WO2020052475A1 - 腔室冷却装置及半导体加工设备 - Google Patents

腔室冷却装置及半导体加工设备 Download PDF

Info

Publication number
WO2020052475A1
WO2020052475A1 PCT/CN2019/104215 CN2019104215W WO2020052475A1 WO 2020052475 A1 WO2020052475 A1 WO 2020052475A1 CN 2019104215 W CN2019104215 W CN 2019104215W WO 2020052475 A1 WO2020052475 A1 WO 2020052475A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
chamber
pipes
pipe
cooling device
Prior art date
Application number
PCT/CN2019/104215
Other languages
English (en)
French (fr)
Inventor
刘皓
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201821482745.6U external-priority patent/CN208767255U/zh
Priority claimed from CN201811056758.1A external-priority patent/CN110890262A/zh
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to JP2021507006A priority Critical patent/JP7062132B2/ja
Publication of WO2020052475A1 publication Critical patent/WO2020052475A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes

Definitions

  • the present invention relates to the field of semiconductor manufacturing, and in particular, to a cavity cooling device and a semiconductor processing equipment.
  • CVD Chemical Vapor Deposition
  • temperature control is one of the key technologies, especially the temperature control of the CVD reaction chamber.
  • the temperature inside the reaction chamber is relatively high, up to 1100 ° C. Even at the end of the process and the fetching stage, the temperature inside the reaction chamber will be 350 ° C, so the reaction chamber needs to be cooled at all times.
  • the existing chamber cooling device uses a cooling liquid distribution device to distribute the cooling liquid into the two water inlet pipes, and then the two water inlet pipes transmit the cooling liquid to multiple water outlet pipes at the same time, and the multiple water outlet pipes are used for uniformly facing Coolant is sprayed from the chamber.
  • the cavity cooling device inevitably has the following problems in practical applications:
  • the structure of the cooling liquid distribution device, the water inlet pipe, and the water outlet pipe are complicated and occupy a large space.
  • the cooling liquid is sprayed out through the cooling liquid distribution device, the water inlet pipe and the water outlet pipe in this order, and the flow path is long and the flow velocity loss is large.
  • the flow rate in the multiple outlet pipes is controlled by the cooling liquid distribution device, and cannot be controlled independently. Therefore, the operability is poor, and a uniform water flow cannot be guaranteed.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and proposes a cavity cooling device and semiconductor processing equipment, which can make the structure more compact, reduce the flow velocity loss of the cooling liquid, and can also cool multiple roots.
  • the flow in the tube is independently controlled, which can improve operability and water flow uniformity.
  • a chamber cooling device including:
  • a plurality of cooling pipes are arranged in the cooling tank, and an outlet is provided on the wall of each of the cooling pipes, and the cooling liquid is sprayed through the outlet to form a rotating water flow to drive the
  • the cooling liquid in the cooling tank forms rotating turbulence
  • a plurality of water inlet pipes are connected to the cooling pipes in a one-to-one correspondence; and each of the water inlet pipes is provided with an on-off valve and a flow regulating valve.
  • the jet flow direction of the outflow port is a tangential direction of the circumference where the outflow port is located;
  • outlets on each of the cooling pipes There are multiple outlets on each of the cooling pipes, and they are distributed on different concentric circles along the axial interval of the cooling pipes, and the jet direction of each of the outlets is a tangent to the circumference of the circle. direction.
  • the center of each circle is the center of the cooling tank, and all the outlets are located in the central area of the cooling tank.
  • a jet flow direction of each of the outflow ports is set obliquely upward with respect to a horizontal plane.
  • an included angle between a jet flow direction of each of the outlets and the horizontal plane ranges from 40 ° to 60 °.
  • the plurality of cooling pipes includes at least one curved pipe; or, the plurality of cooling pipes includes at least one straight pipe.
  • the bent pipe includes a straight pipe portion and a bent pipe portion, wherein the bent pipe portion is close to the center of the cooling groove, and the outlet is provided on a pipe wall of the bent pipe portion.
  • the axis of the straight pipe is radially arranged along any one of the circumferences with the center of the cooling groove as the circle center, or intersects with any one of the circumferences with the center of the cooling groove as the circle center.
  • one end of the water inlet pipe is connected to the cooling pipe, and the other end of the water inlet pipe penetrates the bottom of the cooling tank and is connected to a cooling liquid source.
  • the chamber cooling device further includes:
  • a baffle plate is disposed in the cooling tank and is located above the cooling pipe; and a through hole is provided in a central area of the baffle plate for exposing at least the outlet of the cooling pipe come out.
  • the chamber cooling device further includes:
  • Two side plates are oppositely disposed in the cooling tank and are located on both sides of the baffle plate; and the top of the side plate is higher than the baffle plate, and Water-blocking strips are respectively provided on the top for limiting the maximum water level of the cooling liquid located inside the side plate.
  • a spray pipe is provided on the inner side of each of the side plates and above the baffle plate, and the spray pipes of the two side plates are respectively close to the two side plates.
  • the chamber cooling device further includes:
  • a bottom plate provided in the cooling groove, and a central through groove penetrating along the thickness of the bottom plate;
  • a mounting plate is stacked on the bottom plate, and each of the cooling pipes is fixed on the mounting plate.
  • Each of the water inlet pipes penetrates the mounting plate and is connected to the corresponding cooling pipe.
  • the invention also provides a semiconductor processing equipment, which includes a reaction chamber and a chamber cooling device provided at the bottom of the reaction chamber.
  • the chamber cooling device adopts the above-mentioned chamber cooling device.
  • the cavity cooling device provided by the present invention is provided with a plurality of cooling pipes in a cooling tank, and an outlet is provided on the wall of each of the plurality of cooling pipes to spray cooling liquid through the outlet to form a rotation.
  • on-off valves and flow regulating valves are provided on each of the inlet pipes, which can realize the on-off and flow of each cooling pipe. Independent control, which can improve the operability and the uniformity of the water flow, and thus can ensure the effective formation of rotating turbulence.
  • the chamber cooling device provided by the present invention omits a cooling liquid distribution device, which not only makes the structure more compact, but also reduces the flow path of the cooling liquid because the water inlet pipe is directly connected to the cooling pipe. , which can reduce the flow rate loss of the cooling liquid.
  • the semiconductor processing equipment provided by the present invention can make the structure more compact, reduce the loss of flow velocity of the cooling liquid, and can also independently control the flow rate in multiple cooling pipes, so that Improve operability and water flow uniformity.
  • FIG. 1 is a top view of a cavity cooling device according to an embodiment of the present invention with a water barrier removed;
  • FIG. 2 is a partial structural diagram of a chamber cooling device provided by an embodiment of the present invention.
  • FIG. 3 is a plan view of a chamber cooling device according to an embodiment of the present invention.
  • FIG. 4 is a top view of a cooling pipe used in an embodiment of the present invention.
  • FIG. 5 is a radial sectional view of a cooling pipe used in an embodiment of the present invention.
  • FIG. 6 is a structural diagram of a water inlet pipe used in an embodiment of the present invention.
  • the chamber cooling device includes a cooling tank 5, a plurality of cooling pipes 2 and a plurality of water inlet pipes 7, wherein the cooling tank 5 contains a cooling liquid ( (Such as coolant or cooling water).
  • the bottom of the chamber (not shown) is immersed in the cooling liquid of the cooling tank 5 to achieve cooling of the chamber.
  • a plurality of cooling pipes 2 are arranged in the cooling tank 5, and an outlet 21 is provided on the pipe wall of the plurality of cooling pipes 2 to spray cooling liquid through the outlet 21 to form a rotating water flow to drive cooling.
  • the cooling liquid in the tank 5 forms a rotational turbulence.
  • the so-called rotational turbulence is a fluid state. Specifically, when the flow rate of the cooling liquid is increased to a certain degree, laminar flow is destroyed, and the rapidly spinning water flow forms a state similar to a spiral vortex. Compared with laminar flow, the rotational turbulence has a more sufficient heat exchange effect, so that the heat exchange efficiency can be improved and the cooling effect can be enhanced.
  • each of the outflow openings 21 on each cooling pipe 2 is located on the same circumference as each of the outflow openings 21 on the other cooling pipes 2.
  • the flow rate of the liquid can be increased under the condition that the flow rate of the cooling liquid sprayed from each cooling pipe 2 is not changed, thereby facilitating the formation of the above-mentioned rotating turbulence.
  • the number of the outflow ports 21 is five.
  • each outflow port 21 is a tangential direction of the circumference where it is located.
  • the present invention is not limited to this. In practical applications, the jet flow out of the outflow port 21 The direction may also deviate from the tangential direction of the circumference to a certain extent, and finally the effect of driving the cooling liquid in the cooling tank 5 to form a turbulent flow can be achieved.
  • the outflow opening 21 may be a through hole penetrating the wall of the cooling pipe 2 along the thickness direction of the tube wall, and the axial direction of the through hole is the jet flow direction of the outflow opening 21 described above.
  • the structure of the cooling pipe 2 can be simplified and the design of the cooling pipe 2 can be facilitated.
  • the center of each circle is the center of the cooling tank 5, and all the outlets 21 are located in the center area of the cooling tank 5.
  • the first end of each cooling pipe 2 is close to the center of the cooling tank 5.
  • the second end is close to the edge of the cooling tank 5, and the outflow opening 21 is provided on the wall of the cooling pipe 2 and is close to the first end of the cooling pipe 2.
  • each cooling pipe 2 there are multiple outflow openings 21 on each cooling pipe 2; however, the present invention is not limited to this. In practical applications, the outflow on each cooling pipe 2 There may be only one port 21, and the jet flow direction of the outflow port 21 is the tangent direction of the circumference, or it may deviate to a certain extent from the tangent direction of the circumference.
  • a plurality of water inlet pipes 7 are connected to the plurality of cooling pipes 2 in a one-to-one correspondence; and as shown in FIG. 6, an on-off valve 71 is provided on each water inlet pipe 7. And flow regulating valve 72.
  • the on-off valve 71 is used to connect or disconnect the water inlet pipe 7 where it is located; the flow regulating valve 72 is used to adjust the flow rate of the cooling liquid in the water inlet pipe 7 where it is located.
  • the chamber cooling device provided in this embodiment each independently draws out the cooling pipe 2 from the water inlet pipe 7, eliminating the need for a cooling liquid distribution device, which not only makes the structure more compact, but also 7 is directly connected to the cooling pipe 2 to shorten the flow path of the cooling liquid, thereby reducing the flow velocity loss of the cooling liquid.
  • the axis of each cooling pipe 2 is horizontally arranged; the jet flow direction of the outflow port 21 is arranged obliquely upward with respect to the axis of the cooling pipe 2.
  • the axis of each cooling pipe 2 may also be equivalent to the horizontal plane tilting upward.
  • the horizontal plane refers to a plane parallel to the liquid surface.
  • the angle c between the jet flow direction of each outlet 21 and the horizontal plane ranges from 40 ° to 60 °, preferably 50 °. Within this included angle range, the “hollow” state of rotating turbulence can be effectively avoided.
  • the radial cross-sectional shape of the cooling pipe 2 includes a circle, a triangle, a rectangle, a hexagon, or any other shape, and preferably a circle.
  • the outflow opening 21 may be a through hole penetrating the tube wall of the cooling pipe 2.
  • the radial cross-sectional shape of the through hole includes a circle, a triangle, a rectangle, a hexagon, or any other shape.
  • the plurality of cooling pipes 2 there are two bent pipes in the plurality of cooling pipes 2; the remaining cooling pipes 2 are straight pipes.
  • the curved pipe and the straight pipe in a mixed manner, it is advantageous to arrange a larger number of cooling pipes 2 in the circumferential direction of the cooling tank 5.
  • the respective numbers of straight pipes and elbows can also be selected according to specific needs, that is, the plurality of cooling pipes 2 may include at least one elbow, or the plurality of cooling pipes 2 may also include at least one straight pipe. tube.
  • the bent pipe includes a straight pipe portion 2 a and a bent pipe portion 2 b, wherein the bent pipe portion 2 b is near the center of the cooling groove 5, and the outlet 21 is provided on the pipe of the bent pipe portion 2 b.
  • the curved pipe portion 2b near the center of the cooling groove 5 and the straight pipe portion 2a away from the center of the cooling groove 5, it is advantageous to arrange a larger number of cooling pipes 2 in the circumferential direction of the cooling groove 5, and at the same time Conducive to the layout design of the outlet 21.
  • the number of cooling pipes 2 is ten. Of course, in practical applications, it can also be any other number.
  • its axis can be set along any radial direction of the circle with the center of the cooling groove 5 as the center, or it can also intersect the radial direction.
  • the angle a between the line between the end of the straight pipe remote from the outlet 21 (ie, the end near the edge of the cooling tank 5) and the center of the cooling tank 5 and the axis of the cooling tube 2 may be It is 0 °, or it can be at an acute angle, which is conducive to the formation of rotational turbulence.
  • each water inlet pipe 7 is vertically arranged, and the upper end of the water inlet pipe 7 is connected to the cooling pipe 2, and the lower end of the water inlet pipe 7 penetrates the bottom of the cooling tank 5 and connects with the cooling liquid source. (Not shown) connected.
  • the cooling liquid distribution device is omitted, the structure can be made more compact, and the flow path of the cooling liquid can be shortened at the same time, thereby reducing the flow velocity loss.
  • the water inlet pipe 7 can also be arranged obliquely with respect to the vertical direction according to specific needs.
  • the chamber cooling device further includes a water blocking plate 3 which is disposed in the cooling tank 5 and is located above the cooling pipe 2; and is provided in the center region of the water blocking plate 3.
  • a through hole 31 for exposing at least the outflow opening 21 of the cooling pipe 2 so that the central area of the cooling tank 5 is open. The cooling liquid can overflow through the through hole 31, thereby ensuring the main There is sufficient water flow in the high temperature area to ensure that the area is sufficiently cooled.
  • the chamber cooling device further includes two side plates 9 (only one of the side plates 9 is shown in FIG. 2), and the two side plates 9 are oppositely disposed in the cooling tank 5. And are located on both sides of the baffle plate 3 (the baffle plate 3 is not shown in FIG. 2); and the top of the side plate 9 is higher than the baffle plate 3, and the tops of the two side plates 9 are respectively provided with water retaining strips 4. It is used to limit the maximum water level of the cooling liquid located inside the side plate 9.
  • the accommodating space of the cooling tank 5 is divided into a central region by two side plates 9 and edge regions 51 located on both sides of the central region. All the cooling pipes 2 are disposed in the above-mentioned central region.
  • the water level in the central area of the cooling tank 5 gradually rises.
  • the cooling liquid in the central area overflows and pours to the edge areas 51 on both sides. in.
  • two jet tubes 6 are provided on the inner side of each side plate 9 and above the baffle plate 3, and the jet tubes 6 on the two side plates 9 are respectively Close to the two ends of the two side plates 9 that are far away from each other, for example, the spray pipe 6 on the upper side plate 9 in FIG. 3 is near the right end of the side plate 9 and the spray pipe 6 on the lower side plate 9 Close to the left end of the side plate 9, so that the spray tubes 6 on different side plates 9 can be close to a diagonal of the cooling tank 5, and each spray tube 6 sprays cooling liquid toward the opposite side plate 9, This is equivalent to spraying the cooling liquid in a tangential direction of a certain circle, and it can also form a rotating water flow.
  • a cooling tank can be further added. Rotating power of the cooling liquid in 5.
  • the spray pipe 6 provides cooling liquid through a water inlet pipe, and the on-off and flow rate of the spray pipe 6 can be adjusted separately.
  • the number of the spray pipes 6 provided on the inner side of each side plate 9 may be one or more, and the plurality of spray pipes 6 are arranged at intervals in the horizontal direction.
  • the chamber cooling device further includes a bottom plate 1 and a mounting plate 8, wherein the bottom plate 1 is disposed in the cooling tank 5, and the bottom plate 1 is provided along the thickness thereof.
  • an embodiment of the present invention further provides a semiconductor processing device, which includes a reaction chamber and a chamber cooling device provided at the bottom of the reaction chamber.
  • the chamber cooling device adopts the foregoing provided by the embodiment of the present invention. Chamber cooling device.
  • the semiconductor processing equipment provided by the embodiment of the present invention can make the structure more compact, reduce the flow velocity loss of the cooling liquid by using the above-mentioned chamber cooling device provided by the embodiment of the present invention, and can also independently separate the flow rates in multiple cooling tubes. Control, which can improve operability and water flow uniformity.

Abstract

一种腔室冷却装置及半导体加工设备,该装置包括:冷却槽(5),盛放有冷却液体,用于冷却腔室底部;多根冷却管(2),设置在冷却槽(5)中,且在多根冷却管(2)的管壁上均设置有出流口(21),用以通过出流口(21)喷出冷却液体形成旋转的水流,来带动冷却槽(5)中的冷却液体形成旋转湍流;多根进水管(7),一一对应地与多根冷却管(2)连接;并且,在每根进水管(7)上设置有通断阀(71)和流量调节阀(72)。腔室冷却装置可以使结构更紧凑、减少冷却液体的流速损失,还可以对多根冷却管(7)中的流量进行独立控制,从而可以提高可操作性和水流均匀性。

Description

腔室冷却装置及半导体加工设备 技术领域
本发明涉及半导体制造领域,具体地,涉及一种腔室冷却装置及半导体加工设备。
背景技术
化学气相沉积(Chemical Vapor Deposition,以下简称CVD)技术是一种用于产生纯度高、性能好的固态材料的化学技术,典型的CVD制程是将晶圆暴露在一种或多种不同的前驱物下,在一定工艺温度下,在晶圆表面发生化学反应和/或化学分解,以在晶圆上产生薄膜。
对于任何一种CVD技术,温度控制都是十分关键的技术之一,尤其是CVD反应腔室的温度控制。在进行工艺阶段,反应腔室内部温度较高,可达1100℃,即使在工艺结束阶段和取片阶段,反应腔室内部温度也会有350℃,因此需要时刻对反应腔室进行冷却。
现有的腔室冷却装置是利用冷却液分配装置将冷却液分配至两路进水管中,再由两路进水管将冷却液同时传输至多个出水管中,多个出水管用于均匀地朝向腔室喷出冷却液。但是,该腔室冷却装置在实际应用中不可避免地存在以下问题:
其一,冷却液分配装置、进水管和出水管的结构复杂,占用空间大。
其二,冷却液依次经由冷却液分配装置、进水管和出水管喷出,流动路径较长,流速损失较大。
其三,多个出水管中的流量是由冷却液分配装置进行控制,而无法独立控制,因此,可操作性较差,且无法保证能够获得均匀水流。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种腔室冷却装置及半导体加工设备,其可以使结构更紧凑、减少冷却液体的流速损失,还可以对多根冷却管中的流量进行独立控制,从而可以提高可操作性和水流均匀性。
为实现本发明的目的而提供一种腔室冷却装置,包括:
冷却槽,盛放有冷却液体,用于冷却腔室底部;
多根冷却管,设置在所述冷却槽中,且在多根所述冷却管的管壁上均设置有出流口,用以通过出流口喷出冷却液体形成旋转的水流,来带动所述冷却槽中的冷却液体形成旋转湍流;
多根进水管,一一对应地与多根所述冷却管连接;并且,在每根所述进水管上设置有通断阀和流量调节阀。
可选的,每根所述冷却管上的出流口为一个,所述出流口的喷流方向为其所在圆周的切线方向;或者,
每根所述冷却管上的出流口为多个,且沿所述冷却管的轴向间隔分布在同心的不同圆周上,并且各个所述出流口的喷流方向为其所在圆周的切线方向。
可选的,每个所述圆周的圆心为所述冷却槽的中心,且所有的所述出流口均位于所述冷却槽的中心区域。
可选的,每个所述出流口的喷流方向相对于水平面倾斜向上设置。
可选的,每个所述出流口的喷流方向与所述水平面之间的夹角的取值范围在40°~60°。
可选的,多根所述冷却管包括至少一根弯管;或者,多根所述冷却管包括至少一根直管。
可选的,所述弯管包括直管部和弯管部,其中,所述弯管部靠近所述冷 却槽的中心,且所述出流口设置在所述弯管部的管壁上。
可选的,所述直管的轴线沿以所述冷却槽的中心为圆心的圆周的任意一径向设置,或者与以所述冷却槽的中心为圆心的圆周的任意一径向相交设置。
可选的,所述进水管的一端与所述冷却管连接,所述进水管的另一端贯穿所述冷却槽的底部,并与冷却液体源连接。
可选的,所述腔室冷却装置还包括:
隔水板,设置在所述冷却槽中,且位于所述冷却管的上方;并且,在所述隔水板的中心区域设置有通孔,用于至少将所述冷却管的出流口暴露出来。
可选的,所述腔室冷却装置还包括:
两个侧板,相对设置在所述冷却槽中,且位于所述隔水板的两侧;并且,所述侧板的顶部高于所述隔水板,且在两个所述侧板的顶部分别设置有挡水条,用于限定位于所述侧板内侧的冷却液体的最高水位。
可选的,在每个所述侧板的内侧,且位于所述隔水板的上方设置有喷流管,两个所述侧板上的所述喷流管分别靠近两个所述侧板彼此远离的两端,并且每个所述喷流管朝向对侧的所述侧板方向喷出冷却液体,以增加所述冷却槽中的冷却液体的旋转动力。
可选的,所述腔室冷却装置还包括:
底板,设置在所述冷却槽中,且在所述底板中设置有沿其厚度贯通的中心通槽;
安装板,叠置在所述底板上,并且每根所述冷却管固定在所述安装板上,每根所述进水管贯通所述安装板,并与其对应的所述冷却管连接。
本发明还提供一种半导体加工设备,包括反应腔室和设置在所述反应腔室底部的腔室冷却装置,所述腔室冷却装置采用上述的腔室冷却装置。
本发明具有以下有益效果:
本发明提供的腔室冷却装置,其在冷却槽中设置有多根冷却管,且在多 根冷却管的管壁上均设置有出流口,用以通过出流口喷出冷却液体形成旋转的水流,来带动冷却槽中的冷却液体形成旋转湍流,从而可以提高热交换效率,增强冷却效果。同时,通过借助多根进水管一一对应地与多根冷却管连接;并且在每根进水管上设置有通断阀和流量调节阀,可以实现对每根冷却管的通断及流量大小进行独立控制,从而可以提高可操作性和水流均匀性,进而可以保证旋转湍流的有效形成。此外,本发明提供的腔室冷却装置与现有技术相比,省去了冷却液分配装置,这不仅可以使结构更紧凑,同时由于进水管直接与冷却管连接,缩短了冷却液体的流动路径,从而可以减少冷却液体的流速损失。
本发明提供的半导体加工设备,其通过采用本发明提供的上述腔室冷却装置,可以使结构更紧凑、减少冷却液体的流速损失,还可以对多根冷却管中的流量进行独立控制,从而可以提高可操作性和水流均匀性。
附图说明
图1为本发明实施例提供的腔室冷却装置除去隔水板的俯视图;
图2为本发明实施例提供的腔室冷却装置的局部结构图;
图3为本发明实施例提供的腔室冷却装置的俯视图;
图4为本发明实施例采用的冷却管的俯视图;
图5为本发明实施例采用的冷却管的径向截面图;
图6为本发明实施例采用的进水管的结构图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来对本发明提供的腔室冷却装置及半导体加工设备进行详细描述。
请一并参阅图1至图6,本发明实施例提供的腔室冷却装置,其包括冷却槽5、多根冷却管2和多根进水管7,其中,冷却槽5盛放有冷却液体(例 如冷却液或者冷却水)。通过将腔室(图中未示出)的底部浸润在冷却槽5的冷却液体中,来实现对腔室的冷却。
多根冷却管2设置在冷却槽5中,且在多根冷却管2的管壁上均设置有出流口21,用以通过出流口21喷出冷却液体形成旋转的水流,来带动冷却槽5中的冷却液体形成旋转湍流。所谓旋转湍流,是流体的一种流动状态,具体来说,当冷却液体的流速增加到一定程度时,使层流被破坏,同时急速自旋的水流形成了类似螺旋形旋涡的状态。该旋转湍流与层流相比,热交换效果更充分,从而可以提高热交换效率,增强冷却效果。
在本实施例中,每根冷却管2上的出流口21为多个,且沿冷却管2的轴向间隔分布在同心的不同圆周上,并且各个出流口21的喷流方向为其所在圆周的切线方向(图1中示出的箭头方向)。可选的,每根冷却管2上的各个出流口21一一对应地与其余冷却管2上的各个出流口21位于同一圆周上。通过在每根冷却管2上设置多个出流口21,可以在保证每根冷却管2喷出的冷却液体的流速不变的条件下,增大液体流量,从而有利于形成上述旋转湍流。可选的,出流口21的数量为5个。
需要说明的是,在本实施例中,各个出流口21的喷流方向为其所在圆周的切线方向,但是,本发明并不局限于此,在实际应用中,出流口21的喷流方向也可以在一定程度上偏离圆周的切线方向,最终能够达到带动冷却槽5中的冷却液体形成旋转湍流的效果即可。
可选的,出流口21可以为沿冷却管2的管壁厚度方向贯通该管壁的通孔,该通孔的轴向即为上述出流口21的喷流方向。这样,可以简化冷却管2的结构,便于冷却管2的设计。
可选的,每个圆周的圆心为冷却槽5的中心,且所有的出流口21均位于冷却槽5的中心区域,具体地,每根冷却管2的第一端靠近冷却槽5的中心,第二端靠近冷却槽5的边缘,而出流口21设置在冷却管2的管壁上,且 靠近冷却管2的第一端。这样,不仅有利于提高冷却槽5中的水流均匀性,而且通过使所有的出流口21均位于冷却槽5的中心区域,可以使形成的旋转湍流位于冷却槽5的中心区域,从而进一步提高冷却槽5中的水流均匀性。
需要说明的是,在本实施例中,每根冷却管2上的出流口21为多个,但是,本发明并不局限于此,在实际应用中,每根冷却管2上的出流口21也可以为一个,而且出流口21的喷流方向为其所在圆周的切线方向,或者也可以在一定程度上偏离圆周的切线方向。
在本实施例中,如图2所示,多根进水管7一一对应地与多根冷却管2连接;并且,如图6所示,在每根进水管7上设置有通断阀71和流量调节阀72。通断阀71用于接通或断开其所在的进水管7;流量调节阀72用于调节其所在的进水管7中的冷却液体的流量大小。由此,可以实现对每根冷却管2的通断及流量大小进行独立控制,从而可以提高可操作性和水流均匀性,进而可以保证旋转湍流的有效形成。
此外,本实施例提供的腔室冷却装置与现有技术相比,每根冷却管2由进水管7独立引出,省去了冷却液分配装置,这不仅可以使结构更紧凑,同时由于进水管7直接与冷却管2连接,缩短了冷却液体的流动路径,从而可以减少冷却液体的流速损失。
在本实施例中,如图5所示,每根冷却管2的轴线水平设置;出流口21的喷流方向相对于冷却管2的轴线倾斜向上设置。这样,可以避免旋转湍流出现“空心”状态,即,冷却槽5的中心缺少冷却液体。当然,在实际应用中,每根冷却管2的轴线也可以相当于水平面向上倾斜,此时出流口21的喷流方向只要相对于水平面倾斜向上设置即可达到同样的效果。这里,水平面是指平行于液面的平面。
可选的,每个出流口21的喷流方向与水平面之间的夹角c的取值范围在40°~60°,优选为50°。在该夹角范围内,可以有效避免旋转湍流出现 “空心”状态。
在实际应用中,冷却管2的径向截面形状包括圆形、三角形、矩形、六边形或者其他任意形状,优选为圆形。出流口21可以为贯通冷却管2的管壁的通孔,该通孔的径向截面形状包括圆形、三角形、矩形、六边形或者其他任意形状。
在本实施例中,多根冷却管2中有两根弯管;其余冷却管2均为直管。通过混合设置弯管和直管,有利于在冷却槽5的周向上排布数量更多的冷却管2。当然,在实际应用中,也可以根据具体需要选择直管和弯管各自的数量,即,多根冷却管2可以包括至少一根弯管,或者多根冷却管2也可以包括至少一根直管。
进一步可选的,如图4所示,弯管包括直管部2a和弯管部2b,其中,弯管部2b靠近冷却槽5的中心,且出流口21设置在弯管部2b的管壁上。通过靠近冷却槽5的中心处设置为弯管部2b,而远离冷却槽5的中心处设置为直管部2a,有利于在冷却槽5的周向上排布数量更多的冷却管2,同时有利于出流口21的排布设计。
可选的,冷却管2的数量为10个。当然,在实际应用中,也可以是其他任意数量。
可选的,如图1所示,对于直管,其轴线可以沿以冷却槽5的中心为圆心的圆周的任意一径向设置,或者也可以与该径向相交。换句话说,直管的远离出流口21的一端(即,靠近冷却槽5的边缘的一端)与冷却槽5的中心之间的连线和冷却管2的轴线之间的夹角a可以为0°,或者也可以呈锐角,这样有利于形成旋转湍流。
在本实施例中,如图2所示,每根进水管7竖直设置,并且进水管7的上端与冷却管2连接,进水管7的下端贯穿冷却槽5的底部,并与冷却液体源(图中未示出)连接。由此,实现了冷却管的独立引出,省去了冷却液分 配装置,可以使结构更紧凑,同时缩短冷却液体的流动路径,从而可以减少流速损失。当然,在实际应用中,进水管7也可以根据具体需要相对于竖直方向倾斜设置。
在本实施例中,如图3所示,腔室冷却装置还包括隔水板3,其设置在冷却槽5中,且位于冷却管2的上方;并且,在隔水板3的中心区域设置有通孔31,用于至少将冷却管2的出流口21暴露出来,从而使冷却槽5的中心区域呈开放状态,冷却液体可以通过该通孔31溢出,进而可以保证对应腔室的主要高温区域有足够水流,从而保证该区域冷却充分。
在本实施例中,如图2所示,腔室冷却装置还包括两个侧板9(图2仅示出了其中一个侧板9),两个侧板9相对设置在冷却槽5中,且位于隔水板3的两侧(图2未示出隔水板3);并且,侧板9的顶部高于隔水板3,且在两个侧板9的顶部分别设置有挡水条4,用于限定位于侧板9内侧的冷却液体的最高水位。
具体来说,冷却槽5的容纳空间由两个侧板9分隔为中心区域和位于该中心区域两侧的边缘区域51,所有的冷却管2均设置在上述中心区域内。在冷却管2喷出冷却液体的过程中,冷却槽5位于中心区域内的水位逐渐上升,当水位超过挡水条4时,中心区域内的冷却液体溢出,并倾泻至两侧的边缘区域51中。
在本实施例中,如图3所示,在每个侧板9的内侧,且位于隔水板3的上方设置有两个喷流管6,两个侧板9上的喷流管6分别靠近两个侧板9彼此远离的两端,例如,图3中上侧的侧板9上的喷流管6靠近该侧板9的右端,而下侧的侧板9上的喷流管6靠近该侧板9的左端,这样,可以使不同侧板9上的喷流管6靠近冷却槽5的一个对角,并且每个喷流管6朝向对侧的侧板9喷出冷却液体,这等同于朝向某一圆周的切线方向喷出冷却液体,同样可以形成旋转的水流,只要使该水流方向与冷却管2喷出冷却液体形成 的旋转水流的方向大体一致,就可以进一步增加冷却槽5中的冷却液体的旋转动力。可选的,喷流管6单独通过一根进水管提供冷却液体,且能够单独调节喷流管6的通断及流量大小。
可选的,设置在每个侧板9的内侧的喷流管6的数量可以为一个或者多个,且多个喷流管6沿水平方向间隔设置。
在本实施例中,如图1和图2所示,腔室冷却装置还包括底板1和安装板8,其中,底板1设置在冷却槽5中,且在该底板1中设置有沿其厚度贯通的中心通槽11;安装板8叠置在底板1上,并且每根冷却管2固定在安装板8上,每根进水管7贯通安装板8,并与其对应的冷却管2连接。借助底板1和安装板8,实现了冷却管2的安装和固定。
作为另一个技术方案,本发明实施例还提供一种半导体加工设备,其包括反应腔室和设置在该反应腔室底部的腔室冷却装置,该腔室冷却装置采用本发明实施例提供的上述腔室冷却装置。
本发明实施例提供的半导体加工设备,其通过采用本发明实施例提供的上述腔室冷却装置,可以使结构更紧凑、减少冷却液体的流速损失,还可以对多根冷却管中的流量进行独立控制,从而可以提高可操作性和水流均匀性。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (14)

  1. 一种腔室冷却装置,其特征在于,包括:
    冷却槽,盛放有冷却液体,用于冷却腔室底部;
    多根冷却管,设置在所述冷却槽中,且在多根所述冷却管的管壁上均设置有出流口,用以通过所述出流口喷出冷却液体形成旋转的水流,来带动所述冷却槽中的冷却液体形成旋转湍流;
    多根进水管,一一对应地与多根所述冷却管连接;并且,在每根所述进水管上设置有通断阀和流量调节阀。
  2. 根据权利要求1所述的腔室冷却装置,其特征在于,每根所述冷却管上的出流口为一个,所述出流口的喷流方向为其所在圆周的切线方向;或者,
    每根所述冷却管上的出流口为多个,且沿所述冷却管的轴向间隔分布在同心的不同圆周上,并且各个所述出流口的喷流方向为其所在圆周的切线方向。
  3. 根据权利要求2所述的腔室冷却装置,其特征在于,每个所述圆周的圆心为所述冷却槽的中心,且所有的所述出流口均位于所述冷却槽的中心区域。
  4. 根据权利要求1所述的腔室冷却装置,其特征在于,每个所述出流口的喷流方向相对于水平面倾斜向上设置。
  5. 根据权利要求4所述的腔室冷却装置,其特征在于,每个所述出流口的喷流方向与所述水平面之间的夹角的取值范围在40°~60°。
  6. 根据权利要求1所述的腔室冷却装置,其特征在于,多根所述冷却管包括至少一根弯管;或者,多根所述冷却管包括至少一根直管。
  7. 根据权利要求6所述的腔室冷却装置,其特征在于,所述弯管包括直管部和弯管部,其中,所述弯管部靠近所述冷却槽的中心,且所述出流口设置在所述弯管部的管壁上。
  8. 根据权利要求6所述的腔室冷却装置,其特征在于,所述直管的轴线沿以所述冷却槽的中心为圆心的圆周的任意一径向设置,或者与以所述冷却槽的中心为圆心的圆周的任意一径向相交设置。
  9. 根据权利要求1所述的腔室冷却装置,其特征在于,所述进水管的一端与所述冷却管连接,所述进水管的另一端端贯穿所述冷却槽的底部,并与冷却液体源连接。
  10. 根据权利要求1-9任意一项所述的腔室冷却装置,其特征在于,所述腔室冷却装置还包括:
    隔水板,设置在所述冷却槽中,且位于所述冷却管的上方;并且,在所述隔水板的中心区域设置有通孔,用于至少将所述冷却管的出流口暴露出来。
  11. 根据权利要求10所述的腔室冷却装置,其特征在于,所述腔室冷却装置还包括:
    两个侧板,相对设置在所述冷却槽中,且位于所述隔水板的两侧;并且,所述侧板的顶部高于所述隔水板,且在两个所述侧板的顶部分别设置有挡水条,用于限定位于所述侧板内侧的冷却液体的最高水位。
  12. 根据权利要求11所述的腔室冷却装置,其特征在于,在每个所述侧板的内侧,且位于所述隔水板的上方设置有喷流管,两个所述侧板上的所述喷流管分别靠近两个所述侧板彼此远离的两端,并且每个所述喷流管朝向对侧的所述侧板喷出冷却液体,以增加所述冷却槽中的冷却液体的旋转动力。
  13. 根据权利要求1所述的腔室冷却装置,其特征在于,所述腔室冷却装置还包括:
    底板,设置在所述冷却槽中,且在所述底板中设置有沿其厚度贯通的中心通槽;
    安装板,叠置在所述底板上,并且每根所述冷却管固定在所述安装板上,每根所述进水管贯通所述安装板,并与其对应的所述冷却管连接。
  14. 一种半导体加工设备,包括反应腔室和设置在所述反应腔室底部的腔室冷却装置,其特征在于,所述腔室冷却装置采用权利要求1-13任意一项所述的腔室冷却装置。
PCT/CN2019/104215 2018-09-11 2019-09-03 腔室冷却装置及半导体加工设备 WO2020052475A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021507006A JP7062132B2 (ja) 2018-09-11 2019-09-03 チャンバー冷却装置及び半導体加工設備

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201821482745.6U CN208767255U (zh) 2018-09-11 2018-09-11 腔室冷却装置及半导体加工设备
CN201811056758.1 2018-09-11
CN201821482745.6 2018-09-11
CN201811056758.1A CN110890262A (zh) 2018-09-11 2018-09-11 腔室冷却装置及半导体加工设备

Publications (1)

Publication Number Publication Date
WO2020052475A1 true WO2020052475A1 (zh) 2020-03-19

Family

ID=69777359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104215 WO2020052475A1 (zh) 2018-09-11 2019-09-03 腔室冷却装置及半导体加工设备

Country Status (3)

Country Link
JP (1) JP7062132B2 (zh)
TW (1) TWI709203B (zh)
WO (1) WO2020052475A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114625230A (zh) * 2022-03-25 2022-06-14 深圳市信雅装饰设计工程有限公司 一种中心散热液冷的建筑设计图形工作站

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356476A (en) * 1992-06-15 1994-10-18 Materials Research Corporation Semiconductor wafer processing method and apparatus with heat and gas flow control
CN203002790U (zh) * 2012-11-28 2013-06-19 江苏永钢集团有限公司 湍流水冷装置
US8470141B1 (en) * 2005-04-29 2013-06-25 Angstrom Sciences, Inc. High power cathode
CN103935024A (zh) * 2014-04-14 2014-07-23 浙江大学 内螺纹式可变循环流道的模具水冷装置
CN103972014A (zh) * 2014-05-22 2014-08-06 中国地质大学(北京) 离子体反应腔室电极间隙调整装置及离子体反应腔室
CN107326341A (zh) * 2017-07-14 2017-11-07 君泰创新(北京)科技有限公司 Lpcvd工艺腔匀气装置
CN208767255U (zh) * 2018-09-11 2019-04-19 北京北方华创微电子装备有限公司 腔室冷却装置及半导体加工设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1271233B (it) * 1994-09-30 1997-05-27 Lpe Reattore epitassiale munito di suscettore discoidale piano ed avente flusso di gas parallelo ai substrati
JPH0945624A (ja) * 1995-07-27 1997-02-14 Tokyo Electron Ltd 枚葉式の熱処理装置
JP3430277B2 (ja) * 1995-08-04 2003-07-28 東京エレクトロン株式会社 枚葉式の熱処理装置
JP3901765B2 (ja) * 1996-02-15 2007-04-04 株式会社小松製作所 マルチ温度制御システム及び同システムが適用された反応処理装置
TW508263B (en) * 2000-10-10 2002-11-01 Kanken Techno Co Ltd A tower with exhausting apparatus and an electric heater used in such a tower
JP4558755B2 (ja) * 2007-03-20 2010-10-06 財団法人高知県産業振興センター プラズマcvd装置
JP2008270348A (ja) * 2007-04-17 2008-11-06 Seiko Epson Corp ドライエッチング装置及び被加工物の加工方法
TWI508178B (zh) * 2008-07-16 2015-11-11 Tera Semicon Corp 批量式熱處理裝置
JP5083193B2 (ja) * 2008-12-12 2012-11-28 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
CN203741383U (zh) * 2013-12-19 2014-07-30 北京七星华创电子股份有限公司 一种冷却水控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356476A (en) * 1992-06-15 1994-10-18 Materials Research Corporation Semiconductor wafer processing method and apparatus with heat and gas flow control
US8470141B1 (en) * 2005-04-29 2013-06-25 Angstrom Sciences, Inc. High power cathode
CN203002790U (zh) * 2012-11-28 2013-06-19 江苏永钢集团有限公司 湍流水冷装置
CN103935024A (zh) * 2014-04-14 2014-07-23 浙江大学 内螺纹式可变循环流道的模具水冷装置
CN103972014A (zh) * 2014-05-22 2014-08-06 中国地质大学(北京) 离子体反应腔室电极间隙调整装置及离子体反应腔室
CN107326341A (zh) * 2017-07-14 2017-11-07 君泰创新(北京)科技有限公司 Lpcvd工艺腔匀气装置
CN208767255U (zh) * 2018-09-11 2019-04-19 北京北方华创微电子装备有限公司 腔室冷却装置及半导体加工设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114625230A (zh) * 2022-03-25 2022-06-14 深圳市信雅装饰设计工程有限公司 一种中心散热液冷的建筑设计图形工作站
CN114625230B (zh) * 2022-03-25 2023-04-11 深圳市信雅装饰设计工程有限公司 一种中心散热液冷的建筑设计图形工作站

Also Published As

Publication number Publication date
TWI709203B (zh) 2020-11-01
JP7062132B2 (ja) 2022-05-02
JP2021534578A (ja) 2021-12-09
TW202011544A (zh) 2020-03-16

Similar Documents

Publication Publication Date Title
US9855575B2 (en) Gas injector and cover plate assembly for semiconductor equipment
JP4564656B2 (ja) デュアルチャネル・ガス分配プレート
KR102451499B1 (ko) 샤워헤드 설계
CN106463365A (zh) 具有更均匀的边缘净化的基板支撑件
WO2020052475A1 (zh) 腔室冷却装置及半导体加工设备
TWI746222B (zh) 鍍膜設備
CN208767255U (zh) 腔室冷却装置及半导体加工设备
JP2017055104A (ja) 基板処理装置
WO2023221830A1 (zh) 混气装置及半导体工艺设备
TWI828046B (zh) 等離子體處理裝置
TWI605149B (zh) Shower head and plasma processing device
TW201521136A (zh) 半導體處理裝置及應用於半導體處理裝置的氣體分布板
CN110890262A (zh) 腔室冷却装置及半导体加工设备
TW202318593A (zh) 用於處理腔室的加熱式蓋件
CN111161992B (zh) 半导体设备的反应腔冷却装置
KR100925061B1 (ko) 화학 기상 증착 장치용 방산노즐
JP2021532268A (ja) Cvdチャンバのためのガスボックス
KR102109435B1 (ko) 기판 온도조절이 가능한 기판 캐리어 모듈
CN117467976B (zh) 用于气相沉积工艺腔室的上衬环、下衬环、进气衬体和内衬
CN111647876B (zh) 腔室冷却装置及反应腔室
TWI814291B (zh) 均勻的原位清洗及沉積
TW202328483A (zh) 泵送系統及襯底處理設備
CN116411342A (zh) 一种均衡散热的分区型喷淋头装置
CN117467976A (zh) 用于气相沉积工艺腔室的上衬环、下衬环、进气衬体和内衬
TW202407127A (zh) 供應模組及包含該供應模組的基板處理裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507006

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859174

Country of ref document: EP

Kind code of ref document: A1