WO2020049954A1 - Turning propulsion device and turning propulsion device control method - Google Patents

Turning propulsion device and turning propulsion device control method Download PDF

Info

Publication number
WO2020049954A1
WO2020049954A1 PCT/JP2019/031605 JP2019031605W WO2020049954A1 WO 2020049954 A1 WO2020049954 A1 WO 2020049954A1 JP 2019031605 W JP2019031605 W JP 2019031605W WO 2020049954 A1 WO2020049954 A1 WO 2020049954A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
turning
holding unit
zero
deviation angle
Prior art date
Application number
PCT/JP2019/031605
Other languages
French (fr)
Japanese (ja)
Inventor
雄樹 関
俊介 有馬
真伍 山口
裕司 豊田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201980057246.3A priority Critical patent/CN112638764B/en
Priority to KR1020217008442A priority patent/KR102488766B1/en
Publication of WO2020049954A1 publication Critical patent/WO2020049954A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • B63H2005/1254Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis

Definitions

  • the present invention relates to a turning type propulsion device and a control method of the turning type propulsion device.
  • a revolving propulsion device mounted on a ship includes a screw propeller and a holding unit that holds the screw propeller (for example, see Patent Document 1).
  • the holding unit is configured to turn in the horizontal direction, and the boat can be propelled in any direction by adjusting the turning angle of the holding unit.
  • the turning type propulsion device turns the holding unit so that the deviation angle (difference) between the command angle input by the operator and the actual turning angle of the holding unit becomes zero, and when the deviation angle becomes zero, the holding unit turns. To stop. That is, feedback control is performed. However, if the holding unit is turned even when the actual turning angle slightly deviates from the command angle or when a measurement error of the actual turning angle occurs, unnecessary energy may be consumed. Therefore, when controlling the turning angle of the holding unit, a dead zone process may be performed.
  • the dead zone process is a process of setting a dead zone range in which a value equal to or less than zero is a lower limit and a value equal to or greater than zero as an upper limit.
  • the deviation angle is regarded as zero.
  • the present invention has been made in view of the above circumstances, and in performing a dead zone process, a turning type propulsion that can suppress a decrease in positioning accuracy of a holding unit even when the turning device has high responsiveness. It is an object of the present invention to provide a method for controlling a thruster and a turning type propulsion device.
  • the turning type propulsion device includes a screw propeller, a holding unit that holds the screw propeller, a turning device that turns the holding unit, and turning of the holding unit based on an input command angle.
  • a control device for controlling an angle the control device sets a change command angle based on the command angle, and a deviation angle obtained by subtracting the other from one of the actual turning angle of the holding unit and the change command angle.
  • the post-processing deviation angle is determined to be the same angle as the deviation angle.
  • the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and the
  • the change command angle when the post-processing deviation angle is zero, the change command angle is set to the same angle as the command angle.
  • the change command angle is set to an angle larger than the command angle, and the holding unit turns in the reverse rotation direction in which the turning angle decreases. In this case, the change command angle is set to an angle smaller than the command angle.
  • the deviation command angle is set to be larger than the command angle, so that the deviation angle becomes smaller.
  • the holding unit is already located near the command angle. In other words, even if the post-processing deviation angle is zero at this time and the turning of the holding unit is stopped, the holding unit can be positioned near the command angle.
  • the change command angle is set smaller than the command angle, so that the deviation angle increases.
  • the holding unit turns in the reverse direction and the deviation angle reaches the upper limit of the dead zone range, the holding unit is already located near the command angle. In other words, even if the post-processing deviation angle is zero at this time and the turning of the holding unit is stopped, the holding unit can be positioned near the command angle. Therefore, according to the above configuration, even when the responsiveness of the turning device is high, a decrease in the positioning accuracy of the holding unit can be suppressed.
  • a turning type propulsion device includes a screw propeller, a holding unit that holds the screw propeller, a turning device that turns the holding unit, and the holding device that holds the screw propeller based on an input command angle.
  • a control device for controlling the turning angle of the unit wherein the control device sets a dead zone range in which the lower limit value is equal to or less than zero and the upper limit value is equal to or greater than zero, and the command angle is determined from the actual turning angle of the holding unit.
  • the post-processing deviation angle is determined to be the same angle as the deviation angle, and when the deviation angle is in the dead zone range, the post-processing deviation angle is determined to be zero.
  • the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and when the post-processing deviation angle is zero,
  • the lower limit of the dead zone is set to a predetermined reference lower limit and the upper limit is set to a predetermined reference upper limit.
  • the holding unit turns in the forward direction in which the turning angle increases, the lower limit value of the dead zone range is set to a value larger than the reference lower limit value, and the turning angle decreases in the reverse direction.
  • the upper limit value of the dead zone range is set to a value smaller than the reference upper limit value.
  • the lower limit value of the dead zone range is set to a value larger than the reference lower limit value. Therefore, when the holding unit turns in the normal rotation direction and the deviation angle reaches the lower limit value of the dead zone range, the holding unit is already located near the command angle. In other words, even if the post-processing deviation angle is zero at this time and the turning of the holding unit is stopped, the holding unit can be positioned near the command angle.
  • the upper limit of the dead zone range is set to a value smaller than the reference upper limit.
  • the holding unit turns in the reverse direction and the deviation angle reaches the upper limit value of the dead zone range, the holding unit is already located near the command angle. In other words, even if the post-processing deviation angle is zero at this time and the turning of the holding unit is stopped, the holding unit can be positioned near the command angle. Therefore, according to the above configuration, even when the responsiveness of the turning device is high, a decrease in the positioning accuracy of the holding unit can be suppressed.
  • a turning type propulsion device includes a screw propeller, a holding unit that holds the screw propeller, a turning device that turns the holding unit, and the holding device that holds the screw propeller based on an input command angle.
  • a control device for controlling the turning angle of the unit wherein the control device sets a dead zone range in which the lower limit value is equal to or less than zero and the upper limit value is equal to or greater than zero, and the actual turning angle of the holding unit from the command angle.
  • the post-processing deviation angle is determined to be the same angle as the deviation angle, and when the deviation angle is in the dead zone range, the post-processing deviation angle is determined to be zero.
  • the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and when the post-processing deviation angle is zero,
  • the lower limit of the dead zone is set to a predetermined reference lower limit and the upper limit is set to a predetermined reference upper limit.
  • the upper limit value of the dead zone range is set to a value smaller than the reference upper limit value, and the turning angle decreases in the reverse direction.
  • the lower limit value of the dead zone range is set to a value larger than the reference lower limit value.
  • the angle obtained by subtracting the command angle from the actual turning angle of the holding unit is defined as the deviation angle
  • the actual turning angle of the holding unit is subtracted from the command angle.
  • the angle is defined as a deviation angle.
  • a turning type propulsion device includes a screw propeller, a holding unit that holds the screw propeller, a turning device that turns the holding unit, and the holding device that holds the screw propeller based on an input command angle.
  • a control device that controls a turning angle of the unit, wherein the control device determines a changed actual turning angle based on the actual turning angle of the holding unit, and the other from one of the changed actual turning angle and the command angle.
  • the holding unit turns in the reverse direction and the deviation angle reaches the upper limit of the dead zone range, the holding unit is already located near the command angle. In other words, even if the post-processing deviation angle is zero at this time and the turning of the holding unit is stopped, the holding unit can be positioned near the command angle. Therefore, according to the above configuration, even when the responsiveness of the turning device is high, a decrease in the positioning accuracy of the holding unit can be suppressed.
  • a turning type propulsion device includes a screw propeller, a holding unit that holds the screw propeller, a turning device that turns the holding unit, and the holding device that holds the screw propeller based on an input command angle.
  • a control device for controlling a turning angle of the holding portion wherein the control device turns the holding portion so that a deviation angle obtained by subtracting one of the command angle and the actual turning angle of the holding portion from the other becomes zero. After the deviation angle reaches zero, a dead zone range in which the lower limit value is equal to or less than zero and the upper limit value is equal to or greater than zero is set, and when the deviation angle is not in the dead zone range, the post-processing deviation angle is set to the deviation.
  • the post-processing deviation angle is determined to be zero, and when the post-processing deviation angle is not zero, the post-processing deviation angle is zero.
  • the holding portion is pivoted so that the processed deviation angle is at zero and is configured to stop the pivoting of the retaining portion.
  • the turning angle is controlled without performing the dead zone processing until the deviation angle reaches zero, even if the responsiveness of the turning device is high, the positioning accuracy of the holding unit is not improved. The decrease can be suppressed. Further, after the deviation angle reaches zero, the turning angle is controlled while performing the dead zone processing, so that unnecessary energy consumption can be suppressed.
  • a method for controlling a turning type propulsion device is a method for controlling a turning type propulsion device including a screw propeller, a holding unit that holds the screw propeller, and a turning device that turns the holding unit.
  • a change command angle is set based on the input command angle, and a deviation angle obtained by subtracting the other from one of the actual turning angle of the holding unit and the change command angle is set to a lower limit value of zero or less and an upper limit value.
  • the post-processing deviation angle is determined to be the same angle as the deviation angle, and when the deviation angle is in the dead zone range, the post-processing deviation angle is determined to be zero.
  • the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and the holding unit is turned when the post-processing deviation angle is zero.
  • the change command angle is set to the same angle as the command angle, and the turning angle is increased in the normal rotation direction.
  • the change command angle is set to an angle larger than the command angle, and when the holding section turns in the reverse direction in which the turning angle decreases, the change command angle is smaller than the command angle. Set to an angle.
  • a method for controlling a turning type propulsion device is a turning type propulsion device comprising: a screw propeller; a holding unit that holds the screw propeller; and a turning device that turns the holding unit.
  • the control method according to the above, wherein a lower limit is set to be equal to or less than zero and an upper limit is set to be equal to or more than zero, and a deviation angle obtained by subtracting an input command angle from an actual turning angle of the holding unit is not in the dead zone.
  • the post-processing deviation angle is determined to be the same angle as the deviation angle
  • the post-processing deviation angle is determined to be zero
  • the post-processing deviation angle is not zero
  • the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and the turning of the holding unit is stopped when the post-processing deviation angle is zero, and the dead zone is
  • the lower limit of the dead zone range is set to a predetermined reference lower limit and the upper limit is set to a predetermined reference upper limit, and the turning angle increases.
  • the lower limit of the dead zone range is set to a value larger than the reference lower limit when the holding unit turns in the forward rotation direction, and the dead zone is set when the holding unit turns in the reverse rotation direction in which the turning angle decreases.
  • the upper limit of the range is set to a value smaller than the reference upper limit.
  • a method for controlling a turning type propulsion device is a turning type propulsion device comprising: a screw propeller; a holding unit that holds the screw propeller; and a turning device that turns the holding unit.
  • the control method of the above wherein a lower limit value is set to be equal to or less than zero and an upper limit value is set to be equal to or more than zero, and a deviation angle obtained by subtracting an actual turning angle of the holding unit from an input command angle is not in the dead band range.
  • the post-processing deviation angle is determined to be the same angle as the deviation angle
  • the post-processing deviation angle is determined to be zero
  • the post-processing deviation angle is not zero
  • the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and the turning of the holding unit is stopped when the post-processing deviation angle is zero, and the dead zone is
  • the lower limit of the dead zone range is set to a predetermined reference lower limit and the upper limit is set to a predetermined reference upper limit, and the turning angle increases.
  • the upper limit of the dead zone range is set to a value smaller than the reference upper limit value, and when the holding unit turns in the reverse rotation direction in which the turning angle becomes smaller, the dead zone is set.
  • the lower limit of the range is set to a value larger than the reference lower limit.
  • a method for controlling a turning type propulsion device is a turning type propulsion device comprising: a screw propeller; a holding unit that holds the screw propeller; and a turning device that turns the holding unit.
  • the control method wherein a changed actual turning angle is determined based on the actual turning angle of the holding unit, and a deviation angle obtained by subtracting an input command angle from the changed actual turning angle is set to a lower limit value of zero or less and an upper limit value.
  • the post-processing deviation angle is determined to be the same angle as the deviation angle.
  • the post-processing deviation angle is determined to be zero.
  • the turning direction of the holding unit is selected so that the post-processing deviation angle becomes zero, and the holding unit is turned.
  • the holding is performed.
  • the changed actual turning angle is determined to be the same angle as the actual turning angle, and the turning angle becomes larger.
  • the holding unit turns in the direction, the changed actual turning angle is determined to be smaller than the actual turning angle, and when the holding unit turns in the reverse direction in which the turning angle becomes smaller, the changed actual turning angle is changed. An output is made at an angle larger than the actual turning angle.
  • a method for controlling a turning type propulsion device is a turning type propulsion device comprising: a screw propeller; a holding unit that holds the screw propeller; and a turning device that turns the holding unit.
  • the holding unit is turned such that a deviation angle obtained by subtracting the other from one of the input command angle and the actual turning angle of the holding unit becomes zero, and the deviation angle reaches zero.
  • a dead zone range is set in which the lower limit value is equal to or less than zero and the upper limit value is equal to or greater than zero.
  • the post-processing deviation angle is determined to be zero, and when the post-processing deviation angle is not zero, the holding unit is turned so that the post-processing deviation angle becomes zero, It is management after deflection angle at zero to stop the turning of the retaining portion.
  • the turning type propulsion device and the control method of the turning type propulsion device in performing the dead zone process, even if the responsiveness of the turning device is high, it is possible to suppress a decrease in the positioning accuracy of the holding unit. .
  • FIG. 1 is a schematic configuration diagram of a rotary propulsion device according to the embodiment.
  • FIG. 2 is a diagram illustrating a turning direction and a turning angle.
  • FIG. 3 is a flowchart of the control program according to the first embodiment.
  • FIG. 4 is a diagram showing an example of an input command angle.
  • FIG. 5 is a diagram illustrating the operation of the holding unit of the comparative example.
  • FIG. 6 is a diagram illustrating an operation of the holding unit according to the first embodiment.
  • FIG. 7 is a flowchart of a control program according to the second embodiment.
  • FIG. 8 is a diagram illustrating the operation of the holding unit according to the second embodiment.
  • FIG. 9 is a flowchart of a control program according to the third embodiment.
  • FIG. 10 is a diagram illustrating the operation of the holding unit according to the third embodiment.
  • FIG. 11 is a flowchart of a control program according to the fourth embodiment.
  • FIG. 12 is a diagram illustrating the operation of
  • FIG. 1 is a schematic configuration diagram of a rotary propulsion device 100 according to the present embodiment.
  • the turning type propulsion device 100 is a ship propulsion device, and includes a screw propeller 10, a holding unit 20, a turning device 30, a turning angle measuring device 40, and a control device 50 as shown in FIG. I have.
  • these components will be described in order.
  • the screw propeller 10 is a part that is rotated by power transmitted from an engine (not shown).
  • the screw propeller 10 has a plurality of rotating blades 11, and the rotating blades 11 rotate in water to generate thrust.
  • the screw propeller 10 may be a “variable pitch propeller” in which the angle of the rotating blade 11 changes, or a “fixed pitch propeller” in which the angle of the rotating blade 11 is constant.
  • the holding unit 20 is a device that holds the screw propeller 10.
  • the holding unit 20 of the present embodiment holds the screw propeller 10 such that the rotation axis of the screw propeller 10 is horizontal. Further, the holding unit 20 itself also turns horizontally. That is, the holding unit 20 turns around the turning axis extending in the vertical direction.
  • the direction when the holding unit 20 turns clockwise in plan view is referred to as “forward direction”, and the direction when the holding unit 20 turns counterclockwise is “reverse direction” in plan view. Shall be called.
  • the holding unit 20 can turn 360 degrees or more in both the forward rotation direction and the reverse rotation direction. In addition, the turning angle increases clockwise in plan view.
  • the turning device 30 is a device for turning the holding unit 20.
  • the turning device 30 of the present embodiment is electrically driven, and is connected to a holding portion side gear 31 provided on the upper portion of the holding portion 20, a motor side gear 32 meshing with the holding portion side gear 31, and a motor side gear 32. And a power converter 34 for adjusting the rotation speed and the rotation direction of the drive motor 33.
  • the turning device 30 may be of a hydraulic type.
  • the turning angle measurement device 40 is a device that measures the actual turning angle of the holding unit 20.
  • the turning angle measurement device 40 measures the actual turning angle of the holding unit 20 using an angle sensor provided on the holding unit side gear 31.
  • the turning angle measurement device 40 may be configured to calculate (measure) the actual turning angle from the rotation speed of the drive motor 33 and the like.
  • the control device 50 is a device that controls the turning angle and the like of the holding unit 20.
  • the control device 50 has a processor, a volatile memory, a non-volatile memory, an I / O interface, and the like.
  • the non-volatile memory of the control device 50 stores a control program described later and various data, and the processor performs arithmetic processing using the volatile memory based on the control program.
  • the control device 50 is electrically connected to the operator operation device 101 provided on the hull, receives a command signal transmitted from the operator operation device 101, and acquires a command angle. That is, the command angle is input to the control device 50. Further, the control device 50 is electrically connected to the turning angle measuring device 40, and can acquire the actual turning angle of the holding unit 20 based on the measurement signal transmitted from the turning angle measuring device 40. Further, the control device 50 is electrically connected to the power conversion device 34 of the turning device 30, and can transmit a control signal to the power conversion device 34. Thereby, the control device 50 can adjust the rotation direction and the rotation speed of the drive motor 33, and thus can adjust the turning direction and the turning speed of the holding unit 20.
  • FIG. 3 is a flowchart of the control program.
  • the control program shown in FIG. 3 is executed by the control device 50.
  • the control device 50 acquires the command angle from the operator operation device 101 and acquires the actual turning angle of the holding unit 20 from the turning angle measuring device 40 (step S1). ).
  • the control device 50 sets a change command angle based on the command angle acquired in step S1 (step S2). Specifically, the control device 50 sets the change command angle to a value larger than the command angle when the holding unit 20 turns in the normal rotation direction, and sets the change command angle when the holding unit 20 turns in the reverse rotation direction. Is set to an angle smaller than the command angle.
  • the turning direction of the holding unit 20 is selected in step S5 described later, but in an initial stage where the turning direction is not selected, the change command angle may be set to the same angle as the command angle.
  • the control device 50 sets the change command angle to the same angle as the command angle.
  • the control device 50 acquires 160 degrees as the command angle.
  • the control device 50 sets the change command angle to an angle larger than the command angle, for example, 160.5 degrees.
  • the change command angle is set to an angle smaller than the command angle, for example, 159.5 degrees.
  • the change command angle is set to 160 degrees, which is the same as the command angle.
  • the control device 50 calculates a deviation angle (step S3). Specifically, the control device 50 calculates a deviation angle by subtracting the change command angle set in step S2 from the actual turning angle acquired in step S1. For example, when the change command angle set in step S2 is 160.5 degrees, the deviation angle when the holding unit 20 turns in the normal rotation direction and the actual turning angle reaches 150 degrees is -10.5 degrees. Become. When the change command angle set in step S2 is 159.5 degrees, the deviation angle when the holding unit 20 turns in the reverse direction and the actual turning angle reaches 170 degrees is +10.5 degrees.
  • control device 50 performs a dead zone process (step S4). Specifically, when the deviation angle calculated in step S3 is not in the predetermined dead zone range, control device 50 determines the post-processing deviation angle to be the same as the deviation angle, and the deviation angle is in the predetermined dead zone range. At this time, the deviation angle after processing is determined to be zero.
  • the dead zone range has a lower limit of zero or less and an upper limit of zero or more (the upper limit and the lower limit are included in the dead zone range).
  • the dead zone has a predetermined width (that is, the lower limit and the upper limit are not the same value).
  • the lower limit of the dead zone range is -0.5 degrees
  • the upper limit is +0.5 degrees.
  • the control device 50 determines the post-processing deviation angle to be -10.5 degrees.
  • the control device 50 determines the post-processing deviation angle to be +10.5 degrees.
  • the control device 50 determines the post-processing deviation angle to be 0 degrees.
  • the change command angle is 159.5 degrees
  • the holding unit 20 turns in the reverse direction and the actual turning angle reaches 160 degrees
  • the deviation angle becomes +0.5 degrees. Determines the deviation angle after processing to 0 degree.
  • control device 50 rotates the holding unit 20 as necessary based on the post-processing deviation angle determined in step S4 (step S5). Specifically, the control device 50 transmits a control signal to the turning device 30 to stop the turning of the holding unit 20 when the post-processing deviation angle is 0 degree, and to stop the turning of the holding unit 20 when the post-processing deviation angle is not 0 degree. A control signal is transmitted to the turning device 30 to turn the holding unit 20.
  • the turning direction of the holding unit 20 is selected, the turning speed of the holding unit is determined, and a control signal is transmitted to the turning device 30.
  • the direction in which the turning distance is short is selected as the turning direction.
  • the control device 50 selects the normal rotation direction as the turning direction.
  • the control device 50 determines the turning speed of the holding unit 20 using PID control.
  • the turning speed of the holding unit 20 may be determined using a method other than the PID control. In the PID control, as the absolute value of the post-processing deviation angle increases, a larger value is determined as the turning speed.
  • step S5 return to step S1 and repeat steps S1 to S5.
  • the holding unit 20 turns toward the change command angle. That is, in the present embodiment, the feedback control is performed based on the change command angle instead of the command angle.
  • FIG. 5 is a diagram illustrating the operation of the holding unit 20 in the comparative example.
  • the curve in the figure represents the time change of the actual turning angle of the holding unit 20.
  • the horizontal axis represents time
  • the vertical axis represents the turning angle.
  • the hatched portion in the figure corresponds to the dead zone range. It is assumed that the holding unit 20 turns in the normal rotation direction.
  • step S2 is omitted. That is, in the turning type propulsion device according to the comparative example, the deviation angle is calculated in step S3 by subtracting the command angle from the actual turning angle instead of the changed actual turning angle, and the turning angle of the holding unit 20 is calculated based on the deviation angle. Controlled. That is, feedback control is performed based on the command angle. Except for this point, the turning type propulsion device according to the comparative example has the same configuration as the turning type propulsion device 100 according to the present embodiment.
  • the controller 50 determines the post-processing deviation angle to 0 ° and stops the holding unit 20. Accordingly, the holding unit 20 stops at the turning angle corresponding to the lower limit value of the dead zone range. In the above-described example, assuming that the lower limit value of the dead zone range is -0.5 degrees, the holding unit 20 stops when it turns to 159.5 degrees.
  • the holding unit 20 stops at 159.5 degrees and does not reach the command angle of 160 degrees.
  • FIG. 6 is a diagram illustrating the operation of the holding unit 20 in the present embodiment. Similar to FIG. 5, the curve in the figure represents the change over time of the actual turning angle of the holding unit 20. In FIG. 6, the horizontal axis indicates time, and the vertical axis indicates the turning angle. The hatched portion in the figure corresponds to the dead zone range. It is assumed that the holding unit 20 turns in the normal rotation direction.
  • the holding unit 20 starts to turn toward the change command angle instead of the input command angle.
  • the control device 50 acquires 160 degrees as the command angle when the actual turning angle of the holding unit 20 is 0 degrees, the holding unit 20 moves toward the change command angle of 160.5 degrees. Start turning.
  • the controller 50 determines the post-processing deviation angle to 0 degrees, and stops the holding unit 20. Accordingly, the holding unit 20 stops at the turning angle corresponding to the lower limit value of the dead zone range.
  • the holding unit 20 stops when the holding unit 20 turns to 160 degrees. That is, the holding unit 20 stops at the command angle of 160 degrees.
  • the holding unit 20 can be turned to the command angle regardless of whether or not the responsiveness of the turning device 30 is high.
  • the change command angle is set to the same angle as the command signal.
  • the change command angle which was 160.5 degrees, is set to 160 degrees. Accordingly, the turning angle range corresponding to the dead zone range also slides in the direction in which the turning angle is small. As a result, even if the actual turning angle of the holding unit 20 slightly deviates from the change command angle or a measurement error of the actual rotation angle occurs, the holding unit 20 does not easily turn. Therefore, energy loss due to unnecessary turning of the holding unit 20 can be suppressed.
  • the operation of the holding unit 20 has been described as an example in which the holding unit 20 turns in the normal rotation direction.
  • the holding unit 20 turns in the reverse rotation direction
  • the holding unit 20 is turned in the normal rotation direction.
  • the control device 50 sets the change command angle larger than the command angle.
  • the holding unit 20 can be stopped at or near the command angle when the holding unit 20 turns in the reverse direction.
  • the holding unit 20 when performing the dead zone processing, even if the turning device 30 has high responsiveness, the holding unit 20 can turn to the command angle. 20 can be prevented from lowering in positioning accuracy.
  • step S3 a deviation angle is calculated by subtracting the change command angle from the actual turning angle, and the subsequent processing is performed using the deviation angle.
  • the angle obtained by subtracting the change command angle from the actual turning angle may be used as the deviation angle, and the subsequent processing may be performed. Even in this case, the same effect as in the case of the present embodiment can be obtained.
  • the rotary propulsion device 200 according to the present embodiment has the same basic configuration as the rotary propulsion device 100 according to the first embodiment (see FIG. 1). However, the control program of the present embodiment is partially different from the control program of the first embodiment. Hereinafter, the control program of the second embodiment will be described in comparison with the control program of the first embodiment.
  • FIG. 7 is a flowchart of a control program according to the second embodiment.
  • the control program according to the present embodiment does not include step S2 (see FIG. 3) for setting the change command angle, but has step S3a for setting the dead zone range. This is different from the control program of the first embodiment.
  • the control device 50 acquires the command angle from the operator operation device 101, and obtains the actual angle of the holding unit 20 from the turning angle measurement device 40. The turning angle is obtained (step S1).
  • the control device 50 calculates a deviation angle (step S3). Specifically, the control device 50 calculates the deviation angle by subtracting the command angle also obtained in step S1 from the actual turning angle obtained in step S1. For example, when the command angle is 160 degrees, the deviation angle when the holding unit 20 turns in the normal rotation direction and the actual turning angle reaches 150 degrees is -10 degrees. Further, for example, when the command angle is 160 degrees, the deviation angle when the holding unit 20 turns in the reverse direction and the actual turning angle reaches 170 degrees is +10 degrees.
  • the control device 50 sets a dead zone range (step S3a). Specifically, when the holding unit 20 is at or near the command angle (that is, when the post-process deviation angle is zero), the control device 50 sets the lower limit of the dead zone range to a predetermined reference lower limit. At the same time, the upper limit is set to a predetermined reference upper limit. In the present embodiment, the reference lower limit is -0.5 degrees, and the reference upper limit is +0.5 degrees. In this case, the lower limit of the dead zone range is set to -0.5, and the upper limit is set to +0.5 degrees.
  • control device 50 sets the lower limit value of the dead zone range to a value larger than the reference lower limit value.
  • the lower limit of the dead zone range is set to 0 degrees.
  • the upper limit of the dead zone range does not need to be particularly set, but may be set to +0.5 degrees, which is the same as the reference upper limit. Alternatively, the upper limit value of the dead zone range may be made larger than the reference upper limit value to offset the entire dead zone range.
  • the control device 50 sets the upper limit value of the dead zone range to a value smaller than the reference upper limit value.
  • the upper limit of the dead zone range is set to 0 degrees.
  • the lower limit of the dead zone range does not need to be particularly set, but may be set to -0.5 degrees, which is the same as the reference lower limit. Further, the lower limit value of the dead zone range may be made smaller than the reference lower limit value to offset the entire dead zone range.
  • the holding unit 20 is at or near the command angle (that is, whether or not the post-processing deviation angle is zero) and the turning direction of the holding unit 20 is not clear.
  • the lower limit of the dead zone range may be set to the reference lower limit and the upper limit may be set to the reference upper limit.
  • the control device 50 performs a dead zone process (step S4).
  • the dead zone processing in the present embodiment is the same as the dead zone processing in the first embodiment. However, it differs from the first embodiment in that the dead zone range is not constant as described above. In the case of the present embodiment, for example, even if the deviation angle is ⁇ 0.3 degrees larger than the reference lower limit, when the holding unit 20 turns in the normal rotation direction, the holding unit 20 does not enter the dead zone.
  • step S5 the control device 50 rotates the holding unit 20 as necessary based on the post-processing deviation angle determined in step S4 (step S5). Specifically, similarly to the case of the first embodiment, when the deviation angle after the process is 0 degree, the control device 50 transmits a control signal to the turning device 30 to stop the turning of the holding unit 20 and performs the process. If the rear deviation angle is not 0 degrees, a control signal is transmitted to the turning device 30 to turn the holding unit 20. After step S5, the process returns to step S1 and repeats steps S1 to S5.
  • FIG. 8 is a diagram illustrating the operation of the holding unit 20 in the present embodiment.
  • the curve in the figure represents the time change of the actual turning angle of the holding unit 20.
  • the horizontal axis represents time
  • the vertical axis represents the turning angle.
  • the hatched portion in the figure corresponds to the dead zone range. It is assumed that the holding unit 20 turns in the normal rotation direction.
  • the holding unit 20 starts turning toward the input command angle.
  • the control device 50 acquires 160 degrees as the command angle when the actual turning angle of the holding unit 20 is 0 degrees
  • the holding unit 20 starts turning toward the command angle of 160 degrees.
  • the lower limit value of the dead zone range is set to 0 degrees which is larger than the reference lower limit value of -0.5 degrees.
  • the controller 50 determines the post-processing deviation angle to 0 degree and stops the holding unit 20.
  • the holding unit 20 stops at the time when the holding unit 20 turns to the command angle. In the example described above, the holding unit 20 stops when the holding unit 20 turns to 160 degrees.
  • the holding unit 20 can be turned to the command angle regardless of whether or not the responsiveness of the turning device 30 is high.
  • the lower limit value of the dead zone range is set to the reference lower limit value
  • the upper limit value of the dead zone range is set to the reference upper limit value.
  • the lower limit of the dead zone range is set to -0.5 degrees
  • the upper limit of the dead zone range is set to +0.5 degrees.
  • the operation of the holding unit 20 has been described as an example in which the holding unit 20 turns in the normal rotation direction.
  • the holding unit 20 turns in the reverse rotation direction, the holding unit 20 is turned in the normal rotation direction.
  • the control device 50 sets the upper limit value of the dead zone range to a value (0 degree) smaller than the reference upper limit value.
  • the holding unit 20 can be stopped at or near the command angle.
  • the holding portion 20 in performing the dead zone processing, even if the responsiveness of the turning device 30 is high, the holding portion 20 can turn to the command angle, and thus the holding portion 20 can be prevented from lowering in positioning accuracy.
  • step S3 the deviation angle is calculated by subtracting the command angle from the actual turning angle, and the subsequent processing is performed using the deviation angle.
  • the angle obtained by subtracting the change command angle from the actual turning angle may be used as the deviation angle, and the subsequent processing may be performed.
  • the setting of the dead zone range is different from that of the present embodiment. Specifically, in step S3a, when the holding unit 20 is at or near the command angle, the control device 50 sets the lower limit value of the dead zone range to a predetermined reference lower limit value and sets the upper limit value to a predetermined reference upper limit value.
  • the upper limit value of the dead zone range is set to a value smaller than the reference upper limit value, and when the holding unit 20 turns in the reverse rotation direction. Sets the lower limit value of the dead zone range to a value larger than the reference lower limit value.
  • the rotary propulsion device 300 according to the present embodiment has the same basic configuration as the rotary propulsion device 100 according to the first embodiment (see FIG. 1). However, the control program of the present embodiment is partially different from the control program of the first embodiment. Hereinafter, the control program of the third embodiment will be described in comparison with the control program of the first embodiment.
  • FIG. 9 is a flowchart of a control program according to the third embodiment.
  • the control program of the present embodiment does not include step S2 (see FIG. 3) for setting a change command angle, but has a step S1a for determining a change turning angle. This is different from the control program of the first embodiment.
  • the control device 50 acquires the command angle from the operator operation device 101, and obtains the actual angle of the holding unit 20 from the turning angle measurement device 40. The turning angle is obtained (step S1).
  • the control device 50 determines the changed actual turning angle (step S1a). Specifically, when the post-processing deviation angle is zero, that is, when the holding unit 20 is at or near the command angle, the control device 50 determines the changed actual turning angle to be the same angle as the actual turning angle. For example, when the actual turning angle is 150 degrees, the changed actual turning angle is directly determined to be 150 degrees.
  • the control device 50 determines the changed actual turning angle to be smaller than the actual turning angle.
  • the changed actual turning angle is determined to be 0.5 degrees smaller than the actual turning angle. That is, when the actual turning angle is 150 degrees, the changed actual turning angle is determined to be 149.5 degrees.
  • the control device 50 determines the changed actual turning angle to be larger than the actual turning angle.
  • the changed actual turning angle is determined to be 0.5 degrees larger than the actual turning angle. That is, when the actual turning angle is 150 degrees, the changed actual turning angle is determined to be 150.5 degrees.
  • the change command angle may be set to the same angle as the command angle.
  • the control device 50 calculates a deviation angle (step S3). Specifically, the control device 50 calculates a deviation angle by subtracting the command angle acquired in step S1 from the changed actual turning angle determined in step S1a. For example, when the command angle is 160 degrees, when the holding unit 20 turns in the normal rotation direction and the actual turning angle reaches 150 degrees, the changed actual turning angle is 149.5 degrees, so the deviation angle is -10. .5 degrees. Further, for example, when the command angle is 160 degrees, when the holding unit 20 turns in the reverse direction and the actual turning angle reaches 170 degrees, the changed actual turning angle is 150.5 degrees, so the deviation angle is +10. .5 degrees.
  • step S4 the control device 50 performs a dead zone process.
  • the dead zone processing in the present embodiment is the same as the dead zone processing in the first embodiment. Specifically, when the deviation angle calculated in step S3 is not in the predetermined dead zone range, control device 50 determines the post-processing deviation angle to be the same as the deviation angle, and the deviation angle is in the predetermined dead zone range. At this time, the deviation angle after processing is determined to be zero.
  • the lower limit of the dead zone range is -0.5 degrees
  • the upper limit is +0.5 degrees.
  • the control device 50 determines the post-processing deviation angle to be -10.5 degrees.
  • the control device 50 determines the post-processing deviation angle to be +10.5 degrees.
  • the control device 50 determines the post-processing deviation angle to be 0 degrees.
  • the command angle is 160 degrees
  • the holding unit 20 turns in the reverse direction and the actual turning angle reaches 160 degrees
  • the changed actual turning angle is 149.5 degrees, so the deviation angle is +0. Therefore, the controller 50 determines the post-processing deviation angle to be 0 degree.
  • step S5 the control device 50 rotates the holding unit 20 as necessary based on the post-processing deviation angle determined in step S4 (step S5). Specifically, similarly to the case of the first embodiment, when the deviation angle after the process is 0 degree, the control device 50 transmits a control signal to the turning device 30 to stop the turning of the holding unit 20 and performs the process. If the rear deviation angle is not 0 degrees, a control signal is transmitted to the turning device 30 to turn the holding unit 20. After step S5, the process returns to step S1 and repeats steps S1 to S5.
  • FIG. 10 is a diagram illustrating the operation of the holding unit 20 in the present embodiment.
  • a curve drawn by a solid line in the drawing represents a time change of the actual turning angle of the holding unit 20, and a curve drawn by a broken line represents a time change of the changed actual turning angle.
  • the horizontal axis represents time
  • the vertical axis represents the turning angle.
  • the hatched portion in the figure corresponds to the dead zone range. It is assumed that the holding unit 20 turns in the normal rotation direction.
  • the changed actual turning angle starts turning toward the input command angle.
  • the changed actual turning angle is determined to be smaller than the actual turning angle.
  • the control device 50 acquires 160 degrees as the command angle when the actual turning angle of the holding unit 20 is 0 degrees, the changed actual turning angle is changed from -0.5 degrees to 160 degrees. Begin to increase in degrees.
  • the controller 50 determines the post-processing deviation angle to be 0 degrees and stops the holding unit 20.
  • the deviation angle is calculated by subtracting the command angle from the changed actual turning angle (not the actual turning angle)
  • the actual turning angle is calculated. Becomes almost the same as the command angle.
  • the holding unit 20 can be turned to the command angle regardless of whether or not the responsiveness of the turning device 30 is high.
  • the changed actual turning angle is determined to be the same angle as the actual turning angle. That is, the changed actual turning angle slides to the command angle.
  • the holding unit 20 does not easily turn. Therefore, energy loss due to unnecessary turning of the holding unit 20 can be suppressed.
  • the operation of the holding unit 20 has been described as an example in which the holding unit 20 turns in the normal rotation direction.
  • the holding unit 20 turns in the reverse rotation direction.
  • the controller 50 outputs a value larger than the actual turning angle as the changed actual turning angle.
  • the holding unit 20 can be stopped at or near the command angle.
  • the holding unit 20 in performing the dead zone processing, even if the responsiveness of the turning device 30 is high, the holding unit 20 can turn to the command angle, so that the holding unit 20 can be prevented from lowering in positioning accuracy.
  • step S3 a deviation angle is calculated by subtracting the command angle from the changed actual turning angle, and the subsequent processing is performed using this deviation angle.
  • the angle obtained by subtracting the change command angle from the actual turning angle may be used as the deviation angle, and the subsequent processing may be performed. Even in this case, the same effect as in the case of the present embodiment can be obtained.
  • the rotary propulsion device 400 according to the present embodiment has the same basic configuration as the rotary propulsion device 100 according to the first embodiment (see FIG. 1). However, the control program of the present embodiment is partially different from the control program of the first embodiment. Hereinafter, the control program of the fourth embodiment will be described in comparison with the control program of the first embodiment.
  • FIG. 11 is a flowchart of a control program according to the fourth embodiment.
  • the control program of the present embodiment does not include step S2 (see FIG. 3) for setting the change command angle, but has step S3b for determining whether or not to perform the dead zone processing. This is different from the control program of the first embodiment.
  • the control device 50 acquires the command angle from the operator operation device 101, and obtains the actual angle of the holding unit 20 from the turning angle measurement device 40. The turning angle is obtained (step S1).
  • the control device 50 calculates a deviation angle (step S3). Specifically, the control device 50 calculates the deviation angle by subtracting the command angle also obtained in step S1 from the actual turning angle obtained in step S1. For example, when the command angle is 160 degrees, the deviation angle when the holding unit 20 turns in the normal rotation direction and the actual turning angle reaches 150 degrees is -10 degrees. Further, for example, when the command angle is 160 degrees, the deviation angle when the holding unit 20 turns in the reverse direction and the actual turning angle reaches 170 degrees is +10 degrees.
  • control device 50 determines whether or not the deviation angle has reached 0 degrees after the command angle has been set (step S3b). That is, it is determined whether the actual turning angle of the holding unit 20 reaches the command angle or after the actual turning angle of the holding unit 20 reaches the command angle.
  • step S4 the control device 50 performs a dead zone process.
  • the dead zone processing in the present embodiment is the same as the dead zone processing in the first embodiment. Specifically, when the deviation angle calculated in step S3 is not in the predetermined dead zone range, control device 50 determines the post-processing deviation angle to be the same as the deviation angle, and the deviation angle is in the predetermined dead zone range. At this time, the deviation angle after processing is determined to be zero. Thereafter, the holding unit 20 is turned as necessary based on the post-processing deviation angle determined in step S4 (step S5).
  • the control device 50 transmits a control signal to the turning device 30 to stop the turning of the holding unit 20 and performs the process. If the rear deviation angle is not 0 degrees, a control signal is transmitted to the turning device 30 to turn the holding unit 20.
  • step S5 the control device 50 transmits a control signal to the turning device 30 when the deviation angle is 0 degree to stop the turning of the holding unit 20, and when the deviation angle is not 0 degree, the control device 50 transmits the control signal to the turning device 30.
  • the holding unit 20 is turned so that the deviation angle approaches 0 degrees.
  • the turning angle of the holding unit 20 is controlled without performing the dead zone processing, and the actual turning angle of the holding unit 20 becomes equal to the command angle. After that, the dead zone process is performed to control the turning angle of the holding unit 20.
  • FIG. 12 is a diagram illustrating the operation of the holding unit 20 in the present embodiment.
  • a curve drawn by a solid line in the drawing represents a time change of the actual turning angle of the holding unit 20, and a curve drawn by a broken line represents a time change of the changed actual turning angle.
  • the horizontal axis represents time
  • the vertical axis represents the turning angle.
  • the hatched portion in the figure corresponds to the dead zone range. It is assumed that the holding unit 20 turns in the normal rotation direction.
  • the holding unit 20 when the control device 50 acquires the command angle at time T0, the holding unit 20 starts turning toward the input command angle. Since the dead zone processing is not performed before the actual turning angle of the holding unit 20 reaches the command angle, the actual turning angle of the holding unit 20 approaches the command angle and reaches the command angle at time T5. Therefore, according to the present embodiment, regardless of whether or not the responsiveness of the turning device 30 is high, the holding unit 20 can be turned to the command angle.
  • step S3 a deviation angle is calculated by subtracting the change command angle from the actual turning angle, and the subsequent processing is performed using the deviation angle.
  • the angle obtained by subtracting the change command angle from the actual turning angle the angle obtained by subtracting the actual turning angle from the change command angle may be used as the deviation angle, and the subsequent processing may be performed. Even in this case, the same effect as in the case of the present embodiment can be obtained.
  • the rotary propulsion device is not limited to such a configuration.
  • the revolving propulsion device employs a so-called rim drive in which a screw propeller is directly attached to a rim located at an inner peripheral portion of a cylindrical duct, and the rim is rotated relative to the duct body by a permanent magnet motor. Good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Earth Drilling (AREA)

Abstract

A turning propulsion device according to an aspect of the present invention comprises a control device and a turning device that turns a holding portion for holding a screw propeller. The control device is configured so as to: perform dead zone processing on a deviation angle obtained by taking one of an actual turning angle of the holding portion and a change command angle and subtracting the other of the two therefrom and determine a processed deviation angle which is the deviation angle that has been subjected to the dead zone processing; turn the holding part when the processed deviation angle is not zero and stop the turning of the holding unit when the processed deviation angle is zero; and set the change command angle to the same angle as the command angle when the processed deviation angle is zero, set the change command angle to be greater than the command angle when the holding portion turns in the normal rotation direction, and set the change command angle to be smaller than the command angle when the holding portion turns in the reverse direction.

Description

旋回型推進機及び旋回型推進機の制御方法Swing type propulsion device and control method of turning type propulsion device
 本発明は、旋回型推進機及び旋回型推進機の制御方法に関する。 The present invention relates to a turning type propulsion device and a control method of the turning type propulsion device.
 船舶に搭載される旋回型推進機は、スクリュープロペラと、スクリュープロペラを保持する保持部を備えている(例えば、特許文献1参照)。保持部は水平方向に旋回するように構成されており、保持部の旋回角度を調整することで船舶を任意の方向に推進させることができる。 (4) A revolving propulsion device mounted on a ship includes a screw propeller and a holding unit that holds the screw propeller (for example, see Patent Document 1). The holding unit is configured to turn in the horizontal direction, and the boat can be propelled in any direction by adjusting the turning angle of the holding unit.
特開昭58-209697号公報JP-A-58-209697
 旋回型推進機は、オペレータが入力した指令角度と保持部の実旋回角度との偏差角度(差分)がゼロとなるように保持部を旋回させ、偏差角度がゼロになったとき保持部の旋回を停止する。つまり、フィードバック制御を行う。ただし、実旋回角度が指令角度からわずかにずれた場合や、実旋回角度の計測誤差が生じた場合にまで保持部を旋回させると、不要にエネルギを消費してしまうおそれがある。そのため、保持部の旋回角度を制御するにあたり不感帯処理を行う場合がある。 The turning type propulsion device turns the holding unit so that the deviation angle (difference) between the command angle input by the operator and the actual turning angle of the holding unit becomes zero, and when the deviation angle becomes zero, the holding unit turns. To stop. That is, feedback control is performed. However, if the holding unit is turned even when the actual turning angle slightly deviates from the command angle or when a measurement error of the actual turning angle occurs, unnecessary energy may be consumed. Therefore, when controlling the turning angle of the holding unit, a dead zone process may be performed.
 不感帯処理は、ゼロ以下の値を下限値としゼロ以上の値を上限値とする不感帯範囲を設定し、偏差角度が不感帯範囲にあるときには、当該偏差角度をゼロとみなす処理である。この処理を行うことにより、例えば実旋回角度が指令角度からわずかにずれた場合や、実旋回角度の計測誤差が生じた場合には、偏差角度がゼロとみなされるため、保持部は停止したままとなる。そのため、不要なエネルギの消費を抑制することができる。 The dead zone process is a process of setting a dead zone range in which a value equal to or less than zero is a lower limit and a value equal to or greater than zero as an upper limit. When the deviation angle is in the dead zone range, the deviation angle is regarded as zero. By performing this processing, for example, when the actual turning angle slightly deviates from the command angle or when a measurement error of the actual turning angle occurs, the deviation angle is considered to be zero, and the holding unit remains stopped. Becomes Therefore, unnecessary energy consumption can be suppressed.
 ただし、不感帯処理を行うと、保持部を指令角度に向かって旋回させる際、偏差角度が不感帯範囲に入ると、保持部が指令角度に至っていないにもかかわらず、その時点で保持部は停止する。そのため、旋回装置の応答性が高い場合には、保持部は指令角度に達せず、位置決めの精度が低下するという問題が生じる。 However, when the dead zone process is performed, when the holding unit is turned toward the command angle, if the deviation angle enters the dead zone range, the holding unit stops at that point even though the holding unit has not reached the command angle. . Therefore, when the responsiveness of the turning device is high, the holding unit does not reach the command angle, and there is a problem that positioning accuracy is reduced.
 本発明は、以上のような事情に鑑みてなされたものであり、不感帯処理を行うにあたり、旋回装置の応答性が高い場合であっても、保持部の位置決め精度の低下を抑制できる旋回型推進機及び旋回型推進機の制御方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in performing a dead zone process, a turning type propulsion that can suppress a decrease in positioning accuracy of a holding unit even when the turning device has high responsiveness. It is an object of the present invention to provide a method for controlling a thruster and a turning type propulsion device.
 本発明の一態様に係る旋回型推進機は、スクリュープロペラと、前記スクリュープロペラを保持する保持部と、前記保持部を旋回させる旋回装置と、入力された指令角度に基づいて前記保持部の旋回角度を制御する制御装置と、を備え、前記制御装置は、前記指令角度に基づいて変更指令角度を設定し、前記保持部の実旋回角度と前記変更指令角度の一方から他方を差し引いた偏差角度が下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、前記変更指令角度を設定するにあたり、前記処理後偏差角度がゼロのときは変更指令角度を前記指令角度と同じ角度に設定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは変更指令角度を前記指令角度よりも大きい角度に設定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは変更指令角度を前記指令角度よりも小さい角度に設定するように構成されている。 The turning type propulsion device according to one aspect of the present invention includes a screw propeller, a holding unit that holds the screw propeller, a turning device that turns the holding unit, and turning of the holding unit based on an input command angle. A control device for controlling an angle, the control device sets a change command angle based on the command angle, and a deviation angle obtained by subtracting the other from one of the actual turning angle of the holding unit and the change command angle. When the lower limit value is not less than zero and the upper limit value is not in the dead band range in which the upper limit value is not less than zero, the post-processing deviation angle is determined to be the same angle as the deviation angle. When the angle is determined to be zero and the post-processing deviation angle is not zero, the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and the When the post-processing deviation angle is zero, the turning of the holding unit is stopped, and in setting the change command angle, when the post-processing deviation angle is zero, the change command angle is set to the same angle as the command angle. When the holding unit turns in the forward rotation direction in which the turning angle increases, the change command angle is set to an angle larger than the command angle, and the holding unit turns in the reverse rotation direction in which the turning angle decreases. In this case, the change command angle is set to an angle smaller than the command angle.
 この旋回型推進機では、正転方向に保持部が旋回する場合は、変更指令角度が指令角度よりも大きく設定されるため、偏差角度は小さくなる。その結果、保持部が正転方向に旋回して偏差角度が不感帯範囲の下限値に達した時点で、既に保持部は指令角度の近くに位置することになる。つまり、この時点において処理後偏差角度がゼロであるとして保持部の旋回を停止したとしても、保持部を指令角度の近くに位置させることができる。また、逆転方向に保持部が旋回する場合は、変更指令角度が指令角度よりも小さく設定されるため、偏差角度は大きくなる。その結果、保持部が逆転方向に旋回して偏差角度が不感帯範囲の上限値に達した時点で、既に保持部は指令角度の近くに位置することになる。つまり、この時点において処理後偏差角度がゼロであるとして保持部の旋回を停止したとしても、保持部を指令角度の近くに位置させることができる。したがって、上記の構成によれば、旋回装置の応答性が高い場合であっても、保持部の位置決め精度の低下を抑制することができる。 で は In this turning propulsion device, when the holding unit turns in the normal rotation direction, the deviation command angle is set to be larger than the command angle, so that the deviation angle becomes smaller. As a result, when the holding unit turns in the normal rotation direction and the deviation angle reaches the lower limit value of the dead zone range, the holding unit is already located near the command angle. In other words, even if the post-processing deviation angle is zero at this time and the turning of the holding unit is stopped, the holding unit can be positioned near the command angle. When the holding unit turns in the reverse rotation direction, the change command angle is set smaller than the command angle, so that the deviation angle increases. As a result, when the holding unit turns in the reverse direction and the deviation angle reaches the upper limit of the dead zone range, the holding unit is already located near the command angle. In other words, even if the post-processing deviation angle is zero at this time and the turning of the holding unit is stopped, the holding unit can be positioned near the command angle. Therefore, according to the above configuration, even when the responsiveness of the turning device is high, a decrease in the positioning accuracy of the holding unit can be suppressed.
 また、本発明の他の態様に係る旋回型推進機は、スクリュープロペラと、前記スクリュープロペラを保持する保持部と、前記保持部を旋回させる旋回装置と、入力された指令角度に基づいて前記保持部の旋回角度を制御する制御装置と、を備え、前記制御装置は、下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲を設定し、前記保持部の実旋回角度から前記指令角度を差し引いた偏差角度が前記不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、前記不感帯範囲を設定するにあたり、前記処理後偏差角度がゼロのときは前記不感帯範囲の下限値を所定の基準下限値に設定するとともに上限値を所定の基準上限値に設定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは不感帯範囲の下限値を前記基準下限値よりも大きい値に設定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは不感帯範囲の上限値を前記基準上限値よりも小さい値に設定するように構成されている。 In addition, a turning type propulsion device according to another aspect of the present invention includes a screw propeller, a holding unit that holds the screw propeller, a turning device that turns the holding unit, and the holding device that holds the screw propeller based on an input command angle. A control device for controlling the turning angle of the unit, wherein the control device sets a dead zone range in which the lower limit value is equal to or less than zero and the upper limit value is equal to or greater than zero, and the command angle is determined from the actual turning angle of the holding unit. When the subtracted deviation angle is not in the dead zone range, the post-processing deviation angle is determined to be the same angle as the deviation angle, and when the deviation angle is in the dead zone range, the post-processing deviation angle is determined to be zero. When the post-processing deviation angle is not zero, the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and when the post-processing deviation angle is zero, When the turning of the holding unit is stopped and the dead zone is set, when the post-processing deviation angle is zero, the lower limit of the dead zone is set to a predetermined reference lower limit and the upper limit is set to a predetermined reference upper limit. When the holding unit turns in the forward direction in which the turning angle increases, the lower limit value of the dead zone range is set to a value larger than the reference lower limit value, and the turning angle decreases in the reverse direction. When the holding section turns in the direction, the upper limit value of the dead zone range is set to a value smaller than the reference upper limit value.
 この旋回型推進機では、正転方向に保持部が旋回する場合は、不感帯範囲の下限値を基準下限値よりも大きい値に設定する。そのため、保持部が正転方向に旋回して偏差角度が不感帯範囲の下限値に達した時点で、既に保持部は指令角度の近くに位置することになる。つまり、この時点において処理後偏差角度がゼロであるとして保持部の旋回を停止したとしても、保持部を指令角度の近くに位置させることができる。また、逆転方向に保持部が旋回する場合は、不感帯範囲の上限値を基準上限値よりも小さい値に設定する。そのため、保持部が逆転方向に旋回して偏差角度が不感帯範囲の上限値に達した時点で、既に保持部は指令角度の近くに位置することになる。つまり、この時点において処理後偏差角度がゼロであるとして保持部の旋回を停止したとしても、保持部を指令角度の近くに位置させることができる。したがって、上記の構成によれば、旋回装置の応答性が高い場合であっても、保持部の位置決め精度の低下を抑制することができる。 で は In this turning type propulsion device, when the holding portion turns in the normal rotation direction, the lower limit value of the dead zone range is set to a value larger than the reference lower limit value. Therefore, when the holding unit turns in the normal rotation direction and the deviation angle reaches the lower limit value of the dead zone range, the holding unit is already located near the command angle. In other words, even if the post-processing deviation angle is zero at this time and the turning of the holding unit is stopped, the holding unit can be positioned near the command angle. When the holding unit turns in the reverse direction, the upper limit of the dead zone range is set to a value smaller than the reference upper limit. Therefore, when the holding unit turns in the reverse direction and the deviation angle reaches the upper limit value of the dead zone range, the holding unit is already located near the command angle. In other words, even if the post-processing deviation angle is zero at this time and the turning of the holding unit is stopped, the holding unit can be positioned near the command angle. Therefore, according to the above configuration, even when the responsiveness of the turning device is high, a decrease in the positioning accuracy of the holding unit can be suppressed.
 また、本発明の他の態様に係る旋回型推進機は、スクリュープロペラと、前記スクリュープロペラを保持する保持部と、前記保持部を旋回させる旋回装置と、入力された指令角度に基づいて前記保持部の旋回角度を制御する制御装置と、を備え、前記制御装置は、下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲を設定し、前記指令角度から前記保持部の実旋回角度を差し引いた偏差角度が前記不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、前記不感帯範囲を設定するにあたり、前記処理後偏差角度がゼロのときは前記不感帯範囲の下限値を所定の基準下限値に設定するとともに上限値を所定の基準上限値に設定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは不感帯範囲の上限値を前記基準上限値よりも小さい値に設定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは不感帯範囲の下限値を前記基準下限値よりも大きい値に設定するように構成されている。 In addition, a turning type propulsion device according to another aspect of the present invention includes a screw propeller, a holding unit that holds the screw propeller, a turning device that turns the holding unit, and the holding device that holds the screw propeller based on an input command angle. A control device for controlling the turning angle of the unit, wherein the control device sets a dead zone range in which the lower limit value is equal to or less than zero and the upper limit value is equal to or greater than zero, and the actual turning angle of the holding unit from the command angle. When the subtracted deviation angle is not in the dead zone range, the post-processing deviation angle is determined to be the same angle as the deviation angle, and when the deviation angle is in the dead zone range, the post-processing deviation angle is determined to be zero. When the post-processing deviation angle is not zero, the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and when the post-processing deviation angle is zero, When the turning of the holding unit is stopped and the dead zone is set, when the post-processing deviation angle is zero, the lower limit of the dead zone is set to a predetermined reference lower limit and the upper limit is set to a predetermined reference upper limit. When the holding unit turns in the forward direction in which the turning angle increases, the upper limit value of the dead zone range is set to a value smaller than the reference upper limit value, and the turning angle decreases in the reverse direction. When the holding unit turns in the direction, the lower limit value of the dead zone range is set to a value larger than the reference lower limit value.
 前述した旋回型推進機では保持部の実旋回角度から指令角を差し引いた角度を偏差角度と定義しているのに対し、この旋回型推進機では指令角度から保持部の実旋回角度を差し引いた角度を偏差角度として定義している。この場合であっても、不感帯範囲の設定を前述した旋回型推進機の場合と逆にしているため、前述した旋回型推進機と同様の効果を得ることができる。 In the above-described turning type propulsion machine, the angle obtained by subtracting the command angle from the actual turning angle of the holding unit is defined as the deviation angle, whereas in this turning type propulsion device, the actual turning angle of the holding unit is subtracted from the command angle. The angle is defined as a deviation angle. Even in this case, since the setting of the dead zone range is reversed from that of the above-described turning type propulsion device, the same effect as that of the above-described turning type propulsion device can be obtained.
 また、本発明の他の態様に係る旋回型推進機は、スクリュープロペラと、前記スクリュープロペラを保持する保持部と、前記保持部を旋回させる旋回装置と、入力された指令角度に基づいて前記保持部の旋回角度を制御する制御装置と、を備え、前記制御装置は、前記保持部の実旋回角度に基づいて変更実旋回角度を決定し、前記変更実旋回角度と前記指令角度の一方から他方を差し引いた偏差角度が下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、前記処理後偏差角度がゼロでないときには、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、前記変更実旋回角度を決定するにあたり、前記処理後偏差角度がゼロのときは変更実旋回角度を実旋回角度と同じ角度に決定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは変更実旋回角度を前記実旋回角度よりも小さい角度に決定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは変更実旋回角度を前記実旋回角度よりも大きい角度に出力するように構成されている。 In addition, a turning type propulsion device according to another aspect of the present invention includes a screw propeller, a holding unit that holds the screw propeller, a turning device that turns the holding unit, and the holding device that holds the screw propeller based on an input command angle. A control device that controls a turning angle of the unit, wherein the control device determines a changed actual turning angle based on the actual turning angle of the holding unit, and the other from one of the changed actual turning angle and the command angle. When the deviation angle obtained by subtracting the lower limit value is not more than zero and the upper limit value is not in the dead band range of not less than zero, the post-processing deviation angle is determined to be the same angle as the deviation angle, and the deviation angle is in the dead band range. Determines the post-processing deviation angle to zero, and when the post-processing deviation angle is not zero, selects the turning direction of the holding unit so that the post-processing deviation angle becomes zero, and sets the holding unit to When the deviation angle after processing is zero, the turning of the holding unit is stopped, and in determining the changed actual turning angle, when the post-processing deviation angle is zero, the changed actual turning angle is changed to the actual turning angle. When the holding portion turns in the normal rotation direction in which the turning angle increases, the changed actual turning angle is determined to be smaller than the actual turning angle, and the turning angle decreases. When the holding unit turns in the reverse direction, the changed actual turning angle is output to an angle larger than the actual turning angle.
 この旋回型推進機では、正転方向に保持部が旋回する場合は、変更実旋回角度を実旋回角度よりも小さい角度に決定するため、偏差角度は小さくなる。その結果、保持部が正転方向に旋回して偏差角度が不感帯範囲の下限値に達した時点で、既に保持部は指令角度の近くに位置することになる。つまり、この時点において処理後偏差角度がゼロであるとして保持部の旋回を停止したとしても、保持部を指令角度の近くに位置させることができる。また、逆転方向に保持部が旋回する場合は、変更実旋回角度を実旋回角度よりも大きい角度に決定するため、偏差角度は大きくなる。その結果、保持部が逆転方向に旋回して偏差角度が不感帯範囲の上限値に達した時点で、既に保持部は指令角度の近くに位置することになる。つまり、この時点において処理後偏差角度がゼロであるとして保持部の旋回を停止したとしても、保持部を指令角度の近くに位置させることができる。したがって、上記の構成によれば、旋回装置の応答性が高い場合であっても、保持部の位置決め精度の低下を抑制することができる。 で は In this turning propulsion device, when the holding portion turns in the normal rotation direction, the deviation angle is small because the changed actual turning angle is determined to be smaller than the actual turning angle. As a result, when the holding unit turns in the normal rotation direction and the deviation angle reaches the lower limit value of the dead zone range, the holding unit is already located near the command angle. In other words, even if the post-processing deviation angle is zero at this time and the turning of the holding unit is stopped, the holding unit can be positioned near the command angle. When the holding unit turns in the reverse rotation direction, the deviation actual angle is determined to be larger than the actual turning angle, so that the deviation angle increases. As a result, when the holding unit turns in the reverse direction and the deviation angle reaches the upper limit of the dead zone range, the holding unit is already located near the command angle. In other words, even if the post-processing deviation angle is zero at this time and the turning of the holding unit is stopped, the holding unit can be positioned near the command angle. Therefore, according to the above configuration, even when the responsiveness of the turning device is high, a decrease in the positioning accuracy of the holding unit can be suppressed.
 また、本発明の他の態様に係る旋回型推進機は、スクリュープロペラと、前記スクリュープロペラを保持する保持部と、前記保持部を旋回させる旋回装置と、入力された指令角度に基づいて前記保持部の旋回角度を制御する制御装置と、を備え、前記制御装置は、前記指令角度と前記保持部の実旋回角度の一方から他方を差し引いた偏差角度がゼロとなるように前記保持部を旋回させ、前記偏差角度がゼロに至った後は、下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲を設定し、前記偏差角度が前記不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させるように構成されている。 In addition, a turning type propulsion device according to another aspect of the present invention includes a screw propeller, a holding unit that holds the screw propeller, a turning device that turns the holding unit, and the holding device that holds the screw propeller based on an input command angle. A control device for controlling a turning angle of the holding portion, wherein the control device turns the holding portion so that a deviation angle obtained by subtracting one of the command angle and the actual turning angle of the holding portion from the other becomes zero. After the deviation angle reaches zero, a dead zone range in which the lower limit value is equal to or less than zero and the upper limit value is equal to or greater than zero is set, and when the deviation angle is not in the dead zone range, the post-processing deviation angle is set to the deviation. Determined to be the same angle as the angle, when the deviation angle is in the dead zone range, the post-processing deviation angle is determined to be zero, and when the post-processing deviation angle is not zero, the post-processing deviation angle is zero. The holding portion is pivoted so that the processed deviation angle is at zero and is configured to stop the pivoting of the retaining portion.
 この旋回型推進機は、偏差角度がゼロに至るまでは不感帯処理を行わずに旋回角度の制御が実施されるため、旋回装置の応答性が高い場合であっても、保持部の位置決め精度の低下を抑制することができる。また、偏差角度がゼロに至った後は不感帯処理を行いつつ旋回角度の制御が行われるため、不要なエネルギの消費を抑制することができる。 In this turning type propulsion device, since the turning angle is controlled without performing the dead zone processing until the deviation angle reaches zero, even if the responsiveness of the turning device is high, the positioning accuracy of the holding unit is not improved. The decrease can be suppressed. Further, after the deviation angle reaches zero, the turning angle is controlled while performing the dead zone processing, so that unnecessary energy consumption can be suppressed.
 本発明の一態様に係る旋回型推進機の制御方法は、スクリュープロペラと、前記スクリュープロペラを保持する保持部と、前記保持部を旋回させる旋回装置と、を備えた旋回型推進機の制御方法であって、入力された指令角度に基づいて変更指令角度を設定し、前記保持部の実旋回角度と前記変更指令角度の一方から他方を差し引いた偏差角度が下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、前記変更指令角度を設定するにあたり、前記処理後偏差角度がゼロのときは変更指令角度を前記指令角度と同じ角度に設定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは変更指令角度を前記指令角度よりも大きい角度に設定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは変更指令角度を前記指令角度よりも小さい角度に設定する。 A method for controlling a turning type propulsion device according to one aspect of the present invention is a method for controlling a turning type propulsion device including a screw propeller, a holding unit that holds the screw propeller, and a turning device that turns the holding unit. A change command angle is set based on the input command angle, and a deviation angle obtained by subtracting the other from one of the actual turning angle of the holding unit and the change command angle is set to a lower limit value of zero or less and an upper limit value. When the deviation angle is not in the dead zone range to be equal to or greater than zero, the post-processing deviation angle is determined to be the same angle as the deviation angle, and when the deviation angle is in the dead zone range, the post-processing deviation angle is determined to be zero. When the deviation angle is not zero, the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and the holding unit is turned when the post-processing deviation angle is zero. When the turning is stopped and the change command angle is set, when the post-processing deviation angle is zero, the change command angle is set to the same angle as the command angle, and the turning angle is increased in the normal rotation direction. When the holding section turns, the change command angle is set to an angle larger than the command angle, and when the holding section turns in the reverse direction in which the turning angle decreases, the change command angle is smaller than the command angle. Set to an angle.
 また、本発明の他の態様に係る旋回型推進機の制御方法は、スクリュープロペラと、前記スクリュープロペラを保持する保持部と、前記保持部を旋回させる旋回装置と、を備えた旋回型推進機の制御方法であって、下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲を設定し、前記保持部の実旋回角度から入力された指令角度を差し引いた偏差角度が前記不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、前記不感帯範囲を設定するにあたり、前記処理後偏差角度がゼロのときは前記不感帯範囲の下限値を所定の基準下限値に設定するとともに上限値を所定の基準上限値に設定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは不感帯範囲の下限値を前記基準下限値よりも大きい値に設定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは不感帯範囲の上限値を前記基準上限値よりも小さい値に設定する。 Also, a method for controlling a turning type propulsion device according to another aspect of the present invention is a turning type propulsion device comprising: a screw propeller; a holding unit that holds the screw propeller; and a turning device that turns the holding unit. The control method according to the above, wherein a lower limit is set to be equal to or less than zero and an upper limit is set to be equal to or more than zero, and a deviation angle obtained by subtracting an input command angle from an actual turning angle of the holding unit is not in the dead zone. When the post-processing deviation angle is determined to be the same angle as the deviation angle, when the deviation angle is in the dead zone range, the post-processing deviation angle is determined to be zero, and when the post-processing deviation angle is not zero, The turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and the turning of the holding unit is stopped when the post-processing deviation angle is zero, and the dead zone is In setting the surroundings, when the deviation angle after the processing is zero, the lower limit of the dead zone range is set to a predetermined reference lower limit and the upper limit is set to a predetermined reference upper limit, and the turning angle increases. The lower limit of the dead zone range is set to a value larger than the reference lower limit when the holding unit turns in the forward rotation direction, and the dead zone is set when the holding unit turns in the reverse rotation direction in which the turning angle decreases. The upper limit of the range is set to a value smaller than the reference upper limit.
 また、本発明の他の態様に係る旋回型推進機の制御方法は、スクリュープロペラと、前記スクリュープロペラを保持する保持部と、前記保持部を旋回させる旋回装置と、を備えた旋回型推進機の制御方法であって、下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲を設定し、入力された指令角度から前記保持部の実旋回角度を差し引いた偏差角度が前記不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、前記不感帯範囲を設定するにあたり、前記処理後偏差角度がゼロのときは前記不感帯範囲の下限値を所定の基準下限値に設定するとともに上限値を所定の基準上限値に設定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは不感帯範囲の上限値を前記基準上限値よりも小さい値に設定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは不感帯範囲の下限値を前記基準下限値よりも大きい値に設定する。 Also, a method for controlling a turning type propulsion device according to another aspect of the present invention is a turning type propulsion device comprising: a screw propeller; a holding unit that holds the screw propeller; and a turning device that turns the holding unit. The control method of the above, wherein a lower limit value is set to be equal to or less than zero and an upper limit value is set to be equal to or more than zero, and a deviation angle obtained by subtracting an actual turning angle of the holding unit from an input command angle is not in the dead band range. When the post-processing deviation angle is determined to be the same angle as the deviation angle, when the deviation angle is in the dead zone range, the post-processing deviation angle is determined to be zero, and when the post-processing deviation angle is not zero, The turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and the turning of the holding unit is stopped when the post-processing deviation angle is zero, and the dead zone is In setting the surroundings, when the deviation angle after the processing is zero, the lower limit of the dead zone range is set to a predetermined reference lower limit and the upper limit is set to a predetermined reference upper limit, and the turning angle increases. When the holding unit turns in the forward rotation direction, the upper limit of the dead zone range is set to a value smaller than the reference upper limit value, and when the holding unit turns in the reverse rotation direction in which the turning angle becomes smaller, the dead zone is set. The lower limit of the range is set to a value larger than the reference lower limit.
 また、本発明の他の態様に係る旋回型推進機の制御方法は、スクリュープロペラと、前記スクリュープロペラを保持する保持部と、前記保持部を旋回させる旋回装置と、を備えた旋回型推進機の制御方法であって、前記保持部の実旋回角度に基づいて変更実旋回角度を決定し、前記変更実旋回角度から入力された指令角度を差し引いた偏差角度が下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、前記処理後偏差角度がゼロでないときには、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、前記変更実旋回角度を決定するにあたり、前記処理後偏差角度がゼロのときは変更実旋回角度を実旋回角度と同じ角度に決定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは変更実旋回角度を前記実旋回角度よりも小さい角度に決定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは変更実旋回角度を前記実旋回角度よりも大きい角度に出力する。 Also, a method for controlling a turning type propulsion device according to another aspect of the present invention is a turning type propulsion device comprising: a screw propeller; a holding unit that holds the screw propeller; and a turning device that turns the holding unit. The control method according to claim, wherein a changed actual turning angle is determined based on the actual turning angle of the holding unit, and a deviation angle obtained by subtracting an input command angle from the changed actual turning angle is set to a lower limit value of zero or less and an upper limit value. When the deviation angle is outside the dead zone range, the post-processing deviation angle is determined to be the same angle as the deviation angle.When the deviation angle is within the dead zone range, the post-processing deviation angle is determined to be zero. When the post-deviation angle is not zero, the turning direction of the holding unit is selected so that the post-processing deviation angle becomes zero, and the holding unit is turned. When the post-processing deviation angle is zero, the holding is performed. When the turning angle is stopped and the changed actual turning angle is determined, when the post-processing deviation angle is zero, the changed actual turning angle is determined to be the same angle as the actual turning angle, and the turning angle becomes larger. When the holding unit turns in the direction, the changed actual turning angle is determined to be smaller than the actual turning angle, and when the holding unit turns in the reverse direction in which the turning angle becomes smaller, the changed actual turning angle is changed. An output is made at an angle larger than the actual turning angle.
 また、本発明の他の態様に係る旋回型推進機の制御方法は、スクリュープロペラと、前記スクリュープロペラを保持する保持部と、前記保持部を旋回させる旋回装置と、を備えた旋回型推進機の制御方法であって、入力された指令角度と前記保持部の実旋回角度の一方から他方を差し引いた偏差角度がゼロとなるように前記保持部を旋回させ、前記偏差角度がゼロに至った後は、下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲を設定し、前記偏差角度が前記不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させる。 Also, a method for controlling a turning type propulsion device according to another aspect of the present invention is a turning type propulsion device comprising: a screw propeller; a holding unit that holds the screw propeller; and a turning device that turns the holding unit. The holding unit is turned such that a deviation angle obtained by subtracting the other from one of the input command angle and the actual turning angle of the holding unit becomes zero, and the deviation angle reaches zero. After that, a dead zone range is set in which the lower limit value is equal to or less than zero and the upper limit value is equal to or greater than zero. When the angle is in the dead zone range, the post-processing deviation angle is determined to be zero, and when the post-processing deviation angle is not zero, the holding unit is turned so that the post-processing deviation angle becomes zero, It is management after deflection angle at zero to stop the turning of the retaining portion.
 上記の旋回型推進機及び旋回型推進機の制御方法によれば、不感帯処理を行うにあたり、旋回装置の応答性が高い場合であっても、保持部の位置決め精度の低下を抑制することができる。 According to the turning type propulsion device and the control method of the turning type propulsion device, in performing the dead zone process, even if the responsiveness of the turning device is high, it is possible to suppress a decrease in the positioning accuracy of the holding unit. .
図1は、実施形態に係る旋回型推進機の概略構成図である。FIG. 1 is a schematic configuration diagram of a rotary propulsion device according to the embodiment. 図2は、旋回方向及び旋回角度を説明する図である。FIG. 2 is a diagram illustrating a turning direction and a turning angle. 図3は、第1実施形態における制御プログラムのフローチャートである。FIG. 3 is a flowchart of the control program according to the first embodiment. 図4は、入力される指令角度の一例を示した図である。FIG. 4 is a diagram showing an example of an input command angle. 図5は、比較例の保持部の動作を示す図である。FIG. 5 is a diagram illustrating the operation of the holding unit of the comparative example. 図6は、第1実施形態の保持部の動作を示す図である。FIG. 6 is a diagram illustrating an operation of the holding unit according to the first embodiment. 図7は、第2実施形態における制御プログラムのフローチャートである。FIG. 7 is a flowchart of a control program according to the second embodiment. 図8は、第2実施形態の保持部の動作を示す図である。FIG. 8 is a diagram illustrating the operation of the holding unit according to the second embodiment. 図9は、第3実施形態における制御プログラムのフローチャートである。FIG. 9 is a flowchart of a control program according to the third embodiment. 図10は、第3実施形態の保持部の動作を示す図である。FIG. 10 is a diagram illustrating the operation of the holding unit according to the third embodiment. 図11は、第4実施形態における制御プログラムのフローチャートである。FIG. 11 is a flowchart of a control program according to the fourth embodiment. 図12は、第4実施形態の保持部の動作を示す図である。FIG. 12 is a diagram illustrating the operation of the holding unit according to the fourth embodiment.
 (第1実施形態)
 <旋回型推進機の概略構成>
 はじめに、第1実施形態に係る旋回型推進機100の概略構成について説明する。図1は、本実施形態に係る旋回型推進機100の概略構成図である。旋回型推進機100は、船舶の推進機であり、図1に示すようにスクリュープロペラ10と、保持部20と、旋回装置30と、旋回角度計測装置40と、制御装置50と、を備えている。以下、これらの構成要素について順に説明する。
(1st Embodiment)
<Schematic configuration of orbiting propulsion>
First, a schematic configuration of the orbiting propulsion device 100 according to the first embodiment will be described. FIG. 1 is a schematic configuration diagram of a rotary propulsion device 100 according to the present embodiment. The turning type propulsion device 100 is a ship propulsion device, and includes a screw propeller 10, a holding unit 20, a turning device 30, a turning angle measuring device 40, and a control device 50 as shown in FIG. I have. Hereinafter, these components will be described in order.
 スクリュープロペラ10は、図外のエンジンから伝達される動力によって回転する部分である。スクリュープロペラ10は複数の回転翼11を有しており、これらの回転翼11が水中で回転することにより推力が発生する。スクリュープロペラ10は、回転翼11の角度が変化する「可変ピッチプロペラ」であってもよく、回転翼11の角度が一定である「固定ピッチプロペラ」であってもよい。 The screw propeller 10 is a part that is rotated by power transmitted from an engine (not shown). The screw propeller 10 has a plurality of rotating blades 11, and the rotating blades 11 rotate in water to generate thrust. The screw propeller 10 may be a “variable pitch propeller” in which the angle of the rotating blade 11 changes, or a “fixed pitch propeller” in which the angle of the rotating blade 11 is constant.
 保持部20は、スクリュープロペラ10を保持する装置である。本実施形態の保持部20は、スクリュープロペラ10の回転軸が水平になるように保持する。また、保持部20自体も水平方向に旋回する。つまり、保持部20は、鉛直方向に延びる旋回軸を中心にして旋回する。なお、以下では、図2に示すように、平面視において保持部20が時計回りに旋回するときの方向を「正転方向」と呼び、反時計回りに旋回するときの方向を「逆転方向」と呼ぶこととする。保持部20は、正転方向及び逆転方向のいずれの方向においても360度以上旋回することができる。また、旋回角度は平面視において時計回り方向に大きくなるものとする。 The holding unit 20 is a device that holds the screw propeller 10. The holding unit 20 of the present embodiment holds the screw propeller 10 such that the rotation axis of the screw propeller 10 is horizontal. Further, the holding unit 20 itself also turns horizontally. That is, the holding unit 20 turns around the turning axis extending in the vertical direction. Hereinafter, as shown in FIG. 2, the direction when the holding unit 20 turns clockwise in plan view is referred to as “forward direction”, and the direction when the holding unit 20 turns counterclockwise is “reverse direction” in plan view. Shall be called. The holding unit 20 can turn 360 degrees or more in both the forward rotation direction and the reverse rotation direction. In addition, the turning angle increases clockwise in plan view.
 旋回装置30は、保持部20を旋回させる装置である。本実施形態の旋回装置30は電動式であって、保持部20の上部に設けられた保持部側ギヤ31と、保持部側ギヤ31と噛み合うモータ側ギヤ32と、モータ側ギヤ32に接続された駆動モータ33と、駆動モータ33の回転速度及び回転方向を調整する電力変換装置34と、を有している。なお、旋回装置30は油圧式であってもよい。 The turning device 30 is a device for turning the holding unit 20. The turning device 30 of the present embodiment is electrically driven, and is connected to a holding portion side gear 31 provided on the upper portion of the holding portion 20, a motor side gear 32 meshing with the holding portion side gear 31, and a motor side gear 32. And a power converter 34 for adjusting the rotation speed and the rotation direction of the drive motor 33. The turning device 30 may be of a hydraulic type.
 旋回角度計測装置40は、保持部20の実旋回角度を計測する装置である。本実施形態では、旋回角度計測装置40は、保持部側ギヤ31に設けられた角度センサを用いて保持部20の実旋回角度を計測する。ただし、旋回角度計測装置40は、駆動モータ33の回転速度等から実旋回角度を算出(計測)するように構成されていてもよい。 The turning angle measurement device 40 is a device that measures the actual turning angle of the holding unit 20. In the present embodiment, the turning angle measurement device 40 measures the actual turning angle of the holding unit 20 using an angle sensor provided on the holding unit side gear 31. However, the turning angle measurement device 40 may be configured to calculate (measure) the actual turning angle from the rotation speed of the drive motor 33 and the like.
 制御装置50は、保持部20の旋回角度等を制御する装置である。制御装置50は、プロセッサ、揮発性メモリ、不揮発性メモリ、及び、I/Oインターフェース等を有している。制御装置50の不揮発性メモリには、後述する制御プログラム及び種々のデータが保存されており、プロセッサがこの制御プログラムに基づき揮発性メモリを用いて演算処理を行う。 The control device 50 is a device that controls the turning angle and the like of the holding unit 20. The control device 50 has a processor, a volatile memory, a non-volatile memory, an I / O interface, and the like. The non-volatile memory of the control device 50 stores a control program described later and various data, and the processor performs arithmetic processing using the volatile memory based on the control program.
 制御装置50は、船体に設けられたオペレータ操作装置101と電気的に接続されており、オペレータ操作装置101から送信される指令信号を受信して、指令角度を取得する。つまり、制御装置50には指令角度が入力される。また、制御装置50は、旋回角度計測装置40と電気的に接続されており、旋回角度計測装置40から送信される計測信号に基づいて保持部20の実旋回角度を取得することができる。さらに、制御装置50は、旋回装置30の電力変換装置34と電気的に接続されており、電力変換装置34に制御信号を送信することができる。これにより制御装置50は、駆動モータ33の回転方向及び回転速度を調整することができ、ひいては保持部20の旋回方向及び旋回速度を調整することができる。 The control device 50 is electrically connected to the operator operation device 101 provided on the hull, receives a command signal transmitted from the operator operation device 101, and acquires a command angle. That is, the command angle is input to the control device 50. Further, the control device 50 is electrically connected to the turning angle measuring device 40, and can acquire the actual turning angle of the holding unit 20 based on the measurement signal transmitted from the turning angle measuring device 40. Further, the control device 50 is electrically connected to the power conversion device 34 of the turning device 30, and can transmit a control signal to the power conversion device 34. Thereby, the control device 50 can adjust the rotation direction and the rotation speed of the drive motor 33, and thus can adjust the turning direction and the turning speed of the holding unit 20.
 <制御プログラム>
 続いて、保持部20の旋回角度を制御する制御プログラムについて説明する。図3は、制御プログラムのフローチャートである。図3で示す制御プログラムは、制御装置50によって実行される。
<Control program>
Next, a control program for controlling the turning angle of the holding unit 20 will be described. FIG. 3 is a flowchart of the control program. The control program shown in FIG. 3 is executed by the control device 50.
 図3に示すように、制御プログラムが開始されると、制御装置50はオペレータ操作装置101から指令角度を取得するとともに、旋回角度計測装置40から保持部20の実旋回角度を取得する(ステップS1)。 As shown in FIG. 3, when the control program is started, the control device 50 acquires the command angle from the operator operation device 101 and acquires the actual turning angle of the holding unit 20 from the turning angle measuring device 40 (step S1). ).
 続いて、制御装置50は、ステップS1で取得した指令角度に基づいて変更指令角度を設定する(ステップS2)。具体的には、制御装置50は、保持部20が正転方向に旋回するときは変更指令角度を指令角度よりも大きい値に設定し、保持部20が逆転方向に旋回するときは変更指令角度を指令角度よりも小さい角度に設定する。なお、保持部20の旋回方向は後述のステップS5で選択するが、旋回方向が選択されていない初期段階では、変更指令角度を指令角度と同じ角度に設定すればよい。また、保持部20が指令角度又はその付近に位置している場合(後述する処理後偏差角度がゼロである場合)、制御装置50は、変更指令角度を指令角度と同じ角度に設定する。 Subsequently, the control device 50 sets a change command angle based on the command angle acquired in step S1 (step S2). Specifically, the control device 50 sets the change command angle to a value larger than the command angle when the holding unit 20 turns in the normal rotation direction, and sets the change command angle when the holding unit 20 turns in the reverse rotation direction. Is set to an angle smaller than the command angle. The turning direction of the holding unit 20 is selected in step S5 described later, but in an initial stage where the turning direction is not selected, the change command angle may be set to the same angle as the command angle. When the holding unit 20 is located at or near the command angle (when a post-process deviation angle described later is zero), the control device 50 sets the change command angle to the same angle as the command angle.
 一例として、図4に示すように、保持部20の実旋回角度が0度のときに、制御装置50が指令角度として160度を取得したとする。この場合、制御装置50は、保持部20が正転方向に旋回する場合には、変更指令角度として指令角度よりも大きい角度、例えば160.5度に設定する。また、保持部20が逆転方向に旋回する場合には、変更指令角度として指令角度よりも小さい角度、例えば159.5度に設定する。さらに、保持部20が指令角度又はその付近に位置する場合は、変更指令角度を指令角度と同じ160度に設定する。 As an example, as shown in FIG. 4, it is assumed that when the actual turning angle of the holding unit 20 is 0 degree, the control device 50 acquires 160 degrees as the command angle. In this case, when the holding unit 20 turns in the normal rotation direction, the control device 50 sets the change command angle to an angle larger than the command angle, for example, 160.5 degrees. When the holding unit 20 turns in the reverse direction, the change command angle is set to an angle smaller than the command angle, for example, 159.5 degrees. Further, when the holding unit 20 is located at or near the command angle, the change command angle is set to 160 degrees, which is the same as the command angle.
 続いて、制御装置50は、偏差角度を算出する(ステップS3)。具体的には、制御装置50は、ステップS1で取得した実旋回角度からステップS2で設定した変更指令角度を差し引いて偏差角度を算出する。例えば、ステップS2で設定した変更指令角度が160.5度のとき、保持部20が正転方向に旋回して実旋回角度が150度にまで達したときの偏差角度は-10.5度となる。また、ステップS2で設定した変更指令角度が159.5度のとき、保持部20が逆転方向に旋回して実旋回角度が170度にまで達したときの偏差角度は+10.5度となる。 Next, the control device 50 calculates a deviation angle (step S3). Specifically, the control device 50 calculates a deviation angle by subtracting the change command angle set in step S2 from the actual turning angle acquired in step S1. For example, when the change command angle set in step S2 is 160.5 degrees, the deviation angle when the holding unit 20 turns in the normal rotation direction and the actual turning angle reaches 150 degrees is -10.5 degrees. Become. When the change command angle set in step S2 is 159.5 degrees, the deviation angle when the holding unit 20 turns in the reverse direction and the actual turning angle reaches 170 degrees is +10.5 degrees.
 続いて制御装置50は、不感帯処理を行う(ステップS4)。具体的には、制御装置50は、ステップS3で算出した偏差角度が所定の不感帯範囲にないときは処理後偏差角度を偏差角度と同じ角度に決定し、上記偏差角度が所定の不感帯範囲にあるときは処理後偏差角度をゼロに決定する。なお、不感帯範囲は、下限値をゼロ以下とし上限値をゼロ以上とする(上限値及び下限値は不感帯範囲に含まれる)。また、不感帯範囲は所定の幅を有している(つまり、下限値と上限値は同じ値ではない)。 Subsequently, the control device 50 performs a dead zone process (step S4). Specifically, when the deviation angle calculated in step S3 is not in the predetermined dead zone range, control device 50 determines the post-processing deviation angle to be the same as the deviation angle, and the deviation angle is in the predetermined dead zone range. At this time, the deviation angle after processing is determined to be zero. The dead zone range has a lower limit of zero or less and an upper limit of zero or more (the upper limit and the lower limit are included in the dead zone range). The dead zone has a predetermined width (that is, the lower limit and the upper limit are not the same value).
 本実施形態では、不感帯範囲の下限値を-0.5度とし、上限値を+0.5度とする。この場合、偏差角度が-10.5度であれば偏差角度が不感帯範囲にないため、制御装置50は処理後偏差角度を-10.5度に決定する。同様に、偏差角度が+10.5度であれば偏差角度が不感帯範囲にないため、制御装置50は処理後偏差角度を+10.5度に決定する。 In the present embodiment, the lower limit of the dead zone range is -0.5 degrees, and the upper limit is +0.5 degrees. In this case, if the deviation angle is -10.5 degrees, the deviation angle is not in the dead zone range, so the control device 50 determines the post-processing deviation angle to be -10.5 degrees. Similarly, if the deviation angle is +10.5 degrees, the deviation angle is not in the dead zone range, so the control device 50 determines the post-processing deviation angle to be +10.5 degrees.
 これに対し、変更指令角度が160.5度のとき、保持部20が正転方向に旋回して実旋回角度が160度にまで達すると偏差角度は-0.5度となる。このとき、偏差角度は不感帯範囲の下限値に相当するため、不感帯範囲に含まれることになる。よって、制御装置50は処理後偏差角度を0度に決定する。同様にして、変更指令角度が159.5度のとき、保持部20が逆転方向に旋回して実旋回角度が160度にまで達すると、偏差角度は+0.5度となるため、制御装置50は処理後偏差角度を0度に決定する。 On the other hand, when the change command angle is 160.5 degrees, when the holding unit 20 turns in the normal rotation direction and the actual turning angle reaches 160 degrees, the deviation angle becomes -0.5 degrees. At this time, since the deviation angle corresponds to the lower limit value of the dead zone range, it is included in the dead zone range. Therefore, the control device 50 determines the post-processing deviation angle to be 0 degrees. Similarly, when the change command angle is 159.5 degrees, when the holding unit 20 turns in the reverse direction and the actual turning angle reaches 160 degrees, the deviation angle becomes +0.5 degrees. Determines the deviation angle after processing to 0 degree.
 続いて、制御装置50は、ステップS4で決定した処理後偏差角度に基づいて必要により保持部20を旋回させる(ステップS5)。具体的には、制御装置50は、処理後偏差角度が0度のときは旋回装置30に制御信号を送信して保持部20の旋回を停止させ、処理後偏差角度が0度でない場合には旋回装置30に制御信号を送信して保持部20を旋回させる。 Subsequently, the control device 50 rotates the holding unit 20 as necessary based on the post-processing deviation angle determined in step S4 (step S5). Specifically, the control device 50 transmits a control signal to the turning device 30 to stop the turning of the holding unit 20 when the post-processing deviation angle is 0 degree, and to stop the turning of the holding unit 20 when the post-processing deviation angle is not 0 degree. A control signal is transmitted to the turning device 30 to turn the holding unit 20.
 保持部20を旋回させる場合は、保持部20の旋回方向を選択し、保持部の旋回速度を決定して旋回装置30に制御信号を送信する。本実施形態では、旋回距離の少ない方向を旋回方向に選択する。図4で示すように、0度から変更指令角度(初期値)である160度まで保持部20が旋回する場合、正転方向に旋回した方が逆転方向に旋回する場合に比べて旋回距離が少ない。そのため、この場合、制御装置50は旋回方向として正転方向を選択する。また、本実施形態では、制御装置50は、保持部20の旋回速度をPID制御を用いて決定する。ただし、保持部20の旋回速度は、PID制御以外の手法を用いて決定してもよい。PID制御では、処理後偏差角度の絶対値が大きいほど、旋回速度として大きな値が決定される。 When turning the holding unit 20, the turning direction of the holding unit 20 is selected, the turning speed of the holding unit is determined, and a control signal is transmitted to the turning device 30. In the present embodiment, the direction in which the turning distance is short is selected as the turning direction. As shown in FIG. 4, when the holding unit 20 turns from 0 degree to the change command angle (initial value) of 160 degrees, the turning distance in the forward rotation direction is smaller than that in the reverse rotation direction. Few. Therefore, in this case, the control device 50 selects the normal rotation direction as the turning direction. In the present embodiment, the control device 50 determines the turning speed of the holding unit 20 using PID control. However, the turning speed of the holding unit 20 may be determined using a method other than the PID control. In the PID control, as the absolute value of the post-processing deviation angle increases, a larger value is determined as the turning speed.
 ステップS5を経た後は、ステップS1に戻ってステップS1乃至S5を繰り返す。以上の制御プログラムを実行することにより、保持部20は変更指令角度に向かって旋回する。つまり、本実施形態では、指令角度ではなく、変更指令角度に基づいてフィードバック制御が行われる。 After step S5, return to step S1 and repeat steps S1 to S5. By executing the above control program, the holding unit 20 turns toward the change command angle. That is, in the present embodiment, the feedback control is performed based on the change command angle instead of the command angle.
 <保持部の動作>
 次に、比較例における保持部20の動作と本実施形態における保持部20の動作について説明する。図5は、比較例における保持部20の動作を示す図である。図中の曲線は、保持部20の実旋回角度の時間変化を表している。図5において、横軸が時間を示しており、縦軸が旋回角度を示している。図中の斜線部分は、不感帯範囲に相当する。なお、保持部20は正転方向に旋回するものとする。
<Operation of holding unit>
Next, the operation of the holding unit 20 in the comparative example and the operation of the holding unit 20 in the present embodiment will be described. FIG. 5 is a diagram illustrating the operation of the holding unit 20 in the comparative example. The curve in the figure represents the time change of the actual turning angle of the holding unit 20. In FIG. 5, the horizontal axis represents time, and the vertical axis represents the turning angle. The hatched portion in the figure corresponds to the dead zone range. It is assumed that the holding unit 20 turns in the normal rotation direction.
 図5の比較例に係る旋回型推進機では、ステップS2が省略される。つまり、比較例に係る旋回型推進機では、ステップS3において変更実旋回角度ではなく、実旋回角度から指令角度を差し引いて偏差角度を算出し、この偏差角度に基づいて保持部20の旋回角度が制御される。つまり、指令角度に基づいてフィードバック制御が行われる。この点以外は、比較例に係る旋回型推進機は、本実施形態に係る旋回型推進機100と同じ構成を備えている。 ス テ ッ プ In the turning type propulsion device according to the comparative example of FIG. 5, step S2 is omitted. That is, in the turning type propulsion device according to the comparative example, the deviation angle is calculated in step S3 by subtracting the command angle from the actual turning angle instead of the changed actual turning angle, and the turning angle of the holding unit 20 is calculated based on the deviation angle. Controlled. That is, feedback control is performed based on the command angle. Except for this point, the turning type propulsion device according to the comparative example has the same configuration as the turning type propulsion device 100 according to the present embodiment.
 比較例では、図5に示すように、時間T0で制御装置50が指令角度を取得すると、保持部20は入力された指令角度に向かって旋回し始める。前述した例でいえば、保持部20の実旋回角度が0度のときに、制御装置50が指令角度として160度を取得すると、保持部20は指令角度である160度に向かって旋回し始める。 In the comparative example, as shown in FIG. 5, when the control device 50 acquires the command angle at the time T0, the holding unit 20 starts turning toward the input command angle. In the example described above, when the control device 50 acquires 160 degrees as the command angle when the actual turning angle of the holding unit 20 is 0 degrees, the holding unit 20 starts turning toward the command angle of 160 degrees. .
 そして、時間T1で偏差角度が不感帯範囲の下限値に至り、このとき制御装置50は処理後偏差角度を0度に決定し、保持部20を停止させる。これにより、保持部20は不感帯範囲の下限値に相当する旋回角度で停止する。前述した例でいえば、不感帯範囲の下限値が-0.5度であるとすると、保持部20は159.5度まで旋回した時点で停止する。 {Circle around (4)} At time T1, the deviation angle reaches the lower limit value of the dead zone range. At this time, the controller 50 determines the post-processing deviation angle to 0 ° and stops the holding unit 20. Accordingly, the holding unit 20 stops at the turning angle corresponding to the lower limit value of the dead zone range. In the above-described example, assuming that the lower limit value of the dead zone range is -0.5 degrees, the holding unit 20 stops when it turns to 159.5 degrees.
 そして、旋回装置30の応答性が高い場合には、保持部20の実旋回角度は増加せず、保持部20は指令角度に至ることはない。前述した例でいえば、保持部20は、159.5度のまま停止し、指令角度である160度に至ることはない。 When the responsiveness of the turning device 30 is high, the actual turning angle of the holding unit 20 does not increase, and the holding unit 20 does not reach the command angle. In the above-described example, the holding unit 20 stops at 159.5 degrees and does not reach the command angle of 160 degrees.
 図6は、本実施形態における保持部20の動作を示す図である。図5と同様に、図中の曲線は、保持部20の実旋回角度の時間変化を表している。また、図6において、横軸が時間を示しており、縦軸が旋回角度を示している。図中の斜線部分は、不感帯範囲に相当する。なお、保持部20は正転方向に旋回するものとする。 FIG. 6 is a diagram illustrating the operation of the holding unit 20 in the present embodiment. Similar to FIG. 5, the curve in the figure represents the change over time of the actual turning angle of the holding unit 20. In FIG. 6, the horizontal axis indicates time, and the vertical axis indicates the turning angle. The hatched portion in the figure corresponds to the dead zone range. It is assumed that the holding unit 20 turns in the normal rotation direction.
 本実施形態では、図6に示すように、時間T0で制御装置50が指令角度を取得すると、保持部20は入力された指令角度ではなく、変更指令角度に向かって旋回し始める。前述した例でいえば、保持部20の実旋回角度が0度のときに、制御装置50が指令角度として160度を取得すると、保持部20は変更指令角度である160.5度に向かって旋回し始める。 In the present embodiment, as shown in FIG. 6, when the control device 50 acquires the command angle at the time T0, the holding unit 20 starts to turn toward the change command angle instead of the input command angle. In the example described above, when the control device 50 acquires 160 degrees as the command angle when the actual turning angle of the holding unit 20 is 0 degrees, the holding unit 20 moves toward the change command angle of 160.5 degrees. Start turning.
 そして、時間T2で偏差角度が不感帯範囲の下限値に至り、このとき制御装置50は処理後偏差角度を0度に決定し、保持部20を停止させる。これにより、保持部20は不感帯範囲の下限値に相当する旋回角度で停止する。前述した例でいえば、不感帯範囲の下限値が-0.5であるとすると、保持部20は160度まで旋回した時点で停止する。つまり、保持部20は、指令角度である160度で停止する。このように、本実施形態によれば、旋回装置30の応答性が高いか否かにかかわらず、保持部20を指令角度にまで旋回させることができる。 {Circle around (2)} At time T2, the deviation angle reaches the lower limit value of the dead zone range. At this time, the controller 50 determines the post-processing deviation angle to 0 degrees, and stops the holding unit 20. Accordingly, the holding unit 20 stops at the turning angle corresponding to the lower limit value of the dead zone range. In the above-described example, assuming that the lower limit value of the dead zone range is -0.5, the holding unit 20 stops when the holding unit 20 turns to 160 degrees. That is, the holding unit 20 stops at the command angle of 160 degrees. As described above, according to the present embodiment, the holding unit 20 can be turned to the command angle regardless of whether or not the responsiveness of the turning device 30 is high.
 その後、偏差角度が不感帯範囲にある(処理後偏差角度がゼロである)ことから、変更指令角度は指令信号と同じ角度に設定される。前述した例でいえば、160.5度であった変更指令角度が160度に設定される。これにより、不感帯範囲に相当する旋回角度範囲も旋回角度が小さい方向にスライドする。その結果、保持部20の実旋回角度が変更指令角度からわずかにずれたり、実回転角度の計測誤差が生じたりしても簡単には保持部20は旋回しない。よって、保持部20の不要な旋回によるエネルギーロスを抑制することができる。 (5) Thereafter, since the deviation angle is in the dead zone range (the deviation angle after processing is zero), the change command angle is set to the same angle as the command signal. In the example described above, the change command angle, which was 160.5 degrees, is set to 160 degrees. Accordingly, the turning angle range corresponding to the dead zone range also slides in the direction in which the turning angle is small. As a result, even if the actual turning angle of the holding unit 20 slightly deviates from the change command angle or a measurement error of the actual rotation angle occurs, the holding unit 20 does not easily turn. Therefore, energy loss due to unnecessary turning of the holding unit 20 can be suppressed.
 なお、以上では、保持部20が正転方向に旋回する場合を例にして保持部20の動作を説明したが、保持部20が逆転方向に旋回する場合には、保持部20が正転方向に旋回する場合とは逆に、制御装置50は変更指令角度を指令角度よりも大きく設定する。これにより、保持部20が正転方向に旋回する場合と同様に、保持部20が逆転方向に旋回する場合にも保持部20を指令角度又はその付近で停止させることができる。 In the above, the operation of the holding unit 20 has been described as an example in which the holding unit 20 turns in the normal rotation direction. However, when the holding unit 20 turns in the reverse rotation direction, the holding unit 20 is turned in the normal rotation direction. In contrast to the case where the vehicle turns, the control device 50 sets the change command angle larger than the command angle. Thus, similarly to the case where the holding unit 20 turns in the forward direction, the holding unit 20 can be stopped at or near the command angle when the holding unit 20 turns in the reverse direction.
 以上のとおり、本実施形態に係る旋回型推進機100では、不感帯処理を行うにあたり、旋回装置30の応答性が高いとしても、保持部20が指令角度にまで旋回することができるため、保持部20の位置決め精度の低下を抑制できる。 As described above, in the turning type propulsion device 100 according to the present embodiment, when performing the dead zone processing, even if the turning device 30 has high responsiveness, the holding unit 20 can turn to the command angle. 20 can be prevented from lowering in positioning accuracy.
 なお、本実施形態ではステップS3において、実旋回角度から変更指令角度を差し引いて偏差角度を算出し、この偏差角度を用いて後の処理を行っている。ただし、実旋回角度から変更指令角度を差し引いた角度ではなく、変更指令角度から実旋回角度を差し引いた角度を偏差角度とし、その後の処理を行っても良い。この場合であっても、本実施形態の場合と同様の効果を得ることができる。 In the present embodiment, in step S3, a deviation angle is calculated by subtracting the change command angle from the actual turning angle, and the subsequent processing is performed using the deviation angle. However, instead of the angle obtained by subtracting the change command angle from the actual turning angle, the angle obtained by subtracting the actual turning angle from the change command angle may be used as the deviation angle, and the subsequent processing may be performed. Even in this case, the same effect as in the case of the present embodiment can be obtained.
 (第2実施形態)
 <制御プログラム>
 次に、第2実施形態に係る旋回型推進機200について説明する。本実施形態に係る旋回型推進機200は、第1実施形態に係る旋回型推進機100と基本的な構成は同じである(図1参照)。ただし、本実施形態の制御プログラムは、第1実施形態の制御プログラムと一部異なる。以下では、第1実施形態の制御プログラムと比較しながら第2実施形態の制御プログラムについて説明する。
(2nd Embodiment)
<Control program>
Next, a turning type propulsion device 200 according to a second embodiment will be described. The rotary propulsion device 200 according to the present embodiment has the same basic configuration as the rotary propulsion device 100 according to the first embodiment (see FIG. 1). However, the control program of the present embodiment is partially different from the control program of the first embodiment. Hereinafter, the control program of the second embodiment will be described in comparison with the control program of the first embodiment.
 図7は、第2実施形態における制御プログラムのフローチャートである。図7に示すように、本実施形態の制御プログラムは変更指令角度を設定するステップS2(図3参照)を有していない一方、不感帯範囲を設定するステップS3aを有している点で、第1実施形態の制御プログラムと異なる。 FIG. 7 is a flowchart of a control program according to the second embodiment. As shown in FIG. 7, the control program according to the present embodiment does not include step S2 (see FIG. 3) for setting the change command angle, but has step S3a for setting the dead zone range. This is different from the control program of the first embodiment.
 本実施形態では、制御プログラムが開始されると、第1実施形態の場合と同様に、制御装置50はオペレータ操作装置101から指令角度を取得するとともに、旋回角度計測装置40から保持部20の実旋回角度を取得する(ステップS1)。 In the present embodiment, when the control program is started, similarly to the first embodiment, the control device 50 acquires the command angle from the operator operation device 101, and obtains the actual angle of the holding unit 20 from the turning angle measurement device 40. The turning angle is obtained (step S1).
 続いて、制御装置50は、偏差角度を算出する(ステップS3)。具体的には、制御装置50は、ステップS1で取得した実旋回角度から同じくステップS1で取得した指令角度を差し引いて偏差角度を算出する。例えば、指令角度が160度のとき、保持部20が正転方向に旋回して実旋回角度が150度にまで達したときの偏差角度は-10度である。また、例えば、指令角度が160度のとき、保持部20が逆転方向に旋回して実旋回角度が170度にまで達したときの偏差角度は+10度である。 Next, the control device 50 calculates a deviation angle (step S3). Specifically, the control device 50 calculates the deviation angle by subtracting the command angle also obtained in step S1 from the actual turning angle obtained in step S1. For example, when the command angle is 160 degrees, the deviation angle when the holding unit 20 turns in the normal rotation direction and the actual turning angle reaches 150 degrees is -10 degrees. Further, for example, when the command angle is 160 degrees, the deviation angle when the holding unit 20 turns in the reverse direction and the actual turning angle reaches 170 degrees is +10 degrees.
 続いて、制御装置50は、不感帯範囲を設定する(ステップS3a)。具体的には、制御装置50は、保持部20が指令角度又はその近傍にあるとき(つまり、処理後偏差角度がゼロであるとき)、不感帯範囲の下限値を所定の基準下限値に設定するとともに上限値を所定の基準上限値に設定する。本実施形態では、基準下限値を-0.5度とし基準上限値を+0.5度とする。この場合、不感帯範囲の下限値は-0.5に設定され、上限値は+0.5度に設定されることになる。 Next, the control device 50 sets a dead zone range (step S3a). Specifically, when the holding unit 20 is at or near the command angle (that is, when the post-process deviation angle is zero), the control device 50 sets the lower limit of the dead zone range to a predetermined reference lower limit. At the same time, the upper limit is set to a predetermined reference upper limit. In the present embodiment, the reference lower limit is -0.5 degrees, and the reference upper limit is +0.5 degrees. In this case, the lower limit of the dead zone range is set to -0.5, and the upper limit is set to +0.5 degrees.
 一方、制御装置50は、保持部20が正転方向に旋回するときは、不感帯範囲の下限値を基準下限値よりも大きい値に設定する。本実施形態では、不感帯範囲の下限値を0度に設定する。なお、保持部20が正転方向に旋回するときは、不感帯範囲の上限値は特に設定する必要はないが、基準上限値と同じ+0.5度に設定してもよい。また、不感帯範囲の上限値を基準上限値よりも大きくして、不感帯範囲全体をオフセットしても良い。 On the other hand, when holding unit 20 turns in the normal rotation direction, control device 50 sets the lower limit value of the dead zone range to a value larger than the reference lower limit value. In the present embodiment, the lower limit of the dead zone range is set to 0 degrees. When the holding unit 20 turns in the normal rotation direction, the upper limit of the dead zone range does not need to be particularly set, but may be set to +0.5 degrees, which is the same as the reference upper limit. Alternatively, the upper limit value of the dead zone range may be made larger than the reference upper limit value to offset the entire dead zone range.
 また、制御装置50は、保持部20が逆転方向に旋回するときは、不感帯範囲の上限値を基準上限値よりも小さい値に設定する。本実施形態では、不感帯範囲の上限値を0度に設定する。なお、保持部20が逆転方向に旋回するときは、不感帯範囲の下限値は特に設定する必要はないが、基準下限値と同じ-0.5度に設定してもよい。また、不感帯範囲の下限値を基準下限値よりも小さくして、不感帯範囲全体をオフセットしても良い。 {Circle around (4)} When the holding unit 20 turns in the reverse direction, the control device 50 sets the upper limit value of the dead zone range to a value smaller than the reference upper limit value. In the present embodiment, the upper limit of the dead zone range is set to 0 degrees. Note that when the holding unit 20 turns in the reverse direction, the lower limit of the dead zone range does not need to be particularly set, but may be set to -0.5 degrees, which is the same as the reference lower limit. Further, the lower limit value of the dead zone range may be made smaller than the reference lower limit value to offset the entire dead zone range.
 なお、保持部20が指令角度又はその近傍にあるか否か(つまり、処理後偏差角度がゼロであるか否か)が明らかでなく、保持部20の旋回方向が明らかでない初期段階の場合は、不感帯範囲の下限値を上記の基準下限値に設定するとともに上限値を上記の基準上限値に設定すればよい。 In the initial stage, it is not clear whether or not the holding unit 20 is at or near the command angle (that is, whether or not the post-processing deviation angle is zero) and the turning direction of the holding unit 20 is not clear. The lower limit of the dead zone range may be set to the reference lower limit and the upper limit may be set to the reference upper limit.
 続いて、制御装置50は、不感帯処理を行う(ステップS4)。本実施形態における不感帯処理は、第1実施形態における不感帯処理と同じである。ただし、上記のとおり不感帯範囲が一定でない点で第1実施形態の場合と異なる。本実施形態の場合、例えば偏差角度が基準下限値よりも大きい-0.3度であっても、保持部20が正転方向に旋回するときは、不感帯範囲に入らないことになる。 Subsequently, the control device 50 performs a dead zone process (step S4). The dead zone processing in the present embodiment is the same as the dead zone processing in the first embodiment. However, it differs from the first embodiment in that the dead zone range is not constant as described above. In the case of the present embodiment, for example, even if the deviation angle is −0.3 degrees larger than the reference lower limit, when the holding unit 20 turns in the normal rotation direction, the holding unit 20 does not enter the dead zone.
 続いて、制御装置50は、ステップS4で決定した処理後偏差角度に基づいて必要により保持部20を旋回させる(ステップS5)。具体的には、第1実施形態の場合と同様に、制御装置50は、処理後偏差角度が0度のときは旋回装置30に制御信号を送信して保持部20の旋回を停止させ、処理後偏差角度が0度でない場合には旋回装置30に制御信号を送信して保持部20を旋回させる。ステップS5を経た後は、ステップS1に戻ってステップS1乃至S5を繰り返す。 Subsequently, the control device 50 rotates the holding unit 20 as necessary based on the post-processing deviation angle determined in step S4 (step S5). Specifically, similarly to the case of the first embodiment, when the deviation angle after the process is 0 degree, the control device 50 transmits a control signal to the turning device 30 to stop the turning of the holding unit 20 and performs the process. If the rear deviation angle is not 0 degrees, a control signal is transmitted to the turning device 30 to turn the holding unit 20. After step S5, the process returns to step S1 and repeats steps S1 to S5.
 <保持部の動作>
 次に、本実施形態における保持部20の動作について説明する。図8は、本実施形態における保持部20の動作を示す図である。図中の曲線は、保持部20の実旋回角度の時間変化を表している。図8において、横軸が時間を示しており、縦軸が旋回角度を示している。図中の斜線部分は、不感帯範囲に相当する。なお、保持部20は正転方向に旋回するものとする。
<Operation of holding unit>
Next, the operation of the holding unit 20 in the present embodiment will be described. FIG. 8 is a diagram illustrating the operation of the holding unit 20 in the present embodiment. The curve in the figure represents the time change of the actual turning angle of the holding unit 20. In FIG. 8, the horizontal axis represents time, and the vertical axis represents the turning angle. The hatched portion in the figure corresponds to the dead zone range. It is assumed that the holding unit 20 turns in the normal rotation direction.
 本実施形態では、図8に示すように、時間T0で制御装置50が指令角度を取得すると、保持部20は入力された指令角度に向かって旋回し始める。前述した例でいえば、保持部20の実旋回角度が0度のときに、制御装置50が指令角度として160度を取得すると、保持部20は指令角度である160度に向かって旋回し始める。このとき、不感帯範囲の下限値は、基準下限値である-0.5度よりも大きい0度に設定される。 In the present embodiment, as shown in FIG. 8, when the control device 50 acquires the command angle at the time T0, the holding unit 20 starts turning toward the input command angle. In the example described above, when the control device 50 acquires 160 degrees as the command angle when the actual turning angle of the holding unit 20 is 0 degrees, the holding unit 20 starts turning toward the command angle of 160 degrees. . At this time, the lower limit value of the dead zone range is set to 0 degrees which is larger than the reference lower limit value of -0.5 degrees.
 そして、時間T3で偏差角度が不感帯範囲の下限値である0度に至ると、制御装置50は処理後偏差角度を0度に決定し、保持部20を停止させる。本実施形態では、不感帯範囲の下限値が0度であるため、保持部20は指令角度まで旋回した時点で停止することになる。前述した例でいえば、保持部20は160度まで旋回した時点で停止する。このように、本実施形態によれば、旋回装置30の応答性が高いか否かにかかわらず、保持部20を指令角度にまで旋回させることができる。 {Circle around (4)} At time T3, when the deviation angle reaches 0 degree, which is the lower limit value of the dead zone range, the controller 50 determines the post-processing deviation angle to 0 degree and stops the holding unit 20. In the present embodiment, since the lower limit value of the dead zone range is 0 degrees, the holding unit 20 stops at the time when the holding unit 20 turns to the command angle. In the example described above, the holding unit 20 stops when the holding unit 20 turns to 160 degrees. As described above, according to the present embodiment, the holding unit 20 can be turned to the command angle regardless of whether or not the responsiveness of the turning device 30 is high.
 その後、偏差角度が不感帯範囲にある(処理後偏差角度がゼロである)ことから、不感帯範囲の下限値を基準下限値に設定し、不感帯範囲の上限値を基準上限値に設定する。本実施形態では、不感帯範囲の下限値を-0.5度に設定し、不感帯範囲の上限値を+0.5度に設定する。これにより、保持部20の実旋回角度が変更指令角度からわずかにずれたり、実回転角度の計測誤差が生じたりしても簡単には保持部20は旋回しない。よって、保持部20の不要な旋回によるエネルギーロスを抑制することができる。 (5) Thereafter, since the deviation angle is within the dead zone range (the deviation angle after processing is zero), the lower limit value of the dead zone range is set to the reference lower limit value, and the upper limit value of the dead zone range is set to the reference upper limit value. In the present embodiment, the lower limit of the dead zone range is set to -0.5 degrees, and the upper limit of the dead zone range is set to +0.5 degrees. Thus, even if the actual turning angle of the holding unit 20 slightly deviates from the change command angle or a measurement error of the actual rotation angle occurs, the holding unit 20 does not easily turn. Therefore, energy loss due to unnecessary turning of the holding unit 20 can be suppressed.
 なお、以上では、保持部20が正転方向に旋回する場合を例にして保持部20の動作を説明したが、保持部20が逆転方向に旋回する場合には、保持部20が正転方向に旋回する場合とは異なり、制御装置50は不感帯範囲の上限値を基準上限値よりも小さい値(0度)に設定する。これにより、保持部20を指令角度又はその付近で停止させることができる。 In the above, the operation of the holding unit 20 has been described as an example in which the holding unit 20 turns in the normal rotation direction. However, when the holding unit 20 turns in the reverse rotation direction, the holding unit 20 is turned in the normal rotation direction. Unlike the case of turning, the control device 50 sets the upper limit value of the dead zone range to a value (0 degree) smaller than the reference upper limit value. Thus, the holding unit 20 can be stopped at or near the command angle.
 以上のとおり、本実施形態に係る旋回型推進機200では、不感帯処理を行うにあたり、旋回装置30の応答性が高いとしても、保持部20が指令角度にまで旋回することができるため、保持部20の位置決め精度の低下を抑制できる。 As described above, in the turning type propulsion device 200 according to the present embodiment, in performing the dead zone processing, even if the responsiveness of the turning device 30 is high, the holding portion 20 can turn to the command angle, and thus the holding portion 20 can be prevented from lowering in positioning accuracy.
 なお、本実施形態ではステップS3において、実旋回角度から指令角度を差し引いて偏差角度を算出し、この偏差角度を用いて後の処理を行っている。ただし、実旋回角度から変更指令角度を差し引いた角度ではなく、変更指令角度から実旋回角度を差し引いた角度を偏差角度とし、その後の処理を行っても良い。この場合には本実施形態の場合と不感帯範囲の設定が異なる。具体的には、制御装置50は、ステップS3aにおいて、保持部20が指令角度又はその近傍にあるとき、不感帯範囲の下限値を所定の基準下限値に設定するとともに上限値を所定の基準上限値に設定する点は同じであるが、保持部20が正転方向に旋回するときは、不感帯範囲の上限値を基準上限値よりも小さい値に設定し、保持部20が逆転方向に旋回するときは、不感帯範囲の下限値を基準下限値よりも大きい値に設定する。 In this embodiment, in step S3, the deviation angle is calculated by subtracting the command angle from the actual turning angle, and the subsequent processing is performed using the deviation angle. However, instead of the angle obtained by subtracting the change command angle from the actual turning angle, the angle obtained by subtracting the actual turning angle from the change command angle may be used as the deviation angle, and the subsequent processing may be performed. In this case, the setting of the dead zone range is different from that of the present embodiment. Specifically, in step S3a, when the holding unit 20 is at or near the command angle, the control device 50 sets the lower limit value of the dead zone range to a predetermined reference lower limit value and sets the upper limit value to a predetermined reference upper limit value. Is the same, but when the holding unit 20 turns in the normal rotation direction, the upper limit value of the dead zone range is set to a value smaller than the reference upper limit value, and when the holding unit 20 turns in the reverse rotation direction. Sets the lower limit value of the dead zone range to a value larger than the reference lower limit value.
 (第3実施形態)
 <制御プログラム>
 次に、第3実施形態に係る旋回型推進機300について説明する。本実施形態に係る旋回型推進機300は、第1実施形態に係る旋回型推進機100と基本的な構成は同じである(図1参照)。ただし、本実施形態の制御プログラムは、第1実施形態の制御プログラムと一部異なる。以下では、第1実施形態の制御プログラムと比較しながら第3実施形態の制御プログラムについて説明する。
(Third embodiment)
<Control program>
Next, a turning type propulsion device 300 according to a third embodiment will be described. The rotary propulsion device 300 according to the present embodiment has the same basic configuration as the rotary propulsion device 100 according to the first embodiment (see FIG. 1). However, the control program of the present embodiment is partially different from the control program of the first embodiment. Hereinafter, the control program of the third embodiment will be described in comparison with the control program of the first embodiment.
 図9は、第3実施形態における制御プログラムのフローチャートである。図9に示すように、本実施形態の制御プログラムは変更指令角度を設定するステップS2(図3参照)を有していない一方、変更旋回角度を決定するステップS1aを有している点で、第1実施形態の制御プログラムと異なる。 FIG. 9 is a flowchart of a control program according to the third embodiment. As shown in FIG. 9, the control program of the present embodiment does not include step S2 (see FIG. 3) for setting a change command angle, but has a step S1a for determining a change turning angle. This is different from the control program of the first embodiment.
 本実施形態では、制御プログラムが開始されると、第1実施形態の場合と同様に、制御装置50はオペレータ操作装置101から指令角度を取得するとともに、旋回角度計測装置40から保持部20の実旋回角度を取得する(ステップS1)。 In the present embodiment, when the control program is started, similarly to the first embodiment, the control device 50 acquires the command angle from the operator operation device 101, and obtains the actual angle of the holding unit 20 from the turning angle measurement device 40. The turning angle is obtained (step S1).
 続いて、制御装置50は、変更実旋回角度を決定する(ステップS1a)。具体的には、制御装置50は、処理後偏差角度がゼロのとき、つまり保持部20が指令角度又はその近傍にあるときは、変更実旋回角度を実旋回角度と同じ角度に決定する。例えば、実旋回角度が150度であるときは、そのまま変更実旋回角度を150度に決定する。 Subsequently, the control device 50 determines the changed actual turning angle (step S1a). Specifically, when the post-processing deviation angle is zero, that is, when the holding unit 20 is at or near the command angle, the control device 50 determines the changed actual turning angle to be the same angle as the actual turning angle. For example, when the actual turning angle is 150 degrees, the changed actual turning angle is directly determined to be 150 degrees.
 一方、制御装置50は、保持部20が正転方向に旋回するときは、変更実旋回角度を実旋回角度よりも小さい角度に決定する。本実施形態では、例えば変更実旋回角度を実旋回角度よりも0.5度小さい角度に決定する。つまり、実旋回角度が150度であるときは、変更実旋回角度を149.5度に決定する。 On the other hand, when the holding unit 20 turns in the normal rotation direction, the control device 50 determines the changed actual turning angle to be smaller than the actual turning angle. In the present embodiment, for example, the changed actual turning angle is determined to be 0.5 degrees smaller than the actual turning angle. That is, when the actual turning angle is 150 degrees, the changed actual turning angle is determined to be 149.5 degrees.
 また、制御装置50は、保持部20が逆転方向に旋回するときは、変更実旋回角度を実旋回角度よりも大きい角度に決定する。本実施形態では、例えば変更実旋回角度を実旋回角度よりも0.5度大きい角度に決定する。つまり、実旋回角度が150度であるときは、変更実旋回角度を150.5度に決定する。 制 御 Moreover, when the holding unit 20 turns in the reverse direction, the control device 50 determines the changed actual turning angle to be larger than the actual turning angle. In the present embodiment, for example, the changed actual turning angle is determined to be 0.5 degrees larger than the actual turning angle. That is, when the actual turning angle is 150 degrees, the changed actual turning angle is determined to be 150.5 degrees.
 なお、保持部20が指令角度又はその近傍にあるか否か(つまり、処理後偏差角度がゼロであるか否か)が明らかでなく、保持部20の旋回方向が明らかでない初期段階の場合は、変更指令角度を指令角度と同じ角度に設定すればよい。 In the initial stage, it is not clear whether or not the holding unit 20 is at or near the command angle (that is, whether or not the post-processing deviation angle is zero) and the turning direction of the holding unit 20 is not clear. The change command angle may be set to the same angle as the command angle.
 続いて、制御装置50は、偏差角度を算出する(ステップS3)。具体的には、制御装置50は、ステップS1aで決定した変更実旋回角度からステップS1で取得した指令角度を差し引いて偏差角度を算出する。例えば、指令角度が160度のとき、保持部20が正転方向に旋回して実旋回角度が150度にまで達したとき、変更実旋回角度は149.5度であるから偏差角度は-10.5度となる。また、例えば、指令角度が160度のとき、保持部20が逆転方向に旋回して実旋回角度が170度にまで達したとき、変更実旋回角度は150.5度であるから偏差角度は+10.5度となる。 Next, the control device 50 calculates a deviation angle (step S3). Specifically, the control device 50 calculates a deviation angle by subtracting the command angle acquired in step S1 from the changed actual turning angle determined in step S1a. For example, when the command angle is 160 degrees, when the holding unit 20 turns in the normal rotation direction and the actual turning angle reaches 150 degrees, the changed actual turning angle is 149.5 degrees, so the deviation angle is -10. .5 degrees. Further, for example, when the command angle is 160 degrees, when the holding unit 20 turns in the reverse direction and the actual turning angle reaches 170 degrees, the changed actual turning angle is 150.5 degrees, so the deviation angle is +10. .5 degrees.
 続いて制御装置50は、不感帯処理を行う(ステップS4)。本実施形態における不感帯処理は、第1実施形態における不感帯処理と同じである。具体的には、制御装置50は、ステップS3で算出した偏差角度が所定の不感帯範囲にないときは処理後偏差角度を偏差角度と同じ角度に決定し、上記偏差角度が所定の不感帯範囲にあるときは処理後偏差角度をゼロに決定する。 Subsequently, the control device 50 performs a dead zone process (step S4). The dead zone processing in the present embodiment is the same as the dead zone processing in the first embodiment. Specifically, when the deviation angle calculated in step S3 is not in the predetermined dead zone range, control device 50 determines the post-processing deviation angle to be the same as the deviation angle, and the deviation angle is in the predetermined dead zone range. At this time, the deviation angle after processing is determined to be zero.
 本実施形態では、不感帯範囲の下限値を-0.5度とし、上限値を+0.5度とする。この場合、偏差角度が-10.5度であれば偏差角度が不感帯範囲にないため、制御装置50は処理後偏差角度を-10.5度に決定する。同様に、偏差角度が+10.5度であれば偏差角度が不感帯範囲にないため、制御装置50は処理後偏差角度を+10.5度に決定する。 In the present embodiment, the lower limit of the dead zone range is -0.5 degrees, and the upper limit is +0.5 degrees. In this case, if the deviation angle is -10.5 degrees, the deviation angle is not in the dead zone range, so the control device 50 determines the post-processing deviation angle to be -10.5 degrees. Similarly, if the deviation angle is +10.5 degrees, the deviation angle is not in the dead zone range, so the control device 50 determines the post-processing deviation angle to be +10.5 degrees.
 これに対し、指令角度が160度のとき、保持部20が正転方向に旋回して実旋回角度が160度にまで達すると、変更実旋回角度は159.5度であるから、偏差角度は-0.5度となる。このとき、偏差角度は不感帯範囲の下限値に相当するため、不感帯範囲に含まれることになる。よって、制御装置50は処理後偏差角度を0度に決定する。同様にして、指令角度が160度のとき、保持部20が逆転方向に旋回して実旋回角度が160度にまで達すると、変更実旋回角度は149.5度であるから、偏差角度は+0.5度となるため、制御装置50は処理後偏差角度を0度に決定する。 On the other hand, when the command angle is 160 degrees and the holding unit 20 turns in the normal rotation direction and the actual turning angle reaches 160 degrees, the changed actual turning angle is 159.5 degrees. -0.5 degrees. At this time, since the deviation angle corresponds to the lower limit value of the dead zone range, it is included in the dead zone range. Therefore, the control device 50 determines the post-processing deviation angle to be 0 degrees. Similarly, when the command angle is 160 degrees, when the holding unit 20 turns in the reverse direction and the actual turning angle reaches 160 degrees, the changed actual turning angle is 149.5 degrees, so the deviation angle is +0. Therefore, the controller 50 determines the post-processing deviation angle to be 0 degree.
 続いて、制御装置50は、ステップS4で決定した処理後偏差角度に基づいて必要により保持部20を旋回させる(ステップS5)。具体的には、第1実施形態の場合と同様に、制御装置50は、処理後偏差角度が0度のときは旋回装置30に制御信号を送信して保持部20の旋回を停止させ、処理後偏差角度が0度でない場合には旋回装置30に制御信号を送信して保持部20を旋回させる。ステップS5を経た後は、ステップS1に戻ってステップS1乃至S5を繰り返す。 Subsequently, the control device 50 rotates the holding unit 20 as necessary based on the post-processing deviation angle determined in step S4 (step S5). Specifically, similarly to the case of the first embodiment, when the deviation angle after the process is 0 degree, the control device 50 transmits a control signal to the turning device 30 to stop the turning of the holding unit 20 and performs the process. If the rear deviation angle is not 0 degrees, a control signal is transmitted to the turning device 30 to turn the holding unit 20. After step S5, the process returns to step S1 and repeats steps S1 to S5.
 <保持部の動作>
 次に、本実施形態における保持部20の動作について説明する。図10は、本実施形態における保持部20の動作を示す図である。図中の実線で描かれた曲線は、保持部20の実旋回角度の時間変化を表しており、破線で描かれた曲線は変更実旋回角度の時間変化を表している。また、図10において、横軸が時間を示しており、縦軸が旋回角度を示している。図中の斜線部分は、不感帯範囲に相当する。なお、保持部20は正転方向に旋回するものとする。
<Operation of holding unit>
Next, the operation of the holding unit 20 in the present embodiment will be described. FIG. 10 is a diagram illustrating the operation of the holding unit 20 in the present embodiment. A curve drawn by a solid line in the drawing represents a time change of the actual turning angle of the holding unit 20, and a curve drawn by a broken line represents a time change of the changed actual turning angle. In FIG. 10, the horizontal axis represents time, and the vertical axis represents the turning angle. The hatched portion in the figure corresponds to the dead zone range. It is assumed that the holding unit 20 turns in the normal rotation direction.
 本実施形態では、図10に示すように、時間T0で制御装置50が指令角度を取得すると、変更実旋回角度は入力された指令角度に向かって旋回し始める。ただし、変更実旋回角度は実旋回角度よりも小さい角度に決定されている。前述した例でいえば、保持部20の実旋回角度が0度のときに、制御装置50が指令角度として160度を取得すると、変更実旋回角度は-0.5度から指令角度である160度に向かって増加し始める。 In the present embodiment, as shown in FIG. 10, when the control device 50 acquires the command angle at time T0, the changed actual turning angle starts turning toward the input command angle. However, the changed actual turning angle is determined to be smaller than the actual turning angle. In the above-described example, when the control device 50 acquires 160 degrees as the command angle when the actual turning angle of the holding unit 20 is 0 degrees, the changed actual turning angle is changed from -0.5 degrees to 160 degrees. Begin to increase in degrees.
 そして、時間T4で偏差角度が不感帯範囲の下限値である-0.5度に至ると、制御装置50は処理後偏差角度を0度に決定し、保持部20を停止させる。ただし、本実施形態では、偏差角度は変更実旋回角度(実旋回角度ではない)から指令角度を差し引くことで算出されるため、偏差角度が不感帯範囲の下限値に至った時点で、実旋回角度は指令角度とほぼ同じになる。前述した例でいえば、変更実旋回角度が不感帯範囲の下限値に相当する159.5度に至った時点で、実旋回角度は指令角度と同じ160度となっている。このように、本実施形態によれば、旋回装置30の応答性が高いか否かにかかわらず、保持部20を指令角度にまで旋回させることができる。 {Circle around (4)} At time T4, when the deviation angle reaches the lower limit value of the dead zone range of −0.5 degrees, the controller 50 determines the post-processing deviation angle to be 0 degrees and stops the holding unit 20. However, in the present embodiment, since the deviation angle is calculated by subtracting the command angle from the changed actual turning angle (not the actual turning angle), when the deviation angle reaches the lower limit value of the dead zone range, the actual turning angle is calculated. Becomes almost the same as the command angle. In the example described above, when the changed actual turning angle reaches 159.5 degrees corresponding to the lower limit of the dead zone range, the actual turning angle is 160 degrees, which is the same as the command angle. As described above, according to the present embodiment, the holding unit 20 can be turned to the command angle regardless of whether or not the responsiveness of the turning device 30 is high.
 その後、偏差角度が不感帯範囲にある(処理後偏差角度がゼロである)ことから、変更実旋回角度は実旋回角度と同じ角度に決定される。つまり、変更実旋回角度は、指令角度にまでスライドする。これにより、保持部20の実旋回角度が変更指令角度からわずかにずれたり、実回転角度の計測誤差が生じたりしても簡単には保持部20は旋回しない。よって、保持部20の不要な旋回によるエネルギーロスを抑制することができる。 Thereafter, since the deviation angle is in the dead zone range (the deviation angle after processing is zero), the changed actual turning angle is determined to be the same angle as the actual turning angle. That is, the changed actual turning angle slides to the command angle. Thus, even if the actual turning angle of the holding unit 20 slightly deviates from the change command angle or a measurement error of the actual rotation angle occurs, the holding unit 20 does not easily turn. Therefore, energy loss due to unnecessary turning of the holding unit 20 can be suppressed.
 なお、以上では、保持部20が正転方向に旋回する場合を例に保持部20の動作を説明したが、保持部20が逆転方向に旋回する場合には、保持部20が正転方向に旋回する場合とは逆に、制御装置50は変更実旋回角度として実旋回角度よりも大きい値を出力する。これにより、保持部20を指令角度又はその付近で停止させることができる。 In the above, the operation of the holding unit 20 has been described as an example in which the holding unit 20 turns in the normal rotation direction. However, when the holding unit 20 turns in the reverse rotation direction, the holding unit 20 is turned in the normal rotation direction. Contrary to the case of turning, the controller 50 outputs a value larger than the actual turning angle as the changed actual turning angle. Thus, the holding unit 20 can be stopped at or near the command angle.
 以上のとおり、本実施形態に係る旋回型推進機300では、不感帯処理を行うにあたり、旋回装置30の応答性が高いとしても、保持部20が指令角度にまで旋回することができるため、保持部20の位置決め精度の低下を抑制できる。 As described above, in the turning type propulsion device 300 according to the present embodiment, in performing the dead zone processing, even if the responsiveness of the turning device 30 is high, the holding unit 20 can turn to the command angle, so that the holding unit 20 can be prevented from lowering in positioning accuracy.
 なお、本実施形態ではステップS3において、変更実旋回角度から指令角度を差し引いて偏差角度を算出し、この偏差角度を用いて後の処理を行っている。ただし、実旋回角度から変更指令角度を差し引いた角度ではなく、変更指令角度から実旋回角度を差し引いた角度を偏差角度とし、その後の処理を行っても良い。この場合であっても、本実施形態の場合と同様の効果を得ることができる。 In the present embodiment, in step S3, a deviation angle is calculated by subtracting the command angle from the changed actual turning angle, and the subsequent processing is performed using this deviation angle. However, instead of the angle obtained by subtracting the change command angle from the actual turning angle, the angle obtained by subtracting the actual turning angle from the change command angle may be used as the deviation angle, and the subsequent processing may be performed. Even in this case, the same effect as in the case of the present embodiment can be obtained.
 (第4実施形態)
 <制御プログラム>
 次に、第4実施形態に係る旋回型推進機400について説明する。本実施形態に係る旋回型推進機400は、第1実施形態に係る旋回型推進機100と基本的な構成は同じである(図1参照)。ただし、本実施形態の制御プログラムは、第1実施形態の制御プログラムと一部異なる。以下では、第1実施形態の制御プログラムと比較しながら第4実施形態の制御プログラムについて説明する。
(Fourth embodiment)
<Control program>
Next, a turning type propulsion device 400 according to a fourth embodiment will be described. The rotary propulsion device 400 according to the present embodiment has the same basic configuration as the rotary propulsion device 100 according to the first embodiment (see FIG. 1). However, the control program of the present embodiment is partially different from the control program of the first embodiment. Hereinafter, the control program of the fourth embodiment will be described in comparison with the control program of the first embodiment.
 図11は、第4実施形態における制御プログラムのフローチャートである。図11に示すように、本実施形態の制御プログラムは変更指令角度を設定するステップS2(図3参照)を有していない一方、不感帯処理を行うか否かを判断するステップS3bを有している点で、第1実施形態の制御プログラムと異なる。 FIG. 11 is a flowchart of a control program according to the fourth embodiment. As shown in FIG. 11, the control program of the present embodiment does not include step S2 (see FIG. 3) for setting the change command angle, but has step S3b for determining whether or not to perform the dead zone processing. This is different from the control program of the first embodiment.
 本実施形態では、制御プログラムが開始されると、第1実施形態の場合と同様に、制御装置50はオペレータ操作装置101から指令角度を取得するとともに、旋回角度計測装置40から保持部20の実旋回角度を取得する(ステップS1)。 In the present embodiment, when the control program is started, similarly to the first embodiment, the control device 50 acquires the command angle from the operator operation device 101, and obtains the actual angle of the holding unit 20 from the turning angle measurement device 40. The turning angle is obtained (step S1).
 続いて、制御装置50は、偏差角度を算出する(ステップS3)。具体的には、制御装置50は、ステップS1で取得した実旋回角度から同じくステップS1で取得した指令角度を差し引いて偏差角度を算出する。例えば、指令角度が160度のとき、保持部20が正転方向に旋回して実旋回角度が150度にまで達したときの偏差角度は-10度である。また、例えば、指令角度が160度のとき、保持部20が逆転方向に旋回して実旋回角度が170度にまで達したときの偏差角度は+10度である。 Next, the control device 50 calculates a deviation angle (step S3). Specifically, the control device 50 calculates the deviation angle by subtracting the command angle also obtained in step S1 from the actual turning angle obtained in step S1. For example, when the command angle is 160 degrees, the deviation angle when the holding unit 20 turns in the normal rotation direction and the actual turning angle reaches 150 degrees is -10 degrees. Further, for example, when the command angle is 160 degrees, the deviation angle when the holding unit 20 turns in the reverse direction and the actual turning angle reaches 170 degrees is +10 degrees.
 続いて、制御装置50は、指令角度が設定されてから偏差角度が0度に至ったか否かを判定する(ステップS3b)。つまり、保持部20の実旋回角度が指令角度に至る前か、それとも保持部20の実旋回角度が指令角度に至った後かを判定する。 Subsequently, the control device 50 determines whether or not the deviation angle has reached 0 degrees after the command angle has been set (step S3b). That is, it is determined whether the actual turning angle of the holding unit 20 reaches the command angle or after the actual turning angle of the holding unit 20 reaches the command angle.
 制御装置50は、ステップS3bにおいて、偏差角度が0度に至ったと判定した場合(ステップS3bでYES)、不感帯処理を行う(ステップS4)。本実施形態における不感帯処理は、第1実施形態における不感帯処理と同じである。具体的には、制御装置50は、ステップS3で算出した偏差角度が所定の不感帯範囲にないときは処理後偏差角度を偏差角度と同じ角度に決定し、上記偏差角度が所定の不感帯範囲にあるときは処理後偏差角度をゼロに決定する。その後、ステップS4で決定した処理後偏差角度に基づいて必要により保持部20を旋回させる(ステップS5)。具体的には、第1実施形態の場合と同様に、制御装置50は、処理後偏差角度が0度のときは旋回装置30に制御信号を送信して保持部20の旋回を停止させ、処理後偏差角度が0度でない場合には旋回装置30に制御信号を送信して保持部20を旋回させる。 If the control device 50 determines in step S3b that the deviation angle has reached 0 degree (YES in step S3b), the control device 50 performs a dead zone process (step S4). The dead zone processing in the present embodiment is the same as the dead zone processing in the first embodiment. Specifically, when the deviation angle calculated in step S3 is not in the predetermined dead zone range, control device 50 determines the post-processing deviation angle to be the same as the deviation angle, and the deviation angle is in the predetermined dead zone range. At this time, the deviation angle after processing is determined to be zero. Thereafter, the holding unit 20 is turned as necessary based on the post-processing deviation angle determined in step S4 (step S5). Specifically, similarly to the case of the first embodiment, when the deviation angle after the process is 0 degree, the control device 50 transmits a control signal to the turning device 30 to stop the turning of the holding unit 20 and performs the process. If the rear deviation angle is not 0 degrees, a control signal is transmitted to the turning device 30 to turn the holding unit 20.
 これに対し、制御装置50は、ステップS3bにおいて、偏差角度が0度に至っていないと判定した場合(ステップS3bでNO)、不感帯処理を行わずに、ステップS3で算出した偏差角度に基づいて保持部20を旋回させる(ステップS5)。具体的には、制御装置50は、偏差角度が0度のときは旋回装置30に制御信号を送信して保持部20の旋回を停止させ、偏差角度が0度でない場合には旋回装置30に制御信号を送信して、偏差角度が0度に近づくように保持部20を旋回させる。ステップS5を経た後は、ステップS1に戻ってステップS1乃至S5を繰り返す。 On the other hand, if the control device 50 determines in step S3b that the deviation angle has not reached 0 degree (NO in step S3b), the control device 50 does not perform the dead zone processing and holds the value based on the deviation angle calculated in step S3. The unit 20 is turned (step S5). Specifically, the control device 50 transmits a control signal to the turning device 30 when the deviation angle is 0 degree to stop the turning of the holding unit 20, and when the deviation angle is not 0 degree, the control device 50 transmits the control signal to the turning device 30. By transmitting a control signal, the holding unit 20 is turned so that the deviation angle approaches 0 degrees. After step S5, the process returns to step S1 and repeats steps S1 to S5.
 以上のとおり、本実施形態のでは、保持部20の実旋回角度が指令角度に至る前は不感帯処理を行わずに保持部20の旋回角度を制御し、保持部20の実旋回角度が指令角度に至った後は不感帯処理を行って保持部20の旋回角度を制御している。 As described above, in the present embodiment, before the actual turning angle of the holding unit 20 reaches the command angle, the turning angle of the holding unit 20 is controlled without performing the dead zone processing, and the actual turning angle of the holding unit 20 becomes equal to the command angle. After that, the dead zone process is performed to control the turning angle of the holding unit 20.
 <保持部の動作>
 次に、本実施形態における保持部20の動作について説明する。図12は、本実施形態における保持部20の動作を示す図である。図中の実線で描かれた曲線は、保持部20の実旋回角度の時間変化を表しており、破線で描かれた曲線は変更実旋回角度の時間変化を表している。また、図12において、横軸が時間を示しており、縦軸が旋回角度を示している。図中の斜線部分は、不感帯範囲に相当する。なお、保持部20は正転方向に旋回するものとする。
<Operation of holding unit>
Next, the operation of the holding unit 20 in the present embodiment will be described. FIG. 12 is a diagram illustrating the operation of the holding unit 20 in the present embodiment. A curve drawn by a solid line in the drawing represents a time change of the actual turning angle of the holding unit 20, and a curve drawn by a broken line represents a time change of the changed actual turning angle. In FIG. 12, the horizontal axis represents time, and the vertical axis represents the turning angle. The hatched portion in the figure corresponds to the dead zone range. It is assumed that the holding unit 20 turns in the normal rotation direction.
 本実施形態では、図12に示すように、時間T0で制御装置50が指令角度を取得すると、保持部20は入力された指令角度に向かって旋回し始める。そして、保持部20の実旋回角度が指令角度に至る前は不感帯処理が行われないため、保持部20の実旋回角度が指令角度に近づいてゆき時間T5で指令角度に至る。よって、本実施形態によれば、旋回装置30の応答性が高いか否かにかかわらず、保持部20を指令角度にまで旋回させることができる。 In the present embodiment, as shown in FIG. 12, when the control device 50 acquires the command angle at time T0, the holding unit 20 starts turning toward the input command angle. Since the dead zone processing is not performed before the actual turning angle of the holding unit 20 reaches the command angle, the actual turning angle of the holding unit 20 approaches the command angle and reaches the command angle at time T5. Therefore, according to the present embodiment, regardless of whether or not the responsiveness of the turning device 30 is high, the holding unit 20 can be turned to the command angle.
 そして、時間T5以降は、保持部20の実旋回角度が指令角度に至った後であるから、不感帯処理が行われる。つまり、偏差角度が不感帯範囲にあるときには、保持部20は停止したままとなる。これにより、保持部20の実旋回角度が指令角度からわずかにずれたり、実回転角度の計測誤差が生じたりしても簡単には保持部20は旋回しない。よって、保持部20の不要な旋回によるエネルギーロスを抑制することができる。 (4) After the time T5, since the actual turning angle of the holding unit 20 has reached the command angle, the dead zone process is performed. That is, when the deviation angle is in the dead zone range, the holding unit 20 remains stopped. Thus, even if the actual turning angle of the holding unit 20 slightly deviates from the command angle or a measurement error of the actual rotation angle occurs, the holding unit 20 does not easily turn. Therefore, energy loss due to unnecessary turning of the holding unit 20 can be suppressed.
 なお、以上では、保持部20が正転方向に旋回する場合を例に保持部20の動作を説明したが、保持部20が逆転方向に旋回する場合でも同様の処理を行う。さらに、本実施形態ではステップS3において、実旋回角度から変更指令角度を差し引いて偏差角度を算出し、この偏差角度を用いて後の処理を行っている。ただし、実旋回角度から変更指令角度を差し引いた角度ではなく、変更指令角度から実旋回角度を差し引いた角度を偏差角度とし、その後の処理を行っても良い。この場合であっても、本実施形態の場合と同様の効果を得ることができる。 In the above, the operation of the holding unit 20 has been described by taking the case where the holding unit 20 turns in the normal rotation direction as an example. However, the same processing is performed when the holding unit 20 turns in the reverse rotation direction. Further, in the present embodiment, in step S3, a deviation angle is calculated by subtracting the change command angle from the actual turning angle, and the subsequent processing is performed using the deviation angle. However, instead of the angle obtained by subtracting the change command angle from the actual turning angle, the angle obtained by subtracting the actual turning angle from the change command angle may be used as the deviation angle, and the subsequent processing may be performed. Even in this case, the same effect as in the case of the present embodiment can be obtained.
 上述した実施形態では、スクリュープロペラ10が図外のエンジンから伝達される動力によって回転する場合について説明したが、旋回型推進機はこのような構成に限定されない。例えば、旋回型推進機は、筒状のダクトの内周部分に位置するリムにスクリュープロペラが直接取り付けられ、永久磁石モータによりリムがダクト本体に対して回転する、いわゆるリムドライブを採用してもよい。 In the above-described embodiment, the case where the screw propeller 10 is rotated by the power transmitted from the engine (not shown) has been described, but the rotary propulsion device is not limited to such a configuration. For example, the revolving propulsion device employs a so-called rim drive in which a screw propeller is directly attached to a rim located at an inner peripheral portion of a cylindrical duct, and the rim is rotated relative to the duct body by a permanent magnet motor. Good.
10 スクリュープロペラ
20 保持部
30 旋回装置
50 制御装置
100、200、300、400 旋回型推進機
101 オペレータ操作装置
Reference Signs List 10 screw propeller 20 holding unit 30 turning device 50 control device 100, 200, 300, 400 turning type propulsion device 101 operator operation device

Claims (10)

  1.  スクリュープロペラと、
     前記スクリュープロペラを保持する保持部と、
     前記保持部を旋回させる旋回装置と、
     入力された指令角度に基づいて前記保持部の旋回角度を制御する制御装置と、を備え、
      前記制御装置は、
      前記指令角度に基づいて変更指令角度を設定し、
      前記保持部の実旋回角度と前記変更指令角度の一方から他方を差し引いた偏差角度が下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、
      前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、
      前記変更指令角度を設定するにあたり、前記処理後偏差角度がゼロのときは変更指令角度を前記指令角度と同じ角度に設定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは変更指令角度を前記指令角度よりも大きい角度に設定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは変更指令角度を前記指令角度よりも小さい角度に設定するように構成されている、旋回型推進機。
    A screw propeller,
    A holding unit for holding the screw propeller,
    A turning device for turning the holding portion,
    A control device that controls the turning angle of the holding unit based on the input command angle,
    The control device includes:
    Set a change command angle based on the command angle,
    When the deviation angle obtained by subtracting the other from one of the actual turning angle and the change command angle of the holding unit is not in the dead zone where the lower limit value is equal to or less than zero and the upper limit value is equal to or greater than zero, the deviation angle after processing is referred to as the deviation angle. Determined to the same angle, when the deviation angle is in the dead zone range, determine the post-processing deviation angle to zero,
    When the post-processing deviation angle is not zero, the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and the post-processing deviation angle is zero when the post-processing deviation angle is zero. Stop the rotation of the holding part,
    In setting the change command angle, when the post-processing deviation angle is zero, the change command angle is set to the same angle as the command angle, and the holding unit turns in the forward direction in which the turning angle increases. When the change command angle is set to an angle larger than the command angle, the change command angle is set to an angle smaller than the command angle when the holding unit turns in the reverse rotation direction in which the turning angle decreases. A swivel-type propulsion device.
  2.  スクリュープロペラと、
     前記スクリュープロペラを保持する保持部と、
     前記保持部を旋回させる旋回装置と、
     入力された指令角度に基づいて前記保持部の旋回角度を制御する制御装置と、を備え、
      前記制御装置は、
      下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲を設定し、
      前記保持部の実旋回角度から前記指令角度を差し引いた偏差角度が前記不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、
      前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、
      前記不感帯範囲を設定するにあたり、前記処理後偏差角度がゼロのときは前記不感帯範囲の下限値を所定の基準下限値に設定するとともに上限値を所定の基準上限値に設定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは不感帯範囲の下限値を前記基準下限値よりも大きい値に設定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは不感帯範囲の上限値を前記基準上限値よりも小さい値に設定するように構成されている、旋回型推進機。
    A screw propeller,
    A holding unit for holding the screw propeller,
    A turning device for turning the holding portion,
    A control device that controls the turning angle of the holding unit based on the input command angle,
    The control device includes:
    Set a dead zone range where the lower limit is less than or equal to zero and the upper limit is greater than or equal to zero,
    When the deviation angle obtained by subtracting the command angle from the actual turning angle of the holding unit is not in the dead zone range, the post-processing deviation angle is determined to be the same angle as the deviation angle, and when the deviation angle is in the dead zone range, Determine the deviation angle after the process to zero,
    When the post-processing deviation angle is not zero, the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and the post-processing deviation angle is zero when the post-processing deviation angle is zero. Stop the rotation of the holding part,
    In setting the dead zone range, when the deviation angle after processing is zero, the lower limit value of the dead zone range is set to a predetermined reference lower limit value and the upper limit value is set to a predetermined reference upper limit value, and the turning angle is increased. When the holding unit turns in the forward rotation direction, the lower limit value of the dead zone range is set to a value larger than the reference lower limit value, and when the holding unit turns in the reverse rotation direction in which the turning angle decreases. Is a swing-type propulsion device configured to set an upper limit value of a dead zone range to a value smaller than the reference upper limit value.
  3.  スクリュープロペラと、
     前記スクリュープロペラを保持する保持部と、
     前記保持部を旋回させる旋回装置と、
     入力された指令角度に基づいて前記保持部の旋回角度を制御する制御装置と、を備え、
      前記制御装置は、
      下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲を設定し、
      前記指令角度から前記保持部の実旋回角度を差し引いた偏差角度が前記不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、
      前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、
      前記不感帯範囲を設定するにあたり、前記処理後偏差角度がゼロのときは前記不感帯範囲の下限値を所定の基準下限値に設定するとともに上限値を所定の基準上限値に設定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは不感帯範囲の上限値を前記基準上限値よりも小さい値に設定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは不感帯範囲の下限値を前記基準下限値よりも大きい値に設定するように構成されている、旋回型推進機。
    A screw propeller,
    A holding unit for holding the screw propeller,
    A turning device for turning the holding portion,
    A control device that controls the turning angle of the holding unit based on the input command angle,
    The control device includes:
    Set a dead zone range where the lower limit is less than or equal to zero and the upper limit is greater than or equal to zero,
    When the deviation angle obtained by subtracting the actual turning angle of the holding unit from the command angle is not in the dead band range, the post-processing deviation angle is determined to be the same angle as the deviation angle, and when the deviation angle is in the dead band range, Determine the deviation angle after the process to zero,
    When the post-processing deviation angle is not zero, the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and the post-processing deviation angle is zero when the post-processing deviation angle is zero. Stop the rotation of the holding part,
    In setting the dead zone range, when the deviation angle after processing is zero, the lower limit value of the dead zone range is set to a predetermined reference lower limit value and the upper limit value is set to a predetermined reference upper limit value, and the turning angle is increased. When the holding unit turns in the forward rotation direction, the upper limit value of the dead zone range is set to a value smaller than the reference upper limit value, and when the holding unit turns in the reverse rotation direction in which the turning angle decreases. Is a rotary propulsion device configured to set a lower limit value of a dead zone range to a value larger than the reference lower limit value.
  4.  スクリュープロペラと、
     前記スクリュープロペラを保持する保持部と、
     前記保持部を旋回させる旋回装置と、
     入力された指令角度に基づいて前記保持部の旋回角度を制御する制御装置と、を備え、
      前記制御装置は、
      前記保持部の実旋回角度に基づいて変更実旋回角度を決定し、
      前記変更実旋回角度と前記指令角度の一方から他方を差し引いた偏差角度が下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、
      前記処理後偏差角度がゼロでないときには、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、
      前記変更実旋回角度を決定するにあたり、前記処理後偏差角度がゼロのときは変更実旋回角度を実旋回角度と同じ角度に決定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは変更実旋回角度を前記実旋回角度よりも小さい角度に決定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは変更実旋回角度を前記実旋回角度よりも大きい角度に出力するように構成されている、旋回型推進機。
    A screw propeller,
    A holding unit for holding the screw propeller,
    A turning device for turning the holding portion,
    A control device that controls the turning angle of the holding unit based on the input command angle,
    The control device includes:
    Determine a changed actual turning angle based on the actual turning angle of the holding unit,
    When the deviation angle obtained by subtracting the other from one of the change actual turning angle and the command angle is not in the dead zone where the lower limit is equal to or less than zero and the upper limit is equal to or greater than zero, the post-processing deviation angle is set to the same angle as the deviation angle. Determined, when the deviation angle is in the dead zone range, the post-processing deviation angle is determined to be zero,
    When the post-processing deviation angle is not zero, the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero. When the post-processing deviation angle is zero, the holding is performed. Stop turning of the part,
    In determining the changed actual turning angle, when the post-processing deviation angle is zero, the changed actual turning angle is determined to be the same angle as the actual turning angle, and the holding unit is moved in the normal rotation direction in which the turning angle increases. When turning, the changed actual turning angle is determined to be smaller than the actual turning angle, and when the holding unit turns in the reverse direction in which the turning angle becomes smaller, the changed actual turning angle is set to be smaller than the actual turning angle. A swivel-type thruster configured to output a large angle.
  5.  スクリュープロペラと、
     前記スクリュープロペラを保持する保持部と、
     前記保持部を旋回させる旋回装置と、
     入力された指令角度に基づいて前記保持部の旋回角度を制御する制御装置と、を備え、
      前記制御装置は、
      前記指令角度と前記保持部の実旋回角度の一方から他方を差し引いた偏差角度がゼロとなるように前記保持部を旋回させ、
      前記偏差角度がゼロに至った後は、下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲を設定し、前記偏差角度が前記不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させるように構成されている、旋回型推進機。
    A screw propeller,
    A holding unit for holding the screw propeller,
    A turning device for turning the holding portion,
    A control device that controls the turning angle of the holding unit based on the input command angle,
    The control device includes:
    The holding unit is turned such that a deviation angle obtained by subtracting the other from one of the command angle and the actual turning angle of the holding unit is zero,
    After the deviation angle reaches zero, a lower limit is set to zero or less and an upper limit is set to a dead zone range of zero or more.When the deviation angle is not in the dead zone range, the post-processing deviation angle is set to the deviation angle. Determined at the same angle, when the deviation angle is in the dead zone range, the post-processing deviation angle is determined to be zero, and when the post-processing deviation angle is not zero, the post-processing deviation angle becomes zero. A turning type propulsion device, wherein the turning portion is turned, and when the post-processing deviation angle is zero, the turning of the holding portion is stopped.
  6.  スクリュープロペラと、
     前記スクリュープロペラを保持する保持部と、
     前記保持部を旋回させる旋回装置と、を備えた旋回型推進機の制御方法であって、
     入力された指令角度に基づいて変更指令角度を設定し、
     前記保持部の実旋回角度と前記変更指令角度の一方から他方を差し引いた偏差角度が下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、
     前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、
     前記変更指令角度を設定するにあたり、前記処理後偏差角度がゼロのときは変更指令角度を前記指令角度と同じ角度に設定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは変更指令角度を前記指令角度よりも大きい角度に設定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは変更指令角度を前記指令角度よりも小さい角度に設定する、旋回型推進機の制御方法。
    A screw propeller,
    A holding unit for holding the screw propeller,
    A turning device for turning the holding portion, and a control method of a turning type propulsion device comprising:
    Set the change command angle based on the input command angle,
    When the deviation angle obtained by subtracting the other from one of the actual turning angle and the change command angle of the holding unit is not in the dead zone where the lower limit value is equal to or less than zero and the upper limit value is equal to or greater than zero, the deviation angle after processing is referred to as the deviation angle. Determined to the same angle, when the deviation angle is in the dead zone range, determine the post-processing deviation angle to zero,
    When the post-processing deviation angle is not zero, the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and the post-processing deviation angle is zero when the post-processing deviation angle is zero. Stop the rotation of the holding part,
    In setting the change command angle, when the post-processing deviation angle is zero, the change command angle is set to the same angle as the command angle, and the holding unit turns in the forward direction in which the turning angle increases. When the change command angle is set to an angle larger than the command angle, the turning command angle is set to an angle smaller than the command angle when the holding unit turns in the reverse direction in which the turning angle decreases. A control method for a swing type propulsion device.
  7.  スクリュープロペラと、
     前記スクリュープロペラを保持する保持部と、
     前記保持部を旋回させる旋回装置と、を備えた旋回型推進機の制御方法であって、
     下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲を設定し、
     前記保持部の実旋回角度から入力された指令角度を差し引いた偏差角度が前記不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、
     前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、
     前記不感帯範囲を設定するにあたり、前記処理後偏差角度がゼロのときは前記不感帯範囲の下限値を所定の基準下限値に設定するとともに上限値を所定の基準上限値に設定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは不感帯範囲の下限値を前記基準下限値よりも大きい値に設定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは不感帯範囲の上限値を前記基準上限値よりも小さい値に設定する、旋回型推進機の制御方法。
    A screw propeller,
    A holding unit for holding the screw propeller,
    A turning device for turning the holding portion, and a control method of a turning type propulsion device comprising:
    Set a dead zone range where the lower limit is less than or equal to zero and the upper limit is greater than or equal to zero,
    When the deviation angle obtained by subtracting the input command angle from the actual turning angle of the holding unit is not in the dead zone range, the post-processing deviation angle is determined to be the same angle as the deviation angle, and the deviation angle is in the dead zone range. When the deviation angle after the above processing is determined to be zero,
    When the post-processing deviation angle is not zero, the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and the post-processing deviation angle is zero when the post-processing deviation angle is zero. Stop the rotation of the holding part,
    In setting the dead zone range, when the deviation angle after processing is zero, the lower limit value of the dead zone range is set to a predetermined reference lower limit value and the upper limit value is set to a predetermined reference upper limit value, and the turning angle is increased. When the holding unit turns in the forward rotation direction, the lower limit value of the dead zone range is set to a value larger than the reference lower limit value, and when the holding unit turns in the reverse rotation direction in which the turning angle decreases. Is a method for controlling a rotary propulsion device, wherein the upper limit value of the dead zone range is set to a value smaller than the reference upper limit value.
  8.  スクリュープロペラと、
     前記スクリュープロペラを保持する保持部と、
     前記保持部を旋回させる旋回装置と、を備えた旋回型推進機の制御方法であって、
     下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲を設定し、
     入力された指令角度から前記保持部の実旋回角度を差し引いた偏差角度が前記不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、
     前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、
     前記不感帯範囲を設定するにあたり、前記処理後偏差角度がゼロのときは前記不感帯範囲の下限値を所定の基準下限値に設定するとともに上限値を所定の基準上限値に設定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは不感帯範囲の上限値を前記基準上限値よりも小さい値に設定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは不感帯範囲の下限値を前記基準下限値よりも大きい値に設定する、旋回型推進機の制御方法。
    A screw propeller,
    A holding unit for holding the screw propeller,
    A turning device for turning the holding portion, and a control method of a turning type propulsion device comprising:
    Set a dead zone range where the lower limit is less than or equal to zero and the upper limit is greater than or equal to zero,
    When the deviation angle obtained by subtracting the actual turning angle of the holding unit from the input command angle is not in the dead zone range, the post-processing deviation angle is determined to be the same angle as the deviation angle, and the deviation angle is in the dead zone range. When the deviation angle after the above processing is determined to be zero,
    When the post-processing deviation angle is not zero, the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero, and the post-processing deviation angle is zero when the post-processing deviation angle is zero. Stop the rotation of the holding part,
    In setting the dead zone range, when the deviation angle after processing is zero, the lower limit value of the dead zone range is set to a predetermined reference lower limit value and the upper limit value is set to a predetermined reference upper limit value, and the turning angle is increased. When the holding unit turns in the forward rotation direction, the upper limit value of the dead zone range is set to a value smaller than the reference upper limit value, and when the holding unit turns in the reverse rotation direction in which the turning angle decreases. Is a method for controlling a rotary propulsion device, wherein the lower limit value of the dead zone range is set to a value larger than the reference lower limit value.
  9.  スクリュープロペラと、
     前記スクリュープロペラを保持する保持部と、
     前記保持部を旋回させる旋回装置と、を備えた旋回型推進機の制御方法であって、
     前記保持部の実旋回角度に基づいて変更実旋回角度を決定し、
     前記変更実旋回角度と入力された指令角度の一方から他方を差し引いた偏差角度が下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、
     前記処理後偏差角度がゼロでないときには、当該処理後偏差角度がゼロとなるように前記保持部の旋回方向を選択して前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させ、
     前記変更実旋回角度を決定するにあたり、前記処理後偏差角度がゼロのときは変更実旋回角度を実旋回角度と同じ角度に決定し、旋回角度が大きくなってゆく正転方向に前記保持部が旋回するときは変更実旋回角度を前記実旋回角度よりも小さい角度に決定し、旋回角度が小さくなってゆく逆転方向に前記保持部が旋回するときは変更実旋回角度を前記実旋回角度よりも大きい角度に出力する、旋回型推進機の制御方法。
    A screw propeller,
    A holding unit for holding the screw propeller,
    A turning device for turning the holding portion, and a control method of a turning type propulsion device comprising:
    Determine a changed actual turning angle based on the actual turning angle of the holding unit,
    When the deviation angle obtained by subtracting the other from the changed actual turning angle and the input command angle is not in the dead band range where the lower limit value is equal to or less than zero and the upper limit value is equal to or greater than zero, the deviation angle after processing is the same as the deviation angle. Determine the angle, when the deviation angle is in the dead zone range, determine the post-processing deviation angle to zero,
    When the post-processing deviation angle is not zero, the turning direction of the holding unit is selected and the holding unit is turned so that the post-processing deviation angle becomes zero. When the post-processing deviation angle is zero, the holding is performed. Stop turning of the part,
    In determining the changed actual turning angle, when the post-processing deviation angle is zero, the changed actual turning angle is determined to be the same angle as the actual turning angle, and the holding unit is moved in the normal rotation direction in which the turning angle increases. When turning, the changed actual turning angle is determined to be smaller than the actual turning angle, and when the holding unit turns in the reverse direction in which the turning angle becomes smaller, the changed actual turning angle is set to be smaller than the actual turning angle. A method of controlling a turning type propulsion machine that outputs a large angle.
  10.  スクリュープロペラと、
     前記スクリュープロペラを保持する保持部と、
     前記保持部を旋回させる旋回装置と、を備えた旋回型推進機の制御方法であって、
     入力された指令角度と前記保持部の実旋回角度の一方から他方を差し引いた偏差角度がゼロとなるように前記保持部を旋回させ、
     前記偏差角度がゼロに至った後は、下限値をゼロ以下とし上限値をゼロ以上とする不感帯範囲を設定し、前記偏差角度が前記不感帯範囲にないときは処理後偏差角度を前記偏差角度と同じ角度に決定し、前記偏差角度が前記不感帯範囲にあるときは前記処理後偏差角度をゼロに決定し、前記処理後偏差角度がゼロでないときは、当該処理後偏差角度がゼロとなるように前記保持部を旋回させ、前記処理後偏差角度がゼロのときは前記保持部の旋回を停止させる、旋回型推進機の制御方法。
    A screw propeller,
    A holding unit for holding the screw propeller,
    A turning device for turning the holding portion, and a control method of a turning type propulsion device comprising:
    The holding unit is turned so that a deviation angle obtained by subtracting the other from the input command angle and the actual turning angle of the holding unit is zero,
    After the deviation angle reaches zero, a lower limit is set to zero or less and an upper limit is set to a dead zone range of zero or more.When the deviation angle is not in the dead zone range, the post-processing deviation angle is set to the deviation angle. Determined at the same angle, when the deviation angle is in the dead zone range, the post-processing deviation angle is determined to be zero, and when the post-processing deviation angle is not zero, the post-processing deviation angle becomes zero. A method for controlling a turning type propulsion device, wherein the holding portion is turned, and when the post-processing deviation angle is zero, the turning of the holding portion is stopped.
PCT/JP2019/031605 2018-09-05 2019-08-09 Turning propulsion device and turning propulsion device control method WO2020049954A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980057246.3A CN112638764B (en) 2018-09-05 2019-08-09 Steering propeller and control method for steering propeller
KR1020217008442A KR102488766B1 (en) 2018-09-05 2019-08-09 Swing propeller and control method of the swing propeller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-166378 2018-09-05
JP2018166378A JP6473543B1 (en) 2018-09-05 2018-09-05 Swivel propulsion device and control method of swirl propulsion device

Publications (1)

Publication Number Publication Date
WO2020049954A1 true WO2020049954A1 (en) 2020-03-12

Family

ID=65443068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031605 WO2020049954A1 (en) 2018-09-05 2019-08-09 Turning propulsion device and turning propulsion device control method

Country Status (4)

Country Link
JP (1) JP6473543B1 (en)
KR (1) KR102488766B1 (en)
CN (1) CN112638764B (en)
WO (1) WO2020049954A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316697A (en) * 2001-04-20 2002-10-29 Tech Res & Dev Inst Of Japan Def Agency Ship route keeping control method and device, and ship
JP2008155764A (en) * 2006-12-22 2008-07-10 Yamaha Motor Co Ltd Control device for vessel propelling device and sailing support system and vessel using the control device
JP2009057002A (en) * 2007-09-03 2009-03-19 Niigata Power Systems Co Ltd Turning control apparatus of vessel propulsion machine
JP2011140272A (en) * 2010-01-07 2011-07-21 Yamaha Motor Co Ltd Marine vessel propulsion control apparatus and marine vessel
JP2018079743A (en) * 2016-11-14 2018-05-24 ヤマハ発動機株式会社 Ship propulsion unit and ship with the same
US20180231980A1 (en) * 2017-02-15 2018-08-16 Brunswick Corporation Station keeping methods

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209697A (en) 1982-05-31 1983-12-06 Kawasaki Heavy Ind Ltd Turning angle controller of turn thruster
US5152239A (en) * 1991-11-19 1992-10-06 Raytheon Company Autopilot having roll compensation capabilities
FI107042B (en) * 1998-09-14 2001-05-31 Abb Azipod Oy Turning a propulsion unit
EP1641098B1 (en) * 2003-06-26 2020-05-13 Toshiba Mitsubishi-Electric Industrial Systems Corporation Motor drive system
JP5058861B2 (en) * 2008-03-25 2012-10-24 新潟原動機株式会社 Ship propulsion unit turning control device
JP5644450B2 (en) * 2010-12-07 2014-12-24 株式会社明電舎 Industrial vehicle steering device
JP5972711B2 (en) * 2012-08-22 2016-08-17 三菱重工業株式会社 Counter-rotating propeller propulsion type ship
JP2014076758A (en) * 2012-10-11 2014-05-01 Suzuki Motor Corp Method and system for estimating movement center of ship
CN103676650A (en) * 2013-11-29 2014-03-26 上海交通大学 Method for PID (proportion integration differentiation) optimization control with dead zone for two-wheeled self-balancing intelligent vehicle
JP6138881B2 (en) * 2015-09-25 2017-05-31 株式会社Subaru Steering support control device
US9694892B1 (en) * 2015-12-29 2017-07-04 Brunswick Corporation System and method for trimming trimmable marine devices with respect to a marine vessel
CN105523164B (en) * 2016-02-01 2017-10-24 宁波市北仑海伯精密机械制造有限公司 The steering and forward method of a kind of double dynamical propeller ship

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316697A (en) * 2001-04-20 2002-10-29 Tech Res & Dev Inst Of Japan Def Agency Ship route keeping control method and device, and ship
JP2008155764A (en) * 2006-12-22 2008-07-10 Yamaha Motor Co Ltd Control device for vessel propelling device and sailing support system and vessel using the control device
JP2009057002A (en) * 2007-09-03 2009-03-19 Niigata Power Systems Co Ltd Turning control apparatus of vessel propulsion machine
JP2011140272A (en) * 2010-01-07 2011-07-21 Yamaha Motor Co Ltd Marine vessel propulsion control apparatus and marine vessel
JP2018079743A (en) * 2016-11-14 2018-05-24 ヤマハ発動機株式会社 Ship propulsion unit and ship with the same
US20180231980A1 (en) * 2017-02-15 2018-08-16 Brunswick Corporation Station keeping methods

Also Published As

Publication number Publication date
KR20210047907A (en) 2021-04-30
JP6473543B1 (en) 2019-02-20
CN112638764B (en) 2023-06-09
CN112638764A (en) 2021-04-09
KR102488766B1 (en) 2023-01-17
JP2020037367A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
US10775808B2 (en) Boat maneuvering control method for boat and boat maneuvering control system for boat
US7375487B2 (en) Geared motor
US20170137103A1 (en) Boat maneuvering control method for boat and boat maneuvering control system for boat
JP2008286156A (en) Wind power generation device and its yaw turn driving method
JP6363123B2 (en) Windmill, yaw control device and operation control method thereof
JP5164043B2 (en) Marine hybrid propulsion system
EP3388329B1 (en) Ship handling device
JP2019501073A (en) Ship drive system operating method and ship drive system
WO2020049954A1 (en) Turning propulsion device and turning propulsion device control method
US10661872B1 (en) System for and method of controlling watercraft
JP2005313280A (en) Numerical control device
JP4827678B2 (en) Actuator position fluctuation suppression method
JP2008230484A (en) Automatic steering device and automatic steering method
JP2012030704A (en) Ship and method for controlling controllable pitch propeller
JP2011189884A (en) Automatic steering device, automatic steering method, and automatic steering program
JP5210975B2 (en) Ship propulsion control device
JP2014236532A (en) Driving control device for vibration actuator and optical equipment
JP2017191448A (en) Motor controller, motor control method and motor control program
JP2019170114A (en) Control apparatus of motor, robot, and control method of the motor
JP2023022663A (en) Ship direction control device, ship direction control method, and program
JP7296438B2 (en) Ship propulsion system, ship propulsion control method, and ship propulsion control program
US11402838B1 (en) System for and method of controlling watercraft
JP4471988B2 (en) Drive control method for rotating platform
CN114476012B (en) Steering control device of full-rotation steering oar
KR102401425B1 (en) Variable pitch propeller control system and control method of variable pitch propeller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217008442

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19856520

Country of ref document: EP

Kind code of ref document: A1