WO2020052226A1 - 夹紧机构、焊接机、夹紧力的控制方法及装置 - Google Patents

夹紧机构、焊接机、夹紧力的控制方法及装置 Download PDF

Info

Publication number
WO2020052226A1
WO2020052226A1 PCT/CN2019/080967 CN2019080967W WO2020052226A1 WO 2020052226 A1 WO2020052226 A1 WO 2020052226A1 CN 2019080967 W CN2019080967 W CN 2019080967W WO 2020052226 A1 WO2020052226 A1 WO 2020052226A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
force
motion controller
welding machine
sensor
Prior art date
Application number
PCT/CN2019/080967
Other languages
English (en)
French (fr)
Inventor
费明轶
瞿轶
刘佳
张祖幸
Original Assignee
必能信超声(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201821544332.6U external-priority patent/CN209191330U/zh
Priority claimed from CN201811103730.9A external-priority patent/CN110901079A/zh
Application filed by 必能信超声(上海)有限公司 filed Critical 必能信超声(上海)有限公司
Publication of WO2020052226A1 publication Critical patent/WO2020052226A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams

Definitions

  • the invention relates to the field of welding, in particular to a clamping mechanism, a welding machine, and a method and device for controlling clamping force.
  • Laser welding plastic technology is a technology applied to the welding of thermoplastics. Its working principle is: for a laser with a wavelength, it can pass through some types of plastics. If some plastics are added to these plastics, such as carbon, the laser can not pass through these plastics, and the energy of the laser is absorbed by these materials. . A plastic workpiece that can transmit this laser and a plastic workpiece that cannot transmit this laser are bonded together, and the laser is irradiated from the side of the plastic workpiece that can transmit the laser. Heat, which melts the contact surfaces, welding the two workpieces together.
  • the types of workpieces to be welded continue to expand.
  • the shape of the workpiece is getting smaller and thinner.
  • the clamping force required to be controlled by the welding machine is also getting smaller and smaller, and the accuracy of force control is also getting higher and higher.
  • the clamping force range required for some welding workpieces is only 1-10 Newtons, and the accuracy is required.
  • the deviation of the actual force should be within ⁇ 10% (that is, ⁇ 0.1 Newton). This is the precision of clamping force control that was not possible with previous plastic welding machines.
  • the laser welding machine in the related art has a frame 1, a lifting actuator 2 and a base 3 that control the up and down movement of the workpiece as shown in FIG. 1.
  • the actuator is a cylinder.
  • the air pressure of the cylinder is adjusted by a manual pressure regulating valve or a proportional pressure regulator.
  • Valve control, the up and down movement logic of the cylinder is controlled by an electromagnetic reversing valve, and the pneumatic principle diagram is shown in Figure 2 of the accompanying drawings.
  • a force sensor is generally installed at the output end of the cylinder to detect the actual clamping force.
  • a slider for pushing the upper mold downward is installed, and the slider is guided by the guide rail.
  • FIG. 3 is a schematic diagram of the pneumatic structure in the related art. As shown in FIG. 3, it includes a slider 31 for pushing the upper mold.
  • a force sensor 32 is provided thereon, a slider 31 pushing the upper mold is connected to the guide rail 34, and the force sensor 32 is connected to the air cylinder 35.
  • the clamping force is controlled by air pressure. Because of the inherent sliding friction resistance inside the cylinder, in addition, when pushing the slider downward, it is necessary to overcome the friction between the guide rail and the slider. Therefore, the air pressure must be adjusted to be greater than the friction of the cylinder plus the friction of the guide rail before the cylinder can be pushed out. Because the friction force is non-linear, the static friction force is large, and the dynamic friction force is small, so the initial thrust must be greater than the static friction force. When the mold is finally closed, the clamping force cannot be controlled very small, and the minimum is generally tens of Newtons. It is affected by temperature, etc., so the control accuracy of the clamping force will not be too good. With the solutions in the related technology, it cannot be used for welding of small plastic parts, because these small plastic parts will be deformed or crushed if the clamping force is slightly larger.
  • an embodiment of the present invention provides a clamping mechanism, a welding machine, a method and a device for controlling a clamping force.
  • a clamping mechanism located on a welding machine, including:
  • a workbench provided on the frame of the welding machine
  • One or more force sensors arranged on the worktable to detect the clamping force between the workpieces to be welded;
  • An executive mechanism which is connected to the force sensor, and drives the force sensor and the table to move back and forth;
  • the motion controller controls the movement displacement of the table according to the signal of the clamping force fed back by the one or more force sensors to control the magnitude of the clamping force between the workpieces to be welded,
  • the motion controller controls the actuator to adjust the movement displacement of the table according to the signal.
  • it further comprises:
  • a displacement sensor for detecting a displacement of the movement of the actuator
  • the servo driver communicates with the motion controller, and controls the motion displacement and / or step displacement of the actuator according to the displacement given signal sent by the motion controller and the actual displacement signal of the displacement sensor.
  • the execution mechanism includes:
  • the servo motor includes one of the following: a linear motor, a servo electric cylinder, and a linear module.
  • the one or more force sensors are disposed on an upper surface of the workbench and / or a lower surface of the workbench.
  • it further comprises a guide rail, and the actuator moves along the guide rail, and there is a gap of a preset distance between the guide rail and the workbench.
  • an area of a detection range of the one or more force sensors is greater than or equal to an area of the worktable.
  • a non-contact welding depth sensor is provided on the workbench.
  • the execution period of the motion controller is less than or equal to 1 millisecond.
  • the resolution of the displacement sensor is less than or equal to 1 micron.
  • the servo driver is integrated with the motion controller, or the servo driver and the motion controller communicate through an industrial bus.
  • the actuator includes: a linear motor or a servo motor.
  • an embodiment of the present invention also provides a welding machine including the above-mentioned clamping mechanism.
  • an embodiment of the present invention also provides a method for controlling a clamping force, including:
  • the motion controller of the welding machine receives the signal of the clamping force fed back by one or more force sensors;
  • the motion controller controls a movement displacement of a table of the welding machine to control a clamping force between workpieces to be welded of the welding machine, wherein the motion controller controls the welding machine according to the signal
  • the actuator is used to adjust the movement displacement of the table.
  • the method further includes:
  • One or more force sensors provided on the worktable detect the clamping force between the workpieces to be welded.
  • the method further includes:
  • the actuator is connected with the force sensor, and is used for pushing the force sensor and the workbench to move back and forth.
  • the method further includes:
  • a displacement sensor detects a displacement of the actuator movement
  • the servo driver communicates with the motion controller, and controls the motion displacement and / or step displacement of the actuator according to the displacement given signal sent by the motion controller and the actual displacement signal of the displacement sensor.
  • the one or more force sensors are disposed on an upper surface of the workbench and / or a lower surface of the workbench.
  • the actuator moves along a guide rail, and there is a gap of a preset distance between the guide rail and the workbench.
  • the area of the detection range of the one or more force sensors is greater than or equal to the area of the table.
  • a non-contact welding depth sensor is provided on the workbench.
  • the execution period of the motion controller is less than or equal to 1 millisecond.
  • the resolution of the displacement sensor is less than or equal to 1 micron.
  • the servo driver is integrated with the motion controller; or
  • the servo driver and the motion controller communicate through an industrial bus.
  • a clamping force control device which is located on the welding machine and includes:
  • a motion controller for receiving a signal of a clamping force fed back by one or more force sensors
  • the motion controller is further configured to control a movement displacement of a table of the welding machine to control a clamping force between workpieces to be welded of the welding machine, wherein the motion controller is based on the The signal controls the actuator of the welding machine to adjust the movement displacement of the table.
  • one or more force sensors are provided on the workbench for detecting a clamping force between workpieces to be welded.
  • the actuator is connected to the force sensor and is used to push the force sensor and the workbench to move back and forth.
  • the above device further includes:
  • a displacement sensor for detecting a displacement of the movement of the actuator
  • the servo driver is in communication with the motion controller, and is configured to control the motion displacement and / or step displacement of the actuator according to a given displacement signal and an actual displacement signal of the displacement sensor.
  • the technical solution provided by the present invention adopts a worktable provided with a force sensor, and the motion controller controls the actuator to adjust the movement displacement of the worktable according to the signal of the clamping force sent by one or more force sensors, thereby controlling the movement between the workpieces to be welded.
  • the amount of clamping force This technical solution overcomes the problem that welding with a small clamping force cannot be achieved in the related art, thereby realizing the process requirements for welding with a small clamping force and improving the quality of welding.
  • FIG. 1 is a schematic diagram of a laser plastic welding machine according to the related art
  • FIG. 2 is a schematic diagram of aerodynamic principles according to the related art
  • FIG. 3 is a schematic diagram of a pneumatic structure in the related art
  • FIG. 4 is a schematic diagram of a clamping mechanism according to an embodiment of the present invention.
  • FIG. 5 is a first schematic view of a force sensor and a guide rail arrangement according to an embodiment of the present invention
  • FIG. 6 is a second schematic view of a force sensor and guide rail arrangement according to an embodiment of the present invention.
  • FIG. 7 is a top view of a single arrangement of a force sensor according to an embodiment of the present invention.
  • FIG. 8 is a top view of multiple arrangements of a force sensor according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a method for controlling a clamping force according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram of a clamping force control device according to an embodiment of the present invention.
  • FIG. 11 is a preferred structural block diagram of a clamping force control device according to an embodiment of the present invention.
  • FIG. 12 is a flowchart of a method for controlling a clamping force according to a preferred embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the clamping mechanism according to an embodiment of the present invention. As shown in FIG.
  • the workbench 41 is disposed on the frame 40 of the welding machine;
  • One or more force sensors 42 arranged below the work table 41 to detect the clamping force between the workpieces to be welded;
  • Actuator 43 which is connected with the force sensor, and drives the force sensor and the table to move back and forth;
  • the motion controller 44 controls the movement displacement of the table 41 according to the signal of the clamping force fed back by the force sensor 42 to control the magnitude of the clamping force between the workpieces to be welded.
  • the motion controller 44 controls the execution according to the above signals.
  • the mechanism 43 adjusts the movement displacement of the table 41.
  • a displacement sensor 51 for detecting a displacement of the movement of the actuator
  • the servo driver 52 communicates with the motion controller, and controls the motion displacement and / or step displacement of the actuator according to the signal of the clamping force and the signal of the displacement of the displacement sensor fed back by the motion controller.
  • the servo driver includes: a servo motor.
  • a servo motor Those skilled in the art can select servo motors in related technologies according to actual needs, such as: linear motors, servo electric cylinders, and linear modules.
  • Linear motor systems generally can be U-slot, flat, or cylindrical.
  • a rotary servo motor is a system that converts rotary motion into linear motion through a screw rod.
  • a screw rod there are servo electric cylinders and linear modules.
  • the linear motor has a fast position response speed and high linear position control accuracy.
  • These actuators coupled with high-precision linear displacement sensors, such as grating scales or magnetic scales, can control the position and speed very accurately.
  • the combined control system can achieve the resolution of the linear displacement sensor, such as 1 micron, or even 0.1 micron. Depending on the application, these mechanisms can be selected to perform clamping of welded workpieces.
  • one or more force sensors may be disposed on the upper surface of the worktable and / or the lower surface of the worktable for measuring the clamping force.
  • the area of the detection range of the one or more force sensors is greater than or equal to the area of the table.
  • the arrangement of the force sensors can be a single arrangement or multiple arrangements.
  • the detection range of a single force sensor is limited.
  • the detection range of a certain force sensor is a circular range with a diameter of 100mm with its center as the center.
  • the area of the worktable is smaller than this range, it only needs to be
  • the force sensor is arranged in the center of the workbench. As shown in FIG. 7, the dashed circle with a large radius shows the detection range of the force sensor, which is larger than the area of the workbench.
  • the single arrangement is suitable for a situation where the detection area of a force sensor can cover the workbench.
  • a force sensor can detect a circle with a diameter of 50mm.
  • the workbench is a 300x300mm square
  • four force sensors can be used (the coverage area is shown by the dashed circle with a smaller radius in Figure 8).
  • this system can accurately detect a large circular plane (as shown by the dashed circle with a larger radius in Fig. 8).
  • the circle's circumference passes through the centers of the four sensors, as shown in the figure. 8 shown.
  • it may further include: a guide rail 60, and the actuator moves along the guide rail 60, and there is a gap of a predetermined distance between the guide rail 60 and the table.
  • the force signal detected by the force sensor is very important.
  • the clamping force applied on the actual workpiece must be accurately transmitted to the force sensor, and other interference force signals, such as friction force, must be avoided.
  • a non-contact welding depth sensor is provided on the workbench.
  • the welding depth sensor provided on the workbench in this preferred embodiment is non-contact. While accurately measuring the welding depth, it avoids the force of the sensor contact and interferes with the clamping force detection.
  • the execution period of the motion controller is less than or equal to 1 millisecond, and such control accuracy will be more accurate.
  • the resolution of the displacement sensor is less than or equal to 1 micron, which improves the accuracy of displacement control.
  • the servo driver and the motion controller are integrated, or the servo driver and the motion controller communicate through an industrial bus.
  • the servo driver controls the lifting speed and position of the table through the signal feedback of the displacement sensor.
  • the motion controller controls the pressing force of the workpiece by the signal of the force sensor installed under the table.
  • the motion controller communicates with the servo drive through industrial bus communication to transmit commands and feedback signals.
  • the motion controller and the servo driver are integrated, and they communicate through an internal bus.
  • the actuator includes a linear motor or a servo motor.
  • the preferred embodiment provides a servo motor system as an actuator, and a servo driver is used to drive the servo motor system for lifting movement control.
  • the main controller is a motion controller, and its motion control cycle can reach milliseconds or faster.
  • the control block diagram of this system is shown in Figure 4.
  • the composition of the lifting actuator of the laser welding machine may include: a servo motor, a servo driver, a motion controller, and a displacement sensor. Detailed description is as follows:
  • the servo motor can be a linear motor system, or a servo electric cylinder or linear module that converts rotary motion into linear motion through a screw rod. Its advantage is that the resolution of displacement control can reach micron level or higher.
  • Run the controller choose the execution cycle that can reach 1 millisecond or faster.
  • the servo driver and the motion controller can be an integrated component or two separate components.
  • a device with a resolution of 1 micron or less can be selected, and a non-contact type linear scale or magnetic scale is a type of linear displacement sensor.
  • the force sensor detection system can adopt a frictionless design to avoid the impact of friction on the detection force signal.
  • a welding depth sensor can be installed on the workbench, preferably, a non-contact depth sensor can be used to avoid friction during the measurement of the depth sensor (the welding depth sensor detects the displacement during the welding process, if it is The contact type displacement sensor generates some frictional force during measurement, and these forces will be transmitted to the force sensor, which will interfere with the detection of the clamping force. Therefore, a non-contact type depth sensor is needed), which will interfere with the detection of the clamping force.
  • the force sensor detection system and the arrangement of the force sensors may be a single arrangement or multiple arrangements, and the multiple arrangements include an arrangement in which two or more sensors collectively detect the clamping force. According to the actual needs, the arrangement of different force sensors is adopted to achieve the purpose of accurately measuring the clamping force.
  • an embodiment of the present invention also provides a welding machine including the above-mentioned clamping mechanism.
  • the structure of the clamping mechanism of the welding machine is the same as the clamping mechanism in the above-mentioned embodiment and its preferred embodiments, and details are not described herein again.
  • FIG. 9 is a flowchart of a method for controlling a clamping force according to an embodiment of the present invention. As shown in FIG. 9, the method includes the following step S902. Go to step S904.
  • Step S902 The motion controller of the welding machine receives a signal of a clamping force fed back by one or more force sensors.
  • Step S904 the motion controller controls the movement displacement of the table of the welding machine to control the magnitude of the clamping force between the workpieces to be welded of the welding machine, wherein the motion controller controls the execution mechanism of the welding machine according to the signal of the clamping force. To adjust the movement displacement of the table.
  • the motion controller of the welding machine controls the actuator to adjust the movement displacement of the table according to the signal of the clamping force from one or more force sensors, thereby controlling the magnitude of the clamping force between the workpieces to be welded, That is, the motion controller adjusts the magnitude of the clamping force between the workpieces to be welded by controlling the movement displacement of the actuator according to the clamping force signal, which can overcome the problem that the related art cannot achieve welding with a small clamping force.
  • the method may further include: one or more force sensors provided on the workbench, which may detect the clamping force between the workpieces to be welded.
  • the force sensor detects the clamping force between the workpieces to be welded, can generate a signal of the clamping force, and feed back the signal of the clamping force to the motion controller for control. With this embodiment, the accuracy of the motion controller control can be improved.
  • the method may further include: an actuator, which is connected to the force sensor, and is configured to drive the force sensor and the table to move back and forth.
  • the motion controller controls and adjusts the movement displacement of the actuator according to the clamping force signal to adjust the magnitude of the clamping force between the workpieces to be welded.
  • the actuator can push the force sensor and the table to move back and forth to perform Adjustment.
  • one or more force sensors may be disposed on the upper surface of the workbench and / or the lower surface of the workbench.
  • the accuracy with which the force sensor detects the clamping force can be improved.
  • the method may further include:
  • a displacement sensor detects a displacement of the actuator movement
  • the servo driver communicates with the motion controller, and controls the motion displacement and / or step displacement of the actuator according to the displacement given signal sent by the motion controller and the actual displacement signal of the displacement sensor.
  • the servo driver controls the motion displacement and / or step of the actuator according to the displacement given signal sent by the motion controller and the actual displacement detected by the displacement sensor. Displacement improves the accuracy of displacement control, that is, improves the accuracy of clamping force control.
  • the actuator moves along a guide rail, and there is a gap of a preset distance between the guide rail and the workbench.
  • the force signal detected by the force sensor is very important.
  • the clamping force applied on the actual workpiece must be accurately transmitted to the force sensor, and other interference force signals must be avoided. , Such as friction.
  • the design of the force sensor detection system has the following points: On a machine clamped upward, the worktable above the force sensor cannot be connected to the guide mechanism to avoid detection. Additional friction is shown in Figure 5. Similarly, on a machine that is clamped downward, the workbench under the force sensor cannot be connected to the guide mechanism to avoid detecting additional friction, as shown in FIG. 6.
  • the area of the detection range of the one or more force sensors is greater than or equal to the area of the table.
  • a non-contact welding depth sensor is provided on the workbench.
  • the execution period of the motion controller is less than or equal to 1 millisecond.
  • the resolution of the displacement sensor is less than or equal to 1 micron.
  • the servo driver is integrated with the motion controller; or
  • the servo driver and the motion controller communicate through an industrial bus.
  • FIG. 10 is a structural block diagram of a clamping force control device according to an embodiment of the present invention. As shown in FIG. 10, the clamping force The control device is located in the welding machine and includes a motion controller 1002 and an actuator 1004, which will be described in detail below with reference to the drawings.
  • the motion controller 1004 is connected to the actuator 1004 and is also used to control the movement displacement of the table of the welding machine to control the clamping force between the workpieces to be welded of the welding machine, wherein The controller controls the actuator 1004 of the welding machine to adjust the movement displacement of the table according to the signal.
  • FIG. 11 is a preferred structural block diagram of a clamping force control device according to an embodiment of the present invention. As shown in FIG. The control device may further include a force sensor 1102, a displacement sensor 1104, and a servo driver 1106, which are described in detail below with reference to the drawings.
  • one or more force sensors 1102 are disposed on a workbench of a welding machine and used to detect a clamping force between workpieces to be welded.
  • the force sensor 1102 is connected to the actuator 1004, and is configured to perform a reciprocating motion with the workbench under the push of the actuator 1004.
  • the above device further includes:
  • a displacement sensor 1104 which is connected to the actuator and a servo driver, and is configured to detect a displacement of the movement of the actuator 1004;
  • the servo driver 1106 is connected to the motion controller 1002, the actuator 1004, and the displacement sensor 1104, and communicates with the motion controller 1002, and is used for according to the displacement given signal from the motion controller 1002 and the actual situation of the displacement sensor 1104
  • the displacement signal controls the movement displacement and / or step displacement of the actuator 1004.
  • FIG. 12 is a flowchart of a method for controlling the clamping force according to the preferred embodiment of the present invention. As shown in FIG. 12, the method includes:
  • Step S1202 the motion controller receives a clamping force instruction
  • Step S1204 the motion controller performs force closed-loop control with the participation of a force sensor
  • Step S1206 the motion controller sends a position instruction to the servo driver
  • Step S1208 the servo driver performs position closed-loop control with the participation of a linear position sensor according to the position instruction;
  • Step S1210 the servo driver performs speed closed-loop control
  • step S1212 the servo driver performs current closed-loop control.
  • the motion controller receives the clamping force command, sends a position command to the servo driver, and accurately converts the clamping force command into position control through position closed-loop, speed closed-loop, and current closed-loop control, thereby accurately realizing the clamping force control.
  • a clamping mechanism a welding machine, a method and a device for controlling a clamping force are provided.
  • the force control accuracy is significantly improved, so that welding applications that require a small force control can be realized by a laser welding machine.
  • Linear modules driven by linear motors or servo rotating motors have significantly faster operating speeds and accelerations than cylinders, more accurate positioning, shorter welding cycle times, improved welding quality, and increased output. It should be noted that these technical effects are not possessed by all the embodiments described above, and some technical effects can be obtained only by some preferred embodiments.

Abstract

一种夹紧机构、焊接机、夹紧力的控制方法及装置。其中,该夹紧机构包括:工作台(41),设置在焊接机的机架(40)上;一个或多个力传感器(42),设置在工作台(41)上,检测待焊接工件之间的夹紧力;执行机构(43),与力传感器(42)相连接,推动力传感器(42)和工作台(41)往返运动;运动控制器(44),根据一个或多个力传感器(42)反馈的夹紧力的信号,控制工作台(41)的运动位移,以控制待焊接工件之间的夹紧力的大小,其中,运动控制器(44)根据信号控制执行机构(43)来调节工作台(41)的运动位移。解决了相关技术中无法实现微小夹紧力进行焊接的问题,从而实现了采用微小夹紧力进行焊接的工艺要求,提高了焊接的质量。

Description

夹紧机构、焊接机、夹紧力的控制方法及装置
本申请要求于2018年09月14日提交中国专利局、申请号为201811103730.9、发明创造名称为“夹紧机构、焊接机、夹紧力的控制方法及装置”的中国专利申请的优先权,并且本申请要求于2018年09月14日提交中国专利局、申请号为201821544332.6、发明创造名称为“夹紧机构及焊接机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及焊接领域,具体而言,涉及一种夹紧机构、焊接机、夹紧力的控制方法及装置。
背景技术
激光焊接塑料技术是应用于热塑性塑料焊接的一种技术。其工作原理是:对于一种波长的激光,它能够透过有些种类的塑料,如果在这些塑料中增加一些元素,例如碳等,能够使激光不能透过这些塑料,激光的能量被这些材料吸收。将能够透过这种激光的塑料工件和不能透过这种激光的塑料工件贴合在一起,从能透过激光的塑料工件一侧照射激光,在两个工件的接触面上,就会产生热量,熔化接触面,从而将两个工件焊接在一起。
随着科技的发展,在激光塑料焊接领域,焊接的工件的种类不断扩展。工件的外形越来越小巧,越来越轻薄。为了能够焊接这种轻薄小巧的工件,要求焊接机能够控制的夹紧力也越来越小,力的控制精度也越来越高。有些焊接工件要求的夹紧力范围仅为1-10牛顿,精度要求,在1牛顿的力的设定值上,实际力的偏差要在±10%(即±0.1牛顿)以内。这是以前的塑料焊接机无法实现的夹紧力控制精度。
相关技术中的激光焊接机,其控制工件上下运动的机架1、升降执行器2、底座3如附图1所示,其执行器是气缸,气缸的气压通过手动调压阀或比例调压阀控制,气缸的上下运动逻辑通过电磁换向阀来控制,气动原理图如附图2所示。气缸输出端一般安装有力传感器,用于检测实际夹紧力。在力传感器后端,安装有推动上模向下运动的滑块,滑块由导轨导向,图3是相关技术中气动结构的示意图,如图3所示,包括推动上模的滑块31,其上设置有力传感器32、推动上模的滑块31与导轨34相连接,力传感器32与气缸35相连接。
如上所述的气缸方案,夹紧力的控制是由气压控制的,由于气缸内部有固有的滑动摩擦阻力,另外,在推动滑块向下运动时,需要克服导轨和滑块之间的摩擦力,因此,气压必须调节至大于气缸摩擦力加上导轨摩擦力,气缸才能推出。由于摩擦力是非线性的,静摩擦力较大,动摩擦力较小,因此初始推力必然大于静摩擦力,最后合模时,夹紧力无法控制得很小,一般最小也要几十牛顿,由于摩擦力会受温度等影响,因此夹紧力的控制精度也不会太好。采用相关技术中的方案,无法用于微小塑料件的焊接,因为这些小的塑料件,夹紧力稍大就会变形或压坏。
针对相关技术中的无法实现微小夹紧力进行焊接问题,目前尚未提出有效的解决方案。
发明内容
为解决上述问题,本发明的一个实施方式提供一种夹紧机构、焊接机、夹紧力的控制方法及装置。
一方面,提供了一种夹紧机构,位于焊接机,包括:
工作台,设置在所述焊接机的机架上;
一个或多个力传感器,设置在所述工作台上,检测待焊接工件之间的夹紧力;
执行机构,与所述力传感器相连接,推动所述力传感器和所述工作台往返运动;
运动控制器,根据所述一个或多个力传感器反馈的所述夹紧力的信号,控制所述工作台的运动位移,以控制所述待焊接工件之间的夹紧力的大小,其中,所述运动控制器根据所述信号控制所述执行机构来调节所述工作台的运动位移。
优选地,还包括:
位移传感器,用于检测所述执行机构运动的位移;
伺服驱动器,与所述运动控制器通信,根据所述运动控制器发出的位移给定信号和所述位移传感器的实际位移信号,控制所述执行机构的运动位移和/或步进位移。
优选地,所述执行机构包括:
伺服电机,所述伺服电机包括以下之一:直线电机、伺服电动缸、线性模组。
优选地,所述一个或多个力传感器,设置在工作台的上表面和/或所述工作台的下表面。
优选地,还包括:导轨,所述执行机构沿着所述导轨运动,且所述导轨与所述工作台之间有预设距离的间隙。
优选地,其特征在于,所述一个或多个力传感器的检测范围的面积大于或等于所述工作台的面积。
优选地,所述工作台上设置有非接触式焊接深度传感器。
优选地,所述运动控制器的执行周期小于或等于1毫秒。
优选地,所述位移传感器的分辨率小于或等于1微米。
优选地,所述伺服驱动器和所述运动控制器集成设置,或者所述伺服驱动器和所述运动控制器通过工业总线进行通信。
优选地,所述执行机构包括:直线电机或伺服电机。
另一方面,本发明的一个实施方式还提供一种焊接机,包括上述的夹紧机构。
另一方面,本发明的一个实施方式还提供一种夹紧力的控制方法,包括:
焊接机的运动控制器接收一个或多个力传感器反馈的夹紧力的信号;
所述运动控制器控制所述焊接机的工作台的运动位移,以控制所述焊接机的待焊接工件之间的夹紧力的大小,其中,所述运动控制器根据所述信号控制焊接机的执行机构来调节所述工作台的运动位移。
优选地,在所述焊接机的运动控制器接收一个或多个力传感器反馈的夹紧力的信号之前,还包括:
设置在所述工作台上的一个或多个力传感器,检测待焊接工件之间的夹紧力。
优选地,在所述运动控制器控制所述焊接机的工作台的运动位移之后,还包括:
所述执行机构,与所述力传感器相连接,用于推动所述力传感器和所述工作台往返运动。
优选地,在所述运动控制器控制所述焊接机的工作台的运动位移之后,还包括:
位移传感器检测所述执行机构运动的位移;
伺服驱动器与所述运动控制器通信,根据所述运动控制器发出的位移给定信号和所述位移传感器的实际位移信号,控制所述执行机构的运动位移和/或步进位移。
优选地,所述一个或多个力传感器,设置在所述工作台的上表面和/或所述工作台的下表面。
优选地,所述执行机构沿着导轨运动,且所述导轨与所述工作台之间有预设距离的间隙。
优选地,所述一个或多个力传感器的检测范围的面积大于或等于所述工作台的面积。
优选地,所述工作台上设置有非接触式焊接深度传感器。
优选地,所述运动控制器的执行周期小于或等于1毫秒。
优选地,所述位移传感器的分辨率小于或等于1微米。
优选地,所述伺服驱动器和所述运动控制器集成设置;或者,
所述伺服驱动器和所述运动控制器通过工业总线进行通信。
另一方面,还提供了一种夹紧力的控制装置,位于焊接机,包括:
运动控制器,用于接收一个或多个力传感器反馈的夹紧力的信号;
所述运动控制器,还用于控制所述焊接机的工作台的运动位移,以控制所述焊接机的待焊接工件之间的夹紧力的大小,其中,所述运动控制器根据所述信号控制焊接机的执行机构来调节所述工作台的运动位移。
优选地,一个或多个力传感器,设置在所述工作台上,用于检测待焊接工件之间的夹紧力。
优选地,所述执行机构,与所述力传感器相连接,用于推动所述力传感器和所述工作台往返运动。
优选地,上述装置还包括:
位移传感器,用于检测所述执行机构运动的位移;
伺服驱动器,与所述运动控制器通信,用于根据所述运动控制器发出的位 移给定信号和所述位移传感器的实际位移信号,控制所述执行机构的运动位移和/或步进位移。
本发明提供的技术方案,采用设置有力传感器的工作台,运动控制器根据一个或多个力传感器发出的夹紧力的信号,控制执行机构调节工作台的运动位移,从而控制待焊接工件之间夹紧力的大小。该技术方案克服了相关技术中无法实现微小夹紧力进行焊接的问题,从而实现了采用微小夹紧力进行焊接的工艺要求,提高了焊接的质量。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据相关技术的激光塑料焊接机的示意图;
图2是根据相关技术的气动原理的示意图;
图3是相关技术中的气动结构的示意图;
图4是根据本发明实施例的夹紧机构的示意图;
图5是根据本发明实施例的力传感器与导轨设置的示意图一;
图6是根据本发明实施例的力传感器与导轨设置的示意图二;
图7是根据本发明实施例的力传感器的单个布置的俯视图;
图8是根据本发明实施例的力传感器的多个布置的俯视图;
图9是根据本发明实施例的夹紧力的控制方法的流程图;
图10是根据本发明实施例的夹紧力的控制装置的结构框图;
图11是根据本发明实施例的夹紧力的控制装置的优选的结构框图;
图12是根据本发明优选实施例的夹紧力的控制方法的流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本实施例提供了一种夹紧机构,位于焊接机,图4是根据本发明实施例的夹紧机构的示意图,如图4所示,该包括:
工作台41,设置在焊接机的机架40上;
一个或多个力传感器42,设置在工作台41下方,检测待焊接工件之间的夹紧力;
执行机构43,与力传感器相连接,推动力传感器和工作台往返运动;
运动控制器44,根据力传感器42反馈的夹紧力的信号,控制工作台41的运动位移,以控制待焊接工件之间的夹紧力的大小,其中,运动控制器44根据上述信号控制执行机构43来调节工作台41的运动位移。
优选地,还包括:位移传感器51,用于检测执行机构运动的位移;
伺服驱动器52,与运动控制器通信,根据运动控制器反馈的夹紧力的信号和位移传感器的位移的信号,控制执行机构的运动位移和/或步进位移。
作为一个较优的实施方式,伺服驱动器包括:伺服电机。本领域技术人员可以根据实际需要选择相关技术中的伺服电机,例如:直线电机、伺服电动缸、线性模组。
例如:(1)直线电机系统,相关技术中的直线电机一般可以有U型槽式,平板式,或圆柱式。
(2)旋转伺服电机通过丝杆将旋转运动转换为直线运动的系统,一般有伺服电动缸,和线性模组。
需要说明的是相比与其他执行机构,直线电机的位置响应速度快,直线位置控制精度高。这些执行机构,配上高精度的线性位移传感器,如光栅尺,或磁栅尺等,就能够非常精确的控制位置、速度。这样组合而成的控制系统,其位置控制分辨率能够达到线性位移传感器的分辨率,如1微米,甚至是0.1微米。根据不同的应用情况,可以选用这些机构来执行焊接工件的夹紧。
作为另一个较优的实施方式,一个或多个力传感器可以设置在工作台的上表面和/或工作台的下表面,用于对夹紧力的测量。优选地,上述一个或多个力传感器的检测范围的面积大于或等于工作台的面积。
根据工作台面积的大小和所选力传感器的检测面积,力传感器的布置可以采用单个布置,也可以采用多个布置。
一般,单个力传感器,其检测范围都是有限的,比如,某个力传感器,检测范围为以其中心为圆心的一个直径100mm的圆形范围,当工作台的面积小于这个范围,就只需将力传感器布置在工作台中心,如附图7所示,半径较大 的虚线圆示出的是力传感器的检测范围,该检测范围大于工作台的面积。
单个布置适用于一个力传感器检测面积能够覆盖工作台的场合。
当工作台面积较大,单个力传感器的检测面积无法覆盖时,为了精确测量力,需采用多个力传感器的布置。例如,一个力传感器,检测面积为直径50mm的圆,当工作台为300x 300mm的方形时,可以使用四个力传感器(其覆盖面积如图8中的半径较小的虚线圆所示),布置在工作台四角,这样组成的系统,能够精确检测一个大圆形平面(如图8中的半径较大的虚线圆所示),这个圆形的圆周通过这四个传感器的中心,如附图8所示。通过多个力传感器的布置,检测力的面积大大增加,基本覆盖工作台。
需要说明的是,本领域技术人员可以根据实际需要设置力传感器的数量,上述四个力传感器的布置仅是一个示例,并不用于对本申请的限制。
作为另一个较优的实施方式,还可以包括:导轨60,执行机构沿着导轨60运动,且导轨60与工作台之间有预设距离的间隙。
为了控制微小夹紧力,力传感器检测的力信号至关重要,必须让施加在实际工件上的夹紧力准确的传递到力传感器上,并且避免其他干扰的力信号,比如摩擦力等。
为此,当力传感器安装在运动机构上时,力传感器检测系统的设计,有如下注意点:
在向上运动夹紧的机器上,力传感器上面的工作台,不能与导轨机构连接,避免检测到额外的摩擦力,如图5所示。
同样地,在向下运动夹紧的机器上,力传感器下面的工作台,不能与导轨机构连接,避免检测到额外的摩擦力,如图6所示。
优选地,工作台上设置有非接触式焊接深度传感器。该优选实施例中的工作台上设置的焊接深度传感器为非接触式的,在准确测量焊接深度的同时,避免传感器接触产生力,干扰夹紧力检测。
需要说明的是,工作台上安装的夹具,如果带有连接到外部的电线或气管等,必须防止升降过程中产生拉扯,使力传感器检测到这些拉扯力。
优选地,运动控制器的执行周期小于或等于1毫秒,这样的控制精度会更加准确。
优选地,位移传感器的分辨率小于或等于1微米,提高位移控制精度。
优选地,伺服驱动器和运动控制器集成设置,或者伺服驱动器和运动控制器通过工业总线进行通信。
从附图4可以看到,伺服驱动器通过位移传感器的信号反馈,对工作台的升降速度和位置做控制。运动控制器,通过工作台下安装的力传感器的信号,对工件压紧力做控制。运动控制器和伺服驱动器之间,通过工业总线通讯,传递指令和反馈信号。还有一种情况是运动控制器和伺服驱动器合为一体,它们之间通过内部总线通讯。
优选地,执行机构包括:直线电机或伺服电机。
本优选实施例提供了一种使用伺服电机系统作为执行机构,使用伺服驱动器驱动伺服电机系统做升降运动控制。
驱动这些电机的都是伺服驱动器,主控制器为运动控制器,其运动控制周期能够达到毫秒级或更快。这个系统的控制框图如附图4所示。
激光焊接机升降执行机构的组成,可以包括:伺服电机、伺服驱动器、运动控制器、位移传感器。下面进行详细描述:
伺服电机,可以选用直线电机系统,或通过丝杆将旋转运动转换为直线运动的伺服电动缸或线性模组,其优点是位移控制分辨率能达到微米级或更高。
运行控制器,选用执行周期能达到1毫秒或更快的。
伺服驱动器和运动控制器可以是集成的一个元件,也可以是单独分开的两个元件。
位移反馈装置,可以选用分辨率能达到1微米及以下的装置,非接触式的光栅尺或磁栅尺等类型的直线位移传感器。
力传感器检测系统,可以采用无摩擦的设计,避免摩擦力对检测力信号的影响。
力传感器检测系统,工作台上可以安装焊接深度传感器,优选地,可以采用非接触式的深度传感器,避免深度传感器测量时产生摩擦力(焊接深度传感器检测的是焊接过程中的位移量,如果是接触式的位移传感器,测量时会产生一些摩擦力,这些力会传递到力传感器,干扰夹紧力的检测,因此需要用非接触式的深度传感器),干扰夹紧力的检测。
力传感器检测系统,力传感器的布置方式,可以为单个布置或多个布置,多个布置包括两个以上传感器共同检测夹紧力的布置。根据实际需要采用不同的力传感器的布置,以达到精确测量夹紧力的目的。
另一方面,本发明的一个实施方式还提供一种焊接机,包括上述的夹紧机构。焊接机的夹紧机构的结构同上述实施例及其优选实施方式中的夹紧机构,在此不再赘述。
另一方面,本发明的一个实施方式还提供一种夹紧力的控制方法,图9是根据本发明实施例的夹紧力的控制方法的流程图,如图9所示,包括如下步骤S902至步骤S904。
步骤S902,焊接机的运动控制器接收一个或多个力传感器反馈的夹紧力的信号。
步骤S904,运动控制器控制焊接机的工作台的运动位移,以控制焊接机的待焊接工件之间的夹紧力的大小,其中,运动控制器根据夹紧力的信号控制焊接机的执行机构来调节所述工作台的运动位移。
通过上述步骤,焊接机的运动控制器根据一个或多个力传感器发出的夹紧力的信号,控制执行机构来调节工作台的运动位移,从而控制待焊接工件之间的夹紧力的大小,也即,运动控制器根据夹紧力信号,通过控制执行机构的运动位移,来调节待焊接工件之间夹紧力的大小,可以克服相关技术中无法实现微小夹紧力进行焊接的问题,
作为一个较优的实施方式,在步骤S902之前,还可以包括:设置在工作台上的一个或多个力传感器,可以检测待焊接工件之间的夹紧力。通过该优选实施例,在运动控制器进行控制之前,力传感器检测待焊接工件之间的夹紧力,可以生成夹紧力的信号,并将夹紧力的信号反馈给运动控制器进行控制。通过该实施方式,可以提高运动控制器控制的准确性。
作为另一个较优的实施方式,在步骤S904之后,还可以包括:执行机构,与力传感器相连接,用于推动力传感器和工作台往返运动。该优选实施例中,在运动控制器根据夹紧力信号,控制调节执行机构的运动位移,来调节待焊接工件之间夹紧力的大小,执行机构可以推动力传感器和工作台往返运动来进行调节。
优选地,一个或多个力传感器,可以设置在所述工作台的上表面和/或所述工作台的下表面。通过该优选实施例,可以提高力传感器检测夹紧力的准确性。
作为另一个较优的实施方式,在所述运动控制器控制所述焊接机的工作台的运动位移之后,还可以包括:
位移传感器检测所述执行机构运动的位移;
伺服驱动器与所述运动控制器通信,根据所述运动控制器发出的位移给定信号和所述位移传感器的实际位移信号,控制所述执行机构的运动位移和/或步进位移。通过该优选实施例,在运动控制器控制工作台的运动位移之后,伺服驱动器根据运动控制器发出的位移给定信号和位移传感器检测到的实际位移,控制执行机构的运动位移和/或步进位移,提高了位移控制的精度,也即,提高了夹紧力控制的精度。
在实施过程中,所述执行机构沿着导轨运动,且所述导轨与所述工作台之间有预设距离的间隙。如上述实施例所述,为了控制微小夹紧力,力传感器检测的力信号至关重要,必须让施加在实际工件上的夹紧力准确的传递到力传感器上,并且避免其他干扰的力信号,比如摩擦力等。为此,当力传感器安装在运动机构上时,力传感器检测系统的设计,有如下注意点:在向上运动夹紧的机器上,力传感器上面的工作台,不能与导轨机构连接,避免检测到额外的摩擦力,如图5所示。同样地,在向下运动夹紧的机器上,力传感器下面的工作台,不能与导轨机构连接,避免检测到额外的摩擦力,如图6所示。
优选地,所述一个或多个力传感器的检测范围的面积大于或等于所述工作台的面积。
优选地,所述工作台上设置有非接触式焊接深度传感器。
优选地,所述运动控制器的执行周期小于或等于1毫秒。
优选地,所述位移传感器的分辨率小于或等于1微米。
优选地,所述伺服驱动器和所述运动控制器集成设置;或者,
所述伺服驱动器和所述运动控制器通过工业总线进行通信。
基于相同的发明构思,本实施例还提供了一种夹紧力的控制装置,图10是根据本发明实施例的夹紧力的控制装置的结构框图,如图10所示,该夹紧 力的控制装置位于焊接机,包括运动控制器1002和执行机构1004,下面结合附图进行详细说明。
运动控制器1002,用于接收一个或多个力传感器反馈的夹紧力的信号;
所述运动控制器1004,连接至执行机构1004,还用于控制所述焊接机的工作台的运动位移,以控制所述焊接机的待焊接工件之间的夹紧力的大小,其中,运动控制器根据所述信号控制焊接机的执行机构1004来调节所述工作台的运动位移。
本实施例提供了一种夹紧力的控制装置的优选实施方式,图11是根据本发明实施例的夹紧力的控制装置的优选的结构框图,如图11所示,该夹紧力的控制装置还可以包括:力传感器1102、位移传感器1104和伺服驱动器1106,下面结合附图进行详细说明。
在本实施例的优选实施方式中,一个或多个力传感器1102,设置在焊接机的工作台上,用于检测待焊接工件之间的夹紧力。
优选地,力传感器1102,与执行机构1004相连接,用于在执行机构1004推动下,和工作台一起做往返运动。
优选地,上述装置还包括:
位移传感器1104,与执行机构和伺服驱动器相连接,用于检测所述执行机构1004运动的位移;
伺服驱动器1106,与运动控制器1002、执行机构1004和位移传感器1104相连接,与运动控制器1002通信,用于根据所述运动控制器1002发出的位移给定信号和所述位移传感器1104的实际位移信号,控制所述执行机构1004的运动位移和/或步进位移。
本优选实施例还提供了一种夹紧力的控制方法,图12是根据本发明优选实施例的夹紧力的控制方法的流程图,如图12所示,该方法包括:
步骤S1202,运动控制器接收夹紧力指令;
步骤S1204,运动控制器在力传感器的参与下进行力闭环控制;
步骤S1206,运动控制器向伺服驱动器发送位置指令;
步骤S1208,伺服驱动器根据位置指令,在直线位置传感器的参与下进行位置闭环控制;
步骤S1210,伺服驱动器进行速度闭环控制;
步骤S1212,伺服驱动器进行电流闭环控制。
该优选实施例,运动控制器接收夹紧力指令,向伺服驱动器发送位置指令,通过位置闭环、速度闭环和电流闭环控制,将夹紧力指令精确转换为位置控制,从而精确地实现夹紧力控制。
通过上述实施例,提供了一种夹紧机构、焊接机、夹紧力的控制方法及装置。通过该技术方案,达到了如下技术效果:显著提高力的控制精度,使得需要微小力的控制的焊接应用能够通过激光焊接机来实现。直线电机或伺服旋转电机驱动的线性模组,运行速度和加速度比气缸明显更快,定位更准确,缩短焊接循环时间,提高焊接质量,增加产量。需要说明的是,这些技术效果并不是上述所有的实施方式所具有的,有些技术效果是某些优选实施方式才能取得的。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (26)

  1. 一种夹紧机构,位于焊接机,其特征在于,
    工作台,设置在所述焊接机的机架上;
    一个或多个力传感器,设置在所述工作台上,检测待焊接工件之间的夹紧力;
    执行机构,与所述力传感器相连接,推动所述力传感器和所述工作台往返运动;
    运动控制器,根据所述一个或多个力传感器反馈的所述夹紧力的信号,控制所述工作台的运动位移,以控制所述待焊接工件之间的夹紧力的大小,其中,所述运动控制器根据所述信号控制所述执行机构来调节所述工作台的运动位移。
  2. 根据权利要求1所述的夹紧机构,其特征在于,还包括:
    位移传感器,用于检测所述执行机构运动的位移;
    伺服驱动器,与所述运动控制器通信,根据所述运动控制器发出的位移给定信号和所述位移传感器的实际位移信号,控制所述执行机构的运动位移和/或步进位移。
  3. 根据权利要求1所述的夹紧机构,其特征在于,所述执行机构包括:
    伺服电机,所述伺服电机包括以下之一:直线电机、伺服电动缸、线性模组。
  4. 根据权利要求1所述的夹紧机构,其特征在于,所述一个或多个力传感器,设置在所述工作台的上表面和/或所述工作台的下表面。
  5. 根据权利要求1所述的夹紧机构,其特征在于,还包括:导轨,所述执行机构沿着所述导轨运动,且所述导轨与所述工作台之间有预设距离的间隙。
  6. 根据权利要求1至5中任一项所述的夹紧机构,其特征在于,
    所述一个或多个力传感器的检测范围的面积大于或等于所述工作台的面积。
  7. 根据权利要求1至5中任一项所述的夹紧机构,其特征在于,所述工作台上设置有非接触式焊接深度传感器。
  8. 根据权利要求1至5中任一项所述的夹紧机构,其特征在于,所述运动控制器的执行周期小于或等于1毫秒。
  9. 根据权利要求1至5中任一项所述的夹紧机构,其特征在于,所述位移传感器的分辨率小于或等于1微米。
  10. 根据权利要求2至5中任一项所述的夹紧机构,其特征在于,
    所述伺服驱动器和所述运动控制器集成设置;或者,
    所述伺服驱动器和所述运动控制器通过工业总线进行通信。
  11. 一种焊接机,其特征在于,包括根据权利要求1至10中任一项所述的夹紧机构。
  12. 一种夹紧力的控制方法,其特征在于,
    焊接机的运动控制器接收一个或多个力传感器反馈的夹紧力的信号;
    所述运动控制器控制所述焊接机的工作台的运动位移,以控制所述焊接机的待焊接工件之间的夹紧力的大小,其中,所述运动控制器根据所述信号控制焊接机的执行机构来调节所述工作台的运动位移。
  13. 根据权利要求12所述的方法,其特征在于,在所述焊接机的运动控制器接收一个或多个力传感器反馈的夹紧力的信号之前,还包括:
    设置在所述工作台上的一个或多个力传感器,检测待焊接工件之间的夹紧力。
  14. 根据权利要求12所述的方法,其特征在于,在所述运动控制器控制所述焊接机的工作台的运动位移之后,还包括:
    所述执行机构,与所述力传感器相连接,用于推动所述力传感器和所述工作台往返运动。
  15. 根据权利要求12所述的方法,其特征在于,在所述运动控制器控制所述焊接机的工作台的运动位移之后,还包括:
    位移传感器检测所述执行机构运动的位移;
    伺服驱动器与所述运动控制器通信,根据所述运动控制器发出的位移给定信号和所述位移传感器的实际位移信号,控制所述执行机构的运动位移和/或步进位移。
  16. 根据权利要求12所述的方法,其特征在于,
    所述一个或多个力传感器,设置在所述工作台的上表面和/或所述工作台的下表面。
  17. 根据权利要求12所述的方法,其特征在于,
    所述执行机构沿着导轨运动,且所述导轨与所述工作台之间有预设距离的间隙。
  18. 根据权利要求12至17中任一项所述的方法,其特征在于,
    所述一个或多个力传感器的检测范围的面积大于或等于所述工作台的面积。
  19. 根据权利要求12至17中任一项所述的方法,其特征在于,所述工作台上设置有非接触式焊接深度传感器。
  20. 根据权利要求12至17中任一项所述的方法,其特征在于,所述运动控制器的执行周期小于或等于1毫秒。
  21. 根据权利要求12至17中任一项所述的方法,其特征在于,所述位移传感器的分辨率小于或等于1微米。
  22. 根据权利要求12至17中任一项所述的方法,其特征在于,
    所述伺服驱动器和所述运动控制器集成设置;或者,
    所述伺服驱动器和所述运动控制器通过工业总线进行通信。
  23. 一种夹紧力的控制装置,位于焊接机,其特征在于,包括:
    运动控制器,用于接收一个或多个力传感器反馈的夹紧力的信号;
    所述运动控制器,还用于控制所述焊接机的工作台的运动位移,以控制所述焊接机的待焊接工件之间的夹紧力的大小,其中,所述运动控制器根据所述信号控制焊接机的执行机构来调节所述工作台的运动位移。
  24. 根据权利要求23所述的装置,其特征在于,还包括:
    一个或多个力传感器,设置在所述工作台上,用于检测待焊接工件之间的夹紧力。
  25. 根据权利要求23所述的装置,其特征在于,还包括:
    所述执行机构,与所述力传感器相连接,用于推动所述力传感器和所述工作台往返运动。
  26. 根据权利要求23所述的装置,其特征在于,还包括:
    位移传感器,用于检测所述执行机构运动的位移;
    伺服驱动器,与所述运动控制器通信,用于根据所述运动控制器发出的位移给定信号和所述位移传感器的实际位移信号,控制所述执行机构的运动位移和/或步进位移。
PCT/CN2019/080967 2018-09-14 2019-04-02 夹紧机构、焊接机、夹紧力的控制方法及装置 WO2020052226A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201821544332.6 2018-09-14
CN201821544332.6U CN209191330U (zh) 2018-09-14 2018-09-14 夹紧机构及焊接机
CN201811103730.9 2018-09-14
CN201811103730.9A CN110901079A (zh) 2018-09-14 2018-09-14 夹紧机构、焊接机、夹紧力的控制方法及装置

Publications (1)

Publication Number Publication Date
WO2020052226A1 true WO2020052226A1 (zh) 2020-03-19

Family

ID=69778153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080967 WO2020052226A1 (zh) 2018-09-14 2019-04-02 夹紧机构、焊接机、夹紧力的控制方法及装置

Country Status (1)

Country Link
WO (1) WO2020052226A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220080537A1 (en) * 2020-09-16 2022-03-17 Panasonic Intellectual Property Management Co., Ltd. Laser welding apparatus and laser processing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044122A (ja) * 2004-08-06 2006-02-16 Kanto Auto Works Ltd 樹脂成型品のレーザ溶着装置
CN104385577A (zh) * 2014-09-25 2015-03-04 江苏大学 一种可实现任意曲面焊接的激光透射焊接夹紧装置
CN204382658U (zh) * 2015-01-12 2015-06-10 中国科学院宁波材料技术与工程研究所 激光焊接装置
CN206938000U (zh) * 2017-07-03 2018-01-30 重庆工程职业技术学院 计算机控制的激光焊接塑料夹具设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044122A (ja) * 2004-08-06 2006-02-16 Kanto Auto Works Ltd 樹脂成型品のレーザ溶着装置
CN104385577A (zh) * 2014-09-25 2015-03-04 江苏大学 一种可实现任意曲面焊接的激光透射焊接夹紧装置
CN204382658U (zh) * 2015-01-12 2015-06-10 中国科学院宁波材料技术与工程研究所 激光焊接装置
CN206938000U (zh) * 2017-07-03 2018-01-30 重庆工程职业技术学院 计算机控制的激光焊接塑料夹具设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220080537A1 (en) * 2020-09-16 2022-03-17 Panasonic Intellectual Property Management Co., Ltd. Laser welding apparatus and laser processing device
US11717920B2 (en) * 2020-09-16 2023-08-08 Panasonic Intellectual Property Management Co., Ltd. Laser welding apparatus and laser processing device

Similar Documents

Publication Publication Date Title
US6965091B2 (en) Pressing device
US7739894B2 (en) Die cushion controller
US5477723A (en) Device for regulating the blank-holding force in a press
US5105135A (en) Feedback controller for NC controlled machine tools
CN111836698B (zh) 具有带有顺应性弹性构件和重量补偿弹性构件的伺服弹性致动器系统的工件处理装置
WO2020052226A1 (zh) 夹紧机构、焊接机、夹紧力的控制方法及装置
US7145642B2 (en) Wafer support device and a wafer support method
KR101244264B1 (ko) 형상 측정기
JP3868207B2 (ja) サーボプレスの下死点補正方法
CN209191330U (zh) 夹紧机构及焊接机
CN110901079A (zh) 夹紧机构、焊接机、夹紧力的控制方法及装置
JPH05138254A (ja) ベンダーにおける板厚測定方法及び測定装置
CN112775198B (zh) 一种蒙皮拉伸机托架的液压伺服控制系统
CN108873741A (zh) 一种针对空气静压导轨止推轴承振动的主动控制系统
JP4583616B2 (ja) 溶接ロボットの制御方法および装置
JP5823335B2 (ja) 液体吐出方法
CN110658860A (zh) 一种位置模式下的伺服电机压力和间隙控制装置
JP2711852B2 (ja) ワイヤ放電加工の制御方法
CN108637465A (zh) 一种惯性摩擦焊接工作系统
JP2018020415A (ja) 工作機械用駆動装置
CN218766467U (zh) 一种恒温恒压的高速摩擦装置
CN217253220U (zh) 一种切割机用随动托料机构
CN112173165B (zh) 一种直线力加载系统多余力补偿控制装置及补偿控制方法
JP2000176699A (ja) プレス機械の下死点位置制御装置
JPH06226540A (ja) ワイヤ放電加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860999

Country of ref document: EP

Kind code of ref document: A1