WO2020052541A1 - 一种时域资源配置方法及接入网设备 - Google Patents

一种时域资源配置方法及接入网设备 Download PDF

Info

Publication number
WO2020052541A1
WO2020052541A1 PCT/CN2019/105053 CN2019105053W WO2020052541A1 WO 2020052541 A1 WO2020052541 A1 WO 2020052541A1 CN 2019105053 W CN2019105053 W CN 2019105053W WO 2020052541 A1 WO2020052541 A1 WO 2020052541A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
terminal device
resource
uplink
domain resource
Prior art date
Application number
PCT/CN2019/105053
Other languages
English (en)
French (fr)
Inventor
张芳
王成毅
徐凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020217009918A priority Critical patent/KR20210055065A/ko
Priority to EP19861155.0A priority patent/EP3840503A4/en
Publication of WO2020052541A1 publication Critical patent/WO2020052541A1/zh
Priority to US17/197,674 priority patent/US11902840B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to the field of communications, and in particular, to a time domain resource configuration method and an access network device.
  • a guard interval is a guard interval set for uplink and downlink switching. If the downlink transmission system of the base station is transmitting signals while the uplink transmission system is receiving signals, since TDD uses uplink and downlink co-frequency transmission, the uplink transmission system will be severely interfered. At the same time, from transmitting to receiving, the power of the transmitter does not disappear immediately, but there is a decline process, which cannot work within this time. Similarly, the same goes from transmitting to transmitting. The transmitter raises the power. It also takes time, and it cannot work within this time.
  • the length of the GP can be configured. If the configuration is reasonable, the GP can effectively avoid interference between uplink and downlink signals.
  • the GP configuration is related to the radius of the cell, that is, the configuration of the GP is related to the coverage of the cell.
  • the protocol TS36.213 defines the length of the GP under different special subframe configuration ratios.
  • the theoretical maximum coverage of the corresponding cell is 5km to 100km, as shown in Table 1 below. Choose different GP configurations according to the actual application scenario.
  • the GP configuration in the LTE system is a static configuration at the cell level. For example, more than 95% of base stations in the existing network choose a special subframe configuration ratio of 7. In order to avoid the interference problem caused by the atmospheric waveguide, a small number of base stations choose a special subframe configuration ratio of 5. This GP configuration is applicable to all terminal devices and will not change in general.
  • the protocol supports flexible configuration of time domain resources, but how to configure a suitable GP resource for a terminal is an urgent problem.
  • the embodiments of the present application provide a time domain resource resource configuration method and an access network device, which are used to implement UE-level semi-static or dynamic configuration of GP and flexible and dynamic uplink and downlink resource allocation to effectively use resources.
  • the first aspect of the embodiments of the present application provides a time domain resource configuration method.
  • the method may be used for an access network device or a chip in the access network device, and may include: the access network device may determine a terminal device.
  • the required guard interval GP resource, the GP resource required by the terminal device is the GP resource required for the uplink synchronization of the terminal device with the access network device; sending the first time domain resource configuration information to the terminal device, the first time The domain resource configuration information indicates the GP resources required by the terminal device.
  • guard interval GP resource required by the terminal device is the minimum GP resource required when the uplink transmission of the terminal device is not interfered by the downlink transmission of the terminal device, and the protection required by the terminal device Interval GP resources can also ensure that the terminal device is uplink synchronized with other terminal devices in the same cell.
  • the access network device may configure the first time domain resource configuration information for the terminal device according to the GP resources required by the terminal device, and the first time domain resource configuration information may be used to indicate that the terminal device needs GP resources. That is, the access network device can flexibly send the first time domain resource configuration information to the terminal device according to the GP resources required by the terminal device, thereby submitting the resource utilization rate.
  • determining the GP resource required by the terminal device may include: determining an uplink time advance TA measurement value of the terminal device; and determining a GP according to the uplink TA measurement value of the terminal device. Length; determine the GP resource according to the GP length.
  • the TA measurement value indicates the minimum one-way delay required for the signal to reach the access network device from the terminal device, and the loopback delay of the signal from the target terminal device to the access network device is twice the TA measurement value, plus Factors such as the switching time required for uplink and downlink switching of the uplink terminal device can be used to obtain the minimum time required to ensure the target terminal device's signal loopback.
  • Dividing by the symbol length can obtain the minimum number of GP symbols required by the target terminal device.
  • an access network device determines a GP resource required by a terminal device, so that the logic of the technology of the present application is more clear and the solution is more complete.
  • the method may further include: determining a GP resource required by a cell where the terminal device is located, and the GP resource required by the cell is a remote terminal device and the access network device. GP resources required for uplink synchronization; wherein the first time domain resource configuration information indicates the GP resources required by the cell, and the GP resources required by the cell include the GP resources required by the terminal device. It can be understood that the access network device determines the GP resources required by the cell where the terminal device is located. Then, the above-mentioned first time domain resource configuration information may indicate the GP resources required by the cell. There is one more option for the first time domain resource configuration information of the terminal device.
  • determining the GP resources required by the cell where the terminal device is located may include, but is not limited to, the following implementations: determining the first GP length according to the maximum coverage distance of the cell; Determine the GP resource required by the cell where the terminal device is located according to the first GP length; or determine the second GP length according to the uplink and downlink subframe ratio of the cell; determine the required cell by the terminal device according to the second GP length Or the first GP length is determined according to the maximum coverage distance of the cell; the second GP length is determined according to the uplink-downlink subframe ratio of the cell; the larger of the first GP length and the second GP length is determined The GP length determines the GP resources required by the cell where the terminal device is located.
  • an access network device determines a GP resource required by a cell where a terminal device is located, which increases the feasibility of the solution.
  • the method may further include: sending the second time domain resource configuration information to the terminal device, where the second time domain resource configuration information is used to indicate that the available time domain resources are downlink. Domain resources; where the available time domain resources are some or all of the GP resources required by the cell where the terminal device is located, except for the GP resources required by the terminal device.
  • the access network device may send the second time domain resource configuration information to the terminal device in addition to the first time domain resource configuration information.
  • the second time domain resource configuration information can be used to indicate that the available time domain resources are downlink time domain resources, that is, the downlink time domain resources that can be called by the terminal device are relatively increased, which can improve communication efficiency and increase the resource availability rate.
  • the method may further include: sending the second time domain resource configuration information to the terminal device, where the second time domain resource configuration information is used to indicate that the available time domain resources are uplink. Domain resources; where the available time domain resources are some or all of the GP resources required by the cell where the terminal device is located, except for the GP resources required by the terminal device.
  • the access network device may send the second time domain resource configuration information to the terminal device in addition to the first time domain resource configuration information.
  • the second time domain resource configuration information can be used to indicate that the available time domain resources are uplink time domain resources, that is, the uplink time domain resources that can be called by the terminal device are relatively increased, which can improve communication efficiency and increase the resource availability rate.
  • the method before sending the second time domain resource configuration information to the terminal device, the method may further include: sending instruction information to the terminal device, where the instruction information is used to indicate Sending, by the terminal device, an uplink signal on the available time domain resource; performing interference measurement on the available time domain resource; and sending the second time domain resource configuration information to the terminal device includes: when the available time domain resource is not interfered Or when the received interference measurement value is less than the threshold, sending the second time domain resource configuration information to the terminal device.
  • the access network device before the access network device sends the second time domain resource configuration information to the terminal device, it is necessary to perform interference measurement on the available time domain resources.
  • the second time domain resource configuration information is sent to the terminal device.
  • the time domain resource availability rate indicated by the second time domain resource configuration information sent by the access network device to the terminal device is higher.
  • the method further includes: sending instruction information to the terminal device, where the instruction information is used to indicate The terminal device sends an uplink signal on the uplink time domain resource; performs interference measurement on the uplink time domain resource by using the uplink signal; and when the interference measurement value of the uplink time domain resource is greater than a threshold, the uplink time domain resource is not in the uplink time domain Resources for uplink scheduling.
  • the access network device when the interference measurement value of the uplink time domain resource is greater than the threshold, the access network device does not perform uplink scheduling on the uplink time domain resource, that is, the access network device does not allocate uplink resources on the uplink time domain resource.
  • the method may further include: determining a GP resource required by the cell, and the GP resource required by the cell is required for uplink synchronization between the remote terminal device and the access network device. GP resources.
  • the GP resource required by the cell is also the GP resource required by the cell where the terminal device is located.
  • the method may further include: sending instruction information to the terminal device, where the instruction information is used to instruct the terminal device to send an uplink signal on an available time domain resource;
  • the uplink signal performs uplink interference measurement on the available time domain resources, and the available time domain resources are some or all of the GP resources required by the terminal device's cell except the GP resources required by the terminal device; when When the available time domain resource is interfered with or the interference measurement value is greater than a threshold, the first time domain resource configuration information is further used to indicate that the available time domain resource is a GP resource.
  • the first time domain resource configuration information is further used to indicate that the available time domain resource is a GP resource, that is, a flexible resource.
  • the method may further include: sending third time domain resource configuration information to the terminal device, where the third time domain resource configuration information is used to indicate that the available time domain resources are uplink time domains Resources or downlink time domain resources; wherein the available time domain resources are some or all of the GP resources required by the cell where the terminal device is located, except for the GP resources required by the terminal device.
  • the available time domain resource may be configured as an uplink time domain resource or a downlink time domain resource, and may be flexibly adjusted according to actual needs.
  • the method may further include: sending instruction information to the terminal device, The indication information is used to instruct the terminal device to send an uplink signal on the uplink time domain resource; perform interference measurement on the uplink time domain resource by using the uplink signal; when the uplink time domain resource is interfered with or received When the interference measurement value is greater than the threshold, uplink scheduling in this uplink time domain resource is not performed.
  • the access network device when the interference measurement value of the uplink time domain resource is greater than the threshold, the access network device does not perform uplink scheduling on the uplink time domain resource, that is, the access network device does not allocate uplink resources on the uplink time domain resource.
  • the second aspect of the embodiments of the present application provides an access network device having a function of realizing UE-level semi-static or dynamic configuration of GP and flexible and dynamic uplink and downlink resource allocation, and effectively using resources.
  • This function can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the access network device may include:
  • a processing module configured to determine a guard interval GP resource required by a terminal device, where the GP resource required by the terminal device is a GP resource required for uplink synchronization between the terminal device and an access network device;
  • the transceiver module is configured to send first time domain resource configuration information to the terminal device, where the first time domain resource configuration information indicates a GP resource required by the terminal device.
  • the processing module is specifically configured to determine an uplink time advance TA measurement value of the terminal device; determine a GP length according to the uplink TA measurement value of the terminal device; and determine the GP resource according to the GP length.
  • the processing module is further configured to determine a GP resource required by a cell in which the terminal device is located, where the GP resource required by the cell is a GP resource required for uplink synchronization between a remote terminal device and the access network device;
  • the first time domain resource configuration information indicates a GP resource required by the cell, and the GP resource required by the cell includes a GP resource required by the terminal device.
  • the processing module is specifically configured to determine a first GP length according to a maximum coverage distance of the cell; determine a GP resource required by a cell where the terminal device is located according to the first GP length; or,
  • the processing module is specifically configured to determine a second GP length according to an uplink-downlink subframe ratio of the cell; determine a GP resource required by a cell where the terminal device is located according to the second GP length; or,
  • the processing module is specifically configured to determine a first GP length according to a maximum coverage distance of the cell; determine a second GP length according to an uplink-downlink subframe ratio of the cell; and according to the first GP length and the first GP length The larger GP length of the two GP lengths determines the GP resources required by the cell where the terminal device is located.
  • the transceiver module is further configured to send second time domain resource configuration information to the terminal device, where the second time domain resource configuration information is used to indicate that the available time domain resource is a downlink time domain resource;
  • the domain resources are some or all of the GP resources required by the cell where the terminal device is located, except for the GP resources required by the terminal device.
  • the transceiver module is further configured to send second time domain resource configuration information to the terminal device, where the second time domain resource configuration information is used to indicate that the available time domain resource is an uplink time domain resource; where the available time The domain resources are some or all of the GP resources required by the cell where the terminal device is located, except for the GP resources required by the terminal device.
  • the transceiver module is further configured to send instruction information to the terminal device, where the instruction information is used to instruct the terminal device to send an uplink signal on the available time domain resources;
  • the processing module is further configured to perform interference measurement on the uplink time domain resource by using the uplink signal;
  • the transceiver module is specifically configured to send the second time domain resource configuration information to the terminal device when the available time domain resource is not interfered or the received interference measurement value is less than a threshold.
  • the transceiver module is further configured to send instruction information to the terminal device, where the instruction information is used to instruct the terminal device to send an uplink signal on the uplink time domain resource;
  • the processing module is further configured to perform interference measurement on the uplink time domain resource by using the uplink signal; when the interference measurement value of the uplink time domain resource is greater than a threshold, uplink scheduling is not performed on the uplink time domain resource.
  • the processing module is further configured to determine a GP resource required by the cell, and the GP resource required by the cell is a GP resource required for uplink synchronization between the remote terminal device and the access network device.
  • the transceiver module is further configured to send instruction information to the terminal device, where the instruction information is used to instruct the terminal device to send an uplink signal on an available time domain resource;
  • the processing module is further configured to perform uplink interference measurement on the available time domain resources by using the uplink signal.
  • the available time domain resources are GP resources required by a cell where the terminal device is located, except for the terminal device. Some or all of the resources other than the required GP resources; when the available time domain resource is interfered with or the measured interference value is greater than a threshold, the first time domain resource configuration information is further used to indicate that the available time domain resource is GP resources.
  • the transceiver module is further configured to send third time domain resource configuration information to the terminal device, where the third time domain resource configuration information is used to indicate that the available time domain resource is an uplink time domain resource or a downlink time domain resource;
  • the available time domain resources are some or all of the GP resources required by the cell where the terminal device is located, except for the GP resources required by the terminal device.
  • the third time domain resource configuration information is used to indicate that the available time domain resource is an uplink time domain resource
  • the transceiver module is further configured to send instruction information to the terminal device, where the instruction information is used to instruct the terminal device to send an uplink signal on the uplink time domain resource;
  • the processing module is further configured to perform interference measurement on the uplink time domain resource by using the uplink signal; when the uplink time domain resource is interfered with or an interference measurement value is greater than a threshold, the uplink time domain resource is not in the uplink time domain resource Perform uplink scheduling.
  • a third aspect of the embodiments of the present application provides an access network device, which may include:
  • the processor optionally, further includes a memory, a transceiver, and the memory, the transceiver, and the processor are connected through a bus;
  • the memory is configured to store an operation instruction
  • the processor of the access network device may implement each step of the method of the first aspect by calling a program in the memory.
  • the transceiver may complete the remaining steps of the method of the first aspect through the transceiver of the processor of the access network device.
  • the processor is configured to determine a guard interval GP resource required by a terminal device, and the GP resource required by the terminal device is a GP resource required for uplink synchronization between the terminal device and an access network device;
  • the transceiver is configured to send first time domain resource configuration information to the terminal device, where the first time domain resource configuration information indicates a GP resource required by the terminal device.
  • a fourth aspect of the embodiments of the present application provides a wireless communication device, which may include:
  • At least one processor, memory, transceiver circuit and bus system said processor, said memory, said transceiver circuit being coupled through said bus system, said wireless communication device communicating with terminal equipment through said transceiver circuit,
  • the memory is configured to store program instructions
  • the at least one processor is configured to execute the program instructions stored in the memory, so that the wireless communication device executes the method described in any one of the methods in the first aspect of the embodiments of the present application. Describe the part of access network equipment operation.
  • the wireless communication device may be either an access network device or a system chip applied to perform corresponding functions in the access network device.
  • the fifth aspect of the embodiments of the present application provides a computer-readable storage medium.
  • the technical solution of the present invention is essentially a part that contributes to the existing technology, or all or part of the technical solution may be implemented in software.
  • the form of the production port is reflected in that the computer software product is stored in a storage medium for storing the computer software instructions used by the above-mentioned access network device, which contains instructions for implementing the above-mentioned first aspect and any of the optional aspects of the first aspect.
  • the storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM, read-only memory), a random access memory (RAM, random access memory), a magnetic disk or an optical disk, and other media that can store program codes.
  • a computer program product includes instructions that, when run on a computer, causes the computer to execute as described in the first aspect of the present application or any optional implementation manner of the first aspect. Methods.
  • FIG. 1 is a system architecture diagram applied to an embodiment of the present application
  • FIG. 2 is a schematic diagram of cell-level semi-static configuration information according to an embodiment of the present application.
  • FIG. 3A is an example diagram of cell-level semi-static configuration information in an embodiment of the present application.
  • FIG. 3B is another example diagram of cell-level semi-static configuration information in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of a time domain resource configuration method according to an embodiment of the present application.
  • 5A is another schematic diagram of a time domain resource configuration method according to an embodiment of the present application.
  • FIG. 5B is a schematic diagram of time advancement in the embodiment of the present application.
  • FIG. 6 is another schematic diagram of a time domain resource configuration method according to an embodiment of the present application.
  • FIG. 7 is another schematic diagram of a time domain resource configuration method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a current slot ratio of a terminal device in an embodiment of the present application.
  • FIG. 9 is another schematic diagram of a time domain resource configuration method according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a current slot ratio of a terminal device in an embodiment of the present application.
  • 11 is a schematic diagram of an embodiment of an interference coordination method for uplink and downlink resources according to an embodiment of the present application
  • FIG. 12A is a schematic diagram of an uplink interference symbol in an embodiment of the present application.
  • FIG. 12B is a schematic diagram of uplink interference symbols in the embodiment of the present application.
  • FIG. 13 is a schematic diagram of another embodiment of an interference coordination method for uplink and downlink resources according to an embodiment of the present application.
  • 14A is a schematic diagram of an uplink interference symbol in an embodiment of the present application.
  • 14B is a schematic diagram of an uplink interference symbol in an embodiment of the present application.
  • 15 is a schematic diagram of an embodiment of an access network device according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a communication device according to an embodiment of the present application.
  • the communication system provided in the embodiment of the present application includes an access network device and at least one terminal device, where the access network device can communicate with the at least one terminal device.
  • the access network device includes an access network device 101
  • at least one terminal device includes a terminal device 102 and a terminal device 103
  • the terminal device 102 communicates with the access network device 101
  • the terminal device 103 communicates with the access network
  • the device 101 communicates.
  • the access network equipment and terminal equipment included in the communication system shown in FIG. 1 are only examples. In the embodiment of the present application, the type and number of network elements included in the communication system, And the connection relationship between network elements is not limited to this.
  • the access network device may be a device on the access network side to support the terminal access to the communication system, for example, it may be an LTE system, a next generation (mobile communication) (nextradio (NR) system), or an authorized auxiliary access long-term evolution (authorized) Evolutionary base station (evolutionary node B, referred to as eNB or e-NodeB) macro base station, micro base station (also referred to as "small base station"), pico base station, access point in long-term evolution (LAA-LTE) system An access point (AP), a transmission point (TP), or a new generation base station (gNodeB).
  • a terminal device is a device that provides voice or data connectivity to users. For example, it can be called user equipment (UE), mobile station (MS), mobile terminal (mobile terminal), or smart terminal.
  • the terminal device can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the terminal device can be a mobile phone (or a "cellular" phone), a computer with a mobile terminal, etc.
  • the terminal device can also be a portable, pocket, handheld, computer-built or vehicle-mounted mobile device, and a future NR network Terminal equipment in the network, they exchange voice or data with the wireless access network.
  • the terminal device may further include a relay relay, and any device that can perform data communication with the base station may be regarded as a terminal device.
  • the communication system in the embodiment of the present application may be various communication systems, for example, a global mobile communication (GSM) system, a code division multiple access (CDMA) system, and a broadband code division multiple access (wideband code division multiple access (WCDMA) system, general packet radio service (GPRS), long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunications System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, 5th generation (5G) System or new radio (NR).
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G 5th generation
  • 5G 5th generation
  • NR new radio
  • the access network device may configure the terminal with time domain resources in the form of downlink resources-flexible resources-uplink resources.
  • the access network device may configure time domain resources for the terminal by issuing time domain resource configuration information.
  • the time domain resource configuration information may indicate downlink resources-flexible resources-uplink resources.
  • the time domain resource configuration information may be cell-level half.
  • flexible resources can be used for the configuration of guard intervals (GP), and GP can be understood as used for uplink and downlink switching. Guard interval.
  • GP resources can be called unknown resources or flexible resources, and GP symbols can be called flexible symbols.
  • the time domain resources configured by the cell-level semi-static configuration information are defined by five parameters: X, x1, x2, y1, and y2.
  • FIG. 2 it is a schematic diagram of cell-level semi-static configuration information.
  • X is the matching period
  • x1 is the number of consecutive full downlink (D) time slots in the matching period
  • x2 is the number of downlink (DL) symbols after x1 full downlink time slots
  • y1 is Number of consecutive full uplink (U) time slots in the matching period
  • y2 indicates the number of uplink (UL) symbols in front of y1 full uplink time slots
  • the remaining symbols are unknown resources
  • the user equipment (userequipment, UE) -level semi-static configuration information or user-level dynamic configuration information further configures the unknown resource as a downlink resource, an uplink resource, or an unknown resource to implement dynamic TDD.
  • the reference subcarrier interval is 30 kHz
  • time slot 1 and time slot 2 are full D time slots
  • time slot 1 and time slot 2 are full D time slots
  • the first 8 symbols of time slot 3 are downlink symbols
  • time slot 3 The 2 symbols are uplink symbols
  • the 4 symbols of slot 3 are flexible symbols
  • the slot 4 is a full U slot
  • the middle 4 symbols of slot 3 can be used for the GP.
  • the reference subcarrier interval is 30 kHz
  • the first 7 time slots namely time slot 0, time slot 1, time slot 2, time slot 3, time slot 4, time slot 5, time slot 6 are Full D time slot
  • the 8th time slot that is, the first 6 symbols of time slot 7 are downlink symbols
  • the last 4 symbols of time slot 7 are uplink symbols
  • the middle 4 symbols of time slot 7 are flexible symbols
  • time slot 7 The middle 4 symbols are used for GP
  • the last 2 time slots namely time slot 8 and time slot 9 are full U time slots.
  • the GP resource may be configured through cell-level semi-static signaling, user-level semi-static signaling, or user-level dynamic information.
  • Different terminals have different requirements for the length of the GP resource.
  • different terminals have different requirements for the length of the GP resource due to different geographical locations. For example, for most near-end terminal devices, because the time taken for data to pass from the access network device to the near-end terminal device is short, the length of the GP resource required by the near-end terminal device is short; for most far-end terminal devices In other words, because the time taken for data to travel from the access network device to the remote terminal device is shorter, the length of the GP resource required by the near-end terminal device is longer. How to configure appropriate GP resources for the terminal is an urgent problem.
  • the embodiments of the present application provide a solution for allocating GP resources to a terminal according to the needs of the terminal.
  • This solution can enable the terminal to use resources other than GP resources for uplink or downlink, and provide resource utilization. For example, for a near-end terminal device, more GP resources are not needed, and more uplinks are required. Domain resources or downlink time domain resources. For example, the near-end terminal device performs downlink multi-stream transmission. In order to obtain channel information in a more timely and accurate manner, more uplink time domain resources are required to send SRS.
  • the cell-level semi-static configuration information is used to indicate that the symbols included in a time domain resource are uplink symbols, downlink symbols, or flexible symbols.
  • the configuration information is valid for the terminals in the cell or the configuration information can be sent to the cell.
  • Terminal, semi-static can be understood as the configuration information can be issued through high-level signaling, this high-level signaling can be understood as radio resource control (radio resource control (RRC) layer signaling, for example, the high-level signaling can be a system message
  • RRC radio resource control
  • the access network device can broadcast a system message, and the system message can carry cell-level semi-static configuration information.
  • the user-level semi-static configuration information is used to indicate that the symbols included in a time domain resource are uplink symbols, downlink symbols, or flexible symbols.
  • the user level can be understood as the configuration information is valid for a specific terminal or the configuration information can be sent to a specific terminal.
  • Static can be understood as the configuration information can be delivered through high-level signaling.
  • High-level signaling can be understood as radio resource control (RRC) layer signaling.
  • RRC radio resource control
  • the high-level signaling can be an RRC message and access network equipment. An RRC message may be sent to the terminal, and the RRC message may include terminal-level semi-static configuration information.
  • User-level dynamic configuration information is used to indicate that the symbols included in a time-domain resource are uplink symbols, downlink symbols, or flexible symbols.
  • User-level configuration information can be understood to be valid for specific terminals or the configuration information can be sent to specific terminals. It is understood that the configuration information can be delivered through physical layer information.
  • the physical layer signaling can be downlink control information (DCI), and the access network device can use the physical downlink control channel (PDCCH). Send the DCI.
  • the DCI may include terminal-level dynamic configuration information.
  • the PDCCH may be a group common (GC) PDCCH.
  • the foregoing cell-level semi-static configuration information, user-level semi-static configuration information, and user-level dynamic configuration information may be collectively referred to as time domain resource configuration information.
  • GP resources can be called flexible time domain resources or unknown time domain resources
  • GP symbols can be called flexible symbols or unknown symbols.
  • the largest and smallest are only a name, which is only for distinguishing different nouns and does not play a limiting role.
  • FIG. 4 is a schematic diagram of a time domain resource configuration method according to an embodiment of the present application. This method can be used for an access network device or a chip in an access network device. As shown in FIG. 4: S401: Determine the GP resources required by the cell where the terminal device is located.
  • the GP resources required by the cell are the GP resources required to ensure uplink synchronization after the uplink and downlink switching between the terminal device located at the coverage edge of the cell and the access network device.
  • S401 can be implemented in the following ways:
  • S401 is optional.
  • S402 Determine a guard interval GP resource required by the terminal device.
  • the GP resource required by the terminal device is a GP resource required to ensure uplink synchronization after the terminal device and the access network device switch between uplink and downlink.
  • S402 may be implemented by: determining an uplink time TA measurement value of the terminal device in advance, determining a GP length according to the uplink TA measurement value of the terminal device, and determining the GP resource according to the GP length .
  • S403 Send the first time domain resource configuration information to the terminal device.
  • the first time domain resource configuration information indicates a GP resource required by the cell, and the GP resource required by the cell includes a GP resource required by a terminal device.
  • the first time domain resource configuration information indicates a GP resource required by the terminal device.
  • the GP resource required by the cell is the GP resource required to ensure uplink synchronization between the terminal device at the edge of the cell coverage and the access network device after uplink and downlink switching, that is, the GP required by each terminal device in the cell coverage The largest GP resource among resources.
  • the first time domain resource configuration information indicates the GP resources required by the cell, and it can be understood that the first time domain resource configuration information indicates the GP resources required by each terminal in the cell.
  • the first time domain resource configuration information indicates the GP time domain resource, which may be implicitly indicated.
  • the first time domain resource configuration information may indicate the uplink time domain resource and the downlink time domain resource.
  • the domain resource configuration information does not indicate that the uplink time domain resource or the downlink time domain resource is the flexible time domain resource.
  • the access network device can negotiate with the terminal device and the time domain resource configuration information is not indicated as the uplink time domain resource.
  • the time domain resources of the downlink time domain resources are flexible time domain resources.
  • the first time domain resource configuration information indicates the GP time domain resource, and the indication may be displayed.
  • the first time domain resource configuration information directly indicates that a certain time domain resource is the GP time domain resource.
  • S404 Send the second time domain resource configuration information to the terminal device.
  • the second time domain resource configuration information is used to indicate that the available time domain resources are downlink time domain resources
  • the second time domain resource configuration information is used to indicate that the available time domain resources are uplink time domain resources
  • the available time domain resources are some or all of the GP resources required by the cell except the GP resources required by the terminal device.
  • the second time domain resource configuration information may indicate that some of the available time domain resources are uplink time domain resources, and some of the available time domain resources are downlink time domain resources.
  • the method may further include the following steps:
  • the method may further include the following steps:
  • the sending the second time domain resource configuration information to the terminal device includes:
  • the second time domain resource configuration information is sent to the terminal device.
  • the method may further include the following steps:
  • the channel quality indication information is channel quality indication (channel quality indication).
  • the method may further include the following steps:
  • the channel quality indication information is channel quality indication (channel quality indication).
  • the method may further include:
  • the first time domain resource configuration information is further used to indicate that the available time domain resource is a GP resource.
  • the method may further include:
  • the channel quality indication information is channel quality indication (channel quality indication).
  • the method may further include:
  • the terminal device Sending third time domain resource configuration information to the terminal device, where the third time domain resource configuration information is used to indicate that the available time domain resource is an uplink time domain resource or a downlink time domain resource;
  • the available time domain resources are some or all of the GP resources required by the cell where the terminal device is located, except for the GP resources required by the terminal device.
  • the method when the third time domain resource configuration information is used to indicate that the available time domain resource is an uplink time domain resource, the method further includes:
  • the uplink time domain resource is interfered with or the interference measurement value is greater than a threshold, the uplink time domain resource is not scheduled.
  • the method further includes, when the third time domain resource configuration information is used to indicate that the available time domain resource is a downlink time domain resource, the method further includes:
  • the channel quality indication information is channel quality indication (channel quality indication).
  • the access network device may be the access network device 101
  • the terminal device may be the terminal device 102 or the terminal device 103, which is convenient for description.
  • the access network device 101 and the terminal device 102 are used as examples for description below.
  • a schematic diagram of a method for configuring time domain resources in an embodiment of the present application includes:
  • the access network device 101 determines a maximum number of GP symbols required by a cell.
  • the maximum number of GP symbols required by a cell can be understood as ensuring that the access network device 101 receives the uplink signal of the farthest terminal device, and the number of GP symbols required by the farthest terminal device, or it can be understood as guaranteeing ,
  • the access network device 101 can correctly receive the number of GP symbols required for the uplink transmission signal of the farthest terminal device, or it can be understood as the GP required to ensure uplink synchronization after the terminal device and the access network device switch between uplink and downlink Number of symbols.
  • the cell may be one cell, two cells, or more cells provided by the access network device 101.
  • the access network device 101 provides a cell 1, and the terminal device 102 and the terminal device 103 in the cell 1.
  • the farthest terminal can be understood as a terminal at the edge of cell coverage.
  • the maximum number of GP symbols may be determined according to a maximum coverage distance of a cell (for convenience of description below, the maximum number of GP symbols required by a cell is referred to as G_cell).
  • M is the sum of the terminal uplink and downlink handover delay and TA offset delay.
  • the terminal uplink and downlink handover delay in NR can be 10us.
  • the delay of the TA offset can be 13us, the delay of the uplink and downlink switching in the LTE terminal can be 17us, and the delay of the TA offset can be 20us.
  • the GP length is then divided by the symbol length to get the number of GP symbols.
  • Table 2 is an example of the maximum coverage distance and the maximum number of GP symbols in a cell.
  • the access network device 101 can determine whether the LTE uplink and downlink subframe allocation has been sent to the terminal device in the cell. If there is, the access network device 101 can directly configure the uplink and downlink subframe allocation based on LTE.
  • the access network device 101 determines the maximum GP resource required by the cell.
  • S501 and S401 can refer to each other.
  • the access network device 101 sends time domain resource configuration information to the terminal 102, where the time domain resource configuration information indicates a maximum GP resource required by the cell.
  • the time domain resource configuration information may be cell-level semi-static configuration information.
  • the access network device 101 may determine the length of the GP resource according to the maximum number of cell GP symbols, and then determine the cell-level semi-static configuration information, for example, determine the cell-level semi-static configuration information x1, x2, and y1. And the value of y2.
  • the terminal can receive cell-level semi-static configuration information and then configure GP resources.
  • the access network device 101 determines a minimum number of GP symbols required by the terminal device 102.
  • the minimum number of GP symbols required by the terminal device 102 can be understood to ensure that the access network device 101 can correctly receive the uplink signal from the user of the terminal 102, or can be understood to ensure that the access network device 101 can correctly receive the terminal after the uplink and downlink switching.
  • the number of GP symbols required for the uplink transmission signal of the device 102 may be understood as the number of GP symbols required to ensure uplink synchronization after the terminal device 102 and the access network device 101 switch between uplink and downlink.
  • the access network device 101 may determine the minimum number of GP symbols G2 required by the terminal device 102 according to the uplink TA measurement result of the terminal device 102. For example, the access network device 101 measures the uplink reference signal sent by the terminal device 102, and calculates the TA measurement value of the terminal device 102. The TA measurement value indicates the one-way minimum delay required for the signal to reach the access network device 101 from the terminal device 102. The loopback delay of the signal from the terminal device 102 to the access network device 101 is twice the TA measurement value. Yes, it can be added with the switching time required for the uplink and downlink switching of the terminal device 102 and the access network device 101 up and down. One or more of the switching times required for row switching can obtain the minimum time required to ensure the signal loopback of the terminal device 102, and dividing the symbol length can obtain the minimum number of GP symbols required by the terminal device 102.
  • arrow 1 represents the one-way delay between the access network device 101 and the terminal device 102
  • arrow 2 represents the minimum time required for the uplink and downlink switching of the terminal device 102 and the uplink and downlink of the access network device 101
  • the time required for the handover for example, the time required for the uplink / downlink handover of the access network device 101 may be a time advance offset (TA offset) delay.
  • the GP length corresponding to the minimum number of GP symbols can be 2 * one-way delay (arrow 1) + the minimum time required for uplink / downlink switching of terminal device 102 and the time required for uplink / downlink switching of access network device 101 (arrow 2 ).
  • Table 3 is an example of a TA measurement value and a minimum number of GP symbols of a terminal device.
  • the minimum number of GP symbols required by the terminal device 102 is 1.
  • the minimum required GP symbol is 102.
  • the number of GP symbols is two.
  • the minimum number of GP symbols required by the terminal device 102 is three.
  • the initial TA measurement value may be obtained by measuring a Preamble sequence in a physical random access channel (physical random access channel (PRACH) channel).
  • PRACH physical random access channel
  • the TA measurement value may be obtained by measuring the SRS reference signal.
  • the initial TA measurement value may be adjusted by updating the TA measurement value by measuring the SRS reference signal.
  • the access network device 101 calculates the TA measurement value of the terminal device 102, and may also measure the DMRS (Demodulation RS) on the physical uplink shared channel (PUSCH) channel. Tuning reference signal).
  • DMRS Demodulation RS
  • PUSCH physical uplink shared channel
  • the access network device 101 determines the minimum number of GP symbols required by the terminal device 102, and may determine the minimum GP resource required by the terminal device 102.
  • S503 can cross-reference with S402.
  • the access network device 101 determines the number of newly added uplink symbols or the number of newly added downlink symbols of the terminal device 102 according to the maximum number of GP symbols in the cell and the minimum number of GP symbols required by the terminal device 102.
  • the access network device 101 may determine some or all of the symbols corresponding to the maximum number of GP symbols minus the minimum number of GP symbols as new uplink symbols or new Down symbol.
  • the access network device 101 determines the newly added downlink symbol or newly added terminal device 102 according to the demand status of the system's uplink and downlink physical channels and signal physical resources, and the maximum number of GP symbols and the minimum number of GP symbols Up symbol.
  • S5A05-S5A07 is the first implementation manner in a scenario where uplink resources are limited:
  • the access network device 101 After determining the number of uplink symbols that can be increased, the access network device 101 determines updated time domain resource configuration information of the terminal device 102.
  • S5A05 can be cross-referenced with S404.
  • S5A06 Send the updated time domain resource configuration information to the terminal device 102.
  • the access network device 101 may send a time domain resource configuration through UE-level RRC signaling, where the time domain resource configuration indicates a newly added uplink symbol.
  • the access network device 101 performs physical channel and signal scheduling selection on all available uplink symbol resources.
  • the access network device 101 may notify the terminal device 102 to send a reference signal on the newly added uplink symbol (y_add1) to perform IoT measurement.
  • the access network device 101 may notify the terminal device 102 through DCI signaling.
  • the reference signal is SRS and the like.
  • the access network device 101 performs interference noise (interference, thermal, and IoT) measurements on newly added uplink symbols.
  • the access network device 101 Since the measured value of the IoT is greater than a predetermined threshold, it indicates that the uplink symbol is subject to strong interference, and the access network device 101 does not perform uplink physical channel and signal scheduling on the uplink symbol resource subject to strong interference.
  • the access network device 101 may also instruct the terminal device 102 to send a reference to the y_add1 symbol and the y2 symbol
  • the signal for example, informs the terminal device 102 to send a reference signal on the added y_add1 and y2 symbols through RRC signaling or DCI signaling, such as SRS and the like.
  • the access network device 101 may perform interference measurement on the uplink symbol y_add1 + y2; the access network device 101 determines the number of uplink symbols that can be actually used by the terminal device according to the IoT measurement result on the y_add1 + y2 uplink symbol obtained from the actual measurement. For the terminal device 102, the access network device 101 performs physical channel and signal scheduling on all available uplink symbol resources, and the access network device 101 does not perform uplink physical channel and signal scheduling on the strongly interfered uplink symbol resources. select.
  • the access network device 101 may also instruct the terminal device to use the y_add1 symbol, y2 symbol, and y1
  • the reference signal is sent in a time slot.
  • the access network device 101 may notify the terminal device 102 to send a reference signal on y_add1 symbol, y2 symbol, and y1 time slot by using RRC signaling or DCI signaling.
  • the reference signal is SRS and the like.
  • the access network device 101 performs interference measurement on all uplink symbols; the access network device 101 determines the number of uplink symbols that can be actually used by the terminal device according to the IoT measurement results on all the uplink symbols obtained through actual measurement. For the terminal device 102, the access network device 101 performs physical channel and signal scheduling on all available uplink symbol resources, and the access network device 101 does not perform uplink physical channel and signal scheduling on the strongly interfered uplink symbol resources. select.
  • S5B05-S5B07 is a second implementation manner in a scenario where uplink resources are limited:
  • the access network device 101 may instruct the terminal device 102 to send a reference signal on the newly added uplink symbol to perform IoT measurement.
  • the access network device 101 may instruct the terminal device 102 through DCI signaling.
  • the reference signal is SRS and the like.
  • the access network device 101 performs interference noise (interference over thermal, IoT) measurement on the increased available uplink symbol y_add1. If the IoT measurement value is greater than a preset threshold, it indicates that the available uplink symbol is strongly interfered.
  • IoT interference over thermal
  • Count the number of symbols whose measured IoT value is less than a preset threshold to obtain the number of available uplink symbols y_add2 that are not subject to strong interference; the number of uplink symbols that are actually available for this terminal device y2_new y2 + y_add2; for this terminal device 102, access network equipment 101 performs physical channel and signal scheduling on all available uplink symbol resources, and the access network device 101 does not perform uplink physical channel and signal scheduling selection on the available uplink symbol resources subject to strong interference.
  • the access network device 101 performs interference measurement on the increased available uplink symbol y_add1.
  • the specific implementation is as follows: The access network device 101 receives all the energy of useful signals, interference, and thermal noise, minus the demodulation After the useful signal energy, the energy of interference and noise can be obtained.
  • S5B06 After the access network device 101 determines the number of newly added uplink symbols that are not disturbed, it determines the time domain resource configuration information updated by the terminal device 102.
  • the access network device 101 sends the updated time domain resource configuration information to the terminal device 102.
  • the access network device 101 may send time domain resource configuration information through UE-level RRC signaling.
  • the access network device 101 performs physical channel and signal scheduling selection on all available uplink symbol resources.
  • the access network device 101 does not issue UE-level RRC signaling, but directly passes DCI signaling, and does not perform uplink channel and signal resource allocation on the available uplink symbols with strong interference.
  • S5B07 can be cross-referenced with S404.
  • the embodiment of the present application provides the following implementation manners:
  • the access network device 101 sends time domain resource configuration information to the terminal 102.
  • the time domain resource configuration information may indicate that the available time domain resources are downlink time domain resources.
  • the time domain resource configuration information may be user-level configuration information, such as user-level semi-static configuration information or user-level dynamic configuration information.
  • Available time domain resources are some or all of the largest GP resources except the smallest GP resource.
  • S5C05 can be cross-referenced with S404.
  • the access network device 101 determines the number of downlink symbols that are actually available for the terminal device 102 according to the maximum number of GP symbols and the minimum number of GP symbols, and may specifically include:
  • the access network device 101 performs downlink physical channel and signal scheduling selection on all available downlink symbol resources.
  • the access network device 101 determines the actual downlink resource or uplink resource available to the terminal device according to the current status of the uplink and downlink physical channels and signal physical resources of the system and the uplink IoT measurement results. While effectively using resources, avoid the interference problem between the neighboring area access network device 101 and the remote access network device 101 and the interference between uplink and downlink; the access network device 101 notifies the terminal device 102 of the number of available uplink symbols or available Number of downlink symbols; GP with semi-static or dynamic configuration at the UE level and flexible and dynamic uplink and downlink resource allocation.
  • FIG. 6 is a schematic diagram of a time domain resource configuration method in an embodiment of the present application, as shown in FIG. 6:
  • the access network device 101 determines the maximum number of GP symbols required by the cell.
  • step S601 is an optional step.
  • the access network device 101 determines the minimum number of GP symbols required by the terminal device 102.
  • steps S601-S602 reference may be made to steps S501 and S503 in the embodiment shown in FIG. 5A, and details are not described herein again.
  • the access network device 101 sends the time domain resource configuration information to the terminal device 102.
  • the time domain resource configuration information may be user-level semi-static or user-level dynamic time domain resource configuration information, indicating a minimum GP resource.
  • the time domain resource configuration information may configure the target time domain resource as an uplink time domain resource or a downlink time domain resource.
  • the target time domain resource may be a part or all of the time domain resource in the maximum GP symbol number resource-the minimum GP symbol number resource.
  • S6A04 the access network device 101 detects an IoT measurement value on the uplink time domain resource.
  • S6A05 When the IoT measurement value exceeds the threshold, the access network device 101 does not perform resource allocation on the uplink time domain resources that exceed the threshold.
  • S6B03 The access network device 101 performs IoT measurement on the target time domain resource to obtain the IoT measurement value.
  • the target time domain resource may be a part or all of the time domain resource in the maximum GP symbol number resource-the minimum GP symbol number resource.
  • the access network device 101 detects interference to obtain an IoT measurement value.
  • the access network device 101 determines a time domain resource whose IoT measurement value is greater than the threshold.
  • the time domain resources are the interfered resources.
  • the access network device 101 sends the time domain resource configuration information to the terminal device 102.
  • the time domain resource configuration information may be user-level semi-static or user-level dynamic time domain resource configuration information, indicating a GP resource, where the GP resource is the smallest GP resource + [(the largest GP resource-the smallest GP resource) is disturbed resource of].
  • FIG. 7 it is a schematic diagram of another embodiment of a method for configuring uplink and downlink resources in an embodiment of the present application, including:
  • the base station determines the maximum number of GP symbols G1 required by the cell according to the maximum coverage distance of the cell.
  • the access network device 101 determines uplink and downlink time domain resource configuration information according to the maximum number of GP symbols G1 required by the cell.
  • the C-band NR system is used as an example for illustration.
  • the access network device 101 sends uplink and downlink time domain resource configuration information to all terminal devices in the cell through cell-level RRC signaling.
  • SIB1 system message block
  • FIG. 8 is a schematic diagram of a current slot ratio of a terminal device.
  • the access network device 101 determines the minimum number of GP symbols required by the terminal device according to the uplink TA measurement result of the terminal device.
  • the access network device 101 performs IoT measurement on an uplink physical channel and signal of a terminal device, such as IoT measurement on a physical random access channel (PRACH) channel and SRS, and updates the terminal device according to the IoT measurement result
  • the TA measurement value of the G2 is determined according to the correspondence between the TA measurement value and the GP symbol.
  • the minimum number of GP symbols G2 required by the terminal device is determined.
  • the access network device 101 determines to increase uplink resources according to the current situation of the uplink and downlink physical channels and signal physical resource requirements of the system.
  • the access network device 101 sends a reference signal on a symbol that increases uplink resources through DCI signaling, performs IoT measurement, and obtains an IoT measurement value.
  • the access network device 101 instructs the terminal device to send SRS signals on the symbols # 10 and # 11 and # 12, # 13 on the slot (Slot) # 3 through DCI signaling.
  • the access network device 101 performs IoT measurement on symbols # 10 to 13 on Slot # 3.
  • the access network device 101 determines the number of uplink symbols that are actually available for the terminal device according to the IoT measurement value.
  • the IoT on these 4 symbols is less than a certain threshold, it is determined that all 4 symbols can be used for uplink transmission of the terminal device, and the actual number of symbols available for uplink on the terminal device is 4. If the IoT on symbol # 10 is greater than a certain threshold, only symbols # 11 to 13 can be used for uplink transmission of the terminal device. The actual number of symbols available for uplink on the terminal device is 3, as shown in FIG. 8 above.
  • the access network device 101 sends indication information of the actually available uplink symbols to the terminal device.
  • the access network device 101 determines the number of GP symbols actually required by the terminal device and the number of available uplink symbols by measuring the TA value and the uplink IoT test value.
  • the cell level SIB1 signaling and the UE level The combination of RRC signaling enables semi-static or dynamic configuration of the number of UE-level GP symbols and the number of uplink symbols to achieve efficient use of system resources and improve system performance.
  • the number and position of GP symbols and the number of uplink symbols are statically configured. Compared with the prior art, in the embodiment of the present application, the number of uplink symbols of the near-point terminal device is increased to 4, which increases the available resources of the uplink SRS, which is beneficial to the improvement of system performance.
  • FIG. 9 it is a schematic diagram of another embodiment of a method for configuring uplink and downlink resources according to an embodiment of the present application, including:
  • the access network device 101 determines the maximum number of GP symbols G1 required by the cell according to the maximum coverage distance of the cell.
  • the access network device 101 determines that the number of GP symbols of the cell is G3 according to the LTE uplink and downlink subframe ratio.
  • the number of GP symbols G3 in the slot allocation of the existing LTE is configured as four.
  • the access network device 101 determines uplink and downlink time domain resource configuration information according to the maximum number of cell GP symbols G_cell.
  • the C-band NR system is taken as an example for illustration.
  • the access network device 101 sends uplink and downlink time domain resource configuration information to all terminal devices in the cell through cell-level RRC signaling.
  • the access network device 101 determines the minimum number of GP symbols required by the terminal device according to the uplink TA measurement result of the terminal device.
  • the access network device 101 performs IoT measurement on the uplink physical channel and signal of a terminal device, such as IoT measurement on the PRACH channel and SRS, updates the TA measurement value of the terminal device according to the IoT measurement result, and according to the TA measurement value and GP symbol
  • the corresponding relationship determines the minimum number of GP symbols G2 required by the terminal device.
  • the access network device 101 determines to increase downlink resources according to the current situation of the uplink and downlink physical channels and signal physical resource requirements of the system.
  • the access network device 101 sends indication information of the number of available downlink symbols to the terminal device.
  • the access network device 101 determines the number of GP symbols actually required by the terminal device and the number of available downlink symbols through the measured TA value, and combines cell-level SIB1 signaling and UE-level RRC signaling.
  • This method enables semi-static or dynamic configuration of UE-level GP symbol numbers and downlink symbol numbers to achieve efficient use of system resources and improve system performance.
  • the number and position of GP symbols and the number of uplink symbols are statically configured. Compared with the prior art, in the embodiments of the present application, the number of downlink available symbols of the near-point terminal device increases, which increases the available resources of the downlink PDSCH, which is beneficial to the improvement of system performance.
  • the GP in addition to the distance covered by the configuration of the GP, it is necessary to consider interference from neighboring access network devices or remote access network devices.
  • the signals of adjacent access network equipment or remote access network equipment need to be guaranteed by the GP, so that the downlink signals of adjacent access network equipment or remote access network equipment will not interfere with the access network equipment. Uplink signal.
  • each access network device may lose synchronization and a clock deviation may occur with the peripheral access network device.
  • the sending and receiving moments of each access network device are not aligned.
  • Downlink signals from neighboring access network devices or remote access network devices reach the terminal equipment (user equipment) side in time, which will interfere with the terminal.
  • the device receives upstream and affects system performance.
  • the high-power downlink signals of the remote access network device can generate long-distance transmission to reach the near-end access network device. Because the long-distance transmission time exceeds the uplink and downlink protection interval, the downlink signal of the remote access network device is received by the near-end access network device at the receiving time slot of the near-end access network device, thereby disturbing the near-end access network device The reception of uplink signals generates interference and affects system performance.
  • the cause of the interference may be the timing deviation between the access network devices, or it may be the propagation interference of the remote access network devices. All access network equipment can continuously monitor the interference level on the received symbols. If interference between access network equipment is found, adjust the channel configuration and GP configuration to avoid the problem of interference.
  • This application proposes a solution that can configure different GP lengths for different terminal devices. For example, different terminal devices can be configured with different GP lengths based on interference detection conditions. With the solution of this application, flexible scheduling of uplink and downlink resources can be achieved, interference can be effectively avoided, available air interface resources can be maximized, and system capacity and user experience can be improved.
  • FIG. 11 is a schematic diagram of an embodiment of an interference coordination method for uplink and downlink resources in the embodiment of the present application.
  • FIG. 11 may be combined with the time domain resource allocation scheme provided in the embodiment of the present application (for example, the scheme in FIG. 5A to FIG. 10) or may be performed separately and may include:
  • An access network device determines a symbol used by a terminal device for uplink transmission.
  • the symbol used for uplink transmission here may be an uplink transmission symbol other than the GP resource required by the terminal device among the GP resources required by the cell in the time domain resource allocation scheme provided in the embodiments of the present application, or the GP resource required by the cell. Other than the uplink transmission symbol.
  • the uplink transmission symbol may be configured by using cell-level semi-static configuration information, user-level semi-static configuration information, or user-level dynamic configuration information.
  • the access network device determines an uplink interference symbol.
  • the access network device determines an uplink interference symbol from the uplink transmitted symbols according to an IoT measurement result of the uplink transmitted symbols.
  • FIG. 12A it is a schematic diagram of uplink interference symbols in the embodiment of the present application.
  • FIG. 12A a typical scenario of 5G and 30K subcarriers is taken as an example.
  • the shaded part indicates uplink interference symbols, that is, the interference is mainly concentrated in the front 1 to 2 symbols of the U slot.
  • FIG. 12B it is a schematic diagram of uplink interference symbols in the embodiment of the present application.
  • a typical scenario of a 5G 30K subcarrier is taken as an example, and the shaded parts represent uplink interference symbols, that is, the interference is mainly concentrated at 1 to 4 symbols at the end of the U slot.
  • the access network device sends a channel configuration update message to the terminal device, and the channel configuration update message is used to instruct the terminal device not to perform resource scheduling on the uplink interference symbol.
  • the access network device After the access network device determines the number of uplink interference symbols, it sends a channel configuration update message to the terminal.
  • the channel configuration update message is used to instruct the terminal device not to perform resource scheduling on the uplink interference symbol.
  • the terminal equipment performs resource scheduling on the uplink transmitted symbols except the uplink interference symbols.
  • the channels that may appear are SRS / PUSCH / PUCCH.
  • the access network device can instruct the terminal device to adjust the SRS / PUSCH / PUCCH through UE-level RRC signaling or DCI signaling. Channel configuration to avoid uplink interference symbols.
  • the access network device cannot flexibly avoid interference symbols according to the interference situation, resulting in severe system service damage once interference occurs.
  • the access network device may send a channel configuration update message to the terminal device, and the channel configuration update message is used to instruct the terminal device not to perform resource scheduling on the uplink interference symbol.
  • the system capacity is slightly lost, the system business can work normally.
  • FIG. 13 is a schematic diagram of an embodiment of an interference coordination method for uplink and downlink resources in the embodiment of the present application, which may include:
  • the first access network device determines a symbol used by the first terminal device for uplink transmission.
  • the symbol used for uplink transmission here may be an uplink transmission symbol other than the GP resource required by the terminal device among the GP resources required by the cell in the time domain resource allocation scheme provided in the embodiments of the present application, or the GP resource required by the cell. Other than the uplink transmission symbol.
  • the uplink transmission symbol may be configured by using cell-level semi-static configuration information, user-level semi-static configuration information, or user-level dynamic configuration information.
  • the first access network device determines an uplink interference symbol and a target access network device.
  • the target access network device is an access network device that causes interference with the uplink transmission symbol.
  • the first base station determines an uplink interference symbol from the uplink transmitted symbols according to an IoT measurement result of the uplink transmitted symbols. Each base station periodically sends a feature sequence. The first base station receives the periodic feature sequences sent by other base stations. The first base station then determines the target base station based on the periodic feature sequence, and the downlink symbol determined by the target base station determines the target base station. Upstream symbols cause interference.
  • the first access network device sends instruction information to the target access network device.
  • the first base station sends instruction information to the target base station, where the instruction information is used to instruct the target base station not to perform resource scheduling on downlink symbols (downlink interference symbols) that cause interference with the uplink symbols of the first base station.
  • downlink symbols downlink interference symbols
  • FIG. 14A it is a schematic diagram of uplink interference symbols in the embodiment of the present application.
  • a typical scenario of 5G and 30K subcarriers is taken as an example, and the shaded parts represent uplink interference symbols, that is, the interference is mainly concentrated in the front 1 to 4 symbols of the D slot.
  • the first base station expects the target base station to evade on several downlink symbols at the end of the transmission slot.
  • FIG. 14B it is a schematic diagram of uplink interference symbols in the embodiment of the present application.
  • a typical scenario of a 5G 30K subcarrier is taken as an example, and the shaded parts represent uplink interference symbols, that is, the interference is mainly concentrated in 1 to 2 symbols at the tail of the D slot.
  • the first base station expects the target base station to evade on the first few downlink symbols of the transmission slot.
  • the target access network device sends a channel configuration update message to the target terminal device.
  • the channel configuration update message is used to instruct the terminal device not to perform resource scheduling on the downlink interference symbol.
  • the target base station determines the downlink interference symbol according to the indication information, and then sends a channel configuration update message to the target terminal device.
  • the channel configuration update message is used to instruct the terminal device not to perform resource scheduling on the downlink interference symbol.
  • the target terminal device is a terminal device within the coverage of the target base station.
  • the target terminal device does not perform resource scheduling on the downlink interference symbol, for the base station, the symbols transmitted in the uplink can be resource scheduled, and there is no uplink interference symbol.
  • the possible channels are PDSCH / PUCCH.
  • the target base station modifies the relevant channel configuration and instructs the target UE through UE-level RRC signaling or DCI signaling to avoid interference symbols.
  • the base station cannot flexibly avoid interference symbols according to the interference situation, resulting in severe system service damage once interference occurs.
  • the base station determines the uplink interference symbol, and further determines the target base station corresponding to the uplink interference symbol, and sends the instruction information to the target base station. After receiving the instruction information, the target base station may send the instruction information to the target terminal device.
  • Channel configuration update message is used to instruct the target terminal device not to perform resource scheduling on downlink interference symbols that cause interference to the base station.
  • the base station there is no loss in system capacity, and system services can work normally.
  • the system capacity is slightly lost, but the system services can work normally.
  • the interference coordination method in FIG. 11 to FIG. 14B (including FIG. 11, FIG. 12A, FIG. 12B, FIG. 13, FIG. 14A and FIG. 14B) is also applicable to downlink time domain resources.
  • the base station may choose not to schedule on the downlink time domain resource, or send the interfered downlink time domain resource to the interfering base station, so that the interfering base station does not perform uplink scheduling.
  • FIG. 15 is a schematic diagram of an embodiment of an access network device according to an embodiment of the present application, and may include:
  • a processing module 1501 is configured to determine a guard interval GP resource required by the terminal device, and the GP resource required by the terminal device is a GP resource required for uplink synchronization between the terminal device and the access network device;
  • the transceiver module 1502 is configured to send the first time domain resource configuration information to the terminal device, where the first time domain resource configuration information indicates a GP resource required by the terminal device.
  • the processing module 1501 is specifically configured to determine an uplink time TA measurement value of the terminal device in advance; determine a GP length according to the uplink TA measurement value of the terminal device; and determine a GP resource according to the GP length.
  • the processing module 1501 is further configured to determine a GP resource required by a cell in which the terminal device is located.
  • the GP resource required by the cell is a GP resource required for uplink synchronization between the remote terminal device and the access network device.
  • the first time domain resource configuration The information indicates the GP resources required by the cell, and the GP resources required by the cell include the GP resources required by the terminal device.
  • the processing module 1501 is specifically configured to determine a first GP length according to a maximum coverage distance of a cell; determine a GP resource required by a cell where a terminal device is located according to the first GP length; or,
  • the processing module 1501 is specifically configured to determine the second GP length according to the uplink-downlink subframe ratio of the cell; determine the GP resources required by the cell where the terminal device is located according to the second GP length; or,
  • the processing module 1501 is specifically configured to determine the first GP length according to the maximum coverage distance of the cell; determine the second GP length according to the uplink-downlink subframe ratio of the cell; and the larger GP length according to the first GP length and the second GP length Determine the GP resources required by the cell where the terminal device is located.
  • the transceiver module 1502 is further configured to send the second time domain resource configuration information to the terminal device, where the second time domain resource configuration information is used to indicate that the available time domain resource is a downlink time domain resource; wherein the available time domain resource is the cell where the terminal device is located. Some or all of the required GP resources other than the GP resources required by the terminal device.
  • the transceiver module 1502 is further configured to send the second time domain resource configuration information to the terminal device.
  • the second time domain resource configuration information is used to indicate that the available time domain resource is an uplink time domain resource.
  • the available time domain resource is the cell where the terminal device is located. Some or all of the required GP resources other than the GP resources required by the terminal device.
  • the processing module 1501 is further configured to perform interference measurement on available time domain resources
  • the transceiver module 1502 is specifically configured to send the second time domain resource configuration information to the terminal device when the available time domain resources are not interfered or the received interference measurement value is less than the threshold.
  • the transceiver module 1502 is further configured to send instruction information to the terminal device, where the instruction information is used to instruct the terminal device to send an uplink signal on the uplink time domain resource;
  • the processing module 1501 is further configured to perform interference measurement on the uplink time domain resource by using the uplink signal; when the interference measurement value of the uplink time domain resource is greater than a threshold, uplink scheduling is not performed on the uplink time domain resource.
  • the processing module 1501 is further configured to determine a GP resource required by the cell.
  • the GP resource required by the cell is a GP resource required for uplink synchronization between the remote terminal device and the access network device.
  • the transceiver module 1502 is further configured to send instruction information to the terminal device, where the instruction information is used to instruct the terminal device to send an uplink signal on an available time domain resource;
  • the processing module 1501 is further configured to perform uplink interference measurement on the available time domain resources by using the uplink signal.
  • the available time domain resources are a part of the GP resources required by the terminal device's cell except the GP resources required by the terminal device. Or all resources; when the available time domain resources are interfered with or the measured interference value is greater than the threshold, the first time domain resource configuration information is also used to indicate that the available time domain resources are GP resources.
  • the transceiver module 1502 is further configured to send the third time domain resource configuration information to the terminal device.
  • the third time domain resource configuration information is used to indicate that the available time domain resource is an uplink time domain resource or a downlink time domain resource. Among them, the available time domain resource.
  • the third time domain resource configuration information is used to indicate that the available time domain resource is an uplink time domain resource
  • the transceiver module 1502 is further configured to send instruction information to the terminal device, where the instruction information is used to instruct the terminal device to send an uplink signal on the uplink time domain resource;
  • the processing module 1501 is further configured to perform interference measurement on the uplink time domain resource by using the uplink signal. When the uplink time domain resource is interfered or the measured interference value is greater than a threshold, uplink scheduling is not performed on the uplink time domain resource.
  • the communication device 1600 includes a processing unit 1601 and a communication unit 1602.
  • the communication device 1600 further includes a storage unit 1603.
  • the processing unit 1601, the communication unit 1602, and the storage unit 1603 are connected through a communication bus.
  • the communication unit 1602 may be a device with a transmitting and receiving function, and is configured to communicate with other network devices or a communication network.
  • the storage unit 1603 may include one or more memories, and the memory may be one or more devices or devices in a circuit for storing programs or data.
  • the storage unit 1603 may exist independently, and is connected to the processing unit 1601 through a communication bus.
  • the storage unit 1603 may also be integrated with the processing unit 1601.
  • the communication device 1600 may be used in a communication device, a circuit, a hardware component, or a chip.
  • the communication device 1600 may be an access network device such as the access network device 101 in the embodiment of the present application.
  • the schematic diagram of the access network equipment can be shown in Figure 1.
  • the communication unit 1602 of the communication device 1600 may include an antenna and a transceiver of an access network device.
  • the communication unit 1602 may further include a network interface of an access network device.
  • the communication device 1600 may be a chip in the access network device in the embodiment of the present application, for example, a chip in the access network device 101.
  • the communication unit 1602 may be an input or output interface, a pin, or a circuit.
  • the storage unit may store a computer execution instruction of the method on the access network device side, so that the processing unit 1601 executes the method on the access network device side in the foregoing embodiment.
  • the storage unit 1602 may be a register, a cache, or a RAM.
  • the storage unit 1603 may be integrated with the processing unit 1601.
  • the storage unit 1602 may be a ROM or other type of static storage device that can store static information and instructions.
  • the processing unit 1601 is independent.
  • a transceiver may be integrated on the communication device 1600, for example, the communication unit 1602 integrates a transceiver and a network interface.
  • the communication unit 1602 may send the time domain resource configuration information to the terminal device 102, such as one or more of cell-level semi-static configuration information, user-level semi-static configuration information, and user-level dynamic configuration information.
  • the processing unit 1601 is configured to determine a guard interval GP resource required by the terminal device, and the GP resource required by the terminal device is a GP resource required for the uplink synchronization between the terminal device and the access network device;
  • the communication unit 1602 is configured to send the first time domain resource configuration information to the terminal device, where the first time domain resource configuration information indicates a GP resource required by the terminal device.
  • the processing unit 1601 is specifically configured to determine an uplink time TA measurement value of the terminal device in advance; determine a GP length according to the uplink TA measurement value of the terminal device; and determine a GP resource according to the GP length.
  • the processing unit 1601 is further configured to determine a GP resource required by a cell in which the terminal device is located.
  • the GP resource required by the cell is a GP resource required for uplink synchronization between the remote terminal device and the access network device.
  • the first time domain resource configuration The information indicates the GP resources required by the cell, and the GP resources required by the cell include the GP resources required by the terminal device.
  • the processing unit 1601 is specifically configured to determine the first GP length according to the maximum coverage distance of the cell; determine the GP resources required by the cell where the terminal device is located according to the first GP length; or,
  • the processing unit 1601 is specifically configured to determine the second GP length according to the uplink-downlink subframe ratio of the cell; determine the GP resource required by the cell where the terminal device is located according to the second GP length; or,
  • the processing unit 1601 is specifically configured to determine the first GP length according to the maximum coverage distance of the cell; determine the second GP length according to the uplink-downlink subframe ratio of the cell; according to the larger GP length of the first GP length and the second GP length Determine the GP resources required by the cell where the terminal device is located.
  • the communication unit 1602 is further configured to send second time domain resource configuration information to the terminal device, where the second time domain resource configuration information is used to indicate that the available time domain resource is a downlink time domain resource; wherein the available time domain resource is a cell where the terminal device is located. Some or all of the required GP resources other than the GP resources required by the terminal device.
  • the communication unit 1602 is further configured to send second time domain resource configuration information to the terminal device, where the second time domain resource configuration information is used to indicate that the available time domain resource is an uplink time domain resource; wherein the available time domain resource is a cell where the terminal device is located. Some or all of the required GP resources other than the GP resources required by the terminal device.
  • the processing unit 1601 is further configured to perform interference measurement on available time domain resources
  • the communication unit 1602 is specifically configured to send the second time domain resource configuration information to the terminal device when the available time domain resources are not interfered or the received interference measurement value is less than a threshold.
  • the communication unit 1602 is further configured to send instruction information to the terminal device, where the instruction information is used to instruct the terminal device to send an uplink signal on the uplink time domain resource;
  • the processing unit 1601 is further configured to perform interference measurement on the uplink time domain resource by using the uplink signal; when the interference measurement value of the uplink time domain resource is greater than a threshold, uplink scheduling is not performed on the uplink time domain resource.
  • the processing unit 1601 is further configured to determine a GP resource required by the cell.
  • the GP resource required by the cell is a GP resource required for uplink synchronization between the remote terminal device and the access network device.
  • the communication unit 1602 is further configured to send instruction information to the terminal device, where the instruction information is used to instruct the terminal device to send an uplink signal on an available time domain resource;
  • the processing unit 1601 is further configured to perform uplink interference measurement on the available time domain resources by using the uplink signal.
  • the available time domain resources are a part of the GP resources required by the cell where the terminal device is located, except the GP resources required by the terminal device Or all resources; when the available time domain resources are interfered with or the interference measurement value is greater than the threshold, the first time domain resource configuration information is further used to indicate that the available time domain resources are GP resources.
  • the communication unit 1602 is further configured to send third time domain resource configuration information to the terminal device, where the third time domain resource configuration information is used to indicate that the available time domain resource is an uplink time domain resource or a downlink time domain resource; wherein, the available time domain resource Some or all of the GP resources required for the cell where the terminal device is located, except for the GP resources required by the terminal device.
  • the third time domain resource configuration information is used to indicate that the available time domain resource is an uplink time domain resource
  • the communication unit 1602 is further configured to send instruction information to the terminal device, where the instruction information is used to instruct the terminal device to send an uplink signal on the uplink time domain resource;
  • the processing unit 1601 is further configured to perform interference measurement on the uplink time domain resource by using the uplink signal; when the uplink time domain resource is interfered or the measured interference value is greater than a threshold, uplink scheduling is not performed on the uplink time domain resource.
  • the embodiments of the present application further provide the following methods. This method may be combined with related content of FIGS. 5A to 8 (including FIGS. 5A, 5B, 6, 6, 7 and 8).
  • the method may be executed by an access network device or a chip in the access network device, and the method includes:
  • M01 determine the channel measurement result of the terminal device
  • the channel measurement result includes a delay measurement result.
  • the delay measurement result may be an uplink delay measurement result and / or a downlink delay measurement result
  • the uplink delay measurement result may be an uplink TA measurement value
  • the channel measurement result further includes an interference measurement result and / or a channel quality measurement result.
  • the interference measurement result may include an uplink interference measurement result and / or a downlink interference measurement result
  • the uplink interference measurement result may include an uplink IOT measurement result
  • the channel quality measurement result may include an uplink channel measurement result and / or a downlink channel measurement result.
  • M02 determining a guard interval GP resource required by the terminal device in the uplink / downlink handover according to the channel measurement result;
  • the length of the guard interval GP resource required by the terminal device is greater than the one-way delay, and the one-way delay may be an uplink TA measurement value.
  • the length of the guard interval GP resource required by the terminal device is greater than the extension during round trip, and the extension during round trip may be 2 * uplink TA measurement value.
  • the length of the guard interval GP resource required by the terminal device is greater than the time-out extension + the time of the terminal device's uplink / downlink switching + the time of the access network device's uplink-downlink switching.
  • the round-trip extension can be 2 * uplink TA measurement.
  • M03 sending time domain resource configuration information to the terminal device, where the time domain resource configuration information indicates that the GP resource required by the terminal device is an unknown time domain resource.
  • the time domain resource configuration information may be one or more of cell-level semi-static configuration information, user-level semi-static configuration information, and user-level dynamic configuration information.
  • the time domain resource configuration information may be sent to the terminal device multiple times.
  • the time domain resource configuration information may also configure resources other than the GP resources required by the terminal as uplink or downlink time domain resources.
  • the unknown time domain resource can be understood as a flexible time domain resource.
  • M04 Determine the GP resources required by the cell and the required GP resources according to one or more of the maximum coverage requirements of the cell where the terminal device is located and the uplink and downlink subframe ratios of the cell.
  • the GP resource includes a GP resource required by the terminal device.
  • M04 is optional.
  • the first GP resource may be determined according to the delay measurement result, and the GP resource required by the terminal device includes the first GP resource.
  • the method further includes:
  • M05 sending instruction information to the terminal device, the instruction information is used to instruct the terminal device to send an uplink signal on a second GP resource, and the second GP resource is the GP resource required by the cell except the first Some or all time domain resources other than a GP resource.
  • M06 Determine an interference measurement result by measuring the uplink signal.
  • M02 can include:
  • the GP resource required by the terminal device further includes a second GP resource
  • the time domain resource configuration information indicates that the second GP resource is an uplink time domain resource.
  • the first implementation manner may refer to related content in S5B05-S5B07 and S6B03-S6B04.
  • the time domain resource configuration information is further used to indicate that the second GP resource is an uplink time domain resource, and the second GP resource is a GP resource required by the cell except the first GP. Some or all time domain resources other than resources.
  • the second implementation manner may refer to related content in S5A05 and S6A03.
  • the method when the time domain resource configuration information indicates that the second GP resource is an uplink time domain resource, the method further includes: sending indication information to a terminal, and The instruction information is used to instruct the terminal device to send an uplink signal on the uplink time domain resource.
  • the uplink signal includes a sounding reference signal SRS.
  • the method further includes:
  • M05 sending a downlink signal on a second GP resource, where the second GP resource is a part or all of time domain resources other than the first GP resource among the GP resources required by the cell;
  • M06 receiving a channel quality measurement result from the terminal device, where the channel quality measurement result is obtained by measuring the downlink signal;
  • M02 may include: when the channel quality measurement result indicates that a channel quality value on the second GP resource is less than a threshold, the GP resource required by the terminal device further includes a second GP resource;
  • the time domain resource configuration information indicates that the second GP resource is a downlink time domain resource.
  • the time domain resource configuration information is further used to indicate that the second GP resource is a downlink time domain resource, and the second GP resource is a GP resource required by the cell except the first GP. Some or all time domain resources other than resources.
  • the second implementation manner may refer to related content in S5C05 or S6A03.
  • the method further includes: sending to the terminal Indication information, the indication information is used to instruct the terminal device to receive a downlink signal on the downlink time domain resource.
  • the downlink signal includes a physical downlink shared channel (PDSCH) signal.
  • PDSCH physical downlink shared channel
  • each step of the above method is performed by an access network device, and there are units or modules in the access network device that perform each step in the method; each step in the method performed by the terminal exists in the terminal and executes the method A unit or module for each step in the process.
  • the present application further provides a communication device.
  • the communication device may include a processor, and the processor is coupled to the memory.
  • the processor may execute a program in the memory to implement the foregoing method.
  • the communication device may be an access network device or a chip in the access network device.
  • the present application also provides a computer-readable storage medium for storing instructions. When the instructions are executed, the foregoing methods can be implemented.
  • the present application also provides a computer program product containing instructions that, when executed on a computer, can perform the above method.
  • "at least one” means one or more. "Multiple” means two or more. "And / or” describes the association relationship of related objects, and indicates that there can be three kinds of relationships, for example, A and / or B can represent: the case where A exists alone, A and B exist simultaneously, and B alone exists, where A, B can be singular or plural.
  • the character "/" generally indicates that the related objects are an "or" relationship.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (Solid State Disk (SSD)
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium. , Including a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种时域资源配置方法及接入网设备,用于实现UE级半静态或动态配置GP和灵活动态的上下行资源分配,有效利用资源。本申请实施例方法包括:确定终端设备所需的保护间隔GP资源,所述终端设备所需的GP资源为所述终端设备与接入网设备的上行同步需要的GP资源;向所述终端设备发送第一时域资源配置信息,所述第一时域资源配置信息指示所述终端设备所需的GP资源。

Description

一种时域资源配置方法及接入网设备
本申请要求于2018年9月10日提交中国国家知识产权局、申请号为201811052784.7、申请名称为“一种时域资源配置方法及接入网设备”,以及于2018年9月27日提交中国国家知识产权局、申请号为201811134766.3、申请名称为“一种时域资源配置方法及接入网设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种时域资源配置方法及接入网设备。
背景技术
在时分双工(time division duplex,TDD)系统中,保护间隔(GP,guard period)是为了上下行切换设置的保护间隙。若基站的下行传输系统在发送信号的同时,上行传输系统正在接收信号,由于TDD采用上下行同频传输,则上行传输系统会受到严重的干扰。同时,从发变为收,发射机的功率不是能马上消失的,而是存在一个下降过程,这个时间内是无法工作的;同理,从收变为发也是如此,发射机把功率提上来也是需要时间的,这个时间内也是无法工作的。
GP的长度可以配置,若配置合理,GP可以有效地避免上下行信号之间的干扰。其中,GP配置与小区的半径有关,即GP的配置与小区的覆盖范围有关。长期演进(long term evolution,LTE)系统中,协议TS36.213定义了不同的特殊子帧配置比下GP的长度,对应小区的理论最大覆盖范围是5km~100km,如下述表1所示,可以根据实际应用场景选择不同的GP配置。
Figure PCTCN2019105053-appb-000001
Figure PCTCN2019105053-appb-000002
表1
可以理解的是,DwPTS为下行导频时隙,英文全称为downlink pilot time slot,RTDmax=GP*(1/30.72us)-17-20,理论最大覆盖距离=3*10e8*RTDmax/2。
LTE系统中的GP配置为一种小区级的静态配置。例如:现网中95%以上的基站选择特殊子帧配置比为7。为了规避大气波导带来的干扰问题,少量基站选择特殊子帧配置比为5。该GP配置对所有终端设备适用,并且一般情况下不会变化。
在新空口(new radio,NR)系统中,协议支持时域资源的灵活配置,但是如何为终端配置合适的GP资源称为一个亟待解决的问题。
发明内容
本申请实施例提供了一种时域资源资源配置方法及接入网设备,用于实现UE级半静态或动态配置GP和灵活动态的上下行资源分配,有效利用资源。
有鉴于此,本申请实施例第一方面提供了一种时域资源配置方法,该方法可以用于接入网设备或者接入网设备中的芯片,可以包括:接入网设备可以确定终端设备所需的保护间隔GP资源,该终端设备所需的GP资源为该终端设备与接入网设备的上行同步需要的GP资源;向该终端设备发送第一时域资源配置信息,该第一时域资源配置信息指示该终端设备所需的GP资源。可以理解的是,该终端设备所需的保护间隔GP资源为所述终端设备的上行传输不受到所述终端设备的下行传输的干扰时需要的最小的GP资源,且该终端设备所需的保护间隔GP资源还可以保证该终端设备与同一小区内的其他终端设备上行同步。
在本申请实施例中,接入网设备可以根据终端设备所需的GP资源,为终端设备配置第一时域资源配置信息,该第一时域资源配置信息可以用于指示该终端设备所需的GP资源。即接入网设备可以根据终端设备所需的GP资源,灵活的向终端设备发送第一时域资源配置信息,从而提交资源的利用率。
可选的,在本申请的一些实施例中,该确定该终端设备所需的GP资源可以包括:确定该终端设备的上行时间提前TA测量值;根据该终端设备的该上行TA测量值确定GP长度;根据该GP长度确定该GP资源。其中,TA测量值表示信号从终端设备到达接入网设备所需要的单向最小时延,信号从目标终端设备到接入网设备的环回时延为该TA测量值的2倍,再加上终端设备上下行切换所需要的切换时间等因素,可以得到保证目标终端设备信号环回所需要的最小时间,除以符号长度即可以得到目标终端设备所需要的最小GP符号数。在本申请实施例中,提供了接入网设备确定终端设备所需的GP资源的具体实现方式,使得本申请技术的逻辑更加清楚,方案更加完整。
可选的,在本申请的一些实施例中,该方法还可以包括:确定该终端设备所在小区所需的GP资源,该小区所需的GP资源为远端终端设备与该接入网设备的上行同步需要的GP资源;其中,该第一时域资源配置信息指示该小区所需的GP资源,该小区所需的GP资源包括该终端设备所需的GP资源。可以理解的是,接入网设备确定终端 设备所在小区所需的GP资源,那么,上述的第一时域资源配置信息可以指示该小区所需的GP资源。终端设备的第一时域资源配置信息多了一种选择。
可选的,在本申请的一些实施例中,该确定该终端设备所在小区所需的GP资源,可以包括但不限于以下几种实现方式:根据该小区的最大覆盖距离确定第一GP长度;根据该第一GP长度确定该终端设备所在小区所需的GP资源;或者,根据该小区的上下行子帧配比确定第二GP长度;根据该第二GP长度确定该终端设备所在小区所需的GP资源;或者,根据该小区的最大覆盖距离确定第一GP长度;根据该小区的上下行子帧配比确定第二GP长度;根据该第一GP长度和该第二GP长度中较大的GP长度确定该终端设备所在小区所需的GP资源。在本申请实施例中,提供了几种接入网设备确定终端设备所在小区所需的GP资源的具体实现方式,增加了方案的可行性。
可选的,在本申请的一些实施例中,该方法还可以包括:向该终端设备发送第二时域资源配置信息,该第二时域资源配置信息用于指示可用时域资源为下行时域资源;其中,该可用时域资源为该终端设备所在小区所需的GP资源中除了该终端设备所需的GP资源以外的部分或者全部资源。在本申请实施例中,接入网设备向终端设备发送第一时域资源配置信息之外,还可以向终端设备发送第二时域资源配置信息。第二时域资源配置信息可以用于指示可用时域资源为下行时域资源,即终端设备可以调用的下行时域资源相对增加了,可以提高通信效率,增加资源的可用率。
可选的,在本申请的一些实施例中,该方法还可以包括:向该终端设备发送第二时域资源配置信息,该第二时域资源配置信息用于指示可用时域资源为上行时域资源;其中,该可用时域资源为该终端设备所在小区所需的GP资源中除了该终端设备所需的GP资源以外的部分或者全部资源。在本申请实施例中,接入网设备向终端设备发送第一时域资源配置信息之外,还可以向终端设备发送第二时域资源配置信息。第二时域资源配置信息可以用于指示可用时域资源为上行时域资源,即终端设备可以调用的上行时域资源相对增加了,可以提高通信效率,增加资源的可用率。
可选的,在本申请的一些实施例中,向该终端设备发送该第二时域资源配置信息之前,该方法还可以包括:向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在所述可用时域资源上发送上行信号;对该可用时域资源进行干扰测量;该向该终端设备发送第二时域资源配置信息包括:当该可用时域资源没有受到干扰或者受到的干扰测量值小于门限时,向该终端设备发送该第二时域资源配置信息。在本申请实施例中,接入网设备向终端设备发送第二时域资源配置信息之前,需要对可用时域资源进行干扰测量,如果可用时域资源没有受到干扰或者受到的干扰测量值小于门限时,再去向终端设备发送第二时域资源配置信息,这样的话,接入网设备向终端设备发送的第二时域资源配置信息指示的时域资源可用率更高。
可选的,在本申请的一些实施例中,向该终端设备发送该第二时域资源配置信息之后,该方法还包括:向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在所述上行时域资源上发送上行信号;通过所述上行信号对所述上行时域资源进行干扰测量;当该上行时域资源的干扰测量值大于门限时,不在该上行时域资源进行上行调度。在本申请实施例中,当上行时域资源的干扰测量值大于门限时,接入网设备不在该上行时域资源进行上行调度,即接入网设备不在该上行时域资源上分配上 行资源。
可选的,在本申请的一些实施例中,该方法还可以包括:确定小区所需的GP资源,该小区所需的GP资源为远端终端设备与该接入网设备的上行同步需要的GP资源。该小区所需的GP资源也就是该终端设备所在小区所需的GP资源。
可选的,在本申请的一些实施例中,该方法还可以包括:向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在可用时域资源上发送上行信号;通过所述上行信号对所述可用时域资源进行上行干扰测量,该可用时域资源为该终端设备所在小区所需的GP资源中除了该终端设备所需的GP资源以外的部分或者全部资源;当该可用时域资源受到干扰或者受到的干扰测量值大于门限时,该第一时域资源配置信息还用于指示该可用时域资源为GP资源。在本申请实施例中,当该可用时域资源受到干扰或者受到的干扰测量值小大门限时,该第一时域资源配置信息还用于指示该可用时域资源为GP资源,即灵活资源。
可选的,在本申请的一些实施例中,该方法还可以包括:向终端设备发送第三时域资源配置信息,该第三时域资源配置信息用于指示可用时域资源为上行时域资源或者下行时域资源;其中,该可用时域资源为该终端设备所在小区所需的GP资源中除了该终端设备所需的GP资源以外的部分或者全部资源。在本申请实施例中,该可用时域资源可以配置为上行时域资源,也可以配置为下行时域资源,可根据实际需求,灵活调整。
可选的,在本申请的一些实施例中,当该第三时域资源配置信息用于指示可用时域资源为上行时域资源,该方法还可以包括:向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在所述上行时域资源上发送上行信号;通过所述上行信号对所述上行时域资源进行干扰测量;当该上行时域资源受到干扰或者受到的干扰测量值大于门限时,不在该上行时域资源进行上行调度。在本申请实施例中,当上行时域资源的干扰测量值大于门限时,接入网设备不在该上行时域资源进行上行调度,即接入网设备不在该上行时域资源上分配上行资源。
本申请实施例第二方面提供一种接入网设备,具有实现UE级半静态或动态配置GP和灵活动态的上下行资源分配,有效利用资源的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
该接入网设备可以包括:
处理模块,用于确定终端设备所需的保护间隔GP资源,所述终端设备所需的GP资源为所述终端设备与接入网设备的上行同步需要的GP资源;
收发模块,用于向所述终端设备发送第一时域资源配置信息,所述第一时域资源配置信息指示所述终端设备所需的GP资源。
可选的,在申请的一些实施例中,
所述处理模块,具体用于确定所述终端设备的上行时间提前TA测量值;根据所述终端设备的所述上行TA测量值确定GP长度;根据所述GP长度确定所述GP资源。
可选的,在申请的一些实施例中,
所述处理模块,还用于确定所述终端设备所在小区所需的GP资源,所述小区所需 的GP资源为远端终端设备与所述接入网设备的上行同步需要的GP资源;其中,所述第一时域资源配置信息指示所述小区所需的GP资源,所述小区所需的GP资源包括所述终端设备所需的GP资源。
可选的,在申请的一些实施例中,
所述处理模块,具体用于根据所述小区的最大覆盖距离确定第一GP长度;根据所述第一GP长度确定所述终端设备所在小区所需的GP资源;或者,
所述处理模块,具体用于根据所述小区的上下行子帧配比确定第二GP长度;根据所述第二GP长度确定所述终端设备所在小区所需的GP资源;或者,
所述处理模块,具体用于根据所述小区的最大覆盖距离确定第一GP长度;根据所述小区的上下行子帧配比确定第二GP长度;根据所述第一GP长度和所述第二GP长度中较大的GP长度确定所述终端设备所在小区所需的GP资源。
可选的,在申请的一些实施例中,
所述收发模块,还用于向所述终端设备发送第二时域资源配置信息,所述第二时域资源配置信息用于指示可用时域资源为下行时域资源;其中,所述可用时域资源为所述终端设备所在小区所需的GP资源中除了所述终端设备所需的GP资源以外的部分或者全部资源。
可选的,在申请的一些实施例中,
所述收发模块,还用于向所述终端设备发送第二时域资源配置信息,所述第二时域资源配置信息用于指示可用时域资源为上行时域资源;其中,所述可用时域资源为所述终端设备所在小区所需的GP资源中除了所述终端设备所需的GP资源以外的部分或者全部资源。
可选的,在申请的一些实施例中,
所述收发模块,还用于向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在所述可用时域资源上发送上行信号;
所述处理模块,还用于通过所述上行信号对所述上行时域资源进行干扰测量;
所述收发模块,具体用于当所述可用时域资源没有受到干扰或者受到的干扰测量值小于门限时,向所述终端设备发送所述第二时域资源配置信息。
可选的,在申请的一些实施例中,
所述收发模块,还用于向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在所述上行时域资源上发送上行信号;
所述处理模块,还用于通过所述上行信号对所述上行时域资源进行干扰测量;当所述上行时域资源的干扰测量值大于门限时,不在所述上行时域资源进行上行调度。
可选的,在申请的一些实施例中,
所述处理模块,还用于确定小区所需的GP资源,所述小区所需的GP资源为远端终端设备与所述接入网设备的上行同步需要的GP资源。
可选的,在申请的一些实施例中,
所述收发模块,还用于向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在可用时域资源上发送上行信号;
所述处理模块,还用于通过所述上行信号对所述可用时域资源进行上行干扰测量, 所述可用时域资源为所述终端设备所在小区所需的GP资源中除了所述终端设备所需的GP资源以外的部分或者全部资源;当所述可用时域资源受到干扰或者受到的干扰测量值大于门限时,所述第一时域资源配置信息还用于指示所述可用时域资源为GP资源。
可选的,在申请的一些实施例中,
所述收发模块,还用于向终端设备发送第三时域资源配置信息,所述第三时域资源配置信息用于指示可用时域资源为上行时域资源或者下行时域资源;其中,所述可用时域资源为所述终端设备所在小区所需的GP资源中除了所述终端设备所需的GP资源以外的部分或者全部资源。
可选的,在申请的一些实施例中,当所述第三时域资源配置信息用于指示可用时域资源为上行时域资源,
所述收发模块,还用于向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在所述上行时域资源上发送上行信号;
所述处理模块,还用于通过所述上行信号对所述上行时域资源进行干扰测量;当所述上行时域资源受到干扰或者受到的干扰测量值大于门限时,不在所述上行时域资源进行上行调度。
本申请实施例第三方面提供一种接入网设备,可以包括:
处理器,可选的,还包括存储器,收发器,所述存储器、所述收发器和所述处理器通过总线连接;
所述存储器,用于存储操作指令;
可选的,该接入网设备的处理器可以通过调用存储器中的程序实现上述第一方面方法的各个步骤。
可选的,该收发器可以完成该接入网设备的处理器可以通过收发器实现上述第一方面方法的其余各个步骤。
例如,所述处理器,用于确定终端设备所需的保护间隔GP资源,所述终端设备所需的GP资源为所述终端设备与接入网设备的上行同步需要的GP资源;
例如,所述收发器,用于向所述终端设备发送第一时域资源配置信息,所述第一时域资源配置信息指示所述终端设备所需的GP资源。
本申请实施例第四方面提供一种无线通信装置,可以包括:
至少一个处理器,存储器,收发电路和总线系统,所述处理器,所述存储器,所述收发电路通过所述总线系统耦合,所述无线通信装置通过所述收发电路与终端设备相通信,所述存储器用于存储程序指令,所述至少一个处理器用于执行所述存储器中存储的所述程序指令,使得所述无线通信装置执行如本申请实施例第一方面任一所述的方法中所述接入网设备操作的部分。所述无线通信装置既可以是接入网设备,也可以是应用在接入网设备中执行相应功能的系统芯片。
本申请实施例第五方面提供一种计算机可读存储介质,需要说明的是,本发的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产口的形式体现出来,该计算机软件产品存储在一个存储介质中,用于储存为上述接入网设备所用的计算机软件指令,其包含用于执行上述第一方面及第一方面任一可选方式中为接入网设备所设计的程序。
该存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例第六方面提供一种计算机程序产品,该计算机程序产品包含指令当其在计算机上运行时,使得计算机执行如本申请第一方面或第一方面任一可选实现方式中所述的方法。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例和现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,还可以根据这些附图获得其它的附图。
图1为本申请实施例所应用的一个系统架构图;
图2为本申请实施例中小区级半静态配置信息的示意图;
图3A为本申请实施例中小区级半静态配置信息的一个示例图;
图3B为本申请实施例中小区级半静态配置信息的另一个示例图;
图4为本申请实施例提供的一种时域资源的配置方法的一个示意图;
图5A为本申请实施例提供的一种时域资源的配置方法的另一个示意图;
图5B为本申请实施例中关于时间提前的一个示意图;
图6为本申请实施例提供的一种时域资源的配置方法的另一个示意图;
图7为本申请实施例提供的一种时域资源的配置方法的另一个示意图;
图8为本申请实施例中终端设备当前时隙配比的一个示意图;
图9为本申请实施例提供的一种时域资源的配置方法的另一个示意图;
图10为为本申请实施例中终端设备当前时隙配比的一个示意图;
图11为本申请实施例中上下行资源的干扰协调方法的一个实施例示意图;
图12A为本申请实施例中上行干扰符号的示意图;
图12B为本申请实施例中上行干扰符号的示意图
图13为本申请实施例中上下行资源的干扰协调方法的另一个实施例示意图;
图14A为本申请实施例中上行干扰符号的示意图;
图14B为本申请实施例中上行干扰符号的示意图;
图15为本申请实施例中接入网设备的一个实施例示意图;
图16为本申请实施例中通信装置的一个实施例示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,都应当属于本申请保护的范围。
本申请实施例提供的通信系统包括接入网设备和至少一个终端设备,其中该接入网设备可以与该至少一个终端设备通信。例如,如图1所示,接入网设备包括接入网 设备101,至少一个终端设备包括终端设备102和终端设备103,终端设备102与接入网设备101通信,终端设备103与接入网设备101通信。需要说明的是,在如图1所述的通信系统所包含的接入网设备和终端设备仅是一种示例,在本申请实施例中,所述通信系统包含的网元的类型、数量,以及网元之间的连接关系不限于此。
接入网设备可以是接入网侧用于支持终端接入通信系统的设备,例如,可以是LTE系统、下一代(移动通信)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
终端设备以是一种向用户提供语音或者数据连通性的设备,例如可称为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal)、智能终端等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信。例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置以及未来NR网络中的终端设备,它们与无线接入网交换语音或数据。对终端设备的说明:本申请中,终端设备还可以包括中继Relay,和基站可以进行数据通信的都可以看为终端设备。
本申请实施例中的通信系统可以为各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)等。
在新空口(new radio,NR)系统中,接入网设备可以按照下行资源-灵活资源-上行资源的形式为终端配置时域资源。例如,接入网设备可以通过下发时域资源配置信息为终端配置时域资源,该时域资源配置信息可以指示下行资源-灵活资源-上行资源,该时域资源配置信息可以是小区级半静态配置信息、用户级半静态信息和用户级动态信息中的一种或者多种,其中,灵活资源可以用于保护间隔(GP,guard period)的配置,GP可以理解为用于上下行切换之间的保护间隔。GP资源可以称为未知资源或者灵活(Flexible)资源,GP符号可以称为灵活符号。
例如,小区级半静态配置信息配置的时域资源由X,x1,x2,y1和y2这5个参数来定义。如图2所示,为小区级半静态配置信息的示意图。其中X表示配比周期,x1表示配比周期内连续的全下行(D)时隙个数,x2表示x1个全下行时隙后面的下行链路(down link,DL)符号个数;y1表示配比周期内连续全上行(U)时隙个数,y2表示y1个全上行时隙前面的上行链路(up link,UL)符号个数;剩余的符号为未 知(unknown)资源,用户设备(user equipment,UE)级半静态配置信息或用户级动态配置信息进一步将该未知资源配置为下行资源、上行资源或者未知资源,以此来实现动态TDD。
例如,如图3A所示,参考子载波间隔是30kHz,小区级半静态信令可以配置为:X=2.5ms,x1=3,x2=8,y1=1,y2=2。那么对于30kHz子载波间隔,2.5ms周期内共5个时隙,其中时隙0、时隙1和时隙2为全D时隙,时隙3的前8个符号为下行符号,时隙3的2个符号为上行符号,时隙3的4个符号为灵活符号,时隙4为全U时隙,时隙3的中间4个符号可以用于GP。
例如,如图3B所示,参考子载波间隔是30kHz,小区级半静态信令可以配置可以配置为:X=5ms,x1=7,x2=6,y1=2,y2=4。对于30kHz子载波间隔,5ms周期内共10个时隙,其中前7个时隙,即时隙0、时隙1、时隙2、时隙3、时隙4、时隙5、时隙6为全D时隙;第8个时隙,即时隙7的前6个符号为下行符号,时隙7的后4个符号为上行符号,时隙7的中间4个符号为灵活符号,时隙7的中间4个符号用于GP;最后2时隙,即时隙8和时隙9为全U时隙。
在上述NR技术方案中,GP资源可以通过小区级半静态信令、用户级半静态信令或者用户级动态信息配置。不同终端对GP资源的长度的要求不同,例如,不同终端由于所处的地理位置不同,对GP资源的长度的要求不同。例如,对于大部分近端终端设备来说,因为数据从接入网设备到近端终端设备的所用的时长较短,近端终端设备需要的GP资源的长度短;对于大部分远端终端设备来说,因为数据从接入网设备到远端终端设备的所用的时长较短,近端终端设备需要的GP资源的长度较长。如何为终端配置合适的GP资源是一个亟待解决的问题。
本申请实施例提供了一种方案,可以根据终端的需求,为终端分配GP资源。通过该方案,可以使得终端将GP资源以外的资源用于上行或者下行,提供资源的利用率,例如,对于近端终端设备而言,不需要较多的GP资源,而需要更多的上行时域资源或者下行时域资源,例如,近端终端设备下行多流传输,希望更及时准确的获得信道的信息,需要较多的上行时域资源发送SRS。
下面先对本申请中可能涉及的几个术语进行简单的说明:
小区级半静态配置信息用于指示一个时域资源包括的符号为上行符号、下行符号或者灵活符号,小区级可以理解为该配置信息对小区中的终端有效或者该配置信息可以发送给该小区的终端,半静态可以理解为该配置信息可以通过高层信令下发,该高层信令可以理解为无线资源控制(radio resource control,RRC)层的信令,例如,该高层信令可以是系统消息,接入网设备可以广播系统消息,该系统消息中可以携带小区级半静态配置信息。
用户级半静态配置信息用于指示一个时域资源包括的符号为上行符号、下行符号或者灵活符号,用户级可以理解为该配置信息对特定的终端有效或者该配置信息可以发送给特定终端,半静态可以理解为该配置信息可以通过高层信令下发,高层信令可以理解为无线资源控制(radio resource control,RRC)层的信令,例如该高层信令可以是RRC消息,接入网设备可以向终端发送RRC消息,该RRC消息可以包括终端级半静态配置信息。
用户级动态配置信息用于指示一个时域资源包括的符号为上行符号、下行符号或者灵活符号,用户级可以理解为该配置信息对特定的终端有效或者该配置信息可以发送给特定终端,动态可以理解为该配置信息可以通过物理层信息下发,例如该物理层信令可以是下行控制信息(downlink control information,DCI),接入网设备可以通过物理下行控制信道(physical downlink control channel,PDCCH)发送该DCI,该DCI可以包括终端级动态配置信息,这里PDCCH可以是组公共(group common,GC)PDCCH。
上述小区级半静态配置信息、用户级半静态配置信息和用户级动态配置信息可以统称为时域资源配置信息。
GP资源,可以称为灵活时域资源或者未知时域资源,GP符号可以称为灵活符号或者未知符。本申请实施例中最大、最小仅仅是一个名称,仅仅为了区分不同名词,并不起限定作用。
下面首先结合图4对本申请实施例提供的技术方案进行说明。图4为本申请实施例提供的一种时域资源的配置方法的示意图。该方法可以用于接入网设备或者接入网设备中的芯片。如图4所示:S401:确定所述终端设备所在小区所需的GP资源。
其中,所述小区所需的GP资源为位于所述小区覆盖边缘的终端设备与所述接入网设备上下行切换后保证上行同步需要的GP资源。
可选的,S401可以通过如下方式实现:
根据所述小区的最大覆盖距离确定第一GP长度;
根据所述第一GP长度确定所述终端设备所在小区所需的GP资源;或者,
根据所述小区的上下行子帧配比确定第二GP长度;
根据所述第二GP长度确定所述终端设备所在小区所需的GP资源;或者,
根据所述小区的最大覆盖距离确定第一GP长度;
根据所述小区的上下行子帧配比确定第二GP长度;
根据所述第一GP长度和所述第二GP长度中较大的GP长度确定所述终端设备所在小区所需的GP资源。
S401是可选的。
S402:确定终端设备所需的保护间隔GP资源。
所述终端设备所需的GP资源为所述终端设备与所述接入网设备上下行切换后保证上行同步需要的GP资源。
可选的,S402可以通过如下方式实现:确定所述终端设备的上行时间提前TA测量值,根据所述终端设备的所述上行TA测量值确定GP长度,根据所述GP长度确定所述GP资源。
S403:向所述终端设备发送第一时域资源配置信息。
可选的,所述第一时域资源配置信息指示所述小区所需的GP资源,所述小区所需的GP资源包括终端设备所需的GP资源。
可选的,所述第一时域资源配置信息指示所述终端设备所需的GP资源。由于小区所需的GP资源为所述小区覆盖边缘的终端设备与所述接入网设备上下行切换后保证上行同步需要的GP资源,也就是说是所述小区覆盖中各个终端设备需要的GP资源 中最大的GP资源。第一时域资源配置信息指示所述小区所需的GP资源,可以理解为第一时域资源配置信息指示了所述小区中每个终端所需的GP资源。
需要说明的是,第一时域资源配置信息指示GP时域资源,可以通过隐含指示的方式,例如可以通过第一时域资源配置信息指示上行时域资源和下行时域资源,第一时域资源配置信息没有指示为上行时域资源或者下行时域资源的时域资源为灵活时域资源,例如,接入网设备可以和终端设备协商时域资源配置信息中没有指示为上行时域资源或者下行时域资源的时域资源为灵活时域资源。或者,第一时域资源配置信息指示GP时域资源,可以通过显示指示的方式,例如,第一时域资源配置信息直接指示某一时域资源为GP时域资源。
S404:向所述终端设备发送第二时域资源配置信息。
作为第一种实施方式,所述第二时域资源配置信息用于指示可用时域资源为下行时域资源;
作为第二种实施方式,所述第二时域资源配置信息用于指示可用时域资源为上行时域资源;
其中,所述可用时域资源为所述小区所需的GP资源中除了所述终端设备所需的GP资源以外的部分或者全部资源。
S404是可选的。
第一种实施方式和第二种实施方式可以只有一个发生,例如第一种实施方式发生或者第二种实施方式发生,或者,第一种实施方式和第二种实施方式可以同时发生,例如,第二时域资源配置信息可以指示所述可用时域资源中部分时域资源为上行时域资源,所述可用时域资源中部分时域资源为下行时域资源。
可选的,在第二种实施方式之后,该方法还可以包括如下步骤:
向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在所述可用时域资源上发送上行信号;
通过所述上行信号对所述上行时域资源进行干扰测量;
当所述上行时域资源的干扰测量值大于门限时,不在所述上行时域资源进行调度。
可选的,在第二种实施方式之前,该方法还可以包括如下步骤:
向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在所述可用时域资源上发送上行信号;
通过所述上行信号对所述可用时域资源进行干扰测量;
所述向所述终端设备发送第二时域资源配置信息包括:
当所述可用时域资源没有受到干扰或者受到的干扰测量值小于门限时,向所述终端设备发送所述第二时域资源配置信息。
可选的,在第一种实施方式之后,该方法还可以包括如下步骤:
在下行时域资源上发送参考信号;
通知终端设备接收所述参考信号;
从终端设备接收下行时域资源上的信道质量指示信息,所述下行信道质量指示是通过对所述参考信号进行测量得到的;
可选的,所述信道质量指示信息是信道质量指示(channel quality indication,CQI)。
当所述下行时域资源上的信道质量值小于门限时,不在所述下行时域资源进行调度。
可选的,在第一种实施方式之前,该方法还可以包括如下步骤:
在所述可用时域资源上发送参考信号;
通知终端设备在所述可用时域资源上接收所述参考信号;
从终端设备接收所述可用时域资源上的信道质量指示信息,所述下行信道质量指示是通过对所述参考信号进行测量得到的;
可选的,所述信道质量指示信息是信道质量指示(channel quality indication,CQI)。
当所述下行时域资源上的信道质量值大于门限时,向所述终端设备发送所述第二时域资源配置信息。
可选的,作为S404的第一种可替代的实施方式,在S403之前,还可以包括:
向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在可用时域资源上发送上行信号;
通过所述上行信号对所述可用时域资源进行上行干扰测量,所述可用时域资源为所述终端设备所在小区所需的GP资源中除了所述终端设备所需的GP资源以外的部分或者全部资源;
当所述可用时域资源受到干扰或者受到的干扰测量值大于门限时,所述第一时域资源配置信息还用于指示所述可用时域资源为GP资源。
可选的,作为S404的第一种可替代的实施方式,在S403之前,还可以包括:
在所述可用时域资源上发送参考信号;
通知终端设备在所述可用时域资源上接收所述参考信号;
从终端设备接收所述可用时域资源上的信道质量指示信息,所述下行信道质量指示是通过对所述参考信号进行测量得到的;
可选的,所述信道质量指示信息是信道质量指示(channel quality indication,CQI)。
当所述下行时域资源上的信道质量值大于门限时,向所述终端设备发送所述第二时域资源配置信息。
可选的,作为S404的第三种可替代的实施方式,在S403之后,还可以包括:
向终端设备发送第三时域资源配置信息,所述第三时域资源配置信息用于指示可用时域资源为上行时域资源或者下行时域资源;
其中,所述可用时域资源为所述终端设备所在小区所需的GP资源中除了所述终端设备所需的GP资源以外的部分或者全部资源。
可选的,在上述第三种可替代的实施方式中,当所述第三时域资源配置信息用于指示可用时域资源为上行时域资源,该方法还包括:
向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在所述上行时域资源上发送上行信号;
通过所述上行信号对所述上行时域资源进行干扰测量;
当所述上行时域资源受到干扰或者受到的干扰测量值大于门限时,不在所述上行时域资源进行调度。
可选的,在上述第三种可替代的实施方式中,该方法还包括,当所述第三时域资源配置信息用于指示可用时域资源为下行时域资源,该方法还包括:
在下行时域资源上发送参考信号;
通知终端设备接收所述参考信号;
从终端设备接收下行时域资源上的信道质量指示信息,所述下行信道质量指示是通过对所述参考信号进行测量得到的;
可选的,所述信道质量指示信息是信道质量指示(channel quality indication,CQI)。
当所述下行时域资源上的信道质量值小于门限时,不在所述下行时域资源进行调度。
上面图4中接入网设备可以是接入网设备101,终端设备可以是终端设备102或者终端设备103,便于描述,下面以接入网设备101和终端设备102为例进行介绍。
下面以实施例的方式对本申请技术方案做进一步的说明,如图5A所示,为本申请实施例中时域资源的配置方法的示意图,包括:
S501、接入网设备101确定小区所需的最大GP符号数。
小区所需的最大GP符号数可以理解为保证接入网设备101接收到最远端终端设备的上行信号,最远端终端设备所需的GP符号数,或者,可以理解为保证上下行切换后,接入网设备101能够正确接收最远端终端设备的上行传输信号所需的GP符号数,或者可以理解为所述终端设备与所述接入网设备上下行切换后保证上行同步需要的GP符号数。这里小区可以为接入网设备101提供的1个小区、2个小区或者更多的小区。例如,接入网设备101提供小区1,小区1中终端设备102和终端设备103。最远端终端可以理解为在小区覆盖边缘的终端。
作为第一种实施方式,可以根据小区最大覆盖距离得到确定该最大GP符号数(下面为了表述方便,将小区所需的最大GP符号数称为G_cell)。
作为一种示例,接入网设备101可以根据往返时延(Round Trip Delay,RTD)max=最大覆盖距离*2/光速得到RTDmax,然后再根据RTDmax=GP长度-M,得到GP长度,其中,M与终端上下行切换时延和时间提前偏置(TA offset)时延有关,例如,M为终端上下行切换时延和TA offset时延之和,NR中终端上下行切换时延可以是10us,TA offset时延可以是13us,LTE中终端上下行切换时延可以是17us,TA offset时延可以是20us。然后GP长度除以符号的长度可以得到GP符号数目。
例如,下述表2所示,为一种小区最大覆盖距离与最大GP符号数的示例。
Figure PCTCN2019105053-appb-000003
表2
在表2所示中,当小区半径<=1.9km时,对应的最大GP符号数为1符号;当小区半径1.9km<=7.3km时,对应的最大GP符号数为2符号;当小区半径703<=12.6时,对应最大的GP符号数为3符号。
作为第二种实施方式,在第一种实施方式的基础上,接入网设备101可以判断是否向该小区的终端设备发送过LTE的上下行子帧配比,若有,接入网设备101根据LTE的上下行子帧配比,确定小区的GP符号数为G3;那么,接入网设备101确定小区的最大GP符号数可以为G_cell=max{G1,G3}。
作为第三种实施方式,接入网设备101可以判断是否向该小区的终端设备发送过LTE的上下行子帧配比,若有,接入网设备101可以直接根据LTE的上下行子帧配比,确定小区的GP符号数为G3;那么,接入网设备101确定小区的最大GP符号数可以为G_cell=G3。
可选的,接入网设备101确定小区所需的最大GP符号数后,接入网设备101确定小区所需的最大GP资源。
S501和S401中的内容可以相互参考。
S502、接入网设备101向终端102发送时域资源配置信息,该时域资源配置信息指示小区所需的最大GP资源。
时域资源配置信息可以是小区级半静态配置信息。
可选的,在S502之前,接入网设备101可以根据小区最大GP符号数,确定GP资源的长度,然后确定小区级半静态配置信息,例如确定小区级半静态配置信息中x1,x2,y1和y2的值。
相应地,终端可以接收小区级半静态配置信息,然后配置GP资源。
S502和S403中的内容可以相互参考。
S503、接入网设备101确定终端设备102所需的最小GP符号数。
终端设备102所需的最小GP符号数可以理解为为保证接入网设备101正确接收来自终端102用户的上行信号,或者,可以理解为保证上下行切换后,接入网设备101能够正确接收终端设备102的上行传输信号所需的GP符号数,或者可以理解为终端设备102与接入网设备101上下行切换后保证上行同步需要的GP符号数。
作为一种实现方式,接入网设备101可以根据终端设备102的上行TA测量结果,确定终端设备102所需的最小GP符号数G2。例如,接入网设备101测量终端设备102发送的上行参考信号,计算该终端设备102的TA测量值TA测量值表示信号从终端设备102到达接入网设备101所需要的单向最小时延,信号从终端设备102到接入网设备101的环回时延为该TA测量值的2倍,可以的,可以再加上终端设备102上下行切换所需要的切换时间和接入网设备101上下行切换所需要的切换时间中的一种或者多种等因素,可以得到保证终端设备102信号环回所需要的最小时间,除以符号长度即可以得到终端设备102所需要的最小GP符号数。
如图5B所示,箭头1代表接入网设备101和终端设备102之间的单向时延,箭头2代表终端设备102的上下行切换所需要的最小时间和接入网设备101的上下行切换所需要的时间,例如接入网设备101的上下行切换所需要的时间可以是时间提前偏置(TA offset)时延。最小GP符号数对应的GP长度可以是2*单向时延(箭头1)+终端设备102的上下行切换所需要的最小时间和接入网设备101的上下行切换所需要的时间(箭头2)。
例如,下述表3所示,为一种终端设备TA测量值与最小GP符号数的示例。
Figure PCTCN2019105053-appb-000004
表3
在表3所示中,当TA测量值小于等于21.68us时,终端设备102所需的最小GP符号数为1,当TA测量值大于等于21.68且小于等于57.35时,终端设备102所需的最小GP符号数为2,当TA测量值大于等于57.35且小于等于93.03时,终端设备102所需的最小GP符号数为3。
可选的,在上述实施方式中,初始TA测量值可以通过测量物理随机接入信道(physical random access channel,PRACH)信道中的Preamble序列测量得到。或者,终端设备接入系统后,TA测量值可以通过测量SRS参考信号得到,例如,终端设备在接入系统后,通过测量SRS参考信号可以对初始TA测量值进行调整从而更新TA测量值。
可选的,在上述实施方式中,接入网设备101计算该终端设备102的TA测量值,还可以通过测量物理上行共享信道(physical uplink shared channel,PUSCH)信道上的DMRS(Demodulation RS,解调参考信号)得到。
可选的,接入网设备101确定终端设备102所需的最小GP符号数,可以确定终端设备102所需的最小GP资源。
S503可以与S402相互参考。
S504、接入网设备101根据小区的最大GP符号数和终端设备102所需的最小GP符号数,确定终端设备102新增的上行符号数或者新增的下行符号数。
对于一个终端设备102,接入网设备101可以将最大GP符号数减去最小GP符号数的符号数对应的符号中的部分符号或者全部符号确定为该终端设备102新增的上行符号或者新增的下行符号。
例如,若G_UE小于G_cell,接入网设备101根据系统上下行物理信道和信号物理资源的需求状态,以及最大GP符号数和最小GP符号数确定该终端设备102新增的下行符号或新增的上行符号。
可选的,对于上行资源受限的场景,在S504之后,提供了如下两种实施方式:
S5A05-S5A07为上行资源受限的场景的第一种实施方式:
S5A05、接入网设备101确定可增加的上行符号数后,确定该终端设备102更新的时域资源配置信息。
S5A05可以与S404相互参考。
S5A06、向终端设备102发送更新的时域资源配置信息。
例如,接入网设备101可以通过UE级RRC信令发送时域资源配置,所述时域资源配置指示新增的上行符号。
可选的,对于该终端设备102,接入网设备101在所有可用的上行符号资源上进行物理信道和信号的调度选择。
S5A07、接入网设备101可以通知终端设备102在新增的上行符号(y_add1)上发送参考信号,进行IoT测量。
例如,接入网设备101可以通过DCI信令通知终端设备102。
该参考信号如SRS等。接入网设备101对新增上行符号分别进行干扰噪声(interference over thermal,IoT)测量。
S5A08、若IoT测量值大于某一预先设定门限,不进行上行调度。
由于IoT测量值大于某一预先设定门限,说明该上行符号上受到强干扰,接入网设备101在受到强干扰的上行符号资源上不进行上行物理信道和信号的调度。
可选的,在S5A07中,接入网设备101在配置了新增y_add1符号和原始(y2)符号为上行符号后,接入网设备101还可以指示终端设备102在y_add1符号和y2符号发送参考信号,例如通过RRC信令或者DCI信令通知终端设备102在增加的y_add1和y2符号上发送参考信号,该参考信号如SRS等。接入网设备101可以对上行符号y_add1+y2上进行干扰测量;接入网设备101根据实际测量得到的y_add1+y2上行符号上的IoT测量结果,确定终端设备上行实际能使用的上行符号数。对于该终端设备102,接入网设备101在所有可用的上行符号资源上进行物理信道和信号的调度,接入网设备101在受到强干扰的上行符号资源上不进行上行物理信道和信号的调度选择。即对于y_add1来说,未受强干扰的可用的上行符号数y_add2,对于y2来说,未受强干扰的可用的上行符号数y2_update,该终端设备实际可用的上行符号数y2_new=y2_update+y_add2。
可选的,在S5A07中,接入网设备101在配置了y_add1符号、y2符号和y1时隙为上行时域资源后,接入网设备101还可以指示终端设备在y_add1符号、y2符号和y1时隙发送参考信号,例如接入网设备101可以通过RRC信令或者DCI信令通知终端设备102在y_add1个符号、y2符号和y1时隙上发送参考信号,该参考信号如SRS等。接入网设备101对所有上行符号进行干扰测量;接入网设备101根据实际测量得到的所有上行符号上的IoT测量结果,确定终端设备上行实际能使用的上行符号数。对于该终端设备102,接入网设备101在所有可用的上行符号资源上进行物理信道和信号的调度,接入网设备101在受到强干扰的上行符号资源上不进行上行物理信道和信号的调度选择。
S5B05-S5B07为上行资源受限的场景的第二种实施方式:
S5B05:接入网设备101可以指示终端设备102在新增的上行符号上发送参考信号,进行IoT测量。
例如,接入网设备101可以通过DCI信令指示终端设备102。
该参考信号如SRS等。接入网设备101对增加的可用上行符号y_add1分别进行干扰噪声(interference over thermal,IoT)测量,若IoT测量值大于某一预先设定门限,则说明该可用上行符号上受到强干扰。统计IoT测量值小于预先设定门限的符号数,得到未受强干扰的可用上行符号数y_add2;该终端设备实际可用的上行符号数y2_new=y2+y_add2;对于该终端设备102,接入网设备101在所有可用上行符号资源上进行物理信道和信号的调度,接入网设备101在受到强干扰的可用上行符号资源上不进行上行物理信道和信号的调度选择。
需要说明的是,接入网设备101对增加的可用上行符号y_add1进行干扰测量,具体的实现方式如下所示:接入网设备101接收所有有用信号、干扰和热噪声的能量,减去解调后的有用信号能量,即可得到干扰和噪声的能量。
S5B06:接入网设备101确定未受干扰的新增的的上行符号数后,确定该终端设备102更新的的时域资源配置信息。
S5B07、接入网设备101向终端设备102发送更新的时域资源配置信息。
例如,接入网设备101可以通过UE级RRC信令发送时域资源配置信息。
可选的,对于该终端设备102,接入网设备101在所有可用的上行符号资源上进行物理信道和信号的调度选择。可选的,接入网设备101不下发UE级RRC信令,直接通过DCI信令,在强干扰的可用上行符号上不进行上行信道和信号的资源分配。S5B07可以与S404相互参考。
可选的,对于下行受限的场景,本申请实施例提供了如下实施方式:
S5C05:接入网设备101向终端102发送时域资源配置信息,该时域资源配置信息可以指示可用时域资源为下行时域资源。
该时域资源配置信息可以是用户级配置信息,例如用户级半静态配置信息或者用户级动态配置信息。
可用时域资源为最大GP资源中除了最小GP资源以外的部分或者全部资源。
S5C05可以与S404相互参考。
例如,对于终端设备102的下行资源受限场景:上行原有的可用符号数不变,接入网设备101确定该终端设备102可增加的下行符号数x_add=G_cell–G_UE;该终端设备102实际可用的下行符号数x2_new=x2+x_add。
例如,对于终端设备102的上行资源受限场景:接入网设备101根据最大GP符号数和最小GP符号数,确定该终端设备102实际可用的下行符号数,具体可以包括:
相应地,对于该终端设备102,接入网设备101在所有可用的下行符号资源上进行下行物理信道和信号的调度选择。
在本申请实施例中,接入网设备101根据当前系统上下行物理信道和信号物理资源的需求状态,以及上行IoT测量结果,确定该终端设备实际可用的下行资源或上行资源。有效利用资源的同时,避免邻区接入网设备101、远端接入网设备101干扰和上下行之间的干扰问题;接入网设备101向终端设备102通知可用的上行符号数或者可用的下行符号数;实现UE级半静态或动态配置的GP和灵活动态的上下行资源分配。
下面结合图6做进一步的说明,图6为本申请实施例中时域资源的配置方法的示意图,如图6所示:
S601:接入网设备101确定小区所需最大的GP符号数。
需要说明的是,步骤S601是可选的步骤。
S602:接入网设备101确定终端设备102所需的最小GP符号数。
步骤S601-S602可以参考上述图5A所示实施例中的步骤S501和S503,此处不再赘述。
S602后,作为第一种实施方式:
S6A03:接入网设备101向终端设备102发送时域资源配置信息。
该时域资源配置信息可以是用户级半静态或者用户级动态时域资源配置信息,指示最小GP资源。
可选的,该时域资源配置信息可以将目标时域资源配置成上行时域资源或者下行时域资源。
其中,目标时域资源可以是最大GP符号数资源-最小GP符号数资源中的部分或者全部时域资源。
可选的,S6A04:接入网设备101在该上行时域资源上检测得到IoT测量值。
可选的,S6A05:当IoT测量值超过阈值,则接入网设备101在超过阈值的上行时域资源上不进行资源分配。
S602后,作为第二种实施方式:
S6B03:接入网设备101在目标时域资源上进行IoT测量,得到IoT测量值。
其中,目标时域资源可以是最大GP符号数资源-最小GP符号数资源中的部分或者全部时域资源。对于目标时域资源,接入网设备101进行检测干扰,得到IoT测量值,当IoT测量值超过阈值时,接入网设备101确定IoT测量值大于阈值的时域资源,IoT测量值大于阈值的时域资源为受到干扰的资源。
S6B04:接入网设备101向终端设备102发送时域资源配置信息。
该时域资源配置信息可以是用户级半静态或者用户级动态的时域资源配置信息,指示GP资源,其中,该GP资源为最小GP资源+[(最大GP资源-最小GP资源)中受到干扰的资源]。
下面结合图7和图8中的具体的示例作进一步的说明。
如图7所示,为本申请实施例中上下行资源的配置方法的另一个实施例示意图,包括:
701、如果接入网设备101未向小区的终端设备发送过LTE的上下行子帧配比,那么基站根据小区最大覆盖距离,确定小区所需要的最大GP符号数G1。
假设小区最大覆盖距离为14km,小区所需要的最大GP符号数G1=4符号。
702、接入网设备101根据小区所需要的最大GP符号数G1,确定上下行时域资源配置信息。
以C-band频段NR系统为例来进行说明,该频段所使用的子载波间隔为30kHz,上下行时隙配比周期为2.5ms,则X=2.5ms。接入网设备101根据上下行业务量确定x1=3,y1=1;接入网设备101还根据上行物理信道和信号所需要的资源,如SRS或上行控制信道(physical uplink control channel,PUCCH),确定上行符号数y2=2。
如果当前系统中不存在已有LTE的时隙配比,故实际小区需要配置的GP符号数G_cell=G1=4符号。那么,对应的下行符号数x2=14-y2-G_cell=8。
可以理解的是,也可以是接入网设备101根据下行物理信道和信号需要的资源,确定下行符号数x2=8;接入网设备101再根据小区最大覆盖距离,确定小区所需要的最大GP符号数G1=4,如果当前系统中无存量LTE,则G_cell=G1=4;那么对应的上行符号数y2=14-x2-G_cell=2。
703、接入网设备101通过小区级RRC信令,向小区内的所有终端设备发送上下行时域资源配置信息。
接入网设备101可以通过系统消息块(system information block,SIB1)消息通知小区内的所有终端设备上下行时域资源配置信息,即当前时隙配比信息为:X=2.5ms,x1=3,x2=8,y1=1,y2=2。如图8所示,图8为终端设备当前时隙配比的一个示意图。
704、接入网设备101根据终端设备的上行TA测量结果,确定终端设备所需的最小GP符号数。
接入网设备101对某个终端设备的上行物理信道和信号进行IoT测量,如对物理随机接入信道(physical random access channel,PRACH)信道和SRS进行IoT测量,根据IoT测量结果更新该终端设备的TA测量值,根据TA测量值和GP符号的对应关系确定终端设备所需要的最小GP符号数G2。
例如:该终端设备实际TA测量值为50us,根据上述表3所示,则对应最小GP符号数G2=2符号。那么终端设备所需要配置的GP符号数G_UE=G2=2,即2符号。
705、接入网设备101根据当前系统上下行物理信道和信号物理资源需求的状况确定增加上行资源。
接入网设备101根据当前系统上下行物理信道和信号物理资源需求的状况,确定增加上行资源。如当前系统下近点用户SRS资源受限,接入网设备101确定增加上行可用资源,则下行符号数x2固定为8,增加上行可用符号数y_add=2符号.
706、接入网设备101通过DCI信令,在增加上行资源的符号上发送参考信号,进行IoT测量,得到IoT测量值。
例如:接入网设备101通过DCI信令通知终端设备在时隙(Slot)#3上符号#10和#11以及#12,#13上发送SRS信号。接入网设备101对Slot#3上符号#10~13符号进行IoT测量。
707、接入网设备101根据IoT测量值,确定用于终端设备实际可用的上行符号数。
若这4个符号上的IoT均小于某一门限,则确定这4个符号上均可用于该终端设备的上行发送,该终端设备上行实际可用的符号数为4。若符号#10上的IoT大于某一门限,则只有符号#11~13可用于该终端设备的上行发送,该该终端设备上行实际可用的符号数为3,如上图8所示。
708、接入网设备101向终端设备发送实际可用的上行符号数的指示信息。
接入网设备101通过UE级RRC信令或DCI信令,通知终端设备用于上行传输及下行传输的符号数(如x2=8,y2_new=4),从而使得终端设备确定实际使用到的GP符号数和GP位置。
在本申请实施例中,接入网设备101通过测量得到的TA值和上行IoT测试值,确定终端设备实际所需要的GP符号数及可用的上行符号数,通过小区级SIB1信令和UE级RRC信令相结合的方式,实现UE级GP符号数和上行符号数的半静态或动态配置,实现系统资源的有效利用,提升系统性能。在现有技术中,GP符号个数和位置以及上行符号数目是静态配置的。与现有技术相比,在本申请实施例中,近点终端设备上行符号数增加到4,增加了上行SRS可用资源,有利于系统性能的提升。
如图9所示,为本申请实施例中上下行资源的配置方法的另一个实施例示意图,包括:
901、接入网设备101根据小区最大覆盖距离,确定小区所需要的最大GP符号数 G1。
假设小区最大覆盖距离为14km,小区所需要的最大GP符号数G1=4符号。
902、如果接入网设备101已向小区的终端设备发送过LTE的上下行子帧配比,则接入网设备101根据LTE的上下行子帧配比,确定小区的GP符号数为G3。
如果当前系统中存在已有LTE的时隙配比,且已有LTE的时隙配比中GP符号数G3配置为4。
903、接入网设备101根据G1和G3确定小区的最大GP符号数G_cell=max{G1,G3}。
如果当前系统中存在已有LTE的时隙配比,且已有LTE的时隙配比中GP符号数G3配置为4,则接入网设备101为小区配置的实际GP符号数G_cell=max{G1,G3}=4符号。
904、接入网设备101根据小区最大GP符号数G_cell,确定上下行时域资源配置信息。
以C-band频段NR系统为例来进行说明,该频段所使用的子载波间隔为30kHz,上下行时隙配比周期5ms,则X=5ms。接入网设备101根据上下行业务量确定x1=7,y1=2。接入网设备101还根据上行物理信道和信号所需要的资源,如SRS或PUCCH,确定上行符号数y2=4。那么,对应的下行符号数x2=6。
905、接入网设备101通过小区级RRC信令,向小区内的所有终端设备发送上下行时域资源配置信息。
接入网设备101可以SIB1消息通知小区内的所有终端设备上下行时域资源配置信息,即当前时隙配比信息为:X=5ms,x1=7,x2=6,y1=2,y2=4,如图10所示,图10为终端设备当前时隙配比的一个示意图。
906、接入网设备101根据终端设备的上行TA测量结果,确定终端设备所需的最小GP符号数。
接入网设备101对某个终端设备的上行物理信道和信号进行IoT测量,如对PRACH信道和SRS进行IoT测量,根据IoT测量结果更新该终端设备的TA测量值,根据TA测量值和GP符号的对应关系确定终端设备所需要的最小GP符号数G2。
例如:该终端设备如果实际TA测量值为50us,根据上述表3所示,则对应最小GP符号数G2=2符号。那么终端设备所需要配置的GP符号数为G_UE=G4=2,即2符号。
907、接入网设备101根据当前系统上下行物理信道和信号物理资源需求的状况确定增加下行资源。
接入网设备101根据当前系统上下行物理信道和信号物理资源需求的状况,确定增加下行资源。则上行符号数y2固定为4,该终端设备下行实际可用符号数x2_new=x_add+x2=4+6=10。
908、接入网设备101向终端设备发送可用的下行符号数的指示信息。
接入网设备101通过UE级RRC信令或DCI信令,通知终端设备用于上行传输及下行传输的符号数(如x2_new=10,y2=4),从而使得终端设备确定实际使用到的GP符号数和GP位置。
在本申请实施例中,接入网设备101通过测量得到的TA值,确定终端设备实际所需要的GP符号数及可用的下行符号数,通过小区级SIB1信令和UE级RRC信令相结合的方式,实现UE级GP符号数和下行符号数的半静态或动态配置,实现系统资源的有效利用,提升系统性能。在现有技术中,GP符号个数和位置以及上行符号数目是静态配置的。与现有技术相比,在本申请实施例中,近点终端设备下行可用符号数增加,增加了下行PDSCH可用资源,有利于系统性能的提升。
在上述实施例中,GP的配置除了覆盖距离,还需要考虑来自相邻接入网设备或者远端接入网设备的干扰。相邻接入网设备或远端接入网设备的信号需要保证在GP保护范围内,这样相邻接入网设备或者远端接入网设备的下行信号才不会干扰到本接入网设备的上行信号。
此外,当相邻接入网设备或者远端接入网设备的时钟同步出现故障或不可用时,会导致此类接入网设备同步丢失,和周边接入网设备间出现时钟偏差。各个接入网设备的发送、接收时刻不对齐,来自相邻接入网设备或者远端接入网设备的下行信号到达终端设备(user equipment,UE)侧时间点超过GP范围,就会干扰终端设备上行接收,影响系统性能。
在低空大气波导效应下,当远端接入网设备达到一定的高度时,远端接入网设备的大功率下行信号可以产生远距离传输到达近端接入网设备。由于远距离传输时间超过上下行保护间隔,远端接入网设备的下行信号在近端接入网设备的接收时隙被近端接入网设备收到,从而干扰了近端接入网设备的上行信号接收,产生干扰,影响系统性能。
考虑到接入网设备间的干扰场景,造成干扰的原因可能是接入网设备之间的定时偏差,也可能是远端接入网设备的传播干扰。所有接入网设备可以持续监测接收符号上的干扰水平,如果发现接入网设备之间干扰存在,则通过调整信道配置、GP配置,来避让干扰的问题。
本申请提出了一种方案可以针对不同终端设备配置不同的GP长度,例如可以根据干扰检测状况对不同终端设备配置不同的GP长度。利用本申请的方案,可以实现上下行资源的灵活调度,有效规避干扰,最大化可用空口资源,提升系统容量和用户体验。
下面以实施例的方式,对本申请技术方案做进一步的说明,如图11所示,为本申请实施例中上下行资源的干扰协调方法的一个实施例示意图。图11可以与本申请实施例前面提供的时域资源分配方案结合(例如图5A至图10中的方案)或者可以单独进行可以包括:
1101、接入网设备确定终端设备用于上行传输的符号。
这里用于上行传输的符号可以是本申请实施例前面提供的时域资源分配方案中小区所需的GP资源中除了终端设备所需的GP资源以外的上行传输符号,或者小区所需的GP资源以外的上行传输符号。
这里上行传输符号可以是通过小区级半静态配置信息、用户级半静态配置信息或者用户级动态配置信息进行配置的。
1102、接入网设备确定上行干扰符号。
接入网设备根据对上行传输的符号的IoT测量结果,从上行传输的符号中确定上行干扰符号。示例性的,如图12A所示,为本申请实施例中上行干扰符号的示意图。在图12A所示中,以5G 30K子载波典型场景为例,阴影部分表示上行干扰符号,即干扰主要集中在U时隙前部1~2个符号。如图12B所示,为本申请实施例中上行干扰符号的示意图。在图12B所示中,以5G 30K子载波典型场景为例,阴影部分表示上行干扰符号,即干扰主要集中在U时隙尾部的1~4个符号。
1103、接入网设备向终端设备发送信道配置更新消息,信道配置更新消息用于指示终端设备在上行干扰符号上不进行资源调度。
接入网设备确定上行干扰符号数之后,向终端发送信道配置更新消息,该信道配置更新消息用于指示终端设备在上行干扰符号上不进行资源调度。终端设备在除去上行干扰符号的上行传输的符号上进行资源调度。
可以理解的是,在这些上行传输的符号上,可能出现的信道有SRS/PUSCH/PUCCH,接入网设备可以通过UE级RRC信令或DCI信令,指示终端设备调整SRS/PUSCH/PUCCH的信道配置,避开上行干扰符号。
现有技术中,接入网设备无法根据干扰情况灵活避让干扰符号,导致一旦出现干扰,系统业务严重受损。在本申请实施例中,接入网设备确定上行干扰符号后,可以向终端设备发送信道配置更新消息,信道配置更新消息用于指示终端设备在上行干扰符号上不进行资源调度。虽然系统容量稍有损失,但系统业务可正常工作。
如图13所示,图13为本申请实施例中上下行资源的干扰协调方法的一个实施例示意图,可以包括:
1301、第一接入网设备确定第一终端设备用于上行传输的符号。
这里用于上行传输的符号可以是本申请实施例前面提供的时域资源分配方案中小区所需的GP资源中除了终端设备所需的GP资源以外的上行传输符号,或者小区所需的GP资源以外的上行传输符号。
这里上行传输符号可以是通过小区级半静态配置信息、用户级半静态配置信息或者用户级动态配置信息进行配置的。
1302、第一接入网设备确定上行干扰符号和目标接入网设备,目标接入网设备为对上行传输的符号造成干扰的接入网设备。
第一基站根据对上行传输的符号的IoT测量结果,从上行传输的符号中确定上行干扰符号。每个基站都会周期性发送特征序列,第一基站收到其他基站发送的周期性特征序列,第一基站再根据该周期性特征序列,确定目标基站,该目标基站确定的下行符号对该基站的上行符号造成干扰。
1303、第一接入网设备向目标接入网设备发送指示信息。
第一基站向目标基站发送指示信息,该指示信息用于指示目标基站在对该第一基站的上行符号造成干扰的下行符号(下行干扰符号)上不进行资源调度。
示例性的,如图14A所示,为本申请实施例中上行干扰符号的示意图。在图14A所示中,以5G 30K子载波典型场景为例,阴影部分表示上行干扰符号,即干扰主要集中在D时隙前部1~4个符号。此时,第一基站希望目标基站在发送时隙的尾部几个 下行符号上进行避让。
如图14B所示,为本申请实施例中上行干扰符号的示意图。在图14B所示中,以5G 30K子载波典型场景为例,阴影部分表示上行干扰符号,即干扰主要集中在D时隙尾部的1~2个符号。此时第一基站希望目标基站在发送时隙的前部几个下行符号上进行避让。
1304、目标接入网设备向目标终端设备发送信道配置更新消息,信道配置更新消息用于指示终端设备在下行干扰符号上不进行资源调度。
目标基站根据指示信息,确定下行干扰符号,然后,向目标终端设备发送信道配置更新消息,信道配置更新消息用于指示终端设备在下行干扰符号上不进行资源调度。目标终端设备为目标基站覆盖范围内的终端设备。
目标终端设备在下行干扰符号上不进行资源调度的时候,对于基站来说,上行传输的符号都可以进行资源调度,没有上行干扰符号一说了。
在目标基站的下行传输的符号上,可能出现的信道有PDSCH/PUCCH,目标基站修改相关信道配置,并通过UE级RRC信令或DCI信令指示目标UE,避开干扰符号。
现有技术中,基站无法根据干扰情况灵活避让干扰符号,导致一旦出现干扰,系统业务严重受损。在本申请实施例中,基站确定上行干扰符号,进一步还可以确定造成这些上行干扰符号对应的目标基站,向该目标基站发送指示信息,目标基站收到该指示信息后,可以向目标终端设备发送信道配置更新消息,信道配置更新消息用于指示目标终端设备在对基站造成干扰的下行干扰符号上不进行资源调度。对基站来说,系统容量没有损失,系统业务可正常进行工作。对于目标基站来说,系统容量稍有损失,但系统业务可正常工作。
需要说明的是,图11至图14B(包括图11、图12A、图12B、图13、图14A和图14B)中的干扰协调方法同样适用于下行时域资源,当在下行时域资源上受到干扰后,基站可以选择不在该下行时域资源上调度,或者将受到干扰的下行时域资源发送给干扰基站,让干扰基站不进行上行调度。
如图15所示,图15为本申请实施例中接入网设备的一个实施例示意图,可以包括:
处理模块1501,用于确定终端设备所需的保护间隔GP资源,终端设备所需的GP资源为终端设备与接入网设备的上行同步需要的GP资源;
收发模块1502,用于向终端设备发送第一时域资源配置信息,第一时域资源配置信息指示终端设备所需的GP资源。
可选的,在本申请的一些实施例中,
处理模块1501,具体用于确定终端设备的上行时间提前TA测量值;根据终端设备的上行TA测量值确定GP长度;根据GP长度确定GP资源。
可选的,在本申请的一些实施例中,
处理模块1501,还用于确定终端设备所在小区所需的GP资源,小区所需的GP资源为远端终端设备与接入网设备的上行同步需要的GP资源;其中,第一时域资源配置信息指示小区所需的GP资源,小区所需的GP资源包括终端设备所需的GP资源。
可选的,在本申请的一些实施例中,
处理模块1501,具体用于根据小区的最大覆盖距离确定第一GP长度;根据第一GP长度确定终端设备所在小区所需的GP资源;或者,
处理模块1501,具体用于根据小区的上下行子帧配比确定第二GP长度;根据第二GP长度确定终端设备所在小区所需的GP资源;或者,
处理模块1501,具体用于根据小区的最大覆盖距离确定第一GP长度;根据小区的上下行子帧配比确定第二GP长度;根据第一GP长度和第二GP长度中较大的GP长度确定终端设备所在小区所需的GP资源。
可选的,在本申请的一些实施例中,
收发模块1502,还用于向终端设备发送第二时域资源配置信息,第二时域资源配置信息用于指示可用时域资源为下行时域资源;其中,可用时域资源为终端设备所在小区所需的GP资源中除了终端设备所需的GP资源以外的部分或者全部资源。
可选的,在本申请的一些实施例中,
收发模块1502,还用于向终端设备发送第二时域资源配置信息,第二时域资源配置信息用于指示可用时域资源为上行时域资源;其中,可用时域资源为终端设备所在小区所需的GP资源中除了终端设备所需的GP资源以外的部分或者全部资源。
可选的,在本申请的一些实施例中,
处理模块1501,还用于对可用时域资源进行干扰测量;
收发模块1502,具体用于当可用时域资源没有受到干扰或者受到的干扰测量值小于门限时,向终端设备发送第二时域资源配置信息。
可选的,在本申请的一些实施例中,
收发模块1502,还用于向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在所述上行时域资源上发送上行信号;
处理模块1501,还用于通过所述上行信号对所述上行时域资源进行干扰测量;当上行时域资源的干扰测量值大于门限时,不在上行时域资源进行上行调度。
可选的,在本申请的一些实施例中,
处理模块1501,还用于确定小区所需的GP资源,小区所需的GP资源为远端终端设备与接入网设备的上行同步需要的GP资源。
可选的,在本申请的一些实施例中,
收发模块1502,还用于向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在可用时域资源上发送上行信号;
处理模块1501,还用于通过所述上行信号对所述可用时域资源进行上行干扰测量,可用时域资源为终端设备所在小区所需的GP资源中除了终端设备所需的GP资源以外的部分或者全部资源;当可用时域资源受到干扰或者受到的干扰测量值大于门限时,第一时域资源配置信息还用于指示可用时域资源为GP资源。
可选的,在本申请的一些实施例中,
收发模块1502,还用于向终端设备发送第三时域资源配置信息,第三时域资源配置信息用于指示可用时域资源为上行时域资源或者下行时域资源;其中,可用时域资源为终端设备所在小区所需的GP资源中除了终端设备所需的GP资源以外的部分或者全部资源。
可选的,在本申请的一些实施例中,当第三时域资源配置信息用于指示可用时域资源为上行时域资源,
收发模块1502,还用于向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在所述上行时域资源上发送上行信号;
处理模块1501,还用于通过所述上行信号对所述上行时域资源进行干扰测量;当上行时域资源受到干扰或者受到的干扰测量值大于门限时,不在上行时域资源进行上行调度。
下面介绍本申请实施例提供的一种通信装置1600。如图16所示:
通信装置1600包括处理单元1601和通信单元1602。可选的,通信装置1600还包括存储单元1603。处理单元1601、通信单元1602和存储单元1603通过通信总线相连。
通信单元1602可以是具有收发功能的装置,用于与其他网络设备或者通信网络进行通信。
存储单元1603可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。
存储单元1603可以独立存在,通过通信总线与处理单元1601相连。存储单元1603也可以与处理单元1601集成在一起。
通信装置1600可以用于通信设备、电路、硬件组件或者芯片中。
通信装置1600可以是本申请实施例中的接入网设备,例如接入网设备101。接入网设备的示意图可以如图1所示。可选的,通信装置1600的通信单元1602可以包括接入网设备的天线和收发机。通信单元1602还可以包括接入网设备的网络接口。
通信装置1600可以是本申请实施例中的接入网设备中的芯片,例如接入网设备101中的芯片。通信单元1602可以是输入或者输出接口、管脚或者电路等。可选的,存储单元可以存储接入网设备侧的方法的计算机执行指令,以使处理单元1601执行上述实施例中接入网设备侧的方法。存储单元1602可以是寄存器、缓存或者RAM等,存储单元1603可以和处理单元1601集成在一起;存储单元1602可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储单元1602可以与处理单元1601相独立。可选的,随着无线通信技术的发展,收发机可以被集成在通信装置1600上,例如通信单元1602集成了收发机,网络接口。
当通信装置1600是本申请实施例中的接入网设备或者接入网设备中的芯片时,可以实现上述实施例中接入网设备101执行的方法。通信单元1602可以向终端设备102发送时域资源配置信息,例如小区级半静态配置信息、用户级半静态配置信息和用户级动态配置信息中的一种或者多种。
在本申请实施例中,处理单元1601,用于确定终端设备所需的保护间隔GP资源,终端设备所需的GP资源为终端设备与接入网设备的上行同步需要的GP资源;
通信单元1602,用于向终端设备发送第一时域资源配置信息,第一时域资源配置信息指示终端设备所需的GP资源。
可选的,在本申请的一些实施例中,
处理单元1601,具体用于确定终端设备的上行时间提前TA测量值;根据终端设 备的上行TA测量值确定GP长度;根据GP长度确定GP资源。
可选的,在本申请的一些实施例中,
处理单元1601,还用于确定终端设备所在小区所需的GP资源,小区所需的GP资源为远端终端设备与接入网设备的上行同步需要的GP资源;其中,第一时域资源配置信息指示小区所需的GP资源,小区所需的GP资源包括终端设备所需的GP资源。
可选的,在本申请的一些实施例中,
处理单元1601,具体用于根据小区的最大覆盖距离确定第一GP长度;根据第一GP长度确定终端设备所在小区所需的GP资源;或者,
处理单元1601,具体用于根据小区的上下行子帧配比确定第二GP长度;根据第二GP长度确定终端设备所在小区所需的GP资源;或者,
处理单元1601,具体用于根据小区的最大覆盖距离确定第一GP长度;根据小区的上下行子帧配比确定第二GP长度;根据第一GP长度和第二GP长度中较大的GP长度确定终端设备所在小区所需的GP资源。
可选的,在本申请的一些实施例中,
通信单元1602,还用于向终端设备发送第二时域资源配置信息,第二时域资源配置信息用于指示可用时域资源为下行时域资源;其中,可用时域资源为终端设备所在小区所需的GP资源中除了终端设备所需的GP资源以外的部分或者全部资源。
可选的,在本申请的一些实施例中,
通信单元1602,还用于向终端设备发送第二时域资源配置信息,第二时域资源配置信息用于指示可用时域资源为上行时域资源;其中,可用时域资源为终端设备所在小区所需的GP资源中除了终端设备所需的GP资源以外的部分或者全部资源。
可选的,在本申请的一些实施例中,
处理单元1601,还用于对可用时域资源进行干扰测量;
通信单元1602,具体用于当可用时域资源没有受到干扰或者受到的干扰测量值小于门限时,向终端设备发送第二时域资源配置信息。
可选的,在本申请的一些实施例中,
通信单元1602,还用于向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在所述上行时域资源上发送上行信号;
处理单元1601,还用于通过所述上行信号对所述上行时域资源进行干扰测量;当上行时域资源的干扰测量值大于门限时,不在上行时域资源进行上行调度。
可选的,在本申请的一些实施例中,
处理单元1601,还用于确定小区所需的GP资源,小区所需的GP资源为远端终端设备与接入网设备的上行同步需要的GP资源。
可选的,在本申请的一些实施例中,
通信单元1602,还用于向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在可用时域资源上发送上行信号;
处理单元1601,还用于通过所述上行信号对所述可用时域资源进行上行干扰测量,可用时域资源为终端设备所在小区所需的GP资源中除了终端设备所需的GP资源以外的部分或者全部资源;当可用时域资源受到干扰或者受到的干扰测量值大于门限时, 第一时域资源配置信息还用于指示可用时域资源为GP资源。
可选的,在本申请的一些实施例中,
通信单元1602,还用于向终端设备发送第三时域资源配置信息,第三时域资源配置信息用于指示可用时域资源为上行时域资源或者下行时域资源;其中,可用时域资源为终端设备所在小区所需的GP资源中除了终端设备所需的GP资源以外的部分或者全部资源。
可选的,在本申请的一些实施例中,当第三时域资源配置信息用于指示可用时域资源为上行时域资源,
通信单元1602,还用于向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备在所述上行时域资源上发送上行信号;
处理单元1601,还用于通过所述上行信号对所述上行时域资源进行干扰测量;当上行时域资源受到干扰或者受到的干扰测量值大于门限时,不在上行时域资源进行上行调度。
本申请实施例还提供了如下方法。该方法可以与图5A至图8(包括图5A、图5B、图6、图7和图8)的相关内容相互结合。该方法可以由接入网设备或者接入网设备中的芯片执行,该方法包括:
M01:确定终端设备的信道测量结果;
可选的,所述信道测量结果包括时延测量结果。
可选的,该时延测量结果可以是上行时延测量结果和/或下行时延测量结果,该上行时延测量结果可以是上行TA测量值。
可选的,所述信道测量结果还包括干扰测量结果和/或信道质量测量结果。
可选的,干扰测量结果可以包括上行干扰测量结果和/或下行干扰测量结果,该上行干扰测量结果可以包括上行IOT测量结果。
可选的,信道质量测量结果可以包括上行信道测量结果和/或下行信道测量结果。
M02:根据所述信道测量结果确定上下行切换中终端设备所需的保护间隔GP资源;
例如可以参考S503和S5B07,例如包括S503中终端设备102所需的最小GP符号数的资源,可选的,还可以包括S5B07中新增的未受干扰的新增的上行符号对应的资源。或者,可选的,可以为S6B04中的GP资源。
可选的,终端设备所需的保护间隔GP资源的长度大于单向时延,单向时延可以为上行TA测量值。
可选的,终端设备所需的保护间隔GP资源的长度大于往返时延长,往返时延长可以为2*上行TA测量值。
可选的,终端设备所需的保护间隔GP资源的长度大于返时延长+终端设备上下行切换的时间+接入网设备上下行切换的时间,往返时延长可以为2*上行TA测量值。
M03:向所述终端设备发送时域资源配置信息,所述时域资源配置信息指示所述终端设备所需的GP资源为未知时域资源。
可选的,所述时域资源配置信息可以是小区级半静态配置信息、用户级半静态配置信息和用户级动态配置信息中的一种或者多种。
可选的,所述时域资源配置信息可以是多次发送给所述终端设备的。
可选的,所述时域资源配置信息还可以将终端所需的GP资源以外的资源配置为上行或者下行时域资源。
可选的,未知时域资源可以理解为灵活时域资源。
M04:根据所述终端设备所处的小区的最大覆盖需求和所述小区的上下行子帧配比中的一种或者多种,确定所述小区所需的GP资源,所述小区所需的GP资源包括所述终端设备所需的GP资源。
M04是可选的。
可选的,在M02中,可以根据所述时延测量结果确定所述第一GP资源,所述终端设备所需的GP资源包括第一GP资源。
例如可以参考S503。
下面分别从上行和下行进行描述该方法。
上行:
作为第一种实施方式,该方法还包括:
M05:向终端设备发送指示信息,所述指示信息用于指示所述终端设备在第二GP资源上发送上行信号,所述第二GP资源为所述小区所需的GP资源中除了所述第一GP资源以外的部分或者全部时域资源。
M06:通过测量所述上行信号确定干扰测量结果。
M02具体可以包括:
当所述干扰测量结果指示所述第二GP资源受到干扰或者受到的干扰值大于门限时,所述终端设备所需的GP资源还包括第二GP资源;
可选的,当所述干扰测量结果指示所述第二GP资源未受到干扰或者受到的干扰值小于门限时,所述时域资源配置信息指示所述第二GP资源为上行时域资源。
例如,所述第一种实施方式可以参考S5B05-S5B07和S6B03-S6B04中的相关内容。
作为第二种实施方式,所述时域资源配置信息还用于指示第二GP资源为上行时域资源,所述第二GP资源为所述小区所需的GP资源中除了所述第一GP资源以外的部分或者全部时域资源。
例如,所述第二种实施方式可以参考S5A05和S6A03中的相关内容。
在上述第一种实施方式和第二种实施方式中,当所述时域资源配置信息指示所述第二GP资源为上行时域资源时,所述方法还包括:向终端发送指示信息,所述指示信息用于指示所述终端设备在所述上行时域资源上发送上行信号。
可选的,所述上行信号包括探测参考信号SRS。
下行:
作为第一种实施方式,所述方法还包括:
M05:在第二GP资源上发送下行信号,所述第二GP资源为所述小区所需的GP资源中除了所述第一GP资源以外的部分或者全部时域资源;
M06:从所述终端设备接收信道质量测量结果,所述信道质量测量结果是通过对所述下行信号进行测量得到的;
M02可以包括:当所述信道质量测量结果指示所述第二GP资源上的信道质量值 小于门限时,所述终端设备所需的GP资源还包括第二GP资源;
其中,当所述信道质量测量结果指示所述第二GP资源上的信道质量值大于门限时,所述时域资源配置信息指示所述第二GP资源为下行时域资源。
作为第二种实施方式,所述时域资源配置信息还用于指示第二GP资源为下行时域资源,所述第二GP资源为所述小区所需的GP资源中除了所述第一GP资源以外的部分或者全部时域资源。
例如,所述第二种实施方式可以参考S5C05或者S6A03中的相关内容。
可选的,在上述第一种实施方式和第二种实施方式中,当所述时域资源配置信息指示所述第二GP资源为下行时域资源时,所述方法还包括:向终端发送指示信息,所述指示信息用于指示所述终端设备在所述下行时域资源上接收下行信号。
可选的,所述下行信号包括物理下行共享信道(physical downlink shared channel,PDSCH)信号。
上述方法可以由图15和图16的装置实现,具体可以参考图15和图16的相关内容,在此不再赘述。
例如,上述方法由接入网设备执行的每个步骤,接入网设备中存在执行该方法中每个步骤的单元或者模块;由终端执行的方法中的每个步骤,终端中存在执行该方法中每个步骤的单元或者模块。
本申请还提供了一种通信装置,该通信装置可以包括处理器,处理器与存储器相耦合,处理器可以执行存储器中的程序,以实现上述方法。该通信装置可以是接入网设备或者接入网设备中的芯片。
本申请还提供了一种计算机可读存储介质,用于存储指令,当该指令运行时,可以实现上述方法。
本申请还提供了一种计算机程序产品,该计算机程序产品包含指令当其在计算机上运行时,可以执行上述方法。
本申请中,“至少一个”是指一个或者多个。“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软 盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种时域资源配置方法,其特征在于,所述方法包括:
    确定终端设备的信道测量结果;
    根据所述信道测量结果确定上下行切换中所述终端设备所需的保护间隔GP资源;
    向所述终端设备发送时域资源配置信息,所述时域资源配置信息指示所述终端设备所需的GP资源为未知时域资源。
  2. 根据权利要求1所述的方法,其特征在于,所述信道测量结果包括时延测量结果。
  3. 根据权利要求2所述的方法,其特征在于,所述信道测量结果还包括干扰测量结果和/或信道质量测量结果。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    根据所述终端设备所处的小区的最大覆盖需求和所述小区的上下行子帧配比中的一种或者多种,确定所述小区所需的GP资源,所述小区所需的GP资源包括所述终端设备所需的GP资源。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述信道测量结果确定上下行切换中终端设备所需的保护间隔GP资源包括:
    根据所述时延测量结果确定所述第一GP资源,所述终端设备所需的GP资源包括第一GP资源。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    向终端设备发送指示信息,所述指示信息用于指示所述终端设备在第二GP资源上发送上行信号,所述第二GP资源为所述小区所需的GP资源中除了所述第一GP资源以外的部分或者全部时域资源;
    通过测量所述上行信号确定干扰测量结果;
    根据所述信道测量结果确定上下行切换中终端设备所需的保护间隔GP资源还包括:
    当所述干扰测量结果指示所述第二GP资源受到干扰或者受到的干扰值大于门限时,所述终端设备所需的GP资源还包括第二GP资源;
    其中,当所述干扰测量结果指示所述第二GP资源未受到干扰或者受到的干扰值小于门限时,所述时域资源配置信息指示所述第二GP资源为上行时域资源。
  7. 根据权利要求5所述的方法,其特征在于,所述时域资源配置信息还用于指示第二GP资源为上行时域资源,所述第二GP资源为所述小区所需的GP资源中除了所述第一GP资源以外的部分或者全部时域资源。
  8. 根据权利要求6或者7所述的方法,其特征在于,当所述时域资源配置信息指示所述第二GP资源为上行时域资源时,所述方法还包括:
    在所述上行时域资源上从所述终端设备接收上行信号。
  9. 根据权利要求7所述的方法,其特征在于,所述上行信号包括探测参考信号SRS。
  10. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    在第二GP资源上发送下行信号,所述第二GP资源为所述小区所需的GP资源中除 了所述第一GP资源以外的部分或者全部时域资源;
    从所述终端设备接收信道质量测量结果,所述信道质量测量结果是通过对所述下行信号进行测量得到的;
    根据所述信道测量结果确定上下行切换中终端设备所需的保护间隔GP资源还包括:
    当所述信道质量测量结果指示所述第二GP资源上的信道质量值小于门限时,所述终端设备所需的GP资源还包括第二GP资源;
    其中,当所述信道质量测量结果指示所述第二GP资源上的信道质量值大于门限时,所述时域资源配置信息指示所述第二GP资源为下行时域资源。
  11. 根据权利要求5所述的方法,其特征在于,所述时域资源配置信息还用于指示第二GP资源为下行时域资源,所述第二GP资源为所述小区所需的GP资源中除了所述第一GP资源以外的部分或者全部时域资源。
  12. 根据权利要求10或者11所述的方法,其特征在于,当所述时域资源配置信息指示所述第二GP资源为下行时域资源时,所述方法还包括:
    在所述下行时域资源上向所述终端设备发送下行信号。
  13. 根据权利要求12所述的方法,其特征在于,所述下行信号是在物理下行共享信道PDSCH上发送的。
  14. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行所述权利要求1至13中任一项所述的方法。
  15. 一种通信装置,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的该计算机程序或指令,使得所述通信装置执行权利要求1至13中任一项所述的方法。
PCT/CN2019/105053 2018-09-10 2019-09-10 一种时域资源配置方法及接入网设备 WO2020052541A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217009918A KR20210055065A (ko) 2018-09-10 2019-09-10 시간 영역 리소스 구성 방법 및 액세스 네트워크 디바이스
EP19861155.0A EP3840503A4 (en) 2018-09-10 2019-09-10 TIME-DOMAIN RESOURCE ALLOCATION PROCESS AND ACCESS NETWORK DEVICE
US17/197,674 US11902840B2 (en) 2018-09-10 2021-03-10 Time domain resource configuration method and access network device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811052784.7 2018-09-10
CN201811052784 2018-09-10
CN201811134766.3 2018-09-27
CN201811134766.3A CN110891316B (zh) 2018-09-10 2018-09-27 一种时域资源配置方法及接入网设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/197,674 Continuation US11902840B2 (en) 2018-09-10 2021-03-10 Time domain resource configuration method and access network device

Publications (1)

Publication Number Publication Date
WO2020052541A1 true WO2020052541A1 (zh) 2020-03-19

Family

ID=69745727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105053 WO2020052541A1 (zh) 2018-09-10 2019-09-10 一种时域资源配置方法及接入网设备

Country Status (5)

Country Link
US (1) US11902840B2 (zh)
EP (1) EP3840503A4 (zh)
KR (1) KR20210055065A (zh)
CN (1) CN110891316B (zh)
WO (1) WO2020052541A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582122A (zh) * 2019-08-06 2019-12-17 中兴通讯股份有限公司 一种资源指示方法、装置、服务节点和存储介质
KR20220052974A (ko) * 2020-05-07 2022-04-28 지티이 코포레이션 업링크 보상 갭을 위한 시스템 및 방법
CN114124321A (zh) * 2020-08-27 2022-03-01 中兴通讯股份有限公司 Srs时域资源的动态选择方法和装置、存储介质及电子装置
EP4324139A1 (en) * 2021-04-16 2024-02-21 Qualcomm Incorporated Reference signal available slot indication by group common downlink control information
CN117016028A (zh) * 2022-03-07 2023-11-07 北京小米移动软件有限公司 保护时间间隔确定方法、装置、通信装置和存储介质
WO2023168578A1 (zh) * 2022-03-07 2023-09-14 北京小米移动软件有限公司 保护时间间隔确定、指示方法和装置
CN117693027A (zh) * 2022-09-09 2024-03-12 华为技术有限公司 一种通信方法和通信装置
WO2024197455A1 (zh) * 2023-03-24 2024-10-03 Oppo广东移动通信有限公司 无线通信方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105227282A (zh) * 2014-07-04 2016-01-06 上海朗帛通信技术有限公司 一种laa资源分配的方法和装置
CN107306450A (zh) * 2016-04-20 2017-10-31 中国移动通信有限公司研究院 一种确定保护时隙的方法及设备、终端
CN108141858A (zh) * 2015-10-19 2018-06-08 高通股份有限公司 等待时间减少下的灵活时分双工(tdd)子帧结构

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034755B1 (en) * 2006-06-01 2013-01-02 Sharp Kabushiki Kaisha Method for connecting mobile station to base station
CN101784124B (zh) * 2009-01-19 2012-02-01 电信科学技术研究院 一种在时分双工模式下添加保护间隔的方法和设备
CN101795473B (zh) * 2009-02-03 2012-10-10 电信科学技术研究院 特殊子帧配置方式及时域资源使用方式的确定方法和装置
WO2012019321A1 (en) * 2010-08-13 2012-02-16 Telefonaktiebolaget L M Ericsson (Publ) Automatic guard period adjustment in time division duplexed wireless communication
CN105246159B (zh) * 2011-05-31 2019-01-08 华为技术有限公司 一种通信系统
JP5432958B2 (ja) * 2011-08-16 2014-03-05 富士通株式会社 無線通信システム及び無線通信方法
KR101922250B1 (ko) * 2015-07-17 2018-11-26 주식회사 케이티 자원 할당 방법 및 통신 장치
CN106413118B (zh) * 2015-07-31 2020-01-17 电信科学技术研究院 一种数据传输方法和装置
US10638502B2 (en) * 2015-08-31 2020-04-28 Ntt Docomo, Inc. User terminal, radio base station and radio communication method
CN106899527B (zh) * 2015-12-17 2020-10-27 华为技术有限公司 一种数据符号传输方法及无线网络设备
US10405334B2 (en) * 2015-12-18 2019-09-03 Qualcomm Incorporated Techniques for switching between downlink and uplink communications
CN109479307B (zh) * 2016-07-15 2022-03-08 Lg 电子株式会社 无线通信系统中用于发送和接收的方法及其装置
CN107734660A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 资源配置方法、装置及设备
CN107734668B (zh) * 2016-08-12 2020-06-30 中国移动通信有限公司研究院 一种帧结构的配置方法、网络侧设备及终端
JP6917458B2 (ja) * 2016-09-07 2021-08-11 華為技術有限公司Huawei Technologies Co.,Ltd. 通信方法および基地局
WO2018054136A1 (zh) * 2016-09-23 2018-03-29 电信科学技术研究院 一种下行传输方法及相关设备
US10404340B2 (en) * 2016-10-11 2019-09-03 Qualcomm Incorporated Dynamic adjustment of transmission properties with continuous precoding
US11075718B2 (en) * 2019-02-13 2021-07-27 Qualcomm Incorporated Partitioning of downlink feedback indication bits

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105227282A (zh) * 2014-07-04 2016-01-06 上海朗帛通信技术有限公司 一种laa资源分配的方法和装置
CN108141858A (zh) * 2015-10-19 2018-06-08 高通股份有限公司 等待时间减少下的灵活时分双工(tdd)子帧结构
CN107306450A (zh) * 2016-04-20 2017-10-31 中国移动通信有限公司研究院 一种确定保护时隙的方法及设备、终端

Also Published As

Publication number Publication date
KR20210055065A (ko) 2021-05-14
US11902840B2 (en) 2024-02-13
US20210195477A1 (en) 2021-06-24
EP3840503A1 (en) 2021-06-23
CN110891316A (zh) 2020-03-17
CN110891316B (zh) 2023-11-03
EP3840503A4 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
WO2020052541A1 (zh) 一种时域资源配置方法及接入网设备
US9420564B2 (en) Apparatus and method for dynamic communication resource allocation for device to-device communications in a wireless communication system
US9949245B2 (en) Method, base station, and user equipment for implementing carrier aggregation
CN112134673B (zh) 同步信号块检测方法、同步信号块传输方法、装置及系统
JP5383789B2 (ja) ランダムアクセス応答メッセージのグループid生成方法及びランダムアクセス方法
US11265871B2 (en) Relay transmission method and apparatus
KR20180108038A (ko) 무선 통신 시스템에서 타이밍 조정 방법 및 장치
CN109287000B (zh) 在双连接中设定次要节点及回报的装置及方法
CN101959171A (zh) 一种邻区配置信息更新方法及系统
US20220174670A1 (en) Resource Multiplexing Method and Apparatus
US11172414B2 (en) Coordinated cell determining method and network device
WO2018137675A1 (zh) 通信方法和网络设备
CN112584518A (zh) 一种资源确定方法及装置
WO2022022673A1 (zh) 一种通信方法及装置
KR20230009472A (ko) 자원 다중화 방법 및 장치
CN114826513B (zh) 一种终端识别方法及设备
KR20140129911A (ko) 신호 송수신 방법 및 장치
CN108631901B (zh) 一种信息传输方法、处理方法及装置
CN103945492B (zh) 一种接入系统
EP4007410B1 (en) Resource allocation method and device, and resource determination method and device
WO2021227071A1 (zh) 保护间隔的确定方法、设备及存储介质
WO2024207956A1 (zh) 通信方法和通信装置
RU2659804C1 (ru) Способ переключения несущей, базовая станция и пользовательское оборудование
JP2012023701A (ja) 無線基地局及び通信制御方法
KR20150007237A (ko) Lte d2d 통신 커버리지 제어 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019861155

Country of ref document: EP

Effective date: 20210319

ENP Entry into the national phase

Ref document number: 20217009918

Country of ref document: KR

Kind code of ref document: A