WO2020052328A1 - 一种用于屏下成像的坐标变换方法、存储介质及电子设备 - Google Patents

一种用于屏下成像的坐标变换方法、存储介质及电子设备 Download PDF

Info

Publication number
WO2020052328A1
WO2020052328A1 PCT/CN2019/094571 CN2019094571W WO2020052328A1 WO 2020052328 A1 WO2020052328 A1 WO 2020052328A1 CN 2019094571 W CN2019094571 W CN 2019094571W WO 2020052328 A1 WO2020052328 A1 WO 2020052328A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
fingerprint
point light
bright spot
coordinate system
Prior art date
Application number
PCT/CN2019/094571
Other languages
English (en)
French (fr)
Inventor
陈宗文
Original Assignee
上海耕岩智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海耕岩智能科技有限公司 filed Critical 上海耕岩智能科技有限公司
Priority to US17/275,305 priority Critical patent/US11776297B2/en
Publication of WO2020052328A1 publication Critical patent/WO2020052328A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1335Combining adjacent partial images (e.g. slices) to create a composite input or reference pattern; Tracking a sweeping finger movement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person

Definitions

  • the invention relates to the technical field of optical fingerprint recognition, and in particular, to a coordinate transformation method, a storage medium, and an electronic device for imaging under a screen.
  • biometric recognition technology is playing an increasingly important role in ensuring information security.
  • fingerprint recognition has become one of the key technical means for identity recognition and device unlocking widely used in the mobile Internet field.
  • capacitive fingerprint recognition has been unable to meet the needs, while ultrasonic fingerprint recognition has technical maturity and cost problems.
  • Optical fingerprint recognition is expected to become an under-screen fingerprint. Identification of mainstream technology solutions.
  • the existing optical fingerprint recognition scheme is based on the geometric optical lens imaging principle.
  • the fingerprint module used includes microlens arrays, optical space filters and other components. It has many shortcomings such as complex structure, thick module, small sensing range, high cost, etc.
  • a coordinate transformation method for under-screen imaging comprising the steps of calculating a reduction coefficient of a coordinate system; copying each bright spot on a fingerprint image to a reduced coordinate system; keeping the fingerprint information around the bright spot and the relative distance between the centers of the bright spots unchanged, The whole moves to the reduced coordinate system.
  • the "keep the relative distance between the fingerprint information around the bright spot and the center of the bright spot unchanged, and move it to the reduced coordinate system as a whole" further comprising the step of dividing the fingerprint image into regions according to different fingerprint image acquisition methods and maintaining The relative distance between the fingerprint information around the bright spot and the center of the bright spot in each area is not changed, and the fingerprint information of each area is moved to the reduced coordinate system.
  • the method further includes the steps of processing the fingerprint image to determine a circular dark area corresponding to any point light source, and the diameter of the circular dark area is D, according to the value of D. Calculate the screen thickness parameter.
  • processing the fingerprint image to determine a circular dark area corresponding to any point light source further includes the steps of: determining a position of a bright spot corresponding to the point light source in the fingerprint image, and gradually scanning outward with the bright spot as a circle center, The edge of the scanned average gray value just reaching the maximum value is regarded as the circle of the circular dark area.
  • the method further includes the steps of: lighting pixels of a plurality of discrete point light source regions of the display panel, the point light source regions being arranged in an array and having non-light emitting pixel points spaced apart,
  • the point light source region includes a plurality of pixel points; light that is totally reflected by the pixel points through the light-transmitting cover is obtained by a light sensor; and the display panel and the light sensor are disposed below the light-transmitting cover.
  • the array is arranged horizontally and vertically or the array is arranged in a ring.
  • the distance between two adjacent point light sources satisfies the conditions that the point light source total reflection image collected by the light sensor is non-contact and non-repeating.
  • the display panel is a liquid crystal display, an active matrix organic light emitting diode display, or a micro light emitting diode display.
  • a storage medium stores a computer program, and when the computer program is executed by a processor, any step of the method mentioned above is implemented.
  • An electronic device includes a memory and a processor.
  • a computer program is stored on the memory, and when the computer program is executed by the processor, any step of the method mentioned above is implemented.
  • the beneficial effect of the present invention is that a new coordinate system is obtained by calculating the reduction coefficient of the coordinate system, moving each bright point on the fingerprint image (that is, the image corresponding to the point light source) to the reduced coordinate system, and then maintaining the fingerprint around the bright point.
  • the relative distance between the information and the center of the bright spot remains unchanged, and the whole moves to the reduced coordinate system.
  • the fingerprint image is restored, and at the same time, the pixels are not lost, and the clarity of the restored fingerprint image is ensured.
  • this method of restoring fingerprint images has a simple calculation process, fast restoration speed and good quality.
  • FIG. 1 is a schematic diagram of realizing optical fingerprint imaging under a lensless screen using a total reflection imaging principle
  • FIG. 2 is a schematic diagram of optical fingerprint imaging in which a transparent cover plate is a glass cover plate;
  • FIG. 3 is a flowchart of a coordinate transformation method for imaging under a screen
  • FIG. 4 is a schematic diagram of the principle of forming a circular dark area
  • FIG. 5 is a schematic diagram of an array of a plurality of discrete point light source regions of a display panel
  • FIG. 6 is a schematic diagram of fingerprints collected by a sensor under a point light source lighting the same straight line area according to an embodiment
  • FIG. 7 is a schematic diagram of fingerprints collected on a sensor in a case where four bright points are lit according to an embodiment
  • FIG. 8 is a distribution diagram of pixels included in a point light source according to an embodiment
  • FIG. 9 is a schematic diagram of a storage medium module
  • FIG. 10 is a schematic diagram of a module of an electronic device.
  • the core technical idea of the present invention is: Calculate the magnification factor k of the image imaging structure under the screen. If the obtained fingerprint image is simply reduced by k times, a fingerprint image of the same size as the actual fingerprint can be obtained, but the pixels are lost. So its sharpness is greatly affected. Therefore, the present invention mainly moves the fingerprint image obtained through the imaging structure of the screen under the screen to a new coordinate system (reduced by a factor of k) mainly through the transformation of the coordinate system, which can ensure that the final fingerprint image is the same as the actual fingerprint size. It also guarantees that its clarity is not affected in any way.
  • the processed fingerprint image is obtained by a specific under-screen image imaging structure.
  • the under-screen image imaging structure includes a light-transmitting cover plate, a light source plate, and a light sensor, and the light source plate and the light sensor are disposed below the light-transmitting cover plate.
  • the light-transmissive cover plate may be a single-layer plate structure or a multilayer structure.
  • the single-layer structure may be a glass cover plate or an organic light-transmitting material cover plate.
  • the single-layer cover plate may also be a cover plate with other functions. touch screen.
  • the multilayer structure may be a multilayer glass cover or a multilayer organic transparent material cover or a combination of a glass cover and an organic transparent material cover.
  • the light sensor is used for obtaining light, and includes a plurality of photosensitive units, which can be separately arranged below the light source board or on the light source board. When placed under the light source board, light can enter the light sensor through the gap between the light sources on the light source board. When set on the light source plate, the photosensitive unit can be set in the light source gap of the light source plate.
  • the sensor can be set under the screen image imaging structure for acquiring the image under the screen, such as fingerprint fingerprint print.
  • the transparent cover and the light source board need to be filled with optical glue to connect and avoid the reflection of light by the air.
  • the refractive index of the optical glue should be close to the refractive index of the transparent cover to avoid the total reflection of light between the optical glue and the transparent cover. .
  • a glass cover is used as an example of the transparent cover.
  • fingerprint acquisition is performed, a point A on the cover glass pressed by a finger is imaged to a point B on the sensor surface.
  • the light emitted by a single light emitting point O on the light source plate just meet the needs.
  • FIG. 3 a specific implementation of a coordinate transformation method for imaging under a screen is as follows:
  • Step S301 Calculate the reduction coefficient of the coordinate system.
  • the amplification factor of the system obtained above that is, the reduction factor of the coordinate system.
  • Step S302 Copy each bright spot on the fingerprint image to the reduced coordinate system.
  • the bright point mentioned here is an image formed by the point light source of the light emitting layer in the image imaging structure under the screen directly on the sensor position directly below, as shown by O ′ in FIG. 2.
  • the coordinate conversion relationship of specific highlights is as follows:
  • the original bright point coordinates are (x, y), then in the new coordinate system, the bright point coordinates are
  • Step S303 The relative distance between the fingerprint information around the bright spot and the center of the bright spot remains unchanged, and the whole is moved to the reduced coordinate system.
  • a new coordinate system is obtained.
  • Each bright point on the fingerprint image (that is, the image corresponding to the point light source) is moved to the reduced coordinate system, and the relative distance between the fingerprint information around the bright point and the bright point center is maintained Does not change, the whole moves to the reduced coordinate system.
  • the fingerprint image is restored, and at the same time, the pixels are not lost, and the clarity of the restored fingerprint image is ensured.
  • this method of restoring fingerprint images has a simple calculation process, fast restoration speed and good quality.
  • a screen thickness parameter H is required, and this parameter is changed by the user pasting a film on the screen according to his preference.
  • the calculation of the screen thickness parameter is as follows:
  • the fingerprint image is processed to determine a circular dark area corresponding to any point light source, the diameter of the circular dark area is D, and the screen thickness parameter is calculated according to the value of D.
  • the circular dark area corresponding to any point light source is determined by the following steps:
  • ⁇ c is the critical angle of the light reflected by the point light source P on the glass cover.
  • ⁇ c is the critical angle of the light reflected by the point light source P on the glass cover.
  • the refraction angle When light is radiated from a light-dense medium to a light-sparse medium, the refraction angle is greater than the incident angle. If the incident angle increases to a certain angle ⁇ c so that the refraction angle reaches 90 °, the refracted light disappears. When the incident angle is larger than ⁇ c , there is only reflected light. This phenomenon is called total reflection. The corresponding angle of incidence ⁇ c is called the critical angle of total reflection.
  • ⁇ i and ⁇ t are the angles of incidence and refraction, respectively.
  • the incident angle ⁇ i is equal to the critical angle ⁇ c
  • the refraction angle ⁇ t 90 °, which is taken into the formula 1
  • the critical angle is:
  • the screen thickness parameter can be automatically calculated in real time according to the value of D.
  • the method further includes steps:
  • Pixels of a plurality of discrete point light source areas of the display panel are lit, the point light source areas are arranged in an array with non-light emitting pixel points spaced, and the point light source areas include a plurality of pixel points; the pixel points are obtained by a light sensor The light that has been totally reflected by the light-transmissive cover; the display panel and the light sensor are placed below the light-transmissive cover.
  • multiple discrete point light source areas can illuminate multiple areas on the light-transmitting cover plate, and then the light that has been totally reflected by the upper surface of the light-transmitting cover plate can be obtained by the light sensor, so that it can be obtained. Images to multiple areas improve image acquisition efficiency.
  • the point light source area contains multiple pixels, which meets the lighting brightness requirements of imaging, and can realize the collection of images on the transparent cover. Ensure the availability of fingerprint images after collection.
  • the uniform arrangement is preferred, that is, the distance between the two point light sources is equal, so that the images reflected by each point light source are the same, which is convenient for subsequent image processing.
  • the specific form of the arrangement may be a horizontal arrangement and a vertical arrangement, or the array arrangement may be a circular arrangement.
  • Horizontal arrangement means that a plurality of point light sources constitute a plurality of parallel horizontal rows and a plurality of parallel vertical rows.
  • the white point is a point light source.
  • the horizontal row and the vertical row are perpendicular to each other.
  • the circular arrangement may be that the point light source is located on a circle whose radius is increased in sequence with the center of the screen as the center.
  • the array of point light sources is arranged in a variety of ways, so the point light source that lights up each time a fingerprint image is acquired will be different, the fingerprint image will be acquired in different ways, and there will be differences in the distribution of the acquired fingerprint images.
  • the specific processing method is also different when performing coordinate conversion. Do the following:
  • step S303 the fingerprint image is specifically divided according to different fingerprint image acquisition methods.
  • the fingerprint information around the bright spot in each area and the relative distance between the centers of the bright spots remain unchanged, and the fingerprint information of each area is changed. Move to the reduced coordinate system.
  • the details can be as follows:
  • Figure 6 shows the point light source lighting the same straight line area on the light source board.
  • the collected fingerprint images are mainly distributed on both sides of the straight line.
  • each fingerprint interval is based on each straight line (point light sources arranged in a straight line).
  • FIG. 7 a schematic diagram of fingerprints collected on the sensor when four bright points (point light sources) are lit is shown.
  • the fingerprints mainly exist in the area between the bright points. Divide the adjacent bright spots of the entire picture into several intervals of the same size, find the coordinates of the bright spot center of each interval, first move the bright spots to the new coordinate system, and then keep the fingerprint information and bright spots around the bright spots in each area The relative distance between the centers is unchanged, and the fingerprint information of each area is moved to the reduced coordinate system.
  • the adjacent bright points of the entire picture are divided into a number of intervals of the same size, and the bright points of each interval are found.
  • For the center coordinate first move the bright spot to the new coordinate system, and then keep the fingerprint information around the bright spot in each area and the relative distance of the bright spot center unchanged. Move the fingerprint information of each area to the reduced coordinate system.
  • the distance between the point light sources is determined by the imaging quality.
  • the distance between two adjacent point light sources satisfies the conditions that the point light source total reflection image collected by the light sensor is non-contact and non-repeating.
  • the distance between the point light sources may be a minimum value under the condition that the total reflection images of two adjacent point light sources are not in contact and are not repeated. This minimum value can be obtained through multiple manual experiments, such as obtaining a total reflection image of a point light source at different point light source intervals, and then viewing the minimum value of the point light source distance when the reflected image meets the conditions of non-contact and non-repetition. This minimum value can then be set in advance on the memory in which the method is run.
  • the distance between point light sources is actually affected by the distance between the light source and the cover plate.
  • the distance between the two is directly proportional.
  • the hardware parameters of a product's screen generally do not change.
  • artificial The method of obtaining the second test is more direct and convenient.
  • the present invention combines multiple pixels to form a composite point light source whose overall brightness meets imaging requirements.
  • the shape of the point light source will also affect the imaging quality.
  • the point light source area is a circle. Since each pixel is actually a square, the combination of multiple pixels cannot form a standard circle, it can only be a circle-like.
  • the circle-like pixels can be determined to draw a circle with a certain pixel as the center.
  • the pixels in the circle can be all circle-like pixels.
  • the pixels on the circumference can be set to a preset area ratio.
  • the pixel is regarded as a circular pixel of a point light source type.
  • the size of the circle determines the light intensity of the point light source and whether the light sensor can obtain a higher quality image. If the circle is too small, the area of the point light source is too small, which will cause insufficient light. The circle is too large, and the point light source area is too large. It will also affect the imaging quality. Different display panels also have different light source intensities, and the size of the point light source area of different display panels will also be different. For a certain type of image imaging acquisition structure, the size of the point light source area can also be obtained by manual experiments. The size of the point light source area can be sequentially lit from small to large. After the light sensor obtains the image data, it is manually screened. The smallest point light source area that satisfies the imaging quality.
  • the preferred size and shape of the actual point light source are as shown in FIG. 8 (each grid represents a pixel, and the light source position is shown in white), the middle is a rectangle of 7pixel * 7pixel, and each side of the rectangle is There are three pixel protrusions in the middle, which can achieve better imaging quality.
  • the preferred color of the light source is green, red, or any combination of these two colors with other colors. Such colors can avoid interference from external light.
  • the display panel can be used not only as a light source to emit light, but also as a display image.
  • the display panel includes a liquid crystal display (LCD), an active matrix organic light emitting diode (AMOLED) display, or a micro-LED display, all of which scan and drive a single unit with a thin film transistor (TFT) structure.
  • Pixels can achieve single driving of pixels, that is, driving of point light sources and array display, and light can enter the light sensor after passing through the gap between pixels.
  • the structure of the point light source array in this embodiment can be generated in various ways.
  • the drawing software can be used for drawing and then displayed by the display panel.
  • this method Drawing is inefficient.
  • the following method may be adopted: before the pixels are lit, the method may further include the step of assigning a matrix with the same resolution as the display panel, assigning the point light source region to a non-zero value, assigning other regions to zero, and using the assigned matrix as RGB information generates display image; sends display image to display panel.
  • the light sensor obtains light that is totally reflected by the pixels through the light-transmissive cover; the display panel and the light sensor are placed below the light-transmissive cover.
  • an active matrix organic light emitting diode (AMOLED) display screen (1920 ⁇ 1080 pixels) is taken as an example to describe the generation method of the point light source array structure.
  • AMOLED active matrix organic light emitting diode
  • the process of designing a light source topology using a programming language is actually assigning a 1920 * 1080 matrix (a matrix with 1920 rows and 1080 columns, all data is 0), which will require The lighted position is assigned a non-zero number (such as 255), otherwise it is assigned a value of 0, and then this matrix is used as the RGB information of the 8-bit image. ) Generate a new image.
  • the structure of the generated point light source array is shown in FIG. 5.
  • White is the point light source area, and white is only for illustration. It can actually be green or red.
  • the present invention uses time division multiplexing technology to achieve full fingerprint coverage. Specifically, after a preset time interval, the same position shift is performed on all the point light source regions; the step of lighting pixel points and the light acquisition step are repeated again until fingerprint images that meet the requirements for complete fingerprint stitching are obtained, and then these fingerprint images are After denoising and stitching, a complete fingerprint image can be obtained.
  • the fingerprint image obtained above ensures the accuracy of subsequent calculation of the screen thickness parameters, further ensures the accuracy of the coordinate system transformation, and thus ensures the accuracy of image restoration.
  • an implementation manner of a storage medium 900 is as follows:
  • the storage medium 900 in this embodiment may be a storage medium 900 provided in an electronic device, and the electronic device may read the content of the storage medium 900 and achieve the effect of the present invention.
  • the storage medium 900 may also be a separate storage medium 900.
  • the electronic device can read the content in the storage medium 900 and implement the method steps of the present invention.
  • the storage medium 900 includes, but is not limited to, RAM, ROM, magnetic disk, magnetic tape, optical disk, flash memory, U disk, mobile hard disk, memory card, memory stick, network server storage, network cloud storage, and the like.
  • the storage medium 900 stores a computer program. When the computer program is executed by a processor, the steps of the method according to any one of the foregoing are implemented.
  • an electronic device 100 is as follows:
  • the electronic device 100 includes, but is not limited to, a personal computer, a server, a general-purpose computer, a dedicated computer, a network device, an embedded device, a programmable device, a smart mobile terminal, a smart home device, a wearable smart device, a car smart device, and the like.
  • the electronic device 100 includes a memory 101 and a processor 102.
  • a computer program is stored on the memory 101.
  • the computer program is executed by the processor 102, the steps of the method according to any one of the foregoing are implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Image Input (AREA)
  • Holo Graphy (AREA)
  • User Interface Of Digital Computer (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)

Abstract

一种用于屏下成像的坐标变换方法、存储介质及电子设备。所述一种用于屏下成像的坐标变换方法,包括步骤:计算坐标系缩小系数(S301);复制指纹图像上各亮点至缩小后的坐标系上(S302);保持亮点周围的指纹信息与亮点中心相对距离大小不变,整体移至缩小后的坐标系上(S303)。通过坐标的转换,即保证了指纹图像的还原,同时又保证了像素不会丢失,确保了还原后的指纹图像的清晰度;且该种还原指纹图像的方式,计算过程简单,还原速度快且质量好。

Description

一种用于屏下成像的坐标变换方法、存储介质及电子设备 技术领域
本发明涉及光学指纹识别技术领域,特别涉及一种用于屏下成像的坐标变换方法、存储介质及电子设备。
背景技术
随着信息科技的发展,生物特征识别技术在保障信息安全的方面发挥着越来越重要的作用,其中指纹识别已经成为移动互联网领域广泛应用的身份识别、设备解锁的关键技术手段之一。在设备的屏占比越来越大的趋势下,传统的电容式指纹识别已经不能满足需求,而超声波指纹识别则存在技术成熟度和成本等方面的问题,光学指纹识别是有望成为屏下指纹识别的主流技术方案。
现有的光学指纹识别方案是基于几何光学透镜成像原理,所用的指纹模组包含微透镜阵列、光学空间滤光器等元件,存在结构复杂、模块厚、感测范围小、成本高等诸多缺点。通过物理光学的全反射成像原理实现无透镜屏下光学指纹识别,相比于现有的光学指纹方案,具有结构简单、模块薄、感测范围大、成本低等优点。但是指纹图像与实际指纹各自所在的平面坐标系之间不是1:1的对应关系,故如何精确、高效地重建指纹,显得至关重要。
发明内容
为此,需要提供一种用于屏下成像的坐标变换方法,用以解决无透镜屏下光学指纹识别得到的指纹图像与实际指纹不一致的问题。具体技术方案如下:
一种用于屏下成像的坐标变换方法,包括步骤:计算坐标系缩小系数;复制指纹图像上各亮点至缩小后的坐标系上;保持亮点周围的指纹信息与亮 点中心相对距离大小不变,整体移至缩小后的坐标系上。
进一步的,所述“保持亮点周围的指纹信息与亮点中心相对距离大小不变,整体移至缩小后的坐标系上”,还包括步骤:根据指纹图像获取方式不同对指纹图像进行区域划分,保持各区域中亮点周围的指纹信息与亮点中心相对距离大小不变,将各区域的指纹信息移至缩小后的坐标系上。
进一步的,所述“计算坐标系缩小系数”前,还包括步骤:对指纹图像进行处理,确定任一点光源对应的圆形暗区,所述圆形暗区的直径为D,根据D的值计算出屏幕厚度参数。
进一步的,所述“对指纹图像进行处理,确定任一点光源对应的圆形暗区”,还包括步骤:确定指纹图像中点光源对应的亮斑位置,以亮斑为圆心逐渐向外扫描,扫描到的平均灰度值刚达到最大值的边缘视为圆形暗区的圆周。
进一步的,所述“对指纹图像进行处理”前,还包括步骤:点亮显示面板的多个分立的点光源区域的像素点,所述点光源区域呈阵列排列且间隔有不发光像素点,所述点光源区域包含有多个像素点;通过光线传感器获取像素点经过透光盖板全反射的光线;所述显示面板、光线传感器置于所述透光盖板的下方。
进一步的,所述阵列排列为横向排列与纵向排列或者所述阵列排列为环状排列。
进一步的,相邻两个点光源的间距满足光线传感器采集到的点光源全反射图像不接触、不重复的条件。
进一步的,所述显示面板为液晶显示屏、有源阵列式有机发光二极管显示屏或微发光二极管显示屏。
为解决上述问题,还提供了一种存储介质,具体技术方案如下:
一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述所提到方法的任一步骤。
为解决上述问题,还提供了一种电子设备,具体技术方案如下:
一种电子设备,包括存储器、处理器,所述存储器上存储有计算机程序,所述计算机程序被处理器执行时实现实现上述所提到方法的任一步骤。
本发明的有益效果是:通过计算坐标系缩小系数,获得一新坐标系,将指纹图像上的各亮点(即点光源对应的图像)移至缩小后的坐标系上,再保持亮点周围的指纹信息与亮点中心相对距离大小不变,整体移至缩小后的坐标系上。通过坐标的转换,即保证了指纹图像的还原,同时又保证了像素不会丢失,确保了还原后的指纹图像的清晰度。且该种还原指纹图像的方式,计算过程简单,还原速度快且质量好。
附图说明
图1为利用全反射成像原理实现无透镜屏下光学指纹成像的示意图;
图2为透光盖板为玻璃盖板的光学指纹成像的示意图;
图3为一种用于屏下成像的坐标变换方法的流程图;
图4为圆形暗区形成原理的示意图;
图5为显示面板的多个分立的点光源区域的阵列示意图;
图6为一种实施方式的点亮同一直线区域的点光源下传感器采集到的指纹示意图;
图7为一种实施方式的点亮四个亮点的情况下传感器上采集到的指纹示意图;
图8为一种实施方式的点光源包含的像素点的分布图;
图9为一种存储介质的模块示意图;
图10为一种电子设备的模块示意图。
附图标记说明:
900、存储介质,
100、电子设备,
101、存储器,
102、处理器。
具体实施方式
为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下结合具体实施例并配合附图详予说明。
本发明最核心的技术构思是:计算屏下图像成像结构的放大系数k,如果单纯将获得的指纹图象缩小k倍,确实可以得到与实际指纹大小一样的指纹图象,然而像素的丢失,使得其清晰度却受到极大的影响。故本发明主要通过坐标系的转换,将通过屏下图像成像结构得到的指纹图象移到新的坐标系(缩小k倍)中,即可保证最后获得的指纹图象与实际指纹大小一样,又可保证其清晰度未受到任何影响。
在本实施方式中,处理的指纹图像是由特定的屏下图像成像结构获得的。首先对该屏下图像成像结构做简要说明:
如图1所示,屏下图像成像结构包括透光盖板、光源板和光线传感器,所述光源板、光线传感器置于所述透光盖板的下方。其中,透光盖板可以是单层板结构或者多层结构,单层结构可以是玻璃盖板或者有机透光材质盖板,单层盖板也可以是具有其他功能的盖板,如可以是触摸屏。多层结构可以是多层玻璃盖板或者多层有机透光材质盖板或者是玻璃盖板与有机透光材质盖板的结合。光线传感器用于获取光线,包括有多个感光单元,可以单独设置在光源板的下方或者设置在光源板上。设置在光源板下方时,光线可以穿过光源板上光源之间的间隙进入到光线传感器中。设置在光源板上时,感光单元可以设置在光源板的光源间隙中。传感器可以设置在屏下图像成像结构用于获取屏下图像,如可以获取指纹掌纹等。透光盖板与光源板需要填充光学胶进行连接以及避免空气影响光线的反射,光学胶的折射率应该接近透光盖板的折射率,避免光线在光学胶与透光盖板间发生全反射。
如图2所示,在本实施方式中,透光盖板以玻璃盖板为例。则在进行指纹获取的时候,要将手指按压的玻璃盖板(Cover glass)上某一点A成像到传感器表面上的B点,根据全反射条件,光源板上的单个发光点O所发射的光线正好满足需要。
这样,对于成像传感器上的任意指纹像点B,要还原玻璃盖板上对应的指纹点A,必须以对应的发光点O为中心,将像点B按照某个比例关系向点O缩进,使得点B到点O的水平距离||OB||与点A到点O的水平距离||OA||满足比例关系:||OB||=k||OA||,其中比例系数k的值由系统的光学结构决定。
在图2中,θ为入射角,发光层与传感器之间的距离为h,玻璃盖板厚度为H,根据分析可得系统的放大系数:
Figure PCTCN2019094571-appb-000001
基于上述原理,请参阅图3,在本实施方式中,一种用于屏下成像的坐标变换方法的具体实施如下:
步骤S301:计算坐标系缩小系数。上述得到的系统的放大系数,即坐标系缩小系数。
步骤S302:复制指纹图像上各亮点至缩小后的坐标系上。需要说明的是,该处提及的亮点即屏下图像成像结构中发光层的点光源直接在正下方的传感器位置上形成的一个像,如图2中的O'。具体亮点的坐标转换关系如下:
原来亮点坐标为(x,y),则在新坐标系中亮点坐标为
X=x·k;
Y=y·k
步骤S303:保持亮点周围的指纹信息与亮点中心相对距离大小不变,整体移至缩小后的坐标系上。
通过计算坐标系缩小系数,获得一新坐标系,将指纹图像上的各亮点(即点光源对应的图像)移至缩小后的坐标系上,再保持亮点周围的指纹信息与亮点中心相对距离大小不变,整体移至缩小后的坐标系上。通过坐标的转换,即保证了指纹图像的还原,同时又保证了像素不会丢失,确保了还原后的指纹图像的清晰度。且该种还原指纹图像的方式,计算过程简单,还原速度快且质量好。
由以下公式可知,
Figure PCTCN2019094571-appb-000002
计算坐标系缩小系数k,需用到屏幕厚度参数H,而这个参数因用户根据自身的喜好在屏幕上贴膜而改变。在本实施方式中,优选地,对屏幕厚度参数的计算如下:
对指纹图像进行处理,确定任一点光源对应的圆形暗区,所述圆形暗区的直径为D,根据D的值计算出屏幕厚度参数。
优选地,通过以下步骤确定任一点光源对应的圆形暗区:
确定指纹图像中点光源对应的亮斑位置,以亮斑为圆心逐渐向外扫描,扫描到的平均灰度值刚达到最大值的边缘视为圆形暗区的圆周。
暗区直径D的计算具体原理,结合图4做如下说明:θ c为点光源P发出的光线在玻璃盖板上面反射的临界角,当入射角度小于θ c时,大部分光线以折射的方式透过玻璃盖板,所以在传感器上探测不到明显的反射光线,传感器上就会在点光源P周围形成圆形暗区(暗区中心会因为照明点光源P的光线直接投射到传感器而形成一个亮斑)。暗区外径用D表示,盖板玻璃厚度用H表示,根据三角函数公式计算玻璃板厚度:
Figure PCTCN2019094571-appb-000003
而全反射临界角的计算如下:
光线从光密介质射向光疏介质时,折射角大于入射角。若入射角增大到某一角度θ c,使折射角到达90°,折射光就消失。入射角大于θ c时只有反射光,这种现象称为全反射。相应的入射角θ c叫做全反射临界角。
光线由折射率n的玻璃到真空(折射率为1),折射定律为
sin θ i=n×sin θ t
其中θ i和θ t分别为入射角和折射角。当入射角θ i等于临界角θ c时,折射角θ t=90°,带入①式得
Figure PCTCN2019094571-appb-000004
则临界角为:
Figure PCTCN2019094571-appb-000005
故只要知道圆形暗区的直径D,即可根据D的值实时自动计算屏幕厚度参数。
为确保本实施方式中,所获取的指纹图像的清晰度,在“对指纹图像进行处理”前,还包括步骤:
点亮显示面板的多个分立的点光源区域的像素点,所述点光源区域呈阵列排列且间隔有不发光像素点,所述点光源区域包含有多个像素点;通过光线传感器获取像素点经过透光盖板全反射的光线;所述显示面板、光线传感器置于所述透光盖板的下方。本实施方式中,多个分立的点光源区域可以对透光盖板上多个区域进行照亮,而后经过透光盖板的上表面全反射后的光线可以被光线传感器获取到,这样可以获取到多个区域的图像,提高了图像获取效率。同时点光源区域包含有多个像素点,满足成像的照明亮度要求,可以实现对透光盖板上图像的采集。确保采集后的指纹图像的可用性。
本实施方式中的点光源有多种排列方式,优选的为均匀排列,即点光源两两之间的距离都相等,这样每个点光源反射后的图像都相同,方便后续的图像处理。排列的具体形式可以为横向排列与纵向排列或者所述阵列排列为环状排列。横向排列即多个点光源构成多个平行的横排和多个平行的纵排。如图5所示,其中白色点即为点光源,优选地,横排与纵排之间互相垂直, 当然在某些实施方式中可以有一定夹角(如60°等)。环状排列可以是点光源处在以屏幕中心为圆心的半径依次增大的圆形上。
在本实施方式中,点光源的阵列排列方式多种多样,故每次获取指纹图像时亮起的点光源会不同,指纹图像的获取方式不同,获取到的指纹图像分布上也有区别,则在进行坐标转换时具体处理方式也是不一样。做如下说明:
在本实施方式中,上述步骤S303,具体还要根据指纹图像获取方式不同对指纹图像进行区域划分,保持各区域中亮点周围的指纹信息与亮点中心相对距离大小不变,将各区域的指纹信息移至缩小后的坐标系上。具体可如下:
如图6所示为光源板上点亮同一直线区域的点光源,则采集到的指纹图像主要分布于直线两边,这种情况下每个指纹区间是以每条直线(呈直线排列的点光源)能成多少指纹来划分区域,然后将该区域亮点先移至缩小后的坐标系中,再保持各区域中亮点周围的指纹信息与亮点中心相对距离大小不变,将各区域整体移至缩小后的坐标系上。
如图7所示为点亮四个亮点(点光源)的情况下传感器上采集到的指纹示意图,其中指纹主要存在于亮点之间的区域。将整个图片的相邻亮点为中心分成若干个相同大小的区间,找出每个区间的亮点中心坐标,先将亮点移至新的坐标系中,再保持各区域中亮点周围的指纹信息与亮点中心相对距离大小不变,将各区域的指纹信息移至缩小后的坐标系上。
在其它实施方式中,可能是点亮其它个数的点光源,不一定是四个,同样地是将整个图片的相邻亮点为中心分成若干个相同大小的区间,找出每个区间的亮点中心坐标,先将亮点移至新的坐标系中,再保持各区域中亮点周围的指纹信息与亮点中心相对距离大小不变,将各区域的指纹信息移至缩小后的坐标系上。
在本实施方式中,点光源的间距决定于成像质量,为了避免成像之间的重叠,相邻两个点光源的间距满足光线传感器采集到的点光源全反射图像不 接触、不重复的条件。优选地,点光源的间距可以是在相邻两个点光源的全反射图像不接触、不重复的条件下取最小值。这个最小值可以通过人工多次试验获取,如在不同的点光源的间距下获取点光源全反射图像,而后查看到反射图像满足不接触、不重复的条件中点光源间距的最小值。而后这个最小值可以预先设置在运行本方法的存储器上。点光源的间距在实际中会受到光源与盖板的间距影响,两者的间距成正比关系,在实际应用中,一个产品的屏幕硬件参数一般不会改变,对于这些特定的屏幕,采用人工多次试验获取的方式更为直接和方便。
正如上文所述,本发明将多个像素点合并在一起,形成一个总体亮度满足成像要求的合成点光源。同时,点光源的外形也会影响成像质量,优选地,所述点光源区域为类圆形。由于实际上,每个像素都是方形,多个像素的组合没办法形成一个标准的圆形,只能是接近圆形的类圆形。类圆形的像素点确定可以以某个像素点为中心画圆,圆内的像素点可以全部作为类圆形的像素点,圆周上的像素点可以设定一个预设面积占比值,如果圆周像素点在圆内的面积占像素点总面积的比大于预设面积占比值,则将该像素点作为点光源类圆形的像素点。圆的大小决定了点光源的光线强度以及光线传感器是否能够获取到较高质量的图像,圆太小,则点光源区域太小,就会产生光线不足,圆太大,点光源区域太大,又会影响成像质量。不同的显示面板同样也会有不同的光源强度,则不同的显示面板的点光源区域大小也会不同。对于某一种特定的图像成像获取结构,点光源区域大小同样可以采用人工多次试验的方式获取,点光源区域大小可以由小到大依次点亮,而后光线传感器获取到图像数据后,人工筛选出满足成像质量的最小点光源区域。
在现有的显示面板下,优选的实际点光源的尺寸和形状如附图8所示(每一网格代表一个像素,光源位置以白色显示),中间为7pixel*7pixel的矩形,矩形每一边中间有三个pixel的突出,可以实现较好的成像质量。
优选的光源的颜色为绿色、红色或这两种颜色之间与其他颜色的任意颜 色的组合,这样的颜色可以避免外界光线的干扰。
显示面板不仅可以作为光源进行发光,还可以作为显示图像。显示面板包括液晶显示屏(LCD)、有源阵列式有机发光二极管(AMOLED)显示屏或微发光二极管(micro-LED)显示屏,这些都是以薄膜电晶管(TFT)结构扫描并驱动单一像素,可以实现对像素点的单一驱动,即可以实现点光源的驱动和阵列显示,同时光线可以透过像素点的间隙后进入到光线传感器中。
本实施方式中的点光源阵列结构可以由多种生成方式,如可以采用绘图软件实现绘制后,再由显示面板进行显示,但由于点阵的精度要求高,且点的数量较多,此方法绘制效率低下。或者可以采用如下方式:在点亮像素点前还包括步骤,对与显示面板分辨率相同的矩阵进行赋值,将点光源区域赋值为非零值,其他区域赋值为零,将赋值后的矩阵作为RGB信息生成显示图像;发送显示图像到显示面板。而后再执行步骤:点亮显示面板的多个分立的点光源区域的像素点,所述点光源区域呈阵列排列且间隔有不发光像素点,所述点光源区域包含有多个像素点;通过光线传感器获取像素点经过透光盖板全反射的光线;所述显示面板、光线传感器置于所述透光盖板的下方。
本实施方式以有源阵列式有机发光二极管(AMOLED)显示屏(1920×1080像素)为例,说明点光源阵列结构生成方式。以此参数使用编程语言设计光源拓扑结构,使用编程语言设计光源拓扑结构的过程实际就是对一个1920*1080的矩阵(行数1920、列数1080,数据全为0的矩阵)进行赋值,将需要点亮的位置赋值为非零数(如255),否则赋值为0,然后将此矩阵作为8bit图像的RGB信息(在8bit图像的RGB信息里,数据0代表黑色,数据255代表满饱和度颜色)生成新的图像。生成的点光源阵列结构如附图5所示,白色为点光源区域,白色仅为图示说明,实际可以为绿色或者红色。通过以上步骤,可以高效地生成所需要的点光源阵列结构,从而可以实现快速的点光源驱动。
虽然有多个像素点形成一个点光源,同时照明指纹,单次成像还是无法 对全指纹实施无缝扫描。采用多个点光源阵列,彼此互补,可以实现全指纹的扫描,但是各个点光源阵列照明得到的指纹图像还是有部分指纹图像缺失。为了获取到完整的指纹图像,本发明使用时分复用技术,实现指纹全覆盖。具体地,间隔预设时间后,对全部点光源区域进行相同的位置偏移;再次重复点亮像素点步骤和光线获取步骤,直到获取到满足完整指纹拼接要求的指纹图像,而后对这些指纹图像进行去噪、拼接,就可以获取到完整的指纹图像。通过上述获得的指纹图像,确保了后续屏幕厚度参数计算的准确性,进一步确保坐标系变换的准确性,从而确保图像还原的准确性。
请参阅图9,在本实施方式中,一种存储介质900的实施方式如下:
本实施方式的存储介质900可以是设置在电子设备中的存储介质900,电子设备可以读取存储介质900的内容并实现本发明的效果。存储介质900还可以是单独的存储介质900,将该存储介质900与电子设备连接,电子设备就可以读取存储介质900里的内容并实现本发明的方法步骤。
所述存储介质900,包括但不限于:RAM、ROM、磁碟、磁带、光盘、闪存、U盘、移动硬盘、存储卡、记忆棒、网络服务器存储、网络云存储等。
所述存储介质900存储有计算机程序,所述计算机程序被处理器执行时,实现如上述任意一项所述方法的步骤。
请参阅图10,在本实施方式中,一种电子设备100的具体实施方式如下:
所述电子设备100包括但不限于:个人计算机、服务器、通用计算机、专用计算机、网络设备、嵌入式设备、可编程设备、智能移动终端、智能家居设备、穿戴式智能设备、车载智能设备等。
所述电子设备100,包括存储器101、处理器102,所述存储器101上存储有计算机程序,所述计算机程序被处理器102执行时实现如上述任意一项所述方法的步骤。
需要说明的是,尽管在本文中已经对上述各实施例进行了描述,但并非因此限制本发明的专利保护范围。因此,基于本发明的创新理念,对本文所 述实施例进行的变更和修改,或利用本发明说明书及附图内容所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领域,均包括在本发明的专利保护范围之内。

Claims (10)

  1. 一种用于屏下成像的坐标变换方法,其特征在于,包括步骤:
    计算坐标系缩小系数;
    复制指纹图像上各亮点至缩小后的坐标系上;
    保持亮点周围的指纹信息与亮点中心相对距离大小不变,整体移至缩小后的坐标系上。
  2. 根据权利要求1所述一种用于屏下成像的坐标变换方法,其特征在于,
    所述“保持亮点周围的指纹信息与亮点中心相对距离大小不变,整体移至缩小后的坐标系上”,还包括步骤:
    根据指纹图像获取方式不同对指纹图像进行区域划分,保持各区域中亮点周围的指纹信息与亮点中心相对距离大小不变,将各区域的指纹信息移至缩小后的坐标系上。
  3. 根据权利要求1所述的一种用于屏下成像的坐标变换方法,其特征在于,
    所述“计算坐标系缩小系数”前,还包括步骤:
    对指纹图像进行处理,确定任一点光源对应的圆形暗区,所述圆形暗区的直径为D,根据D的值计算出屏幕厚度参数。
  4. 根据权利要求3所述的一种用于屏下成像的坐标变换方法,其特征在于,
    所述“对指纹图像进行处理,确定任一点光源对应的圆形暗区”,还包括步骤:
    确定指纹图像中点光源对应的亮斑位置,以亮斑为圆心逐渐向外扫描,扫描到的平均灰度值刚达到最大值的边缘视为圆形暗区的圆周。
  5. 根据权利要求3所述的一种用于屏下成像的坐标变换方法,其特征在于,
    所述“对指纹图像进行处理”前,还包括步骤:
    点亮显示面板的多个分立的点光源区域的像素点,所述点光源区域呈阵 列排列且间隔有不发光像素点,所述点光源区域包含有多个像素点;
    通过光线传感器获取像素点经过透光盖板全反射的光线;所述显示面板、光线传感器置于所述透光盖板的下方。
  6. 根据权利要求5所述的一种用于屏下成像的坐标变换方法,其特征在于,
    所述阵列排列为横向排列与纵向排列或者所述阵列排列为环状排列。
  7. 根据权利要求5所述的一种用于屏下成像的坐标变换方法,其特征在于:
    相邻两个点光源的间距满足光线传感器采集到的点光源全反射图像不接触、不重复的条件。
  8. 根据权利要求5所述的一种用于屏下成像的坐标变换方法,其特征在于:
    所述显示面板为液晶显示屏、有源阵列式有机发光二极管显示屏或微发光二极管显示屏。
  9. 一种存储介质,其特征在于:所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1到8任意一项所述方法的步骤。
  10. 一种电子设备,其特征在于:包括存储器、处理器,所述存储器上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1到8任意一项所述方法的步骤。
PCT/CN2019/094571 2018-09-12 2019-07-03 一种用于屏下成像的坐标变换方法、存储介质及电子设备 WO2020052328A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/275,305 US11776297B2 (en) 2018-09-12 2019-07-03 Coordinate transformation method used for imaging under screen, storage medium and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811062109.2 2018-09-12
CN201811062109.2A CN110895665B (zh) 2018-09-12 2018-09-12 一种用于屏下成像的坐标变换方法、存储介质及电子设备

Publications (1)

Publication Number Publication Date
WO2020052328A1 true WO2020052328A1 (zh) 2020-03-19

Family

ID=69778162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094571 WO2020052328A1 (zh) 2018-09-12 2019-07-03 一种用于屏下成像的坐标变换方法、存储介质及电子设备

Country Status (4)

Country Link
US (1) US11776297B2 (zh)
CN (1) CN110895665B (zh)
TW (1) TWI804646B (zh)
WO (1) WO2020052328A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111770252B (zh) * 2020-06-24 2021-11-02 Oppo广东移动通信有限公司 像素位置确定方法及装置、电子设备、存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305143A (zh) * 2001-01-16 2001-07-25 郭方红 用于计算机坐标与控制信息输入的系统及方法
US20090190008A1 (en) * 2008-01-28 2009-07-30 Ricoh Company, Limited Image processing method, image processing apparatus, and imaging apparatus
CN104331715A (zh) * 2014-10-08 2015-02-04 清华大学 基于模板学习的指纹姿态矫正方法及系统
CN107239737A (zh) * 2017-05-03 2017-10-10 广东欧珀移动通信有限公司 一种光学指纹识别方法及相关产品
CN107403171A (zh) * 2017-08-08 2017-11-28 哈尔滨理工大学 基于快速霍夫变换的指纹模式匹配方法
CN107580709A (zh) * 2015-06-18 2018-01-12 深圳市汇顶科技股份有限公司 具有光学感应能力的多功能指纹传感器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114340A (zh) * 2007-09-06 2008-01-30 成都方程式电子有限公司 直方图均衡化图像处理的vlsi实现系统及方法
CN101847202B (zh) * 2009-03-23 2012-11-28 凯迈(洛阳)电子有限公司 光学指纹采集器图像畸变的校正算法
CN101661612A (zh) * 2009-07-27 2010-03-03 北京航空航天大学 基于伪细节点单形的指纹图像修复方法
JP2012134897A (ja) * 2010-12-24 2012-07-12 Casio Comput Co Ltd 画調変換方法、画調変換装置、画調変換システム並びにプログラム
CN102682428B (zh) * 2012-04-18 2014-11-05 浙江大学城市学院 一种基于方向场的指纹图像计算机自动化修补方法
CN103646378A (zh) * 2013-11-15 2014-03-19 天津天地伟业数码科技有限公司 基于fpga平台的高还原度空域图像缩放方法
US9390311B2 (en) * 2014-10-16 2016-07-12 NanoGate Biometric Inc. Fingerprint identification method
CN105355171B (zh) * 2015-12-15 2019-01-11 惠州Tcl移动通信有限公司 驱动扫描电路、显示屏及移动终端
CN106686547A (zh) * 2016-12-23 2017-05-17 南京邮电大学 一种基于区域划分和网络拓扑的室内指纹定位改进方法
CN107067061B (zh) * 2017-01-04 2018-11-20 陆际文 一种物纹码编码方法及系统
CN107122742B (zh) * 2017-04-27 2019-12-03 上海天马微电子有限公司 一种显示装置及其指纹识别方法、以及电子设备
CN107092892B (zh) * 2017-04-27 2020-01-17 上海天马微电子有限公司 一种显示面板及显示装置
CN107275376B (zh) * 2017-06-27 2019-12-20 上海天马微电子有限公司 一种显示面板及显示装置
CN107506730B (zh) * 2017-08-25 2021-06-29 北京小米移动软件有限公司 指纹模组、压力感应控制方法、装置及计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305143A (zh) * 2001-01-16 2001-07-25 郭方红 用于计算机坐标与控制信息输入的系统及方法
US20090190008A1 (en) * 2008-01-28 2009-07-30 Ricoh Company, Limited Image processing method, image processing apparatus, and imaging apparatus
CN104331715A (zh) * 2014-10-08 2015-02-04 清华大学 基于模板学习的指纹姿态矫正方法及系统
CN107580709A (zh) * 2015-06-18 2018-01-12 深圳市汇顶科技股份有限公司 具有光学感应能力的多功能指纹传感器
CN107239737A (zh) * 2017-05-03 2017-10-10 广东欧珀移动通信有限公司 一种光学指纹识别方法及相关产品
CN107403171A (zh) * 2017-08-08 2017-11-28 哈尔滨理工大学 基于快速霍夫变换的指纹模式匹配方法

Also Published As

Publication number Publication date
TW202024989A (zh) 2020-07-01
CN110895665A (zh) 2020-03-20
US11776297B2 (en) 2023-10-03
CN110895665B (zh) 2023-03-31
TWI804646B (zh) 2023-06-11
US20220122372A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
WO2019114276A1 (en) Fingerprint recognition device, fingerprint recognition method, and display device
CN107068726B (zh) 一种显示面板及显示装置
US20190043408A1 (en) Display substrate, display panel and display device
CN112668540B (zh) 生物特征采集识别系统及方法、终端设备和存储介质
US11710337B2 (en) Fingerprint identification method and apparatus, storage medium and terminal
CN109616015A (zh) 显示面板和显示装置
TWI759662B (zh) 螢幕下圖像獲取結構及電子設備
WO2020052328A1 (zh) 一种用于屏下成像的坐标变换方法、存储介质及电子设备
US11200397B2 (en) Fingerprint identification assembly, display substrate, display panel and fingerprint identification method
TWI728394B (zh) 自動搜索顯示螢幕厚度參數的方法、存儲介質及電子設備
TWI784212B (zh) 一種應用於屏下圖像成像的拓撲架構光源驅動方法、儲存介質和電子設備
CN110909720A (zh) 一种彩膜基板、显示面板及显示装置
CN110826373B (zh) 指纹识别面板及识别指纹的方法和指纹识别装置
WO2022148382A1 (zh) 生物特征采集识别系统及方法、终端设备
TWI749354B (zh) 應用於屏下成像的驅動和圖像獲取方法、存儲介質和電子設備
TWI821326B (zh) 一種屏下圖像獲取結構及電子設備
CN110896433A (zh) 一种应用于屏下图像成像的光源驱动方法、存储介质和电子设备
CN110895664A (zh) 一种用于无透镜成像的图像扫描方法、存储介质和电子设备
US11582373B2 (en) Image capturing apparatus and method, storage medium and electronic equipment
WO2018209672A1 (zh) 显示模组
CN117115868A (zh) 屏下指纹采集装置及其调节方法、电子设备
TW202143102A (zh) 指紋成像裝置和指紋成像方法
CN111860470A (zh) 屏下指纹识别设备与屏下指纹识别方法
CN111222376A (zh) 终端及其指纹成像方法、装置、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859566

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 12.07.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19859566

Country of ref document: EP

Kind code of ref document: A1