JP2008286156A - Wind power generation device and its yaw turn driving method - Google Patents

Wind power generation device and its yaw turn driving method Download PDF

Info

Publication number
JP2008286156A
JP2008286156A JP2007133830A JP2007133830A JP2008286156A JP 2008286156 A JP2008286156 A JP 2008286156A JP 2007133830 A JP2007133830 A JP 2007133830A JP 2007133830 A JP2007133830 A JP 2007133830A JP 2008286156 A JP2008286156 A JP 2008286156A
Authority
JP
Japan
Prior art keywords
command value
wind turbine
around
moment
yaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007133830A
Other languages
Japanese (ja)
Other versions
JP4994947B2 (en
Inventor
Yoshiyuki Hayashi
義之 林
Masaaki Shibata
昌明 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007133830A priority Critical patent/JP4994947B2/en
Priority to TW097116684A priority patent/TW200920940A/en
Priority to US12/517,271 priority patent/US8249754B2/en
Priority to EP08764266.6A priority patent/EP2154363B1/en
Priority to AU2008252208A priority patent/AU2008252208B2/en
Priority to CA2671408A priority patent/CA2671408C/en
Priority to KR1020097012406A priority patent/KR101039215B1/en
Priority to PCT/JP2008/058559 priority patent/WO2008143009A1/en
Priority to CN2008800015071A priority patent/CN101578450B/en
Publication of JP2008286156A publication Critical patent/JP2008286156A/en
Application granted granted Critical
Publication of JP4994947B2 publication Critical patent/JP4994947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1033Power (if explicitly mentioned)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/321Wind directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/331Mechanical loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/804Optical devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To completely or partially reduce a yaw drive mechanism and reduce power consumption in a nacelle. <P>SOLUTION: This wind power generation device comprises a load measuring sensor 9 for measuring the load of each windmill blade, a moment calculating part 31 for giving coordinate conversion to the load of each windmill blade measured by the load measuring sensor 9 to calculate moment around a windmill tower shaft, a component command value setting part 32 for adding an around-yaw control command value to a reference command value for counterbalancing the moment calculated by the moment calculating part 31 to calculate an angle command value around the windmill tower shaft, and a pitch angle command value setting part 33 for setting a pitch angle command value for each windmill blade in accordance with the angle command value around the windmill tower shaft. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、風力発電装置および風力発電装置のヨー旋回駆動方法に関するものである。   The present invention relates to a wind turbine generator and a yaw turning drive method for the wind turbine generator.

風力発電装置は、風車タワーの上端に風車、及び、風車により回転駆動される発電機を有する風車発電ユニットがヨー回転可能に設けられ、風車が正面より風力を受けるよう、風向きに応じて風車発電ユニットが風車タワーに対してヨー旋回(略水平面上の旋回)するように構成されている。
上記風力発電装置においては、リングギアをタワー側に固定配置するとともに、該リングギアと噛合するピニオンを風車発電ユニット側に配置し、このピニオンをヨーモータによって回転駆動することにより、風車発電ユニットのヨー旋回駆動が行われている(例えば、特許文献1参照)。
特開2001−289149号公報
In the wind turbine generator, a wind turbine generator unit having a wind turbine and a generator driven to rotate by the wind turbine is provided at the upper end of the wind turbine tower so as to be capable of yaw rotation. The unit is configured to perform yaw rotation (rotation on a substantially horizontal plane) with respect to the wind turbine tower.
In the wind turbine generator described above, the ring gear is fixedly disposed on the tower side, and a pinion that meshes with the ring gear is disposed on the wind turbine power generation unit side. The turning drive is performed (for example, refer patent document 1).
JP 2001-289149 A

ところで、近年、風車の大型化に伴い、上記ヨーモータやリングギア等が大型化している。ヨーモータは、ナセルのヨー旋回駆動のために頻繁に起動されるが、大型化されることにより、更なる消費電力の増大を招くこととなる。
また、ナセルの小型化・軽量化を図る場合には、上記ヨーモータ等の構成の小型化・軽量化が重要な課題となる。
By the way, in recent years, the yaw motor, the ring gear, and the like have been enlarged with the increase in the size of the windmill. The yaw motor is frequently started to drive the nacelle to rotate the yaw. However, when the yaw motor is enlarged, the power consumption is further increased.
Further, when the nacelle is reduced in size and weight, it is important to reduce the size and weight of the yaw motor and the like.

本発明は、上記問題を解決するためになされたもので、ナセル内における消費電力の低減ならびにナセルの小型化を可能とする風力発電装置および風力発電装置のヨー旋回駆動方法を提供することを目的とする。   The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a wind turbine generator and a yaw rotation drive method for the wind turbine generator that can reduce power consumption in the nacelle and reduce the size of the nacelle. And

上記課題を解決するために、本発明は以下の手段を採用する。
本発明は、各風車翼の荷重を計測する荷重計測手段と、前記荷重計測手段によって計測された各風車翼の荷重を座標変換することにより、風車タワー軸まわりのモーメントを算出するモーメント算出手段と、前記モーメント算出手段によって算出された前記モーメントを相殺するための基準指令値に対して、ヨーまわり制御指令値を加算することにより、前記風車タワー軸まわりの角度指令値を算出する成分指令値設定手段と、前記風車タワー軸まわりの角度指令値に基づいて、各風車翼のピッチ角度指令値を設定するピッチ角度指令設定部とを具備する風力発電装置を提供する。
In order to solve the above problems, the present invention employs the following means.
The present invention includes a load measuring unit that measures the load of each wind turbine blade, and a moment calculating unit that calculates a moment around the wind turbine tower axis by performing coordinate conversion on the load of each wind turbine blade measured by the load measuring unit. A component command value setting for calculating an angle command value around the windmill tower axis by adding a yaw control command value to a reference command value for canceling the moment calculated by the moment calculating means And a pitch angle command setting unit for setting a pitch angle command value of each wind turbine blade based on an angle command value around the wind turbine tower axis.

各風車翼に係る風車タワー軸まわりの荷重を相殺するための基準指令値に対して、ヨーまわり制御指令値が加算されて角度指令値が算出され、この角度指令値に基づいて各風車翼のピッチ角度指令値が設定されるので、ヨーまわり制御指令値に応じて風車翼に発生するモーメントを利用して、ナセルを風車タワー軸まわり(ヨーまわり)に旋回させることが可能となる。このように、各風車翼のピッチ角度を制御することにより、空気力を用いてナセルを旋回させるので、ヨーモータの小型化および使用頻度の低減を図ることが可能となる。この結果、ナセルの軽量化を図ることができるとともに、ヨーモータによる電力消費を抑制することが可能となる。また、ヨーモータを不要とすることも可能であり、この場合には、ナセルの更なる小型化・軽量化が可能となるとともに、電力消費の更なる低減を図ることができる。   An angle command value is calculated by adding the yaw control command value to the reference command value for canceling the load around the wind turbine tower axis related to each wind turbine blade, and based on this angle command value, each wind turbine blade Since the pitch angle command value is set, the nacelle can be turned around the windmill tower axis (yaw rotation) by using the moment generated in the windmill blade according to the yaw rotation control command value. In this way, by controlling the pitch angle of each wind turbine blade, the nacelle is turned using aerodynamic force, so that the yaw motor can be downsized and the frequency of use can be reduced. As a result, it is possible to reduce the weight of the nacelle and to suppress power consumption by the yaw motor. Further, the yaw motor can be eliminated. In this case, the nacelle can be further reduced in size and weight, and the power consumption can be further reduced.

上記風力発電装置において、前記ヨーまわり制御指令値は、風向きに応じて与えられることとしてもよい。   In the wind power generator, the yaw control command value may be given according to a wind direction.

このように、風向きに応じたヨーまわり制御指令値を与えることにより、風向きに対して適切な方向にナセルを回動させることが可能となる。   Thus, by giving the yaw control command value according to the wind direction, the nacelle can be rotated in an appropriate direction with respect to the wind direction.

上記風力発電装置において、前記ヨーまわり制御指令値は、例えば、風向偏差に基づいて設定される。   In the wind power generator, the yaw control command value is set based on, for example, a wind direction deviation.

本発明は、各風車翼の荷重をそれぞれ計測する過程と、各風車翼の荷重を座標変換することにより、風車タワー軸まわりのモーメントを算出する過程と、前記モーメントをゼロにするための基準指令値に対して、ヨーまわり制御指令値を加算することにより、前記風車タワー軸まわりの角度指令値を算出する過程と、前記風車タワー軸まわりの角度指令に基づいて、各風車翼のピッチ角度指令を設定する過程とを有する風力発電装置のヨー旋回駆動方法を提供する。   The present invention provides a process for measuring the load on each wind turbine blade, a process for calculating a moment around the wind turbine tower axis by coordinate-converting the load on each wind turbine blade, and a reference command for making the moment zero. Based on the process of calculating the angle command value around the wind turbine tower axis by adding the yaw control command value to the value, and the pitch angle command of each wind turbine blade based on the angle command around the wind turbine tower axis And a method of driving the yaw rotation of the wind turbine generator.

本発明によれば、ナセル内における消費電力の低減ならびにナセルの小型化を図ることができるという効果を奏する。   According to the present invention, it is possible to reduce the power consumption in the nacelle and reduce the size of the nacelle.

以下に、本発明に係る風力発電装置および風力発電装置のヨー旋回駆動方法の一実施形態について、図面を参照して説明する。
図1は、本実施形態に係る風力発電装置の概略構成を示したブロック図である。
図1に示されるように、風力発電装置1は、風車タワー2と、風車タワー2の上端に設置されるナセル3と、略水平な軸線まわりに回転可能にしてナセル3に設けられるロータヘッド4とを有している。ロータヘッド4には、その回転軸線まわりに放射状にして複数枚の風車翼5が取り付けられている。この結果、ロータヘッド4の回転軸線方向から風車翼5に当たった風の力が、ロータヘッド4を回転軸線まわりに回転させる動力に変換されるようになっている。なお、本実施形態では、3枚の風車翼5を備える場合について説明する。
Hereinafter, an embodiment of a wind turbine generator and a yaw turning drive method for a wind turbine generator according to the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of the wind turbine generator according to the present embodiment.
As shown in FIG. 1, the wind turbine generator 1 includes a windmill tower 2, a nacelle 3 installed at the upper end of the windmill tower 2, and a rotor head 4 provided in the nacelle 3 so as to be rotatable about a substantially horizontal axis. And have. A plurality of wind turbine blades 5 are attached to the rotor head 4 in a radial pattern around its rotational axis. As a result, the force of wind striking the wind turbine blade 5 from the direction of the rotation axis of the rotor head 4 is converted into power for rotating the rotor head 4 about the rotation axis. In the present embodiment, a case where three wind turbine blades 5 are provided will be described.

ナセル3の外周面適所(たとえば上部等)には、周辺の風速値を測定する風速計7と、風向を測定する風向計8とが設置されている。また、各風車翼5には、それぞれの風車翼5における荷重を計測するための荷重計測センサ(例えば光ファイバセンサ)9が設けられている。
上記風向計8は、風向偏差を計測し、風向偏差を計測値として出力するものである。また、荷重計測センサ9は、例えば、風車翼5の歪みを計測し、この歪み量に応じて荷重を計測するものである。
An anemometer 7 for measuring the peripheral wind speed value and an anemometer 8 for measuring the wind direction are installed at appropriate positions (for example, the upper part) of the outer surface of the nacelle 3. Each wind turbine blade 5 is provided with a load measurement sensor (for example, an optical fiber sensor) 9 for measuring a load on each wind turbine blade 5.
The anemometer 8 measures a wind direction deviation and outputs the wind direction deviation as a measured value. The load measuring sensor 9 measures, for example, the distortion of the wind turbine blade 5 and measures the load according to the amount of distortion.

ナセル3の内部には、図2に示すように、ロータヘッド4と同軸の増速機10を介して連結された発電機11が設置されている。すなわち、ロータヘッド4の回転を増速機10で増速して発電機11を駆動することにより、発電機11より発電機出力が得られるようになっている。更に、ナセル3内部には、風車の運転制御を行う風車制御装置20、及び風車制御装置20からの制御信号を受けて、各風車翼のピッチ角度を変化させる可変ピッチ機構21が設けられている。   Inside the nacelle 3, as shown in FIG. 2, a generator 11 connected to the rotor head 4 via a coaxial gearbox 10 is installed. That is, the generator output is obtained from the generator 11 by driving the generator 11 by increasing the rotation of the rotor head 4 with the gearbox 10. Further, inside the nacelle 3 are provided a windmill control device 20 that controls the operation of the windmill, and a variable pitch mechanism 21 that receives a control signal from the windmill control device 20 and changes the pitch angle of each windmill blade. .

風車制御装置20には、各荷重計測センサ9によって計測された各風車翼5の荷重計測値、風向計8によって計測される風向偏差、並びに風速計7によって計測される風速が入力されるようになっている。風車制御装置20は、これらの入力情報に基づいて各風車翼5のピッチ角度を設定し、設定したピッチ角度に応じた制御信号を可変ピッチ機構21に出力する。可変ピッチ機構21は、風車制御装置20から与えられる制御信号に基づいて各風車翼5のピッチ角度をそれぞれ変化させる。   The wind turbine controller 20 is inputted with the load measurement value of each wind turbine blade 5 measured by each load measurement sensor 9, the wind direction deviation measured by the anemometer 8, and the wind speed measured by the anemometer 7. It has become. The wind turbine control device 20 sets the pitch angle of each wind turbine blade 5 based on the input information and outputs a control signal corresponding to the set pitch angle to the variable pitch mechanism 21. The variable pitch mechanism 21 changes the pitch angle of each wind turbine blade 5 based on a control signal given from the wind turbine control device 20.

図3は、上記風車制御装置20が備えるピッチ角度制御に関する制御ブロックを示した図である。図3に示されるように、風車制御装置20は、モーメント算出部31、成分指令値設定部32、ピッチ角度指令設定部33、ヨーまわり制御指令値設定部34を備えている。   FIG. 3 is a diagram showing a control block related to pitch angle control provided in the wind turbine control device 20. As shown in FIG. 3, the wind turbine controller 20 includes a moment calculator 31, a component command value setting unit 32, a pitch angle command setting unit 33, and a yaw control command value setting unit 34.

上記モーメント算出部31は、各荷重計測センサ9によって計測された各風車翼5の荷重M1,M2,M3を座標変換することにより、図4に示されるz軸まわりのモーメントMzおよびy軸まわりのモーメントMyを算出する。図4に示されるように、z軸は、風車タワー2の主軸に平行な軸線であり、x軸はロータヘッド4の回転軸であり、y軸はz軸およびx軸に直交する軸線である。   The moment calculation unit 31 performs coordinate conversion of the loads M1, M2, and M3 of the wind turbine blades 5 measured by the load measurement sensors 9 to thereby convert the moment Mz around the z axis and the y axis around the y axis shown in FIG. The moment My is calculated. As shown in FIG. 4, the z axis is an axis parallel to the main axis of the wind turbine tower 2, the x axis is a rotation axis of the rotor head 4, and the y axis is an axis orthogonal to the z axis and the x axis. .

モーメント算出部31は、モーメントMy,Mzを算出すると、これらを成分指令値設定部32に出力する。成分指令値設定部32は、モーメント算出部31によって算出されたモーメントMz,Myに基づいてy軸に関する角度指令値θyとz軸に関する角度指令値θzとを設定する。   When calculating the moments My and Mz, the moment calculating unit 31 outputs these to the component command value setting unit 32. The component command value setting unit 32 sets the angle command value θy related to the y axis and the angle command value θz related to the z axis based on the moments Mz and My calculated by the moment calculation unit 31.

具体的には、成分指令値設定部32は、y軸まわりのモーメントMyを相殺する基準指令値を求め、この基準指令値をy軸まわりの角度指令値θyとする。また、成分指令値設定部32は、z軸まわりのモーメントMzを相殺する基準指令値を求め、更に、この基準指令値に対してヨーまわり制御指令値設定部34から入力されるヨーまわり制御指令値Mz´を加算し、この値をz軸まわりの角度指令値θz´とする。成分指令値設定部32は、角度指令値θy、θz´をピッチ角度指令設定部33に出力する。   Specifically, the component command value setting unit 32 obtains a reference command value that cancels the moment My around the y axis, and sets this reference command value as the angle command value θy around the y axis. The component command value setting unit 32 obtains a reference command value that cancels the moment Mz about the z-axis, and further, a yaw control command input from the yaw control command value setting unit 34 with respect to this reference command value. The value Mz ′ is added, and this value is set as an angle command value θz ′ around the z axis. The component command value setting unit 32 outputs the angle command values θy and θz ′ to the pitch angle command setting unit 33.

ピッチ角度指令設定部33は、入力された角度指令値θy,θz´を座標変換することにより、各風車翼5のピッチ角度指令θ1,θ2,θ3を設定し、これらを可変ピッチ機構21に出力する。これにより、可変ピッチ機構21により各風車翼5のピッチ角度がピッチ角度指令θ1,θ2,θ3に基づいて変化させられる。この結果、各風車翼5における荷重が低減されるとともに、ヨーまわり制御指令値Mz´に応じた量だけ、ナセル3がz軸まわりに回動させられることとなる。   The pitch angle command setting unit 33 converts the input angle command values θy and θz ′ to set the pitch angle commands θ1, θ2 and θ3 of each wind turbine blade 5 and outputs them to the variable pitch mechanism 21. To do. As a result, the pitch angle of each wind turbine blade 5 is changed by the variable pitch mechanism 21 based on the pitch angle commands θ1, θ2, and θ3. As a result, the load on each wind turbine blade 5 is reduced, and the nacelle 3 is rotated about the z axis by an amount corresponding to the yaw control command value Mz ′.

次に、上述したヨーまわり制御指令値設定部34について図5を参照して説明する。図5は、ヨーまわり制御指令値設定部34により実行される処理の手順を示したフローチャートである。なお、図5に示される処理は、所定時間間隔で繰り返し実行されるものとする。   Next, the above-described yaw control command value setting unit 34 will be described with reference to FIG. FIG. 5 is a flowchart showing a procedure of processing executed by the yaw control command value setting unit 34. Note that the processing shown in FIG. 5 is repeatedly executed at predetermined time intervals.

ヨーまわり制御指令値設定部34は、風向計8から入力される風向偏差の過去所定期間の平均を算出する(ステップSA1)。続いて、ステップSA1において算出した平均風向偏差が予め設定されている閾値よりも大きいか否かを判定する。この結果、平均風向偏差が閾値以下であった場合には、ナセル3が風向に対して好ましい方向を向いていると判断し、ナセル3のヨー旋回駆動を行わずに、当該処理を終了する。   The yaw rotation control command value setting unit 34 calculates the average of the wind direction deviation input from the anemometer 8 in the past predetermined period (step SA1). Subsequently, it is determined whether or not the average wind direction deviation calculated in step SA1 is larger than a preset threshold value. As a result, when the average wind direction deviation is equal to or less than the threshold value, it is determined that the nacelle 3 is in a preferable direction with respect to the wind direction, and the processing is terminated without performing the yaw turning drive of the nacelle 3.

一方、平均風向偏差が閾値を超えていた場合には、ナセル3が風向に対して最適な方向とされていないと判断し、ステップSA3において、ヨーまわり設定指令値を設定する。具体的には、ヨーまわり制御指令値設定部34は、予め保有しているヨーまわり制御指令値テーブルを参照し、ステップSA1において算出された平均風向偏差と風速計7から入力される風速とで特定されるヨーまわり制御指令値を取得する。図6にヨーまわり制御指令値テーブルの一例を示す。図6に示されるように、ヨーまわり制御指令値テーブルには、風速と平均風向偏差との組に対応付けられてヨーまわり制御指令値がそれぞれ設定されている。ヨーまわり制御指設定部34は、取得したヨーまわり制御指令値を成分指令値設定部32に出力する。   On the other hand, if the average wind direction deviation exceeds the threshold value, it is determined that the nacelle 3 is not in the optimum direction with respect to the wind direction, and a yaw rotation setting command value is set in step SA3. Specifically, the yaw control command value setting unit 34 refers to the yaw control command value table stored in advance, and calculates the average wind direction deviation calculated in step SA1 and the wind speed input from the anemometer 7. Get the specified yaw control command value. FIG. 6 shows an example of the yaw rotation control command value table. As shown in FIG. 6, the yaw control command value is set in the yaw control command value table in association with a set of wind speed and average wind direction deviation. The yaw control finger setting unit 34 outputs the acquired yaw control command value to the component command value setting unit 32.

これにより、風速と風向と応じて設定されたヨーまわり制御指令値がz軸まわりの基準指令値に対して加算されることで、ヨーまわり制御指令値に応じた量だけ、ナセル3をz軸まわりに旋回させることが可能となる。   Thereby, the yaw control command value set according to the wind speed and the wind direction is added to the reference command value around the z axis, so that the nacelle 3 is moved to the z axis by an amount corresponding to the yaw control command value. It is possible to swivel around.

以上、説明してきたように、本実施形態に係る風力発電装置1によれば、ヨーまわり制御指令値Mz´に応じた量のモーメントを各風車翼5に発生させ、このモーメントを利用してナセル3を風車タワー2の主軸まわりに旋回させることが可能となる。このように、各風車翼5のピッチ角度を制御することにより、空気力を利用してナセル3を旋回させるので、ナセル3内に配置されているヨーモータ(図示略)の小型化を図ることが可能となる。また、ヨーモータの使用頻度を低減させることが可能となり、消費出力の低減を図ることが可能となる。   As described above, according to the wind turbine generator 1 according to the present embodiment, a moment of an amount corresponding to the yaw rotation control command value Mz ′ is generated in each wind turbine blade 5, and the nacelle is utilized using this moment. 3 can be turned around the main axis of the wind turbine tower 2. In this way, by controlling the pitch angle of each wind turbine blade 5, the nacelle 3 is turned using aerodynamic force, so that the yaw motor (not shown) arranged in the nacelle 3 can be downsized. It becomes possible. In addition, the frequency of use of the yaw motor can be reduced, and the consumption output can be reduced.

なお、上述した実施形態においては、ヨーまわり制御指令値設定部34が、ヨーまわり制御指令値テーブルからヨーまわり制御指令値を取得することとしたが、これに代えて、平均風向偏差と風速とをパラメータとした演算式をヨーまわり制御指令値設定部3が有しており、この演算式に平均風向偏差および風速を代入することにより、ヨーまわり制御指令値を得ることとしてもよい。   In the above-described embodiment, the yaw rotation control command value setting unit 34 acquires the yaw rotation control command value from the yaw rotation control command value table, but instead of this, the average wind direction deviation and the wind speed are obtained. The yaw control command value setting unit 3 has an arithmetic expression using as a parameter, and the yaw control command value may be obtained by substituting the average wind direction deviation and the wind speed into this arithmetic expression.

以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。   As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the specific structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.

本発明の一実施形態に係る風力発電装置の全体構成例を示す図である。It is a figure showing the example of whole composition of the wind power generator concerning one embodiment of the present invention. ナセル内の概略構成を示した図である。It is the figure which showed schematic structure in the nacelle. 本発明の一実施形態に係る風車制御装置が備えるピッチ角度制御に関する制御ブロックを示した図である。It is the figure which showed the control block regarding the pitch angle control with which the windmill control apparatus which concerns on one Embodiment of this invention is provided. z,y,z軸の定義を説明するための図である。It is a figure for demonstrating the definition of z, y, z-axis. 本発明の一実施形態に係るヨーまわり制御指令値設定部により実行される処理の手順を示したフローチャートである。It is the flowchart which showed the procedure of the process performed by the yaw control control command value setting part which concerns on one Embodiment of this invention. ヨーまわり制御指令値テーブルの一例を示した図である。It is the figure which showed an example of the yaw circumference control command value table.

符号の説明Explanation of symbols

1 風力発電装置
2 風車タワー
3 ナセル
4 ロータヘッド
5 風車翼
7 風速計
8 風向計
9 荷重計測センサ
10 増速機
11 発電機
20 風車制御装置
21 可変ピッチ
31 モーメント算出部
32 成分指令値設定部
33 ピッチ角度指令設定部
34 ヨーまわり制御指令値設定部
DESCRIPTION OF SYMBOLS 1 Wind power generator 2 Windmill tower 3 Nacelle 4 Rotor head 5 Windmill blade 7 Anemometer 8 Anemometer 9 Load measuring sensor 10 Speed up gear 11 Generator 20 Windmill controller 21 Variable pitch 31 Moment calculation part 32 Component command value setting part 33 Pitch angle command setting unit 34 Yaw rotation control command value setting unit

Claims (4)

各風車翼の荷重を計測する荷重計測手段と、
前記荷重計測手段によって計測された各風車翼の荷重を座標変換することにより、風車タワー軸まわりのモーメントを算出するモーメント算出手段と、
前記モーメント算出手段によって算出された前記モーメントを相殺するための基準指令値に対して、ヨーまわり制御指令値を加算することにより、前記風車タワー軸まわりの角度指令値を算出する成分指令値設定手段と、
前記風車タワー軸まわりの角度指令値に基づいて、各風車翼のピッチ角度指令値を設定するピッチ角度指令設定部と
を具備する風力発電装置。
Load measuring means for measuring the load of each wind turbine blade,
Moment calculating means for calculating the moment around the wind turbine tower axis by converting the coordinates of the load of each wind turbine blade measured by the load measuring means;
Component command value setting means for calculating an angle command value around the windmill tower axis by adding a yaw control command value to a reference command value for canceling out the moment calculated by the moment calculation means When,
A wind power generator comprising: a pitch angle command setting unit that sets a pitch angle command value for each wind turbine blade based on an angle command value around the wind turbine tower axis.
前記ヨーまわり制御指令値は、風向きに応じて与えられる請求項1に記載の風力発電装置。   The wind power generator according to claim 1, wherein the yaw control command value is given according to a wind direction. 前記ヨーまわり制御指令値は、風向偏差に基づいて設定される請求項1に記載の風力発電装置。   The wind power generator according to claim 1, wherein the yaw control command value is set based on a wind direction deviation. 各風車翼の荷重をそれぞれ計測する過程と、
各風車翼の荷重を座標変換することにより、風車タワー軸まわりのモーメントを算出する過程と、
前記モーメントをゼロにするための基準指令値に対して、タワー軸まわり制御指令値を加算することにより、前記風車タワー軸まわりの角度指令値を算出する過程と、
前記風車タワー軸まわりの角度指令値に基づいて、各風車翼のピッチ角度指令値を設定する過程と
を有する風力発電装置のヨー旋回駆動方法。
The process of measuring the load on each wind turbine blade,
The process of calculating the moment around the windmill tower axis by transforming the load of each windmill blade,
A step of calculating an angle command value around the wind turbine tower axis by adding a control command value around the tower axis to a reference command value for making the moment zero;
A method of driving a yaw rotation of a wind turbine generator, comprising: setting a pitch angle command value of each wind turbine blade based on an angle command value around the wind turbine tower axis.
JP2007133830A 2007-05-21 2007-05-21 Wind power generator and yaw rotation drive method for wind power generator Active JP4994947B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2007133830A JP4994947B2 (en) 2007-05-21 2007-05-21 Wind power generator and yaw rotation drive method for wind power generator
TW097116684A TW200920940A (en) 2007-05-21 2008-05-06 Wind-driven generator and yaw rotation drive method for wind-driven generator
EP08764266.6A EP2154363B1 (en) 2007-05-21 2008-05-08 Wind-driven generator and yaw rotation drive method for wind-driven generator
AU2008252208A AU2008252208B2 (en) 2007-05-21 2008-05-08 Wind turbine generator and yaw driving method for wind turbine generator
US12/517,271 US8249754B2 (en) 2007-05-21 2008-05-08 Wind turbine generator and yaw driving method for wind turbine generator
CA2671408A CA2671408C (en) 2007-05-21 2008-05-08 Wind turbine generator and yaw driving method for wind turbine generator
KR1020097012406A KR101039215B1 (en) 2007-05-21 2008-05-08 Wind-driven generator and yaw rotation drive method for wind-driven generator
PCT/JP2008/058559 WO2008143009A1 (en) 2007-05-21 2008-05-08 Wind-driven generator and yaw rotation drive method for wind-driven generator
CN2008800015071A CN101578450B (en) 2007-05-21 2008-05-08 Wind-driven generator and yaw rotation drive method for wind-driven generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133830A JP4994947B2 (en) 2007-05-21 2007-05-21 Wind power generator and yaw rotation drive method for wind power generator

Publications (2)

Publication Number Publication Date
JP2008286156A true JP2008286156A (en) 2008-11-27
JP4994947B2 JP4994947B2 (en) 2012-08-08

Family

ID=40031721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133830A Active JP4994947B2 (en) 2007-05-21 2007-05-21 Wind power generator and yaw rotation drive method for wind power generator

Country Status (9)

Country Link
US (1) US8249754B2 (en)
EP (1) EP2154363B1 (en)
JP (1) JP4994947B2 (en)
KR (1) KR101039215B1 (en)
CN (1) CN101578450B (en)
AU (1) AU2008252208B2 (en)
CA (1) CA2671408C (en)
TW (1) TW200920940A (en)
WO (1) WO2008143009A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122658A1 (en) * 2009-04-24 2010-10-28 三菱重工業株式会社 Load measuring device, method and program
US20110215576A1 (en) * 2010-02-10 2011-09-08 Mitsubishi Heavy Industires, Ltd. Wind turbine generator and method of controling the same
JP2011256750A (en) * 2010-06-08 2011-12-22 Fuji Heavy Ind Ltd Horizontal axis wind turbine apparatus
WO2013057836A1 (en) 2011-10-21 2013-04-25 三菱重工業株式会社 Wind power generation device and wind power generation device yaw rotation control method
US8529206B2 (en) 2010-01-27 2013-09-10 Mitsubishi Heavy Industries, Ltd. Wind turbine generator and yaw rotation control method for wind turbine generator
WO2014102945A1 (en) * 2012-12-26 2014-07-03 三菱重工業株式会社 Control device, method, and program, and floating body wind-powered electricity generation device equipped with same
KR20170009263A (en) * 2015-07-16 2017-01-25 삼성중공업 주식회사 Wind generator and operating method thereof
CN109630355A (en) * 2018-12-10 2019-04-16 济南德明电源设备有限公司 Wind-driven generator yaws and the control method of variable pitch, controller and system automatically
JP2019094886A (en) * 2017-11-28 2019-06-20 株式会社日立製作所 Floating type offshore wind power generation device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100400861C (en) * 2004-02-27 2008-07-09 三菱重工业株式会社 Wind turbine generator, active vibration damping method for the same, and wind turbine tower
EP2205862A2 (en) * 2007-10-15 2010-07-14 Suzion Energy GmbH Wind energy installation with enhanced overvoltage protection
US8786117B2 (en) * 2008-06-13 2014-07-22 General Electric Company Wind turbine sensor assembly and method of assembling the same
US8408871B2 (en) * 2008-06-13 2013-04-02 General Electric Company Method and apparatus for measuring air flow condition at a wind turbine blade
CN101592127B (en) * 2009-06-22 2011-09-14 浙江运达风电股份有限公司 Independent pitch control method for large wind turbine
DE102009026372A1 (en) 2009-08-14 2011-02-17 Ssb Wind Systems Gmbh & Co. Kg Method for controlling a wind turbine
AU2010201706A1 (en) * 2010-02-08 2011-08-25 Mitsubishi Heavy Industries, Ltd. Wind turbine generator and blade pitch angle control method thereof
ES2469190T3 (en) 2010-04-26 2014-06-17 Hse Hitit Solar Enerji Anonim Sirketi Turbine
CN102444543B (en) * 2010-09-30 2013-10-09 华锐风电科技(集团)股份有限公司 Method and device for judging unnecessary windward condition, and method and system for tracking wind
EP2520794B1 (en) * 2011-05-03 2019-09-18 Siemens Gamesa Renewable Energy A/S Monitoring apparatus for checking a wind turbine in a wind farm for a yaw misalignment
US8434996B2 (en) 2011-12-06 2013-05-07 General Electric Company System and method for detecting and/or controlling loads in a wind turbine
CN102913385A (en) * 2012-06-08 2013-02-06 北方工业大学 Active yaw control system of small/ medium-sized wind generating set
CN103573552B (en) * 2012-08-02 2016-02-24 通用电气公司 The controlling method of wind turbine and reduction rotor unbalance thereof
US9035231B2 (en) * 2012-08-24 2015-05-19 General Electric Company System and method for monitoring load-related parameters of a wind turbine rotor blade
CN103827480B (en) * 2012-09-20 2016-10-19 韩国电力公社 Wind machine oar leaf state monitoring device and method thereof
DE102012110466A1 (en) * 2012-10-31 2014-04-30 2-B Energy B.V. Method for operating a wind turbine, wind turbine and control device for a wind turbine
CH707227A1 (en) * 2012-11-16 2014-05-30 Wepfer Technics Ag Wind turbine with rotating tower console.
EP2757255A1 (en) * 2013-01-21 2014-07-23 Alstom Wind, S.L.U. Method of operating a wind farm
JP5881631B2 (en) * 2013-02-26 2016-03-09 三菱重工業株式会社 Wind turbine generator, wind turbine generator controller and control method
KR101515377B1 (en) * 2014-01-27 2015-04-28 디에치이앤이 (주) Vertical axis wind turbine
DE102014210949A1 (en) * 2014-06-06 2015-12-17 Wobben Properties Gmbh Wind energy plant with optical pressure sensors and method for operating a wind energy plant
JP6405324B2 (en) * 2016-01-29 2018-10-17 三菱重工業株式会社 Wind power generator and operation method thereof
CN108317043B (en) * 2017-01-18 2020-02-21 杰能动力工业股份有限公司 Wind power photoelectric driving device
US10781792B2 (en) 2017-05-18 2020-09-22 General Electric Company System and method for controlling a pitch angle of a wind turbine rotor blade
US11193469B2 (en) * 2019-03-19 2021-12-07 2-B Energy B.V. Method for operating a wind turbine, wind turbine, and control means for a wind turbine
CN113494418A (en) 2020-04-08 2021-10-12 通用电气可再生能源西班牙有限公司 System and method for mitigating loads acting on rotor blades of a wind turbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004520531A (en) * 2001-02-10 2004-07-08 アロイス・ヴォベン Wind power equipment
WO2006129509A1 (en) * 2005-05-31 2006-12-07 Fuji Jukogyo Kabushiki Kaisha Horizontal axis windmill

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297076A (en) * 1979-06-08 1981-10-27 Lockheed Corporation Wind turbine
DE29715248U1 (en) * 1997-08-25 1998-12-24 Inst Solare Energieversorgungstechnik Iset Wind turbine
JP2001289149A (en) 2000-04-10 2001-10-19 Mitsubishi Heavy Ind Ltd Yawrotation drive device for wind power generator and method of controlling yawrotation driving of wind power generator
CN100398813C (en) * 2003-02-18 2008-07-02 丹麦理工大学 Method of controlling aerodynamic load of a wind turbine based on local blade flow measurement
NO20041208L (en) * 2004-03-22 2005-09-23 Sway As Procedure for reducing axial power variations for rotor and directional control for wind power with active pitch control
US7118339B2 (en) * 2004-06-30 2006-10-10 General Electric Company Methods and apparatus for reduction of asymmetric rotor loads in wind turbines
US7448412B2 (en) 2004-07-23 2008-11-11 Afa Controls Llc Microvalve assemblies and related structures and related methods
BRPI0717277A2 (en) * 2006-10-02 2013-01-15 Clipper Windpower Technology wind turbine with blade pitch control to compensate for wind shear and wind misalignment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004520531A (en) * 2001-02-10 2004-07-08 アロイス・ヴォベン Wind power equipment
WO2006129509A1 (en) * 2005-05-31 2006-12-07 Fuji Jukogyo Kabushiki Kaisha Horizontal axis windmill

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439301A (en) * 2009-04-24 2012-05-02 三菱重工业株式会社 Load measuring device, method and program
JP4959814B2 (en) * 2009-04-24 2012-06-27 三菱重工業株式会社 Load measuring device, method and program
US8255173B2 (en) 2009-04-24 2012-08-28 Mitsubishi Heavy Industries, Ltd. Load measuring apparatus, method, and program
KR101227327B1 (en) 2009-04-24 2013-01-28 미츠비시 쥬고교 가부시키가이샤 Load measurement device and method and program
WO2010122658A1 (en) * 2009-04-24 2010-10-28 三菱重工業株式会社 Load measuring device, method and program
US8529206B2 (en) 2010-01-27 2013-09-10 Mitsubishi Heavy Industries, Ltd. Wind turbine generator and yaw rotation control method for wind turbine generator
US20110215576A1 (en) * 2010-02-10 2011-09-08 Mitsubishi Heavy Industires, Ltd. Wind turbine generator and method of controling the same
US8157521B2 (en) * 2010-02-10 2012-04-17 Mitsubishi Heavy Industries, Ltd. Wind turbine generator and method of controlling the same
JP2011256750A (en) * 2010-06-08 2011-12-22 Fuji Heavy Ind Ltd Horizontal axis wind turbine apparatus
WO2013057836A1 (en) 2011-10-21 2013-04-25 三菱重工業株式会社 Wind power generation device and wind power generation device yaw rotation control method
WO2014102945A1 (en) * 2012-12-26 2014-07-03 三菱重工業株式会社 Control device, method, and program, and floating body wind-powered electricity generation device equipped with same
US8922042B2 (en) 2012-12-26 2014-12-30 Mhi Vestas Offshore Wind A/S Control system, method and program, and floating wind turbine generator provided therewith
CN104956073A (en) * 2012-12-26 2015-09-30 菱重维斯塔斯海上风力有限公司 Control device, method, and program, and floating body wind-powered electricity generation device equipped with same
CN104956073B (en) * 2012-12-26 2018-02-13 菱重维斯塔斯海上风力有限公司 Control device and method and program, the float type wind power generation plant for possessing the control device
KR20170009263A (en) * 2015-07-16 2017-01-25 삼성중공업 주식회사 Wind generator and operating method thereof
KR101722189B1 (en) 2015-07-16 2017-03-31 삼성중공업 주식회사 Wind generator and operating method thereof
JP2019094886A (en) * 2017-11-28 2019-06-20 株式会社日立製作所 Floating type offshore wind power generation device
CN109630355A (en) * 2018-12-10 2019-04-16 济南德明电源设备有限公司 Wind-driven generator yaws and the control method of variable pitch, controller and system automatically

Also Published As

Publication number Publication date
US20100087960A1 (en) 2010-04-08
US8249754B2 (en) 2012-08-21
EP2154363A4 (en) 2016-11-23
CA2671408A1 (en) 2008-11-27
WO2008143009A1 (en) 2008-11-27
JP4994947B2 (en) 2012-08-08
AU2008252208B2 (en) 2011-04-07
CN101578450B (en) 2012-06-13
CN101578450A (en) 2009-11-11
TWI350341B (en) 2011-10-11
KR20090098828A (en) 2009-09-17
TW200920940A (en) 2009-05-16
CA2671408C (en) 2011-10-04
EP2154363A1 (en) 2010-02-17
KR101039215B1 (en) 2011-06-03
EP2154363B1 (en) 2018-03-21
AU2008252208A1 (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP4994947B2 (en) Wind power generator and yaw rotation drive method for wind power generator
JP4898917B2 (en) Wind power generator
EP2933477B1 (en) System and method for thrust-speed control of a wind turbine
EP2840258B1 (en) System and method for preventing excessive loading on a wind turbine
CN104314757B (en) A kind of wind generating set yaw control method and system
CN104428531B (en) It operates the method for wind turbine and is suitable for the system of the method
JP6494514B2 (en) Wind turbine control method using predicted input wind speed
JP4939508B2 (en) STRESS ANALYSIS DEVICE AND STRESS ANALYSIS PROGRAM FOR WIND TURBINE STRUCTURE AND WIND POWER GENERATION SYSTEM
EP2317130B1 (en) Systems and methods for assembling a pitch assembly for use in a wind turbine
CN102032114A (en) Method and apparatus for controlling acoustic emissions of a wind turbine
WO2016077183A1 (en) System and method for estimating rotor blade loads of a wind turbine
TW200949069A (en) Windmill pitch angle controller and method for controlling windmill pitch angle
CN110067697A (en) The torsion correction factor of the aerodynamic performance figure used in wind turbine control
CN112696317A (en) System and method for controlling wind turbines based on collective pitch offsets
EP3404257B1 (en) System and method for controlling a pitch angle of a wind turbine rotor blade
JP5097729B2 (en) Horizontal axis windmill
JP6462388B2 (en) Wind power generator
JP2007291976A (en) Pitch drive device of wind turbine
EP3699421B1 (en) Method of dynamically adjusting a rate of change of a rotor speed set point during wind turbine shutdown
TWI545256B (en) Device of actively absorbing vibration for wind power tower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4994947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250