WO2020052109A1 - 油基泥浆岩屑旋流自转脱油方法和装置 - Google Patents
油基泥浆岩屑旋流自转脱油方法和装置 Download PDFInfo
- Publication number
- WO2020052109A1 WO2020052109A1 PCT/CN2018/119278 CN2018119278W WO2020052109A1 WO 2020052109 A1 WO2020052109 A1 WO 2020052109A1 CN 2018119278 W CN2018119278 W CN 2018119278W WO 2020052109 A1 WO2020052109 A1 WO 2020052109A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- cuttings
- gas
- based mud
- rotation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 239000011435 rock Substances 0.000 title claims abstract description 35
- 239000003921 oil Substances 0.000 claims abstract description 183
- 239000002245 particle Substances 0.000 claims abstract description 41
- 238000000926 separation method Methods 0.000 claims abstract description 31
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 239000011148 porous material Substances 0.000 claims abstract description 16
- 238000003795 desorption Methods 0.000 claims abstract description 14
- 239000007790 solid phase Substances 0.000 claims abstract description 14
- 239000012071 phase Substances 0.000 claims abstract description 11
- 239000007787 solid Substances 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 239000002199 base oil Substances 0.000 claims abstract description 6
- 230000010355 oscillation Effects 0.000 claims abstract description 6
- 230000000737 periodic effect Effects 0.000 claims abstract description 6
- 238000005520 cutting process Methods 0.000 claims description 99
- 239000002699 waste material Substances 0.000 claims description 66
- 239000007789 gas Substances 0.000 claims description 55
- 230000008569 process Effects 0.000 claims description 28
- 238000010438 heat treatment Methods 0.000 claims description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 10
- 238000009434 installation Methods 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000003345 natural gas Substances 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 238000009472 formulation Methods 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 7
- 230000003993 interaction Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 22
- 239000003054 catalyst Substances 0.000 description 16
- 238000005265 energy consumption Methods 0.000 description 13
- 238000005553 drilling Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000002076 thermal analysis method Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000005238 degreasing Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 4
- 239000003463 adsorbent Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 0 BN*CCCC(C)(CC)O*O*C Chemical compound BN*CCCC(C)(CC)O*O*C 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000002920 hazardous waste Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/06—Arrangements for treating drilling fluids outside the borehole
- E21B21/063—Arrangements for treating drilling fluids outside the borehole by separating components
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/121—Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
- C02F11/127—Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering by centrifugation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/13—Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
Definitions
- the present disclosure belongs to the field of environmentally-friendly treatment of oil-containing solid wastes in shale gas drilling, and in particular, relates to a method and a device for deep de-oiling of oil-based mud rock cuttings by swirling rotation to realize waste oil-based mud rocks generated during shale gas development. Harmless treatment of crumbs. Specifically, the present disclosure provides a method and device for oil-based mud rock cuttings swirling and rotating for deep deoiling.
- Oil-based mud is widely used in shale gas drilling due to its advantages such as protecting the shale gas layer, increasing drilling speed, and effectively preventing the collapse of the borehole wall.
- the shale gas wells in the third and horizontal sections are usually longer than 1500m, which produces a lot of oil-bearing cuttings (the output of a single well is about 250-500m 3 ).
- the oil content of oil-based mud rock cuttings is about 10% to 30%. It has been listed in the National Catalogue of Hazardous Wastes (2016) and belongs to the "sludge from waste mud treatment" for crude oil and natural gas mining.
- the waste category is HW08 waste mineral oil
- the waste code is 071-001-08. If it is not harmlessly treated, it will cause pollution to the environmental soil, water and air.
- the main goal of oil-based mud cuttings treatment is to achieve the harmless treatment of waste.
- the most important technical indicator is the oil content in the waste after treatment, which is essentially the removal of oil.
- the main technologies used to treat waste oil-based mud debris are: high-temperature incineration, chemical extraction, and thermal analysis (thermal phase separation).
- the high-temperature incineration method does not have a high degree of resource utilization of waste oil-based mud, and has high transportation costs and risks.
- Chinese patent application CN 201610863875.3 discloses a method for treating solid residue of waste oil-based mud.
- the process adopts a vibrating screening-drying-fluid bed incineration-dust removal-SCR (selective catalytic reduction) denitration-dual alkali desulfurization process. Realize the complete harmlessness of the solid residue of waste oil-based mud.
- the entire set of process equipment is complex, covers a large area, runs at high cost, has a low oil recovery rate, and the gas generated during the process is prone to secondary pollution.
- Chinese invention patents ZL 201310645168.3, ZL 201410033209.8, ZL 201410033980.5, ZL 201410033210.0 relate to a process and a process for treating waste oil-based mud or drilling cuttings and recovering oil-based and waste oil-based mud using LRET (waste oil-based mud and rock cuttings resource recovery technology) technology and Device, LRET technology uses normal temperature deep desorption recovery process, including centrifugal filtration, centrifugal sedimentation, deep desorption of reagents at normal temperature, distillation condensation process, and the process of recovering circulating reagents.
- LRET normal temperature deep desorption recovery process
- US patent US8758629 relates to a similar chemical extraction method.
- An environmentally friendly extractant is used to extract the oil contained in the cuttings.
- an estimated adsorbent is used to adsorb the oil-soluble extractant, and a certain amount of potassium chloride aqueous solution is added. Separation of drill cuttings and adsorbent to achieve the goal of degreasing drill cuttings.
- the advantage of this method is that the extractant used is environmentally friendly and harmless.
- the used adsorbent is regenerated and can be reused, but the long treatment cycle limits the treatment. Volume, 7.5 minutes with shaking extraction, and after standing for 96 hours, the total petroleum hydrocarbon content in the cuttings can only be reduced to 0.6%, which has not reached the processing standard.
- patents 9972735 and US9677354 relate to a method and device for recovering base oil in waste mud.
- the method uses friction to heat drill cuttings, thereby vaporizing the oil content and moisture in the cuttings, and then condensing and recovering.
- the advantage of this method is that it is gasified at a temperature lower than the boiling point of the oil at atmospheric pressure, thereby achieving the purpose of reducing energy consumption.
- the disadvantage is that the method can only process objects with low solids content and high solids content.
- the mud is prone to severe wear on the equipment.
- Chinese invention patent applications CN 201610547026.7 and CN 201710056325.5 disclose thermal analysis processing methods through indirect heating of high-temperature flue gas. At the same time, Jerry Environmental Technology Co., Ltd.
- Chinese invention patent application CN201210147625.1 relates to a method and device for treating a fluidized bed residue hydrogenation catalyst, based on hydrothermal cyclone desorption technology, through (1) regulation of viscosity reduction, (2) cyclone desorption separation, (3) Three phases of oil-water-catalyst separation and resource utilization utilize the flow shear force of the rotating flow field to desorb and separate the adsorbed oil from the surface of the solid particles and the internal holes.
- Hydrothermal cyclonic desorption technology is also used for de-oiling of exhaust catalysts. The same applies to Jian-Ping Li (The Enhancement, Hydrolysis, Hydrotreating, Catalysts, and Residue Oil) by hydrothermal-hydrocyclone process.
- the above technologies all use the high flow shear force in the cyclone and the high-speed rotation of the catalyst particles to enhance the desorption process of the oil in the pores of the catalyst particles.
- the above methods and devices are only for the degreasing treatment and reuse of the discharged catalyst.
- the catalyst treatment requirements were met, the environmental pollution of petroleum pollutants was reduced, and some oil phases and catalysts were recovered, the solid phase oil content was still greater than 1% after treatment, and the solid phase treated by hydrothermal cyclone desorption technology The oil content is even higher than 5%, which cannot meet the requirement of less than 0.3% of mineral oil in the solid phase for the harmless treatment of waste oil-based mud.
- the present disclosure provides a novel oil-based mud rock cuttings swirling rotation and deep deoiling method and device, thereby solving the problems existing in the prior art.
- the technical problem to be solved by the present disclosure is that the existing waste oil-based mud cuttings treatment technology is difficult to efficiently separate the oil carried in the pores of the cuttings particles, and the cost is high, the process is complicated, and secondary pollution is easy to form.
- the invention uses the coupling motion of the rotation and revolution of the cuttings particles in the three-dimensional rotating turbulence field to strengthen the centrifugal desorption of solid phase surface oil, capillary oil and pore oil, completes the separation and enrichment of oil and gas, and solid phase, and realizes waste oil-based mud Deep removal of organics from cuttings.
- the present disclosure provides a method for oil-based mud rock cuttings swirl rotation and deoiling.
- the method includes the following steps:
- Viscosity control of the system reduce the viscosity of oil-based mud and cuttings by reducing the viscosity of oil-based mud and cuttings through heat exchange between gaseous media and cuttings, thereby facilitating separation in the swirling field;
- Oil-based mud rock cuttings particles have a coupling motion of rotation and revolution in the swirling field.
- the rotation of rock cuttings particles is used to enhance the centrifugal desorption of solid surface oil, capillary oil and pore oil.
- the centrifugal force of the periodic oscillation generated by its revolution completes the separation and enrichment of oil and gas and solid phase, so as to achieve the removal of the oil phase in the cuttings channel;
- step (2) Gas-liquid separation and reuse: The oil-containing mixture produced in step (2) is subjected to gas-liquid separation to realize reuse of base oil, gas medium circulation, and harmless treatment of rock cuttings.
- step (1) the system viscosity control process is performed in a swirling field, and the turbulent flow field in the swirling field enhances the heat transfer efficiency between the gas medium and the waste oil-based mud debris. , So that the liquid is heated to achieve the purpose of reducing its viscosity.
- the operating temperature range of viscosity control is 70-200 ° C., which is determined according to different formulas of waste oil-based mud, which is lower than the rated use temperature of waste oil-based mud.
- the gaseous medium includes air, nitrogen, supercritical carbon dioxide gas, hydrogen, dry gas, low-partition gas, and natural gas combustion exhaust gas.
- step (2) the oil-based mudstone cuttings particles are coupled in a swirling field by a swirling revolution and a particle rotation, the rotation speed is up to 5000 revolutions per second, and the residence time is 2 to 10 seconds.
- an oil-based mud rock cuttings swirling rotation deoiling device which includes:
- Intake system and gas heating system connected to it for heating the gaseous medium
- Cyclone group connected to a gas heating system for swirling and de-oiling waste oil-based mud cuttings
- the gas-liquid separation and reuse system connected to the cyclone group is used to separate and recycle the oily mixture flowing out of the cyclone overflow port.
- the device further includes: a conveying system connected to the gas heating system for transporting waste oil-based mudstone cuttings before treatment; and a conveying system connected to the cyclone group for use The waste oil-based mud cuttings after transportation are processed; and the rock cutting tank connected to the conveying system is used for storing the processed waste oil-based mud cuttings.
- the cyclone group is a 1 to 10-stage cyclone combined in series, and multi-stage parallel can be performed according to different processing capacity requirements.
- the installation and combination manners of the cyclone group include a cyclone upright, a cyclone upside down, and a cyclone upside down and upside down combination.
- FIG. 1 shows a process flow of a method for deep rotation of oil-based mudstone cuttings by swirling rotation in a preferred embodiment of the present invention.
- FIG. 2 is a particle size distribution of waste oil-based mud cuttings particles used in an embodiment of the present invention.
- FIG. 3 is a mesoporous distribution of waste oil-based mud cuttings particles used in an embodiment of the present invention.
- FIG. 4 is a surface area distribution of debris particles of waste oil-based drilling fluid used in an embodiment of the present invention.
- FIG. 5 is a viscosity-temperature curve of waste oil-based mud used in an embodiment of the present invention.
- FIG. 6 shows the effect of deep deoiling of an oil-based mud cyclone in an embodiment of the present invention.
- the inventors of the present application found that due to the very tight shale, extremely low porosity, and poor permeability, the porosity was 2% to 4%, the permeability was 0.0001mD to 0.1mD, and the waste oil
- the pore oil in the base mud chip debris is difficult to escape from the nanopores; while the waste oil based mud chip debris has a rotation speed of up to 5000 rpm in the swirling field, which can provide centrifugal force greater than the viscous resistance Therefore, the removal of pore oil is strengthened; the swirling rotation process takes a short time, and the temperature required for heating to reduce viscosity is lower than the traditional process, which effectively improves the processing efficiency and reduces the energy consumption.
- the present invention creatively develops a method and device for efficient oil removal of waste oil-based mud gas flooding, which has the advantages of simple process, easy operation, high oil removal efficiency, low energy consumption, etc., and effectively solves the existing problems. Problems in technology.
- the oil content of the rock cuttings after the treatment is as low as 0.16% or less, which is about half of the maximum allowable content of mineral oil of 0.3% in GB4284-84 "Control Standards for Pollutants in Agricultural Sludge"; the rock cuttings are in the cyclone group.
- the residence time is less than 5s, so the treatment time is much lower than the conventional treatment method, which achieves an efficient, low-consumption and harmless treatment of oil-based mud cuttings.
- a method for deep deoiling of oil-based mudstone cuttings by swirling rotation including the following steps:
- Viscosity regulation of the system Through the heat exchange between the gas medium and the cuttings, the viscosity of the oil-based mud and cuttings can be reduced to reduce the interaction force between oil, water and the surface of solid particles and pores, which is convenient for separation in the cyclone group. ;
- Oil-based mud rock cuttings particles have a coupled rotation and revolution motion in the cyclone group.
- the high-speed rotation of rock cuttings particles is used to enhance the centrifugal desorption of solid-phase surface oil, capillary oil, and pore oil.
- step (2) Gas-liquid separation and reuse: The oil-containing mixture produced in step (2) is subjected to gas-liquid separation to realize reuse of base oil, gas medium circulation, and harmless treatment of rock cuttings.
- the system viscosity control process of step (1) is performed in a swirling field, and the high-speed turbulent flow field in the swirling field enhances the heat exchange efficiency between the gas medium and the waste oil-based mud and cuttings, thereby converting the liquid Temperature increase achieves the purpose of reducing its viscosity.
- the operating temperature of the system viscosity control of step (1) needs to be appropriately selected according to different waste oil-based mud formulations. In principle, it should be lower than the rated use temperature of the waste oil-based mud.
- the temperature range is generally 70-200 ° C. Within this range, the oil phase of the waste oil-based mud does not crack.
- the oil-based mudstone cuttings are coupled with the swirling revolution and the particle rotation in the swirling field, and the rotation speed is up to 5000 rpm, and stays Time is 2 to 10 seconds.
- the gaseous medium used for the swirling gas to drive oil is air, nitrogen, (supercritical) carbon dioxide gas, hydrogen, dry gas, low gas, natural gas combustion exhaust gas, and the like.
- an oil-based mud rock cuttings swirling rotation deep deoiling device which includes: an air intake system, a gas heating system, a cyclone group, a gas-liquid separation and reuse system, Conveying systems and cuttings tanks, where:
- the air inlet system and the gas heating system are used for heating a gas medium
- the cyclone unit is used for performing high-speed rotation and deep de-oiling of waste oil-based mud rock cuttings
- the gas-liquid separation and reuse system is used to separate and recycle the oily tail gas flowing out of the cyclone overflow port;
- the feeding system and cuttings tank are used for transportation and storage of waste oil-based mud cuttings before and after processing.
- the cyclone group is a combination of 1-10 grade cyclones connected in series, and multi-stage parallel can be performed according to different processing capacity requirements.
- the installation and combination manner of the cyclone group includes a cyclone upright installation, a cyclone upside down installation, a cyclone upside down and upside down combination, and the like.
- FIG. 1 shows a process flow of a method for deep rotation of oil-based mudstone cuttings by swirling rotation in a preferred embodiment of the present invention.
- the gaseous medium enters the gas heating system 2 from the air intake system 1 and is heated, it is mixed with the waste oil-based mud cuttings input by the conveying system 5-1 and enters the cyclone group 3 together;
- the swirl velocity field of 3 can increase the turbulence of the gas, strengthen the convective heat transfer between the gas medium and the particles of the waste oil-based mud debris, and help reduce the viscosity of the waste oil-based mud debris, so that the particles are dispersed and the oil phase
- free oil and some capillary oil are removed by the centrifugal force of periodic oscillation generated by the cuttings in the swirling field, and the capillary oil, surface oil and pore oil are removed by the centrifugal force generated by high-speed rotation to achieve waste oil base.
- Deep deoiling of mudstone cuttings waste oil-based mudstone cuttings particles that have undergone deep deoiling are discharged from the underflow port of the last stage of cyclone group 3 and sent to the cuttings tank 6 for recycling by the conveying system 5-2 Utilization can be used for paving roads, burning bricks, etc., and the liquid phase (composed of oil, water, etc.) obtained by the removal enters the gas-liquid separation and reuse system 4 with the gas medium, and the gas medium returns to the intake system 1 cycle, The liquid phase is transported by tanker to the mud station for reuse. Now the sound processing resources to maximize oil-based mud cuttings waste reuse.
- Drilling of oil-based mud in a shale gas block performs degreasing treatment of waste oil-based mud.
- the specific operation process and effect are described as follows:
- the Soxhlet extractor and CCl 4 solvent were used to extract the waste oil-based mud debris.
- the oil content of the sample was 19.4% measured by infrared spectrophotometer.
- the solid content of the sample was 63.1% and the water content was 17.5 after drying. %.
- the particle size of the cuttings directly affects the centrifugal force in the cyclone.
- the particle size distribution of the cuttings after extraction is measured with a laser particle size analyzer, as shown in Figure 2, and the particle size distribution ranges from 0.15 ⁇ m to 976.48 ⁇ m, average diameter is 202.73 ⁇ m, median diameter is 163.49 ⁇ m, standard deviation is 226.63 ⁇ m.
- the specific surface area and pore volume of the oil-based drill cuttings particles after extraction were measured with a fully automatic nitrogen adsorber. As shown in Figure 3-4, the average surface area of the particles was 9.43 m 2 / g, and the average pore volume was 0.0372 cm 3 / g. The average pore diameter is 163.47 ⁇ m. Figure 3-4 shows that the oil-based drill cutting particles are porous systems with irregular surface morphology. The cuttings channels are mainly in the mesoporous range, so deoiling is very difficult.
- Rotary viscometer was used to test the dynamic viscosity change of the waste oil-based mud liquid sample during heating. As shown in Figure 5, after the sample was heated to 128 ° C, the viscosity change continued to be small; at this time, the dynamic viscosity change of the sample had changed. From the initial temperature of 17,500 cP (centipoise) to 226 cP, a reduction of about 80 times. The test results show that the waste oil-based mud can effectively reduce its viscosity after heating, and guide the selection of the temperature of the heating gas medium.
- air is used as the gas medium
- electric air heaters are used for the gas heating method
- screw conveyors are used for the material transportation.
- the air is pumped in by the air intake system at 200m 3 / h and heated by the gas heating system to 160 ° C.
- the conveying system conveys oil-based mud drilling cuttings at a feed rate of 50kg / h, and the gas and solid phases enter the cyclone
- the group undergoes deep deoiling treatment, the solid phase after treatment enters the cuttings tank, and the remaining materials enter the gas-liquid separation and reuse system; a sampling port is provided at the bottom flow port of each stage of the cyclone group as an analysis sample.
- the residence time of the cuttings particles in the cyclone is calculated as the time of the swirling deoiling treatment, and the calculation result is that the residence time of each stage is about 0.3s.
- the Soxhlet extraction-infrared spectrometry method was used to test the oil content of the drill cuttings particles from the bottom orifices of the cyclones at each level, and the deoiling efficiency of each level relative to the original material was calculated. As shown in Figure 6, after 2.7s treatment, the oil content of drill cutting particles is 0.16%, which is far lower than the requirement of oil content of less than 0.3% in GB 4284-84 "Contamination Control Standards for Agricultural Sludge". Oil efficiency reached 99.2%.
- the total annual energy consumption is equivalent to 871.78 tons of standard oil, and the energy consumption of waste oil-based mud cuttings is 10.38 kg / t standard oil.
- the implementation of this technology can effectively reduce the process operating cost, save resources, and protect the environment, which is in line with the sustainable development strategic direction of “low carbon, environmental protection, high efficiency, and energy saving”.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Mining & Mineral Resources (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Treatment Of Sludge (AREA)
- Cyclones (AREA)
Abstract
一种油基泥浆岩屑旋流自转脱油方法,包括以下步骤:(1)体系粘度调控:通过气体介质与岩屑换热,降低油基泥浆岩屑的粘度以减小油、水与固体颗粒表面及孔道的相互作用力,从而便于在旋流场中分离;(2)旋流自转脱油:油基泥浆岩屑颗粒在旋流场中存在自转与公转耦合运动,利用岩屑颗粒的自转强化固相表面油、毛细油和孔隙油的离心脱附,利用其公转产生的周期振荡的离心力完成油气、固相的分离和富集,从而实现岩屑孔道中油相的脱除;以及(3)气液分离与回用:将步骤(2)中产生的含油混合物进行气液分离,实现基础油回用、气体介质循环以及岩屑无害化处理;还包括一种油基泥浆岩屑旋流自转脱油装置。
Description
本公开属于页岩气钻井中含油固体废弃物环保处理领域,尤其涉及一种油基泥浆岩屑旋流自转深度脱油方法和装置,以实现页岩气开发过程中产生的废弃油基泥浆岩屑的无害化处理。具体地说,本公开提供了一种油基泥浆岩屑旋流自转深度脱油方法和装置。
油基泥浆因有利于保护页岩气层、提高钻井速度、有效防止井壁坍塌等多种优势,在页岩气钻井中被广泛应用。页岩气井三开及水平段通常长达1500m以上,产生大量含油岩屑(单井产生量约250~500m
3)。油基泥浆岩屑含油率约10%~30%,己被列入《国家危险废物目录》(2016),属于原油和天然气开采“废弃泥浆处理产生的污泥”,废物类别为HW08废矿物油,废物代码为071-001-08,若不加以无害化处理,对环境土壤、水体、空气都将造成污染。
油基泥浆岩屑处理的主要目标是实现废弃物无害化处理,最重要的技术指标是处理后废弃物中油的含量,其实质是油的脱除。目前主要采用的处理废弃油基泥浆岩屑技术有:高温焚烧法、化学萃取技术、热解析技术(热相分离)。
高温焚烧法对废弃油基泥浆资源化利用程度不高,且运输费用及风险较高。中国专利申请CN 201610863875.3公开了一种废弃油基泥浆固态残渣的处理方法,该工艺采用振动筛分-干燥-流化床焚烧-除尘-SCR(选择性催化还原)脱硝-双碱脱硫的工艺,实现了废弃油基泥浆固态残渣的彻底无害化。但整套工艺设备复杂、占地大、运行成本高、油回收率低,且工艺过程产生的气体容易产生二次污染。
中国发明专利ZL 201310645168.3、ZL 201410033209.8、ZL 201410033980.5、ZL 201410033210.0涉及利用LRET(废弃油基泥浆岩屑资源回收技术)技术处理废弃油基泥浆或钻屑并回收其中油基和废弃油基泥浆的工艺及装置,LRET技术采用常温深度脱附回收工艺,包括离心过滤、离心沉降、药剂常温深度脱附、蒸馏冷凝过程,以及回收循环药剂的过程,该技术可在常温常压下实现泥浆、泥浆添加剂、加重剂及药剂(99%)的连续回收,但其处理效率受废弃油基泥浆成分 影响较大,且偏高的药剂价格导致运行成本较高。美国专利US 8758629涉及一种类似的化学萃取方法,用一种环保萃取剂萃取钻屑包含的油分,继而用一种估计吸附剂吸附溶有油分的萃取剂,后加入一定量的氯化钾水溶液分离钻屑与吸附剂,达成了钻屑除油的目标,该方法的优点在于采用的萃取剂对环境友好无害,使用后的吸附剂经过再生,可重复使用,但处理周期长限制了处理量,振荡萃取7.5分钟,静置96小时后,钻屑内总石油烃含量仅能降至0.6%,未到达处理标准。
热解析技术因无需添加处理剂、除油较彻底等优点成为近几年国内外尝试较多的废弃油基泥浆岩屑处理手段。中国发明专利ZL 201410397190.5涉及一种主要利用摩擦生热方式对油基钻屑进行直接加热脱油的热解析处理方法,同时在SPE-188222-MS(Processing and Recycling Drill Cuttings at Source-Technology and Services Adhering to Zero Discharge Legislation(基于零排放标准的钻井岩屑过程与循环资源化技术和服务))、SPE-183600-MS(Solutions for Management of Oil on Drilled Cuttings in the New Deepwater Oil Province of Ghana(针对加纳新开发深水油区的钻井岩屑的治理方案))等文献中也有利用该技术处理废弃油基泥浆岩屑的报导,并且国际知名石油服务公司Halliburton和Schlumberger旗下M-I Swaco均有该技术的开发应用。Halliburton的美国专利US 9725973和US 9677354涉及一种回收废弃泥浆中的基础油的方法和装置,该方法用摩擦的方法加热钻屑,从而使钻屑中的油分、水分气化,再冷凝回收,该方法的优势在于用低于大气压下油分沸点的温度下使其气化,从而达到了降低能耗的目的,而缺点在于,该方法只能处理低含固率的处理对象,高含固率的泥浆容易对设备产生严重的磨损。中国发明专利申请CN 201610547026.7、CN 201710056325.5公开了通过高温烟气间接加热的热解析处理方法,同时杰瑞环保科技有限公司在SPE-184399-PA(Odor-Treatment Technology for Recovered Hydrocarbons From Oily Waste in a Thermal-Desorption Unit(热解析装置回收油类污染物中石油烃过程中臭气处理技术))报导其利用类似技术在现场应用的情况,且从2014年至今,中石化四川涪陵页岩气田尝试采用美国NOV公司开发的导热油间接加热的热解析处理装置对现场产生的废弃油基泥浆岩屑进行无害化处理。但无论是直接加热还是间接加热的热解析技术,在工程应用中一直存在能耗高、废气污染严重、泥浆体系被高温破坏、只能回收部分基油等问题。
中国发明专利申请CN 201210147625.1涉及一种沸腾床渣油加氢外排催化剂 的处理方法和装置,基于水热旋流脱附技术,通过(1)调控减粘、(2)旋流脱附分离、(3)油-水-催化剂三相分离及资源化利用三个过程,利用旋转流场的流动剪切力,使吸附油从固体颗粒表面和内部孔洞中脱附分离出来。水热旋流脱附技术用于外排催化剂除油同样在Jian-Ping Li(The enhancement on the waste management of spent hydrotreating catalysts for residue oil by a hydrothermal-hydrocyclone process(水热旋流工艺提高渣油加氢废催化剂无害化处理效果的研究),Catalysis Today(今日催化),271(2016),163-171)的文献中进行了报导。中国专利申请CN201710821746.2公开了一种含油外排催化剂处理及分选回用方法和装置,通过(A)外排催化剂旋流洗涤与在线活化、(B)催化剂溶剂旋流自转气提、(C)高活性催化剂气流加速度分选、(D)高活性催化剂旋流再气提与颗粒捕集、以及(E)气体冷却与溶剂冷凝脱除等过程,对催化剂进行油相脱附和分选。上述技术均利用旋流器内的高流动剪切力和催化剂颗粒的高速自转,强化了催化剂颗粒孔隙中油的脱附过程,但上述方法和装置仅针对外排催化剂的除油处理和回用,虽然满足催化剂的处理要求,减少了石油类污染物对环境的污染并回收了部分油相和催化剂,但处理后固相含油率依然大于1%,水热旋流脱附技术处理后的固相含油率甚至高于5%,无法满足废弃油基泥浆无害化处理对固相中矿物油小于0.3%的要求。
由于现有废弃油基泥浆处理技术普遍存在能耗高、二次污染严重、处理成本高等问题,而已有的旋流除油技术又不能满足废弃油基泥浆无害化处理要求,因此,本领域迫切需要开发出一种高效、环保、节能、工艺流程简单的废弃油基泥浆岩屑处理方法和装置,以实现废弃油基泥浆及岩屑无害化处理的目标。
发明内容
本公开提供了一种新颖的油基泥浆岩屑旋流自转深度脱油方法和装置,从而解决了现有技术中存在的问题。
本公开所要解决的技术问题是:现有废弃油基泥浆岩屑处理技术难以对岩屑颗粒孔隙中携带的油进行高效分离,成本高、工艺复杂、容易形成二次污染。本发明利用三维旋转湍流场中岩屑颗粒的自转与公转耦合运动,强化固相表面油、毛细油和孔隙油的离心脱附,完成油气、固相的分离和富集,实现废弃油基泥浆岩屑中有机物的深度脱除。
一方面,本公开提供了一种油基泥浆岩屑旋流自转脱油方法,该方法包括以下步骤:
(1)体系粘度调控:通过气体介质与岩屑换热,降低油基泥浆岩屑的粘度以减小油、水与固体颗粒表面及孔道的相互作用力,从而便于在旋流场中分离;
(2)旋流自转脱油:油基泥浆岩屑颗粒在旋流场中存在自转与公转耦合运动,利用岩屑颗粒的自转强化固相表面油、毛细油和孔隙油的离心脱附,利用其公转产生的周期振荡的离心力完成油气、固相的分离和富集,从而实现岩屑孔道中油相的脱除;以及
(3)气液分离与回用:将步骤(2)中产生的含油混合物进行气液分离,实现基础油回用、气体介质循环以及岩屑无害化处理。
在一个优选的实施方式中,在步骤(1)中,体系粘度调控过程在旋流场中进行,通过旋流场中的湍流流场强化气体介质与废弃油基泥浆岩屑间的换热效率,从而将液体升温以实现降低其粘度的目的。
在另一个优选的实施方式中,在步骤(1)中,粘度调控的操作温度范围为70~200℃,根据不同废弃油基泥浆配方确定,低于废弃油基泥浆的额定使用温度。
在另一个优选的实施方式中,在步骤(1)中,气体介质包括空气、氮气、超临界二氧化碳气体、氢气、干气、低分气和天然气燃烧尾气。
在另一个优选的实施方式中,在步骤(2)中,油基泥浆岩屑颗粒在旋流场中为旋流公转与颗粒自转耦合运动,自转转速最高至5000转/秒,停留时间2~10秒。
另一方面,本公开提供了一种油基泥浆岩屑旋流自转脱油装置,该装置包括:
进气系统和与其连接的气体加热系统,以用于对气体介质进行加热;
与气体加热系统连接的旋流器组,以用于对废弃油基泥浆岩屑进行旋流自转脱油;以及
与旋流器组连接的气液分离与回用系统,以用于对旋流器溢流口流出的含油混合物进行分离循环及回用。
在一个优选的实施方式中,该装置还包括:与气体加热系统连接的输料系统,以用于运输处理前的废弃油基泥浆岩屑;与旋流器组连接的输料系统,以用于运输处理后的废弃油基泥浆岩屑;以及与输料系统连接的岩屑罐,以用于存储处理后的废弃油基泥浆岩屑。
在另一个优选的实施方式中,所述旋流器组为1~10级旋流器串联组合,并可 根据不同处理量需求进行多级并联。
在另一个优选的实施方式中,所述旋流器组的安装组合方式包括旋流器正装、旋流器倒装和旋流器正装与倒装组合。
本发明的方法和装置的主要优点在于:
(i)利用废弃油基泥浆岩屑颗粒在旋流场中高速自转产生的离心力强化毛细油、表面油及孔隙油的脱除。
(ii)利用公转产生的周期振荡的离心力完成油气、固相的分离和富集。
(iii)由于岩屑颗粒在旋流场中的转速可达数万转每分钟,产生的离心力可充分脱除岩屑纳微孔道中的油相,从而提高除油效率,降低能耗。
附图是用以提供对本公开的进一步理解的,它只是构成本说明书的一部分以进一步解释本公开,并不构成对本公开的限制。
图1示出了本发明的一个优选实施方式中的油基泥浆岩屑旋流自转深度脱油方法的工艺流程。
图2是本发明的一个实施例中选用的废弃油基泥浆岩屑颗粒的粒径分布。
图3是本发明的一个实施例中选用的废弃油基泥浆岩屑颗粒的介孔分布。
图4是本发明的一个实施例中选用的废弃油基钻井液岩屑颗粒的表面积分布。
图5是本发明的一个实施例中选用的废弃油基泥浆的粘温曲线。
图6示出了本发明的一个实施例中油基泥浆旋流器深度脱油效果。
本申请的发明人经过广泛而深入的研究后发现,由于页岩非常致密、孔隙率极低、渗透性极差,孔隙率为2%~4%、渗透率为0.0001mD~0.1mD,废弃油基泥浆岩屑颗粒中的孔隙油难以从纳微孔道中脱离;而废弃油基泥浆岩屑颗粒在旋流场中,拥有最高至5000转/秒的自转速度,可提供大于粘滞阻力的离心力,从而强化孔隙油的脱除;旋流自转过程时间短,且加热降粘所需温度也低于传统工艺,有效提高了处理效率,降低了能耗。
基于上述研究及发现,本发明创造性地开发了一种废弃油基泥浆气驱高效除油方法和装置,具有流程简单、易操作、除油效率高、能耗低等优点,有效解决了现有技术中存在的问题。本发明处理后岩屑的含油率低至0.16%及以下,为GB4284-84《农用污泥中污染物控制标准》对矿物油最高容许含量0.3%的一半左右;岩屑在旋流器组的停留时间<5s,因此处理时间远低于常规处理方法,实现了油基泥浆岩屑高效、低耗的无害化处理。
在本公开的第一方面,提供了一种油基泥浆岩屑旋流自转深度脱油方法,该方法包括以下步骤:
(1)体系粘度调控:通过气体介质与岩屑换热,可降低油基泥浆岩屑的粘度以减小油、水与固体颗粒表面及孔道的相互作用力,便于在旋流器组中分离;
(2)旋流自转脱油:油基泥浆岩屑颗粒在旋流器组中存在自转与公转耦合运动,利用岩屑颗粒的高速自转强化固相表面油、毛细油和孔隙油的离心脱附,利用其公转产生的周期振荡的离心力完成油气、固相的分离和富集,从而实现岩屑孔道中油相的深度脱除;以及
(3)气液分离与回用:将步骤(2)中产生的含油混合物进行气液分离,实现基础油回用、气体介质循环以及岩屑无害化处理。
在本公开中,步骤(1)的体系粘度调控过程在旋流场中进行,通过旋流场中的高速湍流流场强化气体介质与废弃油基泥浆岩屑间的换热效率,从而将液体升温实现降低其粘度的目的。
在本公开中,步骤(1)的体系粘度调控的操作温度需根据不同废弃油基泥浆配方适当选取,原则上应低于废弃油基泥浆的额定使用温度,温度范围一般为70~200℃,在此范围内,废弃油基泥浆的油相不发生裂解。
在本公开中,在步骤(2)的旋流高速自转脱油过程中,油基泥浆岩屑在旋流场中为旋流公转与颗粒自转耦合运动,自转转速最高至5000转/秒,停留时间2~10秒。
在本公开中,旋流气驱除油所使用的气体介质为空气、氮气、(超临界)二氧化碳气体、氢气、干气、低分气、天然气燃烧尾气等。
在本公开的第二方面,提供了一种油基泥浆岩屑旋流自转深度脱油装置,该装置包括:进气系统,气体加热系统,旋流器组,气液分离与回用系统,输料系统和岩屑罐,其中:
所述进气系统与气体加热系统用于对气体介质进行加热;
所述旋流器组用于对废弃油基泥浆岩屑进行旋流高速自转深度脱油;
所述气液分离与回用系统用于对旋流器溢流口流出的含油尾气进行分离循环及回用;
所述输料系统和岩屑罐用于运输和存储处理前后的废弃油基泥浆岩屑。
在本公开中,所述旋流器组为1~10级旋流器串联组合,并可根据不同处理量需求进行多级并联。
在本公开中,所述旋流器组的安装组合方式包括旋流器正装、旋流器倒装、旋流器正装与倒装组合等。
以下参看附图。
图1示出了本发明的一个优选实施方式中的油基泥浆岩屑旋流自转深度脱油方法的工艺流程。如图1所示,气体介质从进气系统1进入气体加热系统2加热后,与输料系统5-1输入的废弃油基泥浆岩屑混合并一起进入旋流器组3;旋流器组3的旋流速度场可加大气体的湍流度,强化气体介质与废弃油基泥浆岩屑颗粒间的对流传热,有利于降低废弃油基泥浆岩屑的粘度,以便颗粒的分散与油相的脱除;同时利用岩屑颗粒在旋流场中公转产生的周期振荡的离心力脱除游离油、部分毛细油,高速自转产生的离心力脱除毛细油、表面油及孔隙油,实现废弃油基泥浆岩屑的深度脱油;经深度脱油的废弃油基泥浆岩屑颗粒从旋流器组3最后一级的底流口排出,由输料系统5-2送入岩屑罐6中资源化利用,可用于井场铺路、烧砖等,而脱除得到的液相(由油、水等组成)随气体介质进入气液分离与回用系统4,气体介质返回至进气系统1循环,液相由罐车运往泥浆站回用,实现了废弃油基泥浆岩屑的无害化处理与最大化的资源重复利用。
实施例
下面结合具体的实施例进一步阐述本发明。但是,应该明白,这些实施例仅用于说明本发明而不构成对本发明范围的限制。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另有说明,所有的百分比和份数按重量计。
实施例1:
某页岩气区块油基泥浆钻井,按照本发明方法和装置进行废弃油基泥浆除油处理,其具体运作过程及效果描述如下:
1.油基泥浆岩屑样品物化性质测试
1)油、水、固三相含量测试
利用索氏提取器和CCl
4溶剂萃取废弃油基泥浆岩屑,使用红外分光光度仪测得样品的含油率为19.4%;烘干后测得样品的含固率为63.1%,含水率为17.5%。
2)岩屑颗粒粒径测试
岩屑颗粒的粒径直接影响其在旋流器中受到的离心力的大小,用激光粒度仪测得萃取后的岩屑颗粒的粒径分布如图2所示,粒径分布范围为0.15μm至976.48μm,平均直径为202.73μm,中位直径为163.49μm,标准差为226.63μm。
3)氮气吸附测试
用全自动氮气吸附仪测得萃取后的油基钻屑颗粒的比表面积与孔隙体积,如图3-4所示,颗粒平均表面积为9.43m
2/g,平均孔体积为0.0372cm
3/g,平均孔径为163.47μm。该图3-4表征了油基钻屑颗粒为表面形貌不规则的多孔体系,岩屑孔道主要在介孔范围,因此脱油非常难度大。
4)粘温曲线测试
用转子粘度计测试废弃油基泥浆液体样本在加热过程中的动力粘度变化,如图5所示,样本在加热至128℃后,继续加热粘度变化不大;而此时样本的动力粘度变化已由初温下的17500cP(厘泊)降低至226cP,降低约80倍。试验结果表明:废弃油基泥浆经过加热可以有效降低其粘度,并指导加热气体介质温度的选取。
2.实施过程
本实施例中气体介质选用的是空气,气体加热方式采用的是风道电加热器,物料输送选用的是螺杆输料机。
由进气系统以200m
3/h泵入空气,并由气体加热系统加热至160℃,输料系统以50kg/h的进料速度输送油基泥浆钻屑,气、固两相进入旋流器组进行深度脱油处理,处理后的固相进入岩屑罐,其余物质进入气液分离与回用系统;在旋流器组每一级的底流口设有取样口作为分析样本。
3.实施效果
1)脱油效果
用理论计算的方法,计算得岩屑颗粒在旋流器中的停留时间作为旋流自转脱油处理的时间,其计算结果为每级停留时间约0.3s。用索氏提取萃取-红外分光的方法,测试从各级旋流器底流口的钻屑颗粒含油率,并计算各级相对于原始物料的脱油效率。如图6所示,经过2.7s处理后,钻屑颗粒的含油率为0.16%,远低于GB 4284-84《农用污泥中污染物控制标准》中对含油率小于0.3%的要求,脱油效率达到99.2%。
2)回收泥浆性能
从气液分离与回用系统取样回收的油基泥浆,测试其性能参数如下表1所示,由结果可知,回收的油基泥浆符合重新配置油基泥浆及回用要求。
表1回收油基泥浆的性能参数
3)设备能耗估算
根据试验过程能耗估算年处理量8.4万吨的工业应用装置的能耗,各主要用电设备的能耗如下表2所示:
表2设备能耗
年总耗能折合标油871.78吨标油,废弃油基泥浆岩屑的处理耗能10.38kg/t标油。
综上所述,该技术的实施能有效降低工艺的运行成本,节约资源,保护环境,符合“低碳、环保、高效、节能”的可持续发展战略方向。
上述所列的实施例仅仅是本公开的较佳实施例,并非用来限定本公开的实施范围。即凡依据本申请专利范围的内容所作的等效变化和修饰,都应为本公开的技术范畴。
在本公开提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本公开的上述讲授内容之后,本领域技术人员可以对本公开作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
Claims (9)
- 一种油基泥浆岩屑旋流自转脱油方法,该方法包括以下步骤:(1)体系粘度调控:通过气体介质与岩屑换热,降低油基泥浆岩屑的粘度以减小油、水与固体颗粒表面及孔道的相互作用力,从而便于在旋流场中分离;(2)旋流自转脱油:油基泥浆岩屑颗粒在旋流场中存在自转与公转耦合运动,利用岩屑颗粒的自转强化固相表面油、毛细油和孔隙油的离心脱附,利用其公转产生的周期振荡的离心力完成油气、固相的分离和富集,从而实现岩屑孔道中油相的脱除;以及(3)气液分离与回用:将步骤(2)中产生的含油混合物进行气液分离,实现基础油回用、气体介质循环以及岩屑无害化处理。
- 如权利要求1所述的方法,其特征在于,在步骤(1)中,体系粘度调控过程在旋流场中进行,通过旋流场中的湍流流场强化气体介质与废弃油基泥浆岩屑间的换热效率,从而将液体升温以实现降低其粘度的目的。
- 如权利要求1所述的方法,其特征在于,在步骤(1)中,粘度调控的操作温度范围为70~200℃,根据不同废弃油基泥浆配方确定,低于废弃油基泥浆的额定使用温度。
- 如权利要求1-3中任一项所述的方法,其特征在于,在步骤(1)中,气体介质包括空气、氮气、超临界二氧化碳气体、氢气、干气、低分气和天然气燃烧尾气。
- 如权利要求1所述的方法,其特征在于,在步骤(2)中,油基泥浆岩屑颗粒在旋流场中为旋流公转与颗粒自转耦合运动,自转转速最高至5000转/秒,停留时间2~10秒。
- 一种油基泥浆岩屑旋流自转脱油装置,该装置包括:进气系统(1)和与其连接的气体加热系统(2),以用于对气体介质进行加热;与气体加热系统(2)连接的旋流器组(3),以用于对废弃油基泥浆岩屑进行旋流自转脱油;以及与旋流器组(3)连接的气液分离与回用系统(4),以用于对旋流器溢流口流出的含油混合物进行分离循环及回用。
- 如权利要求6所述的装置,其特征在于,该装置还包括:与气体加热系统 (2)连接的输料系统(5-1),以用于运输处理前的废弃油基泥浆岩屑;与旋流器组(3)连接的输料系统(5-2),以用于运输处理后的废弃油基泥浆岩屑;以及与输料系统(5-2)连接的岩屑罐(6),以用于存储处理后的废弃油基泥浆岩屑。
- 如权利要求6或7所述的装置,其特征在于,所述旋流器组(3)为1~10级旋流器串联组合,并可根据不同处理量需求进行多级并联。
- 如权利要求6或7所述的装置,其特征在于,所述旋流器组(3)的安装组合方式包括旋流器正装、旋流器倒装和旋流器正装与倒装组合。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3112482A CA3112482C (en) | 2018-09-12 | 2018-12-05 | Rotational flow rotation deoiling method and device for oil-based mud rock debris |
US17/275,234 US12017937B2 (en) | 2018-09-12 | 2018-12-05 | Rotational flow rotation deoiling method and device for oil-based mud rock debris |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811061667.7A CN109052881A (zh) | 2018-09-12 | 2018-09-12 | 油基泥浆岩屑旋流自转脱油方法和装置 |
CN201811061667.7 | 2018-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020052109A1 true WO2020052109A1 (zh) | 2020-03-19 |
Family
ID=64761313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/119278 WO2020052109A1 (zh) | 2018-09-12 | 2018-12-05 | 油基泥浆岩屑旋流自转脱油方法和装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12017937B2 (zh) |
CN (1) | CN109052881A (zh) |
CA (1) | CA3112482C (zh) |
WO (1) | WO2020052109A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220041486A1 (en) * | 2018-09-12 | 2022-02-10 | Shanghai Huachang Environmental Protection Co., Ltd. | Rotational flow rotation deoiling method and device for oil-based mud rock debris |
CN116947083A (zh) * | 2023-08-03 | 2023-10-27 | 四川华洁嘉业环保科技有限责任公司 | 一种油基岩屑气流磨法提取硫酸钡的方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110183083B (zh) * | 2019-06-24 | 2021-09-17 | 四川大学 | 皮革污泥干化减量方法和装置 |
CN110257089A (zh) * | 2019-06-24 | 2019-09-20 | 四川大学 | 酒糟干化及资源化处理方法和装置 |
CN110259399B (zh) * | 2019-06-25 | 2024-02-06 | 成都华寰环保科技有限公司 | 一种钻井油基泥浆岩屑中基油回收工艺及其装置 |
CN110984890A (zh) * | 2019-12-17 | 2020-04-10 | 成都理工大学 | 一种页岩气开采的油泥岩屑混合物的处理方法及系统 |
CN112296067B (zh) * | 2020-10-10 | 2023-09-08 | 山西辉煌腾达科技有限公司 | 一种含油基钻屑的收集分离无害化处理装置及处理方法 |
CN112872000B (zh) * | 2020-12-28 | 2022-10-11 | 华东理工大学 | 土壤旋流减量化处理工艺的旋流场调控方法 |
CN112983319B (zh) * | 2021-03-19 | 2022-05-20 | 西南石油大学 | 一种页岩油基钻屑资源化处理装置及方法 |
CN114409210A (zh) * | 2022-02-18 | 2022-04-29 | 湖北中油科昊机械制造有限公司 | 一种混合均匀的可监测式油基泥浆处理装置 |
CN114687687A (zh) * | 2022-04-21 | 2022-07-01 | 河南锐实达分离设备科技股份有限公司 | 一种含油钻屑处理方法 |
CN115521036B (zh) * | 2022-09-16 | 2024-05-03 | 中化节能技术(北京)有限公司 | 一种污水污泥与含油污泥分级协同无害化处理方法 |
CN117510017B (zh) * | 2023-11-30 | 2024-05-24 | 沈阳煤炭科学研究所有限公司 | 一种煤矿井下连续式煤泥固液分离脱水控制管理系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000049269A1 (en) * | 1999-02-17 | 2000-08-24 | Mcintyre Barry E | Method and apparatus for cleaning drill cuttings |
CN1691991A (zh) * | 2002-02-20 | 2005-11-02 | 库玛克斯溶剂公司 | 被碳氢化合物污染的钻屑的热处理方法 |
CN104692607A (zh) * | 2015-03-17 | 2015-06-10 | 东南大学 | 一种油泥热解资源化利用方法及装置 |
CN109052903A (zh) * | 2018-09-12 | 2018-12-21 | 上海华畅环保设备发展有限公司 | 含油污泥悬浮态自转除油处置方法和装置 |
CN109184600A (zh) * | 2018-09-12 | 2019-01-11 | 上海华畅环保设备发展有限公司 | 废弃油基泥浆岩屑基础油的回收方法和装置 |
CN109184601A (zh) * | 2018-09-12 | 2019-01-11 | 上海华畅环保设备发展有限公司 | 废弃油基钻井液旋流气驱除油方法和装置 |
CN109267953A (zh) * | 2018-09-12 | 2019-01-25 | 上海华畅环保设备发展有限公司 | 分级回收废弃油基钻井液中泥浆与基础油的方法和装置 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE21686E (en) * | 1941-01-07 | Apparatus for drying | ||
US1598256A (en) * | 1925-08-17 | 1926-08-31 | Gen Petroleum Corp | Adsorptive agent for the purification of liquids |
US3449602A (en) * | 1966-05-02 | 1969-06-10 | Avco Corp | Means for and method of heating gases for magnetohydrodynamic devices |
US3893922A (en) * | 1972-12-14 | 1975-07-08 | Roy A Bobo | Cylindrical cyclone centrifuges |
US4725362A (en) * | 1985-11-18 | 1988-02-16 | Dugat John W | Treatment techniques for drill fluids, cuttings and other oil field wastes |
US7867399B2 (en) * | 2008-11-24 | 2011-01-11 | Arkansas Reclamation Company, Llc | Method for treating waste drilling mud |
US7935261B2 (en) * | 2008-11-24 | 2011-05-03 | Arkansas Reclamation Company, Llc | Process for treating waste drilling mud |
US8758629B2 (en) | 2010-03-03 | 2014-06-24 | Soane Energy, Llc | Treatment of oil-contaminated solids |
JP2015502983A (ja) * | 2011-10-11 | 2015-01-29 | グリーンストラクト, エルエルシー | 油抽出のために有用な組成物および方法 |
GB201202880D0 (en) | 2012-02-20 | 2012-04-04 | Airbus Operations Ltd | Wireless power transmission |
CN102698815B (zh) | 2012-05-11 | 2014-06-18 | 上海华畅环保设备发展有限公司 | 沸腾床渣油加氢外排催化剂的处理方法和装置 |
CN102872648A (zh) * | 2012-10-23 | 2013-01-16 | 辽宁留德润滑油有限公司 | 一种去除废润滑油中杂质的过滤旋流分离装置 |
US9675354B2 (en) | 2013-01-14 | 2017-06-13 | Intuitive Surgical Operations, Inc. | Torque compensation |
CN103643910B (zh) | 2013-12-05 | 2017-12-01 | 四川博盛永业工程技术有限公司 | 一种废弃油基泥浆中泥浆及柴油基的回收装备 |
CN103773408B (zh) | 2013-12-05 | 2016-03-30 | 西南石油大学 | 一种从油基泥浆钻井废弃物中回收油基泥浆和油基工艺 |
CN103736360B (zh) | 2013-12-05 | 2016-01-27 | 王兵 | 废弃油基泥浆或钻屑中油基的药剂常温深度脱附回收工艺 |
CN103758474B (zh) | 2013-12-05 | 2017-01-25 | 西南石油大学 | 一种从油基泥浆钻井废弃物中回收油基泥浆的工艺 |
CN104178200B (zh) | 2014-08-14 | 2016-05-04 | 中国石油集团川庆钻探工程有限公司工程技术研究院 | 一种油基钻屑热解析处理方法 |
CN204571890U (zh) * | 2015-03-02 | 2015-08-19 | 中国石油集团渤海钻探工程有限公司 | 废弃油基泥浆随钻处理装置 |
CN106007284B (zh) | 2016-05-04 | 2019-01-22 | 杰瑞环保科技有限公司 | 含油废弃物深度处理方法及系统 |
CN106630504B (zh) | 2016-09-29 | 2019-07-02 | 东北石油大学 | 一种废弃油基钻井液固态残渣的处理方法 |
CN106746417A (zh) | 2017-01-25 | 2017-05-31 | 浙江宜可欧环保科技有限公司 | 一种油基泥浆的处理装置 |
CN107597201B (zh) | 2017-09-13 | 2019-10-08 | 上海华畅环保设备发展有限公司 | 含油外排催化剂处理及分选回用方法和装置 |
CA2979651A1 (en) * | 2017-09-20 | 2019-03-20 | Louis Bertrand | Stationary reactor and its internals for producing liquid fuel from waste hydrocarbon and/or organic material and/or contaminated oils, thermal processes, uses and managing systems thereof |
US11578248B2 (en) * | 2018-07-26 | 2023-02-14 | Halliburton Energy Services, Inc. | Emulsifiers for direct emulsion drilling fluids |
US20200056097A1 (en) * | 2018-08-15 | 2020-02-20 | Wei Ming Chang | Method of treating drilling mud with oil-based drilling fluid |
CN109052881A (zh) * | 2018-09-12 | 2018-12-21 | 上海华畅环保设备发展有限公司 | 油基泥浆岩屑旋流自转脱油方法和装置 |
CA3152745A1 (en) * | 2019-10-22 | 2021-04-29 | Sherman Cox | Method of making purified precipitated calcium carbonate from lime mud |
KR20210093657A (ko) * | 2020-01-20 | 2021-07-28 | 정하익 | 기능성 시멘트, 몰탈, 레미콘, 아스콘, 바인더, 아스팔트, 페이스트, 플라스터, 콘크리트, 건자재, 건물, 구조물, 장비, 방법, 공법 |
US11655409B2 (en) * | 2020-09-23 | 2023-05-23 | Saudi Arabian Oil Company | Forming drilling fluid from produced water |
-
2018
- 2018-09-12 CN CN201811061667.7A patent/CN109052881A/zh active Pending
- 2018-12-05 US US17/275,234 patent/US12017937B2/en active Active
- 2018-12-05 CA CA3112482A patent/CA3112482C/en active Active
- 2018-12-05 WO PCT/CN2018/119278 patent/WO2020052109A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000049269A1 (en) * | 1999-02-17 | 2000-08-24 | Mcintyre Barry E | Method and apparatus for cleaning drill cuttings |
CN1691991A (zh) * | 2002-02-20 | 2005-11-02 | 库玛克斯溶剂公司 | 被碳氢化合物污染的钻屑的热处理方法 |
CN104692607A (zh) * | 2015-03-17 | 2015-06-10 | 东南大学 | 一种油泥热解资源化利用方法及装置 |
CN109052903A (zh) * | 2018-09-12 | 2018-12-21 | 上海华畅环保设备发展有限公司 | 含油污泥悬浮态自转除油处置方法和装置 |
CN109184600A (zh) * | 2018-09-12 | 2019-01-11 | 上海华畅环保设备发展有限公司 | 废弃油基泥浆岩屑基础油的回收方法和装置 |
CN109184601A (zh) * | 2018-09-12 | 2019-01-11 | 上海华畅环保设备发展有限公司 | 废弃油基钻井液旋流气驱除油方法和装置 |
CN109267953A (zh) * | 2018-09-12 | 2019-01-25 | 上海华畅环保设备发展有限公司 | 分级回收废弃油基钻井液中泥浆与基础油的方法和装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220041486A1 (en) * | 2018-09-12 | 2022-02-10 | Shanghai Huachang Environmental Protection Co., Ltd. | Rotational flow rotation deoiling method and device for oil-based mud rock debris |
US12017937B2 (en) * | 2018-09-12 | 2024-06-25 | Shanghai Huachang Environmental Protection Co., Ltd. | Rotational flow rotation deoiling method and device for oil-based mud rock debris |
CN116947083A (zh) * | 2023-08-03 | 2023-10-27 | 四川华洁嘉业环保科技有限责任公司 | 一种油基岩屑气流磨法提取硫酸钡的方法 |
Also Published As
Publication number | Publication date |
---|---|
CA3112482A1 (en) | 2020-03-19 |
US20220041486A1 (en) | 2022-02-10 |
CA3112482C (en) | 2024-04-23 |
US12017937B2 (en) | 2024-06-25 |
CN109052881A (zh) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020052109A1 (zh) | 油基泥浆岩屑旋流自转脱油方法和装置 | |
CN104178200B (zh) | 一种油基钻屑热解析处理方法 | |
WO2005103439A1 (en) | Drill cutting deoiling | |
WO2015081878A1 (zh) | 一种从油基泥浆钻井废弃物中回收全部油基泥浆的系统 | |
CN109045770A (zh) | 用于海洋钻井平台的油基泥浆岩屑处理方法和随钻装置 | |
CN201008761Y (zh) | 石油工程用气/液/固混相流分离设备 | |
CN204571890U (zh) | 废弃油基泥浆随钻处理装置 | |
CN109267953B (zh) | 分级回收废弃油基钻井液中泥浆与基础油的方法和装置 | |
CN109184600A (zh) | 废弃油基泥浆岩屑基础油的回收方法和装置 | |
CN113404452B (zh) | 一种钻井油基泥浆岩屑中油液回收装置 | |
GB2096297A (en) | Method for drying well drill cuttings | |
CN109052903A (zh) | 含油污泥悬浮态自转除油处置方法和装置 | |
CN103058471A (zh) | 热处理-超临界萃取处理油泥的方法 | |
CN103111086A (zh) | 浸取钻屑中油分的溶剂及浸取方法 | |
CN109184601A (zh) | 废弃油基钻井液旋流气驱除油方法和装置 | |
CN110078322A (zh) | 油气田废弃钻井泥浆的处理方法 | |
CN101235709B (zh) | 石油工程循环气体再生方法及其专用装置 | |
CN109020123B (zh) | 陆上油气田含油固体污染物不落地循环方法和装置 | |
CN204402409U (zh) | 一种钻井油基钻屑清洗装置 | |
CN101269380B (zh) | 一种含油钻屑和被油污染的土壤中的油成分清除方法 | |
CN108192645A (zh) | 油基钻屑与生物质共热解回收含油组分的方法 | |
CN109848177B (zh) | 一种油田固废处理药剂及资源化处理工艺 | |
CN109174947B (zh) | 含油土壤修复方法和装置 | |
CN102698816B (zh) | 沸腾床渣油加氢外排催化剂水热脱附的后处理方法和装置 | |
CN104745155A (zh) | 一种废弃油基钻井液回收与无害化处理工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18933627 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3112482 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18933627 Country of ref document: EP Kind code of ref document: A1 |