WO2020052599A1 - 用户设备的定位方法及装置、存储介质和电子装置 - Google Patents

用户设备的定位方法及装置、存储介质和电子装置 Download PDF

Info

Publication number
WO2020052599A1
WO2020052599A1 PCT/CN2019/105427 CN2019105427W WO2020052599A1 WO 2020052599 A1 WO2020052599 A1 WO 2020052599A1 CN 2019105427 W CN2019105427 W CN 2019105427W WO 2020052599 A1 WO2020052599 A1 WO 2020052599A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
information
cell
positioning
lmf
Prior art date
Application number
PCT/CN2019/105427
Other languages
English (en)
French (fr)
Inventor
毕程
陈诗军
陈大伟
王园园
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to CA3112638A priority Critical patent/CA3112638A1/en
Priority to EP19859752.8A priority patent/EP3852397A4/en
Priority to US17/275,747 priority patent/US11706588B2/en
Publication of WO2020052599A1 publication Critical patent/WO2020052599A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a positioning method and device for user equipment, a storage medium, and an electronic device.
  • the 3rd Generation Partnership Project (3rd Generation, Partnership Project, 3GPP) has introduced support for positioning services since release 9.
  • Today, positioning services have become an important value-added service in wireless communication networks.
  • Cell identity and enhanced cell identity (E-CID) are very important positioning methods in a communication network.
  • the basic principle is to use the geographic coordinates of the serving cell to estimate the location of the user equipment (User Equipment, UE).
  • E-CID uses some additional measurement information for positioning. These measurement information usually have other functions, but it is usually not measured for positioning alone.
  • the fifth generation mobile communication systems (5th generation mobile networks, 5G) choose millimeter wave technology in order to achieve faster data transmission rates.
  • Millimeter wave refers to electromagnetic waves with a wavelength in the order of millimeters, and the frequency of millimeter waves is between 30 GHz and 300 GHz.
  • a characteristic of the millimeter wave band is that it has severe attenuation in the air, weak diffraction ability, and a large impact on atmospheric and rain water absorption.
  • large arrays and narrow beams are used as an important technology for data transmission.
  • the 5G standard in the related technology has been determined to support millimeter-band transmission of synchronization signals / physical broadcast channel blocks (SS / PBCH blocks) in a narrow beam polling manner to implement functions such as synchronization.
  • the beam polling method can avoid synchronization signal blocks (Synchronization Signal Block, SSB) transmitted by different cells from interfering with each other to a certain extent.
  • the 5G standard has not designed a positioning method based on 5G signal measurement.
  • Embodiments of the present disclosure provide a method and device for positioning a user equipment, so as to at least solve a problem in the related art that a UE's location cannot be measured based on a 5G signal.
  • a positioning method for a user equipment including: after the UE initiates a positioning request, the UE receives first auxiliary information sent by a positioning management unit LMF; wherein the first auxiliary information includes: The SSB beam polling information of the designated cell reported by the next-generation radio access network NG-RAN node to the LMF; the UE measures the designated cell and obtains first measurement information; according to the first measurement Information and first auxiliary information, the UE determines the location of the UE.
  • another positioning method for user equipment including: a positioning management unit LMF receiving SSB beam polling information reported by a next-generation radio access network NG-RAN node; and in the NG- After the RAN node initiates a positioning request, the LMF obtains a second measurement message of the designated cell; and according to the second measurement message and the SSB beam polling information, the LMF determines the location of the UE.
  • another method for positioning a user equipment including: after a next-generation radio access network NG-RAN node initiates a positioning request, the NG-RAN node obtains a serving cell from the user equipment UE. A third measurement message; the NG-RAN node determines the location of the UE according to the information of the NG-RAN node and the third measurement message, wherein the information of the NG-RAN node includes: SSB beam polling information.
  • a positioning device for user equipment is provided at a UE and includes: a first receiving module configured to receive first auxiliary information sent by the LMF after the UE initiates a positioning request; wherein The first auxiliary information includes: the SSB beam polling information of the designated cell reported by the NG-RAN node to the LMF; a measurement module configured to measure the designated cell and obtain the first measurement information; A positioning module is configured to determine a location of the UE according to the first measurement information and the first auxiliary information.
  • another positioning device for user equipment which is located in a positioning management unit LMF and includes: a second receiving module configured to receive SSB beam polling information reported by an NG-RAN node; and an acquiring module Is configured to obtain a second measurement message of the designated cell after the NG-RAN node initiates a positioning request; the second positioning module is configured to determine the location of the UE according to the second measurement message and the SSB beam polling information.
  • another positioning device for user equipment which is located in a next-generation radio access network NG-RAN node and includes a third receiving module configured to initiate a positioning request at the NG-RAN node. Then, a third measurement message of the serving cell is obtained from the UE; a third positioning module is configured to determine the location of the UE according to the information of the NG-RAN node and the third measurement message, wherein the NG-RAN
  • the node information includes at least: SSB beam polling information.
  • a storage medium stores a computer program, and the computer program is configured to execute the method according to any one of the foregoing embodiments when running.
  • an electronic device including a memory and a processor, wherein the computer program is stored in the memory, and the processor is configured to run the computer program to perform any of the foregoing implementations Example method.
  • FIG. 1 is a block diagram of a hardware structure of a mobile terminal according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a positioning method for a UE according to an embodiment of the present invention
  • FIG. 3 is a flowchart of another UE positioning method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of still another UE positioning method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of positioning of a UE based on scenario 1 according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of positioning a UE based on an SSB beam according to an embodiment of the present invention
  • FIG. 7 is a flowchart of positioning of a UE based on scenario 2 according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of positioning a UE based on an SSB beam according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of positioning a UE based on another SSB beam according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of positioning of a UE based on scenario 3 according to an embodiment of the present invention.
  • FIG. 11 is a structural block diagram of a positioning device for user equipment UE according to an embodiment of the present invention.
  • FIG. 12 is a structural block diagram of another positioning apparatus for user equipment UE according to an embodiment of the present invention.
  • FIG. 13 is a structural block diagram of another positioning apparatus for user equipment UE according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a hardware structure of a mobile terminal according to an embodiment of the present invention.
  • the mobile terminal 10 may include one or more (only one shown in FIG. 1) a processor 102 (the processor 102 may include, but is not limited to, a microprocessor (Control Unit, MCU) or programmable logic (Processing device such as Field Programmable Gate Array (FPGA)) and memory 104 for storing data.
  • the mobile terminal may further include a transmission device 106 and an input / output device 108 for communication functions.
  • FIG. 1 is only a schematic, and it does not limit the structure of the above mobile terminal.
  • the mobile terminal 10 may further include more or fewer components than those shown in FIG. 1, or have a different configuration from that shown in FIG. 1.
  • the memory 104 may be used to store a computer program, for example, a software program and module of application software, such as a computer program corresponding to a positioning method of a UE in the embodiment of the present invention.
  • the processor 102 executes the computer program stored in the memory 104 to execute the computer program.
  • a variety of functional applications and data processing, that is, the above method is implemented.
  • the memory 104 may include a high-speed random access memory, and may further include a non-volatile memory, such as one or more magnetic storage devices, a flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory remotely disposed with respect to the processor 102, and these remote memories may be connected to the mobile terminal 10 through a network. Examples of the above network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the transmission device 106 is used for receiving or transmitting data via a network.
  • a specific example of the above network may include a wireless network provided by a communication provider of the mobile terminal 10.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF radio frequency
  • FIG. 2 is a flowchart of a positioning method for a UE according to an embodiment of the present invention. As shown in FIG. 2, the flow includes the following steps. :
  • Step S202 After the positioning request is initiated, the UE receives the first auxiliary information sent by the Location Management Function (LMF); wherein the first auxiliary information includes at least: the next generation radio access network (The Next A Generation Radio Access Network (NG-RAN) node polls the synchronization signal block (Synchronization Signal Block, SSB) beam information of the designated cell reported by the LMF.
  • LMF Location Management Function
  • Step S204 The UE performs measurement on the designated cell, and obtains first measurement information.
  • Step S206 The UE determines the location of the UE according to the first measurement information and the first auxiliary information.
  • the present disclosure by using measurement information of a cell measured by a UE and SSB beam polling information of a cell provided by an NG-RAN node, at the same time, it can be applied to multiple network elements or devices in a network, and therefore, related problems can be solved.
  • the problem that the UE cannot measure the location of the UE based on the 5G signal in the technology achieves the effect of positioning the device without increasing resources and improving the positioning accuracy.
  • the SSB beam polling information includes at least: a subcarrier interval and a cyclic prefix configuration for sending the SSB, the number of SSB beams, all SSB indexes of the designated cell, and a coverage angle of the SSB beam in a geographic coordinate system.
  • the NG-RAN node carries the SSB beam polling information in the New Generation Radio (NR) Positioning Protocol Additional (NR Positioning Protocol) information sent to the LMF.
  • NR New Generation Radio
  • the SSB beam polling information can be added to the E-CID Measurement Result (E-CID measurement result) in the E-CID MEASUREMENT INITIATION RESPONSE (E-CID measurement start response).
  • the SSB beam polling information may also be added to a separately reported public positioning information.
  • the positioning public information includes at least information such as the geographic location of the cell.
  • the LMF sends the first auxiliary information carrying the SSB beam polling information through the Long Term Evolution (LTE) positioning protocol (LTE Positioning Protocol, LPP) or NR positioning protocol (NR Positioning Protocol, anne).
  • LTE Long Term Evolution
  • LPP Long Term Evolution Positioning Protocol
  • NR Positioning Protocol anne
  • the UE before the UE receives the first auxiliary information sent by the LMF, the UE sends an auxiliary information request message for requesting the first auxiliary information to the LMF.
  • the LMF may send the first auxiliary information to the UE by itself.
  • the LMF may determine whether to time out with the UE request time determined in advance by the UE and, if the determination result is yes, send the first auxiliary information to the UE on its own.
  • the LMF may also determine whether to send the first auxiliary information to the UE by sending an inquiry instruction to the UE and according to the inquiry result responded by the UE.
  • the designated cell includes at least one of the following: a serving cell where the UE is located, and a neighboring cell of the serving cell where the UE is located.
  • this embodiment mainly focuses on positioning the UE in the serving cell where the UE is located, that is, single-cell SSB positioning. If the UE obtains the first measurement information corresponding to the neighboring cell after measurement, the solution applied in this embodiment is directed to positioning the UE in multiple cells, that is, multi-cell SSB positioning. Furthermore, if the UE only obtains the first measurement information corresponding to the neighboring cell after measurement, this embodiment is mainly aimed at positioning the UE in the neighboring cell of the serving cell where the UE is located. Therefore, according to the actual usage requirements, the UE may use different measurement strategies to perform measurements on different cells to obtain different first measurement information. Thus, positioning of the UE in different cells is achieved.
  • the first auxiliary information further includes at least one of the following: geographic coordinates of the serving cell, and geographic coordinates of the neighboring cell.
  • the first auxiliary information further includes: cell identification information of the neighboring cell.
  • the first measurement message includes one of the following: an SSB index of the designated cell, a reference signal received power (RSRP) of one or more signals in the SSB, and a reference signal reception quality (Reference, Received, Quality, RSRQ).
  • RSRP reference signal received power
  • RSRQ reference signal reception quality
  • the SSB index of the designated cell in the first measurement message refers to one or more SSB indexes of all SSB indexes of the designated cell. For example, taking the serving cell as an example, if there are 8 SSB indexes in the serving cell, the SSB index of the designated cell in the first measurement message is one or more of the 8 SSB indexes.
  • the UE selects the SSB with the highest intensity in the designated cell or the intensity greater than the intensity threshold as the designated cell in the first measurement information.
  • SSB index the SSB index.
  • the UE estimates the UE position according to the searched SSB index of the specified cell and other information in the first auxiliary information, and the overlapping range of the position covered by the SSB beam in the geographic coordinate system.
  • the UE may use a primary synchronization signal (PSS) and a secondary synchronization signal (SSS), a physical broadcast channel (PBCH), and a demodulation reference signal of the PBCH in the SSB.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • DMRS demodulation reference signal of the PBCH in the SSB.
  • DMRS Signal
  • FIG. 3 is a flowchart of another UE positioning method according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • Step S302 the LMF receives the SSB beam polling information reported by the NG-RAN node
  • Step S304 After initiating the positioning request, the LMF acquires a second measurement message of the designated cell;
  • Step S306 The LMF determines the location of the UE according to the second measurement message and the SSB beam polling information.
  • the SSB beam polling information includes at least: the subcarrier interval and cyclic prefix configuration of the SSB to be transmitted, the number of SSB beams, all SSB indexes of the designated cell, and the coverage angle of the SSB beam in the geographic coordinate system.
  • the NG-RAN node carries the SSB beam polling information in the NRPPa information sent to the LMF.
  • the SSB beam polling information can be added to the E-CID Measurement Result (E-CID measurement result) in the E-CID MEASUREMENT INITIATION RESPONSE (E-CID measurement start response).
  • the SSB beam polling information may also be added to a separately reported public positioning information.
  • the positioning public information includes at least information such as the geographic location of the cell.
  • the designated cell includes at least one of the following: a serving cell where the UE is located, and a neighboring cell of the serving cell where the UE is located.
  • this embodiment mainly focuses on positioning the UE in the serving cell where the UE is located, that is, single-cell SSB positioning. If the UE obtains the second measurement information corresponding to the neighboring cell after measurement, the solution applied in this embodiment is directed to positioning the UE in multiple cells, that is, multi-cell SSB positioning. Furthermore, if the UE only obtains the second measurement information corresponding to the neighboring cell after measurement, this embodiment is mainly aimed at positioning the UE in the neighboring cell of the serving cell where the UE is located. Therefore, according to actual usage requirements, the UE may use different measurement strategies to perform measurements on different cells to obtain different second measurement information. Thus, positioning of the UE in different cells is achieved.
  • the LMF acquires the second measurement message from the UE and / or the NG-RAN node.
  • the LMF acquires the second measurement message in at least one of the following two ways.
  • Method 1 The LMF sends second auxiliary information to the UE, wherein the second auxiliary information is used by the UE to measure SSBs of the serving cell and the neighboring cell; the LMF receives all The second measurement message sent by the UE.
  • Manner 2 The UE performs a blind detection on the SSB of the neighboring cell; the LMF receives the second measurement message sent by the UE.
  • the UE may carry a detection rule corresponding to the blind detection in the third auxiliary information sent to prevent the LMF from being unable to identify the detection result.
  • the rule for the UE to blindly detect the SSB of the neighboring cell may also be a detection rule that the LMF and the UE determine interactively before positioning.
  • the UE selects the SSB with the highest intensity in the designated cell or the intensity greater than the intensity threshold as the designated cell in the second measurement information.
  • SSB index the SSB index.
  • the second measurement message includes one of the following: cell identification information of the designated cell, an SSB index of the designated cell, and RSRP and RSRQ of one or more signals in the SSB.
  • FIG. 4 is a flowchart of another UE positioning method according to an embodiment of the present invention. As shown in FIG. 4, the process includes the following steps:
  • Step S402 After initiating the positioning request, the NG-RAN node obtains a third measurement message of the serving cell from the UE.
  • Step S404 the NG-RAN node determines the location of the UE according to the NG-RAN node information and the third measurement message, wherein the NG-RAN node information includes at least: SSB beam polling information.
  • the SSB beam polling information includes at least: a subcarrier interval and a cyclic prefix configuration for sending an SSB, a number of SSB beams, an entire SSB index of the designated cell, and a coverage angle of the SSB beam in a geographic coordinate system.
  • the NG-RAN node information further includes: geographic location information of the NG-RAN node.
  • the third measurement message includes at least: RSRP and RSRQ of one or more signals in the SSB.
  • the UE selects the SSB with the highest intensity in the designated cell or the intensity greater than the intensity threshold as the designated cell in the third measurement information SSB index.
  • the UE selects the SSB with the highest strength in the serving cell as the SSB corresponding to the detection result. And send it to the LMF based on a third measurement message corresponding to the SSB.
  • the UE is positioned by the UE.
  • 5 is a flowchart of positioning a UE based on scenario 1 according to an embodiment of the present invention, as shown in FIG. 5:
  • Step 1 The NG-RAN node sends its own SSB polling configuration information to the LMF.
  • the subcarrier interval is 120KHz
  • the regular CP the SSB transmission period is 5ms
  • all SSB indexes k 1 -k 8 the k ssb SSB beams are transmitted.
  • Step 2 The UE initiates a positioning request.
  • Step 3 The UE sends a request for the first auxiliary information to the LMF through an LPP or NRPP message.
  • Step 4 The LMF sends the SSB polling configuration information to the UE through the first auxiliary information carried in the LPP or NRPP message.
  • Step 5 After receiving the first auxiliary message, the UE measures the SSB beam of the serving cell where the UE is located, and obtains an SSB index k 3.
  • the measured PSS received energy and received quality are RSRP 1 and RSRQ respectively.
  • the first measurement information of 1 is a measurement of 1 .
  • Step 6 The UE estimates the positioning result of the UE according to the SSB polling configuration information and the first measurement information.
  • FIG. 6 is a schematic diagram of positioning a UE based on an SSB beam according to an embodiment of the present invention.
  • the UE determines that a total of 8 SSB beams including k 1 -k 8 are included in the current serving cell as shown in FIG. 6.
  • the UE can determine that the UE is positioned on the SSB beam corresponding to the number k 3 .
  • the UE can more accurately locate the UE on the SSB beam.
  • FIG. 7 is a flowchart of positioning a UE based on scenario 2 according to an embodiment of the present invention, as shown in FIG. 7:
  • Step 1 The NG-RAN node sends its own SSB polling configuration information to the LMF.
  • the subcarrier interval is 120KHz
  • the regular cyclic prefix (Cyclic Prefix, CP)
  • the SSB transmission period is 5ms
  • all SSB indexes k 1 -k 8 and k ssb SSB beams are transmitted.
  • Step 2 The NG-RAN node initiates a positioning request to the UE.
  • Step 3 The UE measures cell 1 and the obtained second measurement result of cell 1 includes at least: the positioning capability supports E-CID positioning using multi-beam SSB information, and at time t 1 , the UE measures the SSB of serving cell cell 1 Beam, SSB index k 3 .
  • Step 4 The UE measures cell 2 and the obtained second measurement result of cell 2 includes at least: positioning capability supports E-CID positioning using multi-beam SSB information, and at time t 2 , the UE measures the SSB of serving cell cell 2 Beam, SSB index k 5 .
  • Step 5 The UE sends the second measurement information of cell 1 and cell 2 to the LMF through an LPP or NRPP message.
  • Step 6 The LMF estimates the positioning result of the UE according to the SSB polling configuration information and the second measurement information of cell1 and cell2.
  • the UE determines that, as shown in FIG. 8, the current serving cell includes k 1 -k 8 in a total of 8 SSB beams.
  • UE. 4 generated in step 3.
  • the corresponding UE located in the cell 1 The intersection of the SSB beam numbered k 3 and cell 2 corresponding to the SSB beam numbered k5 (rounded part in FIG. 8).
  • FIG. 9 is a schematic diagram of positioning a UE based on another SSB beam according to an embodiment of the present invention.
  • the UE determines that, as shown in FIG. 9, cell 1 and cell 2 include a current serving cell including k 1 -k 8 in total, 8 SSB beams. If the second measurement information of cell 1 and cell 2 are set such that the PSS received energy and received quality in the first measurement message in scenario 1 are RSRP 1 and RSRQ 1 , respectively, according to RSRP 1 and RSRQ 1 ( The rectangular part in FIG. 9), the UE can more accurately locate the UE on the SSB beams of cell 1 and cell 2.
  • FIG. 10 is a flowchart of positioning a UE based on scenario 3 according to an embodiment of the present invention, as shown in FIG. 10:
  • Step 1 The NG-RAN node initiates a positioning request to the UE.
  • Step 2 The UE measures the SSB beam of the serving cell where the UE is located, and obtains the third measurement information including the SSB index k 3 , and the measured PSS received energy and received quality are RSRP 1 and RSRQ1, respectively.
  • Step 3 The UE sends the third measurement information carrying the SSB index k 3 through the preamble and measuring the PSS received energy and received quality to RSRP 1 and RSRQ 1 , respectively.
  • Step 4 NG-RAN node itself according to the configuration information includes a polling SSB (i.e., subcarrier spacing is 120KHz, a conventional CP, SSB transmission period is 5ms, all of the designated cell SSB index k 1 -k 8, transmits k ssb SSB beams), its own geographic location, and third measurement information to estimate the positioning result of the UE.
  • SSB i.e., subcarrier spacing is 120KHz, a conventional CP, SSB transmission period is 5ms, all of the designated cell SSB index k 1 -k 8, transmits k ssb SSB beams
  • third measurement information to estimate the positioning result of the UE.
  • a positioning device for user equipment UE is also provided.
  • the device is used to implement the foregoing embodiments and optional implementation manners, and the descriptions will not be repeated.
  • the term "module” may implement a combination of software and / or hardware for a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementation in hardware, or a combination of software and hardware is also possible and conceived.
  • FIG. 11 is a structural block diagram of a positioning device for user equipment UE according to an embodiment of the present invention. As shown in FIG. 11, the device includes a first receiving module 1102, a measuring module 1104, and a first positioning module 1106.
  • the first receiving module 1102 is configured to receive the first auxiliary information sent by the LMF after the initiated positioning request, where the first auxiliary information includes at least: a designated cell reported by the NG-RAN node to the LMF. SSB beam polling information;
  • a measurement module 1104 configured to perform measurement on the designated cell, and obtain first measurement information
  • a first positioning module 1106 is configured to determine a location of the UE according to the first measurement information and the first auxiliary information.
  • the above multiple modules can be implemented by software or hardware. For the latter, they can be implemented by the following methods, but not limited to the above: the above modules are all located in the same processor; or, the above multiple modules are based on Arbitrary combinations are located in different processors.
  • another positioning device for user equipment UE is also provided.
  • This device is used to implement the foregoing embodiments and optional implementation manners, and the descriptions will not be repeated.
  • the term "module” may implement a combination of software and / or hardware for a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementation in hardware, or a combination of software and hardware is also possible and conceived.
  • FIG. 12 is a structural block diagram of another positioning device for user equipment UE according to an embodiment of the present invention. As shown in FIG. 12, the device includes a second receiving module 1202, an obtaining module 1204, and a second positioning module 1206.
  • a second receiving module 1202 configured to receive SSB beam polling information reported by the NG-RAN node
  • An obtaining module 1204 configured to obtain a second measurement message of a specified cell after initiating a positioning request
  • a second positioning module 1206 is configured to determine a location of the UE according to the second measurement message and the SSB beam polling information.
  • the above multiple modules can be implemented by software or hardware. For the latter, they can be implemented by the following methods, but not limited to the above: the above modules are all located in the same processor; or, the above multiple modules are based on Arbitrary combinations are located in different processors.
  • another positioning device for user equipment UE is also provided.
  • the device is used to implement the foregoing embodiments and optional implementation manners, and the descriptions will not be repeated.
  • the term "module” may implement a combination of software and / or hardware for a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementation in hardware, or a combination of software and hardware is also possible and conceived.
  • FIG. 13 is a structural block diagram of another positioning device for user equipment UE according to an embodiment of the present invention. As shown in FIG. 13, the device includes a third receiving module 1302 and a third positioning module 1304.
  • a third receiving module 1302, configured to obtain a third measurement message of the serving cell from the UE after initiating a positioning request
  • a third positioning module 1304 is configured to determine a location of the UE according to the NG-RAN node information and the third measurement message, where the NG-RAN node information includes at least: SSB beam polling information.
  • the above multiple modules can be implemented by software or hardware. For the latter, they can be implemented by the following methods, but not limited to the above: the above modules are all located in the same processor; or, the above multiple modules are based on Arbitrary combinations are located in different processors.
  • An embodiment of the present disclosure further provides a storage medium that stores a computer program therein, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • the foregoing storage medium may be configured to store a computer program for performing the following steps:
  • the UE receives the first auxiliary information sent by the LMF.
  • the first auxiliary information includes at least: SSB beam polling information of the designated cell reported by the NG-RAN node to the LMF.
  • the UE performs measurement on the designated cell, and obtains first measurement information.
  • the UE determines a location of the UE.
  • the LMF receives the SSB beam polling information reported by the NG-RAN node.
  • the LMF After initiating a positioning request, acquires a second measurement message of a specified cell.
  • the LMF determines the location of the UE according to the second measurement message and the SSB beam polling information.
  • the NG-RAN node After initiating the positioning request, the NG-RAN node obtains a third measurement message of the serving cell from the UE.
  • the NG-RAN node determines the location of the UE according to the NG-RAN node information and the third measurement message, wherein the NG-RAN node information includes at least: SSB beam polling information.
  • the foregoing storage medium may include: a universal serial bus flash disk (Universal Serial Bus flash disk (U disk)), a read-only memory (Read-Only Memory (ROM), and a random access memory (ROM) Random (Access, Memory, RAM), mobile hard disk, magnetic disk or compact disc and other media that can store computer programs.
  • a universal serial bus flash disk Universal Serial Bus flash disk (U disk)
  • ROM Read-Only Memory
  • ROM random access memory
  • RAM Random
  • mobile hard disk magnetic disk or compact disc and other media that can store computer programs.
  • An embodiment of the present disclosure further provides an electronic device including a memory and a processor.
  • the memory stores a computer program
  • the processor is configured to run the computer program to perform the steps in any one of the foregoing method embodiments.
  • the electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the processor, and the input-output device is connected to the processor.
  • the foregoing processor may be configured to execute the following steps by a computer program:
  • the UE receives the first auxiliary information sent by the LMF.
  • the first auxiliary information includes at least: SSB beam polling information of the designated cell reported by the NG-RAN node to the LMF.
  • the UE performs measurement on the designated cell, and obtains first measurement information.
  • the UE determines a location of the UE.
  • the LMF receives the SSB beam polling information reported by the NG-RAN node.
  • the LMF After initiating a positioning request, acquires a second measurement message of a specified cell.
  • the LMF determines the location of the UE according to the second measurement message and the SSB beam polling information.
  • the NG-RAN node After initiating the positioning request, the NG-RAN node obtains a third measurement message of the serving cell from the UE.
  • the NG-RAN node determines the location of the UE according to the NG-RAN node information and the third measurement message, wherein the NG-RAN node information includes at least: SSB beam polling information.
  • multiple modules or multiple steps of the present disclosure may be implemented by a general-purpose computing device, and they may be concentrated on a single computing device or distributed and composed of multiple computing devices.
  • they can be implemented with program code executable by a computing device, so that they can be stored in a storage device and executed by the computing device, and in some cases, can be different from here
  • the steps shown or described are performed sequentially, or they are made into one or more integrated circuit modules, respectively, or multiple modules or steps in them are made into a single integrated circuit module.
  • the present disclosure is not limited to a specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种用户设备的定位方法及装置、存储介质和电子装置。该方法包括:在UE发起定位请求后,UE接收LMF发送的第一辅助信息;其中,所述第一辅助信息包括:由NG-RAN节点向所述LMF上报的指定小区的SSB波束轮询信息;所述UE对所述指定小区进行测量,并获取第一测量信息;根据所述第一测量信息和第一辅助信息,所述UE确定该UE的位置。

Description

用户设备的定位方法及装置、存储介质和电子装置
本申请要求在2018年09月14日提交中国专利局、申请号为201811076343.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信领域,具体而言,涉及一种用户设备的定位方法及装置、存储介质和电子装置。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)自release 9开始引入对定位服务的支持,如今定位服务已经成为无线通讯网络中一种重要的增值服务。
小区标识(Cell Identity,Cell ID)和增强型小区标识(Enhanced Cell Identity,E-CID)是通讯网络中非常重要的定位方法。基本原理是利用服务小区的地理坐标估计用户设备(User Equipment,UE)的位置。E-CID使用一些附加的测量信息来进行定位,这些测量信息通常还有其他功能,但是通常不会单独为了定位进行测量。
第五代移动通信系统(5th generation mobile networks,5G)为了实现更快的数据传输速率,选择使用毫米波技术。
毫米波是指波长在毫米数量级的电磁波,毫米波频率大约在30GHz~300GHz之间。毫米波频段的一个特性是在空气中衰减严重,绕射能力弱,大气和雨水吸收影响较大。为了克服这些影响传播的因素,大阵列和窄波束被作为数据传输的一种重要技术。相关技术中的5G标准中已经确定支持毫米波段以窄波束轮询的方式发送同步信号/物理广播信道块(Synchronization Signal/Physical Broadcast Channel block,SS/PBCH block)来实现同步等功能。波束轮询的方式在一定程度上可以避免不同小区发射的同步信号块(Synchronization Signal Block,SSB)互相干扰。5G标准中还没有设计以5G信号测量为基础的定位方法。
发明内容
本公开实施例提供了一种用户设备的定位方法及装置,以至少解决相关技术中无法基于5G信号对UE所在位置进行测量的问题。
根据本公开的一个实施例,提供了一种用户设备的定位方法,包括:在UE发起定位请求后,UE接收定位管理单元LMF发送的第一辅助信息;其中,所述第一辅助信息包括:由下一代无线接入网络NG-RAN节点向所述LMF上报的指定小区的SSB波束轮询信息;所述UE对所述指定小区进行测量,并获取第一测量信息;根据所述第一测量信息和第一辅助信息,所述UE确定该UE的位置。
根据本公开的另一个实施例,提供了另一种用户设备的定位方法,包括:定位管理单元LMF接收下一代无线接入网络NG-RAN节点上报的SSB波束轮询信息;在所述NG-RAN节点发起定位请求后,所述LMF获取指定小区的第二测量消息;根据所述第二测量消息以及所述SSB波束轮询信息,所述LMF确定UE的位置。
根据本公开的另一个实施例,提供了再一种用户设备的定位方法,包括:在下一代无线接入网络NG-RAN节点发起定位请求后,NG-RAN节点从用户设备UE获取服务小区的第三测量消息;所述NG-RAN节点根据所述NG-RAN节点的信息以及所述第三测量消息确定所述UE的位置,其中,所述NG-RAN节点的信息包括:SSB波束轮询信息。
根据本公开的另一个实施例,提供了一种用户设备的定位装置,位于UE,包括:第一接收模块,设置为在UE发起定位请求后,接收所述LMF发送的第一辅助信息;其中,所述第一辅助信息包括:由NG-RAN节点向所述LMF上报的指定小区的SSB波束轮询信息;测量模块,设置为对所述指定小区进行测量,并获取第一测量信息;第一定位模块,设置为根据所述第一测量信息以及所述第一辅助信息,确定所述UE的位置。
根据本公开的另一个实施例,提供了另一种用户设备的定位装置,位于定位管理单元LMF,包括:第二接收模块,设置为接收NG-RAN节点上报的SSB波束轮询信息;获取模块,设置为在NG-RAN节点发起定位请求后,获取指定小区的第二测量消息;第二定位模块,设置为根据所述第二测量消息以及所述SSB波束轮询信息,确定UE的位置。
根据本公开的另一个实施例,提供了再一种用户设备的定位装置,位于下一代无线接入网络NG-RAN节点中,包括:第三接收模块,设置为在NG-RAN节点发起定位请求后,从UE获取服务小区的第三测量消息;第三定位模块,设置为根据所述NG-RAN节点的信息以及所述第三测量消息确定所述UE的位置,其中,所述NG-RAN节点的信息至少包括:SSB波束轮询信息。
根据本公开的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一实施例 所述的方法。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一实施例所述的方法。
附图说明
图1是本发明实施例的一种UE的定位方法的移动终端的硬件结构框图;
图2是根据本发明实施例的一种UE的定位方法的流程图;
图3是根据本发明实施例的另一种UE的定位方法的流程图;
图4是根据本发明实施例的再一种UE的定位方法的流程图;
图5是根据本发明实施例的一种基于场景1的UE的定位的流程图;
图6是根据本发明实施例的一种基于SSB波束对UE进行定位的示意图;
图7是根据本发明实施例的一种基于场景2的UE的定位的流程图;
图8是根据本发明实施例的另一种基于SSB波束对UE进行定位的示意图;
图9是根据本发明实施例的再一种基于SSB波束对UE进行定位的示意图;
图10是根据本发明实施例的一种基于场景3的UE的定位的流程图;
图11是根据本发明实施例的一种用户设备UE的定位装置的结构框图;
图12是根据本发明实施例的另一种用户设备UE的定位装置的结构框图;
图13是根据本发明实施例的再一种用户设备UE的定位装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本发明实施例的一种UE的定位方法的移动终端的硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器(Microprocessor Control Unit,MCU)或可编程逻辑器件(Field  Programmable Gate Array,FPGA)等的处理装置)和用于存储数据的存储器104,可选地,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本发明实施例中的UE的定位方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行多种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的UE的定位方法,图2是根据本发明实施例的一种UE的定位方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,在发起的定位请求后,UE接收定位管理单元(Location Management Function,LMF)发送的第一辅助信息;其中,所述第一辅助信息至少包括:由下一代无线接入网络(The Next Generation Radio Access Network,NG-RAN)节点向所述LMF上报的指定小区的同步信号块(Synchronization Signal Block,SSB)波束轮询信息。
步骤S204,所述UE对所述指定小区进行测量,并获取第一测量信息。
步骤S206,根据所述第一测量信息和第一辅助信息,所述UE确定该UE的位置。
通过本公开,通过利用UE测量的小区的测量信息以及由NG-RAN节点提供的小区的SSB波束轮询信息,同时,可以应用在网络中的多个网元或者设备上,因此,可以解决相关技术中无法基于5G信号对UE所在位置进行测量的问题,达到了在不增加资源开下的前提下实现了对设备定位,同时还能够提高定 位精度的效果。
可选地,在该SSB波束轮询信息至少包括:发送SSB的子载波间隔和循环前缀配置,SSB波束数量,所述指定小区的全部SSB索引以及SSB波束在地理坐标系中的覆盖角度。
可选地,NG-RAN节点在发送至LMF的新一代无线通信(New Radio,NR)定位协议附加(NR Positioning Protocol annex,NRPPa)信息中携带该SSB波束轮询信息。
具体地,SSB波束轮询信息可以添加在E-CID MEASUREMENT INITIATION RESPONSE(E-CID测量启动响应)中的E-CID Measurement Result(E-CID测量结果)中。
此外,所述SSB波束轮询信息还可以添加在一个单独上报的定位公共信息中。其中,该定位公共信息至少包括:小区地理位置等信息。
具体地,LMF通过长期演进(Long Term Evolution,LTE)定位协议(LTE Positioning Protocol,LPP)或者NR定位协议(NR Positioning Protocol annex,NRPP)信息将携带有SSB波束轮询信息的第一辅助信息发送至UE当中。
可选地,在所述UE接收所述LMF发送的所述第一辅助信息之前,所述UE向所述LMF发送用于请求所述第一辅助信息的辅助信息请求消息。
需要说明的是,如果UE没有请求或者UE处于“忙”的状态等原因导致UE无法主动请求获取第一辅助信息的话,LMF可以自行向UE发送第一辅助信息。
具体而言,LMF可以通过判断是否与UE预先确定的UE请求时间超时,并在判断结果为是的情况下,自行向UE发送第一辅助信息。
具体而言,LMF还可以通过向UE发送询问指令,并根据UE响应的询问结果,确定是否向UE发送第一辅助信息。
需要说明的是,其他基于本实施例思路的,能够实现LMF向UE主动发送第一辅助信息的方式,均在本实施例的保护范围之内。
可选地,所述指定小区至少包括以下其中之一:所述UE所在的服务小区,以及所述UE所在的服务小区的相邻小区。
具体而言,如果UE经过测量只获取到服务小区对应的第一测量信息的话,那么本实施例主要是针对UE所在的服务小区下对UE的定位,即单小区SSB定位。而如果UE经过测量还获取到相邻小区对应的第一测量信息的话,那么本实施例中所应用的方案是针对在多个小区下对UE的定位,即多小区SSB定位。再而,如果UE经过测量只获取到相邻小区对应的第一测量信息的话,那么本实 施例主要是针对的是UE所在的服务小区的相邻小区下对UE的定位。故而,根据实际的使用需求,UE可以使用不同的测量策略,分别对位于不同小区进行测量,以获取不同的第一测量信息。从而实现了对不同小区下对UE的定位。
可选地,所述第一辅助信息还至少包括以下其中之一:所述服务小区的地理坐标,以及所述相邻小区的地理坐标。
可选地,当所述指定小区包括所述相邻小区时,所述第一辅助信息还包括:所述相邻小区的小区标识信息。
可选地,所述第一测量消息包括以下其中之一:所述指定小区的SSB索引,以及SSB中一个或者多个信号的参考信号接收功率(Reference Signal Received Power,RSRP)和参考信号接收质量(Reference Signal Received Quality,RSRQ)。
具体地,在第一测量消息中的所述指定小区的SSB索引是指,所述指定小区的全部SSB索引中的一个或者多个SSB索引。例如,以服务小区为例,如果服务小区中存在8个SSB索引的话,那么第一测量消息中的所述指定小区的SSB索引为这8个SSB索引中的一个或者多个。
可选地,如果UE测量到的测量结果超出所述指定小区中的任意一个SSB时,UE选择所述指定小区中强度最高或者强度大于强度阈值的SSB作为第一测量信息中的所述指定小区的SSB索引。
具体而言,UE根据所搜索到的指定小区的SSB索引和第一辅助信息中的其他信息,还有SSB波束在地理坐标系中覆盖的位置的重叠范围估计UE位置。
具体地,UE可以使用SSB中主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS),物理广播信道(Physical Broadcast Channel,PBCH)和PBCH的解调参考信号(Demodulation Reference Signal,DMRS)全部或者其中某些信号的RSRP和RSRQ来更精确地估算UE位置。
实施例2
在本实施例中提供了一种运行于上述移动终端的UE的定位方法,已经进行过说明的不再赘述。图3是根据本发明实施例的另一种UE的定位方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,LMF接收NG-RAN节点上报的SSB波束轮询信息;
步骤S304,在发起定位请求后,所述LMF获取指定小区的第二测量消息;
步骤S306,根据所述第二测量消息以及所述SSB波束轮询信息,所述LMF确定UE的位置。
可选地,在该SSB波束轮询信息至少包括:发送SSB的子载波间隔和循环前缀配置,SSB波束数量,所述指定小区的全部SSB索引以及SSB波束在地理坐标系中的覆盖角度。可选地,NG-RAN节点在发送至LMF的NRPPa信息中携带该SSB波束轮询信息。
具体地,SSB波束轮询信息可以添加在E-CID MEASUREMENT INITIATION RESPONSE(E-CID测量启动响应)中的E-CID Measurement Result(E-CID测量结果)中。
此外,所述SSB波束轮询信息还可以添加在一个单独上报的定位公共信息中。其中,该定位公共信息至少包括:小区地理位置等信息。
可选地,所述指定小区至少包括以下其中之一:所述UE所在的服务小区,以及所述UE所在的服务小区的相邻小区。
具体而言,如果UE经过测量只获取到服务小区对应的第二测量信息的话,那么本实施例主要是针对UE所在的服务小区下对UE的定位,即单小区SSB定位。而如果UE经过测量还获取到相邻小区对应的第二测量信息的话,那么本实施例中所应用的方案是针对在多个小区下对UE的定位,即多小区SSB定位。再而,如果UE经过测量只获取到相邻小区对应的第二测量信息的话,那么本实施例主要是针对的是UE所在的服务小区的相邻小区下对UE的定位。故而,根据实际的使用需求,UE可以使用不同的测量策略,分别对不同小区进行测量,以获取不同的第二测量信息。从而实现了对不同小区下对UE的定位。
可选地,所述LMF从所述UE和/或NG-RAN节点获取所述第二测量消息。
可选地,LMF至少通过如下两种方式之一获取所述第二测量消息。
方式一:所述LMF向所述UE发送第二辅助信息,其中,所述第二辅助信息用于所述UE对所述服务小区和所述相邻小区的SSB进行测量;所述LMF接收所述UE发送的所述第二测量消息。
方式二:所述UE对所述相邻小区的SSB进行盲检;所述LMF接收所述UE发送的所述第二测量消息。
具体而言,在UE对所述相邻小区的SSB进行盲检时,UE可以在发送的第三辅助信息中携带用于盲检对应的检测规则,以防止LMF无法识别检测结果。
具体地,UE对所述相邻小区的SSB进行检测盲检的规则还可以是LMF与UE在定位之前交互确定的检测规则。
可选地,如果UE测量到的测量结果超出所述指定小区中的任意一个SSB时,UE选择所述指定小区中强度最高或者强度大于强度阈值的SSB作为第二测量信息中的所述指定小区的SSB索引。
可选地,所述第二测量消息包括以下其中之一:所述指定小区的小区标识信息,所述指定小区的SSB索引,以及SSB中一个或者多个信号的RSRP和RSRQ。
实施例3
在本实施例中提供了一种运行于上述移动终端的UE的定位方法,已经进行过说明的不再赘述。图4是根据本发明实施例的再一种UE的定位方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,在发起定位请求后,NG-RAN节点从UE获取服务小区的第三测量消息。
步骤S404,所述NG-RAN节点根据所述NG-RAN节点信息以及所述第三测量消息确定所述UE的位置,其中,所述NG-RAN节点信息至少包括:SSB波束轮询信息。
可选地,所述SSB波束轮询信息至少包括:发送SSB的子载波间隔和循环前缀配置,SSB波束数量,所述指定小区的全部SSB索引以及SSB波束在地理坐标系中的覆盖角度。
可选地,所述NG-RAN节点信息还包括:所述NG-RAN节点的地理位置信息。
可选地,所述第三测量消息至少包括:SSB中一个或者多个信号的RSRP和RSRQ。
可选地,如果UE测量到的测量结果超出所述指定小区中的任意一个SSB时,UE选择所述指定小区中强度最高或者强度大于强度阈值的SSB作为第三测量信息中的所述指定小区的SSB索引。
需要说明的是,如果UE检测到的检测结果超出所述服务小区中的任意一个SSB时,UE选择该服务小区中强度最高的SSB作为所述检测结果对应的SSB。并基于该SSB对应的第三测量消息发送至所述LMF。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括多个指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开多个实施例所述的方法。
为了更好的理解上述实施例中提供的方案,还提供了如下的场景1对上述实施例进行更详尽的说明:
场景1:
基于单小区,通过UE对UE进行定位。图5是根据本发明实施例的一种基于场景1的UE的定位的流程图,如图5所示:
步骤1:NG-RAN node将自身的SSB轮询配置信息发送给LMF。具体地,子载波间隔为120KHz,常规CP,SSB发送周期为5ms,全部SSB索引k 1-k 8,发送k ssb个SSB波束
步骤2:UE发起定位请求。
步骤3:UE通过LPP或者NRPP消息向LMF发送请求第一辅助信息的请求。
步骤:4:LMF通过LPP或者NRPP消息携带的第一辅助信息将SSB轮询配置信息发送给UE。
步骤5:UE在接收到第一辅助消息后,对该UE所在的服务小区的SSB波束进行测量,获取到包括了SSB index为k 3,测得PSS接收能量和接收质量分别为RSRP 1和RSRQ 1的第一测量信息。
步骤6:UE根据SSB轮询配置信息和第一测量信息对该UE的定位结果进行估计。
图6是根据本发明实施例的一种基于SSB波束对UE进行定位的示意图。UE根据SSB轮询配置信息确定了如图6所示的在当前的服务小区中包括了k 1-k 8一共8个SSB波束。UE根据在步骤4中生成的第一测量信息中的SSB index,从而能够确定UE定位于对应编号为k 3的SSB波束上。同时,根据第一测量信息中的RSRP 1和RSRQ 1(图6中通过圆型范围示出),UE可以在SSB波束上能够对UE进行更加精确地定位。
场景2:
基于单小区,通过LMF对UE进行定位。图7是根据本发明实施例的一种基于场景2的UE的定位的流程图,如图7所示:
步骤1:NG-RAN node将自身的SSB轮询配置信息发送给LMF。具体地,子载波间隔为120KHz,常规循环前缀(Cyclic Prefix,CP),SSB发送周期为5ms,全部SSB索引k 1-k 8,发送k ssb个SSB波束。
步骤2:NG-RAN node向UE发起定位请求。
步骤3:UE对cell 1进行测量,获取到的cell 1的第二测量结果至少包括: 定位能力支持使用multi-beam SSB信息的E-CID定位,t 1时刻,UE测量服务小区cell 1的SSB波束,SSB index k 3
步骤4:UE对cell 2进行测量,获取到的cell 2的第二测量结果至少包括:定位能力支持使用multi-beam SSB信息的E-CID定位,t 2时刻,UE测量服务小区cell 2的SSB波束,SSB index k 5
步骤5:UE通过LPP或者NRPP消息将cell 1和cell 2的第二测量信息发送至LMF。
步骤6:LMF根据SSB轮询配置信息和cell 1以及cell 2的第二测量信息对该UE的定位结果进行估计。
图8是根据本发明实施例的另一种基于SSB波束对UE进行定位的示意图。UE根据SSB轮询配置信息确定了如图8所示的在cell 1和cell 2中包括了当前的服务小区中包括了k 1-k 8一共8个SSB波束。UE基于在步骤3中生成的cell 1的第二测量信息中的SSB index k 3以及步骤4中生成的cell 2的第二测量信息中的SSB index k 5,从而能够确定UE定位于cell 1对应编号为k 3的SSB波束和cell 2对应编号为k5的SSB波束的交集(图8中的圆形部分)之上。
图9是根据本发明实施例的再一种基于SSB波束对UE进行定位的示意图。UE根据SSB轮询配置信息确定了如图9所示的在cell 1和cell 2中包括了当前的服务小区中包括了k 1-k 8一共8个SSB波束。如果在cell 1和cell 2的第二测量信息中均设置了如场景1中第一测量消息中的PSS接收能量和接收质量分别为RSRP 1和RSRQ 1的情况下,根据RSRP 1和RSRQ 1(图9中矩形部分),UE可以在cell 1和cell 2的SSB波束上能够对UE进行更加精确地定位。
场景3:
基于单小区,通过NG-RAN node对UE进行定位。图10是根据本发明实施例的一种基于场景3的UE的定位的流程图,如图10所示:
步骤1:NG-RAN node向UE发起定位请求。
步骤2:UE对该UE所在的服务小区的SSB波束进行测量,获取到包括了SSB index为k 3,测得PSS接收能量和接收质量分别为RSRP 1和RSRQ1的第三测量信息。
步骤3:UE通过preamble向NG-RAN node发送携带有SSB index为k 3,测得PSS接收能量和接收质量分别为RSRP 1和RSRQ 1的第三测量信息。
步骤4:NG-RAN node根据自身具备的SSB轮询配置信息(即子载波间隔为120KHz,常规CP,SSB发送周期为5ms,所述指定小区的全部SSB索引k 1-k 8, 发送k ssb个SSB波束)、自身地理位置和第三测量信息对该UE的定位结果进行估计。
需要说明的是,以上实施例只是列举,任何基于上述实施例思路所所处的合理变化或者其他形式的举例均在本实施例的保护范围之内。
实施例4
在本实施例中还提供了一种用户设备UE的定位装置,该装置用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图11是根据本发明实施例的一种用户设备UE的定位装置的结构框图,如图11所示,该装置包括:第一接收模块1102,测量模块1104以及第一定位模块1106。
第一接收模块1102,用于在发起的定位请求后,接收所述LMF发送的第一辅助信息;其中,所述第一辅助信息至少包括:由NG-RAN节点向所述LMF上报的指定小区的SSB波束轮询信息;
测量模块1104,用于对所述指定小区进行测量,并获取第一测量信息;
第一定位模块1106,用于根据所述第一测量信息以及所述第一辅助信息,确定所述UE的位置。
需要说明的是,上述多个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述多个模块以任意组合的形式分别位于不同的处理器中。
实施例5
在本实施例中还提供了另一种用户设备UE的定位装置,该装置用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图12是根据本发明实施例的另一种用户设备UE的定位装置的结构框图,如图12所示,该装置包括:第二接收模块1202,获取模块1204以及第二定位模块1206。
第二接收模块1202,用于接收NG-RAN节点上报的SSB波束轮询信息;
获取模块1204,用于在发起定位请求后,获取指定小区的第二测量消息;
第二定位模块1206,用于根据所述第二测量消息以及所述SSB波束轮询信息,确定UE的位置。
需要说明的是,上述多个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述多个模块以任意组合的形式分别位于不同的处理器中。
实施例6
在本实施例中还提供了再一种用户设备UE的定位装置,该装置用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图13是根据本发明实施例的再一种用户设备UE的定位装置的结构框图,如图13所示,该装置包括:第三接收模块1302以及第三定位模块1304。
第三接收模块1302,用于在发起定位请求后,从UE获取服务小区的第三测量消息;
第三定位模块1304,用于根据所述NG-RAN节点信息以及所述第三测量消息确定所述UE的位置,其中,所述NG-RAN节点信息至少包括:SSB波束轮询信息。
需要说明的是,上述多个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述多个模块以任意组合的形式分别位于不同的处理器中。
实施例7
本公开的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S1,在发起的定位请求后,UE接收LMF发送的第一辅助信息;其中,所述第一辅助信息至少包括:由NG-RAN节点向所述LMF上报的指定小区的SSB波束轮询信息。
S2,所述UE对所述指定小区进行测量,并获取第一测量信息。
S3,根据所述第一测量信息和第一辅助信息,所述UE确定该UE的位置。
或,
S1,LMF接收NG-RAN节点上报的SSB波束轮询信息。
S2,在发起定位请求后,所述LMF获取指定小区的第二测量消息。
S3,根据所述第二测量消息以及所述SSB波束轮询信息,所述LMF确定UE的位置。
或,
S1,在发起定位请求后,NG-RAN节点从UE获取服务小区的第三测量消息。
S2,所述NG-RAN节点根据所述NG-RAN节点信息以及所述第三测量消息确定所述UE的位置,其中,所述NG-RAN节点信息至少包括:SSB波束轮询信息。
可选地,在本实施例中,上述存储介质可以包括:通用串行总线闪存盘(Universal Serial Bus flash disk,U盘)、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等多种可以存储计算机程序的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S1,在发起的定位请求后,UE接收LMF发送的第一辅助信息;其中,所述第一辅助信息至少包括:由NG-RAN节点向所述LMF上报的指定小区的SSB波束轮询信息。
S2,所述UE对所述指定小区进行测量,并获取第一测量信息。
S3,根据所述第一测量信息和第一辅助信息,所述UE确定该UE的位置。
或,
S1,LMF接收NG-RAN节点上报的SSB波束轮询信息。
S2,在发起定位请求后,所述LMF获取指定小区的第二测量消息。
S3,根据所述第二测量消息以及所述SSB波束轮询信息,所述LMF确定UE的位置。
或,
S1,在发起定位请求后,NG-RAN节点从UE获取服务小区的第三测量消息。
S2,所述NG-RAN节点根据所述NG-RAN节点信息以及所述第三测量消息确定所述UE的位置,其中,所述NG-RAN节点信息至少包括:SSB波束轮询信息。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的多个模块或多个步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成一个或多个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于特定的硬件和软件结合。

Claims (23)

  1. 一种用户设备UE的定位方法,包括:
    在UE发起定位请求后,所述UE接收定位管理单元LMF发送的第一辅助信息;其中,所述第一辅助信息包括:由下一代无线接入网络NG-RAN节点向所述LMF上报的指定小区的同步信号块SSB波束轮询信息;
    所述UE对所述指定小区进行测量,并获取第一测量信息;
    根据所述第一测量信息和所述第一辅助信息,所述UE确定所述UE的位置。
  2. 根据权利要求1所述的方法,在所述UE接收所述LMF发送的所述第一辅助信息之前,还包括:
    所述UE向所述LMF发送用于请求所述第一辅助信息的辅助信息请求消息。
  3. 根据权利要求1所述的方法,其中,所述指定小区包括以下至少之一:所述UE所在的服务小区;所述UE所在的服务小区的相邻小区。
  4. 根据权利要求3所述的方法,其中,所述第一辅助信息还包括以下至少之一:所述服务小区的地理坐标;所述相邻小区的地理坐标。
  5. 根据权利要求3所述的方法,其中,在所述指定小区包括所述相邻小区的情况下,所述第一辅助信息还包括:所述相邻小区的小区标识信息。
  6. 根据权利要求1至5任一项所述的方法,其中,所述SSB波束轮询信息包括:
    发送所述SSB的子载波间隔和循环前缀配置,所述SSB波束数量,所述指定小区的全部SSB索引以及所述SSB波束在地理坐标系中的覆盖角度。
  7. 根据权利要求1至5任一项所述的方法,其中,所述第一测量消息包括以下其中之一:
    所述指定小区的SSB索引,以及所述SSB中一个或者多个信号的参考信号接收功率RSRP和参考信号接收质量RSRQ。
  8. 一种用户设备UE的定位方法,包括:
    定位管理单元LMF接收下一代无线接入网络NG-RAN节点上报的同步信号块SSB波束轮询信息;
    在所述NG-RAN节点发起定位请求后,所述LMF获取指定小区的测量消息;
    根据所述测量消息以及所述SSB波束轮询信息,所述LMF确定UE的位置。
  9. 根据权利要求8所述的方法,其中,所述LMF从以下至少之一获取所述 测量消息:所述UE;所述NG-RAN节点。
  10. 根据权利要求9所述的方法,其中,所述指定小区包括以下至少之一:所述UE所在的服务小区;所述UE所在的服务小区的相邻小区。
  11. 根据权利要求10所述的方法,其中,所述LMF从所述UE获取所述测量消息,包括:
    所述LMF向所述UE发送辅助信息,其中,所述辅助信息用于所述UE对所述服务小区和所述相邻小区的SSB进行测量;
    所述LMF接收所述UE发送的所述测量消息。
  12. 根据权利要求10所述的方法,所述LMF从所述UE获取所述测量消息,包括:
    所述LMF接收所述UE发送的所述测量消息,其中,所述测量消息通过所述UE对所述相邻小区的SSB进行盲检确定。
  13. 根据权利要求8至12任一项所述的方法,其中,所述测量消息包括以下其中之一:
    所述指定小区的小区标识信息,所述指定小区的SSB索引,以及所述SSB中一个或者多个信号的参考信号接收功率RSRP和参考信号接收质量RSRQ。
  14. 根据权利要求8至12任一项所述的方法,其中,所述SSB波束轮询信息=包括:
    发送所述SSB的子载波间隔和循环前缀配置,所述SSB波束数量,所述指定小区的全部SSB索引以及所述SSB波束在地理坐标系中的覆盖角度。
  15. 一种用户设备UE的定位方法,包括:
    在下一代无线接入网络NG-RAN节点发起定位请求后,所述NG-RAN节点从UE获取服务小区的测量消息;
    所述NG-RAN节点根据所述NG-RAN节点的信息以及所述测量消息确定所述UE的位置,其中,所述NG-RAN节点的信息包括:同步信号块SSB波束轮询信息。
  16. 根据权利要求15所述的方法,其中,所述测量消息包括:所述SSB中一个或者多个信号的参考信号接收功率RSRP和参考信号接收质量RSRQ。
  17. 根据权利要求15或16所述的方法,其中,所述NG-RAN节点的信息还包括:所述NG-RAN节点的地理位置信息。
  18. 根据权利要求15-17任一项所述的方法,其中,所述SSB波束轮询信息 包括以下至少之一:发送所述SSB的子载波间隔和循环前缀配置,所述SSB波束数量,所述指定小区的全部SSB索引以及所述SSB波束在地理坐标系中的覆盖角度。
  19. 一种用户设备UE的定位装置,位于UE中,包括:
    第一接收模块,设置为在所述UE发起定位请求后,接收定位管理单元LMF发送的第一辅助信息;其中,所述第一辅助信息包括:由下一代无线接入网络NG-RAN节点向所述LMF上报的指定小区的同步信号块SSB波束轮询信息;
    测量模块,设置为对所述指定小区进行测量,并获取第一测量信息;
    第一定位模块,设置为根据所述第一测量信息以及所述第一辅助信息,确定所述UE的位置。
  20. 一种用户设备UE的定位装置,位于定位管理单元LMF,包括:
    接收模块,设置为接收下一代无线接入网络NG-RAN节点上报的同步信号块SSB波束轮询信息;
    获取模块,设置为在所述NG-RAN节点发起定位请求后,获取指定小区的测量消息;
    定位模块,设置为根据所述测量消息以及所述SSB波束轮询信息,确定UE的位置。
  21. 一种用户设备UE的定位装置,位于下一代无线接入网络NG-RAN节点中,包括:
    接收模块,设置为在所述NG-RAN节点发起定位请求后,从UE获取服务小区的测量消息;
    定位模块,设置为根据所述NG-RAN节点的信息以及所述测量消息确定所述UE的位置,其中,所述NG-RAN节点的信息包括:同步信号块SSB波束轮询信息。
  22. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至7,8至14,15至18任一项中所述的方法。
  23. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至7,8至14,15至18任一项中所述的方法。
PCT/CN2019/105427 2018-09-14 2019-09-11 用户设备的定位方法及装置、存储介质和电子装置 WO2020052599A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3112638A CA3112638A1 (en) 2018-09-14 2019-09-11 Positioning method and apparatus for ue, storage medium and electronic device
EP19859752.8A EP3852397A4 (en) 2018-09-14 2019-09-11 METHOD AND APPARATUS FOR POSITIONING USER'S EQUIPMENT, INFORMATION MEDIA AND ELECTRONIC DEVICE
US17/275,747 US11706588B2 (en) 2018-09-14 2019-09-11 Positioning method and apparatus for UE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811076343.0A CN110933741B (zh) 2018-09-14 2018-09-14 用户设备的定位方法及装置
CN201811076343.0 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020052599A1 true WO2020052599A1 (zh) 2020-03-19

Family

ID=69777338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105427 WO2020052599A1 (zh) 2018-09-14 2019-09-11 用户设备的定位方法及装置、存储介质和电子装置

Country Status (5)

Country Link
US (1) US11706588B2 (zh)
EP (1) EP3852397A4 (zh)
CN (1) CN110933741B (zh)
CA (1) CA3112638A1 (zh)
WO (1) WO2020052599A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114126039B (zh) * 2020-08-28 2023-11-03 中国移动通信集团设计院有限公司 一种定位方法、装置及存储介质
CN112333643B (zh) * 2020-11-16 2021-12-31 武汉大学 5g下行信号的无线定位方法、系统、介质及智能终端
WO2023211344A1 (en) * 2022-04-28 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Beam pairing prediction with assistance information

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016138379A1 (en) * 2015-02-27 2016-09-01 University Of Georgia Research Foundation, Inc. Ultra high-speed photonics based radio frequency switching
US20180098279A1 (en) * 2016-10-05 2018-04-05 Qualcomm Incorporated Systems and methods to enable combined periodic and triggered location of a mobile device
US20180199160A1 (en) * 2017-01-09 2018-07-12 Qualcomm Incorporated Systems and methods for supporting control plane location in a fifth generation wireless network

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140073677A (ko) * 2012-12-06 2014-06-17 한국전자통신연구원 다중 빔을 사용하는 통신 시스템에서 단말의 위치 결정 방법
CN103856894B (zh) * 2012-12-06 2019-05-07 北京三星通信技术研究有限公司 基于波束的定位方法及设备
CN103901399B (zh) * 2012-12-24 2015-08-05 北京握奇数据系统有限公司 一种利用无源多波束天线进行定位的方法和系统
CN107431894A (zh) * 2015-03-31 2017-12-01 索尼公司 用于在无线电网络中定位移动终端的方法和设备
US10021667B2 (en) * 2016-06-23 2018-07-10 Qualcomm Incorporated Positioning in beamformed communications
JP2018054416A (ja) * 2016-09-28 2018-04-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 位置推定システム及び位置推定方法
US10547421B2 (en) * 2016-09-30 2020-01-28 Qualcomm Incorporated Scheduling for positioning reference signal (PRS) in narrowband-internet of things (NB-IoT)
CN108337730B (zh) * 2018-02-01 2020-10-23 杭州中科微电子有限公司 一种利用时分同步的旋转波束实现位置定位的方法
US20210149009A1 (en) * 2018-04-05 2021-05-20 Telefonaktiebolaget Lm Ericsson (Publ) Methods to support lte otdoa for nr devices
US11399356B2 (en) * 2018-06-26 2022-07-26 Qualcomm Incorporated Synchronization signal block (SSB)-based positioning measurement signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016138379A1 (en) * 2015-02-27 2016-09-01 University Of Georgia Research Foundation, Inc. Ultra high-speed photonics based radio frequency switching
US20180098279A1 (en) * 2016-10-05 2018-04-05 Qualcomm Incorporated Systems and methods to enable combined periodic and triggered location of a mobile device
US20180199160A1 (en) * 2017-01-09 2018-07-12 Qualcomm Incorporated Systems and methods for supporting control plane location in a fifth generation wireless network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NG Radio Access Network (NG-RAN); Stage 2 functional specification of User Equipment (UE) positioning in NG-RAN (Release 15)", 3GPP TS 38.305 V1.2.0, 24 May 2018 (2018-05-24), pages 1 - 53, XP055694294 *
See also references of EP3852397A4

Also Published As

Publication number Publication date
EP3852397A4 (en) 2021-10-06
EP3852397A1 (en) 2021-07-21
CA3112638A1 (en) 2020-03-19
CN110933741A (zh) 2020-03-27
US11706588B2 (en) 2023-07-18
US20220038857A1 (en) 2022-02-03
CN110933741B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
JP7278395B2 (ja) 位置決定ビーム情報取得方法および装置
US11115901B2 (en) Network access method, network device, and terminal
US11190613B2 (en) Method, device, and computer storage medium for radio connection
RU2684758C2 (ru) Система и способ физического произвольного доступа на основе лепестка диаграммы направленности
WO2017071473A1 (zh) 传输系统信息的方法及基站、终端和系统
US9220081B2 (en) Access point location discovery in unmanaged networks
AU2022201231B2 (en) Data transmission and management for positioning mobile devices
WO2020052599A1 (zh) 用户设备的定位方法及装置、存储介质和电子装置
US11317418B2 (en) Communication method and communication apparatus
WO2018090697A1 (zh) Lmu设备融合的方法、装置和系统
TW201815194A (zh) 通訊方法、終端裝置和網路裝置
CN108738038B (zh) 消息处理方法及装置、第一无线接入网设备
EP3641426B1 (en) Positioning apparatus and method
WO2022161503A1 (zh) 终端的定位方法、装置、设备、存储介质及程序产品
CN108886719A (zh) 一种通信方法及相关设备
RU2712824C1 (ru) Защита от неявного пространственного повторения
WO2018171450A1 (zh) 一种基站间接口建立的方法、第一基站及第二基站
KR20210051835A (ko) Sa 모드에서 핸드오버 방법 및 장치
WO2015074172A1 (zh) 确定进入wifi覆盖范围的方法和装置
CN115150937B (zh) 一种通信方法和装置
WO2024021119A1 (zh) 接入方法、装置、存储介质及芯片
WO2017070956A1 (zh) 一种数据传输方法及装置
WO2024000236A1 (zh) 感知节点的确定方法、装置、设备、系统及介质
WO2018082049A1 (zh) 由低频网络辅助的同步和接入方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859752

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3112638

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019859752

Country of ref document: EP

Effective date: 20210414