WO2020052258A1 - 冷却系统、光源系统以及光源系统的冷却方法 - Google Patents
冷却系统、光源系统以及光源系统的冷却方法 Download PDFInfo
- Publication number
- WO2020052258A1 WO2020052258A1 PCT/CN2019/086936 CN2019086936W WO2020052258A1 WO 2020052258 A1 WO2020052258 A1 WO 2020052258A1 CN 2019086936 W CN2019086936 W CN 2019086936W WO 2020052258 A1 WO2020052258 A1 WO 2020052258A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling
- adsorption
- circulation
- cooling liquid
- circulation pipe
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/56—Cooling arrangements using liquid coolants
- F21V29/59—Cooling arrangements using liquid coolants with forced flow of the coolant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/02—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor with moving adsorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/56—Cooling arrangements using liquid coolants
Definitions
- the invention relates to the technical field of liquid cooling, and in particular, to a cooling system, a light source system, and a cooling method for a light source system.
- the cooling system is an indispensable part of the entire light source and power supply system.
- liquid cooling is mainly used to cool the light source, and the cooling liquid flows through the entire cooling system to play a cooling role.
- the cooling liquid is a heat transfer medium in the cooling system, and has the functions of cooling, anticorrosion and antifreeze.
- the most commonly used coolants are glycol coolant and propylene glycol coolant.
- the cooling liquid consists of, for example, water, antifreeze and other additives. Water has a low freezing point and starts to freeze and expand in volume below 0 ° C, so a certain amount of antifreeze is usually added to the cooling liquid.
- the antifreeze is, for example, an organic low-carbon alcohol, which has a good effect of lowering the freezing point, and has very good compatibility with water, such as ethylene glycol and propylene glycol.
- the coolant is usually added with preservatives, buffers, antiscalants, defoamers, colorants, and the like. After the coolant is used for a long time, the flow effect will be poor, and the cooling effect will become low. It needs to be replaced regularly, which severely restricts the application of the cooling system.
- the purpose of this application is to provide a cooling system, a light source system, and a cooling method for a light source system to ensure the cooling effect and extend the service life of the cooling system.
- an embodiment of the present application provides a cooling system including a circulation pipe and an adsorption device.
- the circulation pipe is used for circulating the cooling liquid.
- the adsorption device is disposed on a pipeline path of the circulation pipe, and the cooling liquid flows through the circulation pipe. Contact with the adsorption device during the process.
- the cooling system further includes a cooling device, which is disposed on or in the circulation pipe and cools the cooling liquid flowing through the circulation pipe.
- the circulation pipeline includes a cooling liquid supply device and a cooling circulation tube
- the cooling circulation tube is in communication with the cooling liquid supply device
- the cooling liquid circulates between the cooling circulation tube and the cooling liquid supply device
- the adsorption device is provided in the cooling circulation tube On the pipeline path or in the coolant supply unit.
- the adsorption device includes a shell casing and an adsorbent, the adsorbent is disposed inside the casing, and the casing is disposed on a pipeline path of the circulation pipeline.
- the circulation pipeline includes a cooling liquid supply device, a cooling circulation tube, and an adsorption circulation tube.
- the cooling circulation tube and the adsorption circulation tube communicate with the cooling liquid supply device, respectively.
- the cooling liquid is selectively provided in the cooling circulation tube and the cooling liquid supply. Circulation flows between the devices or between the adsorption circulation pipe and the cooling liquid supply device.
- the adsorption device is arranged on the pipeline path of the adsorption circulation pipe or the cooling liquid supply device.
- a heat exchanger is provided on a pipeline path of the cooling circulation pipe.
- the adsorption device includes an adsorbent, and the adsorbent is a resin or activated carbon.
- the adsorption device includes a positive electrode plate and a negative electrode plate.
- the positive electrode plate and the negative electrode plate are oppositely disposed and are located in a circulation pipe, and a passage for cooling fluid is formed between the positive electrode plate and the negative electrode plate.
- an embodiment of the present application provides a light source system including the light source and the above-mentioned cooling system, and the cooling system is configured to cool the light source.
- an embodiment of the present application provides a cooling method for a light source system, which is applied to the cooling system described above.
- the method includes the following steps: flowing a cooling liquid in a circulating pipe, and communicating with a pipe provided in the circulating pipe during the flow.
- the adsorption device on the path is in contact.
- the cooling system, light source system, and cooling method of the light source system provided by the present application can absorb impurities formed in the cooling liquid by providing an adsorption device to ensure the cooling effect of the cooling system and extend the use of the cooling system. Life, reducing the number of coolant changes.
- FIG. 1 is a schematic structural diagram of a cooling system provided by a first embodiment of the present application.
- FIG. 2 is a schematic structural diagram of an adsorption device according to a first embodiment of the present application
- FIG. 3 is a schematic structural diagram of a cooling system according to another embodiment provided by the first embodiment of the present application.
- FIG. 4 is a schematic structural diagram of a cooling system provided by a second embodiment of the present application.
- FIG. 5 is a schematic structural diagram of an adsorption device according to a second embodiment of the present application.
- FIG. 6 is a schematic structural diagram of a cooling system provided by a third embodiment of the present application.
- FIG. 7 is a schematic structural diagram of a cooling system provided by a fourth embodiment of the present application.
- FIG. 8 is a schematic structural diagram of a light source system according to a fifth embodiment of the present application.
- horizontal and vertical do not mean that the component is required to be absolutely horizontal or drooping, but may be slightly inclined.
- horizontal simply means that its direction is more horizontal than “vertical”, which does not mean that the structure must be completely horizontal, but it can be tilted slightly.
- the terms “setting”, “connected”, and “connected” should be understood in a broad sense unless otherwise specified and limited. For example, they may be fixed connections, or may be connected. Disassembly connection, or integral connection; it can be mechanical or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two elements.
- the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
- the coolant contains many components, and the coolant in the water cooling system will contact the environment such as metal pipes or plastic pipes, which is extremely likely to cause chemical instability, and the components in it are likely to interact with the environment (such as metal walls, Non-distilled water, etc.) some metal ions, cations, and anions react, causing deterioration. After deterioration, the cooling performance of the water-cooled liquid is reduced or even lost. At the same time, due to chemical reactions, many corrosion products and scale can cause blockage of the pipeline, causing the entire cooling system to collapse or the life of the cooling system to be reduced. After the formation of impurities in the cooling liquid, the water cooling liquid must be replaced and the water cooling system must be cleaned at the same time.
- the cooling system 10a includes a circulation pipe 100a and an adsorption device 200a.
- the circulation pipe 100a includes a cooling liquid supply device 110a, a cooling circulation pipe 120a, and an adsorption circulation pipe 130a.
- the circulation pipe 100a is used for circulating the cooling liquid.
- the adsorption device 200a is disposed on the pipeline path of the circulation pipe 100a, so that the adsorption device 200a can contact the cooling liquid during the circulation of the cooling liquid, and adsorb impurities such as scale and the like formed in the cooling liquid.
- the cooling liquid can be, for example, water or organic lower alcohol.
- the cooling liquid supply device 110 a is a container having a large capacity for containing a cooling liquid, and has a first communication port 111 and a second communication port 112, and the first communication port 111 and the second communication port.
- the port 112 is used to communicate with the adsorption circulation pipe 130a to form a flow cycle of the cooling liquid.
- the adsorption circulation pipe 130a includes a first pipe 131 and a second pipe 132.
- the first pipe 131 communicates with the first communication port 111, and the second pipe 132 communicates with the second communication port 112.
- the first pipe 131 An end remote from the first communication port 111 may be directly communicated with an end remote from the second communication port 112 of the second pipe 132.
- the first pipe 131 and the second pipe 132 are respectively provided with a valve 141a and a valve 141b, and the valve 141a and the valve 141b are used to control the connection or cutoff of the adsorption circulation pipe 130a.
- the adsorption circulation pipe 130a is also provided with a pump 150, which is driven by a driving motor to provide power for the circulation of the cooling liquid in the adsorption circulation pipe 130a.
- the adsorption device 200 a includes a casing 201 and an adsorbent 205, wherein the casing 201 is a container having a volume, the adsorbent 205 is contained in the casing 201, and the casing 201 is provided with an inlet 202 and an outlet 203, where the inlet 202 is in communication with the end of the first pipe 131 far from the first communication port 111, and the outlet 203 is in communication with the end of the second pipe 132 far from the second communication port 112.
- the adsorption device 200a is disposed on the pipeline path of the circulation pipeline 100a, and when the cooling liquid enters the housing 201 from the inlet 202, it can contact and come into contact with the adsorbent 205, thereby forming impurities in the cooling liquid.
- the adsorbent 205 may be a resin or activated carbon.
- the adsorbent 205 is a macroporous adsorption resin
- the macroporous adsorption resin is an organic polymer copolymer having a macroporous structure, which is a type of artificial synthesis.
- the organic polymer adsorbent 205 It has a porous structure and is adsorbable through surface adsorption, surface electrical properties, or hydrogen bonding.
- the selected adsorbent 205 is, for example, spherical particles, and the particle size is, for example, 20-60 mesh.
- the macroporous adsorption resin has adsorption selectivity, which can adsorb particulate, suspended, and flocculated impurities (such as scale, corrosion products, etc.) formed in the cooling liquid without absorbing additives (such as preservatives, Buffer, antiscalant, defoamer, colorant, etc.). It can ensure the cooling effect of the cooling liquid, and also avoid the difficulty of cooling liquid flow caused by the accumulation of impurities.
- the reason why the adsorbent 205 is able to adsorb certain substances is mainly because the atomic force field on the surface of the adsorbent 205 is unsaturated and has surface energy, so it can adsorb certain molecules to reduce the surface energy.
- Adsorption is an interface phenomenon. After adsorption occurs on the surface of the adsorption resin, the concentration of the solute at the interface of the adsorption resin can be higher than the concentration of the solute in the solvent. As a result, the exotherm and free energy in the system are reduced. At a given temperature, Under pressure and pressure, adsorption is performed automatically.
- the adsorbent 205 may be directly disposed in the first pipe 131 and / or the second pipe 132. At this time, the adsorbent 205 may be installed in a filter / bag to prevent the adsorbent 205 from circulating with the cooling liquid. , Blocking the cooling system 10a. That is, there is no need to provide a special casing 201 for containing the adsorbent 205. In order to improve the adsorption effect, the adsorbent 205 is preferably distributed along the cross section of the cooling liquid flow path, so that the flowing cooling liquid can more completely contact the adsorbent 205 to complete the adsorption.
- the cooling circulation pipe 120a is a pipe for performing heat exchange with the outside world.
- a heat exchanger 170 is provided on a pipeline path of the cooling circulation pipe 120a, and the heat exchanger 170 is used for heat exchange.
- the cooling circulation pipe 120a is in communication with the cooling liquid supply device 110a, so that the cooling liquid can circulate and flow between the cooling liquid supply device 110a and the cooling circulation tube 120a.
- the cooling circulation pipe 120a and the adsorption circulation pipe 130a are independently communicated with the cooling liquid supply device 110a, so that the cooling liquid can selectively circulate between the cooling circulation tube 120a and the cooling liquid supply device 110a or Circulation flows between the adsorption circulation pipe 130a and the cooling liquid supply device 110a.
- the cooling liquid may be circulated only between the cooling circulation pipe 120a and the cooling liquid supply device 110a, or may be circulated only between the adsorption circulation pipe 130a and the cooling liquid supply device 110a.
- the cooling circulation pipe 120a is provided with a valve and a liquid pump for controlling the circulating flow of the cooling liquid in the cooling circulation pipe 120a.
- the working principle of the cooling system 10a provided in this embodiment is: when it is necessary to perform impurity adsorption, open the valve 141a and the valve 141b on the adsorption circulation pipe 130a, and turn on the pump 150, so that the cooling liquid circulates in the adsorption circulation pipe 130a.
- the cooling liquid flows into the housing 201 of the adsorption device 200a, it comes into contact with the adsorbent 205 to complete the adsorption of impurities.
- the entire process can be continued and interrupted by controlling the closing of the pump 150 and the valve.
- a circulating flow adsorption method may be adopted, that is, the cooling liquid is in contact with the adsorbent 205 during the flow and adsorbed.
- the cooling liquid is injected into the casing 201, and after a certain period of time, it is discharged from the outlet 203. After the draining, the inlet 202 is opened again to inject the cooling liquid to perform the adsorption treatment.
- the adsorption device 200a may be directly disposed inside the cooling liquid supply device 110a, and the adsorption liquid is adsorbed during the cooling liquid circulation process.
- the adsorption amount and adsorption capacity of the adsorbent 205 are inversely proportional to the temperature. The higher the temperature, the more unfavorable is the adsorption.
- the adsorption capacity of the adsorbent 205 is enhanced at a low temperature, and the adsorption amount is increased.
- the adsorption is performed at a low temperature or a normal temperature, and the adsorbent 205 can maximize the effect.
- impurities such as scale and floc in the cooling liquid are more likely to settle, which is also conducive to complete filtration.
- a cooling device 160 is provided on the adsorption circulation pipe 130a.
- the role of the cooling device 160 is to lower the temperature of the cooling liquid flowing through the adsorption circulation pipe 130a.
- the cooling device 160 may be disposed in the adsorption circulation pipe 130a, or may be directly disposed on the adsorption circulation pipe 130a and in contact with the adsorption circulation pipe 130a.
- the cooling device 160 may be, for example, a condensing pipe, and the condensing pipe may be spirally wound outside the adsorption circulation pipe 130a.
- the cooling device 160 may be disposed on all or part of the adsorption circulation pipe 130a, and only needs to cool the cooling liquid circulating in the adsorption circulation pipe 130a.
- the cooling liquid After the cooling liquid is cooled, the cooling liquid can be better adsorbed when it comes into contact with the adsorbent 205 due to the decrease in temperature. Therefore, it is more preferable that the cooling device 160 can be disposed near the adsorption device 200a.
- This embodiment also provides another cooling system 10a ', which illustrates another embodiment of the cooling device 160.
- the cooling device 160 may be directly disposed on the casing 201 of the adsorption device 200a and located outside the casing 201. For cooling the adsorption device 200a directly. In some embodiments, the cooling device 160 may also be directly disposed in the housing 201.
- the cooling system 10a and 10a 'provided in this embodiment can absorb impurities in the cooling liquid when the cooling system 10a is used by installing an adsorption device 200a, to prevent the impurities from becoming blocked in the circulation pipeline 100a, and extend the cooling systems 10a and 10a. 'Service life reduces the number of coolant changes.
- This embodiment provides a cooling system 10b, which is different from the cooling system 10a provided in the first embodiment in the structure of the adsorption device 200b. For the same part, refer to the first embodiment.
- the circulation pipeline 100b includes a cooling liquid supply device 110b, a cooling circulation pipe 120b, and an adsorption circulation pipe 130b.
- the direct connection relationship between the cooling liquid supply device 110b, the cooling circulation pipe 120b, and the adsorption circulation pipe 130b is the same as that of the first embodiment.
- the adsorption device 200 b includes a case 201, a positive plate 221, and a negative plate 222.
- the positive plate 221 and the negative plate 222 are disposed in the case 201.
- the positive plate 221 and the negative plate 222 are plate-shaped having substantially the same structure.
- the anode plate 222 and the anode plate 222 are spaced apart from each other.
- Both the anode plate 221 and the anode plate 222 are flat plates.
- the casing 201 has an inlet 202 and an outlet 203, and the inlet 202 and the outlet 203 are respectively connected to the pipeline path of the adsorption circulation pipe 130b.
- the positive electrode plate 221 and the negative electrode plate 222 are electrically connected to the positive electrode and the negative electrode of the power source, respectively.
- the power source may be an external power source or a separate power source module (such as a battery).
- a certain gap is left between the positive plate 221 and the negative plate 222 and the case 201 to prevent leakage. It can be understood that both the channel 204 and the gap can pass through the cooling liquid.
- a channel 204 is formed between the positive electrode plate 221 and the negative electrode plate 222, and the channel 204 is used for cooling liquid to flow. When the positive electrode plate 221 and the negative electrode plate 222 are connected, an electric field is formed in the channel 204.
- the positive electrode plate 221 and the negative electrode plate 222 may be directly disposed in a pipe of the adsorption circulation pipe 130b, and the positive electrode plate 221 and the negative electrode plate 222 may both be provided as arc-shaped plates matching the inner wall of the adsorption circulation pipe 130b to increase
- the large plate area of the positive electrode plate 221 and the negative electrode plate 222 increases the probability that impurities flowing with the cooling liquid are adsorbed. Placing the positive electrode plate 221 and the negative electrode plate 222 on the inner wall of the circulation pipe 100b, respectively, can increase the distance between the positive electrode plate 221 and the negative electrode plate 222, increase the cross-sectional area of the channel 204, and thereby increase the cooling liquid flow rate and increase Adsorption effect.
- the circulation pipe 100b may be made of an insulating material such as plastic to isolate the power source. In other embodiments, the circulation pipe 100b may also be made of a conductor such as metal. In this case, an insulating material may be provided between the positive plate 221 and the inner wall of the circulation pipe 100b and between the negative plate 222 and the inner wall of the circulation pipe 100b.
- the working principle of the cooling system 10b provided in this embodiment is: when the cooling liquid passes through the channel 204, it is subjected to an electric field formed by the positive plate 221 and the negative plate 222, so that the positively charged impurity particles are adsorbed on the negative plate 222 On the other hand, the negatively charged impurity particles are adsorbed on the positive electrode plate 221. An electric double layer is formed on the surface of the electrode plate, and the charged particles are adsorbed and temporarily stored in the electric double layer. When the adsorption process reaches equilibrium, after the electric field is removed or the power is reversed, the ions adsorbed on the electrodes return to the solution to achieve the purpose of desorption, so the positive electrode plate 221 and the negative electrode plate 222 can be reused.
- electro-adsorption Compared with traditional deionization technology, electro-adsorption has many advantages: (1) the electro-adsorption technology has less pollution and high energy utilization rate, and no by-products are generated in the entire process, which is environmentally friendly; (2) the electro-adsorption process Simple operation; (3) Electro-adsorption technology has high utilization rate of resources, and can separate substances with low content and difficult to be separated by conventional methods.
- This embodiment provides a cooling system 10c, which is different from the cooling system 10a provided in the first embodiment in the structure of the circulation pipeline 100c. For the same part, refer to the first embodiment.
- the cooling system 10 c includes a circulation pipe 100 c and an adsorption device 200 c.
- the circulation pipe 100 c includes a cooling liquid supply device 110 c and a cooling circulation pipe 120 c.
- the cooling circulation pipe 120c is provided with a heat exchanger 170, a pump 150, and a valve 141a, a valve 141b, and a valve 141c.
- the heat exchanger 170 is used for heat exchange with the outside.
- the adsorption device 200c is provided on a pipeline path of the cooling circulation pipe 120c.
- the structure of the adsorption device 200c is the same as that of the adsorption device 200c in the first embodiment.
- the communication method between the adsorption device 200c and the cooling circulation pipe 120c is the same as the communication method between the adsorption device 200a and the adsorption circulation pipe 130a in the first embodiment. It can be understood that the adsorption device 200c can also be replaced with the adsorption device 200b in the second embodiment.
- the adsorbent 205 can be directly stored in a filter bag or a filter screen, and is arranged in the cooling liquid supply device 110c for adsorption.
- a cooling device 160 can also be provided outside the cooling liquid supply device 110c. To cool the cooling liquid supply device 110c to improve the adsorption effect.
- the adsorption device 200c may be directly disposed inside the cooling liquid supply device 110c, and the cooling liquid may be adsorbed during the cooling liquid circulation process.
- the working principle of the cooling system 10c provided in this embodiment is that during the cooling cycle of the cooling circulation pipe 120c, the cooling liquid can contact the adsorbent 205 in the adsorption device 200c to complete adsorption and remove impurities generated in the cooling liquid. . Compared with separately setting the adsorption circulation pipe, it can save the pipeline and the space occupied, and greatly reduce the cost.
- This embodiment provides a cooling system 10d, which is different from the cooling system 10a provided in the first embodiment in the structure of the circulation pipe 100d. For the same part, refer to the first embodiment.
- the cooling system 10d includes a circulation pipe 100d and an adsorption device 200d
- the circulation pipe 100d includes a cooling liquid supply device 110d, an adsorption circulation pipe 130d, and a cooling circulation pipe 120d.
- the cooling circulation pipe 120d is in communication with the cooling liquid supply device 110d. Both ends of the adsorption circulation pipe 130d are connected to the cooling circulation pipe 120d.
- the adsorption device 200d is provided on the pipeline path of the adsorption circulation pipe 130d, and the cooling circulation pipe 120d is on the pipeline path.
- Upper heat exchanger 170 is provided.
- Both ends of the cooling circulation pipe 120d are in communication with the cooling liquid supply device 110d for the cooling liquid to circulate and exchange heat with the outside during the flow.
- Both ends of the adsorption circulation pipe 130d are in communication with the cooling circulation pipe 120d.
- the valve 130d is provided with a valve 142c and a valve 142d at both ends, and the cooling circulation pipe 120d is provided with a valve 142a and a valve 142b.
- the cooling circulation pipe 120d is provided with a pump 150, and the pump 150 is located between the communication between the cooling circulation pipe 120d and the cooling liquid supply device 110d and the communication with the adsorption circulation pipe 130d, so that the pump 150 can send the cooling liquid from the cooling liquid.
- the cooling liquid of the supply device 110d is sent to the adsorption circulation pipe 130d.
- valves 142a and 142b are provided between the two communication points of the cooling circulation pipe 120d and the adsorption circulation pipe 130d, so that when the valves 142a and 142b are closed, the cooling liquid delivered by the pump 150 enters the adsorption circulation pipe 130d. .
- the working principle of the cooling system 10d provided in this embodiment is: when it is necessary to perform heat exchange with the outside world, the pump 150 is turned on, the valve 142a and the valve 142b are opened, and the valve 142c and the valve 142d are closed. At this time, the coolant flows along the cooling circulation pipe 120d. It circulates and performs heat exchange with the outside in the heat exchanger 170. When it is necessary to perform adsorption and impurity removal, the valves 142a and 142b are closed, and the valves 142c and 142d are opened. At this time, the cooling liquid is drawn from the cooling liquid supply device 110d by the pump 150, and then enters the adsorption circulation pipe 130d through the cooling circulation pipe 120d. However, it no longer passes through the heat exchanger 170 and forms a circulating flow.
- connecting both ends of the adsorption circulation pipe 130d to the cooling circulation pipe 120d can save pipeline materials, and only needs to set a circulation pump 150 to reduce the occupied space.
- the adsorption device 200d may be directly disposed inside the cooling liquid supply device 110d, and the cooling liquid may be adsorbed during the cooling liquid circulation process.
- the light source system 20 includes a light source 210 and a cooling system 10 c.
- the cooling system 10 c is configured to cool the light source 210.
- the cooling system adopts the cooling system 10 c provided by the third embodiment, and the specific structure thereof refers to the third embodiment.
- the light source 210 includes a color wheel, a red light source, a blue light source, and a green light source (not shown), a color wheel heat exchanger 211, a red light liquid cooling plate 212, a blue light liquid cooling plate 213, and a green light liquid cooling plate 214, among which the color wheel
- the heat exchanger 211, the red light liquid cold plate 212, the blue light liquid cold plate 213, and the green light liquid cold plate 214 correspond to a color wheel, a red light source, a blue light source, and a green light source, respectively.
- a heat exchanger 170 is provided on a pipeline path on the cooling circulation pipe 120c.
- the color wheel heat exchanger 211, the red light liquid cooling plate 212, the blue light liquid cooling plate 213, and the green light liquid cooling plate 214 cooperate with the heat exchanger 170. They exchange heat with each other.
- the cooling liquid circulates in the cooling circulation pipe 120c, the heat generated by the color wheel, the red light source, the blue light source, and the green light source is taken away.
- the cooling liquid does not need to be changed frequently.
- the impurity content in the cooling liquid is small, the cooling effect is better, and the service life of the light source system 20 Get extended.
- cooling system 10c in this embodiment may be replaced by the cooling systems 10a, 10b, and 10d provided in the above embodiments.
- this embodiment further provides a method for cooling the light source system.
- the method includes the following steps:
- the cooling liquid is caused to flow in the circulation pipe 100c of the light source system 20, and in contact with the adsorption device 200c provided on the pipeline path of the circulation pipe 100c during the flow, thereby removing impurities in the cooling liquid.
- the flow rate of the cooling liquid when the light source system 20 performs the cooling operation is, for example, S.
- the flow speed of the cooling liquid is preferably It is preferably 6-8 times of S.
- the above-mentioned method for cooling the light source system can prolong the service life of the light source system and reduce the frequency of replacing the cooling liquid.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
本发明实施例提供了一种冷却系统、光源系统以及光源系统的冷却方法,该冷却系统包括循环管道和吸附装置,循环管道用于供冷却液循环流动,吸附装置设置于循环管道的管路路径上,冷却液在循环管道流动过程中与吸附装置接触。本申请提供的冷却系统、光源系统以及光源系统的冷却方法,通过设置吸附装置,可以将冷却液中形成的杂质吸附,保证冷却系统的冷却效果,同时延长冷却系统的使用寿命,减少冷却液更换次数。
Description
本发明涉及液冷技术领域,具体涉及一种冷却系统、光源系统以及光源系统的冷却方法。
在光源发光过程中,会产生大量热量,同时,激光器的使用也有一定温度的要求。在给定的工作条件下,这些热量必须以与吸热过程相同的速度扩散到大气中去,达到相对的热平衡,维持光源系统一定的工作温度。热量散发主要是通过冷却系统进行的,因此冷却系统是整个光源、电源系统中不可缺少的部分。
目前主要采用液冷方式对光源进行冷却,通过冷却液在整个冷却系统中流动循环,起到冷却的作用。冷却液是冷却系统中的传热介质,具有冷却、防腐、防冻等作用。按照基础液类型分类,最常用的冷却液为乙二醇冷却液和丙二醇冷却液。冷却液例如由水、防冻剂和其他添加剂组成。水的冰点低,在0℃以下开始结冰并且体积膨胀,所以冷却液中通常会加入一定量的防冻剂。防冻剂例如是有机低碳醇,其具有很好降低冰点的效果,而且与水的相溶性非常好,例如乙二醇、丙二醇等。冷却液通常还添加有防腐剂、缓冲剂、防垢剂、消泡剂、着色剂等。冷却液在使用过久后,会发生流动效果差,冷却效果变低等现象,需要定期进行更换,严重制约了冷却系统的应用。
发明内容
本申请的目的在于提供一种冷却系统、光源系统以及光源系统的冷却方法,以保证冷却效果并延长冷却系统的使用寿命。
第一方面,本申请实施例提供了一种冷却系统,包括循环管道和吸附装置,循环管道用于供冷却液循环流动,吸附装置设置于循环管道的管路路径上,冷却液在循环管道流动过程中与吸附装置接触。
在一些实施方式中,冷却系统还包括冷却装置,冷却装置设置于循环管道上或循环管道内并对流经循环管道的冷却液降温。
在一些实施方式中,循环管道包括冷却液供给装置以及冷却循环管,冷却循环管与冷却液供给装置连通,冷却液在冷却循环管以及冷却液供给装置间循环流动,吸附装置设置于冷却循环管的管路路径上或冷却液供给装置内。
在一些实施方式中,吸附装置包括壳体外壳以及吸附剂,吸附剂设置于外壳内部,外壳设置于循环管道的管路路径上。
在一些实施方式中,循环管道包括冷却液供给装置、冷却循环管以及吸附循环管,冷却循环管和吸附循环管分别与冷却液供给装置连通,冷却液选择性的在冷却循环管以及冷却液供给装置间或吸附循环管以及冷却液供给装置间循环流动,吸附装置设置于吸附循环管的管路路径上或冷却液供给装置上。
在一些实施方式中,冷却循环管的管路路径上设置有热交换器。
在一些实施方式中,吸附装置包括吸附剂,吸附剂为树脂或活性炭。
在一些实施方式中,吸附装置包括正极板和负极板,正极板和负极板间隔相对设置并位于循环管道内,正极板和负极板之间形成供冷却液流动的通道。
第二方面,本申请实施例提供了一种光源系统,包括光源和上述的冷却系统,冷却系统用于对光源降温。
第三方面,本申请实施例提供了一种光源系统冷却方法,应用于上述的冷却系统,方法包括以下步骤:使冷却液在循环管道内流动,并在流动过程中与设置于循环管道的管路路径上的吸附装置接触。
相对于现有技术,本申请提供的冷却系统、光源系统以及光源系统的冷却 方法,通过设置吸附装置,可以将冷却液中形成的杂质吸附,保证冷却系统的冷却效果,同时延长冷却系统的使用寿命,减少冷却液更换次数。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例提供的冷却系统的结构示意图;
图2是本申请第一实施例提供的吸附装置的结构示意图;
图3是本申请第一实施例提供的另一种实施方式的冷却系统的结构示意图;
图4是本申请第二实施例提供的冷却系统的结构示意图;
图5是本申请第二实施例提供的吸附装置的结构示意图;
图6是本申请第三实施例提供的冷却系统的结构示意图;
图7是本申请第四实施例提供的冷却系统的结构示意图;
图8是本申请第五实施例提供的光源系统的结构示意图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制 要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,术语“中部”、“上”、“下”、“前”、“后”、“竖直”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“连通”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
发明人发现,冷却液中包含许多组分,同时冷却液在水冷系统中会接触金属管道或塑料管道等环境,极其容易造成化学不稳定性,其中的组分容易 与环境中(例如金属壁、非蒸馏水等)的一些金属离子、阳离子、阴离子起反应,引起变质。变质后的水冷液其制冷性能降低甚至散失,同时还会由于化学反应产生很多腐蚀产物、水垢等会造成管道堵塞,导致整个散热系统崩溃或者散热系统寿命降低。冷却液杂质形成后,则必须更换水冷液同时对水冷系统进行清洗,这两个措施都存在极大的缺点。更换水冷液,不仅造成资源浪费,还会造成环境污染。在清洗过程中,为了防止冷却液杂质造成水冷系统堵塞,需要将各个部件单独拆下来清洗,而且清洗剂对冷却系统的多种金属具有侵蚀作用,因此需要尽量较少冷却系统的清洗次数。因此,发明人提出了本申请中实施例的冷却系统、光源系统以及光源系统的冷却方法,以克服上述缺陷。
第一实施例
本实施例提供一种冷却系统10a,冷却系统10a包括循环管道100a和吸附装置200a,其中循环管道100a包括冷却液供给装置110a、冷却循环管120a以及吸附循环管130a。其中,循环管道100a用于供冷却液循环流动。吸附装置200a设置于循环管道100a的管路路径上,以使吸附装置200a能在冷却液循环流动过程中与冷却液接触,并将冷却液中形成的水垢等杂质吸附。可以理解的是,冷却液例如可以采用水或有机低碳醇等。
具体的,参阅图1,冷却液供给装置110a为一具有较大容量的容器,用于盛装冷却液,其具有第一连通口111和第二连通口112,第一连通口111和第二连通口112用于与吸附循环管130a连通形成冷却液的流动循环。
吸附循环管130a包括第一管道131和第二管道132,第一管道131与第一连通口111连通,第二管道132与第二连通口112连通,在一些实施方式中,第一管道131的远离第一连通口111的一端可与第二管道132的远离第二连通口112的一端直接连通。第一管道131和第二管道132上分别设置有 阀门141a和阀门141b,阀门141a和阀门141b用于控制吸附循环管130a的连通或截止。同时,吸附循环管130a还设置有泵150,泵150由驱动电机驱动,为冷却液在吸附循环管130a内的循环提供动力。
参阅图2,本实施例中,吸附装置200a包括外壳201以及吸附剂205,其中外壳201为具有容积的容器,吸附剂205容纳于外壳201内,外壳201设置有进口202和出口203,其中进口202与第一管道131的远离第一连通口111的一端连通,出口203与第二管道132的远离第二连通口112的一端连通。这样吸附装置200a设置于循环管道100a的管路路径上,当冷却液从进口202进入外壳201后可以与吸附剂205接触并形成接触,进而对冷却液中的杂质形成吸附。
在一些实施方式中,吸附剂205可以选用树脂或活性炭,本实施例中,吸附剂205为大孔吸附树脂,大孔吸附树脂是具有大孔结构的有机高分子共聚体,是一类人工合成的有机高聚物吸附剂205。其具多孔性结构,通过表面吸附、表面电性或形成氢键而具吸附性。选用的吸附剂205例如为球形颗粒状,粒度例如为20-60目。大孔吸附树脂具有吸附选择性,其可以吸附冷却液中形成的颗粒状、悬浮状以及絮凝状杂质(例如水垢、腐蚀产物等),而不会吸收冷却液中添加的添加剂(例如防腐剂、缓冲剂、防垢剂、消泡剂、着色剂等)。可以保证冷却液的冷却效果,同时也避免了杂质聚集造成的冷却液流动困难。
吸附剂205之所以能够吸附某些物质,主要是因为吸附剂205的表面上的原子力场不饱和,有表面能,因而可以吸附某些分子以降低表面能。吸附是一种界面现象,吸附树脂的表面发生吸附作用后,可以使吸附树脂界面上溶质的浓度高于溶剂内溶质的浓度,其结果引起体系内放热和自由能的下降,在给定温度和压力下,吸附都是自动进行的。
在一些实施方式中,吸附剂205可以直接设置于第一管道131和/或第二管道132内,此时可以将吸附剂205装在过滤网/袋中,防止吸附剂205随冷却液循环流动,堵塞冷却系统10a。即不需设置专门的外壳201用于盛装吸附剂205。为了提高吸附效果,吸附剂205优选沿冷却液流动路径的横截面分布设置,以使流动的冷却液能更完全的与吸附剂205接触完成吸附。
冷却循环管120a是用于与外界进行热交换的管道,冷却循环管120a的管路路径上设置有热交换器170,热交换器170用于进行热交换。本实施例中,冷却循环管120a与冷却液供给装置110a连通,以使冷却液能在冷却液供给装置110a和冷却循环管120a间循环流动。本实施例中,冷却循环管120a和吸附循环管130a是独立的与冷却液供给装置110a连通的,以使冷却液能选择性的在冷却循环管120a和冷却液供给装置110a之间循环流动或在吸附循环管130a与冷却液供给装置110a之间循环流动。即:冷却液可以只在冷却循环管120a与冷却液供给装置110a之间循环流动,也可以只在吸附循环管130a与冷却液供给装置110a之间循环流动。冷却循环管120a设置有阀门和液体泵,用于控制冷却液在冷却循环管120a内的循环流动。
本实施例中提供的冷却系统10a的工作原理是:当需要进行杂质吸附时,开启吸附循环管130a上的阀门141a和阀门141b,开启泵150,使冷却液在吸附循环管130a内循环流动,当冷却液流入吸附装置200a的外壳201内时,与吸附剂205接触,完成杂质吸附。整个过程可以持续进行,并通过控制泵150和阀门的关闭中断。在一些实施方式中,可以采用循环流动吸附的方式,即冷却液在流动过程中与吸附剂205接触吸附。也可以采用静态吸附的方式,即将冷却液注入外壳201中,保持一定时间后再从出口203排出,排净后再次开启进口202注入冷却液进行吸附处理。
在其他的一些实施方式中,也可以将吸附装置200a直接设置于冷却液供 给装置110a内部,在冷却液循环过程中对吸附液进行吸附。
吸附剂205的吸附量和吸附能力与温度成反比,温度越高,越不利于吸附。在低温下吸附剂205的吸附能力增强,吸附量增大。固在低温或常温下进行吸附,吸附剂205可最大限度地发挥作用。同时,在低温的情况下,冷却液中的水垢、絮状物等杂质更容易沉降,也有利于过滤完全。
请继续参阅图1,本实施例中,在吸附循环管130a上设置有冷却装置160。冷却装置160的作用是为流经吸附循环管130a的冷却液进行降温。冷却装置160可以设置在吸附循环管130a内,也可以直接设置于吸附循环管130a上并与吸附循环管130a接触。冷却装置160例如可以是冷凝管,冷凝管可采用螺旋缠绕的方式设置于吸附循环管130a外。在一些实施方式中,冷却装置160可以设置于吸附循环管130a的全部或部分,只需对循环流动于吸附循环管130a内的冷却液降温即可。
经过降温的冷却液,由于温度降低,冷却液在与吸附剂205接触时,可以更好的被吸附。因此,更为优选地,可以将冷却装置160设置于靠近吸附装置200a的位置。
本实施例还提供另一种冷却系统10a’,其示出了冷却装置160的另一种实施方式,参阅图3,冷却装置160可以直接设置于吸附装置200a的外壳201,并位于外壳201外,用于直接对吸附装置200a进行降温。在一些实施方式中,冷却装置160也可以直接设置于外壳201内。
本实施例提供的冷却系统10a以及10a’,通过设置吸附装置200a,可以在冷却系统10a使用时对冷却液中的杂质进行吸附,避免杂质在循环管道100a内形成堵塞,延长冷却系统10a及10a’的使用寿命,减少冷却液的更换次数。
第二实施例
本实施例提供一种冷却系统10b,其与第一实施例提供的冷却系统10a的区别在于吸附装置200b的结构不同,相同部分参阅第一实施例即可。
具体的,参阅图4,本实施例中,循环管道100b包括冷却液供给装置110b、冷却循环管120b以及吸附循环管130b。冷却液供给装置110b、冷却循环管120b以及吸附循环管130b直接的连接关系与第一实施例相同。参阅5,吸附装置200b包括外壳201、正极板221和负极板222,其中正极板221和负极板222设置于外壳201内,正极板221和负极板222为结构大致相同的板状,正极板221和负极板222相对间隔设置,正极板221和负极板222均采用平面板。外壳201具有进口202和出口203,进口202和出口203分别连通于吸附循环管130b道管路路径上。正极板221和负极板222分别与电源的正极和负极电连接,其中电源可以是外接电源,也可以是单独的电源模块(如蓄电池)。正极板221和负极板222与外壳201间均留有一定间隙,以防止漏电。可以理解的是,通道204和间隙均可供冷却液通过。正极板221和负极板222间形成通道204,通道204供冷却液流动。当正极板221和负极板222接电后,通道204内形成电场。
在一些实施方式中,正极板221和负极板222可以直接设置于吸附循环管130b的管道内,正极板221和负极板222均可以设置成与吸附循环管130b内壁配合的弧形板,以增大正极板221和负极板222的板面积,增加随冷却液流动的杂质被吸附的概率。将正极板221和负极板222分别贴设于循环管道100b的内壁,可以增大正极板221与负极板222之间的距离,提高通道204的横截面积,进而提高冷却液流动的速率,提高吸附效果。
在一些实施方式中,循环管道100b可采用塑料等绝缘材料制成,以隔绝电源。在其他的一些实施方式中,循环管道100b也可以采用金属等导体制成,此时在正极板221与循环管道100b的内壁间以及负极板222与循环管道100b 的内壁间设置绝缘材料即可。
本实施例中提供的冷却系统10b的工作原理是:当冷却液经过通道204时,受到由正极板221和负极板222形成的电场作用,使带有正电荷的杂质颗粒被吸附于负极板222上,带有负电荷的杂质颗粒被吸附于正极板221。在电极板表面形成双电层,带电粒子吸附并暂时储存在双电层中。当吸附过程达到平衡时撤去电场或反接电源后,吸附在电极上的离子回到溶液中,达到脱附目的,因此正极板221和负极板222可以重复使用。电吸附和传统的去离子技术相比,具有多方面的优势:(1)电吸附技术污染小、能量利用率高,整个过程不会有副产物产生,对环境友好;(2)电吸附过程操作简单;(3)电吸附技术对资源的利用率高,可以分离含量低、常规方法难以分离的物质。
第三实施例
本实施例提供一种冷却系统10c,其与第一实施例提供的冷却系统10a的区别在于循环管道100c的结构不同,相同部分参阅第一实施例即可。
参阅图6,本实施例中,冷却系统10c包括循环管道100c和吸附装置200c,循环管道100c包括冷却液供给装置110c和冷却循环管120c。其中,冷却循环管120c上设置有热交换器170、泵150以及阀门141a、阀门141b和阀门141c,热交换器170用于与外界进行热交换。吸附装置200c设置于冷却循环管120c的管路路径上。
其中吸附装置200c的结构与第一实施例中的吸附装置200c相同,其具体结构参阅第一实施例即可。吸附装置200c与冷却循环管120c的连通方式与第一实施例中吸附装置200a与吸附循环管130a的连通方式相同。可以理解的是,吸附装置200c也可以采用同第二实施例中的吸附装置200b进行替换。
在一些实施方式中,可以直接将吸附剂205盛放于过滤袋或过滤网内,并设置于冷却液供给装置110c内进行吸附,此时,还可以在冷却液供给装置110c外设置冷却装置160,为冷却液供给装置110c降温,以提高吸附效果。
在其他的一些实施方式中,也可以将吸附装置200c直接设置于冷却液供给装置110c内部,并在冷却液循环过程中对冷却液进行吸附。
本实施例提供的冷却系统10c的工作原理是:在冷却循环管120c进行冷却循环的过程中,冷却液即可以与吸附装置200c内的吸附剂205接触,完成吸附,除去冷却液中产生的杂质。相比于单独设置吸附循环管,可以节省管道以及所占空间,大幅降低成本。
第四实施例
本实施例提供一种冷却系统10d,其与第一实施例提供的冷却系统10a的区别在于循环管道100d的结构不同,相同部分参阅第一实施例即可。
具体地,参阅图7,本实施例中,冷却系统10d包括循环管道100d和吸附装置200d,循环管道100d包括冷却液供给装置110d、吸附循环管130d和冷却循环管120d。冷却循环管120d与冷却液供给装置110d连通,吸附循环管130d的两端均连通于冷却循环管120d,吸附装置200d设置于吸附循环管130d的管路路径上,冷却循环管120d的管路路径上设置热交换器170。
冷却循环管120d的两端均与冷却液供给装置110d连通以供冷却液循环流动并在流动过程中与外界进行热交换,吸附循环管130d的两端均与冷却循环管120d连通,且吸附循环管130d的两端分别设置有阀门142c和阀门142d,冷却循环管120d设置有阀门142a和阀门142b。同时冷却循环管120d上设置有泵150,泵150位于冷却循环管120d的与冷却液供给装置110d的连通处以及与吸附循环管130d的连通处之间,以使泵150可以将来自于冷却液供给装置110d的冷却液送往吸附循环管130d。同时,阀门142a和阀门142b 设置于冷却循环管120d与吸附循环管130d的两个连通处之间,以使当阀门142a和阀门142b关闭时,由泵150输送的冷却液进入吸附循环管130d内。
本实施例中提供的冷却系统10d的工作原理是:当需要与外界进行热交换时,开启泵150,打开阀门142a和阀门142b,关闭阀门142c和阀门142d,此时冷却液沿冷却循环管120d循环流动,并在热交换器170与外界进行热交换。当需要进行吸附除杂时,关闭阀门142a和阀门142b,打开阀门142c和阀门142d,此时冷却液从冷却液供给装置110d被泵150抽出后,经冷却循环管120d进入吸附循环管130d内,但不再经过热交换器170,形成循环流动。
相比于单独设置吸附循环管130d,将吸附循环管130d的两端接通于冷却循环管120d,可以节省管道材料,同时只需设置一个循环泵150,减少占用空间。
在其他的一些实施方式中,也可以将吸附装置200d直接设置于冷却液供给装置110d内部,并在冷却液循环过程中对冷却液进行吸附。
第五实施例
参阅图8,本实施例提供一种光源系统20,该光源系统20包括光源210以及冷却系统10c,其中冷却系统10c用于为光源210降温。具体地,参阅图8,冷却系统采用第三实施例提供的冷却系统10c,其具体结构参阅第三实施例。
光源210包括有色轮、红光源、蓝光源以及绿光源(图未示),色轮换热器211、红光液冷板212、蓝光液冷板213以及绿光液冷板214,其中色轮换热器211、红光液冷板212、蓝光液冷板213以及绿光液冷板214分别与色轮、红光源、蓝光源以及绿光源对应。
冷却循环管120c上的管道路径上设置有热交换器170,其中,色轮换热 器211、红光液冷板212、蓝光液冷板213以及绿光液冷板214与热交换器170配合并相互进行热交换,在冷却液于冷却循环管120c内循环流动时,带走色轮、红光源、蓝光源以及绿光源产生的热量。
同时冷却液流动过程中,在吸附装置200c内与吸附剂205接触,除去冷却液中的杂质,使得冷却液的更换周期延长。本实施例提供的光源系统20,由于采用了带有吸附装置200c的冷却系统10c,不需经常更换冷却液,同时,由于冷却液中杂质含量少,冷却效果更佳,光源系统20的使用寿命得到延长。
可以理解的是,本实施例中的冷却系统10c可以由上述实施例提供的冷却系统10a、10b以及10d进行替换。
利用上述的光源系统20,本实施例还提供一种光源系统冷却方法,该方法包括以下步骤:
使冷却液在光源系统20的循环管道100c内流动,并在流动过程中与设置于循环管道100c的管路路径上的吸附装置200c接触,进而将冷却液中的杂质除去。
吸附剂205在进行除杂时,流速过低,则吸附缓慢;流速过快,则不能完成吸附过程,吸附剂不能很好地发挥作用。在一些实施方式中,当冷却系统为10a、10b等采用外循环进行除杂的系统时,光源系统20在进行冷却操作时冷却液的流动速度例如为S,优选地,冷却液的流动速度优选为S的6-8倍为宜。
上述的光源系统冷却方法,可以使光源系统的使用寿命延长,减少更换冷却液的频率。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护 范围之内。
Claims (10)
- 一种冷却系统,其特征在于,包括:循环管道,用于供冷却液循环流动;以及吸附装置,所述吸附装置设置于所述循环管道的管路路径上,所述冷却液在所述循环管道流动过程中与所述吸附装置接触。
- 根据权利要求1所述的冷却系统,其特征在于,所述冷却系统还包括冷却装置,所述冷却装置设置于所述循环管道上或所述循环管道内并对流经所述循环管道的冷却液降温。
- 根据权利要求1所述的冷却系统,其特征在于,所述循环管道包括冷却液供给装置以及冷却循环管,所述冷却循环管与所述冷却液供给装置连通,所述冷却液在所述冷却循环管以及所述冷却液供给装置间循环流动,所述吸附装置设置于所述冷却循环管的管路路径上或所述冷却液供给装置内。
- 根据权利要求1所述的冷却系统,其特征在于,所述吸附装置包括壳体外壳以及吸附剂,所述吸附剂设置于所述外壳内部,所述外壳设置于所述循环管道的管路路径上。
- 根据权利要求1所述的冷却系统,其特征在于,所述循环管道包括冷却液供给装置、冷却循环管以及吸附循环管,所述冷却循环管和所述吸附循环管分别与所述冷却液供给装置连通,所述冷却液选择性的在所述冷却循环管以及所述冷却液供给装置间流动或在所述吸附循环管以及所述冷却液供给装置间循环流动,所述吸附装置设置于所述吸附循环管的管路路径上或所述冷却液供给装置内。
- 根据权利要求3所述的冷却系统,其特征在于,所述冷却循环管的管 路路径上设置有热交换器。
- 根据权利要求1-6任一项所述的冷却系统,其特征在于,所述吸附装置包括吸附剂,所述吸附剂为树脂或活性炭。
- 根据权利要求1-6任一项所述的冷却系统,其特征在于,所述吸附装置包括正极板和负极板,所述正极板和所述负极板间隔相对设置并位于所述循环管道内,所述正极板和所述负极板之间形成供冷却液流动的通道。
- 一种光源系统,其特征在于,包括:光源;以及权利要求1-8任一项所述的冷却系统,所述冷却系统用于对所述光源降温。
- 一种光源冷却方法,应用于如权利要求9所述的冷却系统,其特征在于,所述方法包括以下步骤:使冷却液在所述循环管道内流动,并在流动过程中与设置于循环管道的管路路径上的所述吸附装置接触。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811053267.1 | 2018-09-10 | ||
CN201811053267.1A CN110887025A (zh) | 2018-09-10 | 2018-09-10 | 冷却系统、光源系统以及光源系统的冷却方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020052258A1 true WO2020052258A1 (zh) | 2020-03-19 |
Family
ID=69745269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/086936 WO2020052258A1 (zh) | 2018-09-10 | 2019-05-15 | 冷却系统、光源系统以及光源系统的冷却方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110887025A (zh) |
WO (1) | WO2020052258A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113521972A (zh) * | 2020-04-14 | 2021-10-22 | 深圳光峰科技股份有限公司 | 具有防污染装置的光电设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5971565A (en) * | 1995-10-20 | 1999-10-26 | Regents Of The University Of California | Lamp system with conditioned water coolant and diffuse reflector of polytetrafluorethylene(PTFE) |
CN101078601A (zh) * | 2006-05-26 | 2007-11-28 | 杨泰和 | 设备装置藉自然蓄温体均温的系统 |
CN103471061A (zh) * | 2013-09-12 | 2013-12-25 | 南京农业大学 | 一种循环水冷式植物工厂led面光源的散热管理系统及方法 |
CN204301011U (zh) * | 2014-12-31 | 2015-04-29 | 海信集团有限公司 | 封闭式波长转换装置的散热系统和激光显示系统 |
CN204607782U (zh) * | 2015-04-30 | 2015-09-02 | 武汉汉立制冷科技股份有限公司 | 冷水机组冷水机载水处理装置 |
CN107935132A (zh) * | 2017-12-21 | 2018-04-20 | 兰州交通大学 | 一种电吸附耦合离子交换除盐‑再生装置及方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2455704Y (zh) * | 2000-12-08 | 2001-10-24 | 常州高德卡本净化技术开发有限公司 | 液体净化及纯化装置 |
CN1169728C (zh) * | 2001-08-23 | 2004-10-06 | 常州爱思特净化设备有限公司 | 电吸附式液体处理装置 |
US8448876B2 (en) * | 2009-06-12 | 2013-05-28 | Tai-Her Yang | Semiconductor application installation adapted with a temperature equalization system |
CN205640815U (zh) * | 2016-04-20 | 2016-10-12 | 厦门多彩光电子科技有限公司 | 一种led灯的水冷却循环系统 |
CN106785211A (zh) * | 2017-01-09 | 2017-05-31 | 柯美汽车零部件(上海)有限公司 | 一种动力电池冷却液过滤器 |
CN206496466U (zh) * | 2017-01-20 | 2017-09-15 | 无锡市城归设计有限责任公司 | 一种冷却塔供冷系统 |
CN206767720U (zh) * | 2017-02-07 | 2017-12-19 | 中国石油化工股份有限公司 | 一种电吸附式液体处理装置 |
CN206670447U (zh) * | 2017-05-04 | 2017-11-24 | 精河县博润德建材商贸有限公司 | 地暖清洗装置 |
CN207169144U (zh) * | 2017-07-10 | 2018-04-03 | 安徽江淮汽车集团股份有限公司 | 过滤器以及膨胀水壶 |
CN207659125U (zh) * | 2017-11-22 | 2018-07-27 | 常州林洪特钢有限公司 | 一种炼钢用冷却水用净化回收装置 |
-
2018
- 2018-09-10 CN CN201811053267.1A patent/CN110887025A/zh active Pending
-
2019
- 2019-05-15 WO PCT/CN2019/086936 patent/WO2020052258A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5971565A (en) * | 1995-10-20 | 1999-10-26 | Regents Of The University Of California | Lamp system with conditioned water coolant and diffuse reflector of polytetrafluorethylene(PTFE) |
CN101078601A (zh) * | 2006-05-26 | 2007-11-28 | 杨泰和 | 设备装置藉自然蓄温体均温的系统 |
CN103471061A (zh) * | 2013-09-12 | 2013-12-25 | 南京农业大学 | 一种循环水冷式植物工厂led面光源的散热管理系统及方法 |
CN204301011U (zh) * | 2014-12-31 | 2015-04-29 | 海信集团有限公司 | 封闭式波长转换装置的散热系统和激光显示系统 |
CN204607782U (zh) * | 2015-04-30 | 2015-09-02 | 武汉汉立制冷科技股份有限公司 | 冷水机组冷水机载水处理装置 |
CN107935132A (zh) * | 2017-12-21 | 2018-04-20 | 兰州交通大学 | 一种电吸附耦合离子交换除盐‑再生装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110887025A (zh) | 2020-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10668445B2 (en) | Urea preparation machine | |
CN202712372U (zh) | 一种电动车电池冷却装置 | |
WO2006009323A1 (ja) | 冷却液組成物、冷却系、及び冷却液組成物の製造方法 | |
WO2020052258A1 (zh) | 冷却系统、光源系统以及光源系统的冷却方法 | |
CN105392345A (zh) | 充电桩液冷电子散热器及充电桩 | |
CN103346363A (zh) | 一种紧凑型电动车电池液体冷却装置 | |
CN208632287U (zh) | 一种循环冷却水处理控制装置 | |
CN109592774B (zh) | 一种管式超临界水氧化反应器、超临界水氧化系统及方法 | |
CN1484872A (zh) | 燃料电池发电装置的防冻 | |
CN213178904U (zh) | 一种空气源热泵全冷回收系统 | |
CN212396098U (zh) | 一种带有冷却系统的过滤装置 | |
CN218177456U (zh) | 水环式真空泵的水循环系统 | |
CN212924964U (zh) | 白酒直冷过滤装置 | |
CN211500969U (zh) | 一种节能换热的水环泵泵壳 | |
CN210152760U (zh) | 一种机动车尾气净化催化器 | |
CN210180185U (zh) | 一种吸附剂生产用活化炉出料冷却装置 | |
CN213147509U (zh) | 一种换热装置 | |
CN214319267U (zh) | 一种热管理水冷机组的过滤装置 | |
CN212076417U (zh) | 一种过氧化氢净化装置 | |
CN220003524U (zh) | 一种盐酸尾气吸收处理装置 | |
CN204943961U (zh) | 一种半导体循环制冷系统 | |
CN219757017U (zh) | 一种活性炭活化生产尾气再利用装置 | |
CN217107365U (zh) | 一种降低堵塞风险的空压机水冷却器 | |
CN217041761U (zh) | 一种高温废气再利用的废气处理装置 | |
CN212214938U (zh) | 一种环保型化工废气吸附处理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19859552 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19859552 Country of ref document: EP Kind code of ref document: A1 |