WO2020053372A1 - Huile de microorganismes riches en acide docosahexaénoïque - Google Patents

Huile de microorganismes riches en acide docosahexaénoïque Download PDF

Info

Publication number
WO2020053372A1
WO2020053372A1 PCT/EP2019/074458 EP2019074458W WO2020053372A1 WO 2020053372 A1 WO2020053372 A1 WO 2020053372A1 EP 2019074458 W EP2019074458 W EP 2019074458W WO 2020053372 A1 WO2020053372 A1 WO 2020053372A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
dha
biomass
content
oil according
Prior art date
Application number
PCT/EP2019/074458
Other languages
English (en)
Inventor
François GODART
Adeline LAPENDRIE
Original Assignee
Fermentalg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fermentalg filed Critical Fermentalg
Priority to AU2019340853A priority Critical patent/AU2019340853A1/en
Priority to BR112021004896-0A priority patent/BR112021004896A2/pt
Priority to KR1020217009746A priority patent/KR20210093850A/ko
Priority to US17/275,867 priority patent/US20220042054A1/en
Priority to CN201980074627.2A priority patent/CN113766836A/zh
Priority to EP19765744.8A priority patent/EP3849344A1/fr
Priority to JP2021514127A priority patent/JP2022500048A/ja
Priority to CA3112621A priority patent/CA3112621A1/fr
Publication of WO2020053372A1 publication Critical patent/WO2020053372A1/fr
Priority to US18/498,807 priority patent/US20240141395A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/002Sources of fatty acids, e.g. natural glycerides, characterised by the nature, the quantities or the distribution of said acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/10Protozoa; Culture media therefor
    • C12N1/105Protozoal isolates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/18Lipids
    • A23V2250/186Fatty acids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/18Lipids
    • A23V2250/186Fatty acids
    • A23V2250/1868Docosahexaenoic acid
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/18Lipids
    • A23V2250/194Triglycerides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/90Protozoa ; Processes using protozoa

Definitions

  • the present invention relates to an oil of microorganisms rich in docosahexenoic acid (DHA, C22: 6n3), comprising more than 60% of DHA relative to the total mass of fat and at least 80% of triglycerides relative to the total mass of fat.
  • DHA docosahexenoic acid
  • Oils containing DHA come from several sources, the best known of which are fish, krill and microorganisms such as microalgae. Many strains of PUFA-producing microorganisms are known, in particular docosahexaenoic acid (DHA), arachidonic acid (ARA) or eicosapentaenoic acid (EPA) also identified by the signs w3 and w6. These PUFAs are widely used in industry, in particular for human or animal food or in cosmetics, and their industrial production has been subject to constant improvement for many years (WO 1997/037032, WO 2001/054510, WO 2013/136028 , WO 2015/004402, US 2017/016036, US 2017/335356).
  • DHA docosahexaenoic acid
  • ARA arachidonic acid
  • EPA eicosapentaenoic acid
  • strains suitable for industrial production are their high biomass productivity, a large accumulation of triglycerides (TG) and a high PUFA content in fat.
  • TG triglycerides
  • Many industrial strains are known today which meet these first three criteria, with a PUFA content in fat of the order of 35%, or even 50% in the best of cases.
  • oils with high PUFA contents either for the supply of concentrated products, such as concentrated oil capsules which make it possible to reduce the catches for an equivalent quantity of PUFA.
  • the oils can be enriched by the addition of PUFA (US 2014/323569) and / or the oils are concentrated by a process which transforms the triglycerides to ethyl esters involving the use of solvents such as ethanol.
  • Ethyl esters are an artificial chemical form, they are not present in nature.
  • the level of glycidol (and glycidol esters) is subject to regulation (EU) 2018/290 / EC in order to limit its content in food: the concentration must not exceed 1000 pg / kg in oils edible except for edible oils intended for the preparation of food for babies and infants where the limit is 500 pg / kg.
  • the maximum content is even lower: 75 pg / kg in powders and 10 pg / kg in liquids. This content will be further reduced (50 and 6 pg / kg respectively) in 2019.
  • the assessment of maximum MCPD concentrations is currently underway for oils and baby foods. For the moment, the regulations only concern hydrolyzed vegetable proteins and soy sauce (limit of 20 pg / kg).
  • Another known solution consists in generating genetically modified microorganisms in order to seek to promote the metabolic pathways for the production of PUFA (Hamilton & al., 2016) or murtants supposed to produce more DHA (WO 2017/09804).
  • PUFA Hemlton & al., 2016
  • murtants supposed to produce more DHA
  • the choice of technical solutions is limited by the use made of the oils obtained, especially in human food (Fedorova-Dahms I. & al., 201 1).
  • oils that are naturally concentrated in PUFAs which do not require treatments other than extraction methods, that is to say for which the PUFAs are essentially in the form of triglycerides such as produced by microorganisms. More particularly, there is a need for oils with a high PUFA content and a lower content of saturated fatty acids.
  • the interest of a low content of saturated fatty acids goes towards a less viscous oil, easier to use at industrial levels, in particular requiring less energy for its handling.
  • the invention responds to this request with an oil with a high DHA content, comprising at least 60% DHA relative to the total mass of fat.
  • This oil contains no ethylesters, no traces of solvent (ethanol or methanol) and a reduced content of 3- MCPD and glycidol (compared to oils containing more than 60% of DHA currently on the market).
  • the present invention relates to a microbial oil which comprises docosahexenoic acid (DHA), characterized in that it comprises at least 80% of triglycerides relative to the total fat mass, more than 60% of DHA relative to the total mass of fat and the content of saturated fatty acids is less than 25% relative to the total mass of fat.
  • DHA docosahexenoic acid
  • a diluted microbial oil which comprises a microbial oil rich in triglycerides and in DHA according to the invention, mixed with another oil.
  • Another subject of the invention is a biomass of microorganisms which comprises an oil rich in triglycerides and DHA according to the invention.
  • the invention also relates to the use of an oil rich in triglyceride and in DHA according to the invention optionally diluted or of a biomass which contains this oil for human or animal consumption, in particular for the feeding of newborn babies. , children, or pregnant or breastfeeding women.
  • Another object of the invention is a food, characterized which comprises an oil rich in triglycerides and in DHA according to the invention, possibly diluted.
  • the oil according to the invention is a microbial oil which comprises more than 60% of DHA relative to the total mass of fat, advantageously at least 62% of DHA, more advantageously at least 65% of DHA, preferably more than 67%, more preferably at least 70%, even more preferably 75% of DHA relative to the total mass of fat.
  • the invention also relates to a diluted oil, comprising the oil according to the invention mixed with another oil.
  • the invention also relates to a pharmaceutical, cosmetic or food composition which comprises an oil according to the invention, whether it is crude, refined or diluted.
  • the invention also relates to the use of an oil according to the invention, crude, refined or diluted, or of a biomass containing the oil, for human or animal food, in particular for feeding newborns. , children, or pregnant or breastfeeding women.
  • the oil according to the invention is an oil of microbial origin, obtained from a biomass of cells of microorganisms cultivated under conditions allowing both cell growth (to produce the biomass) and the production of an oil high in DHA.
  • the oil according to the invention is a microbial oil which comprises more than 60% of DHA relative to the total mass of fat, advantageously at least 62% of DHA, more advantageously at least 65% of DHA, preferably more than 67%, more preferably at least 70%, even more preferably at least 75% of DHA relative to the total mass of fat.
  • the oil according to the invention has a high content of unsaturated fatty acids compared to saturated fatty acids.
  • the unsaturated fatty acids in the oil according to the invention are essentially DHA and DPA (docosapentanoic acid, C22: 5n6).
  • the ARA (arachidonic acid, C20: 4n6) content is generally less than 0.5%, or even less than 0.3%, advantageously less than 0.1%.
  • the content of EPA (eicosapentaenoic acid, C20: 5n3) is generally less than 1.5%, advantageously less than 1%, more advantageously less than 0.5%.
  • the percentages in ARA and EPA are given relative to the total mass of fat.
  • the cumulative DHA and DPA content is at least 70% relative to the total fat mass, advantageously at least 75%, more advantageously at least 80%, or even more than 85 % based on the total mass of fat.
  • the total DHA + DPA represents up to 90% of the total fat mass.
  • the cumulative DHA and DPA content is at least 80%, preferably at least 85%.
  • the DHA / DPA ratio is preferably at least 3, more preferably at least 4, which can range from 4 to 9.
  • the DHA / DPA ratio is advantageously from 4 to 7.
  • the content of saturated fatty acids is less than 25% relative to the total mass of fat, or even less than 20%, more preferably less than 15%, even more preferably less than 10%.
  • Saturated fatty acids are mainly palmitic acid (C16: 0).
  • the other saturated fatty acids are present at a content of less than 2%, or even less than 1%, in particular pendadecylic acid (C15: 0) or myristic acid (C14: 0) or even stearic acid (C18: 0).
  • the saturated C10 to C22 fatty acids other than palmitic acid are, independently of each other, present in trace amounts, each in a content of less than 0.1%, or even absent (0% taking into account the uncertainties analytical methods), in particular for saturated fatty acids C10, C1 1, C12, C17, C20, C21 and C22. The percentages are given relative to the total mass of fat.
  • the palmitic acid content is preferably less than 20% of the total fat mass, more preferably less than 15%, even more preferably less than 10%.
  • the content of C10 to C22 saturated fatty acids is preferably less than 15%, more preferably less than 10%.
  • One way of measuring the high DHA content of the oil according to the invention and the low content of saturated fatty acids (AGS) is to establish a DHA / AGS ratio.
  • the DHA / AGS ratio is at least 4, preferably at least 6, more preferably at least 8, up to approximately 9.
  • the ratio (DHA + DPA) / AGS is at least 5, preferably at least 7, more preferably from at least 10, to about 1 1 or more.
  • the oils according to the invention are essentially in the form of triglycerides.
  • the triglycerides represent at least 80% of the total mass of fat, advantageously at least 90%, more advantageously at least 93% of the total mass of fat.
  • the triglyceride content is for example analyzed by thin layer chromatography (Jouet et al., 2003).
  • the extraction of oil from biomass can lead to a slight increase in the content of DHA and DPA, favoring the extraction of these PUFAs compared to saturated fatty acids of lower molecular weight.
  • this concentration does not substantially modify the intrinsic properties of the oil contained in the biomass, in particular the triglyceride content.
  • the oil according to the invention is an oil which has not undergone substantial changes in its fatty acid content by the addition of PUFA, for example in the form of esters, by concentration and / or by eliminating saturated fatty acids like palmitic acid.
  • the oil according to a particular embodiment of the invention contains more than 10 mg of native carotenoids per kg of oil, or even more than 30 mg / kg, preferably more than 40 mg / kg, even more preferably more than 60 mg / kg, or even at least 65 mg / kg.
  • the carotenoids present are mainly astaxanthin and beta-carotenes.
  • the oil contains more than 20 mg / kg of astaxanthin, or even more than 30 mg / kg, more preferably more than 40 mg / kg.
  • Canthaxanthin is also present, but in smaller quantities.
  • Other carotenoids such as lutein and zeaxanthin may be present but they are at the limit of detection of the method used.
  • native carotenoids means that the carotenoids have not been added, they come from the same biomass as the oil and are extracted from this biomass at the same time as the oil. They are produced by the strain under fermentation conditions in heterotrophy, without any particular stimulus. These native carotenoids are therefore present throughout the process, protecting fatty acids, in particular DHA, against oxidation. The refining process can remove pigments, so the refined oil may contain less, if not more, carotenoids.
  • the color of the oil is usually evaluated by measuring the Gardner index, according to the method described in the AOCS Ce 13d-97 standard (revised in 2017) with a spectrophotometer.
  • the measurement scale includes 18 grades, ranging from transparent (1) to dark red / brown (18).
  • Some carotenoids, including astaxanthin and beta-carotenes, show more or less intense coloring depending on their concentration. Their presence is therefore reflected in a higher Gardner index.
  • the oil according to a particular embodiment of the invention has a Gardner index greater than 8, or even greater than 10, preferably between 12 and 17.
  • the Gardner scale is traditionally used to assess the aging of oils because the oxidation of oils rich in polyunsaturated fatty acids (PUFAs) can result in yellowing of the color (for a transparent oil), therefore a Gardner value higher.
  • PUFAs polyunsaturated fatty acids
  • the oxidation of oils rich in PUFAs is more precisely measured by the anisidine index and the peroxidation index.
  • the oils according to the invention have both low anisidine and peroxide indices, which indicate a poorly oxidized product, and a high Gardner index, due to the presence of carotenoids.
  • the oils according to the invention have an anisidine index less than 5, see less than 2, preferably less than 1.5, and a peroxidation index less than 5, see less than or equal to 1, preferably less than or equal to 0.5.
  • oils according to the invention have a fairly low melting temperature, which decreases in correlation with the increase in the level of DHA.
  • the melting temperature is measured according to standard ISO 6321. Indeed, oils, with more than 600 mg of DHA / g of fatty acids (that is to say more than 62% of DHA) have a melting temperature below 20 ° C, see less than or equal to 5 ° C. They are therefore liquid at room temperature. Oils with more than 700 mg of DHA per g of fatty acids (i.e. approximately more than 73% of DHA) have a melting temperature below -5 ° C.
  • a low melting temperature facilitates storage and handling (pumping in particular), since it is possible to keep the oil in liquid form while refrigerating it in order to limit aging. Oils that freeze during storage must be reheated for sampling and for their integration into mixtures. Temperature is an accelerating factor for oxidation.
  • the oils according to the invention have a viscosity value at room temperature less than or equal to 50 Pa.s, or even less than 40, preferably less than 30.
  • the oils according to the invention are obtained by culturing microorganisms producing oils rich in DHA.
  • the strains of microorganisms which make it possible to obtain such oils are industrial strains, that is to say according to the invention, strains whose fat content represents at least 45% of the dry matter, preferably at least about 50 % of the dry matter, and which have a growth capacity at a cell density of at least 50 g / L, preferably at least 70 g / L, more preferably at least 100 g / L.
  • microorganisms mainly from traustochytrids, dinophyceae, diatoms, eustigmatophyceae, in particular microorganisms of the genera Crypthecodinium, Schizochytrium, Traustochytrium or Aurantiochytrium for the production of DHA.
  • the analysis of the PUFA content in the fat is carried out according to the usual methods of those skilled in the art, in particular described in the following article: Gas Chromatography Quantification of Fatty Acid Methyl Esters: Flame lonization Detection vs. Electron Impact Mass Spectrometry, Dodds et al., Lipids, Vol. 40, no. 4 (2005). More particularly, the strains Aurantiochytrium mangrovei CCAP4062 / 7 and CCAP4062 / 8 and Schizochytrium sp. CCAP4087 / 7 which produce oils comprising more than 60% of DHA compared to the total mass of fat. The invention also relates to these strains capable of producing oils comprising more than 60% of DHA.
  • industrial culture is meant according to the invention a culture of the strains in a culture medium suitable for their growth and for the production of PUFA and in a volume suitable for the production of sufficient quantities to address a market.
  • Fermenters have volumes that can range from 1000 L to more than 200 m 3 .
  • the suitable culture medium is preferably a chemically defined culture medium which comprises a source of carbon, a source of nitrogen, a source of phosphorus and salts.
  • chemically defined culture medium is meant a culture medium in which the content of each element is known.
  • the medium does not contain rich or complex organic materials.
  • rich or complex organic materials is meant unpurified organic materials, in the form of mixtures for which the exact composition and the concentrations of the various components of the mixture are not known with exactitude, not controlled, and can present a significant variability. from one batch to another.
  • rich or complex organic material mention may be made of yeast extracts or peptones which are products of a protein hydrolysis reaction or also rich mineral materials such as for example marine mineral salts or other growth agents. complex, having no fixed concentration of each of their components.
  • industrial culture methods include a growth step to promote the production of biomass, then an accumulation step to promote the production of fat and PUFA in particular. This is particularly the case for the method described in patent application WO 2001/054510. More recently, methods have been described implementing culture conditions which concomitantly favor the production of biomass and that of PUFAs. Mention will in particular be made of the culture methods described in applications WO 2012/035262, WO 2015/004402 and WO 2015/004403. Of course, those skilled in the art can adapt the culture conditions, in particular the composition of the medium, the conditions for adding nutrients during the culture, temperature cycles, oxygenation and lighting conditions to promote the production of biomass.
  • the temperatures of industrial culture are advantageously higher than 17 ° C.
  • biomass means a set of cells of microorganisms produced by their culture, in particular by the methods described above, cells which may or may not have retained their physical integrity. It is therefore understood that said biomass can comprise an amount of cells of degraded microorganisms ranging from 0% to 100%.
  • degraded is meant that the physical integrity of said cells of microorganisms could have been altered such as for example lysed microorganisms, resulting for example from a process of homogenization or enzymatic lysis.
  • this biomass can be raw, just separated from its culture medium, dried or not, degraded or not.
  • Biomass depending on whether it is dried or not, wholly or in part, can include a humidity level of 1% to 90%.
  • the invention therefore also relates to a biomass of microorganisms comprising an oil as defined above.
  • the biomass has a humidity rate of 70% to 90%, preferably 80% to 85%. This is particularly the case when it essentially consists of optimized industrial microorganisms cultivated after filtration of the fermentation must to separate the cultivated microorganisms from the culture medium, before drying.
  • the biomass is dried, wholly or in part, and has a humidity rate of 1% to 10%, preferably from 2% to 7%.
  • the biomass may be conditioned for its storage or for its use as such, for example as a food supplement or food for human or animal consumption.
  • the methods for isolating an oil according to the invention from a biomass produced by the culture of microorganisms are well known to those skilled in the art. Mention will be made in particular of the solid-liquid extraction which is based on the use of a solvent (liquid phase) for extracting the oil contained in the dried biomass (solid phase) by spraying or maceration; the liquid-liquid extraction which is based on the separation of the aqueous phase from the oil after the prior lysis of the cells then decantation or centrifugation. Preferably the extraction is done without organic solvents.
  • the applications WO 01/53512, WO 02/10423, WO 2014/122092, WO 2015/092546 and WO 2015/095694 will be mentioned in particular.
  • This method consists in carrying out cell lysis at a first temperature, the latter being continued at a second temperature lower than the first, then a mechanical separation of the oil from the lysed biomass (filtration, decantation).
  • Cell lysis is done by enzymatic or mechanical lysis (grinding).
  • the temperature of the first lysis part is preferably at least 50 ° C. while remaining below temperatures which would degrade the composition of the oils in addition to promoting cell lysis, that is to say temperatures below 80 ° C, preferably at most 70 ° C.
  • the enzymes capable of being used are known, in particular described in WO2015 / 095688, WO201 1/153246, US6750048 and WO2015 / 095694, in particular proteases or cellulases such as the enzymes sold by the company Novozyme under the names Alcalase 2, 5 L, Alcalase 2.4 L, Novozym 37071, Flavourzyme 1000 L, Novozym FM 2.4 L, Protamex, Viscozyme.
  • the conditions of implementation are those recommended by the supplier, the temperature being that recommended for optimal activity of the enzymes, at least 50 ° C. and up to 70 ° C., preferably approximately 65 ° C.
  • the enzymatic lysis is carried out under an atmosphere poor in oxygen.
  • the first part of the lysis is carried out under the usual conditions recommended in the state of the art for cell lysis, in particular in terms of duration of the enzymatic lysis or the grinding cycles.
  • the lysis continuation stage makes it possible to complete the latter by modifying the conditions of implementation without having to extract the lysed biomass beforehand.
  • the lysis temperature in this second part is at least 10 ° C lower than that in the first part.
  • the temperature of the second lysis part is less than or equal to 40 ° C, advantageously ranging from 5 ° C to 40 ° C.
  • This second part of lysis at a lower temperature, or end of lysis is advantageously carried out for at least 30 ’, which can range up to 30 h.
  • the mechanical separation of an oil from a lysed biomass is also well known to those skilled in the art, as a gravity separation, in particular by centrifugation as described in patent application WO 01/53512.
  • a gravity separation in particular by centrifugation as described in patent application WO 01/53512.
  • Such separators are known to continuously extract oils from complex media comprising solid residues and water, as described in patent application WO 2010/096002, in particular sold by the companies Alfa Laval, Flottweg or SPX Flow Technology Santorso, in particular. This continuous separation step is preferred in the process used to obtain the oil according to the invention.
  • the oil obtained is generally an oil called crude oil, which can be used as it is or be subject to refining, in particular to facilitate its conservation, by preventing it from becoming rancid, or to modify its color so as to make it more acceptable to a consumer.
  • refining steps are well known to those skilled in the art, including degumming, clarification and deodorization. They make it possible to eliminate (all or in part) phospholipids, pigments, volatiles and free fatty acids. In fact, these methods do not substantially modify the relative content of fatty acids, saturated or unsaturated, nor the triglyceride content of the refined oil obtained compared to the crude oil.
  • the invention also relates to a packaged oil comprising a container of volume suitable for containing said oil, the oil being an oil rich in DHA as defined above, crude or refined, and packaged in an amount of oil greater than 1 L, advantageously in an amount of oil greater than 10 L, more particularly in an amount of oil of the order of 220 L, and more particularly in an amount of oil of the order of 20m 3 .
  • any container capable of containing the volume of oil or biomass and protecting them for their conservation and transport may be used by a person skilled in the art.
  • the volume of the container will be equal to or substantially greater than that of the oil or of the biomass conditioned so as to limit the presence of air in the container and limit oxidation.
  • the container will advantageously be opaque in order to avoid deterioration of the product by light rays, in particular UV.
  • the container will be airtight so that any volume not occupied with oil or biomass can be filled with an inert gas.
  • the oil according to the invention can be mixed with other oils for their end use.
  • This dilution changes the overall content of DHA and other unsaturated fatty acids in the composition of the diluted oil.
  • the invention therefore also relates to a diluted oil, comprising the oil according to the invention mixed with another oil.
  • the oils used to dilute the oil rich in DHA according to the invention are generally and preferably vegetable oils suitable for human or animal food consumption. Mention will in particular be made of sunflower, rapeseed, soybean, walnut, sesame, hemp, hazelnut, argan, olive, flax, or any other oil suitable for food use.
  • the added oil can also be an oil comprising other PUFAs, in particular ARA and / or I ⁇ RA, in particular other oils of microbial origin or also fish oils.
  • the invention also relates to a composition which comprises an oil according to the invention, whether it is crude, refined or diluted, or which which comprises the biomass according to the invention.
  • a composition according to the invention can comprise one or more excipients.
  • An excipient is a component, or mixture of components, which is used in the present invention to impart desirable characteristics to the composition for its storage and use, including foods and pharmaceutical, cosmetic and industrial compositions.
  • An excipient can be described as a "pharmaceutically acceptable" excipient when it is added to a pharmaceutical composition whose properties are known from the pharmacopoeia to be used in contact with human and animal tissues without excessive toxicity, irritation, allergic reaction or other complications .
  • excipients can be used as an organic or mineral base, an organic or mineral acid, a pH buffer, a stabilizer, an antioxidant, an adhesion agent, a separation agent, a coating agent, an external phase component , a controlled release component, a surfactant, a humectant, a filler, an emollient, or combinations thereof.
  • compositions according to the invention are in particular pharmaceutical, cosmetic, nutraceutical or food compositions.
  • the food is intended for both humans and animals and includes solid, pasty or liquid compositions. Mention will in particular be made of common foods, liquid products, including milks, drinks, therapeutic drinks and nutritional drinks, functional foods, supplements, nutraceuticals, infant formulas, including premature infant formulas, foods for pregnant or lactating women, adult foods, geriatric foods and animal foods.
  • the oil rich in DHA according to the invention can be used directly as or added as an additive in an oil, a spread, another fatty ingredient, a drink, a soy-based or soy-based sauce, dairy products (milk, yogurt, cheese, ice cream), bakery products, nutritional products, for example in the form of a nutritional supplement (in the form of capsules or tablet), vitamin supplements, food supplements, powders for beverages, such as energy drinks or milk powders for infant formulations, finished or semi-finished powdered food products, etc. uses known to those skilled in the art.
  • Animal feed is also known to those skilled in the art. They are in especially intended for farm animals, such as cows, pigs, chickens, sheep, goats or in fish farming for crustaceans or farmed fish.
  • compositions comprising an oil rich in DHA are also known to those skilled in the art, the oil being used alone or in combination with other drugs.
  • the crude or refined oil according to the invention or the biomass which contains it can be formulated in the form of single-dose compositions, in particular in the form of tablets, capsules, capsules, powders, granules, suitable for administration. per os.
  • the advantage of the oil rich in DHA according to the invention, whether it is crude or refined, or the biomass which contains it, is that it can be used in lesser amounts in these mixtures and compositions.
  • the invention also relates to the use of an oil according to the invention, crude, refined or diluted or else the biomass which contains it, for human or animal food, in particular for feeding newborns, children , or pregnant or breastfeeding women.
  • Traustochytrid strains (Aurantiochytrium mangrovei - FCCB1897, FCCB1800, CCAP4062 / 8) are cultured in an Erlenmeyer flask in ATCC 790 culture medium (modified). Similar results are obtained with strains of Schizochytrium sp. ((in particular with the strain CCAP4087 / 7).
  • the biomass is recovered by centrifugation and then lyophilized before the analysis of the composition of the biomass in fatty acids by GC-FID (method adapted from standard ISO 12966-2).
  • composition of the modified ATCC 790 medium is composition of the modified ATCC 790 medium:
  • Table 1 represents the composition of fatty acids contained in the biomass. The results are expressed as a percentage relative to the total fatty acid content. AGS are saturated fatty acids. Table 1
  • the cultures are carried out in fermenters (bioreactors) of 1 to 5 L useful with dedicated automated systems and supervision by computer station. They are carried out using two strains of Aurantiochytrium mangrovei and with two different culture protocols.
  • the system is regulated at pH 5 via the addition of base (NH 4 OH for example b1 and b2 and with NaOH for example a) with adjustment of the pH carried out over the entire duration of the culture, and providing a supply of nitrogen ( in the context of examples b1 and b2).
  • the culture temperature was set at 30 ° C then 22 ° C and finally 18 ° C at the end of the culture.
  • the strain CCAP4062 / 7 is used for example a and b1 while the strain FCCB1897 is used for example b2.
  • composition of the culture media is given in Table 2.
  • the total biomass concentration is monitored by measuring the dry mass (filtration through a GF / F filter, Whatman, then drying in an oven, at 105 ° C, for at least 24 h before weighing).
  • the fatty acid analyzes are carried out according to a method adapted from ISO 12966-2 for biomass, and according to the European Pharmacopoeia 9.0 (2.4.29.) For oils.
  • the fatty acid profiles of the biomasses obtained with conditions a, b1 and b2 are given in Table 3. The results are expressed as a percentage relative to the total fatty acid content.
  • the strains with a high DHA content produce a biomass of similar fatty acid composition when they are cultivated in industrial-size fermenters, such as 10 m 3 or 180 m 3 tanks, under conditions similar to the example. 2, with culture medium b and additions of glucose in the form of an enrichment solution are made with a molar ratio of carbon: nitrogen: phosphorus (CNP) of 533: 0.4: 1.
  • industrial-size fermenters such as 10 m 3 or 180 m 3 tanks
  • the oil is extracted from the biomass of Example 3 (180 m 3 tank) according to a method described in WO2015 / 095694 (Example 9).
  • the fatty acid composition of the oil is similar to that of the biomass, given in Table 4.
  • the extraction of the biomass produced under the same conditions as in Example 3 is carried out by following the sequence (a) cell lysis by enzymatic route (eg with 2.5 L Alcalase or 2.4 L Alcalase or Novozym 37071 from Novozymes) for 4 hours at a temperature of 65 ° C,
  • the extraction yield is 60% of lipids extracted from the biomass.
  • the lipid profile of the oil extracted from the biomass is given in Table 6. The results are expressed as a percentage relative to the total fatty acid content. Table 6
  • Example 3 Several heterotrophic fermentations are carried out according to the conditions of Example 3.
  • the oil is extracted from the fermentation must according to the conditions of Example 5.
  • the carotenoids are measured in the extracted oil, by LC / DAD, according to the following methods: Astaxanthin (ester forms included), Reference method: DSM Ver. 1.52009; Beta-carotene (sum of cis- & trans-), saponified, Reference method: EN 12823-2: 2000; Canthaxanthin, Reference method: Roche Index No. 2264; Lutein & Zeaxanthin, Reference method: Roche Index n ° 2264.
  • Contaminants such as glycidol and 2- and 3-MCPDs are also dosed in the same batches.
  • the viscosity of the oil produced and extracted under conditions similar to Example 5 is measured by a viscometer (Viscoman, Gilson) at different temperatures.
  • the melting temperature is evaluated according to ISO 6321 standard.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Animal Husbandry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Fats And Perfumes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Edible Oils And Fats (AREA)

Abstract

La présente invention concerne une huile de microorganismes riche en acide docosahexénoïque (DHA, C22:6n3), comprenant plus de 60% de DHA par rapport à la masse totale de matière grasse et son utilisation pour l'alimentation humaine ou animale, en particulier pour l'alimentation des nouveaux nés, des enfants, ou des femmes enceintes ou allaitantes.

Description

HUILE DE MICROORGANISMES RICHES EN ACIDE DOCOSAHEXAÉNOÏQUE
DOMAINE DE L'INVENTION
La présente invention concerne une huile de microorganismes riche en acide docosahexénoïque (DHA, C22:6n3), comprenant plus de 60% de DHA par rapport à la masse totale de matière grasse et au moins 80% de triglycérides par rapport à la masse totale de matière grasse.
ETAT DE LA TECHNIQUE
Les huiles contenant du DHA proviennent de plusieurs sources, les plus connues sont le poisson, le krill et les microorganismes comme les microalgues. On connaît de nombreuses souches de microorganismes productrices de PUFA, notamment d’acide docosahexaénoïque (DHA), d’acide arachidonique (ARA) ou d’acide eicosapentaénoïque (EPA) également identifiés par les signes w3 et w6. Ces PUFA sont largement employés en industrie, notamment pour l’alimentation humaine ou animale ou en cosmétique, et leur production industrielle fait l’objet de constantes améliorations depuis de nombreuses années (WO 1997/037032, WO 2001/054510, WO 2013/136028, WO 2015/004402, US 2017/016036, US 2017/335356). Les critères de sélection de souches adaptées à la production industrielle sont leur productivité élevée en biomasse, une accumulation importante de triglycérides (TG) et une teneur élevée en PUFA dans la matière grasse. On connaît aujourd’hui de nombreuses souches industrielles qui répondent à ces trois premiers critères, avec une teneur en PUFA dans la matière grasse de l’ordre de 35 %, voire 50% dans le meilleur des cas.
Or, il existe une demande d’huiles concentrées à fortes teneurs en PUFA, soit pour la fourniture de produits concentrés, comme des gélules d’huile concentrée qui permettent de diminuer les prises pour une quantité équivalent de PUFA. Pour obtenir des huiles à forte teneur en PUFA (par exemple supérieur à 55% de DHA), les huiles peuvent être enrichies par l’ajout de PUFA (US 2014/323569) et/ou les huiles sont concentrées par un procédé qui transforme les triglycérides en ethyl esters en impliquant l’utilisation de solvant tel que l’éthanol. Les ethyl esters sont une forme chimique artificielle, ils ne sont pas présents dans la nature. La biodisponibilité des acides gras sous forme d’ethyl esters est bien moindre que sous forme de triglycérides (Ghasemifard et al., 2014). De plus, le procédé élimine les vitamines et les anti-oxydants qui sont présents dans l’huile brute. Par conséquent, l’huile concentrée est plus vulnérable à l’oxydation.
Il est possible de convertir ces ethyl esters à nouveau en triglycérides, ce sont des triglycérides « reformés », afin d’améliorer la biodisponibilité. Des anti-oxydants peuvent également être ajoutés pour accroître la stabilité de l’huile dans le temps. Cependant, cette huile concentrée est assez différente de l’huile naturelle, elle a subi de nombreux procédés de transformation qui ont changé sa composition : profil en acides gras, vitamines, pigments et autres molécules anti-oxydantes, privant les PUFAs de leur protection naturelle. Or les PUFAs sont des molécules sensibles, notamment à la température qui peut convertir les liaisons cis en liaison trans (Tsuzuki W, 2012). Il faut également noter que la re-formation des triglycérides n’est pas complète, l’huile ainsi traitée contient encore une proportion variable d’éthyl esters, ce qui la distingue de l’huile non traitée. L’éthanol libéré lors de la trans- estérification (conversion des ethyl esters en triglycérides) est généralement éliminé par évaporation. Il reste néanmoins des traces d’éthanol dans l’huile concentrée.
Une autre raison pour vouloir minimiser les procédés de traitement de l’huile est la formation de contaminants comme les monochloropropanediol (2-MCPDs, 3-MCPDs) et le glycidol ainsi que leurs dérivés (esters de 2-MCPDs, de 3-MCPDs et esters d’acides gras de glycidol). La présence de ces contaminants a été détectée notamment suite aux étapes de purification et de désodorisation de l’huile de poisson (Miyazaki and Koyama, 2017). Il y a peu de données disponibles pour l’instant concernant l’impact des procédés de concentration sur la formation des contaminants. Cependant, la re-formation des triglycérides à partir des ethyl esters peut engendrer une augmentation des diglycérides, composés précurseurs des contaminants. Le niveau de glycidol (et d’esters de glycidol) fait l’objet d’une régulation (EU) 2018/290/EC afin de limiter sa teneur dans les aliments : la concentration ne doit pas dépasser 1000 pg/kg dans les huiles alimentaires exceptés pour les huiles alimentaires destinées à la préparation d’aliments pour bébés et nourrissons où la limite est de 500 pg/kg. Dans les préparations pour bébés et nourrissons, la teneur maximale est encore plus basse : 75 pg/kg dans les poudres et 10 pg/kg dans les liquides. Cette teneur sera encore réduite (50 et 6 pg/kgrespectivement) en 2019. L’évaluation des concentrations maximales en MCPD est actuellement en cours pour les huiles et les aliments pour bébés. Pour l’instant, la réglementation ne concerne que les protéines végétales hydrolysées et la sauce soja (limite de 20 pg/kg).
Il est donc intéressant d’obtenir une huile naturellement riche en PUFAs, dont la composition est la plus proche possible des substances liposolubles du microorganisme producteur, avec un minimum de contaminants produits lors des traitements. Cela la rend particulièrement indiquée pour l’intégration de DHA dans les produits alimentaires. Sa très faible teneur en 3-MCPD et en glycidol, combinée avec sa haute teneur en DHA la rend idéale pour la préparation d’aliments destinés aux bébés et aux nourrissons.
De plus, ces huiles concentrées sont généralement obtenues par des procédés de traitements coûteux et non-respecteux de l’environnement.
Une autre solution connue consiste à générer des microorganismes génétiquement modifiés pour chercher à favoriser les voies métaboliques de production de PUFA (Hamilton & al., 2016) ou des murtants supposés produire plus de DHA (WO 2017/09804). Toutefois, le choix des solutions techniques est limité par l’usage fait des huiles obtenues, notamment en alimentation humaine (Fedorova-Dahms I. & al., 201 1 ).
Il existe un besoin d’huiles naturellement concentrées en PUFA, qui ne nécessitent pas d’autres traitements que des méthodes d’extraction, c’est à dire pour lesquels les PUFA sont essentiellement sous la forme de triglycérides tels que produits par les microorganismes. Plus particulièrement il existe un besoin d’huiles à forte teneur en PUFA et une plus faible teneur en acides gras saturés. Outre la question de la qualité des huiles, l’intérêt d’une faible teneur en acides gras saturés va vers une huile moins visqueuse, plus aisée à employer à des niveaux industriels, notamment nécessitant moins d’énergie pour sa manipulation.
L’invention répond à cette demande avec une huile à forte teneur en DHA, comprenant au moins 60% de DHA par rapport à la masse totale de matière grasse. Cette huile ne contient pas d’ethylesters, ni de traces de solvant (éthanol ou methanol) et une teneur réduite en 3- MCPD et en glycidol (par comparaison avec les huiles contenant plus de 60% de DHA actuellement sur le marché).
EXPOSE DE L'INVENTION
La présente invention concerne une huile microbienne qui comprend de l’acide docosahexénoïque (DHA), caractérisée en ce qu’elle comprend au moins 80% de triglycérides par rapport à la masse totale de matière grasse, plus de 60% de DHA par rapport à la masse totale de matière grasse et la teneur en acides gras saturés est inférieure à 25% par rapport à la masse totale de matière grasse.
Elle concerne également une huile microbienne diluée qui comprend une huile microbienne riche en triglycérides et en DHA selon l’invention, mélangée avec une autre huile.
Un autre objet de l’invention est une biomasse de microorganismes qui comprend une huile riche en triglycérides et en DHA selon l’invention.
L’invention concerne aussi l’utitilisation d’une huile riche en triglycéride et en DHA selon l’invention éventuellement diluée ou d’une biomasse qui contient cette huile pour l’alimentation humaine ou animale, en particulier pour l’alimentation des nouveaux nés, des enfants, ou des femmes enceintes ou allaitantes.
Un autre objet de l’invention est un aliment, caractérisé qui comprend une huile riche en triglycérides et en DHA selon l’invention, éventuellement diluée.
DESCRIPTION DETAILLEE DE L’INVENTION
L’huile selon l’invention est une huile microbienne qui comprend plus de 60% de DHA par rapport à la masse totale de matière grasse, avantageusement au moins 62% de DHA, plus avantageusement au moins 65% de DHA, de préférence plus de 67%, plus préférentiellement au moins 70%, encore plus préférentiellement 75% de DHA par rapport à la masse totale de matière grasse.
Ces caractéristiques de l’huile selon l’invention concernent tant l’huile telle que présente dans la biomasse de microorganismes que dans l’huile extraite de cette biomasse, qu’elle soit brute ou purifiée.
L’invention concerne aussi une huile diluée, comprenant l’huile selon l’invention mélangée avec une autre huile.
L’invention concerne aussi une composition pharmaceutique, cosmétique ou alimentaire qui comprend une huile selon l’invention, qu’elle soit brute, raffinée ou diluée.
L’invention concerne également l’utilisation d’une huile selon l’invention, brute, raffinée ou diluée, ou d’une biomasse contenant l’huile, pour l’alimentation humaine ou animale, en particulier pour l’alimentation des nouveaux nés, des enfants, ou des femmes enceintes ou allaitantes.
DESCRIPTION DETAILLEE DE L'INVENTION
L’huile selon l’invention est une huile d’origine microbienne, obtenue à partir d’une biomasse de cellules de microorganismes cultivés dans des conditions permettant à la fois la croissance cellulaire (pour produire la biomasse) et la production d’une huile à forte teneur en DHA.
L’huile selon l’invention est une huile microbienne qui comprend plus de 60% de DHA par rapport à la masse totale de matière grasse, avantageusement au moins 62% de DHA, plus avantageusement au moins 65% de DHA, de préférence plus de 67%, plus préférentiellement au moins 70%, encore plus préférentiellement au moins 75% de DHA par rapport à la masse totale de matière grasse.
De préférence l’huile selon l’invention a une teneur élevée en acides gras insaturés par rapport aux acides gras saturés. Les acides gras insaturés dans l’huile selon l’invention sont essentiellement du DHA et du DPA (acide docosapentanoïque, C22:5n6). La teneur en ARA (acide arachidonique, C20:4n6) est généralement inférieure à 0,5%, voire inférieure à 0,3%, avantageusement inférieure à 0,1 %. La teneur en EPA (acide eicosapentaénoïque, C20:5n3) est généralement inférieure à 1 ,5%, avantageusement inférieure à 1 %, plus avantageusement inférieure à 0,5%. Les pourcentages en ARA et EPA sont donnés par rapport à la masse totale de matière grasse.
De manière avantageuse, la teneur cumulée en DHA et en DPA est d’au moins 70% par rapport à la masse totale de matière grasse, avantageusement d’au moins 75%, plus avantageusement d’au moins 80%, voire plus de 85% par rapport à la masse totale de matière grasse. Dans certains cas, le total DHA+DPA représente jusqu’à 90% de la masse totale de matière grasse. Pour les huiles où la teneur en DHA est la plus forte, d’au moins 70%, la teneur cumulée en DHA et en DPA est d’au moins 80%, préférentiellement d’au moins 85%.
Pour une huile riche en DHA selon l’invention, le rapport DHA/DPA est de préférence d’au moins 3, plus préférentiellement d’au moins 4, pouvant aller de 4 à 9. Pour les huiles où la teneur en DHA est la plus forte, d’au moins 70%, le rapport DHA/DPA est avantageusement de 4 à 7. La teneur en acides gras saturés est inférieure à 25% par rapport à la masse totale de matière grasse, voire inférieure à 20%, plus préférentiellement inférieure à 15%, encore plus préférentiellement inférieure à 10%.
Les acides gras saturés sont essentiellement de l’acide palmitique (C16 :0). Les autres acides gras saturés sont présents à une teneur inférieure à 2%, voire inférieure à 1 %, notamment l’acide pendadécylique (C15:0) ou l’acide myristique (C14:0) ou encore l’acide stéarique (C18:0). Avantageusement, les acides gras saturés en C10 à C22autres que l’acide palmitique sont, indépendamment les uns des autres, présents à l’état de traces, chacun en teneur inférieure à 0,1 %, voire absents (0% tenant compte des incertitudes des méthodes d’analyse), en particulier pour les acides gras saturés en C10, C1 1 , C12, C17, C20, C21 et C22. Les pourcentages sont donnés par rapport à la masse totale de matière grasse.
La teneur en acide palmitique est de préférence inférieure à 20% de la masse totale de matière grasse, plus préférentiellement inférieure à 15%, encore plus préférentiellement inférieure à 10%.
Pour les huiles où la teneur en DHA est la plus forte, d’au moins 70%, la teneur en acides gras saturés en C10 à C22 est de préférence inférieure à 15%, plus préférentiellement inférieure à 10%.
Une manière de mesurer la forte teneur en DHA de l’huile selon l’invention et la faible teneur en acides gras saturés (AGS) consiste à établir un rapport DHA/AGS.
Il est avantageusement d’au moins 2,5, préférentiellement d’au moins 3, plus préférentiellement d’au moins 5, encore plus préférentiellement d’au moins 6. Il peut aller jusqu’à au moins 8 dans certains cas, voire d’au moins 9. Pour les huiles où la teneur en DHA est la plus forte, d’au moins 70%, le rapport DHA/AGS est d’au moins 4, préférentiellement d’au moins 6, plus préférentiellement d’au moins 8, jusqu’à environ 9.
On peut aussi mesurer la forte teneur en acides gras polyinsaturés par rapport aux acides gras saturés (AGS) en faisant le rapport (DHA+DPA)/AGS.
Il est avantageusement d’au moins 2,5, préférentiellement d’au moins 3, plus préférentiellement d’au moins 4, encore plus préférentiellement d’au moins 5. Il peut aller jusqu’à au moins 8 dans certains cas, voire d’au moins 9. Pour les huiles où la teneur en DHA est la plus forte, d’au moins 70%, le rapport (DHA+DPA)/AGS est d’au moins 5, préférentiellement d’au moins 7, plus préférentiellement d’au moins 10, jusqu’à environ 1 1 ou plus.
Les huiles selon l’invention sont essentiellement sous la forme de triglycérides. Les triglycérides représentent au moins 80% de la masse totale de matière grasse, de manière avantageuse au moins 90%, de manière plus avantageuse au moins 93% de la masse totale de matière grasse. La teneur en triglycérides est par exemple analysée par chromatographie sur couche mince (Jouet et al., 2003). Ces caractéristiques de l’huile selon l’invention concernent tant l’huile telle que présente dans la biomasse de microorganismes que dans l’huile extraite de cette biomasse, qu’elle soit brute ou purifiée.
Dans certains cas, selon le procédé employé, l’extraction de l’huile à partir de la biomasse peut conduire à une légère augmentation de la teneur en DHA et en DPA, favorisant l’extraction de ces PUFA par rapport é aux acides gras saturés de plus bas poids moléculaire. Toutefois, cette concentration ne modifie pas de manière substantielle les propriétés intrinsèques de l’huile contenue dans la biomasse, notamment la teneur en triglycérides. Dans tous les cas, l’huile selon l’invention est une huile qui n’a pas subi de modifications substantielles de sa teneur en acides gras par l’ajout de PUFA, par exemple sous forme d’esters, par concentration et/ou par l’élimination d’acides gras saturés comme l’acide palmitique.
L’huile selon un mode particulier de l’invention contient plus 10 mg de caroténoïdes natifs par kg d’huile, voire plus de 30 mg/kg, préférentiellement plus de 40 mg/Kg, encore plus préférentiellement plus de 60 mg/kg, voire au moins 65 mg/kg. Les caroténoïdes présents sont majoritairement de l’astaxanthine et des bêta-carotènes. L’huile contient plus de 20 mg/kg d’astaxanthine, voire plus de 30 mg/kg, plus préférentiellement plus de 40 mg/kg. La canthaxanthine est également présente mais en quantité moindre. D’autre caroténoïdes comme la lutéine et la zéaxanthine peuvent être présents mais ils sont à la limite de détection de la méthode utilisée. Le terme « caroténoïdes natifs » signifie que les caroténoïdes n’ont pas été ajouté, ils proviennent de la même biomasse que l’huile et sont extraits de cette biomasse en même temps que l’huile. Ils sont produits par la souche dans des conditions de fermentation en hétérotrophie, sans stimulus particulier. Ces caroténoïdes natifs sont donc présents tout au long du procédé, protégeant les acides gras, en particulier le DHA, contre l’oxydation. Le procédé de raffinage peut éliminer les pigments, donc l’huile raffinée pourra contenir moins, voire plus du tout, de caroténoïdes.
La couleur de l’huile est habituellement évaluée par la mesure de l’indice de Gardner, selon la méthode décrite dans la norme AOCS Ce 13j-97 (révisée en 2017) avec un spectrophotomètre. L’échelle de mesure comprend 18 grades, allant du transparent (1 ) au rouge foncé/marron (18). Certains caroténoïdes, dont l’astaxanthine et les bêta-carotènes, présentent une coloration, plus au moins intense suivant leur concentration. Leur présence se traduit donc par un indice de Gardner plus haut. L’huile selon un mode particulier de l’invention présente un indice de Gardner supérieur à 8, voire supérieur à 10, de préférence entre 12 et 17.
L’échelle de Gardner est traditionnellement utilisée pour évaluer le vieillissement des huiles car l’oxydation des huiles riches en acides gras polyinsaturés (PUFAs) peut se traduire par un jaunissement de la couleur (pour une huile transparente), donc une valeur de Gardner plus haute. Cependant, l’oxydation des huiles riche en PUFAs est plus précisément mesurée par l’indice d’anisidine et l’indice de peroxydation. Les huiles selon l’invention possèdent à la fois des indices d’anisidine et de peroxide bas, gages d’un produit peu oxydé, et un indice de Gardner haut, due à la présence de caroténoïdes. Les huiles selon l’invention possèdent un indice d’anisidine inférieur à 5, voir inférieur à 2, de préférence inférieur à 1 ,5 et un indice de peroxydation inférieur à 5, voir inférieur ou égal à 1 , de préférence inférieur ou égal à 0,5.
Les huiles selon l’invention possèdent une température de fusion assez basse, qui baisse en corrélation avec l’augmentation du taux du DHA. La température de fusion est mesurée selon la norme ISO 6321. En effet, les huiles, à plus de 600 mg de DHA /g d’acides gras (soit environ plus de 62% de DHA) ont une température de fusion inférieure à 20°C, voir inférieure ou égale à 5°C. Elles sont donc liquides à température ambiante. Les huiles à plus de 700 mg de DHA par g d’acides gras (soit environ plus de 73% de DHA) ont une température de fusion inférieure à -5°C. Une température de fusion basse facilite le stockage et la manipulation (le pompage en particulier), puisqu’il est possible de conserver l’huile sous forme liquide tout en la réfrigérant afin de limiter le vieillissement. Les huiles qui figent lors de la conservation doivent être réchauffées pour les prélèvements et pour leur intégration dans des mélanges. Or la température est un facteur accélérateur de l’oxydation.
Cette propriété se traduit également par la valeur de viscosité, mesurée par un viscosimètre à 22°C (Viscoman, Gilson). Les huiles selon l’invention ont une valeur de viscosité à température ambiante inférieure ou égale à 50 Pa.s, voire inférieure à 40, de préférence inférieure à 30.
Les huiles selon l’invention sont obtenues par culture de microorganismes producteurs d’huiles riches en DHA. Les souches de microorganismes qui permettent d’obtenir de telles huiles sont des souches industrielles, c’est à dire selon l’invention, des souches dont la teneur en matière grasse représente au moins 45 % de la matière sèche, préférentiellement au moins environ 50 % de la matière sèche, et qui ont une capacité de croissance à une densité cellulaire d’au moins 50 g/L, préférentiellement d’au moins 70 g/L, plus préférentiellement d’au moins 100 g/L.
L’homme du métier connaît bien les souches industrielles de microorganismes productrices de PUFA principalement parmi les traustochytrides, les dinophycées, les diatomées, les eustigmatophycées, notamment les microorganismes des genres Crypthecodinium, Schizochytrium, Traustochytrium ou Aurantiochytrium pour la production de DHA.
L’analyse de la teneur en PUFA dans la matière grasse se fait selon les méthodes usuelles de l’homme du métier, notamment décrites dans l’article suivant : Gas Chromatographie Quantification of Fatty Acid Methyl Esters: Flame lonization Détection vs. Electron Impact Mass Spectrometry, Dodds et al., Lipids, Vol. 40, no. 4 (2005). On citera plus particulièrement les souches Aurantiochytrium mangrovei CCAP4062/7 et CCAP4062/8 et Schizochytrium sp. CCAP4087/7 qui produisent des huiles comprenant plus de 60% de DHA par rapport à la masse totale de matière grasse. L’invention concerne également ces souches capables de produire des huiles comprenant plus de 60% de DHA.
Les procédés de culture industrielle de microorganismes pour la production d’un moût de fermentation qui servira ensuite à la production d’huile sont bien connus de l’homme du métier, qu’ils soient en mode autotrophe, hétérotrophe ou mixotrophe. La culture industrielle en hétérotrophie ou mixotrophie permet d’obtenir des densités cellulaires d’au moins 50 g/L, préférentiellement d’au moins 70 g/L, plus préférentiellement d’au moins 100 g/L.
Par « culture industrielle » on entend selon l’invention une culture des souches dans un milieu de culture approprié à leur croissance et à la production de PUFA et dans un volume approprié pour la production des quantités suffisantes pour adresser un marché.
Ces cultures industrielles sont réalisées par fermentation en mode discontinu dit "batch", en mode semi-continu dit "fed batch" ou en mode continu. Les fermenteurs ont des volumes qui peuvent aller de 1000 L à plus de 200 m3.
Le milieu de culture approprié est de préférence un milieu de culture chimiquement défini qui comprend une source de carbone, une source d’azote, une source de phosphore et des sels. Par "milieu de culture chimiquement défini ", on entend un milieu de culture dans lequel la teneur de chaque élément est connue. Avantageusement, le milieu ne comporte pas de matières organiques riches ou complexes. Par matières organiques riches ou complexes on entend des matières organiques non purifiées, se présentant sous la forme de mélanges pour lesquels la composition exacte et les concentrations des divers composants du mélange ne sont pas connues avec exactitude, pas maîtrisées, et peuvent présenter une variabilité significative d’un lot à un autre. Comme exemple de matière organique riche ou complexe, on peut citer les extraits de levure ou les peptones qui sont des produits d'une réaction d'hydrolyse de protéines ou encore les matières minérales riches comme par exemple les sels minéraux marins ou autres agents de croissance complexes, n’ayant pas de concentration fixe de chacun de leurs composants.
Généralement, les procédés de culture industrielle comprennent une étape de croissance pour favoriser la production de biomasse, puis une étape d’accumulation pour favoriser la production de matière grasse et de PUFA en particulier. C’est le cas notamment pour le procédé décrit dans la demande de brevet WO 2001/054510. Plus récemment, des procédés ont été décrits mettant en oeuvre des conditions de cultures qui favorisent de manière concomitante la production de biomasse et celle des PUFA. On citera en particulier les méthodes de culture décrites dans les demandes WO 2012/035262, WO 2015/004402 et WO 2015/004403. Bien entendu, l’homme du métier pourra adapter les conditions de culture, notamment la composition du milieu, les conditions d’ajout de nutriments au cours de la culture, les cycles de température, d’oxygénation et les conditions d’éclairage pour favoriser la production de biomasse.
Les températures de culture industrielle sont avantageusement supérieures à 17 °C.
On entend avantageusement par "biomasse" selon l’invention un ensemble de cellules de microorganismes produits par leur culture, en particulier par les méthodes décrites ci- dessus, cellules qui peuvent avoir conservé ou non leur intégrité physique. On comprend donc que ladite biomasse peut comprendre une quantité de cellules de microorganismes dégradées allant de 0% à 100%. Par "dégradée" on entend que l’intégrité physique desdites cellules de microorganismes a pu être altérée comme par exemple des microorganismes lysés, résultant par exemple d’un procédé d’homogénéisation ou lyse enzymatique. Une fois produite, cette biomasse pourra être brute, juste séparée de son milieu de culture, séchée ou non, dégradée ou non.
La biomasse, selon qu’elle soit séchée ou non, totalement ou en partie, peut comprendre un taux d’humidité de 1 % à 90%.
L’invention concerne donc aussi une biomasse de microorganismes comprenant une huile telle que définie précédemment.
Selon un premier mode de réalisation, la biomasse a un taux d’humidité de 70% à 90 %, préférentiellement 80% à 85 %. C’est en particulier le cas lorsqu’elle est essentiellement constituée des microorganismes industriels optimisés cultivés après filtration du moût de fermentation pour séparer les microorganismes cultivés du milieu de culture, avant séchage.
Selon un autre mode de réalisation de l’invention, la biomasse est séchée, totalement ou en partie et présente un taux d’humidité de 1 % à 10%, préférentiellement de 2% à 7%.
La biomasse pourra être conditionnée pour son stockage ou pour son utilisation en tant que telle, par exemple comme complément alimentaire ou aliment pour l’alimentation humaine ou animale.
Les méthodes permettant d’isoler une huile selon l’invention à partir d’une biomasse produite par la culture de microorganismes sont bien connues de l’homme du métier. On citera en particulier l’extraction solide-liquide qui repose sur l’utilisation d’un solvant (phase liquide) pour extraire l’huile contenue dans la biomasse séchée (phase solide) par aspersion ou macération ; l’extraction liquide-liquide qui repose sur la séparation de la phase aqueuse de l’huile après la lyse préalable des cellules puis décantation ou centrifugation. De préférence l’extraction est faite sans solvants organiques. On citera en particulier les demandes WO 01/53512, WO 02/10423, WO 2014/122092, WO 2015/092546 et WO 2015/095694.
On citera aussi une méthode préférée qui permet d’améliorer les rendements d’extraction de matières grasses de microorganismes pour des huiles riches en PUFA. Cette méthode consiste à effectuer une lyse cellulaire à une première température, cette dernière étant poursuivie à une deuxième température inférieure à la première, puis une séparation mécanique de l’huile de la biomasse lysée (filtration, décantation).
La lyse cellulaire est faite par lyse enzymatique ou mécanique (broyage). La température de la première partie de lyse est de préférence d’au moins 50°C tout en restant inférieure à des températures qui viendraient dégrader la composition des huiles en plus de favoriser la lyse cellulaire, c’est à dire des températures inférieures à 80°C, de préférence d’au plus 70 °C.
On connaît les enzymes susceptibles d’être employées, notamment décrites dans WO2015/095688, WO201 1/153246, US6750048 et WO2015/095694, en particulier des protéases ou des cellulases telles que les enzymes commercialisées par la société Novozyme sous les appellations Alcalase 2,5 L, Alcalase 2,4 L, Novozym 37071 , Flavourzyme 1000 L, Novozym FM 2,4 L, Protamex, Viscozyme. Les conditions de mise en oeuvre sont celles préconisées par le fournisseur, la température étant celle préconisée pour une activité optimale des enzymes, d’au moins 50°C et jusqu’à 70 °C, de préférence d’environ 65°C. Avantageusement la lyse enzymatique est mise en oeuvre sous une atmosphère pauvre en oxygène.
Les méthodes de lyse mécaniques sont également bien connues, notamment par broyeur à billes, mélangeur-disperseur, homogénéisateur haute pression broyeur à broches ou broyeur à impact, ultra-sons, champs électrique pulsés. On citera notamment pour le broyeur à billes : Netzsch / Discus-1000 ; WAB / ECM-AP60 ; pour l’homogénéisateur haute pression : GEA / Ariete ; pour le mélangeur-disperseur : Silverson / 700-X, pour le broyeur à broche : Hosakawa / Contraplex ; pour le broyeur à impact : Netzsch / Condux.
La première partie de la lyse est mise en oeuvre dans les conditions usuelles préconisées de l’état de la technique pour une lyse cellulaire, notamment en termes de durée de la lyse enzymatique ou les cycles de broyages.
L’étape de poursuite de la lyse permet de compléter cette dernière en modifiant les conditions de mise en oeuvre sans avoir à extraire la biomasse lysée au préalable. La température de lyse dans cette deuxième partie est inférieure d’au moins 10°C à celle de la première partie. De préférence, la température de la seconde partie de lyse est inférieure ou égale à 40°C, avantageusement allant de 5°C à 40°C. Cette deuxième partie de lyse à température inférieure, ou fin de lyse, est avantageusement mise en oeuvre pendant au moins 30’, pouvant aller jusqu’à 30 h.
La séparation mécanique d’une huile à partir d’une biomasse lysée est également bien connue de l’homme du métier, comme une séparation gravitaire, notamment par centrifugation comme décrite dans la demande de brevet WO 01/53512. On peut aussi employer une séparation continue, en particulier par séparateur centrifuge à assiettes. De tels séparateurs sont connus pour extraire en continu des huiles de milieux complexes comprenant des résidus solides et de l’eau, tels que décrits dans la demande de brevet WO 2010/096002, notamment commercialisés par les sociétés Alfa Laval, Flottweg ou SPX Flow Technology Santorso, notamment. Cette étape de séparation continue est préférée dans le procédé employé pour obtenir l’huile selon l’invention.
L’huile obtenue est généralement une huile appelée huile brute, qui peut être employée telle quelle ou faire l’objet d’un raffinage, notamment pour faciliter sa conservation, en évitant qu’elle ne rancisse, ou pour modifier sa couleur de manière à la rendre plus acceptable pour un consommateur. Ces étapes de raffinage sont bien connues de l’homme du métier, notamment de dégommage, clarification et de désodorisation. Elles permettent d’éliminer (tout ou bien en partie) les phospholipides, les pigments, les volatiles et les acides gras libres. De fait, ces méthodes ne viennent pas modifier substantiellement la teneur relative en acides gras, saturés ou insaturés, ni la teneur en triglycérides de l’huile raffinée obtenue par rapport à l’huile brute.
L’invention concerne aussi une huile conditionnée comprenant un récipient de volume approprié pour contenir ladite huile, l’huile étant une huile riche en DHA telle que définie précédemment, brute ou raffinée, et conditionnée en une quantité d’huile supérieure à 1 L, avantageusement en une quantité d’huile supérieure à 10 L, plus particulièrement en une quantité d’huile de l’ordre de 220 L, et plus particulièrement en une quantité d’huile de l’ordre de 20m3.
Tout récipient capable de contenir le volume d’huile ou de biomasse et les protéger pour leur conservation et leur transport pourra être employé par l’homme du métier. De manière avantageuse, le volume du récipient sera égal ou sensiblement supérieur à celui de l’huile ou de la biomasse conditionnée de manière à limiter la présence d’air dans le récipient et limiter l’oxydation. Le récipient sera avantageusement opaque afin d’éviter l’altération du produit par les rayons lumineux, en particulier les UV. De manière avantageuse, le récipient sera étanche à l'air de telle manière que tout volume non occupé avec de l'huile ou de la biomasse puisse être rempli d'un gaz inerte.
L’huile selon l’invention peut être mélangée à d’autres huiles pour leur utilisation finale. Cette dilution vient modifier la teneur globale en DHA et autres acides gras insaturés dans la composition de l’huile diluée. Il reste toutefois possible d’identifier dans l’huile finale, au vu du profil en acide gras de l’huile employée pour la dilution, les pourcentages relatifs en acides gras qui proviennent de l’huile riche en DHA selon l’invention et de l’huile de dilution.
L’invention concerne donc aussi une huile diluée, comprenant l’huile selon l’invention mélangée avec une autre huile. Les huiles employées pour diluer l’huile riche en DHA selon l’invention sont généralement et de préférence des huiles végétales adaptées à une consommation alimentaire humaine ou animale. On citera en particulier les huiles de tournesol, de colza, de soja, de noix, de sésame, de chanvre, de noisette, d’argan, d’olive, de lin, ou de toute autre huile adaptée à un usage alimentaire. L’huile ajoutée peut aussi être une huile comprenant d’autres PUFA, en particulier de l’ARA et/ou de IΈRA, en particulier d’autres huiles d’origine microbienne ou encore des huiles de poisson.
L’invention concerne aussi une composition qui comprend une huile selon l’invention, qu’elle soit brute, raffinée ou diluée, ou encore qui comprend la biomasse selon l’invention.
Une composition selon l'invention peut comprendre un ou plusieurs excipients. Un excipient est un composant, ou mélange de composants, qui est utilisé dans la présente invention pour donner des caractéristiques souhaitables à la composition pour sa conservation et son usage, y compris des aliments et des compositions pharmaceutiques, cosmétiques et industrielles. Un excipient peut être décrit comme un excipient "pharmaceutiquement acceptable" lorsqu'il est ajouté à une composition pharmaceutique dont les propriétés sont connues de la pharmacopée pour être employés au contact des tissus humains et animaux sans toxicité excessive, irritation, réaction allergique ou autres complications. Différents excipients peuvent être utilisés comme une base organique ou minérale, un acide organique ou minéral, un tampon de pH, un stabilisant, un antioxydant, un agent d'adhésion, un agent de séparation, un agent de revêtement, un composant de phase extérieure, un composant à libération contrôlée, un agent tensioactif, un humectant, une charge, un émollient ou des combinaisons de ceux-ci.
Selon leur destination, les compositions selon l’invention sont en particulier des compositions pharmaceutiques, cosmétiques, nutraceutiques ou des aliments.
Les aliments sont destinés tant aux humains qu’aux animaux et comprennent des compositions solides, pâteuses ou liquides. On citera en particulier les aliments courants, les produits liquides, y compris laits, boissons, boissons thérapeutiques et boissons nutritionnelles, les aliments fonctionnels, les suppléments, les nutraceutiques, les préparations pour nourrissons, y compris les préparations pour nourrissons prématurés, les aliments pour femmes enceintes ou allaitantes, les aliments pour adultes, les aliments gériatriques et aliments pour animaux.
L’huile riche en DHA selon l’invention, qu’elle soit brute ou raffinée ou la biomasse qui la contient peut être utilisée directement comme ou ajouté en tant qu'additif dans une huile, une pâte à tartiner, un autre ingrédient gras, une boisson, une sauce à base de soya ou à base de soja, des produits laitiers (lait, yaourt, fromage, crème glacée), des produits de boulangerie, des produits nutritionnels, par exemple sous forme de complément nutritionnel (sous forme de gélule ou de comprimé), des suppléments vitaminiques, des compléments alimentaires, des poudres à diluer pour boissons, comme des boissons énergétiques ou des poudres de laits pour des formulations infantiles, des produits alimentaires en poudre fini ou semi-fini, etc., selon les usages connus de l’homme du métier.
Les aliments pour animaux sont également connus de l’homme du métier. Ils sont en particulier destinés aux animaux d’élevage, comme les vaches, cochons, poulets, moutons, chèvres ou dans la pisciculture pour les crustacés ou les poissons d’élevage.
Les compositions pharmaceutiques comprenant une huile riche en DHA sont également connues de l’homme du métier, l’huile étant employée seule ou en combinaison avec d’autres médicaments.
L’huile selon l’invention, brute ou raffinée ou la biomasse qui la contient, peut être formulée sous la forme de compositions unidoses, notamment sous forme de comprimés, de gélules, de capsules, de poudres, de granulés, adaptés à une administration per os.
L’avantage de l’huile riche en DHA selon l’invention, qu’elle soit brute ou raffinée, ou de la biomasse qui la contient, est qu’elle peut être employée en moindres quantités dans ces mélanges et compositions.
L’invention concerne également l’utilisation d’une huile selon l’invention, brute, raffinée ou diluée ou encore la biomasse qui la contient, pour l’alimentation humaine ou animale, en particulier pour l’alimentation des nouveaux nés, des enfants, ou des femmes enceintes ou allaitantes.
De tels usages sont bien connus de l’homme du métier, notamment décrits dans la demande de brevet WO 2010/107415 et sur le site Web de la société DSM (https://www.dsm.com/markets/foodandbeverages/en_US/products/nutritional-lipids/life- dha.html)
EXEMPLES
EXEMPLE 1 : Profil de Acides Gras de la biomasse de traustochytrides à haute teneur en DHA
Les souches de traustochytrides ( Aurantiochytrium mangrovei - FCCB1897, FCCB1800, CCAP4062/8) sont cultivées en Erlenmeyer dans le milieu de culture ATCC 790 (modifié). Des résultats similaires sont obtenus avec des souches de Schizochytrium sp. ((notamment avec la souche CCAP4087/7).
Une fois les cultures en phase stationnaire, la biomasse est récupérée par centrifugation puis lyophilisée avant l’analyse de la composition de la biomasse en acides gras par GC-FID (méthode adaptée de la norme ISO 12966-2).
Composition du milieu ATCC 790 modifié :
Extrait de Levures 5.0 g/L
Peptone 5.0 g/L
D+-Glucose 30.0 g/L
Sels marins 20 g/L
Le Tableau 1 représente la composition en acides gras contenus dans la biomasse. Les résultats sont exprimés en pourcentage par rapport à la teneur en acides gras totale. Les AGS sont les acides gras saturés. Tableau 1
Figure imgf000015_0001
EXEMPLE 2 : Cultures en fermenteur de souches à haute teneur en DHA
Les cultures sont réalisées dans des fermenteurs (bioréacteurs) de 1 à 5 L utiles avec automates dédiés et supervision par station informatique. Elles sont effectuées à partir de deux souches d’Aurantiochytrium mangrovei et avec deux protocoles de cultures différents. Le système est régulé à pH 5 via l’ajout de base (NH4OH pour exemple b1 et b2 et avec NaOH pour exemple a) avec ajustement du pH réalisé sur toute la durée de la culture, et fournissant une alimentation d'azote (dans le cadre des exemples b1 et b2). La température de culture a été fixée à 30°C puis 22°C et enfin 18°C sur la fin de la culture. La souche CCAP4062/7 est utilisée pour l’exemple a et b1 tandis que la souche FCCB1897 est utilisée pour l’exemple b2.
La composition des milieux de culture est donnée dans le Tableau 2.
Tableau 2
Figure imgf000016_0001
Des ajouts de glucose sous forme d’une solution d’enrichissement sont faits avec un ratio molaire de carbone : azote : phosphore (CNP) de 533 : 11 : 1 (exemple a) soit avec une solution composée uniquement de glucose (exemples b1 et b2).
Suivi des cultures :
La concentration en biomasse totale est suivie par mesure de la masse sèche (filtration sur filtre GF/F, Whatman, puis séchage en étuve, à 105°C, pendant 24 h minimum avant pesée). Les analyses des acides gras sont réalisées selon une méthode adaptée de ISO 12966-2 pour la biomasse, et suivant la Pharmacopée Européenne 9.0 (2.4.29.) pour les huiles.
Les profils en acides gras des biomasses obtenues avec les conditions a, b1 et b2 sont donnés dans le Tableau 3. Les résultats sont exprimés en pourcentage par rapport à la teneur en acides gras totale.
Tableau 3
Figure imgf000016_0002
Figure imgf000017_0001
EXEMPLE 3 : Culture en conditions industrielles
Les souches à haute teneur en DHA produisent une biomasse de composition similaire en acides gras lorsque qu’elles sont cultivées en fermenteurs de taille industrielle, comme des cuves de 10 m3 ou bien de 180 m3, selon des conditions similaires à l’exemple 2, avec le milieu de culture b et des ajouts de glucose sous forme d’une solution d’enrichissement sont faits avec un ratio molaire de carbone : azote : phosphore (CNP) de 533 : 0,4 : 1 .
Les profils en acides gras de la biomasse de la souche CCAP4062/7 après une culture dans des cuves de 10 m3 et de 180m3 sont donnés dans le Tableau 4. Les résultats sont exprimés en pourcentage par rapport à la teneur en acides gras totale.
Tableau 4
Figure imgf000017_0002
Figure imgf000018_0001
EXEMPLE 4 : extraction de l’huile à partir de la biomasse des souches à haute teneur en DHA
L’huile est extraite à partir de la biomasse de l’exemple 3 (cuve de 180 m3) selon une méthode décrite dans WO2015/095694 (exemple 9). La composition en acide gras de l’huile est semblable à celle de la biomasse, donnée dans le Tableau 4.
EXEMPLE 5 : extraction de l’huile à partir de la biomasse des souches à haute teneur en DHA
L’extraction de la biomasse produite dans les mêmes conditions que l’exemple 3 est réalisée en suivant la séquence (a) lyse cellulaire par voie enzymatique (ex : avec l’Alcalase 2,5 L ou Alcalase 2,4 L ou Novozym 37071 de Novozymes) pendant 4h à une température de 65°C,
(b) poursuite de la lyse en abaissant la température comprise entre 5 et 40°C, pendant une durée comprise entre 30 minutes et 30h,
(c) séparation mécanique de l’huile par séparateur centrifuge à assiettes.
Le rendement d’extraction est de 60% de lipides extraits de la biomasse.
Le profil lipidique de l’huile extraite à partir de la biomasse est donné dans le Tableau 6. Les résultats sont exprimés en pourcentage par rapport à la teneur en acides gras totale. Tableau 6
Figure imgf000019_0001
EXEMPLE 6 : qualité de l’huile : anti-oxydants et contaminants
Plusieurs fermentations en hétérotrophie sont réalisées suivant les conditions de l’exemple 3. L’huile est extraite à partir du moût de fermentation suivant les conditions de l’exemple 5. Les caroténoïdes sont mesurés dans l’huile extraite, par LC/DAD, selon les méthodes suivantes : Astaxanthine (formes esters incluses), Méthode de référence : DSM Ver. 1.52009 ; Bêta-carotène (somme de cis- & trans-), saponifié, Méthode de référence : EN 12823-2:2000 ; Canthaxanthine, Méthode de référence: Roche Index n° 2264 ; Lutéine & Zéaxanthine, Méthode de référence: Roche Index n° 2264.
Tableau 7
Figure imgf000020_0001
Les contaminants comme le glycidol et les 2- et 3-MCPDs sont également dosés dans les mêmes lots.
Tableau 8
Figure imgf000020_0002
EXEMPLE 7 : viscosité
La viscosité de l’huile produite et extraite dans des conditions similaires à l’exemple 5 est mesurée par un viscosimètre (Viscoman, Gilson) à différentes températures. La température de fusion est évaluée selon la norme ISO 6321.
Tableau 9
Figure imgf000021_0001
REFERENCES
- EP 0 223 960 ; EP 1 001 034
- US 2014/323569, US 2017/016036, US 2017/335356
- WO 1994/008467 ; WO 1997/037032 ; WO 2001/054510 ; WO 03/049832 ; WO
2010/107415 ; WO 2012/035262 ; WO 2013/136025 ; WO 2013/136028 ; WO
2014/146098 ; WO 2015/004402 ; WO 2015/004403 ; WO 2015/150716 ; WO
2016/030631 , WO 2017/094804
Fedorova-Dahms I. & al., Safety évaluation of DHA-rich algal oil from Schizochytrium sp, Food and Chemical Toxicology, 2011 , 49, 3310-3318
Folch J, et al., A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May; 226(1 ):497-509
- Hamilton M. & al., Heterotrophic Production of Omega-3 Long-Chain Polyunsaturated Fatty Acids by Trophically Converted Marine Diatom Phaeodactylum tricornum, Marine Drugs, 2016, 14, 53
- Omega-3 long chain fatty acid "bioavailability": a review of evidence and methodological considérations.
- Ghasemifard S, Turchini GM, Sinclair AJ. Prog Lipid Res. 2014 Oct;56:92-108. doi: 10.1016/j. plipres.2014.09.001. Epub 2014 Sep 16. Review.
Wakako TSUZUKI, Study of the Formation of trans Fatty Acids in Model Oils (triacylglycerols) and Edible Oils during the Heating Process , JARQ 46 (3), 215 - 220 (2012)
Kinuko Miyazaki* and Kazuo Koyama, An Improved Enzymatic Indirect Method for Simultaneous Déterminations of 3-MCPD Esters and Glycidyl Esters in Fish Oils , J. Oleo Sci. 66, (10) 1085-1093 (2017)
Jouhet J., Maréchal E., Bligny R., Joyard J., Block M. A. (2003). Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett. 544 63-68. PCT
(original sous forme électronique)
(Cette feuille ne fait pas partie de la demande internationale ni ne compte comme une feuille de celle-ci)
Figure imgf000022_0001
Figure imgf000022_0002
PCT
(original sous forme électronique)
(Cette feuille ne fait pas partie de la demande internationale ni ne compte comme une feuille de celle-ci)
Figure imgf000023_0001
RÉSERVÉ À L'OFFICE RÉCEPTEUR
Figure imgf000023_0002
RÉSERVÉ AU BUREAU INTERNATIONAL
Figure imgf000023_0003

Claims

REVENDICATIONS
1 . Huile microbienne qui comprend de l’acide docosahexénoïque (DHA), caractérisée en ce qu’elle comprend au moins 80% de triglycérides par rapport à la masse totale de matière grasse, plus de 60% de DHA par rapport à la masse totale de matière grasse et la teneur en acides gras saturés est inférieure à 25% par rapport à la masse totale de matière grasse.
2. Huile microbienne selon la revendication 1 , caractérisée en ce qu’elle comprend au moins au moins 65% de DHA.
3. Huile microbienne selon l’une des revendications 1 ou 2, caractérisée en ce qu’elle comprend de l’acide docosapentanoïque (DPA) et en ce que la teneur cumulée en DHA et en DPA est d’au moins 70% par rapport à la masse totale de matière grasse.
4. Huile microbienne selon la revendication 1 , caractérisée en ce qu’elle comprend au moins 70% de DHA.
5. Huile microbienne selon la revendication 4, caractérisée en ce que la teneur cumulée en DHA et en DPA est d’au moins 80% par rapport à la masse totale de matière grasse.
6. Huile microbienne selon l’une des revendications 1 à 5, caractérisé en ce que le rapport DHA/DPA est d’au moins 4.
7. Huile microbienne selon l’une des revendications 1 à 6, caractérisée en ce que la teneur en acides gras saturés inférieure à 15% par rapport à la masse totale de matière grasse.
8. Huile microbienne selon l’une des revendications 1 à 7, caractérisée en ce qu’elle a une viscosité à température ambiante inférieure ou égale à 50 Pa.s.
9. Huile microbienne selon la revendication 7, caractérisée en ce qu’elle a une viscosité inférieure à 30 Pa.s.
10. Huile microbienne diluée, caractérisée en ce qu’elle comprend une huile microbienne selon l’une des revendications 1 à 9, mélangée avec une autre huile.
1 1 . Biomasse de microorganismes, caractérisée en ce qu’elle comprend une huile selon l’une des revendications 1 à 9.
12. Utilisation d’une huile selon l’une des revendications 1 à 10 ou d’une biomasse selon la revendication 1 1 pour l’alimentation humaine ou animale, en particulier pour l’alimentation des nouveaux nés, des enfants, ou des femmes enceintes ou allaitantes.
13. Aliment, caractérisé en ce qu’il comprend une huile selon les revendications 1 à 10.
PCT/EP2019/074458 2018-09-14 2019-09-13 Huile de microorganismes riches en acide docosahexaénoïque WO2020053372A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2019340853A AU2019340853A1 (en) 2018-09-14 2019-09-13 Oil of microorganisms rich in docosahexaenoic acid
BR112021004896-0A BR112021004896A2 (pt) 2018-09-14 2019-09-13 óleo de microrganismos rico em ácido docosa-hexaenoico
KR1020217009746A KR20210093850A (ko) 2018-09-14 2019-09-13 도코사헥사엔산이 풍부한 미생물의 오일
US17/275,867 US20220042054A1 (en) 2018-09-14 2019-09-13 Oil of microorganisms rich in docosahexaenoic acid
CN201980074627.2A CN113766836A (zh) 2018-09-14 2019-09-13 富含二十二碳六烯酸的微生物油
EP19765744.8A EP3849344A1 (fr) 2018-09-14 2019-09-13 Huile de microorganismes riches en acide docosahexaénoïque
JP2021514127A JP2022500048A (ja) 2018-09-14 2019-09-13 ドコサヘキサエン酸に富む微生物オイル
CA3112621A CA3112621A1 (fr) 2018-09-14 2019-09-13 Huile de microorganismes riches en acide docosahexaenoique
US18/498,807 US20240141395A1 (en) 2018-09-14 2023-10-31 Oil of microorganisms rich in docosahexaenoic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1858292A FR3085825B1 (fr) 2018-09-14 2018-09-14 Huile de microorganismes riche en acide docosahexaenoique
FR1858292 2018-09-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/275,867 A-371-Of-International US20220042054A1 (en) 2018-09-14 2019-09-13 Oil of microorganisms rich in docosahexaenoic acid
US18/498,807 Continuation US20240141395A1 (en) 2018-09-14 2023-10-31 Oil of microorganisms rich in docosahexaenoic acid

Publications (1)

Publication Number Publication Date
WO2020053372A1 true WO2020053372A1 (fr) 2020-03-19

Family

ID=65201439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/074458 WO2020053372A1 (fr) 2018-09-14 2019-09-13 Huile de microorganismes riches en acide docosahexaénoïque

Country Status (10)

Country Link
US (2) US20220042054A1 (fr)
EP (1) EP3849344A1 (fr)
JP (1) JP2022500048A (fr)
KR (1) KR20210093850A (fr)
CN (1) CN113766836A (fr)
AU (1) AU2019340853A1 (fr)
BR (1) BR112021004896A2 (fr)
CA (1) CA3112621A1 (fr)
FR (1) FR3085825B1 (fr)
WO (1) WO2020053372A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115551358A (zh) * 2020-04-03 2022-12-30 玛拉可再生能源公司 含高水平ω-3脂肪酸的微生物油脂

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0223960A2 (fr) 1985-10-01 1987-06-03 Lion Corporation Procédé de production de lipides contenant l'acide arachidonique
WO1994008467A1 (fr) 1992-10-16 1994-04-28 Omegatech, Inc. Procede de production heterotrophe de produits microbiens a l'aide de concentrations elevees d'acides gras omega-3 fortement insatures
WO1997037032A2 (fr) 1996-03-28 1997-10-09 Gist-Brocades B.V. Preparation d'acide gras polyinsature microbien a partir d'huile contenant une biomasse pasteurisee
EP1001034A1 (fr) 1991-01-24 2000-05-17 Martek Corporation Acide arachidonique, ses procédés de production et d'utilisation
WO2001053512A1 (fr) 2000-01-19 2001-07-26 Omegatech, Inc. Procede d'extraction sans solvant
WO2001054510A1 (fr) 2000-01-28 2001-08-02 Omegatech, Inc. Production amelioree de lipides contenant des acides gras polyenes au moyen de cultures a grande densite de microbes eucaryotes dans des fermenteurs
WO2002010423A2 (fr) 2000-08-02 2002-02-07 Dsm N.V. Isolement d'huiles microbiennes
WO2003049832A1 (fr) 2001-12-12 2003-06-19 Martek Biosciences Boulder Corp. Extraction et winterisation de lipides issus de sources oleagineuses et microbiennes
WO2010096002A1 (fr) 2009-02-17 2010-08-26 Alfa Laval Corporate Ab Procédé continu pour isoler des huiles à partir d'algues ou de micro-organismes
WO2010107415A1 (fr) 2009-03-19 2010-09-23 Martek Biosciences Corporation Thraustochytrides, compositions d'acides gras et leurs méthodes de fabrication et utilisations
WO2011153246A2 (fr) 2010-06-01 2011-12-08 Martek Biosciences Corporation Extraction d'un lipide à partir de cellules et produits obtenus à partir de cette extraction
WO2012035262A1 (fr) 2010-09-15 2012-03-22 Fermentalg Procédé de culture d'algues unicellulaires mixotrophes en présence d'un apport lumineux discontinu sous forme de flashs
WO2013136028A1 (fr) 2012-03-16 2013-09-19 Fermentalg Production d'acide docosahexaénoïque et d'astaxanthine en mode mixotrophe par schizochytrium.
WO2013136025A1 (fr) 2012-03-16 2013-09-19 Fermentalg Production d'acide docosahexaenoique et/ou d'acide eicosapentaenoique et/ou de carotenoides en mode mixotrophe par nitzschia
WO2014122092A1 (fr) 2013-02-05 2014-08-14 Evonik Industries Ag Amélioration de la biodisponibilité de substances de valeur issues de micro-organismes
WO2014146098A1 (fr) 2013-03-15 2014-09-18 Aurora Algae, Inc. Compositions d'huile d'algue brute
US20140323569A1 (en) 2011-07-21 2014-10-30 Krishna Raman Microbial oils enriched in polyunsaturated fatty acids
WO2015004402A2 (fr) 2013-07-12 2015-01-15 Fermentalg Nouvelle souche de aurantiochytrium
WO2015004403A2 (fr) 2013-07-12 2015-01-15 Fermentalg Procede de culture cellulaire decouple
WO2015095688A1 (fr) 2013-12-20 2015-06-25 Dsm Ip Assets B.V. Procédés d'obtention d'huile microbienne à partir de cellules microbiennes
WO2015092546A1 (fr) 2013-12-20 2015-06-25 MARA Renewables Corporation Procédés de récupération d'huile à partir de micro-organismes
WO2015095694A1 (fr) 2013-12-20 2015-06-25 Dsm Ip Assets B.V. Procédés d'obtention d'huile microbienne à partir de cellules microbiennes
WO2015150716A2 (fr) 2014-04-03 2015-10-08 Fermentalg Procede de culture des microalgues du genre aurantiochytrium dans un milieu de culture sans chlorure et sans sodium pour la production de dha
WO2016030631A1 (fr) 2014-08-27 2016-03-03 Fermentalg Nouveau procede de culture de microalgues
WO2017009804A1 (fr) 2015-07-16 2017-01-19 Abbvie S.Á.R.L. Composés tricycliques substitués et procédé d'utilisation
WO2017094804A1 (fr) 2015-12-01 2017-06-08 日本水産株式会社 Huile contenant de l'acide docosahexanénoïque et son procédé de production
US20170335356A1 (en) 2005-06-07 2017-11-23 Dsm Nutritional Products Ag Eukaryotic microorganisms for producing lipids and antioxidants

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130242A (en) * 1988-09-07 1992-07-14 Phycotech, Inc. Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids
DK1549753T3 (da) * 2002-10-11 2010-10-18 Nippon Suisan Kaisha Ltd Fremgangsmåde til fremstilling af mikrobielt fedt eller olie med nedsat uforsæbeligt stofindhold
CN101528067A (zh) * 2006-08-29 2009-09-09 马泰克生物科学公司 二十二碳五烯酸(n-6)油在婴儿配方中的用途
US20140100280A1 (en) * 2008-01-28 2014-04-10 The Board Regents Of The University Of Oklahoma Treatment methods using very long chain polyunsaturated fatty acids
CN101519676B (zh) * 2009-04-03 2011-09-14 湖北福星生物科技有限公司 用裂殖壶菌发酵生产二十二碳六烯酸的方法
WO2012109539A1 (fr) * 2011-02-11 2012-08-16 E. I. Du Pont De Nemours And Company Concentré d'acide eicosapentaénoïque

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0223960A2 (fr) 1985-10-01 1987-06-03 Lion Corporation Procédé de production de lipides contenant l'acide arachidonique
EP1001034A1 (fr) 1991-01-24 2000-05-17 Martek Corporation Acide arachidonique, ses procédés de production et d'utilisation
WO1994008467A1 (fr) 1992-10-16 1994-04-28 Omegatech, Inc. Procede de production heterotrophe de produits microbiens a l'aide de concentrations elevees d'acides gras omega-3 fortement insatures
WO1997037032A2 (fr) 1996-03-28 1997-10-09 Gist-Brocades B.V. Preparation d'acide gras polyinsature microbien a partir d'huile contenant une biomasse pasteurisee
US6750048B2 (en) 2000-01-19 2004-06-15 Martek Biosciences Corporation Solventless extraction process
WO2001053512A1 (fr) 2000-01-19 2001-07-26 Omegatech, Inc. Procede d'extraction sans solvant
WO2001054510A1 (fr) 2000-01-28 2001-08-02 Omegatech, Inc. Production amelioree de lipides contenant des acides gras polyenes au moyen de cultures a grande densite de microbes eucaryotes dans des fermenteurs
WO2002010423A2 (fr) 2000-08-02 2002-02-07 Dsm N.V. Isolement d'huiles microbiennes
WO2003049832A1 (fr) 2001-12-12 2003-06-19 Martek Biosciences Boulder Corp. Extraction et winterisation de lipides issus de sources oleagineuses et microbiennes
US20170335356A1 (en) 2005-06-07 2017-11-23 Dsm Nutritional Products Ag Eukaryotic microorganisms for producing lipids and antioxidants
WO2010096002A1 (fr) 2009-02-17 2010-08-26 Alfa Laval Corporate Ab Procédé continu pour isoler des huiles à partir d'algues ou de micro-organismes
WO2010107415A1 (fr) 2009-03-19 2010-09-23 Martek Biosciences Corporation Thraustochytrides, compositions d'acides gras et leurs méthodes de fabrication et utilisations
WO2011153246A2 (fr) 2010-06-01 2011-12-08 Martek Biosciences Corporation Extraction d'un lipide à partir de cellules et produits obtenus à partir de cette extraction
WO2012035262A1 (fr) 2010-09-15 2012-03-22 Fermentalg Procédé de culture d'algues unicellulaires mixotrophes en présence d'un apport lumineux discontinu sous forme de flashs
US20140323569A1 (en) 2011-07-21 2014-10-30 Krishna Raman Microbial oils enriched in polyunsaturated fatty acids
WO2013136025A1 (fr) 2012-03-16 2013-09-19 Fermentalg Production d'acide docosahexaenoique et/ou d'acide eicosapentaenoique et/ou de carotenoides en mode mixotrophe par nitzschia
WO2013136028A1 (fr) 2012-03-16 2013-09-19 Fermentalg Production d'acide docosahexaénoïque et d'astaxanthine en mode mixotrophe par schizochytrium.
WO2014122092A1 (fr) 2013-02-05 2014-08-14 Evonik Industries Ag Amélioration de la biodisponibilité de substances de valeur issues de micro-organismes
WO2014146098A1 (fr) 2013-03-15 2014-09-18 Aurora Algae, Inc. Compositions d'huile d'algue brute
WO2015004402A2 (fr) 2013-07-12 2015-01-15 Fermentalg Nouvelle souche de aurantiochytrium
WO2015004403A2 (fr) 2013-07-12 2015-01-15 Fermentalg Procede de culture cellulaire decouple
WO2015095694A1 (fr) 2013-12-20 2015-06-25 Dsm Ip Assets B.V. Procédés d'obtention d'huile microbienne à partir de cellules microbiennes
WO2015092546A1 (fr) 2013-12-20 2015-06-25 MARA Renewables Corporation Procédés de récupération d'huile à partir de micro-organismes
WO2015095688A1 (fr) 2013-12-20 2015-06-25 Dsm Ip Assets B.V. Procédés d'obtention d'huile microbienne à partir de cellules microbiennes
WO2015150716A2 (fr) 2014-04-03 2015-10-08 Fermentalg Procede de culture des microalgues du genre aurantiochytrium dans un milieu de culture sans chlorure et sans sodium pour la production de dha
US20170016036A1 (en) 2014-04-03 2017-01-19 Fermentalg Method for culturing microalgae of the aurantiochytrium genus in a culture medium without chloride and without sodium for the production of dha
WO2016030631A1 (fr) 2014-08-27 2016-03-03 Fermentalg Nouveau procede de culture de microalgues
WO2017009804A1 (fr) 2015-07-16 2017-01-19 Abbvie S.Á.R.L. Composés tricycliques substitués et procédé d'utilisation
WO2017094804A1 (fr) 2015-12-01 2017-06-08 日本水産株式会社 Huile contenant de l'acide docosahexanénoïque et son procédé de production

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DODDS ET AL., LIPIDS, vol. 40, no. 4, 2005
FEDOROVA-DAHMS I.: "Safety evaluation of DHA-rich algal oil from Schizochytrium sp", FOOD AND CHEMICAL TOXICOLOGY, vol. 49, 2011, pages 3310 - 3318, XP028117765, doi:10.1016/j.fct.2011.08.024
FOLCH J ET AL.: "A simple method for the isolation and purification of total lipides from animal tissues", J BIOL CHEM., vol. 226, no. 1, May 1957 (1957-05-01), pages 497 - 509, XP009011060
GHASEMIFARD STURCHINI GMSINCLAIR AJ, PROG LIPID RES., vol. 56, 16 September 2014 (2014-09-16), pages 92 - 108
HAMILTON M.: "Heterotrophic Production of Omega-3 Long-Chain Polyunsaturated Fatty Acids by Trophically Converted Marine Diatom Phaeodactylum tricornum", MARINE DRUGS, vol. 14, 2016, pages 53, XP055380562, doi:10.3390/md14030053
JOUHET J.MARECHAL E.BLIGNY R.JOYARD J.BLOCK M. A.: "Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation", FEBS LETT., vol. 544, 2003, pages 63 - 68, XP004427867, doi:10.1016/S0014-5793(03)00477-0
KINUKO MIYAZAKIKAZUO KOYAMA: "An Improved Enzymatic Indirect Method for Simultaneous Déterminations of 3-MCPD Esters and Glycidyl Esters in Fish Oils", J. OLEO SCI., vol. 66, no. 10, 2017, pages 1085 - 1093
WAKAKO TSUZUKI: "Study of the Formation of trans Fatty Acids in Model Oils (triacylglycerols) and Edible Oils during the Heating Process", JARQ, vol. 46, no. 3, 2012, pages 215 - 220

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115551358A (zh) * 2020-04-03 2022-12-30 玛拉可再生能源公司 含高水平ω-3脂肪酸的微生物油脂

Also Published As

Publication number Publication date
US20220042054A1 (en) 2022-02-10
CA3112621A1 (fr) 2020-03-19
AU2019340853A1 (en) 2021-05-06
BR112021004896A2 (pt) 2021-06-01
US20240141395A1 (en) 2024-05-02
EP3849344A1 (fr) 2021-07-21
FR3085825B1 (fr) 2021-07-16
FR3085825A1 (fr) 2020-03-20
JP2022500048A (ja) 2022-01-04
CN113766836A (zh) 2021-12-07
KR20210093850A (ko) 2021-07-28

Similar Documents

Publication Publication Date Title
EP1239022B1 (fr) Huile contenant un ou des acide(s) gras polyinsaturé(s) à longue chaîne issus de biomasse, procédé de Préparation, allment, composition nutritionnelle, cosmétique ou pharmaceutique la contenant
EP2895628B1 (fr) Huile enrichie en acide arachidonique issue de microorganismes (champignon unicellulaire mortierella alpina) et son procede de preparation
TWI343418B (en) Process for production of transesterified oils/fats or triglycerides
EP1396533B1 (fr) Procédé de préparation d'une huile contenant un ou des acides gras polyinsaturé(s) à longue chaine issus de biomasse, aliment, composition nutritionnelle, cosmétique ou pharmaceutique la contenant
JP2008133286A (ja) 神経学的障害の治療に有用な方法および医薬用組成物
EP2055195A1 (fr) Procédé de reduction de la teneur en acides gras saturés de la matiere grasse du lait , produits obtenus et applications de ceux-ci.
WO2014122158A1 (fr) Biomasse de la microalgue schizochytrium mangrovei et son procédé de préparation
US20240141395A1 (en) Oil of microorganisms rich in docosahexaenoic acid
WO2020053375A1 (fr) Procede d'extraction d'une huile riche en acides gras polyunsatures (agpi)
WO2014076432A1 (fr) Procédé pour la fabrication d'une émulsion sèche en poudre contenant au moins un principe actif lipophile, destinée à améliorer la biodisponibilité dudit principe actif lipophile, et émulsion sèche obtenue par ce procédé
FR2935393A1 (fr) Bacteries et levures enrichies en selenium organique a partir de composes seleno-hydroxyacides et leurs applications en nutrition, cosmetique et pharmacie
FR3081880A1 (fr) Procede de culture d'algues rouges unicellulaires (aru) sur un melange de substrats
WO2021260087A1 (fr) Procédé de culture de microorganismes pour l'accumulation de lipides
BE1021928B1 (fr) Composition a base d'huile de krill et d'extrait de curcuma
EP2978836B1 (fr) Procédé de stabilisation des métabolites sensibles à l'oxydation produits par les microalgues du genre chlorella
EP4064849A1 (fr) Composition d'huile de micro-organismes enrichie en acides gras polyinsatures
FR3108622A1 (fr) Procédé de fractionnement d’acides gras à deux carbones de différence par distillation moléculaire
WO2023152122A1 (fr) Composition comprenant un melange de dna et/ou d'epa et d'un phospholipide d'orgine vegetale
WO2018065531A1 (fr) Aliment ou boisson a base d'une microalgue marine
EP3691463B1 (fr) Composition appetente comprenant de l'alpha-s1-caseine hydrolysee
FR2896172A1 (fr) Nouveau procede de stabilisation des acides gras polyinsatures et les compositions ainsi obtenus.
EP4281573A1 (fr) Composition d'huile de microorganismes enrichis en diglycerides de dha ou d'epa
FR3130515A1 (fr) Procédé de préparation d’un marc de raisin fermenté, marc de raisin fermenté ainsi obtenu et son utilisation dans des compléments alimentaires ou dans des cosméceutiques.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19765744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3112621

Country of ref document: CA

Ref document number: 2021514127

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021004896

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019765744

Country of ref document: EP

Effective date: 20210414

ENP Entry into the national phase

Ref document number: 2019340853

Country of ref document: AU

Date of ref document: 20190913

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021004896

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210315