WO2020052219A1 - 一种带有测量海水流速功能的天线结构 - Google Patents
一种带有测量海水流速功能的天线结构 Download PDFInfo
- Publication number
- WO2020052219A1 WO2020052219A1 PCT/CN2019/079976 CN2019079976W WO2020052219A1 WO 2020052219 A1 WO2020052219 A1 WO 2020052219A1 CN 2019079976 W CN2019079976 W CN 2019079976W WO 2020052219 A1 WO2020052219 A1 WO 2020052219A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- current meter
- sensor support
- sensors
- function
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P5/00—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/42—Housings not intimately mechanically associated with radiating elements, e.g. radome
Definitions
- the present invention relates to the field of marine observations, and in particular to an observation module used on a marine mobile observation platform, and more particularly to an antenna structure with a function of measuring seawater flow velocity.
- the mobile observation platform includes the main functional modules of carrier, communication, navigation control, low power consumption management, sensors, etc.
- the technology involves basic technologies and engineering implementation such as structural design, reliability, satellite positioning and communication, sensor integration, and micro power control management.
- ROV Remote Operated
- the objects of mobile platform ocean observation may be diverse, including physical, chemical, and biological. But the observation sensors are mostly independent. Take the antenna and the current meter, at present, no equipment or instrument integrating the antenna and the current meter has been seen in the world.
- the antenna is generally mounted on the tail of the glider.
- the current meter should be placed at the forefront of the glider to avoid any other instrument from affecting the currents.
- too many instruments mounted on the front of the glider are not conducive to navigation control. Considering this, the current meter still needs to be placed. Place on the tail of the glider.
- the ocean current meter and the communication antenna are basically located at the same end, which obviously has the following main defects:
- the discrete module has low integration, low space utilization and relatively high cost.
- the large space occupied by each discrete module reduces the density of the sensors carried by the equipment, and the amount of observation data in a single sea trial is small, which indirectly increases the human, financial, and material resources for R & D or marine observation experiments.
- the antenna has a turbulent effect on the current measurement of the current meter.
- the existence of the antenna has a great influence on the current measurement of the current meter, which seriously affects the accuracy of the current measurement, and thus has a great impact on the authenticity of the data.
- the present invention provides an antenna structure with a function of measuring the velocity of seawater.
- the structure combines an ocean current meter and an antenna, and has both a current measurement function and an antenna communication function, which perfectly solves the two problems.
- An antenna structure with a function of measuring the velocity of seawater includes an antenna and a current meter, the antenna and the current meter are integrated on a central link, the current meter is provided on the upper part of the center link, and the antenna is provided on the center link.
- the bottom end of the central link is connected to the underwater mobile platform, and the interior of the central link is hollow to form a line channel.
- an antenna protective cover is provided outside the antenna, and the antenna protective cover adopts a streamlined design.
- a rubber cap for stabilizing the antenna is provided inside the antenna protective cover, the upper surface of the rubber cap against the antenna protective cover, and the lower surface of the rubber cap against the antenna.
- the ocean current meter includes three sensors on the upper side and three sensors on the lower side, the three sensors on the upper side correspond to the three sensors on the lower side, and the sensors transmit and receive ultrasonic waves to each other to form an acoustic axis of the current meter;
- the three sensors on the upper side are installed on the bottom periphery of the upper sensor support arm, and the three sensors on the lower side are installed on the end of the lower sensor support arm.
- the lower sensor support arm is in the shape of a claw, which is fixed at the upper part of the center link, the center of the bottom end of the upper sensor support arm is connected to the top of the center link, and the top of the upper sensor support arm is protected by the antenna.
- Sleeve threaded connection Waterproof O-ring is set at the threaded connection.
- the ocean current meter includes an upper sensor support ring and a lower sensor support ring, and sensors for transmitting and receiving ultrasonic waves are arranged on the upper sensor support ring and the lower sensor support ring; the upper sensor support ring and the lower sensor support ring The upper part and the lower part are fixed in parallel to the upper part of the central link, and the antenna protective sleeve is screw-connected to the top of the central link.
- the underwater mobile platform includes a water glider, a cable-controlled vehicle, an autonomous underwater vehicle, a wave energy glider, a drifting buoy, an unmanned remotely controlled boat, and a semi-submersible vehicle.
- the present invention integrates a current meter and an antenna to solve the problem that the antenna has a disturbance effect on the current meter when the current of an underwater vehicle is observed, and improves the accuracy of the collected current data.
- the present invention solves the problem of low space utilization when an underwater vehicle is equipped with an antenna, a current meter and other sensor devices; at the same time, the total weight of the two is reduced, which is beneficial to the weight reduction of the underwater observation mobile platform.
- the invention increases the integration degree of the sensor, is easy to be modularly installed and used, increases the types of research physical quantities that can be collected by the underwater vehicle, thereby improving the data collection efficiency of the underwater vehicle, and saving manpower, financial and material resources. To make the cost of the underwater observation mobile platform more low.
- the present invention solves the problem of mutual interference in the installation of ocean current observation equipment and antenna communication equipment. At the same time, it improves the space utilization of sensor equipment, reduces equipment weight, and reduces development costs, thereby promoting the development of marine observation equipment. Integration and generalization are of great significance for solving cutting-edge current observations on mobile platforms and real-time observations of currents on mobile platforms.
- FIG. 1 is a schematic structural view of an embodiment of the present invention, denoted as a structure A;
- FIG. 2 is a sectional view of FIG. 1;
- FIG. 3 is a schematic structural principle diagram of another embodiment of the present invention, denoted as a structure B;
- FIG. 4 is a schematic structural view of another embodiment of the present invention, denoted as a structure C;
- FIG. 5 is a schematic diagram of an application of the present invention.
- FIG. 1-2 1. Antenna protection sleeve, 2. Sensor support arm, 3. Connection port, 4. Central link, 5. Current meter sound axis, 6. Connection thread, 7. Compression hollow connection Internal line channel of the pole, 8. Ultrasonic transducer, 9. Antenna, 10. Waterproof O-ring, 11. Rubber cap;
- FIG. 3 1. Antenna protective sleeve, 2. Sensor support ring, 3. Connection port, 4. Center link;
- FIG. 4 1. Antenna protective cover, 2. ADV sea current meter sound beam transmitting probe, 3. Connection port, 4. Central link, 5. ADV sea current meter receiving or transmitting sound beam, 6. ADV sea current meter Sound beam receiving probe and support arm, 7. ADV sea current meter speed acquisition window.
- each sensor observation module (including physical, chemical, and biological) is relatively discrete, and is not suitable for generalization, modularization, standardization, and systemization, with high cost and low reliability. Not intelligent.
- the present invention integrates and fuses the antenna communication equipment and the sea current meter to measure the seawater flow velocity, and solves the following main problems arising from the separation between the two:
- the antenna is integrated with the current meter to solve the shortcomings of low space utilization rate of the sensor observation equipment on the ocean observation mobile platform and relatively high cost of discrete modules.
- the present invention provides an antenna structure with a function of measuring the velocity of seawater.
- the structure combines an ocean current meter and an antenna, and has both a current measurement function and an antenna communication function, which perfectly solves the underwater observation of the two. Interaction when mounted on a mobile platform.
- An antenna structure with a function of measuring the velocity of seawater includes an antenna and a current meter, the antenna and the current meter are integrated on a central link, the current meter is provided on the upper part of the center link, and the antenna is provided on the center link.
- the bottom end of the central link is connected to the underwater mobile platform, and the interior of the central link is hollow to form a line channel.
- An antenna protective cover is provided on the outside of the antenna, and the antenna protective cover adopts a streamlined design.
- FIG. 1 shows a fusion structure of an antenna and an acoustic time difference current meter
- FIG. 2 shows a cross-section and internal details of the structure of FIG. 1 to better illustrate a watertight connection method of the antenna protective cover and the current meter
- the antenna protection cover 1 adopts a streamlined design, which is tightly connected to the upper end of the sensor support arm 2, and the two are designed to be as close as possible.
- the sensor support arm 2 is an upper and lower sensor support arm of the acoustic time difference ocean current meter.
- the sensors transmit and receive ultrasonic waves to form the acoustic axis 5 of the current meter.
- the antenna protective cover adopts a streamlined design, which can minimize its influence on the current measurement of the current meter.
- the antenna protective cover 1 and the sensor support arm 2 of the current meter are threaded on the top, and a waterproof O-ring 10 is provided at the connection port 3.
- the connection thread 6 and the waterproof 0-ring 10 in FIG. 2 specifically show the connection structure at the connection port 3 in FIG. 1, which connects the antenna to the current meter.
- the antenna protective cover is connected with the top of the current meter by a threaded watertight connection. It is waterproofed by 0 turns and can withstand deep sea pressure. Among them, the screw connection is used for easy antenna installation, replacement, and debugging. Of course, other watertight connection methods can also be used, so long as it resists deep sea pressure. It can also be sealed, but it is not easy to install, replace, and debug.
- the antenna protective cover 1 is higher than the top of the current meter. This is to prevent the current meter from blocking the antenna and affecting antenna communication.
- the antenna signal is electromagnetic waves, and the current meter transmits sound waves. The two signals will not interfere with each other.
- the antenna When the antenna is communicating, the antenna will first expose to the water surface, and the current meter will not block the antenna.
- Fig. 5 shows the attitude of the glider floating in the water. However, when the glider is out of the water, the antenna will be exposed above the sea surface to ensure smooth communication.
- the antenna starts to work when the antenna is exposed from the water surface, and the current meter stops working; when the glider is sailing in the sea, the antenna stops working when the antenna is not exposed, and the current meter is in the working state. This In this way, it is further ensured that the antenna and the current meter cannot interfere with each other.
- the current meter uses an acoustic time difference current meter, and the acoustic time difference current meter has a disc structure (such as the MAVS current meter from NOBSKA in the United States).
- the current meter used in the premises may also have the structure A shown in FIG. 1 and the structure C shown in FIG. 4.
- FIG. 5 is only for illustration. The method of the present invention is not limited to the structure A shown in FIG. 1, the structure B shown in FIG. 3, and the structure C shown in FIG. 4.
- the current meter used may be acoustic Jet lag current meter or ADV current meter, but it is not limited to these two types of current meter. Any acoustic current meter can be used.
- the inside of the hollow link 4 is also shown, and the inside is hollow to form a pressure-resistant hollow link internal line channel 7.
- Each sensor, antenna line, etc. are routed through the link internal channel.
- the central link 4 has a fixed installation effect.
- the fusion structure of the antenna and the current meter of the present invention is connected to an underwater mobile platform such as a glider through the central link 4.
- the inside of the center link 4 is also an electrical circuit passage, and the antenna and current meter lines are routed inside the center link 4 and connected to the electronic cabin placed inside the glider.
- the current meter includes an upper sensor support ring and a lower sensor support ring, and the upper sensor support ring and the lower sensor support ring are arranged with each other.
- Transceiver of ultrasonic waves The upper sensor support ring and the lower sensor support ring are fixed on the upper part of the central link in parallel up and down, and the antenna protective sleeve is screw-connected to the top of the central link.
- the present invention may also adopt the structural form shown in FIG. 4.
- FIG. 5 shows an application example of the structure B of FIG. 3.
- Structure B is applied to the glider, which perfectly solves the problem that the antenna and the current meter can not be harmonized and interfered with each other when the mobile platform is used to observe the current.
- the present invention is applied to an underwater observation mobile platform, and is an antenna structure with a current measurement function. It adopts a fusion design and uses a threaded watertight connection technology to integrate the antenna with the current meter, which solves the problem of low space utilization when the underwater vehicle is equipped with the sensor device such as the antenna and the current meter; alleviating the two
- the total weight is conducive to the weight reduction of the mobile platform for underwater observation. It increases the integration of the sensor and facilitates the modular installation and use. It increases the types of research physical quantities that can be collected by the underwater vehicle, thereby improving the data collection efficiency of the underwater vehicle. This saves human, financial, and material resources; makes the design investment of the underwater observation mobile platform more modular, and the cost becomes lower.
- the antenna and the current meter included in the present invention observes the mobile platform end near water, the antenna observes the mobile platform end far (the installation height of the antenna is higher than the current meter), and the antenna protective cover is streamlined
- the antenna protection sleeve is tightly connected to the upper end of the center rod of the ocean current meter, as close as possible, so that the antenna protection sleeve, connecting rod, etc. do not block the sound current axis of the ocean current meter, and the current meter support rod, etc. will not block the antenna signal transmission.
- the emitted sound wave does not interfere with the electromagnetic wave communication of the antenna. Therefore, in the past, the discrete existence of the antenna and the current meter was solved, and the former affected the current disturbance of the latter, while ensuring that the antenna and the current meter could work normally.
- the antenna and the current meter included in the present invention adopt a mode switching technology so that the working hours of the two do not overlap. Underwater vehicles such as water gliders emerge from the water surface. When antenna communication is needed, the antenna works and the current meter does not work. When returning to the sea, when antenna communication is not needed, the antenna is turned off and the current meter performs current measurement. This working mode makes it possible for the antenna and the current meter not to interfere with each other, thereby ensuring the normal operation of the two.
- the invention is applied to an underwater observation mobile platform, and is an antenna structure with a current measurement function.
- the present invention is not a redesign of a new type of antenna or ocean current meter.
- the key point is that the present invention creatively provides a fusion design of an antenna and a current meter sensor from the perspective of integration and integration of the antenna and the current meter sensor.
- the simple fusion design while ensuring the normal operation of the antenna and the current meter, has brought many advantages as follows:
- the present invention solves the problem of mutual interference in the installation of ocean current observation equipment and antenna communication equipment. At the same time, it improves the space utilization of sensor equipment, reduces equipment weight, and reduces development costs, thereby promoting the use of ocean observation equipment. Integration and generalization are of great significance for solving cutting-edge current observations on mobile platforms and real-time observations of currents on mobile platforms.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
本发明公开了一种带有测量海水流速功能的天线结构,包括天线和海流计,天线和海流计一起集成在中心连杆上,海流计设置于中心连杆的上部,天线设置于中心连杆的顶端,中心连杆的底端与水下移动平台连接,中心连杆的内部中空,形成线路通道。本发明将海流计和天线集成在一起,解决了水下航行器海流观测时,天线对海流计存在扰流影响的问题,提高了所采集海流数据的准确度。同时,解决了水下航行器搭载天线及海流计等传感器设备时空间利用率低的问题;减轻了两者的总重量,利于水下观测移动平台减重。
Description
一种带有测量海水流速功能的天线结构
技术领域
[0001] 本发明涉及海洋观测领域, 具体地说是涉及一种用于海洋移动观测平台上的观 测模块, 更为具体地说是涉及一种带有测量海水流速功能的天线结构。
背景技术
[0002] 进入 21世纪后, 具有使用方便、 操控灵活的海洋环境移动观测平台技术在动 力要素、 声学要素、 气象等现场观测调查中的作用日趋强大, 已在占海洋总面 积 90%的深远海区域开发利用中成为主力军。 移动观测平台包含载体、 通信、 导 航控制、 低功耗管理、 传感器等主要功能模块, 技术涉及结构设计、 可靠性、 卫星定位和通信、 传感器集成、 微功耗控制管理等基础技术和工程实现。 移动 观测平台主要包扩 ROV(Remotely Operated
Vehicle, 缆控航行器)、 AUV( Autonomous Underwater Vehicle, 自主水下航行器) 、 AUG(Autonomous Underwater Glider, 水下滑翔机)、 WaveGlider (波浪能滑翔 器) 、 Drifting Buoy (漂流浮标) 、 USV (无人遥控艇) 、 Semi-Submersible Vehicle (半潜式航行器) 等。
[0003] 性能优良的水下移动观测平台, 须集先进的导航操控系统、 能源与推进系统、 通信与环境感知技术于一体, 因此移动观测平台技术的发展离不开单项技术和 设备的快速发展, 其发展基本趋势包括以下两点: (1) 通用化、 模块化、 标准 化和体系化发展, 以便于降低成本, 提高可靠性; (2) 提高传感器、 设备精度 , 运用高性能微处理器, 改善控制系统, 提高自主性和智能化程度。
[0004] 移动平台海洋观测的对象可能是多元化的, 包括物理的、 化学的、 生物的。 但 观测传感器大部分比较独立。 拿天线与海流计来说, 目前, 世界上还没有见到 天线与海流计集成在一起的装备或仪器。
[0005] 以滑翔机为例, 天线一般搭载于滑翔机尾部, 而为了获取最好的海水流速数据 , 海流计应该放在滑翔机最前端, 避免任何其他仪器对海流产生扰流影响。 然 而, 滑翔机前端挂载过多仪器却不利于航行控制, 综合考虑, 海流计还是要放
置于滑翔机尾部。
[0006] 目前, 水下移动观测平台在进行包括海流观测等多物理量观测时, 也基本都是 将海流计与通讯天线置于同一端, 这显然会存在以下主要缺陷:
[0007] 1、 分立模块集成度低、 空间利用率低、 成本相对较高。 各分立模块所占空间 大, 使设备携带传感器密度变小, 一次出海实验观测数据量种类少, 间接增加 了研发或海洋观测试验的人力财力物力。
[0008] 2、 天线对海流计测流产生扰流影响。 海流计与天线置于一端时, 天线的存在 对海流计测流产生很大的扰流影响, 严重影响测流准确度, 从而对数据的真实 性科学性产生很大影响。
发明概述
技术问题
问题的解决方案
技术解决方案
[0009] 基于上述技术问题, 本发明提供一种带有测量海水流速功能的天线结构, 该结 构将海流计与天线结合在一起, 既有测流功能, 又有天线通讯功能, 完美解决 了两者在水下观测移动平台上搭载时的相互影响。
[0010] 本发明所采用的技术解决方案是:
[0011] 一种带有测量海水流速功能的天线结构, 包括天线和海流计, 天线和海流计一 起集成在中心连杆上, 海流计设置于中心连杆的上部, 天线设置于中心连杆的 顶端, 中心连杆的底端与水下移动平台连接, 中心连杆的内部中空, 形成线路 通道。
[0012] 优选的, 所述天线的外部设置有天线保护套, 天线保护套采用流线型设计。
[0013] 优选的, 在天线保护套的内部设置有用于稳固天线的橡皮帽, 橡皮帽上表面顶 住天线保护套, 橡皮帽下表面抵住天线。
[0014] 优选的, 所述海流计包括上侧 3个传感器与下侧 3个传感器, 上侧 3个传感器与 下侧 3个传感器一一对应, 传感器互相收发超声波, 形成海流计声轴; 其中, 上 侧 3个传感器安装在上传感器支撑臂的底部周圈, 下侧 3个传感器安装在下传感 器支撑臂的末端。
[0015] 优选的, 所述下传感器支撑臂呈爪形, 其固定在中心连杆的上部, 上传感器支 撑臂的底端中心与中心连杆的顶端连接, 上传感器支撑臂的顶端与天线保护套 螺纹连接, 在螺纹连接处设置有防水 0型圈。
[0016] 优选的, 所述海流计包括上传感器支撑环和下传感器支撑环, 在上传感器支撑 环和下传感器支撑环上均布置有互相收发超声波的传感器; 上传感器支撑环和 下传感器支撑环上下平行固定在中心连杆的上部, 所述天线保护套与中心连杆 的顶部螺纹连接。
[0017] 优选的, 所述水下移动平台包括水下滑翔机、 缆控航行器、 自主水下航行器、 波浪能滑翔器、 漂流浮标、 无人遥控艇和半潜式航行器等。
发明的有益效果
有益效果
[0018] 1、 本发明将海流计和天线集成在一起, 解决了水下航行器海流观测时, 天线 对海流计存在扰流影响的问题, 提高了所采集海流数据的准确度。
[0019] 2、 本发明解决了水下航行器搭载天线及海流计等传感器设备时空间利用率低 的问题; 同时, 减轻了两者的总重量, 利于水下观测移动平台减重。
[0020] 3、 本发明使传感器集成度增高, 易于模块化安装使用, 使水下航行器所能采 集的研究物理量种类增多, 从而提高了水下航行器的数据采集效率, 节省了人 力财力物力, 使水下观测移动平台的成本更趋低廉化。
[0021] 4、 本发明解决了海流观测设备与天线通讯设备搭载出现相互干扰的问题, 同 时, 提高了传感器设备空间利用率、 减轻了设备重量、 降低了开发成本, 从而 推动了海洋观测设备的集成化、 通用化等, 对解决移动平台海流观测, 实现移 动平台海流实时观测等具有发展前景的前沿课题具有重大意义。
对附图的简要说明
附图说明
[0022] 下面结合附图与具体实施方式对本发明作进一步说明:
[0023] 图 1为本发明一种实施方式的结构原理示意图, 记为结构 A;
[0024] 图 2为图 1的剖面视图;
[0025] 图 3为本发明另一种实施方式的结构原理示意图, 记为结构 B ;
[0026] 图 4为本发明再一种实施方式的结构原理示意图, 记为结构 C;
[0027] 图 5为本发明的一种应用示意图。
[0028] 图 1-2中: 1.天线保护套, 2.传感器支撑臂, 3.连接口, 4.中心连杆, 5.海流计声 轴, 6.连接螺纹, 7.抗压空心连杆内部线路通道, 8.超声波换能器, 9.天线, 10. 防水 0型圈, 11.橡皮帽;
[0029] 图 3中: 1.天线保护套, 2.传感器支撑环, 3.连接口, 4.中心连杆;
[0030] 图 4中: 1.天线保护套, 2.ADV海流计声束发射探头, 3.连接口, 4.中心连杆, 5 .ADV海流计接收或发射声束, 6. ADV海流计声束接收探头及支撑臂, 7.ADV海 流计测速采集窗口。
发明实施例
本发明的实施方式
[0031] 目前, 海洋观测移动平台上, 各传感器观测模块 (包括物理的、 化学的、 生物 的) 比较分立, 不适于通用化、 模块化、 标准化、 体系化, 成本较高, 可靠性 低, 智能化不强。 本发明将天线通信设备与海流计测量海水流速设备进行集成 、 融合, 解决这两者分立存在所产生的如下主要问题:
[0032] 1、 天线与海流计集成融合, 解决海洋观测移动平台上传感器观测设备空间利 用率低、 分立模块成本相对较高等缺点。
[0033] 2、 解决天线对海流计测流产生扰流的问题。 海洋移动平台进行海洋观测, 人 们希望其一次下水实验获得的观测量种类越多越好, 这样必然带来很多好处, 极大提高观测效率, 降低观测成本。 但是相对应的观测仪器如何在平台上进行 布置装配, 则需要充分考虑仪器的使用环境及其自身使用特性等因素, 以使其 保持良好状态进行运作。 以滑翔机为例说明, 天线一般搭载于滑翔机尾部, 而 为了获取最好的海水流速数据, 海流计应该放在滑翔机最前端, 避免任何其他 仪器对海流产生扰流影响。 如若还要同时进行湍流观测, 则湍流仪器必须放在 最前端, 因为湍流测量对扰流问题要求更高。 此时, 为了避免滑翔机前端挂载 过多仪器设备而不利于航行控制, 则海流计需要置于滑翔机尾部。 这时, 天线 对海流计测流的扰流影响就产生了。 而两者集成融合后, 就可以解决扰流问题
[0034] 本发明提供一种带有测量海水流速功能的天线结构, 该结构将海流计与天线结 合在一起, 既有测流功能, 又有天线通讯功能, 完美解决了两者在水下观测移 动平台上搭载时的相互影响。
[0035] 一种带有测量海水流速功能的天线结构, 包括天线和海流计, 天线和海流计一 起集成在中心连杆上, 海流计设置于中心连杆的上部, 天线设置于中心连杆的 顶端, 中心连杆的底端与水下移动平台连接, 中心连杆的内部中空, 形成线路 通道。 所述天线的外部设置有天线保护套, 天线保护套采用流线型设计。
[0036] 下面结合附图对本发明带有测量海水流速功能的天线结构进行更为具体的说明
[0037] 图 1示出天线与声学时差海流计的融合结构, 图 2给出了图 1结构的剖面及内部 细节, 以更好说明天线保护套与海流计的水密连接方法。 如图 1所示, 天线保护 套 1采用流线型设计, 其紧密连接在传感器支撑臂 2的上端, 设计上两者尽量靠 近。 其中, 传感器支撑臂 2为声学时差海流计的上下传感器支撑臂, 上侧共有 3 个传感器, 与下侧 3个传感器一一对应, 传感器互相收发超声波, 形成海流计声 轴 5。 天线保护套采用流线型设计, 最大可能减少其对海流计测流的扰流影响。
[0038] 如图 2所示, 天线保护套 1与海流计的传感器支撑臂 2顶部采用螺纹连接, 并在 连接口 3处设置有防水 0型圈 10。 图 2中连接螺纹 6和防水 0型圈 10具体展现了图 1 中连接口 3处的连接构造, 该连接口对天线与海流计进行连接。 天线保护套与海 流计顶端采用螺纹水密连接, 采用 0圈防水, 可抗深海压力。 其中, 采用螺纹连 接易于天线安装、 更换、 调试等。 当然, 也可采用其他水密连接方式, 但凡抗 深海压力即可。 亦可封死, 但不易于安装、 更换、 调试等。
[0039] 如图 1所示, 天线保护套 1要高于海流计顶端。 这是为了防止海流计对天线造成 遮挡, 影响天线通讯; 另外, 天线信号是电磁波, 海流计传输发射的是声波, 两种信号不会相互干扰。 天线进行通讯时, 天线将首先露出水面, 海流计不会 对天线造成遮挡。 在应用实例图 5中, 显示的是滑翔机在水中下浮的姿态, 但其 出水面时, 天线将首先露在海面之上, 保证通讯畅通。 在天线与海流计工作模 式的设置中, 天线露出水面时开始工作, 海流计停止工作; 滑翔机在海中航行 , 天线未露出水面, 不进行通讯时, 天线停止工作, 海流计处于工作状态。 这
样, 也更加保证了, 天线与海流计之间无法相互干扰。
[0040] 在应用实例图 5中, 海流计采用声学时差海流计, 声学时差海流计为圆盘结构 (如美国 NOBSKA的 MAVS海流计) 。 另外, 该处所采用海流计也可为如图 1所 示的结构 A, 如图 4所示的结构 C。 图 5只为举例说明之用, 本发明的思路方法并 不限于图 1示出的结构 A、 图 3示出的结构 B、 及图 4示出的结构 C, 所采用的海流 计可为声学时差海流计或 ADV海流计, 但并限于此两种海流计, 但凡海流计是 声学的, 均可。
[0041] 如图 2所示, 还显示了中空连杆 4内部, 内部是空心的, 形成抗压空心连杆内部 线路通道 7 , 各传感器、 天线线路等均通过连杆内部通道走线。
[0042] 中心连杆 4有固定安装作用, 本发明的天线与海流计融合结构通过中心连杆 4与 滑翔机等水下移动平台连接。 另, 中心连杆 4内部也是电气线路通道, 天线、 海 流计线路在中心连杆 4内部走线, 与滑翔机内部放置的电子舱连接。
[0043] 为了天线保护套中的天线安装稳固, 使用橡皮帽或其它弹性物加以固定。 如图 2中, 橡皮帽 11上表面顶住天线保护套, 橡皮帽下表面抵住天线, 起到稳固天线 的作用。
[0044] 图 3给出了本发明的另一种实施方式, 如图所示, 海流计包括上传感器支撑环 和下传感器支撑环, 在上传感器支撑环和下传感器支撑环上均布置有互相收发 超声波的传感器。 上传感器支撑环和下传感器支撑环上下平行固定在中心连杆 的上部, 所述天线保护套与中心连杆的顶部螺纹连接。
[0045] 另外, 本发明还可以采用图 4给出的结构形式。 在应用图 4的结构时, 应该注意 天线保护套 1不要对 ADV海流计接收或发射声束 5造成遮挡。 其他的, 关于图 4给 出的结构形式, 在此不再详细说明。
[0046] 为了更好地对本发明进行说明, 图 5给出了图 3结构 B的一种应用实例。 结构 B 应用在了滑翔机上, 完美解决了移动平台海流观测中天线和海流计搭载安装无 法调和、 互相干扰的问题。
[0047] 本发明应用于水下观测移动平台, 是一种带有测流功能的天线结构。 其采用融 合设计, 利用螺纹水密连接技术, 将天线与海流计集成融合在一起, 解决了水 下航行器搭载天线及海流计等传感器设备时空间利用率低的问题; 减轻了两者
的总重量, 利于水下观测移动平台减重; 使传感器集成度增高, 易于模块化安 装使用, 使水下航行器所能采集的研究物理量种类增多, 从而提高了水下航行 器的数据采集效率, 节省了人力财力物力; 使水下观测移动平台的设计投入更 趋模块化, 成本更趋低廉化。
[0048] 本发明所包含的天线与海流计, 海流计在近水下观测移动平台端, 天线在远水 下观测移动平台端 (天线的安装高度高于海流计) , 且天线保护套采用流线型 设计, 天线保护套与海流计中心杆上端紧密连接, 尽量靠近, 从而使天线保护 套、 连杆等不遮挡海流计声轴, 海流计支撑杆等也不会遮挡天线信号发射, 同 时海流计所发出的声波对天线电磁波通讯不造成干扰。 从而在解决了以往天线 与海流计分立存在, 前者对后者扰流影响的同时, 又保证天线与海流计都能正 常工作。
[0049] 本发明所包含的天线与海流计, 采用模式切换技术, 使两者工作时间不发生重 叠。 水下滑翔机等水下航行器露出水面, 需要天线通讯时, 天线工作, 海流计 不工作; 回到海中, 不需要天线通讯时, 天线处于关闭状态, 海流计进行测流 工作。 这样的工作模式, 使天线和海流计之间更不会出现相互干扰的情况, 从 而更加保证两者正常工作。
[0050] 本发明应用于水下观测移动平台, 是一种带有测流功能的天线结构。 本发明不 是重新设计新型的天线或海流计, 关键的, 本发明从天线与海流计等传感器的 集成、 融合模块化角度出发, 创造性的给出了天线与海流计等传感器的融合设 计, 看似简单的融合设计, 在保证天线、 海流计各自正常工作的同时, 却带来 了如下众多的优点:
[0051] 1、 解决了水下航行器海流观测时, 天线对海流计存在扰流影响的问题, 提高 了所采集海流数据的准确度。
[0052] 2、 解决了水下航行器搭载天线及海流计等传感器设备时空间利用率低的问题
; 同时, 减轻了两者的总重量, 利于水下观测移动平台减重。
[0053] 3、 使传感器集成度增高, 易于模块化安装使用, 使水下航行器所能采集的研 究物理量种类增多, 从而提高了水下航行器的数据采集效率, 节省了人力财力 物力, 使水下观测移动平台的成本更趋低廉化。
[0054] 4、 本发明解决了海流观测设备与天线通讯设备搭载出现相互干扰的问题, 同 时, 提高了传感器设备空间利用率、 减轻了设备重量、 降低了开发成本, 从而 推动了海洋观测设备的集成化、 通用化等, 对解决移动平台海流观测, 实现移 动平台海流实时观测等具有发展前景的前沿课题具有重大意义。
[0055] 上述方式中未述及的部分采取或借鉴已有技术即可实现。
[0056] 需要说明的是, 在本说明书的教导下, 本领域技术人员所作出的任何等同替代 方式, 或明显变形方式, 均应在本发明的保护范围之内。
Claims
[权利要求 1] 一种带有测量海水流速功能的天线结构, 其特征在于: 包括天线和海 流计, 天线和海流计一起集成在中心连杆上, 海流计设置于中心连杆 的上部, 天线设置于中心连杆的顶端, 中心连杆的底端与水下移动平 台连接, 中心连杆的内部中空, 形成线路通道。
[权利要求 2] 根据权利要求 1所述的一种带有测量海水流速功能的天线结构, 其特 征在于: 所述天线的外部设置有天线保护套, 天线保护套采用流线型 设计。
[权利要求 3] 根据权利要求 2所述的一种带有测量海水流速功能的天线结构, 其特 征在于: 在天线保护套的内部设置有用于稳固天线的橡皮帽, 橡皮帽 上表面顶住天线保护套, 橡皮帽下表面抵住天线。
[权利要求 4] 根据权利要求 2所述的一种带有测量海水流速功能的天线结构, 其特 征在于: 所述海流计包括上侧 3个传感器与下侧 3个传感器, 上侧 3个 传感器与下侧 3个传感器一一对应, 传感器互相收发超声波, 形成海 流计声轴; 其中, 上侧 3个传感器安装在上传感器支撑臂的底部周圈 , 下侧 3个传感器安装在下传感器支撑臂的末端。
[权利要求 5] 根据权利要求 4所述的一种带有测量海水流速功能的天线结构, 其特 征在于: 所述下传感器支撑臂呈爪形, 其固定在中心连杆的上部, 上 传感器支撑臂的底端中心与中心连杆的顶端连接, 上传感器支撑臂的 顶端与天线保护套螺纹连接, 在螺纹连接处设置有防水 0型圈。
[权利要求 6] 根据权利要求 2所述的一种带有测量海水流速功能的天线结构, 其特 征在于: 所述海流计包括上传感器支撑环和下传感器支撑环, 在上传 感器支撑环和下传感器支撑环上均布置有互相收发超声波的传感器; 上传感器支撑环和下传感器支撑环上下平行固定在中心连杆的上部, 所述天线保护套与中心连杆的顶部螺纹连接。
[权利要求 7] 根据权利要求 1所述的一种带有测量海水流速功能的天线结构, 其特 征在于: 所述水下移动平台包括水下滑翔机、 缆控航行器、 自主水下 航行器、 波浪能滑翔器、 漂流浮标、 无人遥控艇和半潜式航行器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811066939.2 | 2018-09-13 | ||
CN201811066939.2A CN109449562A (zh) | 2018-09-13 | 2018-09-13 | 一种带有测量海水流速功能的天线结构 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020052219A1 true WO2020052219A1 (zh) | 2020-03-19 |
Family
ID=65532931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/079976 WO2020052219A1 (zh) | 2018-09-13 | 2019-03-28 | 一种带有测量海水流速功能的天线结构 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109449562A (zh) |
WO (1) | WO2020052219A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109449562A (zh) * | 2018-09-13 | 2019-03-08 | 中国海洋大学 | 一种带有测量海水流速功能的天线结构 |
CN114828510B (zh) * | 2022-06-21 | 2022-09-23 | 中国海洋大学 | 一种分布式布局的波浪滑翔器控制系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050038487A (ko) * | 2003-10-22 | 2005-04-27 | 현대자동차주식회사 | 자동차용 루프안테나의 수밀 구조 |
CN202453007U (zh) * | 2011-12-27 | 2012-09-26 | 上海瑞华(集团)有限公司 | 一种水能参数综合测试装置 |
CN105258740A (zh) * | 2015-11-17 | 2016-01-20 | 张广海 | 一种水流流量无线测验系统 |
CN207335706U (zh) * | 2017-10-25 | 2018-05-08 | 沈阳大学 | 一种水文监测装置 |
CN109449562A (zh) * | 2018-09-13 | 2019-03-08 | 中国海洋大学 | 一种带有测量海水流速功能的天线结构 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202486156U (zh) * | 2011-10-09 | 2012-10-10 | 唐山现代工控技术有限公司 | 一种水下智能流速仪 |
CN102565454B (zh) * | 2012-01-09 | 2015-01-14 | 水利部交通运输部国家能源局南京水利科学研究院 | 一体化超小型网络无线数传流速仪 |
JP6102304B2 (ja) * | 2013-02-13 | 2017-03-29 | 沖電気工業株式会社 | 水中音響センサの展開構造 |
CN103293334B (zh) * | 2013-05-07 | 2015-05-20 | 河南财经政法大学 | 流速计声学传感器 |
JP6418684B2 (ja) * | 2014-12-10 | 2018-11-07 | 横河電子機器株式会社 | 電波式流速計 |
KR101559491B1 (ko) * | 2015-07-01 | 2015-10-19 | 한국해양과학기술원 | 표류 부이 |
CN207106809U (zh) * | 2017-03-22 | 2018-03-16 | 台州市港航管理局 | 一种固定漂浮式海洋测流装置 |
-
2018
- 2018-09-13 CN CN201811066939.2A patent/CN109449562A/zh active Pending
-
2019
- 2019-03-28 WO PCT/CN2019/079976 patent/WO2020052219A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050038487A (ko) * | 2003-10-22 | 2005-04-27 | 현대자동차주식회사 | 자동차용 루프안테나의 수밀 구조 |
CN202453007U (zh) * | 2011-12-27 | 2012-09-26 | 上海瑞华(集团)有限公司 | 一种水能参数综合测试装置 |
CN105258740A (zh) * | 2015-11-17 | 2016-01-20 | 张广海 | 一种水流流量无线测验系统 |
CN207335706U (zh) * | 2017-10-25 | 2018-05-08 | 沈阳大学 | 一种水文监测装置 |
CN109449562A (zh) * | 2018-09-13 | 2019-03-08 | 中国海洋大学 | 一种带有测量海水流速功能的天线结构 |
Also Published As
Publication number | Publication date |
---|---|
CN109449562A (zh) | 2019-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108287018B (zh) | 基于波浪滑翔器的海洋环境噪声测量装置 | |
CN207809689U (zh) | 一种基于监测平台的海洋浮标 | |
CN201102620Y (zh) | 可折叠和可伸缩式多功能浮标 | |
CN203593143U (zh) | 一种风光互补型无人海洋监测艇 | |
CN103507929A (zh) | 组合翼抗流型水下滑翔机 | |
CN107651118B (zh) | 一种深海潜标无线实时化水面浮标系统及其实现方法 | |
WO2020052219A1 (zh) | 一种带有测量海水流速功能的天线结构 | |
CN213768894U (zh) | 基于波浪能滑翔器的水下实时观测系统 | |
CN207717803U (zh) | 一种深海潜标无线实时化系统 | |
CN108008145B (zh) | 一种深海潜标无线实时化系统 | |
WO2011085526A1 (zh) | 溢油定位报警浮标装置 | |
CN109374922B (zh) | 一种用于波浪滑翔器拖曳式垂向稳定流速剖面测量浮标 | |
CN108336493A (zh) | 一种水下潜器多功能通讯天线 | |
CN202256722U (zh) | 多参数表层漂流浮标 | |
KR102052014B1 (ko) | 다기능 위치추적체 | |
CN110920809A (zh) | 一种深海水下平台中继通讯浮标装置 | |
CN208453212U (zh) | 海气界面观测数据实时化水面中继通讯浮子 | |
CN114013574A (zh) | 智能水文气象观测系统 | |
Cruz et al. | A versatile acoustic beacon for navigation and remote tracking of multiple underwater vehicles | |
CN108267716A (zh) | 一种深海声信标定向引导装置 | |
CN107344605A (zh) | 一种拖曳式自主深度水下观测系统 | |
CN211810089U (zh) | 一种深海水下平台中继通讯浮标装置 | |
CN211918937U (zh) | 一种海洋信息采集装置 | |
CN205574243U (zh) | 拖曳式自主深度水下观测系统 | |
CN105841869B (zh) | 波浪滑翔器浮体受力监测装置及受力计算方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19859617 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19859617 Country of ref document: EP Kind code of ref document: A1 |