WO2020050291A1 - Compressor protection device - Google Patents

Compressor protection device Download PDF

Info

Publication number
WO2020050291A1
WO2020050291A1 PCT/JP2019/034697 JP2019034697W WO2020050291A1 WO 2020050291 A1 WO2020050291 A1 WO 2020050291A1 JP 2019034697 W JP2019034697 W JP 2019034697W WO 2020050291 A1 WO2020050291 A1 WO 2020050291A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
compressor
pressure egr
exhaust gas
sensor
Prior art date
Application number
PCT/JP2019/034697
Other languages
French (fr)
Japanese (ja)
Inventor
伊織 倉田
学 五百住
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2020050291A1 publication Critical patent/WO2020050291A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a compressor protection device that protects a compressor from collision with condensed water.
  • Some internal combustion engines include a turbocharger and an exhaust gas recirculation device.
  • EGR devices High-pressure EGR devices and low-pressure EGR devices are generally known as exhaust gas recirculation devices (hereinafter, referred to as “EGR devices”).
  • the high-pressure EGR device returns the exhaust gas on the upstream side of the turbine to the intake passage on the downstream side of the compressor.
  • the low pressure EGR device returns the exhaust gas on the downstream side of the turbine to the intake passage on the upstream side of the compressor.
  • the exhaust gas downstream of the turbine whose temperature has become relatively low is returned to the intake passage upstream of the compressor. For this reason, condensed water may be generated in the low-pressure EGR device.
  • the condensed water may enter the compressor housing from the low-pressure EGR passage via the intake passage and collide with the rotating compressor fin.
  • the compressor fin may be damaged.
  • an object of the present disclosure is to provide a compressor protection device that can prevent a compressor from continuing to collide with condensed water.
  • An exhaust recirculation passage for returning exhaust gas from an exhaust passage downstream of the turbine of the turbocharger to an intake passage upstream of the compressor;
  • a valve provided in the exhaust gas recirculation passage;
  • An accelerator opening sensor for detecting the opening of the accelerator
  • a turbo speed sensor for detecting the speed of the turbocharger
  • An electronic control unit that controls the valve based on the detection values of the accelerator opening sensor and the turbo speed sensor, The electronic control unit determines whether or not condensed water collides with the compressor fins of the compressor based on the detection values of the accelerator opening sensor and the turbo speed sensor, and the condensed water collides with the compressor fins. When it is determined that the valve is closed, the valve is closed.
  • the difference between the differential value of the detection value of the accelerator opening sensor and the differential value of the detection value of the turbo speed sensor is equal to or greater than a preset threshold value, It is determined that the condensed water has collided with the compressor fin.
  • the valve is provided in the exhaust gas recirculation passage downstream of the cooler, a temperature sensor is provided in the exhaust gas recirculation passage between the cooler and the valve, and the electronic control unit includes: When the detected value of the temperature sensor becomes equal to or higher than a preset temperature, the valve is opened.
  • the valve is provided in the exhaust gas recirculation passage downstream of the cooler, a temperature sensor is provided in the exhaust gas recirculation passage between the cooler and the valve, and the electronic control unit includes: The valve is opened when a detection value of the temperature sensor becomes equal to or higher than a preset temperature and when a preset time elapses after the detection value of the temperature sensor becomes equal to or higher than the preset temperature.
  • FIG. 1 is a schematic explanatory diagram of an internal combustion engine according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing the relationship between the turbo rotation speed and the accelerator opening.
  • FIG. 3 is a diagram showing a relationship between a turbo rotation speed and an accelerator opening when condensed water hits a compressor fin.
  • FIG. 4 is an enlarged explanatory view of a main part of FIG.
  • FIG. 5 is a flowchart of a routine for starting protection of the compressor.
  • FIG. 6 is a flowchart of a routine for ending the protection of the compressor.
  • FIG. 7 is a flowchart showing a modification of FIG.
  • FIG. 1 is a schematic explanatory diagram of an internal combustion engine (engine) 1 according to the present disclosure.
  • the engine 1 is a multi-cylinder compression ignition type internal combustion engine mounted on a vehicle, that is, a diesel engine.
  • a diesel engine mounted on a vehicle, that is, a diesel engine.
  • the illustrated example shows an in-line four-cylinder engine, the cylinder arrangement type and the number of cylinders of the engine are arbitrary.
  • the engine 1 includes an engine body 2, an intake passage 3 and an exhaust passage 4 connected to the engine body 2, and a fuel injection device 5.
  • the engine body 2 includes structural parts such as a cylinder head, a cylinder block, and a crankcase, and movable parts housed therein, such as a piston, a crankshaft, and a valve.
  • the fuel injection device 5 is a common rail type fuel injection device, and includes a fuel injection valve or injector 7 provided in each cylinder, and a common rail 8 connected to the injector 7.
  • the injector 7 directly injects fuel into the cylinder 9.
  • the common rail 8 stores fuel injected from the injector 7 in a high pressure state.
  • the intake passage 3 is mainly defined by an intake manifold 10 connected to the engine body 2 (particularly, a cylinder head) and an intake pipe 11 connected to an upstream end of the intake manifold 10.
  • the intake manifold 10 distributes and supplies the intake air sent from the intake pipe 11 to the intake ports of each cylinder.
  • an air cleaner 12, an air flow meter 13, a compressor 14C of a turbocharger 14, an intercooler 15, and an electronically controlled intake throttle valve 16 are provided in this order from the upstream side.
  • the air flow meter 13 is a sensor (intake air amount sensor) for detecting the amount of intake air (intake air flow) per unit time of the engine 1.
  • the exhaust passage 4 is mainly defined by an exhaust manifold 20 connected to the engine body 2 (particularly, the cylinder head) and an exhaust pipe 21 arranged downstream of the exhaust manifold 20.
  • the exhaust manifold 20 collects the exhaust gas sent from the exhaust port of each cylinder.
  • a turbine 14T of the turbocharger 14 is provided between the exhaust pipe 21 or between the exhaust manifold 20 and the exhaust pipe 21.
  • An oxidation catalyst 22, a particulate filter (Diesel Particulate Filter) 23, a NOx catalyst 24, and an ammonia oxidation catalyst 26 are provided in the exhaust pipe 21 downstream of the turbine 14T in order from the upstream side.
  • the arrangement of the oxidation catalyst 22, the DPF 23, the NOx catalyst 24, and the ammonia oxidation catalyst 26 is not limited to this. Further, the oxidation catalyst 22, the DPF 23, the NOx catalyst 24, and the ammonia oxidation catalyst 26 may be replaced with another exhaust gas purification device, and may be omitted if unnecessary.
  • the oxidation catalyst 22 oxidizes and purifies unburned components (hydrocarbon HC and carbon monoxide CO) in the exhaust gas, heats and raises the temperature of the exhaust gas by the reaction heat at this time, and removes NO in the exhaust gas. Oxidizes to NO2.
  • the DPF 23 is formed of a so-called continuous regeneration type DPF with a catalyst, and captures particulate matter (PM) contained in exhaust gas and continuously burns and removes the captured PM.
  • the NOx catalyst 24 is composed of a selective reduction type NOx catalyst (SCR), and reduces NOx in exhaust gas using ammonia caused by urea water added from an addition valve (not shown) as a reducing agent.
  • SCR selective reduction type NOx catalyst
  • the ammonia oxidation catalyst 26 oxidizes and purifies excess ammonia discharged from the NOx catalyst 24.
  • the engine 1 also includes a high-pressure exhaust gas recirculation device (hereinafter, referred to as “high-pressure EGR device”) 30 and a low-pressure exhaust gas recirculation device (hereinafter, referred to as “low-pressure EGR device”) 34.
  • high-pressure EGR device high-pressure exhaust gas recirculation device
  • low-pressure EGR device low-pressure exhaust gas recirculation device
  • the high-pressure EGR device 30 and the low-pressure EGR device 34 return the exhaust gas in the exhaust passage 4 to the intake passage 3.
  • the high-pressure EGR device 30 includes a high-pressure EGR passage 31, a high-pressure EGR cooler 32, and a high-pressure EGR valve 33.
  • the high pressure EGR passage 31 connects the intake manifold 10 and the exhaust manifold 20.
  • the high-pressure EGR cooler 32 is provided in the high-pressure EGR passage 31.
  • the high-pressure EGR valve 33 is provided in the high-pressure EGR passage 31 downstream of the high-pressure EGR cooler 32.
  • the low pressure EGR device 34 includes a low pressure EGR passage (exhaust gas recirculation passage) 35, a low pressure EGR cooler 36, and a low pressure EGR valve 37.
  • the low pressure EGR cooler 36 corresponds to a “cooler” in the claims.
  • the low pressure EGR valve 37 corresponds to a “valve” in the claims.
  • the low pressure EGR passage 35 connects the exhaust passage 4 between the DPF 23 and the NOx catalyst 24 and the intake passage 3 upstream of the compressor 14C.
  • the low-pressure EGR passage 35 may be connected to the exhaust passage 4 at any position as long as the exhaust passage 4 is located downstream of the turbine 14T. However, when the low pressure EGR passage 35 is connected to the exhaust passage 4 downstream of the DPF 23, clean exhaust gas from which PM has been removed can be recirculated to the intake side.
  • the low pressure EGR cooler 36 is provided in the low pressure EGR passage 35.
  • the low pressure EGR valve 37 is provided in the low pressure EGR passage 35 downstream of the low pressure EGR cooler 36.
  • the outlet end of the low-pressure EGR passage 35 is connected to a position upstream of the compressor 14C in the intake passage 3.
  • the condensed water generated in the low-pressure EGR cooler 36 and the low-pressure EGR passage 35 may flow into the intake passage 3 together with the exhaust gas.
  • the condensed water may collide with the compressor fins as water droplets to deform or break the compressor fins.
  • a compressor protection device 38 for protecting the compressor fin from collision with condensed water is provided.
  • the compressor protection device 38 includes a low-pressure EGR passage 35, a low-pressure EGR cooler 36, a low-pressure EGR valve 37, an accelerator opening sensor 39, a turbo speed sensor 40, and an electronic control unit (hereinafter, referred to as “ECU”) 100.
  • ECU electronice control unit
  • the ECU 100 forms a control unit or a controller.
  • the ECU 100 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like.
  • the ECU 100 controls the injector 7, the intake throttle valve 16, the high-pressure EGR valve 33, and the low-pressure EGR valve 37.
  • the accelerator opening sensor 39 detects the accelerator opening.
  • the accelerator opening sensor 39 is electrically connected to the ECU 100, and outputs accelerator opening information to the ECU 100 as an electric signal.
  • the turbo speed sensor 40 detects the speed of the compressor and the turbine.
  • the turbo speed sensor 40 is electrically connected to the ECU 100 and outputs turbo speed information to the ECU 100 as an electric signal.
  • the ECU 100 is electrically connected to a low-pressure EGR cooler outlet temperature sensor 41 for detecting an exhaust gas temperature between the low-pressure EGR cooler 36 and the low-pressure EGR valve 37.
  • the low pressure EGR cooler outlet temperature sensor 41 outputs temperature information to the ECU 100 as an electric signal.
  • the ECU 100 determines whether or not the condensed water has collided with the compressor fin based on the detection values of the accelerator opening sensor 39 and the turbo speed sensor 40.
  • FIG. 2 is a graph showing the relationship between the turbo rotation speed R (rpm) and the accelerator opening AC (%).
  • FIG. 3 is a diagram showing a relationship between the turbo rotation speed R (rpm) and the accelerator opening AC (%) when the condensed water hits the compressor fin.
  • the turbo speed R is indicated by a solid line
  • the accelerator opening AC is indicated by a broken line.
  • the ECU 100 determines whether or not condensed water has collided with the compressor fin using the above-described principle.
  • the ECU 100 closes the low-pressure EGR valve 37. Thereby, it is possible to prevent the condensed water from continuously colliding with the compressor fin, and to protect the compressor fin from the condensed water.
  • FIG. 5 shows a control routine for starting protection of the compressor fins (hereinafter referred to as “protection start routine”).
  • FIG. 6 shows a control routine for terminating the protection of the compressor fins (hereinafter referred to as a “protection termination routine”).
  • the protection start routine and the protection end routine are repeatedly executed by the ECU 100 every predetermined calculation period ⁇ .
  • the calculation cycle ⁇ is set in units of time.
  • the calculation cycle ⁇ is, for example, 1 millisecond (msec), and the ECU 100 executes a protection start routine and a protection end routine every 1 millisecond.
  • the change in the turbo rotation speed is delayed for a fixed time with respect to the change in the accelerator opening, but for convenience of explanation, it is assumed that there is no delay. That is, when the ECU 100 compares the differential value of the turbo rotation speed with the differential value of the accelerator opening, the ECU 100 uses the differential value of the accelerator opening before the certain time. However, description of such a point is omitted.
  • the ECU 100 stores the differential value of the accelerator opening before the predetermined time.
  • the certain time can be calculated by an arbitrary method, for example, from a map set in advance based on the engine operating state.
  • step S101 the ECU 100 detects the turbo rotation speed R (rpm) using the turbo rotation speed sensor 40.
  • step S102 the ECU 100 calculates a differential value ⁇ R of the turbo rotation speed R.
  • the ECU 100 stores the turbo rotation speed R detected when the protection start routine was executed last time.
  • the ECU 100 calculates the differential value ⁇ R of the turbo rotation speed R by dividing the difference between the turbo rotation speed R1 detected last time and the turbo rotation speed R2 detected this time by the calculation cycle ⁇ .
  • turbo rotation speed R1 detected last time that is, one time before
  • turbo rotation speed R1 detected N times before N is an integer of 2 or more.
  • N ⁇ is used instead of ⁇ .
  • the differential value ⁇ R may be calculated without dividing by ⁇ or N ⁇ .
  • step S103 the ECU 100 detects the accelerator opening AC using the accelerator opening sensor 39.
  • step S104 the ECU 100 calculates a differential value ⁇ AC of the accelerator opening AC.
  • the ECU stores the accelerator opening AC detected when the protection start routine was executed last time.
  • the ECU 100 calculates a differential value ⁇ AC of the accelerator opening AC by dividing the difference between the accelerator opening AC1 detected last time and the accelerator opening AC2 detected this time by the calculation cycle ⁇ .
  • the accelerator opening AC1 detected last time that is, one time before, may be replaced with the accelerator opening AC1 ′ detected N times before (N is an integer of 2 or more).
  • N is an integer of 2 or more.
  • the differential value ⁇ AC may be calculated without dividing by ⁇ or N ⁇ .
  • step S105 the ECU 100 calculates the absolute value A of the difference between the differential value ⁇ R of the turbo rotation speed R and the differential value ⁇ AC of the accelerator opening AC.
  • C in the formula is a conversion coefficient for making the unit and size of the differential value ⁇ R of the turbo rotation speed R correspond to the unit and size of the differential value ⁇ AC of the accelerator opening AC so that the two can be easily compared, It is determined in advance by experiments, simulations, and the like.
  • step S106 the ECU 100 determines whether or not the absolute value A of the difference between the differential value ⁇ AC and the differential value ⁇ R is equal to or greater than a preset threshold value.
  • the threshold value is a value obtained by previously performing a difference between a differential value ⁇ R of the turbo rotation speed R and a differential value ⁇ AC of the accelerator opening AC when condensed water hits the compressor fins by experiment, simulation, or the like. It is.
  • the turbo rotation speed R also tends to increase. For this reason, the absolute value A of the difference between the differential value ⁇ AC and the differential value ⁇ R becomes a small value and becomes smaller than the threshold value.
  • the ECU 100 determines that the condensed water has hit the compressor fin, and proceeds to step Proceed to S107. If the absolute value A of the difference between the differential value ⁇ AC and the differential value ⁇ R is smaller than the threshold value (A ⁇ threshold value), the ECU 100 determines that no condensed water is generated, and proceeds to step S109.
  • the protection start routine ends.
  • step S107 the ECU 100 closes (fully closes) the low-pressure EGR valve 37.
  • step S108 the ECU 100 locks the low-pressure EGR valve 37 in a closed state.
  • the low pressure EGR valve 37 cannot be opened by another control until the lock is released.
  • a flag may be used to lock the low-pressure EGR valve 37.
  • the flag may be configured by a global variable whose value is maintained even after the protection start routine ends.
  • Another routine executed by the ECU 100 may determine the locked state of the low-pressure EGR valve 37 according to the value of the flag when trying to open the low-pressure EGR valve 37.
  • another routine executed by the ECU 100 may be programmed so as not to open the low-pressure EGR valve 37 when the flag is set (for example, 1 is substituted for the flag).
  • step S201 the ECU 100 determines whether the low-pressure EGR valve 37 is locked. If the low-pressure EGR valve 37 is locked, the process proceeds to step S202. If the low-pressure EGR valve 37 is not locked, the process proceeds to step S205, and the protection end routine ends.
  • step S202 the ECU 100 detects the exhaust gas temperature T between the low pressure EGR cooler 36 and the low pressure EGR valve 37 using the low pressure EGR cooler outlet temperature sensor 41.
  • step S203 the ECU 100 determines whether the exhaust gas temperature T is equal to or higher than a preset temperature.
  • the set temperature is a temperature at which the condensed water accumulated in the low-pressure EGR passage 35 between the low-pressure EGR cooler 36 and the low-pressure EGR valve 37 is almost entirely vaporized, and is determined in advance by experiments, simulations, and the like.
  • the ECU 100 determines that the condensed water accumulated in the low-pressure EGR passage 35 has been vaporized, and proceeds to step S204.
  • the exhaust gas temperature T is lower than the set temperature (exhaust gas temperature T ⁇ set temperature)
  • the ECU 100 determines that the condensed water accumulated in the low-pressure EGR passage 35 has not been vaporized, and proceeds to step S205. End the protection end routine.
  • step S204 the ECU 100 unlocks the low-pressure EGR valve 37.
  • the low pressure EGR valve 37 is opened by another control.
  • the lock of the low-pressure EGR valve 37 may be released by lowering the flag (for example, substituting 0 for the flag).
  • FIG. 7 is a flowchart showing a modification of the protection end routine.
  • the same processes as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted.
  • the ECU 100 according to the modified example is set in advance after the exhaust gas temperature T is equal to or higher than the set temperature (Step S203: Yes) and the detection value of the temperature sensor is equal to or higher than the set temperature.
  • the set time has elapsed (steps S203a and S203b: Yes)
  • the set time in step S203b is a time required for the condensed water to evaporate, and is determined in advance by experiments, simulations, or the like. According to this, the set temperature in step S203 of FIG. 7 can be set lower than the set temperature in step S203 of FIG. 6, and the lock of the low-pressure EGR valve 37 may be released at an earlier timing.
  • step S203 if the exhaust gas temperature T is equal to or higher than the set temperature (exhaust gas temperature T ⁇ set temperature), the ECU 100 advances the process to step S203a. If the exhaust gas temperature T is lower than the set temperature (exhaust gas temperature T ⁇ set temperature), the ECU 100 advances the process to step S205 and ends the protection end routine.
  • step 203a the ECU 100 starts measuring time.
  • step 203b the ECU 100 determines whether or not the time at which the measurement was started in step 203a has exceeded the set time. If the set time has not elapsed (No), the ECU 100 returns the process to step S203b, and repeats the process of step S203b. If the set time has elapsed (Yes), the ECU 100 proceeds with the process to step S204.
  • step S204 the ECU 100 unlocks the low-pressure EGR valve 37.

Abstract

A compressor protection device comprising an exhaust air recirculation passage 35, a valve 37 provided in the exhaust air recirculation passage 35, an accelerator position sensor 39, a turbo rotation speed sensor 40, and an electronic control unit 100 for controlling the valve 37 on the basis of detection values from the accelerator position sensor 39 and the turbo rotation speed sensor 40. The electronic control unit 100 determines, on the basis of the detection values from the accelerator position sensor 39 and the turbo rotation speed sensor 40, whether condensation water has struck compressor fins of a compressor 14C, and closes the valve 37 when it is determined that condensation water has struck the compressor fins.

Description

コンプレッサ保護装置Compressor protection device
 本開示は、コンプレッサを凝縮水との衝突から保護するコンプレッサ保護装置に関する。 The present disclosure relates to a compressor protection device that protects a compressor from collision with condensed water.
 内燃機関には、ターボチャージャ及び排気再循環装置を備えるものがある。 が あ る Some internal combustion engines include a turbocharger and an exhaust gas recirculation device.
 排気再循環装置(以下、「EGR装置」という)としては、高圧EGR装置及び低圧EGR装置が一般に知られている。 高 圧 High-pressure EGR devices and low-pressure EGR devices are generally known as exhaust gas recirculation devices (hereinafter, referred to as “EGR devices”).
 高圧EGR装置は、タービン上流側の排ガスをコンプレッサ下流側の吸気通路に戻す。 The high-pressure EGR device returns the exhaust gas on the upstream side of the turbine to the intake passage on the downstream side of the compressor.
 低圧EGR装置は、タービン下流側の排ガスをコンプレッサ上流側の吸気通路に戻す。 The low pressure EGR device returns the exhaust gas on the downstream side of the turbine to the intake passage on the upstream side of the compressor.
日本国特開2016-094909号公報Japanese Patent Application Laid-Open No. 2016-094909 日本国特開2015-036526号公報Japanese Patent Application Laid-Open No. 2015-036526 日本国特開2009-209816号公報Japanese Patent Application Laid-Open No. 2009-209816 日本国特開2016-070078号公報Japanese Patent Application Publication No. 2016-070078
 ところで、低圧EGR装置では、温度が比較的低くなったタービン下流側の排ガスをコンプレッサ上流側の吸気通路に戻す。このため、低圧EGR装置内では凝縮水が発生する場合がある。凝縮水は、低圧EGR通路から吸気通路を経てコンプレッサハウジング内に浸入し、回転中のコンプレッサフィンに衝突する場合がある。 In the low-pressure EGR device, the exhaust gas downstream of the turbine whose temperature has become relatively low is returned to the intake passage upstream of the compressor. For this reason, condensed water may be generated in the low-pressure EGR device. The condensed water may enter the compressor housing from the low-pressure EGR passage via the intake passage and collide with the rotating compressor fin.
 そして、凝縮水が回転中のコンプレッサフィンに衝突した場合、コンプレッサフィンが破損する虞がある。 コ ン プ レ ッ サ If the condensed water collides with the rotating compressor fin, the compressor fin may be damaged.
 そこで本開示は、かかる事情に鑑みて創案され、その目的は、コンプレッサが凝縮水と衝突し続けることを回避できるコンプレッサ保護装置を提供することにある。 Accordingly, the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a compressor protection device that can prevent a compressor from continuing to collide with condensed water.
 本開示の一の態様によれば、
 ターボチャージャのタービンの下流側の排気通路からコンプレッサの上流側の吸気通路に排ガスを戻す排気再循環通路と、
 前記排気再循環通路に設けられたバルブと、
 アクセルの開度を検出するアクセル開度センサと、
 前記ターボチャージャの回転数を検出するターボ回転数センサと、
 前記アクセル開度センサ及び前記ターボ回転数センサの検出値に基づいて前記バルブを制御する電子制御ユニットとを備え、
 前記電子制御ユニットは、前記アクセル開度センサ及び前記ターボ回転数センサの検出値に基づいて前記コンプレッサのコンプレッサフィンに凝縮水が衝突したか否かを判別し、前記コンプレッサフィンに凝縮水が衝突したと判定したとき、前記バルブを閉じる
 ことを特徴とするコンプレッサ保護装置が提供される。
According to one aspect of the present disclosure,
An exhaust recirculation passage for returning exhaust gas from an exhaust passage downstream of the turbine of the turbocharger to an intake passage upstream of the compressor;
A valve provided in the exhaust gas recirculation passage;
An accelerator opening sensor for detecting the opening of the accelerator,
A turbo speed sensor for detecting the speed of the turbocharger,
An electronic control unit that controls the valve based on the detection values of the accelerator opening sensor and the turbo speed sensor,
The electronic control unit determines whether or not condensed water collides with the compressor fins of the compressor based on the detection values of the accelerator opening sensor and the turbo speed sensor, and the condensed water collides with the compressor fins. When it is determined that the valve is closed, the valve is closed.
 好ましくは、前記電子制御ユニットは、前記アクセル開度センサの検出値の微分値と、前記ターボ回転数センサの検出値の微分値との差が予め設定されたしきい値以上であるとき、前記コンプレッサフィンに凝縮水が衝突したと判定する。 Preferably, when the difference between the differential value of the detection value of the accelerator opening sensor and the differential value of the detection value of the turbo speed sensor is equal to or greater than a preset threshold value, It is determined that the condensed water has collided with the compressor fin.
 好ましくは、前記バルブは、前記クーラより下流側の前記排気再循環通路に設けられ、前記クーラ及び前記バルブ間の前記排気再循環通路には、温度センサが設けられ、前記電子制御ユニットは、前記温度センサの検出値が予め設定された設定温度以上になったとき、前記バルブを開く。 Preferably, the valve is provided in the exhaust gas recirculation passage downstream of the cooler, a temperature sensor is provided in the exhaust gas recirculation passage between the cooler and the valve, and the electronic control unit includes: When the detected value of the temperature sensor becomes equal to or higher than a preset temperature, the valve is opened.
 好ましくは、前記バルブは、前記クーラより下流側の前記排気再循環通路に設けられ、前記クーラ及び前記バルブ間の前記排気再循環通路には、温度センサが設けられ、前記電子制御ユニットは、前記温度センサの検出値が予め設定された設定温度以上になり、かつ、前記温度センサの検出値が前記設定温度以上になってから予め設定された設定時間を経過したとき、前記バルブを開く。 Preferably, the valve is provided in the exhaust gas recirculation passage downstream of the cooler, a temperature sensor is provided in the exhaust gas recirculation passage between the cooler and the valve, and the electronic control unit includes: The valve is opened when a detection value of the temperature sensor becomes equal to or higher than a preset temperature and when a preset time elapses after the detection value of the temperature sensor becomes equal to or higher than the preset temperature.
 上記の態様によれば、コンプレッサが凝縮水と衝突し続けることを回避できる。 According to the above aspect, it is possible to prevent the compressor from continuously colliding with the condensed water.
図1は、本開示の一実施の形態に係る内燃機関の概略説明図である。FIG. 1 is a schematic explanatory diagram of an internal combustion engine according to an embodiment of the present disclosure. 図2は、ターボ回転数とアクセル開度との関係を示す線図である。FIG. 2 is a diagram showing the relationship between the turbo rotation speed and the accelerator opening. 図3は、コンプレッサフィンに凝縮水が当たった場合のターボ回転数とアクセル開度との関係を示す線図であるFIG. 3 is a diagram showing a relationship between a turbo rotation speed and an accelerator opening when condensed water hits a compressor fin. 図4は、図3の要部拡大説明図である。FIG. 4 is an enlarged explanatory view of a main part of FIG. 図5は、コンプレッサの保護を開始するルーチンのフローチャートである。FIG. 5 is a flowchart of a routine for starting protection of the compressor. 図6は、コンプレッサの保護を終了するルーチンのフローチャートである。FIG. 6 is a flowchart of a routine for ending the protection of the compressor. 図7は、図6の変形例を示すフローチャートである。FIG. 7 is a flowchart showing a modification of FIG.
 以下、添付図面を参照して本開示の実施形態を説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings.
 図1は、本開示に係る内燃機関(エンジン)1の概略説明図である。エンジン1は、車両に搭載された多気筒の圧縮着火式内燃機関、すなわちディーゼルエンジンである。図示例は直列4気筒エンジンを示すが、エンジンのシリンダ配置形式、気筒数等は任意である。 FIG. 1 is a schematic explanatory diagram of an internal combustion engine (engine) 1 according to the present disclosure. The engine 1 is a multi-cylinder compression ignition type internal combustion engine mounted on a vehicle, that is, a diesel engine. Although the illustrated example shows an in-line four-cylinder engine, the cylinder arrangement type and the number of cylinders of the engine are arbitrary.
 エンジン1は、エンジン本体2と、エンジン本体2に接続された吸気通路3および排気通路4と、燃料噴射装置5とを備える。エンジン本体2は、シリンダヘッド、シリンダブロック、クランクケース等の構造部品と、その内部に収容されたピストン、クランクシャフト、バルブ等の可動部品とを含む。 The engine 1 includes an engine body 2, an intake passage 3 and an exhaust passage 4 connected to the engine body 2, and a fuel injection device 5. The engine body 2 includes structural parts such as a cylinder head, a cylinder block, and a crankcase, and movable parts housed therein, such as a piston, a crankshaft, and a valve.
 燃料噴射装置5は、コモンレール式燃料噴射装置からなり、各気筒に設けられた燃料噴射弁すなわちインジェクタ7と、インジェクタ7に接続されたコモンレール8とを備える。インジェクタ7は、シリンダ9内に燃料を直接噴射する。コモンレール8は、インジェクタ7から噴射される燃料を高圧状態で貯留する。 The fuel injection device 5 is a common rail type fuel injection device, and includes a fuel injection valve or injector 7 provided in each cylinder, and a common rail 8 connected to the injector 7. The injector 7 directly injects fuel into the cylinder 9. The common rail 8 stores fuel injected from the injector 7 in a high pressure state.
 吸気通路3は、エンジン本体2(特にシリンダヘッド)に接続された吸気マニホールド10と、吸気マニホールド10の上流端に接続された吸気管11とにより主に画成される。吸気マニホールド10は、吸気管11から送られてきた吸気を各気筒の吸気ポートに分配供給する。吸気管11には、上流側から順に、エアクリーナ12、エアフローメータ13、ターボチャージャ14のコンプレッサ14C、インタークーラ15、および電子制御式の吸気スロットルバルブ16が設けられる。エアフローメータ13は、エンジン1の単位時間当たりの吸入空気量(吸気流量)を検出するためのセンサ(吸気量センサ)である。 The intake passage 3 is mainly defined by an intake manifold 10 connected to the engine body 2 (particularly, a cylinder head) and an intake pipe 11 connected to an upstream end of the intake manifold 10. The intake manifold 10 distributes and supplies the intake air sent from the intake pipe 11 to the intake ports of each cylinder. In the intake pipe 11, an air cleaner 12, an air flow meter 13, a compressor 14C of a turbocharger 14, an intercooler 15, and an electronically controlled intake throttle valve 16 are provided in this order from the upstream side. The air flow meter 13 is a sensor (intake air amount sensor) for detecting the amount of intake air (intake air flow) per unit time of the engine 1.
 排気通路4は、エンジン本体2(特にシリンダヘッド)に接続された排気マニホールド20と、排気マニホールド20の下流側に配置された排気管21とにより主に画成される。排気マニホールド20は、各気筒の排気ポートから送られてきた排気ガスを集合させる。排気管21、もしくは排気マニホールド20と排気管21の間には、ターボチャージャ14のタービン14Tが設けられる。タービン14Tより下流側の排気管21には、上流側から順に、酸化触媒22、パティキュレートフィルタ(Diesel Particulate Filter、以下「DPF」という)23、NOx触媒24およびアンモニア酸化触媒26が設けられる。なお、酸化触媒22、DPF23、NOx触媒24およびアンモニア酸化触媒26の配置はこれに限るものではない。また、酸化触媒22、DPF23、NOx触媒24およびアンモニア酸化触媒26は、他の排気浄化装置に代替されてもよく、不要であれば省略されてもよい。 The exhaust passage 4 is mainly defined by an exhaust manifold 20 connected to the engine body 2 (particularly, the cylinder head) and an exhaust pipe 21 arranged downstream of the exhaust manifold 20. The exhaust manifold 20 collects the exhaust gas sent from the exhaust port of each cylinder. A turbine 14T of the turbocharger 14 is provided between the exhaust pipe 21 or between the exhaust manifold 20 and the exhaust pipe 21. An oxidation catalyst 22, a particulate filter (Diesel Particulate Filter) 23, a NOx catalyst 24, and an ammonia oxidation catalyst 26 are provided in the exhaust pipe 21 downstream of the turbine 14T in order from the upstream side. The arrangement of the oxidation catalyst 22, the DPF 23, the NOx catalyst 24, and the ammonia oxidation catalyst 26 is not limited to this. Further, the oxidation catalyst 22, the DPF 23, the NOx catalyst 24, and the ammonia oxidation catalyst 26 may be replaced with another exhaust gas purification device, and may be omitted if unnecessary.
 酸化触媒22は、排気ガス中の未燃成分(炭化水素HCおよび一酸化炭素CO)を酸化して浄化すると共に、このときの反応熱で排気ガスを加熱昇温し、また排気中のNOをNO2に酸化する。DPF23は、所謂連続再生式の触媒付きDPFからなり、排気中に含まれる粒子状物質(PM)を捕集すると共に、捕集したPMを連続的に燃焼除去する。NOx触媒24は選択還元型NOx触媒(SCR)からなり、図示しない添加弁から添加された尿素水に起因するアンモニアを還元剤として排気中のNOxを還元する。アンモニア酸化触媒26は、NOx触媒24から排出された余剰アンモニアを酸化して浄化する。 The oxidation catalyst 22 oxidizes and purifies unburned components (hydrocarbon HC and carbon monoxide CO) in the exhaust gas, heats and raises the temperature of the exhaust gas by the reaction heat at this time, and removes NO in the exhaust gas. Oxidizes to NO2. The DPF 23 is formed of a so-called continuous regeneration type DPF with a catalyst, and captures particulate matter (PM) contained in exhaust gas and continuously burns and removes the captured PM. The NOx catalyst 24 is composed of a selective reduction type NOx catalyst (SCR), and reduces NOx in exhaust gas using ammonia caused by urea water added from an addition valve (not shown) as a reducing agent. The ammonia oxidation catalyst 26 oxidizes and purifies excess ammonia discharged from the NOx catalyst 24.
 また、エンジン1は、高圧排気再循環装置(以下「高圧EGR装置」という)30及び低圧排気再循環装置(以下「低圧EGR装置」という)34を備える。 The engine 1 also includes a high-pressure exhaust gas recirculation device (hereinafter, referred to as “high-pressure EGR device”) 30 and a low-pressure exhaust gas recirculation device (hereinafter, referred to as “low-pressure EGR device”) 34.
 高圧EGR装置30及び低圧EGR装置34は、排気通路4内の排ガスを吸気通路3に還流させる。 The high-pressure EGR device 30 and the low-pressure EGR device 34 return the exhaust gas in the exhaust passage 4 to the intake passage 3.
 高圧EGR装置30は、高圧EGR通路31と、高圧EGRクーラ32と、高圧EGRバルブ33とを備える。高圧EGR通路31は、吸気マニホールド10と排気マニホールド20とを接続する。高圧EGRクーラ32は、高圧EGR通路31に設けられる。高圧EGRバルブ33は、高圧EGRクーラ32より下流側の高圧EGR通路31に設けられる。 The high-pressure EGR device 30 includes a high-pressure EGR passage 31, a high-pressure EGR cooler 32, and a high-pressure EGR valve 33. The high pressure EGR passage 31 connects the intake manifold 10 and the exhaust manifold 20. The high-pressure EGR cooler 32 is provided in the high-pressure EGR passage 31. The high-pressure EGR valve 33 is provided in the high-pressure EGR passage 31 downstream of the high-pressure EGR cooler 32.
 低圧EGR装置34は、低圧EGR通路(排気再循環通路)35と、低圧EGRクーラ36と、低圧EGRバルブ37とを備える。低圧EGRクーラ36は、特許請求の範囲にいう「クーラ」に相当する。低圧EGRバルブ37は、特許請求の範囲にいう「バルブ」に相当する。 The low pressure EGR device 34 includes a low pressure EGR passage (exhaust gas recirculation passage) 35, a low pressure EGR cooler 36, and a low pressure EGR valve 37. The low pressure EGR cooler 36 corresponds to a “cooler” in the claims. The low pressure EGR valve 37 corresponds to a “valve” in the claims.
 低圧EGR通路35は、DPF23及びNOx触媒24間の排気通路4と、コンプレッサ14Cより上流側の吸気通路3とを接続する。なお、低圧EGR通路35は、タービン14Tより下流側の排気通路4であれば、いずれの位置の排気通路4に接続されてもよい。ただし、DPF23より下流側の排気通路4に低圧EGR通路35を接続した場合、PMが除去されたクリーンな排ガスを吸気側に還流させることができる。 The low pressure EGR passage 35 connects the exhaust passage 4 between the DPF 23 and the NOx catalyst 24 and the intake passage 3 upstream of the compressor 14C. The low-pressure EGR passage 35 may be connected to the exhaust passage 4 at any position as long as the exhaust passage 4 is located downstream of the turbine 14T. However, when the low pressure EGR passage 35 is connected to the exhaust passage 4 downstream of the DPF 23, clean exhaust gas from which PM has been removed can be recirculated to the intake side.
 低圧EGRクーラ36は、低圧EGR通路35に設けられる。低圧EGRバルブ37は、低圧EGRクーラ36より下流側の低圧EGR通路35に設けられる。 The low pressure EGR cooler 36 is provided in the low pressure EGR passage 35. The low pressure EGR valve 37 is provided in the low pressure EGR passage 35 downstream of the low pressure EGR cooler 36.
 さて、このエンジン1においては、吸気通路3におけるコンプレッサ14Cより上流側の位置に、低圧EGR通路35の出口端が接続されている。こうすると、低圧EGRクーラ36及び低圧EGR通路35で発生した凝縮水が排ガスと共に吸気通路3内に流される場合がある。 In the engine 1, the outlet end of the low-pressure EGR passage 35 is connected to a position upstream of the compressor 14C in the intake passage 3. In this case, the condensed water generated in the low-pressure EGR cooler 36 and the low-pressure EGR passage 35 may flow into the intake passage 3 together with the exhaust gas.
 この場合、凝縮水が水滴となってコンプレッサフィンに衝突し、コンプレッサフィンを変形乃至破損させる場合がある。 In this case, the condensed water may collide with the compressor fins as water droplets to deform or break the compressor fins.
 そこで本実施形態では、コンプレッサフィンを凝縮水との衝突から保護するためのコンプレッサ保護装置38を備える。 Therefore, in the present embodiment, a compressor protection device 38 for protecting the compressor fin from collision with condensed water is provided.
 コンプレッサ保護装置38は、低圧EGR通路35と、低圧EGRクーラ36と、低圧EGRバルブ37と、アクセル開度センサ39と、ターボ回転数センサ40と、電子制御ユニット(以下「ECU」と称す)100とを備える。 The compressor protection device 38 includes a low-pressure EGR passage 35, a low-pressure EGR cooler 36, a low-pressure EGR valve 37, an accelerator opening sensor 39, a turbo speed sensor 40, and an electronic control unit (hereinafter, referred to as “ECU”) 100. And
 ECU100は、制御ユニットもしくはコントローラをなす。ECU100はCPU、ROM、RAM、入出力ポートおよび記憶装置等を含む。ECU100は、インジェクタ7、吸気スロットルバルブ16、高圧EGRバルブ33及び低圧EGRバルブ37を制御する。 The ECU 100 forms a control unit or a controller. The ECU 100 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like. The ECU 100 controls the injector 7, the intake throttle valve 16, the high-pressure EGR valve 33, and the low-pressure EGR valve 37.
 アクセル開度センサ39は、アクセル開度を検出する。アクセル開度センサ39は、ECU100に電気的に接続され、ECU100にアクセル開度情報を電気信号として出力する。 The accelerator opening sensor 39 detects the accelerator opening. The accelerator opening sensor 39 is electrically connected to the ECU 100, and outputs accelerator opening information to the ECU 100 as an electric signal.
 ターボ回転数センサ40は、コンプレッサ及びタービンの回転数を検出する。ターボ回転数センサ40は、ECU100に電気的に接続され、ECU100にターボ回転数情報を電気信号として出力する。 The turbo speed sensor 40 detects the speed of the compressor and the turbine. The turbo speed sensor 40 is electrically connected to the ECU 100 and outputs turbo speed information to the ECU 100 as an electric signal.
 また、ECU100には、低圧EGRクーラ36及び低圧EGRバルブ37間の排ガス温度を検出する低圧EGRクーラ出口温度センサ41が電気的に接続される。低圧EGRクーラ出口温度センサ41はECU100に温度情報を電気信号として出力する。 (4) The ECU 100 is electrically connected to a low-pressure EGR cooler outlet temperature sensor 41 for detecting an exhaust gas temperature between the low-pressure EGR cooler 36 and the low-pressure EGR valve 37. The low pressure EGR cooler outlet temperature sensor 41 outputs temperature information to the ECU 100 as an electric signal.
 また、ECU100は、アクセル開度センサ39及びターボ回転数センサ40の検出値に基づいて凝縮水がコンプレッサフィンに衝突したか否かを判別する。 {Circle around (4)} The ECU 100 determines whether or not the condensed water has collided with the compressor fin based on the detection values of the accelerator opening sensor 39 and the turbo speed sensor 40.
 図2はターボ回転数R(rpm)とアクセル開度AC(%)との関係を示す線図である。図3は、コンプレッサフィンに凝縮水が当たった場合のターボ回転数R(rpm)とアクセル開度AC(%)との関係を示す線図である。図中ターボ回転数Rは実線で示し、アクセル開度ACは破線で示す。 FIG. 2 is a graph showing the relationship between the turbo rotation speed R (rpm) and the accelerator opening AC (%). FIG. 3 is a diagram showing a relationship between the turbo rotation speed R (rpm) and the accelerator opening AC (%) when the condensed water hits the compressor fin. In the figure, the turbo speed R is indicated by a solid line, and the accelerator opening AC is indicated by a broken line.
 図2に示すように、コンプレッサフィンに凝縮水が衝突していないとき、ターボ回転数は、アクセル開度の変化に概ね追従して変化する。このとき、ターボ回転数の変化は、アクセル開度の変化に対して一定時間遅れる。このため、ターボ回転数の微分値は、前記一定時間前のアクセル開度の微分値と概ね同じになる。 と き As shown in FIG. 2, when condensed water does not collide with the compressor fin, the turbo rotation speed changes substantially following the change in the accelerator opening. At this time, the change in the turbo speed is delayed by a certain time with respect to the change in the accelerator opening. For this reason, the differential value of the turbo rotation speed becomes substantially the same as the differential value of the accelerator opening before the predetermined time.
 しかし、図3に示すように、コンプレッサフィンに凝縮水が衝突したとき、ターボ回転数はアクセル開度とは無関係に瞬間的に低下する。このため、前記アクセル開度の微分値と前記ターボ回転数の微分値を比較することにより、凝縮水がコンプレッサフィンに衝突したか否かを判別することが可能となる。 (3) However, as shown in FIG. 3, when condensed water collides with the compressor fin, the turbo speed instantaneously decreases irrespective of the accelerator opening. Therefore, it is possible to determine whether or not the condensed water has collided with the compressor fin by comparing the differential value of the accelerator opening with the differential value of the turbo speed.
 本実施の形態に係るECU100は、前述の原理を用いてコンプレッサフィンに凝縮水が衝突したか否かを判別する。そして、ECU100は、コンプレッサフィンに凝縮水が衝突したと判定したとき、低圧EGRバルブ37を閉じる。これにより、コンプレッサフィンに凝縮水が衝突し続けることを防止でき、コンプレッサフィンを凝縮水から保護できる。 The ECU 100 according to the present embodiment determines whether or not condensed water has collided with the compressor fin using the above-described principle. When the ECU 100 determines that the condensed water has collided with the compressor fin, the ECU 100 closes the low-pressure EGR valve 37. Thereby, it is possible to prevent the condensed water from continuously colliding with the compressor fin, and to protect the compressor fin from the condensed water.
 次に、図5及び図6を参照して、本実施形態の制御のルーチンを説明する。図5はコンプレッサフィンの保護を開始する制御のルーチン(以下「保護開始ルーチン」という)を示す。図6はコンプレッサフィンの保護を終了する制御のルーチン(以下「保護終了ルーチン」という)を示す。 Next, a control routine according to the present embodiment will be described with reference to FIGS. FIG. 5 shows a control routine for starting protection of the compressor fins (hereinafter referred to as “protection start routine”). FIG. 6 shows a control routine for terminating the protection of the compressor fins (hereinafter referred to as a “protection termination routine”).
 保護開始ルーチン及び保護終了ルーチンはECU100により所定の演算周期τ毎に繰り返し実行される。 (4) The protection start routine and the protection end routine are repeatedly executed by the ECU 100 every predetermined calculation period τ.
 演算周期τは、時間単位で設定される。演算周期τは例えば1ミリ秒(msec)であり、ECU100は1ミリ秒経過する度に保護開始ルーチン及び保護終了ルーチンを実行する。 The calculation cycle τ is set in units of time. The calculation cycle τ is, for example, 1 millisecond (msec), and the ECU 100 executes a protection start routine and a protection end routine every 1 millisecond.
 なお、ターボ回転数の変化は、アクセル開度の変化に対して一定時間遅れるが、説明の便宜のため、遅れはないものとして説明する。すなわち、ECU100は、ターボ回転数の微分値とアクセル開度の微分値とを比較する際、アクセル開度の微分値については前記一定時間前のものを使用する。しかし、かかる点については説明を省略する。ECU100は、前記一定時間前のアクセル開度の微分値を記憶している。前記一定時間は、任意の方法で算出可能であり、例えば、エンジン運転状態に基づき予め設定されたマップから算出可能である。 Note that the change in the turbo rotation speed is delayed for a fixed time with respect to the change in the accelerator opening, but for convenience of explanation, it is assumed that there is no delay. That is, when the ECU 100 compares the differential value of the turbo rotation speed with the differential value of the accelerator opening, the ECU 100 uses the differential value of the accelerator opening before the certain time. However, description of such a point is omitted. The ECU 100 stores the differential value of the accelerator opening before the predetermined time. The certain time can be calculated by an arbitrary method, for example, from a map set in advance based on the engine operating state.
 まず、図5に示す保護開始ルーチンについて説明する。 First, the protection start routine shown in FIG. 5 will be described.
 ステップS101において、ECU100は、ターボ回転数センサ40を用いてターボ回転数R(rpm)を検出する。 In step S101, the ECU 100 detects the turbo rotation speed R (rpm) using the turbo rotation speed sensor 40.
 ステップS102において、ECU100は、ターボ回転数Rの微分値ΔRを算出する。このときECU100には、保護開始ルーチンを前回実行したときに検出されたターボ回転数Rが記憶されている。ECU100は、前回検出したターボ回転数R1と今回検出したターボ回転数R2との差を演算周期τで除することでターボ回転数Rの微分値ΔRを算出する。 In step S102, the ECU 100 calculates a differential value ΔR of the turbo rotation speed R. At this time, the ECU 100 stores the turbo rotation speed R detected when the protection start routine was executed last time. The ECU 100 calculates the differential value ΔR of the turbo rotation speed R by dividing the difference between the turbo rotation speed R1 detected last time and the turbo rotation speed R2 detected this time by the calculation cycle τ.
 すなわち、ECU100は、ΔR=(R2-R1)/τを算出する。 That is, the ECU 100 calculates ΔR = (R2−R1) / τ.
 なお、前回すなわち1回前に検出したターボ回転数R1を、N回前(Nは2以上の整数)に検出したターボ回転数R1’で置き換えてもよい。このときには微分値ΔRを算出する際、τの代わりにNτを用いる。もっとも、τまたはNτで除算しないで微分値ΔRを算出してもよい。 Note that the turbo rotation speed R1 detected last time, that is, one time before, may be replaced with the turbo rotation speed R1 detected N times before (N is an integer of 2 or more). At this time, when calculating the differential value ΔR, Nτ is used instead of τ. However, the differential value ΔR may be calculated without dividing by τ or Nτ.
 ステップS103において、ECU100は、アクセル開度センサ39を用いてアクセル開度ACを検出する。 In step S103, the ECU 100 detects the accelerator opening AC using the accelerator opening sensor 39.
 ステップS104において、ECU100は、アクセル開度ACの微分値ΔACを算出する。このときECUには、保護開始ルーチンを前回実行したときに検出されたアクセル開度ACが記憶されている。ECU100は、前回検出したアクセル開度AC1と今回検出したアクセル開度AC2との差を演算周期τで除することでアクセル開度ACの微分値ΔACを算出する。 In step S104, the ECU 100 calculates a differential value ΔAC of the accelerator opening AC. At this time, the ECU stores the accelerator opening AC detected when the protection start routine was executed last time. The ECU 100 calculates a differential value ΔAC of the accelerator opening AC by dividing the difference between the accelerator opening AC1 detected last time and the accelerator opening AC2 detected this time by the calculation cycle τ.
 すなわち、ECU100は、ΔAC=(AC2-AC1)/τを算出する。 That is, the ECU 100 calculates ΔAC = (AC2−AC1) / τ.
 なお、ターボ回転数Rのときと同じように、前回すなわち1回前に検出したアクセル開度AC1を、N回前(Nは2以上の整数)に検出したアクセル開度AC1’で置き換えてもよい。このときには微分値ΔACを算出する際、τの代わりにNτを用いる。もっとも、τまたはNτで除算しないで微分値ΔACを算出してもよい。 Note that, similarly to the case of the turbo rotation speed R, the accelerator opening AC1 detected last time, that is, one time before, may be replaced with the accelerator opening AC1 ′ detected N times before (N is an integer of 2 or more). Good. At this time, when calculating the differential value ΔAC, Nτ is used instead of τ. However, the differential value ΔAC may be calculated without dividing by τ or Nτ.
 ステップS105において、ECU100は、ターボ回転数Rの微分値ΔRとアクセル開度ACの微分値ΔACとの差の絶対値Aを算出する。 In step S105, the ECU 100 calculates the absolute value A of the difference between the differential value ΔR of the turbo rotation speed R and the differential value ΔAC of the accelerator opening AC.
 具体的には、ECU100は、A=|(ΔR×C)-ΔAC|を算出する。式中のCは、ターボ回転数Rの微分値ΔRの単位や大きさをアクセル開度ACの微分値ΔACの単位や大きさに対応づけて両者を比較し易くするための換算係数であり、予め実験、シミュレーション等により決定される。 Specifically, the ECU 100 calculates A = | (ΔR × C) −ΔAC |. C in the formula is a conversion coefficient for making the unit and size of the differential value ΔR of the turbo rotation speed R correspond to the unit and size of the differential value ΔAC of the accelerator opening AC so that the two can be easily compared, It is determined in advance by experiments, simulations, and the like.
 ステップS106において、ECU100は、微分値ΔACと微分値ΔRとの差の絶対値Aが予め設定されたしきい値以上か否かを判別する。ここでしきい値とは、コンプレッサフィンに凝縮水が当たったときのターボ回転数Rの微分値ΔRとアクセル開度ACの微分値ΔACとの値の差を予め実験、シミュレーション等によって求めた値である。 In step S106, the ECU 100 determines whether or not the absolute value A of the difference between the differential value ΔAC and the differential value ΔR is equal to or greater than a preset threshold value. Here, the threshold value is a value obtained by previously performing a difference between a differential value ΔR of the turbo rotation speed R and a differential value ΔAC of the accelerator opening AC when condensed water hits the compressor fins by experiment, simulation, or the like. It is.
 例えば、低圧EGRクーラ36で凝縮水が発生していない状態においてアクセル開度ACが増大する傾向にあるとき、ターボ回転数Rも上昇傾向となる。このため、微分値ΔACと微分値ΔRとの差の絶対値Aは、小さな値となり、しきい値未満となる。 For example, when the accelerator opening AC tends to increase in a state where condensed water is not generated in the low-pressure EGR cooler 36, the turbo rotation speed R also tends to increase. For this reason, the absolute value A of the difference between the differential value ΔAC and the differential value ΔR becomes a small value and becomes smaller than the threshold value.
 他方、アクセル開度ACが増大する傾向にあるときにコンプレッサフィンに凝縮水が当たった場合、図4に示すように、アクセル開度ACの微分値ΔACは正の値になるのに対し、ターボ回転数Rの微分値ΔRは負の値となる。このため、微分値ΔACと微分値ΔRとの差の絶対値Aは、大きな値となり、しきい値以上となる。 On the other hand, when condensed water hits the compressor fins when the accelerator opening AC tends to increase, as shown in FIG. 4, the differential value ΔAC of the accelerator opening AC becomes a positive value, while The differential value ΔR of the rotation speed R is a negative value. Therefore, the absolute value A of the difference between the differential value ΔAC and the differential value ΔR becomes a large value and is equal to or larger than the threshold value.
 このため、微分値ΔACと微分値ΔRとの差の絶対値Aがしきい値以上(A≧しきい値)である場合、ECU100は、コンプレッサフィンに凝縮水が当たったと判別し、処理をステップS107に進める。また、微分値ΔACと微分値ΔRとの差の絶対値Aがしきい値未満(A<しきい値)である場合、ECU100は、凝縮水の発生はないと判別し、ステップS109に進み、保護開始ルーチンを終了する。 For this reason, when the absolute value A of the difference between the differential value ΔAC and the differential value ΔR is equal to or larger than the threshold value (A ≧ threshold value), the ECU 100 determines that the condensed water has hit the compressor fin, and proceeds to step Proceed to S107. If the absolute value A of the difference between the differential value ΔAC and the differential value ΔR is smaller than the threshold value (A <threshold value), the ECU 100 determines that no condensed water is generated, and proceeds to step S109. The protection start routine ends.
 ステップS107において、ECU100は、低圧EGRバルブ37を閉弁(全閉)する。 In step S107, the ECU 100 closes (fully closes) the low-pressure EGR valve 37.
 ステップS108において、ECU100は、低圧EGRバルブ37を閉状態にロックする。これにより、ロックが解除されるまで他の制御によって低圧EGRバルブ37を開くことはできない状態となる。例えば、低圧EGRバルブ37のロックには、フラグを用いるとよい。また、フラグは、保護開始ルーチンが終了しても値が維持されるグローバル変数で構成されるとよい。そして、ECU100で実行される他のルーチンは、低圧EGRバルブ37を開こうとする際、フラグの値に応じて低圧EGRバルブ37のロック状態を判別するとよい。具体的には、ECU100で実行される他のルーチンは、フラグが立っている(例えばフラグに1が代入されている)場合、低圧EGRバルブ37を開かないようにプログラムされるとよい。 In step S108, the ECU 100 locks the low-pressure EGR valve 37 in a closed state. Thus, the low pressure EGR valve 37 cannot be opened by another control until the lock is released. For example, a flag may be used to lock the low-pressure EGR valve 37. Further, the flag may be configured by a global variable whose value is maintained even after the protection start routine ends. Another routine executed by the ECU 100 may determine the locked state of the low-pressure EGR valve 37 according to the value of the flag when trying to open the low-pressure EGR valve 37. Specifically, another routine executed by the ECU 100 may be programmed so as not to open the low-pressure EGR valve 37 when the flag is set (for example, 1 is substituted for the flag).
 次に図6に示す保護終了ルーチンについて説明する。 Next, the protection termination routine shown in FIG. 6 will be described.
 ステップS201において、ECU100は、低圧EGRバルブ37がロックされているか否かを判別する。低圧EGRバルブ37がロックされている場合、処理はステップS202に進む。また、低圧EGRバルブ37がロックされていない場合、処理はステップS205に進み、保護終了ルーチンを終了する。 In step S201, the ECU 100 determines whether the low-pressure EGR valve 37 is locked. If the low-pressure EGR valve 37 is locked, the process proceeds to step S202. If the low-pressure EGR valve 37 is not locked, the process proceeds to step S205, and the protection end routine ends.
 ステップS202において、ECU100は、低圧EGRクーラ出口温度センサ41を用いて低圧EGRクーラ36及び低圧EGRバルブ37間の排ガス温度Tを検出する。 In step S202, the ECU 100 detects the exhaust gas temperature T between the low pressure EGR cooler 36 and the low pressure EGR valve 37 using the low pressure EGR cooler outlet temperature sensor 41.
 ステップS203において、ECU100は、排ガス温度Tが予め設定された設定温度以上か否かを判別する。ここで設定温度とは、低圧EGRクーラ36及び低圧EGRバルブ37間の低圧EGR通路35に溜まった凝縮水がほぼ全て気化する温度であり、実験、シミュレーション等によって予め決定される。 In step S203, the ECU 100 determines whether the exhaust gas temperature T is equal to or higher than a preset temperature. Here, the set temperature is a temperature at which the condensed water accumulated in the low-pressure EGR passage 35 between the low-pressure EGR cooler 36 and the low-pressure EGR valve 37 is almost entirely vaporized, and is determined in advance by experiments, simulations, and the like.
 ECU100は、排ガス温度Tが設定温度以上(排ガス温度T≧設定温度)である場合、低圧EGR通路35内に溜まった凝縮水は気化されたものと判別し、処理をステップS204に進める。また、ECU100は、排ガス温度Tが設定温度未満(排ガス温度T<設定温度)である場合、低圧EGR通路35内に溜まった凝縮水は気化されていないと判別し、処理をステップS205に進め、保護終了ルーチンを終了する。 When the exhaust gas temperature T is equal to or higher than the set temperature (exhaust gas temperature T ≧ set temperature), the ECU 100 determines that the condensed water accumulated in the low-pressure EGR passage 35 has been vaporized, and proceeds to step S204. When the exhaust gas temperature T is lower than the set temperature (exhaust gas temperature T <set temperature), the ECU 100 determines that the condensed water accumulated in the low-pressure EGR passage 35 has not been vaporized, and proceeds to step S205. End the protection end routine.
 ステップS204において、ECU100は、低圧EGRバルブ37のロックを解除する。これにより、他の制御によって低圧EGRバルブ37を開ける状態となる。例えば、低圧EGRバルブ37のロックにフラグを用いた場合、フラグを降ろす(例えばフラグに0を代入する)ことで低圧EGRバルブ37のロックを解除するとよい。 In step S204, the ECU 100 unlocks the low-pressure EGR valve 37. Thus, the low pressure EGR valve 37 is opened by another control. For example, when a flag is used to lock the low-pressure EGR valve 37, the lock of the low-pressure EGR valve 37 may be released by lowering the flag (for example, substituting 0 for the flag).
 以上、本開示の実施形態を詳細に述べたが、本開示は以下のような他の実施形態も可能である。 Although the embodiments of the present disclosure have been described above in detail, the present disclosure is also capable of the following other embodiments.
 図7は保護終了ルーチンの変形例を示すフローチャートである。図6と同様の処理については同符号を付し、説明を省略する。 FIG. 7 is a flowchart showing a modification of the protection end routine. The same processes as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted.
 図6に示す保護終了ルーチンでは、ECU100は、低圧EGR通路35内に溜まった凝縮水が気化されたか否かを判別するとき、ステップS203(排ガス温度Tが設定温度以上になったか否か)のみで判別していた。 In the protection end routine shown in FIG. 6, when the ECU 100 determines whether or not the condensed water accumulated in the low-pressure EGR passage 35 has been vaporized, only the step S203 (whether or not the exhaust gas temperature T has become equal to or higher than the set temperature) is performed. Was determined.
 しかし、図7に示すように、変形例におけるECU100は、排ガス温度Tが設定温度以上であり(ステップS203:Yes)、かつ、温度センサの検出値が設定温度以上になってから予め設定された設定時間を経過した(ステップS203a、S203b:Yes)とき、低圧EGR通路35内に溜まった凝縮水は気化されたと判別してもよい。ステップS203bにおける設定時間とは、凝縮水が蒸発するために必要な時間であり、予め実験又はシミュレーション等によって決定される。これによれば、図6のステップS203における設定温度よりも図7のステップS203における設定温度を低く設定することができ、低圧EGRバルブ37のロックを早いタイミングで解除できる場合がある。 However, as shown in FIG. 7, the ECU 100 according to the modified example is set in advance after the exhaust gas temperature T is equal to or higher than the set temperature (Step S203: Yes) and the detection value of the temperature sensor is equal to or higher than the set temperature. When the set time has elapsed (steps S203a and S203b: Yes), it may be determined that the condensed water accumulated in the low-pressure EGR passage 35 has been vaporized. The set time in step S203b is a time required for the condensed water to evaporate, and is determined in advance by experiments, simulations, or the like. According to this, the set temperature in step S203 of FIG. 7 can be set lower than the set temperature in step S203 of FIG. 6, and the lock of the low-pressure EGR valve 37 may be released at an earlier timing.
 図7に示す変形例では、ステップS203において、ECU100は、排ガス温度Tが設定温度以上(排ガス温度T≧設定温度)である場合、処理をステップS203aに進める。また、ECU100は、排ガス温度Tが設定温度未満(排ガス温度T<設定温度)である場合、処理をステップS205に進め、保護終了ルーチンを終了する。 In the modification shown in FIG. 7, in step S203, if the exhaust gas temperature T is equal to or higher than the set temperature (exhaust gas temperature T ≧ set temperature), the ECU 100 advances the process to step S203a. If the exhaust gas temperature T is lower than the set temperature (exhaust gas temperature T <set temperature), the ECU 100 advances the process to step S205 and ends the protection end routine.
 ステップ203aにおいて、ECU100は、時間の計測を開始する。 In step 203a, the ECU 100 starts measuring time.
 ステップ203bにおいて、ECU100は、ステップ203aで計測を開始した時間が設定時間を経過したか否かを判別する。設定時間を経過していない場合(No)、ECU100は、処理をステップS203bに戻し、ステップS203bの処理を繰り返す。設定時間を経過した場合(Yes)、ECU100は、処理をステップS204に進める。 In step 203b, the ECU 100 determines whether or not the time at which the measurement was started in step 203a has exceeded the set time. If the set time has not elapsed (No), the ECU 100 returns the process to step S203b, and repeats the process of step S203b. If the set time has elapsed (Yes), the ECU 100 proceeds with the process to step S204.
 ステップS204において、ECU100は、低圧EGRバルブ37のロックを解除する。 In step S204, the ECU 100 unlocks the low-pressure EGR valve 37.
 本開示の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本開示の思想に包含されるあらゆる変形例や応用例、均等物が本開示に含まれる。従って本開示は、限定的に解釈されるべきではなく、本開示の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。 実 施 The embodiments of the present disclosure are not limited to the above-described embodiments, and all modifications, applications, and equivalents included in the spirit of the present disclosure defined by the claims are included in the present disclosure. Therefore, the present disclosure should not be construed as limiting, but can be applied to any other technology belonging to the scope of the idea of the present disclosure.
 本出願は、2018年09月06日付で出願された日本国特許出願(特願2018-166849)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application (No. 2018-166849) filed on Sep. 6, 2018, the contents of which are incorporated herein by reference.
 本開示によれば、コンプレッサが凝縮水と衝突し続けることを回避できる効果を奏し、コンプレッサフィンが破損するリスクを低減できるという点において有用である。 According to the present disclosure, it is possible to prevent the compressor from continuously colliding with the condensed water, and it is useful in that the risk of breakage of the compressor fin can be reduced.
1  エンジン
2  エンジン本体
3  吸気通路
4  排気通路
5  燃料噴射装置
7  インジェクタ
8  コモンレール
9  シリンダ
10  吸気マニホールド
11  吸気管
12  エアクリーナ
13  エアフローメータ
14  ターボチャージャ
14C コンプレッサ
14T タービン
15  インタークーラ
16  吸気スロットルバルブ
20  排気マニホールド
21  排気管
22  酸化触媒
23  パティキュレートフィルタ
24  NOx触媒
26  アンモニア酸化触媒
30  高圧EGR装置
31  高圧EGR通路
32  高圧EGRクーラ
33  高圧EGRバルブ
34  低圧EGR装置
35  低圧EGR通路(排気再循環通路)
36  低圧EGRクーラ(クーラ)
37  低圧EGRバルブ(バルブ)
38  コンプレッサ保護装置
39  アクセル開度センサ
40  ターボ回転数センサ
41  低圧EGRクーラ出口温度センサ
100 電子制御ユニット
DESCRIPTION OF SYMBOLS 1 Engine 2 Engine main body 3 Intake passage 4 Exhaust passage 5 Fuel injection device 7 Injector 8 Common rail 9 Cylinder 10 Intake manifold 11 Intake pipe 12 Air cleaner 13 Air flow meter 14 Turbocharger 14C Compressor 14T Turbine 15 Intercooler 16 Intake throttle valve 20 Exhaust manifold 21 Exhaust pipe 22 Oxidation catalyst 23 Particulate filter 24 NOx catalyst 26 Ammonia oxidation catalyst 30 High pressure EGR device 31 High pressure EGR passage 32 High pressure EGR cooler 33 High pressure EGR valve 34 Low pressure EGR device 35 Low pressure EGR passage (exhaust recirculation passage)
36 Low pressure EGR cooler (cooler)
37 Low pressure EGR valve (valve)
38 Compressor protection device 39 Accelerator opening sensor 40 Turbo speed sensor 41 Low pressure EGR cooler outlet temperature sensor 100 Electronic control unit

Claims (4)

  1.  ターボチャージャのタービンの下流側の排気通路からコンプレッサの上流側の吸気通路に排ガスを戻す排気再循環通路と、
     前記排気再循環通路に設けられたバルブと、
     アクセルの開度を検出するアクセル開度センサと、
     前記ターボチャージャの回転数を検出するターボ回転数センサと、
     前記アクセル開度センサ及び前記ターボ回転数センサの検出値に基づいて前記バルブを制御する電子制御ユニットとを備え、
     前記電子制御ユニットは、前記アクセル開度センサ及び前記ターボ回転数センサの検出値に基づいて前記コンプレッサのコンプレッサフィンに凝縮水が衝突したか否かを判別し、前記コンプレッサフィンに凝縮水が衝突したと判定したとき、前記バルブを閉じる
     ことを特徴とするコンプレッサ保護装置。
    An exhaust recirculation passage for returning exhaust gas from an exhaust passage downstream of the turbine of the turbocharger to an intake passage upstream of the compressor;
    A valve provided in the exhaust gas recirculation passage;
    An accelerator opening sensor for detecting the opening of the accelerator,
    A turbo speed sensor for detecting the speed of the turbocharger,
    An electronic control unit that controls the valve based on the detection values of the accelerator opening sensor and the turbo speed sensor,
    The electronic control unit determines whether or not condensed water collides with the compressor fins of the compressor based on the detection values of the accelerator opening sensor and the turbo speed sensor, and the condensed water collides with the compressor fins. Closing the valve when it is determined.
  2.  前記電子制御ユニットは、前記アクセル開度センサの検出値の微分値と、前記ターボ回転数センサの検出値の微分値との差が予め設定されたしきい値以上であるとき、前記コンプレッサフィンに凝縮水が衝突したと判定する
     請求項1に記載のコンプレッサ保護装置。
    The electronic control unit, when a difference between the differential value of the detection value of the accelerator opening sensor and the differential value of the detection value of the turbo speed sensor is equal to or greater than a predetermined threshold, the electronic control unit may The compressor protection device according to claim 1, wherein it is determined that the condensed water has collided.
  3.  前記バルブは、前記クーラより下流側の前記排気再循環通路に設けられ、
     前記クーラ及び前記バルブ間の前記排気再循環通路には、温度センサが設けられ、
     前記電子制御ユニットは、前記温度センサの検出値が予め設定された設定温度以上になったとき、前記バルブを開く
     請求項1又は2に記載のコンプレッサ保護装置。
    The valve is provided in the exhaust gas recirculation passage downstream of the cooler,
    A temperature sensor is provided in the exhaust gas recirculation passage between the cooler and the valve,
    The compressor protection device according to claim 1, wherein the electronic control unit opens the valve when a detection value of the temperature sensor becomes equal to or higher than a preset temperature.
  4.  前記バルブは、前記クーラより下流側の前記排気再循環通路に設けられ、
     前記クーラ及び前記バルブ間の前記排気再循環通路には、温度センサが設けられ、
     前記電子制御ユニットは、前記温度センサの検出値が予め設定された設定温度以上になり、かつ、前記温度センサの検出値が前記設定温度以上になってから予め設定された設定時間を経過したとき、前記バルブを開く
     請求項1又は2に記載のコンプレッサ保護装置。
    The valve is provided in the exhaust gas recirculation passage downstream of the cooler,
    A temperature sensor is provided in the exhaust gas recirculation passage between the cooler and the valve,
    The electronic control unit, when the detection value of the temperature sensor is equal to or higher than a predetermined set temperature, and when a predetermined set time has elapsed since the detection value of the temperature sensor is equal to or higher than the set temperature The compressor protection device according to claim 1, wherein the valve is opened.
PCT/JP2019/034697 2018-09-06 2019-09-04 Compressor protection device WO2020050291A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-166849 2018-09-06
JP2018166849A JP2020041427A (en) 2018-09-06 2018-09-06 Compressor protection device

Publications (1)

Publication Number Publication Date
WO2020050291A1 true WO2020050291A1 (en) 2020-03-12

Family

ID=69723215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034697 WO2020050291A1 (en) 2018-09-06 2019-09-04 Compressor protection device

Country Status (2)

Country Link
JP (1) JP2020041427A (en)
WO (1) WO2020050291A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332793A (en) * 2006-06-12 2007-12-27 Yanmar Co Ltd Engine provided with supercharger
JP2016050481A (en) * 2014-08-28 2016-04-11 トヨタ自動車株式会社 Control device for internal combustion engine
JP2016094909A (en) * 2014-11-14 2016-05-26 トヨタ自動車株式会社 Control device for internal combustion engine
JP2018115591A (en) * 2017-01-17 2018-07-26 トヨタ自動車株式会社 Controller of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332793A (en) * 2006-06-12 2007-12-27 Yanmar Co Ltd Engine provided with supercharger
JP2016050481A (en) * 2014-08-28 2016-04-11 トヨタ自動車株式会社 Control device for internal combustion engine
JP2016094909A (en) * 2014-11-14 2016-05-26 トヨタ自動車株式会社 Control device for internal combustion engine
JP2018115591A (en) * 2017-01-17 2018-07-26 トヨタ自動車株式会社 Controller of internal combustion engine

Also Published As

Publication number Publication date
JP2020041427A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
JP5995031B2 (en) Control device for internal combustion engine
EP2986834B1 (en) Method and apparatus for exhaust gas aftertreatment device warning
US20160160723A1 (en) Method and system for removing ash within a particulate filter
JP5733267B2 (en) Control device for internal combustion engine
US20140007851A1 (en) Method of controlling an after-treatment system warm-up
JP5846300B2 (en) Control device for internal combustion engine
EP3073078B1 (en) Exhaust gas purification control apparatus
EP2682579A2 (en) Exhaust emission control system for internal combustion engine, and control method for exhaust emission control system
JP6589365B2 (en) Exhaust gas purification system
JP7151120B2 (en) Engine catalyst abnormality determination method and engine catalyst abnormality determination device
JP5126165B2 (en) Control device for internal combustion engine
JP5825424B2 (en) Control device for internal combustion engine
WO2020050291A1 (en) Compressor protection device
EP1493483B1 (en) Exhaust purification device of internal combustion engine
JP2015042855A (en) Control device for internal combustion engine
JP2012167562A (en) Diesel engine
JP7151119B2 (en) Engine catalyst abnormality determination method and engine catalyst abnormality determination device
JP2010223187A (en) Engine control device
JP2013238147A (en) Exhaust gas temperature estimation device and failure diagnostic device
JP7155566B2 (en) Engine catalyst abnormality determination method and engine catalyst abnormality determination device
WO2022014407A1 (en) Internal combustion engine
JP7106923B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP4154589B2 (en) Combustion control device for internal combustion engine
JP7147214B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP2007332875A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857421

Country of ref document: EP

Kind code of ref document: A1