WO2020051854A1 - 金属氢化物/钯化合物催化还原体系在烯基活泼亚甲基化合物还原中的应用及还原方法 - Google Patents

金属氢化物/钯化合物催化还原体系在烯基活泼亚甲基化合物还原中的应用及还原方法 Download PDF

Info

Publication number
WO2020051854A1
WO2020051854A1 PCT/CN2018/105596 CN2018105596W WO2020051854A1 WO 2020051854 A1 WO2020051854 A1 WO 2020051854A1 CN 2018105596 W CN2018105596 W CN 2018105596W WO 2020051854 A1 WO2020051854 A1 WO 2020051854A1
Authority
WO
WIPO (PCT)
Prior art keywords
reduction
active methylene
compound
alkenyl
palladium
Prior art date
Application number
PCT/CN2018/105596
Other languages
English (en)
French (fr)
Inventor
张士磊
毛玉健
刘晔
桂晶晶
陈韶华
胡延维
Original Assignee
南通纺织丝绸产业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通纺织丝绸产业技术研究院, 苏州大学 filed Critical 南通纺织丝绸产业技术研究院
Priority to PCT/CN2018/105596 priority Critical patent/WO2020051854A1/zh
Publication of WO2020051854A1 publication Critical patent/WO2020051854A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • B01J31/30Halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/32Oxygen atoms
    • C07D209/34Oxygen atoms in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Definitions

  • the invention belongs to the technical field of organic synthesis, and particularly relates to the application of a metal hydride / palladium compound catalyst system in the reduction of alkenyl active methylene compounds and one-pot reaction.
  • Sodium hydride is a strong base often used in laboratories and industries. For a long time, there have been few reports about its use as a reducing agent, and existing reactions require a large excess of reducing agent (3 equivalents), and at least 2 equivalents of sodium iodide are used as accelerators.
  • Reduction of alkenyl active methylene compounds is a common chemical conversion to generate corresponding monoalkyl-substituted active methylene compounds; this type of reaction is generally carried out using hydrogen / palladium carbon conditions; in addition, some hydrogen Reagents, such as [(Ph 3 P) CuH] 6 (Stryker reagent), R 3 SiH, Hantzsch ester, etc. can also complete the reduction of this electron-deficient double bond.
  • the technical problem to be solved by the present invention is to provide an application of a metal hydride / palladium compound catalytic reduction system, thereby providing a new method for reducing alkenyl active methylene compounds, and the application of this method in a one-pot reaction.
  • the technical means for realizing the above-mentioned reduction of an alkenyl-active methylene compound mentioned above uses metal hydride as a reducing agent, palladium and its salts as a catalyst, and reacts in a solvent to obtain a double-bonded reduction product.
  • metal hydride as a reducing agent
  • palladium and its salts as a catalyst
  • reacts in a solvent to obtain a double-bonded reduction product.
  • R 1 and R 2 are independently selected from hydrogen, alkyl, phenyl, substituted phenyl, naphthyl, pyridyl, and quinolinyl.
  • the alkyl group may be a methyl group
  • the substituted phenyl group may be a halogen-substituted phenyl group or a methoxy-substituted phenyl group.
  • the metal hydride includes sodium hydride, lithium hydride, potassium hydride, calcium hydride, preferably sodium hydride, lithium hydride, and more preferably sodium hydride;
  • the palladium compound includes palladium chloride, palladium acetate, Pd (MeCN ) 2 Cl 2 , [( ⁇ 3 -C 3 H 5 ) PdCl] 2 , Pd (TFA) 2 , Pd (dppp) Cl 2 , Pd 2 (dba) 3 , Pd (C 6 H 5 CN) 2 Cl 2 , Pd (OH) 2 , Pd / C, Pd (PPh 3 ) 4 , Pd (PPh 3 ) 2 Cl 2 , preferably palladium chloride, palladium acetate, and more preferably palladium chloride.
  • the molar ratio of the palladium compound, metal hydride, and alkenyl active methylene compound is (0.01 to 1): (1 to 5): 1, preferably (0.03 to 0.1): (1 to 3 ): 1, more preferably 0.05: (1.5 to 2.5): 1, and most preferably 0.05: 2: 1.
  • the reduction of the alkenyl-active methylene compound is performed in a solvent under a nitrogen atmosphere;
  • the solvent includes DMA (N, N-dimethylacetamide), DMF, THF, DME, or dioxane.
  • the reduction temperature of the alkenyl active methylene compound is -50 ° C to 120 ° C, preferably 0 to 50 ° C, and more preferably room temperature; the reduction time is 0.3 to 10 hours, preferably 0.4 to 5 hours, and more preferably 0.5. hour.
  • the sodium hydride / palladium reduced alkenyl active methylene compound has the following advantages: 1) Compared with sodium borohydride, sodium hydride is cheaper (industrially, sodium borohydride is prepared from sodium hydride as a raw material); Compared with hydrogen / palladium carbon reduction, the sodium hydride method is safer; 2) sodium hydride has a small molecular weight and simple composition, and the amount used in the reaction is small, so using sodium hydride as a reducing agent is an atomic economic method; By-products except harmless sodium salt, no other waste is generated; 3) the product of the alkenyl active methylene compound reduced by sodium hydride is the sodium salt before the post-treatment, which is different from the existing reduction methods, Reactive sodium salts can continue to react with electrophilic reagents to obtain disubstituted products, which expands the application of alkenyl active methylene compounds. And in this one-pot reaction, the reducing and basic properties of sodium hydride are fully utilized, greatly improving the
  • the technical scheme of the present invention can be specifically described as follows: under the protection of nitrogen, palladium compound and metal hydride are suspended in a solvent and stirred, then a substrate alkenyl active methylene compound is added, and the reaction is performed at -50 ° C to 120 ° C for 0.3 For -10 hours, the reaction was stopped by adding a saturated aqueous ammonium chloride solution, extracted with a solvent, evaporated to dryness, and purified by column chromatography to obtain the product.
  • the reduction of alkenyl active methylene compounds is a chemical reaction often used in organic synthesis.
  • two types of methods are used: one is hydrogen reduction with hydrogen / palladium carbon.
  • the use of hydrogen is a potential danger. Factors, improper operation will cause fire and explosion; the other is the use of reducing agents for reduction, which is expensive and requires treatment of a large amount of wastewater.
  • the present invention uses a relatively safe and inexpensive metal hydride instead of hydrogen and a reducing agent for the reduction of alkenyl active methylene compounds, and it is more important that this method fully utilizes the reducibility of sodium hydride And alkaline, you can perform a one-pot reaction.
  • the reduction system of the present invention is a simple method for reducing alkenyl active methylene compounds.
  • the hydride and palladium catalysts used are reagents easily available in the laboratory. Compared with commonly used hydrogen hydrogenation methods and reducing agent reduction methods, This method is easier to operate, has higher safety, mild conditions, high reaction yield, and can perform two-step reaction in one pot, and has high atomic economy and step economy.
  • reaction was quenched by the addition of a saturated aqueous ammonium chloride solution, extracted with ethyl acetate, and the extracts were combined with It was dried over sodium sulfate, evaporated to dryness by rotary evaporation, and purified by column chromatography to obtain product 2a with a yield of 62%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

公开了金属氢化物/钯化合物催化还原体系在烯基活泼亚甲基化合物还原中的应用及还原方法,反应包括以下步骤,以烯基活泼亚甲基化合物为底物、金属氢化物为还原剂、钯化合物为催化剂,还原反应,得到还原产物,完成烯基活泼亚甲基化合物的还原。还原体系是还原烯基活泼亚甲基化合物的简易方法,所用的氢化物和钯化合物催化剂都是实验室中容易获得的试剂,相比于常用的氢气氢化方法和还原剂还原方法,此方法更易操作,安全性更高,条件温和,反应收率高,而且可以一锅两步反应,具有很高的原子经济性和步骤经济性。

Description

金属氢化物/钯化合物催化还原体系在烯基活泼亚甲基化合物还原中的应用及还原方法 技术领域
本发明属于有机合成技术领域,具体涉及金属氢化物/钯化合物催化体系在烯基活泼亚甲基化合物还原及一锅反应中的应用。
背景技术
氢化钠是一种实验室及工业上经常使用的强碱,长期以来,很少有做为还原剂被使用的相关报道,而且现有反应需要大大过量的还原剂(3当量),同时需要至少2当量的碘化钠做为促进剂。烯基活泼亚甲基化合物的还原是一种常见的化学转化,生成相应的单烷基取代的活泼亚甲基化合物;这类反应一般是使用氢气/钯碳条件进行还原;另外,一些氢负试剂,比如[(Ph 3P)CuH] 6 (Stryker试剂)、R 3SiH、Hantzsch 酯等也可以完成这种缺电子双键的还原。但是,这些还原条件要么具有一定的危险性,比如易爆炸的氢气;要么试剂较贵、反应缺乏原子经济性并且反应后需要处理较多的废弃物,比如[(Ph 3P)CuH] 6 (Stryker试剂)、R 3SiH、Hantzsch 酯等,或者有些反应后需要处理大量废水,所以在工业应用上也有一定的局限性。
技术问题
本发明要解决的技术问题是提供一种金属氢化物/钯化合物催化还原体系的应用,从而提供一种烯基活泼亚甲基化合物还原的新方法,以及此方法在一锅反应中的应用。
技术解决方案
本发明实现以上提及的还原烯基活泼亚甲基化合物的技术手段是以金属氢化物为还原剂,钯及其盐类为催化剂,在溶剂中反应得到双键还原的产物。具体技术方案如下:
金属氢化物/钯化合物催化还原体系在烯基活泼亚甲基化合物还原中的应用。
烯基活泼亚甲基化合物还原的方法,以烯基活泼亚甲基化合物为底物、金属氢化物为还原剂、钯化合物为催化剂,还原反应,得到还原产物,完成烯基活泼亚甲基化合物的还原。
上述技术方案中,还原反应后,加入饱和氯化铵水溶液中止反应,然后经过萃取、干燥、旋蒸、柱层析纯化得到还原产物。
本发明中,烯基活泼亚甲基化合物的化学结构式如下:
Figure 866570dest_path_image001
其中,R 1、R 2独立的选自氢、烷基、苯基、取代苯基、萘基、吡啶基、喹啉基。
烯基活泼亚甲基化合物的化学结构式中,烷基可以为甲基,取代苯基可以为卤素取代苯基、甲氧基取代苯基。
本发明中,所述金属氢化物包括氢化钠、氢化锂、氢化钾、氢化钙,优选氢化钠、氢化锂,更优选氢化钠;所述钯化合物包括为氯化钯、醋酸钯、Pd(MeCN) 2Cl 2、[(η 3-C 3H 5)PdCl] 2、Pd(TFA) 2、Pd(dppp)Cl 2、Pd 2(dba) 3、Pd(C 6H 5CN) 2Cl 2、Pd(OH) 2、Pd/C、Pd(PPh 3) 4、Pd(PPh 3) 2Cl 2,优选氯化钯、醋酸钯,更优选氯化钯。
本发明中,所述钯化合物、金属氢化物、烯基活泼亚甲基化合物的摩尔比为(0.01~1) ∶(1~5) ∶1,优选为(0.03~0.1) ∶(1~3) ∶1,更优选为0.05∶(1.5~2.5) ∶1,最优选为0.05∶2∶1。
本发明中,烯基活泼亚甲基化合物的还原在氮气气氛下、溶剂中进行;所述溶剂包括DMA(N,N-二甲基乙酰胺)、DMF、THF、DME或者二氧六环。
本发明中,烯基活泼亚甲基化合物还原的温度为-50℃~120℃,优选0~50℃,更优选室温;还原的时间为0.3~10小时,优选0.4~5小时,更优选0.5小时。
本发明氢化钠/钯还原烯基活泼亚甲基化合物有以下几点优势:1)相比于硼氢化钠,氢化钠价格更加便宜(工业上硼氢化钠是以氢化钠为原料制备的);相比于氢气/钯碳还原,氢化钠方法的安全性更高;2)氢化钠分子量小而且组成简单,反应中使用量少,所以用氢化钠做为还原剂是一种原子经济的方法;副产物除了无害的钠盐,没有其它废物产生;3)烯基活泼亚甲基化合物被氢化钠还原后的产物在后处理前是钠盐,这一点和现有的还原方法都不一样,具有反应活性的钠盐可以继续和亲电试剂反应,得到二取代的产物,拓展了烯基活泼亚甲基化合物的应用。并且在此一锅反应中,氢化钠的还原性和碱性都被充分利用,大大提高了反应的原子经济性和步骤经济性,降低了反应成本。
本发明的技术方案具体可以如下所述:氮气保护下,把钯化合物和金属氢化物悬浮于溶剂中搅拌,然后加入底物烯基活泼亚甲基化合物,在-50℃至120℃下反应0.3~10小时,加入饱和氯化铵水溶液中止反应,用溶剂萃取,蒸干,柱层析纯化,得到产物。
有益效果
烯基活泼亚甲基化合物的还原是有机合成中经常使用的化学反应,一般采用两类方法:一类是使用氢气/钯碳进行氢化还原,在这个过程中,氢气的使用是一个潜在的危险因素,操作不当就会引起着火、爆炸;另一类是使用还原剂进行还原,价格较高且需要处理大量废水。本发明使用相对比较安全且价格低廉的金属氢化物代替氢气和还原剂用于烯基活泼亚甲基化合物的还原具有重要的意义;而且更重要的是,此方法充分发挥了氢化钠的还原性和碱性,可以进行一锅反应。
本发明的还原体系是还原烯基活泼亚甲基化合物的简易方法,所用的氢化物和钯化合物催化剂都是实验室中容易获得的试剂,相比于常用的氢气氢化方法和还原剂还原方法,此方法更易操作,安全性更高,条件温和,反应收率高,而且可以一锅两步反应,具有很高的原子经济性和步骤经济性。
本发明的实施方式
实施例1
Figure 355320dest_path_image002
氮气保护下,氯化钯 (1.7 mg, 0.01 mmol, 5 mol%)和氢化钠 (60% in oil, 16 mg, 0.4 mmol, 2 equiv)悬浮于DMA (1.0 mL),室温搅拌5分钟,加入化合物 1a (0.2 mmol)在 DMA (0.5 mL)的溶液,然后在室温反应30分钟,加入饱和氯化铵水溶液中止反应,用乙酸乙酯萃取,合并萃取液,用硫酸钠干燥,旋蒸蒸干,柱层析纯化,得到产物 2a,收率99%。 1H NMR (400 MHz, CDCl 3): δ 7.48 (t, J = 7.6 Hz, 2H), 7.38 (t, J = 7.3 Hz, 1H), 7.25-7.17 (m, 5H), 7.17-7.10 (m, 3H), 7.02-6.93 (m, 2H), 6.64 (d, J = 7.8 Hz, 1H), 3.95-3.88 (m, 1H), 3.52 (dd, J = 13.5, 4.2 Hz, 1H), 3.17 (dd, J = 13.5, 8.2 Hz, 1H). 13C NMR (151 MHz, CDCl 3): δ 176.56, 144.51, 137.40, 134.57, 129.71, 128.31, 128.23, 128.18, 127.99, 126.83, 126.78, 124.83, 122.63, 47.36, 37.26. LR-MS (ESI): m/z 300.2 [M+H] +
Figure 561173dest_path_image003
氮气保护下,氯化钯 (1.7 mg, 0.01 mmol, 5 mol%)和氢化钠 (60% in oil, 16 mg, 0.4 mmol, 2 equiv)悬浮于DMA (1.0 mL),室温搅拌5分钟,加入化合物 1a (0.2 mmol)在 DMA (0.5 mL)的溶液,然后在室温反应30分钟,加入溴化苄(1.5eq.),继续搅拌反应,待原料反应完后,加饱和氯化铵水溶液淬灭反应,用乙酸乙酯萃取,收集有机相,旋干溶剂得到粗产物,柱层析,最终得到化合物 3a,收率98%。 1H NMR (400 MHz, CDCl 3): δ 7.38-7.27 (m, 4H), 7.13-7.04 (m, 7H), 7.02-6.94 (m, 5H), 6.64 (d, J = 7.3 Hz, 2H), 6.21 (d, J = 7.7 Hz, 1H), 3.47 (d, J = 12.9 Hz, 2H), 3.25 (d, J = 12.9 Hz, 2H). 13C NMR (151 MHz, CDCl 3): δ 177.80, 144.12, 136.08, 134.37, 130.26, 130.14, 129.49, 128.06, 127.85, 127.76, 126.81, 126.65, 124.42, 122.23, 108.88, 56.67, 43.83. LR-MS (ESI): m/z 390.3 [M+H]+。
实施例2
Figure 818979dest_path_image004
氮气保护下,醋酸钯 (2.2 mg, 0.01 mmol, 5 mol%)和氢化锂 (4.8 mg, 0.6 mmol, 3.0 equiv)悬浮于DMF (1.0 mL),室温搅拌5分钟,加入化合物 1a (0.2 mmol)在 DMF (0.5 mL)的溶液,然后在120℃反应0.5小时,加入饱和氯化铵水溶液中止反应,用乙酸乙酯萃取,合并萃取液,用硫酸钠干燥,旋蒸蒸干,柱层析纯化,得到产物 2a,收率92%。
实施例3
Figure 983244dest_path_image005
氮气保护下,Pd 2(dba) 3 (1.8 mg, 0.002 mmol, 1 mol%)和氢化钾 (30% in oil, 133 mg, 1.0 mmol, 5 equiv)悬浮于THF (1.0 mL),室温搅拌5分钟,加入化合物 1a (0.2 mmol)在 THF (0.5 mL)的溶液,然后在-50℃反应10小时,加入饱和氯化铵水溶液中止反应,用乙酸乙酯萃取,合并萃取液,用硫酸钠干燥,旋蒸蒸干,柱层析纯化,得到产物 2a,收率71%。
实施例4
Figure 959291dest_path_image006
氮气保护下,Pd(TFA) 2 (67 mg, 0.2 mmol, 100 mol%)和氢化钙 (16 mg, 0.4 mmol, 2.0 equiv)悬浮于DME (1.0 mL),室温搅拌5分钟,加入化合物 1a (0.2 mmol)在 DME (0.5 mL)的溶液,然后在90℃反应0.5小时,加入饱和氯化铵水溶液中止反应,用乙酸乙酯萃取,合并萃取液,用硫酸钠干燥,旋蒸蒸干,柱层析纯化,得到产物 2a,收率83%。
实施例5
Figure 790124dest_path_image007
氮气保护下,[(η 3-C 3H 5)PdCl] 2 (1.4 mg, 0.004 mmol, 2 mol%)和氢化钠(60% in oil, 8 mg, 0.20 mmol, 1.0 equiv)悬浮于二氧六环 (1.0 mL),室温搅拌5分钟,加入化合物 1a (0.2 mmol)在二氧六环 (0.5 mL)的溶液,然后在30℃反应2小时,加入饱和氯化铵水溶液中止反应,用乙酸乙酯萃取,合并萃取液,用硫酸钠干燥,旋蒸蒸干,柱层析纯化,得到产物 2a,收率69%。
实施例6
Figure 902436dest_path_image008
氮气保护下,Pd/C (10%, 0.01 mmol, 5 mol%)和氢化钠 (60% in oil, 16 mg, 0.4 mmol, 2 equiv)悬浮于DMA (1.0 mL),室温搅拌5分钟,加入化合物 1a (0.2 mmol)在 DMA (0.5 mL)的溶液,然后在室温反应10小时,加入饱和氯化铵水溶液中止反应,用乙酸乙酯萃取,合并萃取液,用硫酸钠干燥,旋蒸蒸干,柱层析纯化,得到产物 2a,收率8%。
实施例7
Figure 972024dest_path_image009
氮气保护下,Pd(dppp)Cl 2 (6 mg, 0.01 mmol, 5 mol%)和氢化钠 (60% in oil, 16 mg, 0.4 mmol, 2 equiv)悬浮于DMA (1.0 mL),室温搅拌5分钟,加入化合物 1a (0.2 mmol)在 DMA (0.5 mL)的溶液,然后在室温反应1小时,加入饱和氯化铵水溶液中止反应,用乙酸乙酯萃取,合并萃取液,用硫酸钠干燥,旋蒸蒸干,柱层析纯化,得到产物 2a,收率57%。
实施例8
Figure 435366dest_path_image010
氮气保护下,Pd(C 6H 5CN) 2Cl 2 (3.8 mg, 0.01 mmol, 5 mol%)和氢化钠 (60% in oil, 16 mg, 0.4 mmol, 2 equiv)悬浮于DMA (1.0 mL),室温搅拌5分钟,加入化合物 1a (0.2 mmol)在 DMA (0.5 mL)的溶液,然后在室温反应1小时,加入饱和氯化铵水溶液中止反应,用乙酸乙酯萃取,合并萃取液,用硫酸钠干燥,旋蒸蒸干,柱层析纯化,得到产物 2a,收率62%。
实施例9
Figure 248601dest_path_image011
氮气保护下,Pd(OH) 2 (1.4 mg, 0.01 mmol, 5 mol%)和氢化钠 (60% in oil, 16 mg, 0.4 mmol, 2 equiv)悬浮于DMA (1.0 mL),室温搅拌5分钟,加入化合物 1a (0.2 mmol)在 DMA (0.5 mL)的溶液,然后在室温反应0.5小时,加入饱和氯化铵水溶液中止反应,用乙酸乙酯萃取,合并萃取液,用硫酸钠干燥,旋蒸蒸干,柱层析纯化,得到产物 2a,收率71%。
实施例10
Figure 480999dest_path_image012
氮气保护下,氯化钯 (1.7 mg, 0.01 mmol, 5 mol%)和氢化钠 (60% in oil, 16 mg, 0.4 mmol, 2 equiv)悬浮于DMA (1.0 mL),室温搅拌5分钟,加入化合物 1b (0.2 mmol)在 DMA (0.5 mL)的溶液,然后在室温反应30分钟,加入饱和氯化铵水溶液中止反应,用乙酸乙酯萃取,合并萃取液,用硫酸钠干燥,旋蒸蒸干,柱层析纯化,得到产物 2b,收率98%。 1H NMR (400 MHz, CDCl 3): δ 7.49 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.4 Hz, 1H), 7.22 (d, J = 7.6 Hz, 2H), 7.19-7.11 (m, 2H), 7.03-6.96 (m, 2H), 6.80-6.74 (m, 2H), 6.69-6.64 (m, 2H), 3.97-3.88 (m, 1H), 3.69 (s, 3H), 3.51 (dd, J = 13.5, 4.1 Hz, 1H), 3.13 (dd, J = 13.4, 8.4 Hz, 1H). 13C NMR (101 MHz, CDCl 3): δ 176.56, 159.52, 144.52, 138.98, 134.57, 129.71, 129.30, 128.28, 128.19, 128.00, 126.78, 124.87, 122.64, 122.14, 114.69, 112.86, 109.34, 55.26, 47.28, 37.34. LR-MS (ESI): m/z 330.2 [M+H]+。
实施例11
Figure 987067dest_path_image013
氮气保护下,氯化钯 (1.7 mg, 0.01 mmol, 5 mol%)和氢化钠 (60% in oil, 16 mg, 0.4 mmol, 2 equiv)悬浮于DMA (1.0 mL),室温搅拌5分钟,加入化合物 1c (0.2 mmol)在 DMA (0.5 mL)的溶液,然后在室温反应30分钟,加入饱和氯化铵水溶液中止反应,用乙酸乙酯萃取,合并萃取液,用硫酸钠干燥,旋蒸蒸干,柱层析纯化,得到产物 2c,收率98%。 1H NMR (400 MHz, CDCl 3): δ 7.49 (t, J = 7.5 Hz, 2H), 7.38 (t, J = 7.3 Hz, 1H), 7.31 (d, J = 7.7 Hz, 2H), 7.25-7.17 (m, 2H), 7.12 (t, J = 7.6 Hz, 1H), 7.08-6.91 (m, 3H), 6.89 (d, J = 7.2 Hz, 1H), 6.69 (d, J = 7.8 Hz, 1H), 3.98-3.90 (m, 1H), 3.60 (dd, J = 13.8, 5.0 Hz, 1H), 3.12 (dd, J = 13.7, 8.4 Hz, 1H). 13C NMR (101 MHz, CDCl 3): δ 176.44, 161.37 (d, J = 246.0 Hz), 144.30, 134.59, 131.76 (d, J = 4.5 Hz), 129.72, 128.72 (d, J = 8.1 Hz), 128.18, 128.04, 127.94, 126.74, 125.07, 124.92, 124.02 (d, J = 3.6 Hz), 122.69, 115.47 (d, J = 22.2 Hz), 109.26, 46.05, 30.26. LR-MS (ESI): m/z 318.3 [M+H]+。
实施例12
Figure 672126dest_path_image014
氮气保护下,氯化钯 (1.7 mg, 0.01 mmol, 5 mol%)和氢化钠 (60% in oil, 16 mg, 0.4 mmol, 2 equiv)悬浮于DMA (1.0 mL),室温搅拌5分钟,加入化合物 1d (0.2 mmol)在 DMA (0.5 mL)的溶液,然后在室温反应1小时,加入饱和氯化铵水溶液中止反应,用乙酸乙酯萃取,合并萃取液,用硫酸钠干燥,旋蒸蒸干,柱层析纯化,得到产物 2d,收率97%。 1H NMR (400 MHz, CDCl 3): δ 7.84-7.77 (m, 1H), 7.77-7.70 (m, 2H), 7.62 (s, 1H), 7.49-7.41 (m, 4H), 7.40-7.31 (m, 2H), 7.20 (d, J = 7.5 Hz, 2H), 7.14-7.07 (m, 1H), 6.97-6.91 (m, 2H), 6.64 (d, J = 7.8 Hz, 1H), 4.02 (dd, J = 8.2, 4.4 Hz, 1H), 3.70 (dd, J = 13.6, 4.3 Hz, 1H), 3.32 (dd, J = 13.6, 8.4 Hz, 1H). 13C NMR (151 MHz, CDCl 3): δ 176.60, 144.44, 135.12, 134.54, 133.44, 132.46, 129.68, 128.31, 128.20, 128.15, 128.01, 127.96, 127.87, 127.77, 127.71, 126.74, 126.09, 125.67, 124.88, 122.65, 109.36, 47.28, 37.41. LR-MS (ESI): m/z 350.2 [M+H]+。
实施例13
Figure 289052dest_path_image015
氮气保护下,氯化钯 (1.7 mg, 0.01 mmol, 5 mol%)和氢化钠 (60% in oil, 16 mg, 0.4 mmol, 2 equiv)悬浮于DMA (1.0 mL),室温搅拌5分钟,加入化合物 1e (0.2 mmol)在 DMA (0.5 mL)的溶液,然后在室温反应30分钟,加入饱和氯化铵水溶液中止反应,用乙酸乙酯萃取,合并萃取液,用硫酸钠干燥,旋蒸蒸干,柱层析纯化,得到产物 2e,收率98%。 1H NMR (400 MHz, CDCl 3): δ 8.86 (d, J = 4.1 Hz, 1H), 8.27 (d, J = 8.3 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 7.76 (t, J = 7.5 Hz, 1H), 7.63 (t, J = 7.5 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.42 (t, J = 7.3 Hz, 1H), 7.35 (d, J = 7.7 Hz, 2H), 7.31 (d, J = 4.1 Hz, 1H), 7.16 (t, J = 7.7 Hz, 1H), 6.91 (t, J = 7.5 Hz, 1H), 6.77 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 7.3 Hz, 1H), 4.16-4.02 (m, 2H), 3.36 (dd, J = 13.5, 9.5 Hz, 1H). 13C NMR (151 MHz, CDCl 3): δ 176.17, 149.67, 148.34, 144.70, 144.23, 134.37, 130.28, 129.80, 129.74, 128.37, 128.35, 127.85, 127.44, 127.11, 126.65, 124.99, 123.76, 122.82, 122.47, 109.67 , 45.71, 34.03. LR-MS (ESI): m/z 351.1 [M+H]+。
实施例14
Figure 110378dest_path_image016
氮气保护下,氯化钯 (1.7 mg, 0.01 mmol, 5 mol%)和氢化钠 (60% in oil, 16 mg, 0.4 mmol, 2 equiv)悬浮于DMA (1.0 mL),室温搅拌5分钟,加入化合物 1f (0.2 mmol)在 DMA (0.5 mL)的溶液,然后在室温反应30分钟,加入饱和氯化铵水溶液中止反应,用乙酸乙酯萃取,合并萃取液,用硫酸钠干燥,旋蒸蒸干,柱层析纯化,得到产物 2f(Diastereomer a/b = 58/42),收率96%。Diastereomer a: 1H NMR (400 MHz, CDCl 3): δ 7.46 (t, J = 7.6 Hz, 2H), 7.36 (t, J = 7.4 Hz, 1H), 7.32-7.17 (m, 7H), 7.09 (t, J = 7.6 Hz, 1H), 6.89 (t, J = 7.4 Hz, 1H), 6.69-6.60 (m, 2H), 3.88-3.84 (m, 1H), 3.83-3.77 (m, 1H), 1.31 (d, J = 7.0 Hz, 3H). 13C NMR (151 MHz, CDCl 3): δ 176.26, 144.85, 142.41, 134.63, 129.71, 128.34, 128.17, 128.06, 127.95, 126.85, 126.77, 126.66, 125.05, 122.46, 109.12, 52.58, 40.72, 14.32. Diastereomer b: 1H NMR (400 MHz, CDCl 3): δ 7.40 (t, J = 7.4 Hz, 2H), 7.34 (d, J = 7.2 Hz, 2H), 7.18-7.09 (m, 4H), 7.05 (t, J = 7.4 Hz, 1H), 6.98 (d, J = 6.6 Hz, 2H), 6.92 (d, J = 7.5 Hz, 2H), 6.51 (d, J = 7.7 Hz, 1H), 3.79 (d, J = 4.4 Hz, 1H), 3.75-3.65 (m, 1H), 1.69 (d, J = 7.2 Hz, 3H). 13C NMR (151 MHz, CDCl 3): δ 176.24, 144.97, 141.21, 134.45, 129.61, 128.25, 128.14, 128.11, 127.90, 127.03, 126.97, 126.85, 125.23, 122.37, 109.22, 52.49, 42.51, 19.22. LR-MS (ESI): m/z 314.2 [M+H]+。
实施例15
Figure 787347dest_path_image017
氮气保护下,氯化钯 (1.7 mg, 0.01 mmol, 5 mol%)和氢化钠 (60% in oil, 16 mg, 0.4 mmol, 2 equiv)悬浮于DMA (1.0 mL),室温搅拌5分钟,加入化合物 1g (0.2 mmol)在 DMA (0.5 mL)的溶液,然后在室温反应30分钟,加入饱和氯化铵水溶液中止反应,用乙酸乙酯萃取,合并萃取液,用硫酸钠干燥,旋蒸蒸干,柱层析纯化,得到产物 2g,收率98%。 1H NMR (400 MHz, CDCl 3): δ 7.52 (t, J = 7.6 Hz, 2H), 7.44-7.31 (m, 4H), 7.20 (t, J = 7.7 Hz, 1H), 7.08 (t, J = 7.4 Hz, 1H), 6.79 (d, J = 7.8 Hz, 1H), 3.55 (d, J = 2.7 Hz, 1H), 2.66-2.54 (m, 1H), 1.18 (d, J = 7.0 Hz, 3H), 0.97 (d, J = 6.8 Hz, 3H). 13C NMR (151 MHz, CDCl 3): δ 176.91, 144.85, 134.72, 129.70, 128.09, 127.81, 127.67, 126.77, 124.73, 122.64, 109.22, 51.76, 31.48, 19.90, 18.06. LR-MS (ESI): m/z 252.2 [M+H]+。

Claims (10)

  1. 金属氢化物/钯化合物催化还原体系在烯基活泼亚甲基化合物还原中的应用;所述烯基活泼亚甲基化合物的化学结构式如下:
    Figure 14029dest_path_image001
    其中,R 1、R 2独立的选自氢、烷基、苯基、取代苯基、萘基、吡啶基、喹啉基。
  2. 根据权利要求1所述的应用,其特征在于,所述金属氢化物包括氢化钠、氢化锂、氢化钾、氢化钙;所述钯化合物包括为氯化钯、醋酸钯、Pd(MeCN) 2Cl 2、[(η 3-C 3H 5)PdCl] 2、Pd(TFA) 2、Pd(dppp)Cl 2、Pd 2(dba) 3、Pd(C 6H 5CN) 2Cl 2、Pd(OH) 2、Pd/C、Pd(PPh 3) 4、Pd(PPh 3) 2Cl 2
  3. 根据权利要求1所述的应用,其特征在于,所述钯化合物、金属氢化物、烯基活泼亚甲基化合物的摩尔比为(0.01~1) ∶(1~5) ∶1。
  4. 根据权利要求1所述的应用,其特征在于,烯基活泼亚甲基化合物的还原在氮气气氛下、溶剂中进行;烯基活泼亚甲基化合物还原的温度为-50℃~120℃,还原的时间为0.3~10小时。
  5. 烯基活泼亚甲基化合物还原的方法,以烯基活泼亚甲基化合物为底物、金属氢化物为还原剂、钯化合物为催化剂,还原反应,得到还原产物,完成烯基活泼亚甲基化合物的还原;烯基活泼亚甲基化合物的化学结构式如下:
    Figure 210655dest_path_image002
    其中,R 1、R 2独立的选自氢、烷基、苯基、取代苯基、萘基、吡啶基、喹啉基。
  6. 根据权利要求5所述的方法,其特征在于,还原反应后,加入饱和氯化铵水溶液中止反应,然后经过萃取、干燥、旋蒸、柱层析纯化得到还原产物。
  7. 根据权利要求5所述的方法,其特征在于,所述金属氢化物包括氢化钠、氢化锂、氢化钾、氢化钙;所述钯化合物包括为氯化钯、醋酸钯、Pd(MeCN) 2Cl 2、[(η 3-C 3H 5)PdCl] 2、Pd(TFA) 2、Pd(dppp)Cl 2、Pd 2(dba) 3、Pd(C 6H 5CN) 2Cl 2、Pd(OH) 2、Pd/C、Pd(PPh 3) 4、Pd(PPh 3) 2Cl 2
  8. 根据权利要求5所述的方法,其特征在于,所述钯化合物、金属氢化物、烯基活泼亚甲基化合物的摩尔比为(0.01~1) ∶(1~5) ∶1。
  9. 根据权利要求5所述的方法,其特征在于,烯基活泼亚甲基化合物的还原在氮气气氛下、溶剂中进行;烯基活泼亚甲基化合物还原的温度为-50℃~120℃;还原的时间为0.3~10小时。
  10. 根据权利要求5所述的方法制备的还原产物。
PCT/CN2018/105596 2018-09-13 2018-09-13 金属氢化物/钯化合物催化还原体系在烯基活泼亚甲基化合物还原中的应用及还原方法 WO2020051854A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/105596 WO2020051854A1 (zh) 2018-09-13 2018-09-13 金属氢化物/钯化合物催化还原体系在烯基活泼亚甲基化合物还原中的应用及还原方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/105596 WO2020051854A1 (zh) 2018-09-13 2018-09-13 金属氢化物/钯化合物催化还原体系在烯基活泼亚甲基化合物还原中的应用及还原方法

Publications (1)

Publication Number Publication Date
WO2020051854A1 true WO2020051854A1 (zh) 2020-03-19

Family

ID=69776513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105596 WO2020051854A1 (zh) 2018-09-13 2018-09-13 金属氢化物/钯化合物催化还原体系在烯基活泼亚甲基化合物还原中的应用及还原方法

Country Status (1)

Country Link
WO (1) WO2020051854A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106316923A (zh) * 2015-08-21 2017-01-11 中南大学 双取代吲哚‑2(1h)‑酮类衍生物及其制备方法和应用
CN109020864A (zh) * 2018-09-12 2018-12-18 苏州大学张家港工业技术研究院 金属氢化物/钯化合物催化还原体系在烯基活泼亚甲基化合物还原中的应用及还原方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106316923A (zh) * 2015-08-21 2017-01-11 中南大学 双取代吲哚‑2(1h)‑酮类衍生物及其制备方法和应用
CN109020864A (zh) * 2018-09-12 2018-12-18 苏州大学张家港工业技术研究院 金属氢化物/钯化合物催化还原体系在烯基活泼亚甲基化合物还原中的应用及还原方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CANAS-RODRIGUEZ, A.: "N-phenyl-2-indolinones and N-phenylindolines. A new class of antidepressant agents", JOURNAL OF MEDICINAL CHEMISTRY, vol. 15, no. 7, 1 January 1972 (1972-01-01) - 770, pages 762, XP002289097 *
CHAUDHARI, CHANDAN: "C-3 alkylation of oxindole with alcohols by Pt/Ce02 catalyst in additive-free conditions", CATALYSIS SCIENCE & TECHNOLOGY, vol. 4, no. 4, 6 January 2014 (2014-01-06), pages 1064 - 1069, XP055693693 *
DATABASE REGISTRY 9 July 2008 (2008-07-09), retrieved from STN Database accession no. RN 1033200-47-3 *
DATABASE REGISTRY 9 July 2008 (2008-07-09), retrieved from STN Database accession no. RN 1033201-73-8 *
ELMORSY, SAAD S: "Use of reductive properties of iodotrichlorosilane II: Chemoselective reduction of alfa, beta -unsaturated ketones and nitriles", TETRAHEDRON LETTERS, vol. 37, no. 13, 1996325, pages 2297 - 2298, XP004842009 *
FURUTA, KYOJI: "Synthesis of 3-[4-(dimethylamino)phenyl]alkyl-2-oxindole derivatives and their effects on neuronal cell death", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 27, no. 18, September 2017 (2017-09-01), pages 4457 - 4461, XP055693717 *
WILKERSON, WENDELL W: "3-Substituted, 3-(4-pyridinylmethyl)-1, 3-dihyd- ro-l-phenyl-2H-indol-2-ones as acetylcholine release enhancers: synthesis and SAR", JOURNAL OF MEDICINAL CHEMISTRY, vol. 36, 31 December 1993 (1993-12-31), pages 2899 - 2907, XP055693695 *

Similar Documents

Publication Publication Date Title
CN112174782B (zh) 金属氘化物/钯化合物催化还原体系在氘代反应中的应用
JP2997979B2 (ja) 5−アミノレブリン酸の製造方法
WO2016180275A1 (zh) Ahu-377的制备方法、ahu-377中间体及ahu-377中间体的制备方法
CN108358760B (zh) 金属化物/钯化合物催化还原体系在脱苄基反应及氘代反应中的应用
CN109020864B (zh) 金属氢化物/钯化合物催化还原体系在烯基活泼亚甲基化合物还原中的应用及还原方法
CN108976122B (zh) 基于金属氢化物/钯化合物体系制备1,3-二羰基化合物的方法
WO2020051855A1 (zh) 烯基活泼亚甲基化合物的还原方法及还原产物
CN109096105B (zh) 烯基活泼亚甲基化合物的还原方法及还原产物
WO2020051854A1 (zh) 金属氢化物/钯化合物催化还原体系在烯基活泼亚甲基化合物还原中的应用及还原方法
CN109020865B (zh) 3,3-二取代氧化吲哚及其制备方法
WO2020051853A1 (zh) 3,3-二取代氧化吲哚及其制备方法
CN115806543A (zh) 一种盐酸阿替卡因中间体及其制备方法和应用
CN109053446A (zh) 金属氢化物/钯化合物体系在缺电子烯化合物串联反应制备1,3-二羰基化合物中的应用
WO2020056565A1 (zh) 金属氢化物 / 钯化合物体系在缺电子烯化合物串联反应制备 1,3- 二羰基化合物中的应用
CN108299466B (zh) 一种改进的度鲁特韦合成方法
US3641003A (en) Method of preparing an alpha-amino-omega-lactam
CN113896647B (zh) 一种叔酰胺的合成方法
CN114890942A (zh) 3-溴-6-氯吡啶-2-甲酸及其制备方法
CN116751173A (zh) 一种药物中间体的绿色合成方法
CN1031264C (zh) 1-3-二氢-4-吡啶酰基-2h-咪唑-2-酮类化合物的制备
CN110642818A (zh) 一种制备苯并呋喃-2-甲酰胺类化合物的方法
CN113387842A (zh) 一种通过OTf胺化合成芳香伯胺的方法
KR100371087B1 (ko) 2-아세틸니코티닉산의 제조방법
JPH0892179A (ja) 5−アミノレブリン酸の製造方法
CN114478454A (zh) Sglt2抑制剂关键中间体以及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933664

Country of ref document: EP

Kind code of ref document: A1