内の電源生成部PUは、ソースドライバ回路SDに供給するための高い電源電圧を生成する必要がないため、回路構成を簡略化できる。
 このような構成とすることで、ソースドライバ回路SDを低電圧で駆動することができるため、ソースドライバ回路SD、ならびに表示装置DDの消費電力を飛躍的に低減することが可能となる。
 なお、本明細書等において、ある電圧の近傍の電圧と表記した場合、当該電圧のプラスマイナス20%の範囲を含む電圧であるとする。
<画素の回路構成>
 本発明の一態様の半導体装置である、画素PIXの回路構成の例をについて説明する。
 以下で例示する画素PIXは、ソースドライバ回路SDから入力される第1のパルス信号(第1の信号S1)に応じた第1の電圧を保持する機能と、第2のパルス信号(第2の信号S2)に応じた第2の電圧を、第1の電圧に足し合わせて得られる第3の電圧により、表示素子を駆動する機能を有する。すなわち画素PIXは、ソースドライバ回路SDから入力される第1のパルス信号及び第2のパルス信号の最大電圧よりも高い電圧で、表示素子を駆動することができる。
 例えば、表示素子に発光素子を用いた場合には、発光素子を上記第3の電圧に応じた輝度で発光させることにより、画像を表示することができる。また、表示素子に液晶素子を用いた場合には、上記第3の電圧に応じて、液晶の配向を変化させることにより、バックライト等の光源からの光の透過率が変化し、画像を表示することができる。
 また、図1で示したソースドライバ回路SDが第1の信号S1及び第2の信号S2を生成するために用いる電源電圧VDDは、画素PIXで生成しうる第3の電圧の最大値(例えば最も高い階調で表示する場合の、第3の電圧の値)よりも低い電圧とすることができる。好適には、電源電圧VDDは、第3の電圧の最大値の半分(1/2)、またはその近傍の電圧とすることができる。
 図2Aに示す画素PIXは、表示素子として発光素子を適用した場合の例である。
 図2Aに図示している画素PIXは、トランジスタTr1乃至トランジスタTr5と、容量素子C1と、容量素子C2と、発光素子LDと、を有する。また、配線DL、配線WDL、配線GL1乃至配線GL3、配線VL、配線AL、配線CATは、画素PIXと電気的に接続されている。
 トランジスタTr1、トランジスタTr2、トランジスタTr4、及びトランジスタTr5のそれぞれは、スイッチング素子として機能する。トランジスタTr3は、発光素子LDに流れる電流を制御する駆動トランジスタとして機能する。また、トランジスタTr1乃至トランジスタTr5は、実施の形態3に記載の構成を適用することができる。
 配線DL、及び配線WDLのそれぞれは、画素PIXに画像データを送信するための配線であり、図1の表示装置DDの配線DLに相当する配線である。加えて、配線GL1乃至配線GL3のそれぞれは、画素PIXに対する選択信号線であり、図1の表示装置DDの配線GLに相当する配線である。
 配線VLは、画素PIX内の特定のノードに所定の電位を与えるための配線である。配線ALは、発光素子LDに流すための電流を供給するための配線である。
 配線CATは、発光素子LDのカソード端子に所定の電位を与えるための配線である。所定の電位としては、例えば、基準電位、低レベル電位、それらよりも低い電位などとすることができる。
 トランジスタTr1の第1端子は、容量素子C1の第1端子に電気的に接続され、トランジスタTr1の第2端子は、配線DLに電気的に接続され、トランジスタTr1のゲートは、配線GL1に電気的に接続されている。トランジスタTr2の第1端子は、トランジスタTr3のゲートと、容量素子C1の第2端子と、容量素子C2の第1端子と、に電気的に接続され、トランジスタTr2の第2端子は、配線WDLに電気的に接続され、トランジスタTr2のゲートは、配線GL2に電気的に接続されている。
 なお、本実施の形態では、トランジスタTr1の第1端子と、容量素子C1の第1端子と、の電気的接続点をノードND1と呼称し、トランジスタTr2の第1端子と、トランジスタTr3のゲートと、容量素子C1の第2端子と、容量素子C2の第1端子と、の電気的接続点をノードND2と呼称する。
 ここで、トランジスタTr2を介して、配線WDLからノードND2に書き込まれる電圧(電位)が、上記第1の電圧(電位)に相当する。また、トランジスタTr1を介して、配線DLからノードND1に書き込まれる電圧が、上記第2の電圧に相当する。また、ノードND1に第2の電圧が書き込まれることにより、容量素子C1を介した容量結合によって、第1の電圧に第2の電圧が足し合わされ、ノードND2の電圧が変化する。その結果生成されたノードND2の電圧が、上記第3の電圧に相当する。
 トランジスタTr3の第1端子は、配線ALに電気的に接続され、トランジスタTr3の第2端子は、トランジスタTr4の第1端子と、トランジスタTr5の第1端子と、容量素子C2の第2端子と、に電気的に接続されている。トランジスタTr4の第2端子は、配線VLに電気的に接続され、トランジスタTr4のゲートは、配線GL1に電気的に接続されている。トランジスタTr5の第2端子は、発光素子LDのアノード端子に電気的に接続され、トランジスタTr5のゲートは、配線GL3に電気的に接続されている。発光素子LDのカソード端子は、配線CATに電気的に接続されている。
 図2Aの画素PIXにおいて、トランジスタTr1、トランジスタTr2、トランジスタTr5は、OSトランジスタであることが好ましい。特に、OSトランジスタは、チャネル形成領域にインジウム、元素M(元素Mは、アルミニウム、ガリウム、イットリウム、またはスズ)、亜鉛の少なくとも一を有する酸化物であることが好ましい。また、当該酸化物は、実施の形態4で詳述する。このようなOSトランジスタをトランジスタTr1、トランジスタTr2、トランジスタTr5に適用することで、トランジスタのオフ電流を非常に低くすることができる。容量素子C1の第1端子(ノードND1)にデータを保持する場合、トランジスタTr1をOSトランジスタとすることで、オフ電流による、ノードND1に保持されたデータの破壊を防ぐことができる。同様に、トランジスタTr3のゲートと、容量素子C1の第2端子と、容量素子C2の第1端子と、(ノードND2)にデータを保持する場合、トランジスタTr2をOSトランジスタとすることで、オフ電流による、ノードND2に保持されたデータの破壊を防ぐことができる。また、発光素子LDの発光を一時的に止める場合、トランジスタTr5をOSトランジスタとすることで、オフ電流による発光素子LDの発光を防ぐことができる。
 トランジスタTr3、及びトランジスタTr4としては、例えば、チャネル形成領域にシリコンを有するトランジスタを適用することができる(以後、Siトランジスタと記載する。)。シリコンとしては、例えば、水素化アモルファスシリコン、微結晶シリコン、または多結晶シリコン等を用いることができる。
 また、トランジスタTr3、及びトランジスタTr4としては、OSトランジスタを適用することができる。特に、トランジスタTr1乃至トランジスタTr5の全てをOSトランジスタとすることによって、それぞれのトランジスタを同時に形成することができるため、表示部PAの作製工程を短縮することができる場合がある。つまり、表示部PAの生産時間を少なくすることができるため、一定時間当たりの生産数を増加することができる。
<<動作例>>
 次に、図2Aに図示した画素PIXの動作例について説明する。なお、図2Aの画素PIXに画像データを送信するため、画素PIXの配線DL、及び配線WDLは図1のソースドライバ回路SDと電気的に接続されているものとする。
 図4は、図2Aに図示した画素PIXの動作例を示したタイミングチャートである。図4に示すタイミングチャートは、時刻T1乃至時刻T8及びその近傍の時刻における、配線DL、配線WDL、配線VL、配線GL1乃至配線GL3、ノードND1、及びノードND2の電位の変化を示している。なお、図4に記載しているhighは高レベル電位を指し、lowは低レベル電位を指す。また、図4に記載しているVGNDは、基準電位を指す。
 なお、配線VLは、時刻T1乃至時刻T8及びその近傍の時刻において、常にVGNDが印加されているものとする。
 なお、本動作例において、トランジスタTr1と、トランジスタTr2と、トランジスタTr4と、トランジスタTr5と、は、特に断りのない場合は、線形領域で動作するものとする。すなわち、トランジスタTr1と、トランジスタTr2と、トランジスタTr4と、トランジスタTr5のゲート電圧、ソース電圧、及びドレイン電圧は、線形領域で動作する範囲での電圧に適切にバイアスされているものとする。
 また、本動作例において、トランジスタTr3は、特に断りのない場合は、飽和領域で動作するものとする。すなわち、トランジスタTr3のゲート電圧、ソース電圧、及びドレイン電圧は、飽和領域で動作する範囲での電圧に適切にバイアスされているものとする。なお、トランジスタTr3の動作が、理想的な飽和領域での動作からずれていても、出力される電流の精度が所望の範囲内で得られる場合であれば、トランジスタTr3のゲート電圧、ソース電圧、及びドレイン電圧は、適切にバイアスされているものとみなす。
[時刻T1より前]
 時刻T1より前において、配線GL1及び配線GL2には低レベル電位、配線GL3には高レベル電位が印加されている。配線GL1の電位が低レベル電位であるとき、トランジスタTr1及びトランジスタTr4のそれぞれのゲートに、低レベル電位が印加されるため、トランジスタTr1及びトランジスタTr4がオフ状態となる。つまり、配線DLと、ノードND1と、の間は、電気的に接続されていない状態となる。同様に、配線GL2の電位が低レベル電位であるとき、トランジスタTr2のゲートに、低レベル電位が印加されるため、トランジスタTr2がオフ状態となる。つまり、配線WDLと、ノードND2と、の間は、電気的に接続されていない状態となる。更に、配線GL3の電位が高レベル電位であるとき、トランジスタTr5のゲートに、高レベル電位が印加されるため、トランジスタTr5がオン状態となる。つまり、発光素子LDのアノード端子と、トランジスタTr5の第1端子と、の間は、電気的に接続されている状態となる。
 ところで、ノードND2の電位と、トランジスタTr3のソースの電位と、の差(ゲート−ソース電圧)が、トランジスタTr3のしきい値電圧よりも高い場合、トランジスタTr3はオン状態となり、トランジスタTr3のゲート−ソース電圧に応じて、トランジスタTr3のソース−ドレイン間に流れる電流が決まる。このとき、トランジスタTr3の第2端子がソースとなる場合、配線ALから、トランジスタTr3及びトランジスタTr5を介して、発光素子LDのアノード端子へ電流が流れる。これによって、発光素子LDが発光する。なお、図4に示すタイミングチャートでは、ノードND2の電位は、トランジスタTr3がオフ状態となるような電位として、Vと記載している(つまり、Vと、トランジスタTr3のソースの電位と、の差は、トランジスタTr3のしきい値電圧よりも低くなり、発光素子LDも発光しない。)。
 また、本動作例を簡易的に説明するため、時刻T1より前における、ノードND1の電位もVとする。
 時刻T1より前は、ソースドライバ回路SDから画素PIXに画像データが送られていないものとし、配線DL、及び配線WDLには、VGNDが印加されているものとする。
[時刻T1]
 時刻T1において、配線GL3には低レベル電位が印加される。そのため、時刻T1から時刻T2までの間において、トランジスタTr5のゲートに、低レベル電位が印加されるため、トランジスタTr5がオフ状態となる。これにより、トランジスタTr3がオン状態、またはオフ状態であるかに関わらず、発光素子LDのアノード端子に電流が流れなくなるため、発光素子LDは発光しない。
[時刻T2]
 時刻T2において、配線GL1には高レベル電位が印加される。そのため、時刻T2から時刻T3までの間において、トランジスタTr1及びトランジスタTr4のそれぞれのゲートに、高レベル電位が印加されるため、トランジスタTr1及びトランジスタTr4がオン状態となる。
 トランジスタTr1がオン状態となると、配線DLと、ノードND1と、の間が電気的に接続される。そのため、ノードND1の電位は、VGNDとなる。また、トランジスタTr4がオン状態になると、配線VLと、容量素子C2の第2端子と、の間が電気的に接続される。そのため、容量素子C2の第2端子の電位は、VGNDとなる。
 また、容量素子C1の第2端子(ノードND2)はフローティング状態となっているため、ノードND1の電位が変化すると、容量結合によって、ノードND2の電位も変化する。なお、ノードND2の電位の変化量は、ノードND1の電位の変化量、容量素子C1の静電容量などによって決まる。本動作例では、ノードND1の電位がVからVGNDに低下したため、ノードND2の電位はVから低下する。
[時刻T3]
 時刻T3において、配線GL2には高レベル電位が印加される。そのため、時刻T3から時刻T4までの間において、トランジスタTr2のゲートに、高レベル電位が印加されるため、トランジスタTr2がオン状態となる。
 トランジスタTr2がオン状態となると、配線WDLと、ノードND2と、の間が電気的に接続される。そのため、ノードND2の電位は、VGNDとなる。なお、トランジスタTr1がオン状態となっているため、ノードND1の電位は、ノードND2の電位の変化によって、変動しない。同様に、トランジスタTr4がオン状態となっているため、容量素子C2の第2端子の電位も、ノードND2の電位の変化によって、変動しない。
[時刻T4]
 時刻T4において、配線DL、及び配線WDLには、画像データとしてアナログ信号が、ソースドライバ回路SDから送信される。ここでは、アナログ信号の電位として、Vdataが配線DL、及び配線WDLに入力される。
 トランジスタTr1はオン状態となっているため、配線DLから、容量素子C1の第1端子(ノードND1)に、Vdataが印加される。また、トランジスタTr2もオン状態となっているため、配線WDLから、トランジスタTr3のゲート、容量素子C1の第2端子、及び容量素子C2の第1端子(ノードND2)に、Vdataが印加される。なお、容量素子C2の第2端子の電位は、トランジスタTr4がオン状態となっているため、ノードND1及びノードND2の電位の変化によって、変動しない。
[時刻T5]
 時刻T5において、配線GL2には低レベル電位が印加される。そのため、時刻T5から時刻T6までの間において、トランジスタTr2のゲートに、低レベル電位が印加されるため、トランジスタTr2がオフ状態となる。
 トランジスタTr2がオフ状態となると、配線WDLと、ノードND2との間が電気的に接続されない状態となる。そのため、ノードND2は、フローティング状態となる。
[時刻T6]
 時刻T6において、配線DL、及び配線WDLには、時刻T4から時刻T5までの間に入力された電位Vdataに、ΔVdataの高さの電位を加えた信号が、ソースドライバ回路SDから送信される。つまり、配線DL、及び配線WDLのそれぞれの電位は、Vdata+ΔVdataとなる。
 トランジスタTr1はオン状態となっているため、配線DLから、ノードND1に、Vdata+ΔVdataが印加される。つまり、ノードND1の電位は、時刻T4から時刻T6までの間のVdataから、Vdata+ΔVdataに変動する。
 トランジスタTr2はオフ状態となっているため、配線WDLから、ノードND2に、Vdata+ΔVdataが印加されない。しかし、ノードND1の電位がVdataからVdata+ΔVdataに変動したこと、且つノードND2がフローティング状態となっているため、ノードND1の電位が変動することで、容量素子C1の容量結合によって、ノードND2の電位も変動する。図4のタイミングチャートでは、ノードND2の電位の変動量をΔVと記載しているが、ΔVは次の式(E1)で見積もることができる。
Figure JPOXMLDOC01-appb-M000001
 したがって、ノードND2の電位をVND2とし、容量素子C1の静電容量の値をCとし、容量素子C2の静電容量の値をCとしたとき、VND2は次の式(E2)で表される。
Figure JPOXMLDOC01-appb-M000002
 なお、時刻T6において、配線WDLの電位をVdata+ΔVdataとしているが、図2Aに示す回路の構成例では、配線WDLの電位Vdata+ΔVdataはどの素子に対しても入力されていない。このため、図2Aに示す回路の構成例では、時刻T6において、配線WDLの電位をVdata+ΔVdataとしなくてもよい。
[時刻T7]
 時刻T7において、配線GL1には低レベル電位が印加される。そのため、時刻T7から時刻T8までの間において、トランジスタTr1のゲートに、低レベル電位が印加されるため、トランジスタTr1がオフ状態となる。このため、ノードND1はフローティング状態となり、ノードND1の電位は容量素子C1によって保持される。
 また、時刻T7から時刻T8までの間において、トランジスタTr4のゲートに、低レベル電位が印加されるため、トランジスタTr4がオフ状態となる。このとき、容量素子C2の第2端子の電位はVGNDであり、トランジスタTr3のゲート(ノードND2)の電位は、VND2となっているため、VND2−VGNDがしきい値電圧よりも高い場合、トランジスタTr3はオン状態となる。また、トランジスタTr3のソース‐ドレイン間に流れる電流は、VND2−VGNDに応じて決まる。
[時刻T8]
 時刻T8において、配線GL3には高レベル電位が印加される。そのため、時刻T8以降において、トランジスタTr5のゲートに、高レベル電位が印加されるため、トランジスタTr5がオン状態となる。これにより、配線ALから流れる電流は、トランジスタTr3及びトランジスタTr5を介して、発光素子LDのアノード端子に入力されるため、発光素子LDが発光する。このとき、発光素子LDのアノード端子とカソード端子との間において、電圧がかかっており、かつ配線CATに所定の電位が与えられているため、トランジスタTr3の第2端子と、トランジスタTr4の第1端子と、トランジスタTr5の第1端子と、容量素子C2の第2端子と、の電気的接続点の電位は高くなる。そして、ノードND1、ノードND2のそれぞれはフローティング状態であるため、当該電気的接続点の電位が高くなることによって、ノードND1、ノードND2のそれぞれの電位も容量結合によって高くなる場合がある。図4のタイミングチャートでは、時刻T8以降のノードND1、ノードND2のそれぞれの電位は、時刻T7から時刻T8までの間におけるノードND1、ノードND2のそれぞれの電位よりも高く示している。
 なお、発光素子LDの輝度は、発光素子LDに流れる電流によって決まる。キルヒホッフの法則により、発光素子LDに流れる電流は、トランジスタTr3のソース−ドレイン間に流れる電流と概ね等しいため、発光素子LDの輝度は、トランジスタTr3のゲート−ソース間の電圧で決まる。
 上記の通り、図2Aに図示した画素PIXに対して、図4のタイミングチャートの時刻T1乃至時刻T8及びその近傍の時刻の動作を行うことにより、デジタルアナログ変換回路DACよりも大きい分解能の電位を、画素PIXの画像データの保持部(ノードND2)に与えることができる。
<<具体例>>
 ここでは、上述の動作例によって、デジタルアナログ変換回路DACから出力される画像データよりも多階調の画像データを、表示装置DDの表示部PAに表示する一例について説明する。
 この一例では、ソースドライバ回路SDのデジタルアナログ変換回路DACとして、6ビットのデジタルアナログ変換回路を設け、画素PIXに含まれる容量素子C1と容量素子C2のそれぞれの静電容量の値の比が、C:C=1:15とする。
 デジタルアナログ変換回路DACとして、6ビットのデジタルアナログ変換回路DACを用いることによって、画素PIXのノードND1、及びノードND2に書き込まれるVdataは、2進数表記で“000000”から“111111”までの値をとることができる。ここで、“111111”の電圧値を6.3Vとすると、デジタルアナログ変換回路DACが出力できるVdataの取り得る電圧値は、0.1V刻みで、0Vから6.3Vまでの範囲となる。
 したがって、上述の動作例において、時刻T4から時刻T5までの間で、画素PIXのノードND1、及びノードND2には、0Vから6.3Vまでの範囲のVdataを書き込むことができる。
[Vdataが0Vから4.8Vまでの値をとる場合]
 初めに、画素PIXのノードND1、及びノードND2に0Vから4.8Vまで(2進数表記で“000000”から“110000”まで)の範囲のVdataが書き込まれた場合を説明する。
 容量素子C1と容量素子C2のそれぞれの静電容量の値の比は、C:C=1:15であるため、式(E1)は、次の式(E3)となる。
Figure JPOXMLDOC01-appb-M000003
 ここで、ΔVdataは、例えば、2進数表記で“000000”から“001111”までの値をとることができるものとする。このとき、ΔVdataの取り得る電圧値は、0.1V刻みで、0Vから1.5Vまでの範囲となる。つまり、式(E3)より、ΔVは、0.00625V刻みで、0Vから0.09375Vまでの値を取り得る。
 したがって、上述の動作例において、時刻T6から時刻T7までの間で、画素PIXのノードND2の電位は、式(E2)、式(E3)より、0.00625V刻みで、0Vから4.8+0.09375Vまでの値をとることができる。
[Vdataが4.9Vから6.3Vまでの値をとる場合]
 次に、画素PIXのノードND1、及びノードND2に4.9Vから6.3Vまで(2進数表記で“110001”から“111111”まで)の範囲のVdataが書き込まれた場合を説明する。
 容量素子C1と容量素子C2のそれぞれの静電容量の値の比は、「Vdataが0Vから4.8Vまでの値をとる場合」と同じであるため、この場合も式(E3)を用いることができる。
 ここで、ΔVdataは、例えば、0.1V刻みで、−1.5Vから0Vまでの範囲の電圧値を取るものとする。つまり、ΔVdataは負の値であり、Vdata+ΔVdataは、3.4Vから6.3Vまで(2進数表記で“100010”から“111111”まで)の値をとることができるものとしている。
 このとき、式(E3)より、ΔVは、0.00625V刻みで、−0.09375Vから0Vまでの値を取り得る。
 したがって、上述の動作例において、時刻T6から時刻T7までの間において、画素PIXのノードND2の電位は、式(E2)、式(E3)より、0.00625V刻みで、4.9−0.09375Vから6.3Vまでの値をとることができる。
 上述の具体例をまとめると、デジタルアナログ変換回路DACとして、0.1V刻みで、0Vから6.3Vまでのアナログ値の出力が可能なデジタルアナログ変換回路(6ビット)を設け、画素PIXに含まれる容量素子C1と容量素子C2のそれぞれの静電容量の値の比をC:C=1:15とすることで、ノードND2には、0.00625V刻みで、0Vから6.3Vまでの電位を与えることができる。
 つまり、図2Aに示す画素PIXにおいて、上述の動作例を行うことにより、6ビットのデジタルアナログ変換回路DACでは出力できない、より細かい電圧値をノードND2に与えることができる。上述の具体例では、デジタルアナログ変換回路DACでは0.1V刻みの電位の出力を行うが、画素PIXのノードND2には、0.00625V刻みの電位を書き込むことができる。換言すると、6ビットのデジタルアナログ変換回路DACよりも大きい分解能の電位(画像データ)を画素PIXに書き込むことができる。
 上述の具体例では、6ビットのデジタルアナログ変換回路DACが与えるΔVdataは、画像データの上位6ビットに相当し、画素PIXの容量結合によってノードND2に付与されるΔVは、画像データの下位4ビットに相当する。つまり、図2Aの画素PIXによって、デジタルアナログ変換回路DACが与える上位6ビットの画像データに、下位4ビットの画像データを補完することができる。
 なお、本発明の一態様に係る画素PIXの構成、及び画素PIXに電気的に接続される配線の構成は、図2Aに図示された構成に限定されない。本発明の一態様は、例えば、設計仕様、目的などの状況に応じて、画素PIX、及び各配線の構成要素を適宜変更したものとすることができる。
 具体例としては、図2Aの画素PIXが有するトランジスタTr1乃至トランジスタTr5の少なくとも一は、バックゲートを有するトランジスタとしてもよい。トランジスタのバックゲートに電位を印加することによって、当該トランジスタのしきい値電圧を増減することができる。
 また、同じトランジスタにおいて、ゲートとバックゲートと、を電気的に接続することによって、当該トランジスタがオン状態のときに流れるソース−ドレイン間電流をより大きくすることができる。図2Bは、図2Aの画素PIXが有するトランジスタTr1乃至トランジスタTr5の全てを、バックゲートを有するトランジスタとし、同じトランジスタにおいて、ゲートとバックゲートと、を電気的に接続した構成を示している。
 また、別の具体例としては、配線DL、及び配線WDLをまとめて一本の配線としてもよい(図3参照)。なお、図3に図示された画素PIXの動作方法は、上述の動作例を参酌する。
 また、別の具体例としては、本実施の形態では、EL素子などの発光素子を含む画素回路を例として、図2A、図2B、及び図3を図示したが、本発明の一態様は、これに限定されない。本発明の一態様は、例えば、液晶素子を含む画素回路に対しても、図2A、図2B、及び図3と同様に容量素子を設けて、液晶素子の一方の端子の電位を容量結合によって増減して、デジタルアナログ変換回路DACの分解能よりも細かいアナログ値を与える構成としてもよい。
 図5Aに、表示素子として液晶素子LCを用いた場合の例を示している。なお以下では、主に上記と相違する部分について説明し、重複する部分については上記記載を援用できる。
 図5Aに示す画素PIXは、トランジスタTr1、トランジスタTr2、トランジスタTr6、容量素子C1、容量素子C3、液晶素子LCを有する。また画素PIXには、配線GL1、配線GL2、配線GL4、配線DL、配線WDL、配線VCC、及び配線CATが接続される。
 トランジスタTr6は、ゲートが配線GL4と電気的に接続し、ソースまたはドレインの一方がノードND2と電気的に接続し、他方が容量素子C3の一方の電極、及び液晶素子LCの一方の電極と電気的に接続する。容量素子C3は、他方の電極が配線VCCと電気的に接続する。液晶素子LCは、他方の電極が配線CATと電気的に接続する。
 配線VCCは、容量素子C3の他方の電極に所定の電位を与える配線である。配線VCCに与える電位としては、例えば共通電位、基準電位、接地電位などの固定電位を与えることができる。配線VCCは、配線CATと共通化され、同じ電位が与えられる構成としてもよい。
 トランジスタTr6は、液晶素子LCの動作を制御するスイッチとしての機能を有することができる。配線WDLからノードND2に書き込まれた信号が液晶素子LCを動作させるしきい値より大きい場合、配線DLから画像信号が書き込まれる前に液晶素子LCが動作してしまうことがある。したがって、トランジスタTr6を設け、ノードND2の電位が確定したのちに、配線GL4に与えられる信号によりトランジスタTr6を導通させ、液晶素子LCを動作させることが好ましい。
 図5Bに示す画素PIXは、図5Aに示す構成から、トランジスタTr6及び配線GL4を省いた構成である。
 図5AにおけるトランジスタTr6は、液晶素子LCを不用意に動作させないためのスイッチであるが、液晶素子LCが動作しても視認を防止することができれば、トランジスタTr6を省くことができる。例えば、配線WDLからノードND2に信号を供給する期間にバックライトを消灯するなどの動作を併用すればよい。
 また、図5Cのように、容量素子C3を省いた構成としてもよい。ノードND2と接続するトランジスタにはOSトランジスタを用いることができる。OSトランジスタはオフ状態におけるリーク電流が極めて小さいため、保持容量として機能する容量素子C3を省いても画像データを比較的長時間保持することができる。
 また、当該構成は、フィールドシーケンシャル駆動など、フレーム周波数が高く、画像データの保持期間が比較的短い場合にも有効である。容量素子C3を省くことで開口率を向上させることができる。または、画素の透過率を向上させることができる。なお、容量素子C3を省いた構成は、本明細書に示すその他の画素回路の構成に適用してもよい。
 また、図6Aに示す画素PIXは、図5Aの構成にトランジスタTr7および配線VLを付加した構成である。
 図6Aに示す構成では、配線VLにリセット電位を供給し、トランジスタTr7を導通させることにより液晶素子LCのリセット動作を行うことができる。当該構成とすることで、ノードND2と、液晶素子LCに印加される電位とで、書き換え動作を独立に制御することができ、液晶素子LCによる表示動作期間を長くすることができる。
 また、低階調の表示を行う場合は、配線VLから画像信号を供給し、トランジスタTr7の導通、非導通を制御することで液晶素子LCによる表示動作を行ってもよい。このとき、トランジスタTr6を常時非導通としておけばよい。
 図6Bに示す画素PIXは、それぞれのトランジスタにバックゲートを設けた構成を有する。当該バックゲートはフロントゲートと電気的に接続されており、オン電流を高める効果を有する。また、バックゲートにフロントゲートと異なる定電位を供給できる構成としてもよい。当該構成とすることで、トランジスタのしきい値電圧を制御することができる。なお、図6Bにおいては、全てのトランジスタにバックゲートを設けた構成を図示しているが、バックゲートが設けられないトランジスタを有していてもよい。また、トランジスタがバックゲートを有する構成は、本実施の形態における他の画素回路にも有効である。
 以上が、液晶素子を用いた場合の構成例についての説明である。
 本明細書等で開示される本発明の一態様は、第1乃至第3トランジスタと、第1、第2容量素子と、を有する半導体装置である。第1トランジスタの第1端子は、第1容量素子の第1端子に電気的に接続され、第2トランジスタの第1端子は、第3トランジスタのゲートと、第1容量素子の第2端子と、第2容量素子の第1端子と、に電気的に接続され、第3トランジスタの第1端子は、第2容量素子の第2端子と、に電気的に接続される。半導体装置は、以下の第1機能乃至第4機能を有する。第1機能は、第1トランジスタをオン状態にして、第1容量素子の第1端子に第1電位を書き込む機能と、第2トランジスタをオン状態にして、第3トランジスタのゲートと、第1容量素子の第2端子と、第2容量素子の第2端子と、に第1電位を書き込む機能と、を有する。第2機能は、第2トランジスタをオフ状態にして、第1容量素子の第2端子と、第2容量素子の第2端子と、によって、第3トランジスタのゲートの電位を保持する機能を有する。第3機能は、第1容量素子の第1端子に、第1電位と第3電位の和を書き込む機能と、第1容量素子の第1端子に第1電位と第3電位の和が書き込まれたことによって、記第3トランジスタのゲートと、第1容量素子の第2端子と、第2容量素子の第1端子と、に保持されている第1電位が、第1電位と第4電位の和に変動する機能と、を有する。第4機能は、第3トランジスタの第1端子‐第2端子間に、第1電位と第4電位の和に応じた電流が流れる機能を有する。
 また、上記において、第1乃至第3トランジスタの少なくとも一は、チャネル形成領域に金属酸化物を有することが好ましい。
 また、上記において、第4トランジスタと、発光素子を有することが好ましい。このとき、第4トランジスタの第1端子は、第3トランジスタの第1端子と、第2容量素子の第2端子と、に電気的に接続され、発光素子のアノード端子は、第4トランジスタの第2端子に電気的に接続されることが好ましい。
 また、上記において、第4トランジスタは、チャネル形成領域に金属酸化物を有することが好ましい。
 また、上記において、第1電位は、上位ビットのデータに相当し、第4電位は、下位ビットのデータに相当することが好ましい。
 また、本発明の他の一態様は、上記構成の半導体装置と、デジタルアナログ変換回路とを有する表示装置である。このとき、デジタルアナログ変換回路の出力端子は、第1トランジスタの第1端子と、第2トランジスタの第1端子と、に電気的に接続され、デジタルアナログ変換回路は、第1電位、または第1電位と第3電位の和を生成して、デジタルアナログ変換回路の出力端子から第1電位、または第1電位と第3電位の和を出力する機能を有することが好ましい。
 また、本発明の他の一態様は、上記構成の表示装置と、筐体と、を有する電子機器である。
 また、本発明の一態様の半導体装置、または表示装置の動作方法は、上述の動作例、または具体例に限定されない。当該動作方法は、例えば、素子、回路、配線などに電位を与える順序や、当該電位の値を適宜変更することができる。また、上述の通り、発明の一態様の半導体装置、または表示装置の構成を適宜変更することができるため、当該構成に応じて、半導体装置、または表示装置の動作方法も変更してもよい。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
 本実施の形態では、表示装置の構成例について説明する。
 図7Aにおいて、第1の基板4001上に設けられた表示部215を囲むようにして、シール材4005が設けられ、表示部215がシール材4005および第2の基板4006によって封止されている。
 表示部215には、実施の形態1に示した画素PIXを有する画素アレイが設けられる。
 図7Aでは、走査線駆動回路221a、信号線駆動回路231a、信号線駆動回路232a、および共通線駆動回路241aが、それぞれプリント基板4041上に設けられた集積回路4042を複数有する。集積回路4042は、単結晶半導体または多結晶半導体で形成されている。信号線駆動回路231aおよび信号線駆動回路232aは、実施の形態1に示したソースドライバ回路SDの機能を有する。走査線駆動回路221aは、実施の形態1に示したゲートドライバ回路GDの機能を有する。共通線駆動回路241aは、実施の形態1に示した配線CATに規定の電位を供給する機能を有する。
 走査線駆動回路221a、共通線駆動回路241a、信号線駆動回路231a、および信号線駆動回路232aに与えられる各種信号および電位は、FPC4018を介して供給される。
 走査線駆動回路221aおよび共通線駆動回路241aが有する集積回路4042は、表示部215に選択信号を供給する機能を有する。信号線駆動回路231aおよび信号線駆動回路232aが有する集積回路4042は、表示部215に画像信号を供給する機能を有する。集積回路4042は、第1の基板4001上のシール材4005によって囲まれている領域とは異なる領域に実装されている。
 なお、集積回路4042の接続方法は、特に限定されるものではなく、ワイヤボンディング法、COG法、TCP法、COF(Chip On Film)法などを用いることができる。
 図7Bは、信号線駆動回路231aおよび信号線駆動回路232aに含まれる集積回路4042をCOG法により実装する例を示している。駆動回路の一部または全体を表示部215と同じ基板上に設けることにより、システムオンパネルを実現できる。
 図7Bでは、走査線駆動回路221aおよび共通線駆動回路241aを、表示部215と同じ基板上に形成する例を示している。これら駆動回路を表示部215と同じ基板上に同一工程を経て形成することで、部品点数を削減することができる。よって、生産性を高めることができる。
 また、図7Bでは、第1の基板4001上に設けられた表示部215と、走査線駆動回路221aおよび共通線駆動回路241aと、を囲むようにして、シール材4005が設けられている。また表示部215、走査線駆動回路221a、および共通線駆動回路241aの上に第2の基板4006が設けられている。よって、表示部215、走査線駆動回路221a、および共通線駆動回路241aは、第1の基板4001とシール材4005と第2の基板4006とによって、表示素子と共に封止されている。
 また、図7Bでは、信号線駆動回路231aおよび信号線駆動回路232aを別途形成し、第1の基板4001に実装している例を示しているが、この構成に限定されない。走査線駆動回路を別途形成して実装してもよいし、信号線駆動回路の一部または走査線駆動回路の一部を別途形成して実装してもよい。
 また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラを含むIC等を実装した状態にあるモジュールとを含む場合がある。
 また第1の基板4001上に設けられた表示部215および走査線駆動回路221aは、トランジスタを複数有している。当該トランジスタとして、OSトランジスタ、または、Siトランジスタを適用することができる。
 周辺駆動回路が有するトランジスタと、表示部215の画素回路が有するトランジスタの構造は同じであってもよく、異なっていてもよい。周辺駆動回路が有するトランジスタは、全て同じ構造であってもよく、2種類以上の構造が組み合わせて用いられていてもよい。同様に、画素回路が有するトランジスタは、全て同じ構造であってもよく、2種類以上の構造が組み合わせて用いられていてもよい。
 また、第2の基板4006上には後述する入力装置4200を設けることができる。図7Aまたは図7Bに示す表示装置に入力装置4200を設けた構成はタッチパネルとして機能させることができる。
 本発明の一態様のタッチパネルが有する検知素子(センサ素子ともいう)に限定は無い。指やスタイラスなどの被検知体の近接または接触を検知することのできる様々なセンサを、検知素子として適用することができる。
 センサの方式としては、例えば、静電容量方式、抵抗膜方式、表面弾性波方式、赤外線方式、光学方式、感圧方式など様々な方式を用いることができる。
 本実施の形態では、静電容量方式の検知素子を有するタッチパネルを例に挙げて説明する。
 静電容量方式としては、表面型静電容量方式、投影型静電容量方式等がある。また、投影型静電容量方式としては、自己容量方式、相互容量方式等がある。相互容量方式を用いると、同時多点検知が可能となるため好ましい。
 本発明の一態様のタッチパネルは、別々に作製された表示装置と検知素子とを貼り合わせる構成、表示素子を支持する基板および対向基板の一方または双方に検知素子を構成する電極等を設ける構成等、様々な構成を適用することができる。
 図8A、及び図8Bに、タッチパネルの一例を示す。図8Aは、タッチパネル4210の斜視図である。図8Bは、入力装置4200の斜視概略図である。なお、明瞭化のため、代表的な構成要素のみを示している。
 タッチパネル4210は、別々に作製された表示装置と入力装置とを貼り合わせた構成である。
 タッチパネル4210は、入力装置4200と、表示装置とを有し、これらが重ねて設けられている。
 入力装置4200は、基板4263、電極4227、電極4228、複数の配線4237、複数の配線4238および複数の配線4239を有する。例えば、電極4227は配線4237または配線4239と電気的に接続することができる。また、電極4228は配線4238と電気的に接続することができる。FPC4272bは、複数の配線4237、複数の配線4238、及び複数の配線4239の各々と電気的に接続する。FPC4272bにはIC4273bを設けることができる。
 または、表示装置の第1の基板4001と第2の基板4006との間にタッチセンサを設けてもよい。第1の基板4001と第2の基板4006との間にタッチセンサを設ける場合は、静電容量方式のタッチセンサのほか、光電変換素子を用いた光学式のタッチセンサを適用してもよい。
 図9は、図7B中のN1−N2の鎖線で示した部位に対応する断面図である。図9に示す表示装置は電極4015を有している。電極4015はFPC4018が有する端子と異方性導電層4019を介して、電気的に接続されている。また、図9では、電極4015は、絶縁層4112、絶縁層4111、および絶縁層4110に形成された開口において配線4014と電気的に接続されている。
 電極4015は、第1の電極層4030と同じ導電層から形成され、配線4014は、トランジスタ4010、およびトランジスタ4011のソース電極およびドレイン電極と同じ導電層で形成されている。
 また、第1の基板4001上に設けられた表示部215と走査線駆動回路221aは、トランジスタを複数有している。図9では、表示部215に含まれるトランジスタ4010、および走査線駆動回路221aに含まれるトランジスタ4011を例示している。なお、図9では、トランジスタ4010およびトランジスタ4011としてボトムゲート型のトランジスタを例示しているが、トップゲート型のトランジスタであってもよい。また、トランジスタ4011は、実施の形態1で説明したゲートドライバ回路GDに含まれるトランジスタとすることができる。
 図9では、トランジスタ4010およびトランジスタ4011上に絶縁層4112が設けられている。また、絶縁層4112上に隔壁4510が形成されている。
 また、トランジスタ4010およびトランジスタ4011は、絶縁層4102上に設けられている。また、トランジスタ4010およびトランジスタ4011は、絶縁層4111上に形成された電極4017を有する。電極4017はバックゲート電極として機能することができる。
 また、図9に示す表示装置は、容量素子4020を有する。容量素子4020は、トランジスタ4010のゲート電極と同じ工程で形成された電極4021と、ソース電極およびドレイン電極と同じ工程で形成された電極と、を有する。それぞれの電極は、絶縁層4103を介して重なっている。なお、容量素子4020は、例えば、実施の形態1で説明した画素PIXの容量素子C1、または容量素子C2等とすることができる。
 表示装置の画素部に設けられる容量素子の容量は、画素部に配置されるトランジスタのリーク電流等を考慮して、所定の期間の間に、電荷を保持できるように設定される。容量素子の容量は、トランジスタのオフ電流等を考慮して設定すればよい。
 表示部215に設けられたトランジスタ4010は表示素子と電気的に接続する。
 また、図9に示す表示装置は、絶縁層4111と絶縁層4102を有する。絶縁層4111と絶縁層4102として、不純物元素を透過しにくい絶縁層を用いる。絶縁層4111と絶縁層4102でトランジスタを挟むことで、外部から半導体層への不純物の浸入を防ぐことができる。
 表示装置に含まれる表示素子として、エレクトロルミネッセンスを利用する発光素子(EL素子)を適用することができる。EL素子は、一対の電極の間に発光性の化合物を含む層(「EL層」ともいう。)を有する。一対の電極間に、EL素子の閾値電圧よりも大きい電位差を生じさせると、EL層に陽極側から正孔が注入され、陰極側から電子が注入される。注入された電子と正孔はEL層において再結合し、EL層に含まれる発光物質が発光する。
 また、EL素子は、発光材料が有機化合物であるか、無機化合物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子と呼ばれている。
 有機EL素子は、電圧を印加することにより、一方の電極から電子、他方の電極から正孔がそれぞれEL層に注入される。そして、それらキャリア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形成し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このような発光素子は、電流励起型の発光素子と呼ばれる。
 なお、EL層は、発光性の化合物以外に、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子注入性の高い物質、またはバイポーラ性の物質(電子輸送性および正孔輸送性が高い物質)などを有していてもよい。
 EL層は、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法などの方法で形成することができる。
 無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−アクセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明する。
 発光素子は発光を取り出すために少なくとも一対の電極の一方が透明であればよい。そして、基板上にトランジスタおよび発光素子を形成し、当該基板とは逆側の面から発光を取り出す上面射出(トップエミッション)構造や、基板側の面から発光を取り出す下面射出(ボトムエミッション)構造や、両面から発光を取り出す両面射出(デュアルエミッション)構造の発光素子があり、どの射出構造の発光素子も適用することができる。
 図9は、表示素子として発光素子を用いた発光表示装置(「EL表示装置」ともいう。)の一例である。表示素子である発光素子4513は、表示部215に設けられたトランジスタ4010と電気的に接続している。つまり、トランジスタ4010は、実施の形態1で説明したトランジスタTr5に対応し、発光素子4513は、実施の形態1で説明した発光素子LDに対応する。なお発光素子4513の構成は、第1の電極層4030、発光層4511、第2の電極層4031の積層構造であるが、この構成に限定されない。発光素子4513から取り出す光の方向などに合わせて、発光素子4513の構成は適宜変えることができる。
 隔壁4510は、有機絶縁材料、または無機絶縁材料を用いて形成する。特に感光性の樹脂材料を用い、第1の電極層4030上に開口部を形成し、その開口部の側面が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。
 発光層4511は、単数の層で構成されていてもよいし、複数の層が積層されるように構成されていてもよい。
 発光素子4513の発光色は、発光層4511を構成する材料によって、白、赤、緑、青、シアン、マゼンタ、または黄などとすることができる。
 カラー表示を実現する方法としては、発光色が白色の発光素子4513と着色層を組み合わせて行う方法と、画素毎に発光色の異なる発光素子4513を設ける方法がある。後者の方法では画素毎に発光層4511を作り分ける必要があるため、前者の方法よりも生産性が劣る。ただし、後者の方法では、前者の方法よりも色純度の高い発光色を得ることができる。後者の方法に加えて、発光素子4513にマイクロキャビティ構造を付与することにより色純度をさらに高めることができる。
 なお、発光層4511は、量子ドットなどの無機化合物を有していてもよい。例えば、量子ドットを発光層に用いることで、発光材料として機能させることもできる。
 発光素子4513に酸素、水素、水分、二酸化炭素等が侵入しないように、第2の電極層4031および隔壁4510上に保護層を形成してもよい。保護層としては、窒化シリコン、窒化酸化シリコン、酸化アルミニウム、窒化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、DLC(Diamond Like Carbon)などを形成することができる。また、第1の基板4001、第2の基板4006、およびシール材4005によって封止された空間には充填材4514が設けられ密封されている。このように、外気に曝されないように気密性が高く、脱ガスの少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィルム等)やカバー材でパッケージング(封入)することが好ましい。
 充填材4514としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル樹脂、ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)などを用いることができる。また、充填材4514に乾燥剤が含まれていてもよい。
 シール材4005には、ガラスフリットなどのガラス材料や、二液混合型の樹脂などの常温で硬化する硬化樹脂、光硬化性の樹脂、熱硬化性の樹脂などの樹脂材料を用いることができる。また、シール材4005に乾燥剤が含まれていてもよい。
 また、必要であれば、発光素子の射出面に偏光板、または円偏光板(楕円偏光板を含む)、位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよい。また、偏光板または円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
 また、発光素子をマイクロキャビティ構造とすることで、色純度の高い光を取り出すことができる。また、マイクロキャビティ構造とカラーフィルタを組み合わせることで、映り込みが低減し、表示画像の視認性を高めることができる。
 表示素子に電圧を印加する第1の電極層および第2の電極層(画素電極層、共通電極層、対向電極層などともいう)においては、取り出す光の方向、電極層が設けられる場所、および電極層のパターン構造によって透光性、反射性を選択すればよい。
 第1の電極層4030、第2の電極層4031は、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、インジウム錫酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性材料を用いることができる。
 また、第1の電極層4030、第2の電極層4031はタングステン(W)、モリブデン(Mo)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、チタン(Ti)、白金(Pt)、アルミニウム(Al)、銅(Cu)、銀(Ag)などの金属、またはその合金、もしくはその金属窒化物から一種以上を用いて形成することができる。
 また、第1の電極層4030、第2の電極層4031として、導電性高分子(導電性ポリマーともいう)を含む導電性組成物を用いて形成することができる。導電性高分子としては、いわゆるπ電子共役系導電性高分子を用いることができる。例えば、ポリアニリン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリチオフェン若しくはその誘導体、または、アニリン、ピロールおよびチオフェンの2種以上からなる共重合体若しくはその誘導体などがあげられる。
 また、トランジスタは静電気などにより破壊されやすいため、駆動回路保護用の保護回路を設けることが好ましい。保護回路は、非線形素子を用いて構成することが好ましい。
 図10は、表示素子として発光ダイオードチップ(以下、LEDチップともいう)を用いた場合の例である。
 LEDチップは、発光ダイオードを有する。発光ダイオードの構成は特に限定されず、MIS(Metal Insulator Semiconductor)接合でもよく、PN接合又はPIN接合を有するホモ構造、ヘテロ構造又はダブルヘテロ構造などを用いることができる。また、超格子構造や、量子効果を生ずる薄膜を積層した単一量子井戸構造又は多重量子井戸(MQW:Multi Quantum Well)構造であってもよい。
 LEDチップ4600は、基板4601、n型半導体層4611、発光層4612、p型半導体層4613、電極4615、電極4621、電極4622、絶縁層4603等を有する。
 p型半導体層4613の材料としては、発光層4612のバンドギャップエネルギーより大きく、発光層4612に対するキャリアの閉じ込めができる材料を用いることができる。また、LEDチップ4600は、n型半導体層4611上にカソードとして機能する電極4621と、p型半導体層4613上にコンタクト電極として機能する電極4615と、電極4615上にアノードとして機能する電極4622とが設けられる。また、n型半導体層4611の上面、及び電極4615の上面及び側面が絶縁層4603で覆われていると好ましい。絶縁層4603は、LEDチップ4600の保護膜として機能する。
 LEDチップ4600は、光を射出する領域の面積が1mm以下、好ましくは10000μm以下、より好ましくは3000μm以下、さらに好ましくは700μm以下とすることができる。
 LEDチップ4600としては、一辺の寸法が1mmを超えるマクロLEDを用いてもよいが、これより小さいサイズのLEDを用いることが好ましい。特に、一辺の寸法が100μmより大きく1mm以下であるミニLED、より好ましくは、一辺の寸法が100μm以下であるマイクロLEDを用いることができる。マイクロLEDを用いることで、極めて高精細な表示装置を実現できる。
 n型半導体層4611は、基板4601側にn型コンタクト層と、発光層4612側にn型クラッド層が積層された構成を有していてもよい。また、p型半導体層4613は、発光層4612側にp型クラッド層と、電極4615側にp型コンタクト層とが積層された構成を有していてもよい。
 発光層4612は、障壁層と井戸層とが複数回に渡って積層された多重量子井戸(MQW:Multi Quantum Well)構造を用いることができる。障壁層は、井戸層よりバンドギャップエネルギーが大きい材料を用いることが好ましい。このような構成とすることで、エネルギーを井戸層に閉じ込めることができ、量子効率が向上し、LEDチップ4600の発光効率を向上させることができる。
 LEDチップ4600は、基板4601側に主に光が射出される、フェイスダウン型のLEDチップである。このとき、電極4615としては光を反射する材料を用いることができ、例えば、銀、アルミニウム、ロジウムなどの金属を用いることができる。なお、フェイスアップ型のLEDチップを用いる場合には、電極4615に透光性の材料を用いればよく、例えば、ITO(In−SnO)、AZO(Al−ZnO)、IZO(In−ZnO)、GZO(GeO−ZnO)、ICO(In−CeO)等の酸化物を用いることができる。
 基板4601としては、サファイア単結晶(Al)、スピネル単結晶(MgAlO4)、ZnO単結晶、LiAlO単結晶、LiGaO単結晶、MgO単結晶等の酸化物単結晶、Si単結晶、SiC単結晶、GaAs単結晶、AlN単結晶、GaN単結晶、ZrB等のホウ化物単結晶等を用いることができる。フェイスダウン型のLEDチップ4600において基板4601は光を透過する材料を用いることが好ましく、例えば、サファイア単結晶などを用いることができる。
 また基板4601とn型半導体層4611との間にバッファ層(図示せず)を設けてもよい。バッファ層は、基板4601とn型半導体層4611との格子定数の違いを緩和する機能を有する。
 LEDチップ4600が有する電極4621と、電極4622は、それぞれバンプ4605を介して第1の電極層4030、または第2の電極層4031と接合されている。
 またLEDチップ4600の側面を覆って、遮光性の樹脂層4607を設けることが好ましい。これにより、LEDチップ4600から横方向に射出される光を遮光することができ、導波光によるコントラストの低下を防ぐことができる。
 また、図10では、基板4601上にさらに基板4006を有する例を示している。このように、LEDチップ4600の周囲に樹脂層4607を設け、さらに上面を基板4006で覆うことにより、LEDチップ4600の接合をより強固なものとすることができ、LEDチップ4600の接合不良が生じることを好適に防ぐことができる。
 図11は、表示素子として液晶素子を用いた液晶表示装置の一例である。
 図11において、表示素子である液晶素子4013は、第1の電極層4030、第2の電極層4031、および液晶層4008を含む。なお、液晶層4008を挟持するように配向膜として機能する絶縁層4032、絶縁層4033が設けられている。第2の電極層4031は第2の基板4006側に設けられ、第1の電極層4030と第2の電極層4031は液晶層4008を介して重畳する。
 またスペーサ4035は絶縁層を選択的にエッチングすることで得られる柱状のスペーサであり、第1の電極層4030と第2の電極層4031との間隔(セルギャップ)を制御するために設けられている。なお球状のスペーサを用いていてもよい。
 また、必要に応じて、ブラックマトリクス(遮光層)、着色層(カラーフィルタ)、偏光部材、位相差部材、反射防止部材などの光学部材(光学基板)などを適宜設けてもよい。例えば、偏光基板および位相差基板による円偏光を用いてもよい。また、光源としてバックライト、サイドライトなどを用いてもよい。また、上記バックライト、およびサイドライトとして、マイクロLEDなどを用いてもよい。
 図11に示す表示装置では、基板4006と第2の電極層4031の間に、遮光層4132、着色層4131、絶縁層4133が設けられている。
 遮光層4132として用いることのできる材料としては、カーボンブラック、チタンブラック、金属、金属酸化物、複数の金属酸化物の固溶体を含む複合酸化物等が挙げられる。遮光層4132は、樹脂材料を含む膜であってもよいし、金属などの無機材料の薄膜であってもよい。また、遮光層4132に、着色層4131の材料を含む膜の積層膜を用いることもできる。例えば、ある色の光を透過する着色層に用いる材料を含む膜と、他の色の光を透過する着色層に用いる材料を含む膜との積層構造を用いることができる。着色層と遮光層の材料を共通化することで、装置を共通化できるほか工程を簡略化できるため好ましい。
 着色層4131に用いることのできる材料としては、金属材料、樹脂材料、顔料または染料が含まれた樹脂材料などが挙げられる。遮光層および着色層の形成方法は、前述した各層の形成方法と同様に行なえばよい。例えば、インクジェット法などで行なってもよい。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
 本実施の形態では、本発明の一態様の半導体装置、または表示装置に用いることができるトランジスタの構成について説明する。
 本発明の一態様の半導体装置、または表示装置は、ボトムゲート型のトランジスタや、トップゲート型トランジスタなどの様々な形態のトランジスタを用いて作製することができる。よって、既存の製造ラインに合わせて、使用する半導体層の材料やトランジスタ構造を容易に置き換えることができる。
〔ボトムゲート型トランジスタ〕
 図12A1は、ボトムゲート型のトランジスタの一種であるチャネル保護型のトランジスタ810の断面図である。トランジスタ810は基板771上に形成されている。また、トランジスタ810は、基板771上に絶縁層772を介して電極746を有する。また、電極746上に絶縁層726を介して半導体層742を有する。電極746はゲート電極として機能できる。絶縁層726はゲート絶縁層として機能できる。
 また、半導体層742のチャネル形成領域上に絶縁層741を有する。また、半導体層742の一部と接して、絶縁層726上に電極744aおよび電極744bを有する。電極744aは、ソース電極またはドレイン電極の一方として機能できる。電極744bは、ソース電極またはドレイン電極の他方として機能できる。電極744aの一部、および電極744bの一部は、絶縁層741上に形成される。
 絶縁層741は、チャネル保護層として機能できる。チャネル形成領域上に絶縁層741を設けることで、電極744aおよび電極744bの形成時に生じる半導体層742の露出を防ぐことができる。よって、電極744aおよび電極744bの形成時に、半導体層742のチャネル形成領域がエッチングされることを防ぐことができる。本発明の一態様によれば、電気特性の良好なトランジスタを実現することができる。
 また、トランジスタ810は、電極744a、電極744bおよび絶縁層741上に絶縁層728を有し、絶縁層728の上に絶縁層729を有する。
 半導体層742に酸化物半導体を用いる場合、電極744aおよび電極744bの、少なくとも半導体層742と接する部分に、半導体層742の一部から酸素を奪い、酸素欠損を生じさせることが可能な材料を用いることが好ましい。半導体層742中の酸素欠損が生じた領域はキャリア濃度が増加し、当該領域はn型化し、n型領域(n層)となる。したがって、当該領域はソース領域またはドレイン領域として機能することができる。半導体層742に酸化物半導体を用いる場合、半導体層742から酸素を奪い、酸素欠損を生じさせることが可能な材料の一例として、タングステン、チタン等を挙げることができる。
 半導体層742にソース領域およびドレイン領域が形成されることにより、電極744aおよび電極744bと半導体層742の接触抵抗を低減することができる。よって、電界効果移動度や、しきい値電圧などの、トランジスタの電気特性を良好なものとすることができる。
 半導体層742にシリコンなどの半導体を用いる場合は、半導体層742と電極744aの間、および半導体層742と電極744bの間に、n型半導体またはp型半導体として機能する層を設けることが好ましい。n型半導体またはp型半導体として機能する層は、トランジスタのソース領域またはドレイン領域として機能することができる。
 絶縁層729は、外部からのトランジスタへの不純物の拡散を防ぐ、または低減する機能を有する材料を用いて形成することが好ましい。なお、必要に応じて絶縁層729を省略することもできる。
 図12A2に示すトランジスタ811は、絶縁層729上にバックゲート電極として機能できる電極723を有する点が、トランジスタ810と異なる。電極723は、電極746と同様の材料および方法で形成することができる。
 一般に、バックゲート電極は導電層で形成され、ゲート電極とバックゲート電極で半導体層のチャネル形成領域を挟むように配置される。よって、バックゲート電極は、ゲート電極と同様に機能させることができる。バックゲート電極の電位は、ゲート電極と同電位としてもよいし、接地電位(GND電位)や、任意の電位としてもよい。また、バックゲート電極の電位をゲート電極と連動させず独立して変化させることで、トランジスタのしきい値電圧を変化させることができる。
 電極746および電極723は、どちらもゲート電極として機能することができる。よって、絶縁層726、絶縁層728、および絶縁層729は、それぞれがゲート絶縁層として機能することができる。なお、電極723は、絶縁層728と絶縁層729の間に設けてもよい。
 なお、電極746または電極723の一方を、「ゲート電極」という場合、他方を「バックゲート電極」という。例えば、トランジスタ811において、電極723を「ゲート電極」と言う場合、電極746を「バックゲート電極」と言う。また、電極723を「ゲート電極」として用いる場合は、トランジスタ811をトップゲート型のトランジスタの一種と考えることができる。また、電極746および電極723のどちらか一方を、「第1のゲート電極」といい、他方を「第2のゲート電極」という場合がある。
 半導体層742を挟んで電極746および電極723を設けることで、更には、電極746および電極723を同電位とすることで、半導体層742においてキャリアの流れる領域が膜厚方向においてより大きくなるため、キャリアの移動量が増加する。この結果、トランジスタ811のオン電流が大きくなると共に、電界効果移動度が高くなる。
 したがって、トランジスタ811は、占有面積に対して大きいオン電流を有するトランジスタである。すなわち、求められるオン電流に対して、トランジスタ811の占有面積を小さくすることができる。本発明の一態様によれば、トランジスタの占有面積を小さくすることができる。よって、本発明の一態様によれば、集積度の高い半導体装置を実現することができる。
 また、ゲート電極とバックゲート電極は導電層で形成されるため、トランジスタの外部で生じる電界が、チャネルが形成される半導体層に作用しないようにする機能(特に静電気などに対する電界遮蔽機能)を有する。なお、バックゲート電極を半導体層よりも大きく形成し、バックゲート電極で半導体層を覆うことで、電界遮蔽機能を高めることができる。
 また、バックゲート電極を、遮光性を有する導電膜で形成することで、バックゲート電極側から半導体層に光が入射することを防ぐことができる。よって、半導体層の光劣化を防ぎ、トランジスタのしきい値電圧がシフトするなどの電気特性の劣化を防ぐことができる。
 本発明の一態様によれば、信頼性の良好なトランジスタを実現することができる。また、信頼性の良好な半導体装置を実現することができる。
 図12B1に、ボトムゲート型のトランジスタの1つであるチャネル保護型のトランジスタ820の断面図を示す。トランジスタ820は、トランジスタ810とほぼ同様の構造を有しているが、絶縁層741が半導体層742の端部を覆っている点が異なる。また、半導体層742と重なる絶縁層741の一部を選択的に除去して形成した開口部において、半導体層742と電極744aが電気的に接続している。また、半導体層742と重なる絶縁層741の一部を選択的に除去して形成した他の開口部において、半導体層742と電極744bが電気的に接続している。絶縁層741の、チャネル形成領域と重なる領域は、チャネル保護層として機能できる。
 図12B2に示すトランジスタ821は、絶縁層729上にバックゲート電極として機能できる電極723を有する点が、トランジスタ820と異なる。
 絶縁層741を設けることで、電極744aおよび電極744bの形成時に生じる半導体層742の露出を防ぐことができる。よって、電極744aおよび電極744bの形成時に半導体層742の薄膜化を防ぐことができる。
 また、トランジスタ820およびトランジスタ821は、トランジスタ810およびトランジスタ811よりも、電極744aと電極746の間の距離と、電極744bと電極746の間の距離が長くなる。よって、電極744aと電極746の間に生じる寄生容量を小さくすることができる。また、電極744bと電極746の間に生じる寄生容量を小さくすることができる。本発明の一態様によれば、電気特性の良好なトランジスタを実現できる。
 図12C1に示すトランジスタ825は、ボトムゲート型のトランジスタの1つであるチャネルエッチング型のトランジスタである。トランジスタ825は、絶縁層741を用いずに電極744aおよび電極744bを形成する。このため、電極744aおよび電極744bの形成時に露出する半導体層742の一部がエッチングされる場合がある。一方、絶縁層741を設けないため、トランジスタの生産性を高めることができる。
 図12C2に示すトランジスタ826は、絶縁層729上にバックゲート電極として機能できる電極723を有する点が、トランジスタ820と異なる。
〔トップゲート型トランジスタ〕
 図13A1に例示するトランジスタ842は、トップゲート型のトランジスタの1つである。トランジスタ842は、絶縁層729を形成した後に電極744aおよび電極744bを形成する点がトランジスタ810、トランジスタ811、トランジスタ820、トランジスタ821、トランジスタ825、及びトランジスタ826と異なる。電極744aおよび電極744bは、絶縁層728および絶縁層729に形成した開口部において半導体層742と電気的に接続する。
 また、電極746と重ならない絶縁層726の一部を除去し、電極746と残りの絶縁層726をマスクとして用いて不純物755を半導体層742に導入することで、半導体層742中に自己整合(セルフアライメント)的に不純物領域を形成することができる(図13A3参照)。トランジスタ842は、絶縁層726が電極746の端部を越えて延伸する領域を有する。半導体層742の絶縁層726を介して不純物755が導入された領域の不純物濃度は、絶縁層726を介さずに不純物755が導入された領域よりも小さくなる。よって、半導体層742は、電極746と重ならない領域にLDD(Lightly Doped Drain)領域が形成される。
 図13A2に示すトランジスタ843は、電極723を有する点がトランジスタ842と異なる。トランジスタ843は、基板771の上に形成された電極723を有する。電極723は、絶縁層772を介して半導体層742と重なる。電極723は、バックゲート電極として機能することができる。
 また、図13B1に示すトランジスタ844および図13B2に示すトランジスタ845のように、電極746と重ならない領域の絶縁層726を全て除去してもよい。また、図13C1に示すトランジスタ846および図13C2に示すトランジスタ847のように、絶縁層726を残してもよい。
 トランジスタ842乃至トランジスタ847も、電極746を形成した後に、電極746をマスクとして用いて不純物755を半導体層742に導入することで、半導体層742中に自己整合的に不純物領域を形成することができる。本発明の一態様によれば、電気特性の良好なトランジスタを実現することができる。また、本発明の一態様によれば、集積度の高い半導体装置を実現することができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態4)
 本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物の構成について説明する。
<金属酸化物の構成>
 明細書等において、CAAC(c−axis aligned crystal)、及びCAC(Cloud−Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。
 CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタのチャネル形成領域に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
 また、CAC−OSまたはCAC−metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
 また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
 また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。
 すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
<金属酸化物の構造>
 酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)および非晶質酸化物半導体などがある。
 CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
 ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
 また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
 CAAC−OSは結晶性の高い酸化物半導体である。一方、CAAC−OSは、明確な結晶粒界を確認することはできないため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 なお、上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 また、トランジスタには、キャリア密度の低い酸化物半導体を用いることが好ましい。酸化物半導体膜のキャリア密度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。例えば、酸化物半導体は、キャリア密度が8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上とすればよい。
 また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。従って、該酸化物半導体において、窒素はできる限り低減されていることが好ましい。例えば、酸化物半導体中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態5)
 本実施の形態では、上述の実施の形態で説明した半導体装置、または表示装置を電子機器に適用した製品例について説明する。
<ノート型パーソナルコンピュータ>
 本発明の一態様の半導体装置、または表示装置は、情報端末装置に備えられるディスプレイに適用することができる。図14Aは、情報端末装置の一種であるノート型パーソナルコンピュータであり、筐体5401、表示部5402、キーボード5403、ポインティングデバイス5404等を有する。
<スマートウォッチ>
 本発明の一態様の半導体装置、または表示装置は、ウェアラブル端末に適用することができる。図14Bはウェアラブル端末の一種であるスマートウォッチであり、筐体5901、表示部5902、操作ボタン5903、操作子5904、バンド5905などを有する。また、表示部5902に、位置入力装置としての機能が付加された表示装置を用いるようにしてもよい。また、位置入力装置としての機能は、表示装置にタッチパネルを設けることで付加することができる。あるいは、位置入力装置としての機能は、フォトセンサとも呼ばれる光電変換素子を表示装置の画素部に設けることでも、付加することができる。また、操作ボタン5903にスマートウォッチを起動する電源スイッチ、スマートウォッチのアプリケーションを操作するボタン、音量調整ボタン、または表示部5902を点灯、あるいは消灯するスイッチなどのいずれかを備えることができる。また、図14Bに示したスマートウォッチでは、操作ボタン5903の数を2個示しているが、スマートウォッチの有する操作ボタンの数は、これに限定されない。また、操作子5904は、スマートウォッチの時刻合わせを行うリューズとして機能する。また、操作子5904は、時刻合わせ以外に、スマートウォッチのアプリケーションを操作する入力インターフェースとして、用いるようにしてもよい。なお、図14Bに示したスマートウォッチでは、操作子5904を有する構成となっているが、これに限定せず、操作子5904を有さない構成であってもよい。
<ビデオカメラ>
 本発明の一態様の半導体装置、または表示装置は、ビデオカメラに適用することができる。図14Cに示すビデオカメラは、第1筐体5801、第2筐体5802、表示部5803、操作キー5804、レンズ5805、接続部5806等を有する。操作キー5804及びレンズ5805は第1筐体5801に設けられており、表示部5803は第2筐体5802に設けられている。そして、第1筐体5801と第2筐体5802とは、接続部5806により接続されており、第1筐体5801と第2筐体5802の間の角度は、接続部5806により変更が可能である。表示部5803における映像を、接続部5806における第1筐体5801と第2筐体5802との間の角度に従って切り替える構成としてもよい。
<携帯電話>
 本発明の一態様の半導体装置、または表示装置は、携帯電話に適用することができる。図14Dは、情報端末の機能を有する携帯電話であり、筐体5501、表示部5502、マイク5503、スピーカ5504、操作ボタン5505を有する。また、表示部5502に、位置入力装置としての機能が付加された表示装置を用いるようにしてもよい。また、位置入力装置としての機能は、表示装置にタッチパネルを設けることで付加することができる。あるいは、位置入力装置としての機能は、フォトセンサとも呼ばれる光電変換素子を表示装置の画素部に設けることでも、付加することができる。また、操作ボタン5505に携帯電話を起動する電源スイッチ、携帯電話のアプリケーションを操作するボタン、音量調整ボタン、または表示部5502を点灯、あるいは消灯するスイッチなどのいずれかを備えることができる。
 また、図14Dに示した携帯電話では、操作ボタン5505の数を2個示しているが、携帯電話の有する操作ボタンの数は、これに限定されない。また、図示していないが、図14Dに示した携帯電話は、フラッシュライト、または照明の用途として発光装置を有する構成であってもよい。
<テレビジョン装置>
 本発明の一態様の半導体装置、または表示装置は、テレビジョン装置に適用することができる。図14Eに示すテレビジョン装置は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006などを有する。テレビジョン装置は、大画面、例えば、50インチ以上、または100インチ以上の表示部9001を組み込むことが可能である。
<移動体>
 本発明の一態様の半導体装置、または表示装置は、移動体である自動車の運転席周辺に適用することができる。
 例えば、図14Fは、自動車の室内におけるフロントガラス周辺を表す図である。図14Fでは、ダッシュボードに取り付けられた表示パネル5701、表示パネル5702、表示パネル5703の他、ピラーに取り付けられた表示パネル5704を図示している。
 表示パネル5701乃至表示パネル5703は、ナビゲーション情報、スピードメーターやタコメーター、走行距離、燃料計、ギア状態、エアコンの設定などを表示することで、様々な情報を提供することができる。また、表示パネルに表示される表示項目やレイアウトなどは、ユーザの好みに合わせて適宜変更することができ、デザイン性を高めることが可能である。表示パネル5701乃至表示パネル5703は、照明装置として用いることも可能である。
 表示パネル5704には、車体に設けられた撮像手段からの映像を映し出すことによって、ピラーで遮られた視界(死角)を補完することができる。すなわち、自動車の外側に設けられた撮像手段からの画像を表示することによって、死角を補い、安全性を高めることができる。また、見えない部分を補完する映像を映すことによって、より自然に違和感なく安全確認を行うことができる。表示パネル5704は、照明装置として用いることもできる。
<電子公告用の電子機器>
 本発明の一態様の半導体装置、または表示装置は、電子公告を用途とするディスプレイに適用することができる。図15Aは、壁に取り付けが可能な電子看板(デジタルサイネージ)の例を示している。図15Aは、電子看板6200が壁6201に取り付けられている様子を示している。
<折り畳み式のタブレット型情報端末>
 本発明の一態様の半導体装置、または表示装置は、タブレット型の情報端末に適用することができる。図15Bには、折り畳むことができる構造を有するタブレット型の情報端末を示している。図15Bに示す情報端末は、筐体5321aと、筐体5321bと、表示部5322と、操作ボタン5223と、を有している。特に、表示部5322は可撓性を有する基材を有しており、当該基材によって折り畳むことができる構造を実現できる。
 また、筐体5321aと筐体5321bと、は、ヒンジ部5321cにより結合されており、ヒンジ部5321cによって、2つ折りが可能となっている。また、表示部5322は、筐体5321a、筐体5321b、及びヒンジ部5321cに設けられている。
 また、図示していないが、図14A乃至図14C、図14E、図15A、及び図15Bに示した電子機器は、マイク及びスピーカを有する構成であってもよい。この構成により、例えば、上述した電子機器に音声入力機能を付することができる。
 また、図示していないが、図14A、図14B、図14D、図15A、及び図15Bに示した電子機器は、カメラを有する構成であってもよい。
 また、図示していないが、図14A乃至図14F、図15A、及び図15Bに示した電子機器は、筐体の内部にセンサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線などを測定する機能を含むもの)を有する構成であってもよい。特に、図14Dに示す携帯電話に、ジャイロ、加速度センサなどの傾きを検出するセンサを有する検出装置を設けることで、該携帯電話の向き(鉛直方向に対して該携帯電話がどの向きに向いているか)を判断して、表示部5502の画面表示を、該携帯電話の向きに応じて自動的に切り替えるようにすることができる。
 また、図示していないが、図14A乃至図14F、図15A、及び図15Bに示した電子機器は、指紋、静脈、虹彩、または声紋など生体情報を取得する装置を有する構成であってもよい。この構成を適用することによって、生体認証機能を有する電子機器を実現することができる。
 また、図14A乃至図14E、及び図15Aに示した電子機器の表示部として、可撓性を有する基材を用いてもよい。具体的には、該表示部は、可撓性を有する基材上にトランジスタ、容量素子、及び表示素子などを設けた構成としてもよい。この構成を適用することによって、図14A乃至図14E、及び図15Aに示した電子機器のように平らな面を有する筐体だけでなく、図14Fに示したダッシュボード、ピラーのように、曲面を有するような筐体の電子機器を実現することができる。
 図14A乃至図14F、図15A、及び図15Bの表示部に適用できる、可撓性を有する基材としては、可視光に対する透光性を有する材料を例に挙げると、ポリエチレンテレフタレート樹脂(PET)、ポリエチレンナフタレート樹脂(PEN)、ポリエーテルサルフォン樹脂(PES)、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリシクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリプロピレン樹脂、ポリエステル樹脂、ポリハロゲン化ビニル樹脂、アラミド樹脂、エポキシ樹脂、ウレタン樹脂などを用いることができる。また、これらの材料を混合または積層して用いてもよい。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
DD:表示装置、PA:表示部、GD:ゲートドライバ回路、SD:ソースドライバ回路、PIX:画素、SR:シフトレジスタ、LAT:ラッチ回路、LVS:レベルシフト回路、DAC:デジタルアナログ変換回路、AMP:アンプ回路、GL:配線、DL:配線、DB:データバス配線、Tr1~7:トランジスタ、C1、C2、C3:容量素子、LD:発光素子、GL1~4:配線、DL:配線、WDL:配線、VL:配線、AL:配線、CAT:配線、ND1:ノード、ND2:ノード

Claims (13)

  1.  画素を備える表示装置であって、
     前記画素は、表示素子を備え、
     前記画素は、
     入力される第1のパルス信号に応じた第1の電圧を保持する機能と、
     入力される第2のパルス信号に応じた第2の電圧を、前記第1の電圧に足し合わせて得られる第3の電圧により、前記表示素子を駆動する機能と、を有し、
     前記表示素子は、発光素子であり、
     前記発光素子は、前記第3の電圧に応じた輝度で発光し、
     前記発光素子は、発光ダイオードであり、
     前記発光ダイオードは、マイクロLED、またはミニLEDであり、
     前記第1のパルス信号を供給する第1の駆動回路を有し、
     前記第1の駆動回路において、前記第1のパルス信号の生成のための第1の電源電圧は、前記第3の電圧の最大値よりも低く、
     前記第1の駆動回路は、前記第1の電源電圧を昇圧することなく、前記第1のパルス信号を生成する、
     表示装置。
  2.  画素を備える表示装置であって、
     前記画素は、表示素子を備え、
     前記画素は、
     入力される第1のパルス信号に応じた第1の電圧を保持する機能と、
     入力される第2のパルス信号に応じた第2の電圧を、前記第1の電圧に足し合わせて得られる第3の電圧により、前記表示素子を駆動する機能と、を有する、
     表示装置。
  3.  請求項2において、
     前記表示素子は、発光素子であり、
     前記発光素子は、前記第3の電圧に応じた輝度で発光する、
     表示装置。
  4.  請求項3において、
     前記発光素子は、有機EL素子である、
     表示装置。
  5.  請求項3において、
     前記発光素子は、発光ダイオードである、
     表示装置。
  6.  請求項5において、
     前記発光ダイオードは、マイクロLED、またはミニLEDである、
     表示装置。
  7.  請求項2において、
     前記表示素子は、液晶素子であり、
     前記液晶素子は、前記第3の電圧に応じて、液晶の配向が変化する、
     表示装置。
  8.  請求項2乃至請求項7のいずれか一において、
     前記第1のパルス信号を供給する第1の駆動回路を有し、
     前記第1の駆動回路において、前記第1のパルス信号の生成のための第1の電源電圧は、前記第3の電圧の最大値よりも低い、
     表示装置。
  9.  請求項8において、
     前記第1の駆動回路は、前記第1の電源電圧を昇圧することなく、前記第1のパルス信号を生成する、
     表示装置。
  10.  請求項8または請求項9において、
     前記第1の電源電圧は、前記第3の電圧の最大値の半分、またはその近傍の電圧である、
     表示装置。
  11.  請求項8乃至請求項10のいずれか一において、
     前記第1の駆動回路を制御するシステム回路を有し、
     前記システム回路は、前記第1の駆動回路に前記第1の電源電圧を供給する機能を有する、
     表示装置。
  12.  請求項11において、
     前記システム回路の駆動電圧の一が、1.8V、2.5V、3.3V、またはその近傍であり、
     前記システム回路は、前記駆動電圧と同じ電圧を、前記第1の電源電圧として前記第1の駆動回路に供給する機能を有する、
     表示装置。
  13.  請求項11または請求項12において、
     前記システム回路から前記第1の駆動回路に供給される前記第1の電源電圧は、昇圧されることなく供給される、
     表示装置。
PCT/IB2019/057395 2018-09-12 2019-09-03 表示装置 WO2020053701A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020546535A JPWO2020053701A1 (ja) 2018-09-12 2019-09-03 表示装置
KR1020217009247A KR20210046063A (ko) 2018-09-12 2019-09-03 표시 장치
CN201980057734.4A CN112639944A (zh) 2018-09-12 2019-09-03 显示装置
US17/271,221 US11501695B2 (en) 2018-09-12 2019-09-03 Display device
US17/975,920 US11869417B2 (en) 2018-09-12 2022-10-28 Display device
US18/380,819 US20240046857A1 (en) 2018-09-12 2023-10-17 Display device
JP2024076890A JP2024096421A (ja) 2018-09-12 2024-05-10 表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018170461 2018-09-12
JP2018-170461 2018-09-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/271,221 A-371-Of-International US11501695B2 (en) 2018-09-12 2019-09-03 Display device
US17/975,920 Continuation US11869417B2 (en) 2018-09-12 2022-10-28 Display device

Publications (1)

Publication Number Publication Date
WO2020053701A1 true WO2020053701A1 (ja) 2020-03-19

Family

ID=69777488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/057395 WO2020053701A1 (ja) 2018-09-12 2019-09-03 表示装置

Country Status (5)

Country Link
US (3) US11501695B2 (ja)
JP (2) JPWO2020053701A1 (ja)
KR (1) KR20210046063A (ja)
CN (1) CN112639944A (ja)
WO (1) WO2020053701A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095142A1 (ja) 2018-11-09 2020-05-14 株式会社半導体エネルギー研究所 表示装置および電子機器
CN113348501A (zh) 2019-02-05 2021-09-03 株式会社半导体能源研究所 显示装置及电子设备
KR20220143227A (ko) * 2021-04-15 2022-10-25 삼성디스플레이 주식회사 출력 버퍼, 데이터 구동부, 및 이를 포함하는 표시 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266494A (ja) * 2009-05-12 2010-11-25 Sony Corp 表示装置、表示方法
US20170098414A1 (en) * 2015-10-05 2017-04-06 Forcelead Technology Corp. Driving Module of Organic Light Emitting Diode Display

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251632A (ja) * 2005-03-14 2006-09-21 Sony Corp 画素回路及び表示装置
JP2010122604A (ja) * 2008-11-21 2010-06-03 Sony Corp 表示装置及び電子機器
JP5491833B2 (ja) 2008-12-05 2014-05-14 株式会社半導体エネルギー研究所 半導体装置
KR101532268B1 (ko) 2008-12-18 2015-07-01 삼성전자주식회사 디지털-아날로그 변환기, 이를 포함하는 소스 구동회로, 및소스 구동회로를 포함하는 표시 장치
KR102290831B1 (ko) * 2009-10-16 2021-08-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치 및 이를 구비한 전자 장치
JP2012078525A (ja) * 2010-09-30 2012-04-19 Fujitsu Ltd 表示装置及びその駆動方法
JP5804732B2 (ja) * 2011-03-04 2015-11-04 株式会社Joled 駆動方法、表示装置および電子機器
TWI561951B (en) 2012-01-30 2016-12-11 Semiconductor Energy Lab Co Ltd Power supply circuit
WO2013146154A1 (en) 2012-03-29 2013-10-03 Semiconductor Energy Laboratory Co., Ltd. Power supply control device
WO2014188895A1 (en) 2013-05-21 2014-11-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and camera
JP2015028918A (ja) 2013-06-27 2015-02-12 株式会社半導体エネルギー研究所 発光装置、カメラ
TWI641208B (zh) 2013-07-26 2018-11-11 日商半導體能源研究所股份有限公司 直流對直流轉換器
US9939262B2 (en) 2013-08-20 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and camera
JP6615565B2 (ja) 2014-10-24 2019-12-04 株式会社半導体エネルギー研究所 半導体装置
US9704893B2 (en) 2015-08-07 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
KR20180095836A (ko) 2015-12-18 2018-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 상기 반도체 장치를 포함한 표시 장치
US10033361B2 (en) * 2015-12-28 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Level-shift circuit, driver IC, and electronic device
JP6854670B2 (ja) * 2016-03-04 2021-04-07 株式会社半導体エネルギー研究所 半導体装置、表示パネル、表示モジュール及び電子機器
US10528165B2 (en) * 2016-04-04 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
JP7044495B2 (ja) 2016-07-27 2022-03-30 株式会社半導体エネルギー研究所 半導体装置
US20180210561A1 (en) * 2017-01-24 2018-07-26 Semiconductor Energy Laboratory Co., Ltd. Input unit, input method, input system, and input support system
WO2018167605A1 (en) 2017-03-17 2018-09-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic device
WO2019048966A1 (ja) 2017-09-05 2019-03-14 株式会社半導体エネルギー研究所 表示システム
WO2019092540A1 (en) 2017-11-09 2019-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic device
JPWO2019123064A1 (ja) 2017-12-21 2021-01-21 株式会社半導体エネルギー研究所 表示装置、及び電子機器
JPWO2019123089A1 (ja) 2017-12-22 2020-12-24 株式会社半導体エネルギー研究所 表示装置、半導体装置、及び電子機器
KR20200128166A (ko) 2018-03-29 2020-11-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치의 동작 방법
US10770482B2 (en) 2018-06-06 2020-09-08 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266494A (ja) * 2009-05-12 2010-11-25 Sony Corp 表示装置、表示方法
US20170098414A1 (en) * 2015-10-05 2017-04-06 Forcelead Technology Corp. Driving Module of Organic Light Emitting Diode Display

Also Published As

Publication number Publication date
US20240046857A1 (en) 2024-02-08
JPWO2020053701A1 (ja) 2021-09-30
US11501695B2 (en) 2022-11-15
JP2024096421A (ja) 2024-07-12
KR20210046063A (ko) 2021-04-27
US20210193029A1 (en) 2021-06-24
US20230046927A1 (en) 2023-02-16
CN112639944A (zh) 2021-04-09
US11869417B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
JP7340672B2 (ja) 表示装置
US20210373372A1 (en) Touch panel
JP7491990B2 (ja) 表示装置
JP7242260B2 (ja) 表示装置、及び電子機器
KR102642601B1 (ko) 표시 장치 및 전자 기기
US11869417B2 (en) Display device
KR20120002925A (ko) 전계 구동형 표시 장치
CN112005289B (zh) 显示装置及电子设备
JP7109887B2 (ja) 表示システム
JP2023017959A (ja) 表示装置
US11100855B2 (en) Display device and electronic device
CN111418000B (zh) 显示装置及其工作方法
TW201824219A (zh) 顯示裝置及電子裝置
JP2018049267A (ja) 表示システム、電子機器および表示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546535

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217009247

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19859382

Country of ref document: EP

Kind code of ref document: A1