CN103507929A - 组合翼抗流型水下滑翔机 - Google Patents

组合翼抗流型水下滑翔机 Download PDF

Info

Publication number
CN103507929A
CN103507929A CN201310450362.6A CN201310450362A CN103507929A CN 103507929 A CN103507929 A CN 103507929A CN 201310450362 A CN201310450362 A CN 201310450362A CN 103507929 A CN103507929 A CN 103507929A
Authority
CN
China
Prior art keywords
underwater glider
buoyancy
module
aerodone
cabin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310450362.6A
Other languages
English (en)
Other versions
CN103507929B (zh
Inventor
张云海
赵加鹏
彭希安
刘来连
任翀
刘晓东
闵强利
李锋
邓国新
吴小涛
祝侃
余忠晶
陈刚
方巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
710th Research Institute of CSIC
Original Assignee
710th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 710th Research Institute of CSIC filed Critical 710th Research Institute of CSIC
Priority to CN201310450362.6A priority Critical patent/CN103507929B/zh
Publication of CN103507929A publication Critical patent/CN103507929A/zh
Application granted granted Critical
Publication of CN103507929B publication Critical patent/CN103507929B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明属于海洋环境监测、侦察技术领域,具体涉及一种水下滑翔机。一种组合翼抗流型水下滑翔机,其技术方案是,前密封舱(25)、中透水舱(23)与后密封舱(19)依次连接,组成流线型结构,前密封舱(25)的壳体外安装有一对活动副翼(6),沿中透水舱(23)壳体的中轴线水平面外安装有一对后掠翼(8),后密封舱(19)设有垂直尾鳍(15);采用单固定后掠翼时可实现最大水平速度的航行,滑翔角35°,升阻比1.5;采用固定后掠翼+活动副翼的组合形式时以追求最远航程为目标,滑翔角22°,升阻比2.5。本发明可通过改变滑翔翼的组合形式,灵活改变滑翔参数,为水下滑翔机执行不同的任务提供了更好的适应性。

Description

组合翼抗流型水下滑翔机
技术领域
本发明属于海洋环境监测、侦察技术领域,具体涉及一种水下滑翔机。
背景技术
水下滑翔机是上世纪90年代发展起来一种适合远距离操作、续航力持久的新型水下无人航行器,其在海洋水文资料探测和军事方面应用相当广泛。水下滑翔机具有使用方便、灵活、可遥控、可重复使用等特点,既可实现水平面测量,也可完成垂直面测量,用于海洋环境监测可有效提高海洋环境的空间和时间观测密度。目前美国已研制了多型水下滑翔机,其电能或温差能推动的普通型水下滑翔机,Slocum、Spray、Seaglider最高航速都不超过1kn,主要用于低流速海域。为了在高流速海域使用,美国也研制了带有螺旋桨推进的小型Tethys混合型滑翔机和大型“水下飞鸟”新型滑翔机,Tethys混合型滑翔机的性能指标为负载功率8W时,以2kn速度可航行1000km。他们除了利用这类平台进行海洋环境调查、水下精密测绘、目标探查外,还有一个重要目的就是秘密收集其它国家的近海环境资料,为未来海上战场提供海洋环境信息支持。鉴于该技术的特殊性和重要性,美国在水下滑翔机装备和技术上对中国实行封锁和禁运。
由于我国大部分海域受到黑潮的影响,海流流速较大,南海、东海部分海域,常年平均流速在1kn左右。我国在南海北部1600米海域布放的潜标曾测到水下300米海流达到2.5kn,在靠近越南南海中部2600米海域布放的潜标曾测到从水面到水下500米左右,平均海流保持在1kn时间超过5天。国内外现有的水下滑翔机大都只具有低速(小于1kn)滑翔能力,在大流速海域无法正常使用。
发明内容
本发明的目的是,为了克服现有普通水下滑翔机技术无法在大流速海域使用的不足,本发明提出一种组合翼抗流型水下滑翔机,其具有大油囊平衡式浮力驱动装置和组合式滑翔翼,能够实现低速(0.5kn)、中速(1kn)、高速(2kn)和多姿态(20°~40°)滑翔的目的。
本发明的技术方案是:一种组合翼抗流型水下滑翔机,它包括:前密封舱、中透水舱和后密封舱;前密封舱、中透水舱与后密封舱依次连接,组成流线型回转体结构;
前密封舱的壳体头部设有装有高度计的头盖,内部依次安装有主电源、航姿控制机构与浮力驱动装置;
中透水舱为开有小孔的薄壁光筒,其内装有与浮力驱动装置相连接的外油囊和连接前后密封舱电器设备的水密耐压电缆;中透水舱外安装有一对左右对称的后掠翼,后掠翼位于水下滑翔机回转轴线的同一平面内;
后密封舱的壳体前部设有弧形盖;尾部设有保持航向稳定的垂直尾鳍、通信天线、抛载重块与天线杆;后密封舱的壳体外部设有CTD传感器与压力传感器;后密封舱内设有抛载机构、导航控制模块、通信模块、备用电源、磁罗盘与连接电缆。
本发明的有益效果是:1、本发明采用流线型回转体+水平滑翔翼+垂直鳍的流体动力布局形式,其中水平滑翔翼采用固定后掠翼+活动副翼的组合形式。采用单固定后掠翼时可实现最大水平速度的航行,滑翔角35°,升阻比1.5;采用固定后掠翼+活动副翼的组合形式时以追求最远航程为目标,滑翔角22°,升阻比2.5。本发明可通过改变滑翔翼的组合形式,灵活改变滑翔参数,为水下滑翔机执行不同的任务提供了更好的适应性。
2、本发明设计的大浮力调节及平衡技术是以满足我国某些高海流特殊复杂海洋环境的自动观测应用需求。本发明发现的保持水下滑翔机航姿稳定的浮力驱动装置外油囊和内油箱安装位置平衡关系,奠定了水下滑翔机应用大油囊的理论基础,基本消除了传统布置方案中驱动浮力变化对水下滑翔机俯仰力矩变化的影响,克服了现有水下滑翔机不能通过增加驱动浮力来提高滑翔速度的缺陷,为普通型水下滑翔机在大流速海域应用奠定了基础。
3、本发明对水下滑翔机的导航控制模块采用模块化设计,进行分布式控制,系统内部接口采用总线模式。某模块的更换、维护或升级换代不会对系统和其它模块产生影响。使用两组独立电源供电,正常状态下主电源为全系统的工作供电,备用电源在主电源故障时,自动切换,并完成应急处理工作流程,使水下滑翔机应急上浮至水面,进行故障诊断、处理和系统恢复,提高系统运行的可靠性和安全性。
附图说明
图1为本发明整体结构剖视图;
图2为图1的俯视图;
其中,1-头盖,2-高度计,3-主电源,4-航姿控制机构,5-油箱,6-活动副翼,7-外油囊,8-后掠翼,9-弧形盖,10-CTD传感器,11-压力传感器,12-备用电源,13-抛载机构,14-抛载重块,15-垂直尾鳍,16-天线杆,17-通信天线,18-连接电缆,19-后密封舱,20-导航控制模块,21-磁罗盘,22-水密耐压电缆,23-中透水舱,24-浮力驱动装置,25-前密封舱。
具体实施方式
参见附图1、2,一种组合翼抗流型水下滑翔机,它包括:前密封舱25、中透水舱23和后密封舱;前密封舱25、中透水舱23与后密封舱19依次连接,组成流线型回转体结构;
前密封舱25的壳体头部设有装有高度计2的头盖1,内部依次安装有主电源3、航姿控制机构4与浮力驱动装置24;前密封舱25的壳体外安装有一对活动副翼6;
中透水舱23为开有多个小孔的薄壁光筒,其内装有与浮力驱动装置24相连接的外油囊7和连接前后密封舱内电器设备的水密耐压电缆22;其外安装有一对左右对称的后掠翼8,后掠翼8位于水下滑翔机回转轴线的同一平面内,翼型为NACA层流对称翼型;
后密封舱19的壳体前部设有弧形盖9;尾部设有保持航向稳定的垂直尾鳍15、通信天线17、马蹄形抛载重块14与天线杆16;后密封舱19的壳体外部设有CTD传感器10与压力传感器11;后密封舱19内设有抛载机构13、导航控制模块20、通信模块17、备用电源12、磁罗盘21与连接电缆18。
水下滑翔机前密封舱25和后密封舱19是水密耐压舱,需要承受最大工作水深的静水压强,中舱是透水舱,浮力驱动装置24的外油囊7放在其中,前密封舱25的壳体材料为变形铝合金6061-T6,从工艺性考虑,采用分段结构,曲线段用实心棒或旋压件加工成型,直筒段是无筋薄壁圆柱壳,采用活动加强筋结构,航姿控制机构4和浮力驱动装置24装入后作为承压结构的加强筋。曲线段和直筒段采用两个径向O型圈密封连接,形成密封空舱;前密封舱25内还装有高度计2、主电源3、航姿控制机构4、浮力驱动装置24,必要时还需要装入调整平衡的砝码。
中透水舱23的壳体材料为变形铝合金6061-T6,结构为开有多个透水小孔的薄壁光筒,这样装在其中的外油囊7体积发生变化时,滑翔机就能感受到浮力的变化。为了保证前后舱电力和信息传输,中舱内还配置了两根同样型号的水密耐压电缆22,提高系统工作可靠性。采用常规紧固件方式将前密封舱25、中透水舱23和后密封舱19连接成整体,装配连接后壳体外径完全一致。
后密封舱由弧形盖9、后密封舱壳体19、抛载机构13、天线杆16以及CTD传感器10、压力传感器11组成的耐压水密舱。后密封舱壳体19的壳体材料为变形铝合金6061-T6,用实心棒加工成型。后密封舱内装有导航控制模块20、通信模块17、备用电源12、磁罗盘21、连接电缆18等。正常航行时,抛载机构13的控制杆插入抛载块14中将其固定;在滑翔机下潜出现意外时,由导航控制模块20启动抛载机构13的电磁铁,使其控制杆缩回,抛弃抛载块14,滑翔机上浮至水面,并发出报警信息;通信天线17内包括:卫星通信模块与无线电通信模块;卫星通信用于远程传输,无线电通信用于近距离数据下载和布放测试;通信天线17通过常规通信电缆与天线杆16连接。
浮力驱动装置24、航姿控制机构4、高度计2、抛载机构13、CTD传感器10、压力传感器11、磁罗盘21均以RS485总线方式与导航控制模块20连接,导航控制模块20与通信模块17通过RS232接口连接。
活动副翼6为三角形平板结构,其中心位于滑翔机浮心轴线与前密封舱25的1/2壳体半径的交汇处,其材料密度近似于海水密度,这样的活动副翼6不会影响滑翔机平衡参数;装上活动副翼6,可实现最远航程的滑翔运动,理论滑翔角22°,升阻比2.5,拆除活动副翼6,可实现最大水平速度的滑翔运动,理论滑翔角35°,升阻比1.5。
滑翔机采用两组独立电源供电,正常状态下主电源3为全系统的工作供电,备用电源12在主电源3故障时,自动切换,为全系统的工作供电。
本发明的滑翔形式有三种,一是在指定范围内,通过对控制航行俯仰角获得不同密度的锯齿形航行轨迹;二是在事先获知流速的水域,通过调整俯仰角和驱动浮力,使水平滑翔速度与流速相等,方向相反,这样获得垂直剖面航行轨迹;三是螺旋回转运动。在水下滑翔机处在锯齿形航行运动状态下,通过航姿控制机构4使滑翔机产生横滚,此时在流体动力和驱动浮力共同作用下,水下滑翔机将进行螺旋回转运动。固定横滚角可使水下滑翔机在某一区域螺旋上升或下降。消除横滚后,水下滑翔机又进入到直航滑行状态。依据该特性实现对水下滑翔机的水下导航控制。
某一组合翼抗流型水下滑翔机具体结构参数见下表:
Figure BDA0000388893030000041
滑翔机浮力驱动装置24的油箱5和外油囊7布置位置,由下式决定:
X 2 - X 0 X 1 - X 0 = - ( 0.154 ~ 0.168 )
式中:X0(mm)——滑翔机零浮力平衡状态浮心位置;
X1(mm)——外油囊7储油体积中心距滑翔机零浮力平衡状态浮心位置的相对距离;
X2(mm)——油箱5储油体积中心距滑翔机零浮力平衡状态浮心位置的相对距离;
可得X1=X0+(368~372),X2=X0-(62~58)。
本设计的水下滑翔机浮力驱动装置24的油箱5安装位置在滑翔机浮心位置前60mm,外油囊7安装位置在滑翔机浮心位置后370mm时,可保证由油箱5将液压油泵向外油囊7时,油箱5的质量变化产生的重力矩与外油囊7质量及体积变化时产生的力矩始终平衡,即驱动浮力变化时不影响滑翔机的航行姿态。这与已见报道的国内外水下滑翔机一般将外油囊放在尾部有本质区别,外油囊放在尾部,改变驱动浮力时,液压油前后移动必然会对平衡力矩产生影响,需要通过调节航姿控制机构来抵消。由于航姿控制机构调节力矩有限,一般只能平衡0.5L左右的浮力调节量,这样的水下滑翔机滑翔速度一般不会超过1kn。
本例设计浮力驱动装置24的油箱5储油体积变化容量3.62L,外油囊7驱动浮力最大体积变化量3.23L。仿真计算当驱动浮力0.3L时,水平滑翔速度为1.1kn;驱动浮力1.0L时,水平滑翔速度为2.1kn;驱动浮力1.5L时,水平滑翔速度为2.6kn。

Claims (8)

1.一种组合翼抗流型水下滑翔机,它包括:前密封舱(25)、中透水舱(23)和后密封舱(19);所述前密封舱(25)、所述中透水舱(23)与所述后密封舱(19)依次连接,组成流线型回转体结构;其特征在于, 
所述前密封舱(25)的壳体头部设有装有高度计(2)的头盖(1),内部依次安装有主电源(3)、航姿控制机构(4)与浮力驱动装置(24); 
所述中透水舱(23)为开有小孔的薄壁光筒,其内装有与所述浮力驱动装置(24)相连接的外油囊(7)和连接前后密封舱电器设备的水密耐压电缆(22);所述中透水舱(23)外安装有一对左右对称的后掠翼(8),所述后掠翼(8)位于水下滑翔机回转轴线的同一平面内; 
后密封舱(19)的壳体前部设有弧形盖(9);尾部设有保持航向稳定的垂直尾鳍(15)、通信天线(17)、抛载重块(14)与天线杆(16);后密封舱(19)的壳体外部设有CTD传感器(10)与压力传感器(11);所述后密封舱(19)内设有抛载机构(13)、导航控制模块(20)、通信模块(17)、备用电源(12)、磁罗盘(21)与连接电缆(18)。 
2.如权利要求1所述的一种组合翼抗流型水下滑翔机,其特征在于,所述后掠翼(8)的翼型为NACA层流对称翼型。 
3.如权利要求1或2所述的一种组合翼抗流型水下滑翔机,其特征在于,所述浮力驱动装置(24)的油箱(5)与所述外油囊(7)安装位置的计算公式为: 
Figure FDA0000388893020000011
式中:X0(mm)——滑翔机零浮力平衡状态浮心位置; 
X1(mm)——所述外油囊(7)储油体积中心距滑翔机零浮力平衡状态浮心位置的相对距离; 
X2(mm)——所述油箱(5)储油体积中心距滑翔机零浮力平衡状态浮心位置的相对距离。 
4.如权利要求1或2所述的一种组合翼抗流型水下滑翔机,其特征在于,所述前密封舱(25)的壳体外安装有一对活动副翼(6),其中心位于水下滑翔机浮心轴线位置与1/2前密封舱(25)的壳体半径交汇处;所述活动副翼(6)为三角形平板结构。 
5.如权利要求1或2所述的一种组合翼抗流型水下滑翔机,其特征在于,所述浮力驱动装置(24)、所述航姿控制机构(4)、所述高度计(2)、所述抛载机构(13)、所述CTD传感器(10)、所述压力传感器(11)、所述磁罗盘(21)均以RS485总线方式与所述导航控制模块(20)连接,所述导航控制模块(20)与所述通信模块(17)通过RS232接口连接。 
6.如权利要求1或2所述的一种组合翼抗流型水下滑翔机,其特征在于,所述通信天线 (17)内包括:卫星通信模块与无线电通信模块;卫星通信用于远程传输,无线电通信用于近距离数据下载和布放测试;通信天线(17)通过常规通信电缆与所述天线杆(16)连接。 
7.如权利要求1或2所述的一种组合翼抗流型水下滑翔机,其特征在于,正常航行时,所述抛载机构(13)的控制杆插入所述抛载块(14)中将其固定;在滑翔机下潜出现意外时,由所述导航控制模块(20)启动所述抛载机构(13)的电磁铁,使其控制杆缩回,抛弃所述抛载块(14),滑翔机上浮至水面,并发出报警信息。 
8.如权利要求1或2所述的一种组合翼抗流型水下滑翔机,其特征在于,滑翔机采用两组独立电源供电,正常状态下所述主电源(3)为全系统的工作供电,所述备用电源(12)在所述主电源(3)故障时,自动切换,为全系统的工作供电。 
CN201310450362.6A 2013-09-27 2013-09-27 组合翼抗流型水下滑翔机 Expired - Fee Related CN103507929B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310450362.6A CN103507929B (zh) 2013-09-27 2013-09-27 组合翼抗流型水下滑翔机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310450362.6A CN103507929B (zh) 2013-09-27 2013-09-27 组合翼抗流型水下滑翔机

Publications (2)

Publication Number Publication Date
CN103507929A true CN103507929A (zh) 2014-01-15
CN103507929B CN103507929B (zh) 2016-04-06

Family

ID=49891473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310450362.6A Expired - Fee Related CN103507929B (zh) 2013-09-27 2013-09-27 组合翼抗流型水下滑翔机

Country Status (1)

Country Link
CN (1) CN103507929B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103863536A (zh) * 2014-02-27 2014-06-18 中国船舶重工集团公司第七一〇研究所 一种水下外置式自释放姿态调节装置
CN104627342A (zh) * 2014-12-08 2015-05-20 中国科学院自动化研究所 一种滑翔机器海豚
CN105711780A (zh) * 2016-03-17 2016-06-29 天津超智海洋科技有限公司 一种水下机器人水密舱结构
CN107655460A (zh) * 2017-08-07 2018-02-02 熊学军 水下滑翔机的中尺度涡观测方法
CN108344403A (zh) * 2017-12-22 2018-07-31 中国船舶重工集团公司第七〇五研究所 一种定域沉浮自主监测与剖面测量滑翔器
CN108375899A (zh) * 2018-01-29 2018-08-07 哈尔滨工程大学 高可靠性波浪滑翔器控制系统
CN108609135A (zh) * 2018-04-25 2018-10-02 华中科技大学 一种具备多工作模式的混合驱动型水下滑翔机
CN108674617A (zh) * 2018-04-28 2018-10-19 中国海洋大学 水下智能浮动观测装置及其控制系统
CN108688783A (zh) * 2017-04-06 2018-10-23 上海交通大学 一种带波动鳍的仿生水下滑翔机
CN108945356A (zh) * 2018-06-20 2018-12-07 北华航天工业学院 一种微小型柔性模块化水下滑翔机
CN109080801A (zh) * 2018-09-07 2018-12-25 大连海事大学 一种基于串列翼驱动的混合动力型水下滑翔机
CN109080802A (zh) * 2018-09-07 2018-12-25 大连海事大学 一种基于拍翼驱动的混合动力型滑翔机
CN110276131A (zh) * 2019-06-24 2019-09-24 西北工业大学 基于多项式响应面模型的翼身融合水下滑翔机外形优化方法
CN111749934A (zh) * 2020-08-25 2020-10-09 天津大学 一种应用于海洋温差能驱动的水下滑翔机的复用液压油路
CN112141304A (zh) * 2020-09-30 2020-12-29 中国科学院沈阳自动化研究所 一种长航程水下滑翔机
CN113277044A (zh) * 2021-06-11 2021-08-20 天津大学 一种舵翼可变具有宽航速域的324毫米直径水下滑翔机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1876485A (zh) * 2006-07-04 2006-12-13 浙江大学 水下滑翔探测器
CN1923613A (zh) * 2006-09-21 2007-03-07 杭州电子科技大学 滑翔式水下移动搭载平台
CN1974319A (zh) * 2006-12-21 2007-06-06 天津大学 复合能源的水下滑翔器及其驱动方法
JP2007276609A (ja) * 2006-04-06 2007-10-25 Osaka Prefecture Univ 水中グライダー
CN101062714A (zh) * 2006-04-29 2007-10-31 中国科学院沈阳自动化研究所 一种依靠浮力驱动滑行的水下机器人
JP2011230627A (ja) * 2010-04-27 2011-11-17 Osaka Prefecture Univ ソーラー水中グライダー及びその潜航方法
CN102632980A (zh) * 2012-04-26 2012-08-15 中国船舶重工集团公司第七○二研究所 一种利用海洋波浪能的水下滑翔器及充电方法
CN102963514A (zh) * 2012-11-26 2013-03-13 上海交通大学 便携式水下海洋环境监测滑翔机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276609A (ja) * 2006-04-06 2007-10-25 Osaka Prefecture Univ 水中グライダー
CN101062714A (zh) * 2006-04-29 2007-10-31 中国科学院沈阳自动化研究所 一种依靠浮力驱动滑行的水下机器人
CN1876485A (zh) * 2006-07-04 2006-12-13 浙江大学 水下滑翔探测器
CN1923613A (zh) * 2006-09-21 2007-03-07 杭州电子科技大学 滑翔式水下移动搭载平台
CN1974319A (zh) * 2006-12-21 2007-06-06 天津大学 复合能源的水下滑翔器及其驱动方法
JP2011230627A (ja) * 2010-04-27 2011-11-17 Osaka Prefecture Univ ソーラー水中グライダー及びその潜航方法
CN102632980A (zh) * 2012-04-26 2012-08-15 中国船舶重工集团公司第七○二研究所 一种利用海洋波浪能的水下滑翔器及充电方法
CN102963514A (zh) * 2012-11-26 2013-03-13 上海交通大学 便携式水下海洋环境监测滑翔机

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103863536B (zh) * 2014-02-27 2016-05-04 中国船舶重工集团公司第七一〇研究所 一种水下外置式自释放姿态调节装置
CN103863536A (zh) * 2014-02-27 2014-06-18 中国船舶重工集团公司第七一〇研究所 一种水下外置式自释放姿态调节装置
CN104627342A (zh) * 2014-12-08 2015-05-20 中国科学院自动化研究所 一种滑翔机器海豚
CN105711780A (zh) * 2016-03-17 2016-06-29 天津超智海洋科技有限公司 一种水下机器人水密舱结构
CN108688783A (zh) * 2017-04-06 2018-10-23 上海交通大学 一种带波动鳍的仿生水下滑翔机
CN107655460A (zh) * 2017-08-07 2018-02-02 熊学军 水下滑翔机的中尺度涡观测方法
CN108344403A (zh) * 2017-12-22 2018-07-31 中国船舶重工集团公司第七〇五研究所 一种定域沉浮自主监测与剖面测量滑翔器
CN108375899A (zh) * 2018-01-29 2018-08-07 哈尔滨工程大学 高可靠性波浪滑翔器控制系统
CN108609135A (zh) * 2018-04-25 2018-10-02 华中科技大学 一种具备多工作模式的混合驱动型水下滑翔机
CN108674617A (zh) * 2018-04-28 2018-10-19 中国海洋大学 水下智能浮动观测装置及其控制系统
CN108945356A (zh) * 2018-06-20 2018-12-07 北华航天工业学院 一种微小型柔性模块化水下滑翔机
CN109080801A (zh) * 2018-09-07 2018-12-25 大连海事大学 一种基于串列翼驱动的混合动力型水下滑翔机
CN109080802A (zh) * 2018-09-07 2018-12-25 大连海事大学 一种基于拍翼驱动的混合动力型滑翔机
CN110276131A (zh) * 2019-06-24 2019-09-24 西北工业大学 基于多项式响应面模型的翼身融合水下滑翔机外形优化方法
CN111749934A (zh) * 2020-08-25 2020-10-09 天津大学 一种应用于海洋温差能驱动的水下滑翔机的复用液压油路
CN112141304A (zh) * 2020-09-30 2020-12-29 中国科学院沈阳自动化研究所 一种长航程水下滑翔机
CN113277044A (zh) * 2021-06-11 2021-08-20 天津大学 一种舵翼可变具有宽航速域的324毫米直径水下滑翔机
CN113277044B (zh) * 2021-06-11 2022-05-20 天津大学 一种舵翼可变具有宽航速域的324毫米直径水下滑翔机

Also Published As

Publication number Publication date
CN103507929B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
CN103507929B (zh) 组合翼抗流型水下滑翔机
CN103661895B (zh) 一种喷水推进型深海滑翔机
CN203593143U (zh) 一种风光互补型无人海洋监测艇
CN100532192C (zh) 混合型水下航行器
CN102963514B (zh) 便携式水下海洋环境监测滑翔机
CN105644752A (zh) 一种新型风光互补供能无人帆船及其控制方法
CN1326746C (zh) 水下自航行平台机械系统
CN108674617A (zh) 水下智能浮动观测装置及其控制系统
CN108312151B (zh) 漂流探测水下机器人装置及控制方法
CN105644743A (zh) 一种三体构型的长期定点观测型水下机器人
CN108656885A (zh) 倾转旋翼海空两栖机器人
CN205738030U (zh) 一种新型风光互补供能无人帆船及其控制方法
CN104527953A (zh) 一种圆碟形水下滑翔器及其工作方法
CN108860454B (zh) 一种全天候长航程无人帆船设计方法
CN113277044B (zh) 一种舵翼可变具有宽航速域的324毫米直径水下滑翔机
CN110641662B (zh) 一种可水下预置大型载荷的水下滑翔机
CN208393605U (zh) 水下智能浮动观测装置及其控制系统
CN109367738A (zh) 一种水下自主作业机器人及其作业方法
CN107215429B (zh) 一种新型小水线面单体无人半潜艇
CN201872911U (zh) 近水面自动游动式监测站
CN213768894U (zh) 基于波浪能滑翔器的水下实时观测系统
CN103661818A (zh) 一种无人驾驶智能测量船
CN110341888A (zh) 一种具有可升降感知平台的可移动的多功能浮标
CN112357004A (zh) 一种中试艇海试系统及其进行舰船总体性能测试的方法
CN208855818U (zh) 一种自扶正长续航海水采样波浪能太阳能双体无人船

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160406

Termination date: 20190927