WO2020049832A1 - 熱間プレス用鋼板 - Google Patents

熱間プレス用鋼板 Download PDF

Info

Publication number
WO2020049832A1
WO2020049832A1 PCT/JP2019/024470 JP2019024470W WO2020049832A1 WO 2020049832 A1 WO2020049832 A1 WO 2020049832A1 JP 2019024470 W JP2019024470 W JP 2019024470W WO 2020049832 A1 WO2020049832 A1 WO 2020049832A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
steel sheet
alloy plating
hot pressing
metal oxide
Prior art date
Application number
PCT/JP2019/024470
Other languages
English (en)
French (fr)
Inventor
田中 稔
克利 ▼高▲島
安藤 聡
長滝 康伸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2019548338A priority Critical patent/JP6819796B2/ja
Publication of WO2020049832A1 publication Critical patent/WO2020049832A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a steel sheet for hot pressing mainly used for a steel sheet for automobiles.
  • Patent Document 1 discloses a method for producing a hot pressed member free of liquid metal embrittlement cracking by setting the melting point of the plating layer of the steel sheet surface to 800 ° C. or higher.
  • Patent Document 2 discloses a steel sheet for hot pressing in which an oxide film mainly composed of ZnO is provided on the surface of a plating layer to prevent zinc evaporation during hot press heating.
  • a hot press member free from microcracks can be obtained by rapidly and intermediately cooling a steel sheet to 450 to 700 ° C. using an air jet or the like before hot pressing and then performing die cooling by pressing.
  • a method of making is disclosed.
  • the hard press mold and the soft plating layer slide during hot press forming, and the soft plating layer is damaged by the hard press mold.
  • a phenomenon, so-called galling may also occur during hot press forming. Since the plating peels off at the galling portion, there is a problem that the effect of improving the corrosion resistance of Zn plating cannot be sufficiently enjoyed.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a steel sheet for hot pressing that has improved slidability during hot press forming and has excellent galling resistance.
  • the present inventors formed various metal oxide layers on the surface of the Zn alloy plating layer by a wet process or a dry process, and investigated the anti-galling property of the obtained hot pressed member.
  • a metal oxide layer having a melting point higher than 900 ° C. which is the heating temperature of a general hot press
  • the hot press contacting the mold during hot pressing can be achieved. It has been found that the hardness of the surface of the steel sheet for pressing can be ensured, and as a result, the slidability during hot press forming is improved, and the galling resistance is improved.
  • a metal comprising a Zn alloy plating layer having a coating weight per surface of 120 g / m 2 or less on the surface of a steel sheet, and a metal oxide having a melting point exceeding 900 ° C. on the surface of the Zn alloy plating layer.
  • a steel sheet for hot pressing having an oxide layer.
  • the metal oxide layer is a metal oxide selected from one or more of Al, Ti, Cr, Fe, and Ni.
  • the Zn alloy plating layer includes a Zn—Al alloy plating layer, a Zn—Al—Mg alloy plating layer, a Zn—Al—Mg—Si alloy plating layer, a Zn—Fe alloy plating layer, and a Zn—Ni alloy plating layer.
  • the unit of the content of each element of the steel component composition and the unit of the content of each element of the plating layer component composition are “% by mass”, and hereinafter, unless otherwise specified, simply “%”. Show.
  • the plating adhesion amount per one side is set to 120 g / m 2 or less.
  • it is 90 g / m ⁇ 2 > or less.
  • it is less than 10 g / m 2 , the effect of suppressing Fe scale formation at the time of hot press heating becomes insufficient, so that it is preferably 10 g / m 2 or more.
  • hot press members for automobiles are mainly applied to parts requiring corrosion resistance, such as underbody parts and skeletal members. Therefore, the plating layer needs to be a Zn alloy plating layer having a sacrificial anticorrosion action.
  • the composition is not particularly limited as long as the main component of the plating layer is Zn, but the Zn alloy plating layer includes a Zn—Al alloy plating layer, a Zn—Al—Mg alloy plating layer, and a Zn—Al alloy plating layer.
  • the Zn alloy plating layer includes a Zn—Al alloy plating layer, a Zn—Al—Mg alloy plating layer, and a Zn—Al alloy plating layer.
  • One of an Al-Mg-Si alloy plating layer, a Zn-Fe alloy plating layer, and a Zn-Ni alloy plating layer is preferable.
  • the Zn alloy plating layer contains 10 to 25% by mass of Ni, and the remainder is a Zn—Ni alloy plating layer composed of Zn and unavoidable impurities.
  • the amount of Ni in the Zn alloy plating layer is controlled to 10 to 25% by mass, a ⁇ phase having a crystal structure of one of Ni 2 Zn 11 , NiZn 3 , and Ni 5 Zn 21 having a high melting point is formed. This is advantageous from the viewpoint of liquid metal embrittlement resistance as compared with other Zn alloy plating layers.
  • the surface of the Zn alloy plating layer has a metal oxide layer made of a metal oxide having a melting point over 900 ° C.
  • the surface of the steel sheet for hot pressing is made to have a high hardness, that is, a surface layer capable of maintaining a solid state. Can be kept high.
  • a metal oxide layer made of a metal oxide having a melting point of more than 900 ° C. on the surface of the Zn alloy plating layer, it is possible to suppress galling such that the soft plating layer is damaged by a hard press die. be able to. As a result, slidability is improved, and galling resistance can be improved.
  • the metal oxide layer is preferably a metal oxide selected from one or more of Al, Ti, Cr, Fe, and Ni. Each of the metal oxides listed here has a melting point exceeding 900 ° C. Regarding the lower limit of the adhesion amount of the metal oxide layer, even though the amount is small, the anti-galling property effect is recognized as compared with the case where there is no metal oxide layer, but in the present invention, 0.1 g / m 2 or more is preferable. Although the upper limit is not particularly defined, an excessively thick metal oxide layer causes an increase in cost, and therefore is preferably 30 g / m 2 or less. More preferably, it is 10 g / m 2 or less, still more preferably 5 g / m 2 or less.
  • the method for forming the metal oxide layer is not particularly limited.
  • the metal oxide layer can be formed using a dry process such as PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition), or cold spray.
  • a hot-pressed member exceeding 1470 MPa class for example, as a base steel sheet of the plating layer, C: 0.20 to 0.35%, Si: 0.1 Containing 0.5 to 0.5%, Mn: 1.0 to 3.0%, P: 0.02% or less, and S: 0.01% or less, with the balance being Fe and unavoidable impurities.
  • a rolled steel plate or a hot rolled steel plate can be used. The reasons for limiting each component are described below.
  • C 0.20 to 0.35% C improves strength by forming martensite or the like as a steel structure. To obtain a strength exceeding the 1470 MPa class, 0.20% or more is required. On the other hand, if it exceeds 0.35%, the toughness of the spot-welded portion deteriorates. Therefore, the C content is preferably set to 0.20 to 0.35%.
  • Si 0.1-0.5% Si is an element effective for strengthening steel and obtaining a good material. For that purpose, 0.1% or more is required. On the other hand, when the content exceeds 0.5%, the ferrite is stabilized, so that the hardenability decreases. Therefore, the amount of Si is preferably set to 0.1 to 0.5%.
  • Mn 1.0 to 3.0%
  • Mn is an element effective for increasing the strength of steel. In order to ensure mechanical properties and strength, it is necessary to contain 1.0% or more. On the other hand, if it exceeds 3.0%, the surface concentration at the time of annealing increases, and it becomes difficult to secure plating adhesion. Therefore, the Mn content is preferably set to 1.0 to 3.0%.
  • the P content is preferably set to 0.02% or less.
  • S 0.01% or less S becomes an inclusion such as MnS, and causes deterioration of impact resistance and cracks along a metal flow of a welded portion. Therefore, it is desirable to reduce as much as possible, and it is preferable to make it 0.01% or less. In order to secure good stretch flangeability, the content is more preferably 0.005% or less.
  • Nb 0.05% or less
  • Ti 0.05% or less
  • B 0.0002 to 0.0050%
  • Cr 0.1 to 0.3%
  • Sb 0.003 to 0.030%
  • Nb 0.05% or less Nb is a component effective for strengthening steel. However, if it is contained excessively, shape freezing property decreases. Therefore, when Nb is contained, the content is set to 0.05% or less.
  • Ti 0.05% or less Ti is also effective in strengthening steel like Nb, but there is a problem that excessive inclusion of Ti lowers the shape freezing property. Therefore, when Ti is contained, the content is made 0.05% or less.
  • B 0.0002 to 0.0050% Since B has an effect of suppressing the formation and growth of ferrite from austenite grain boundaries, the addition of B is preferably 0.0002% or more. On the other hand, excessive addition of B greatly impairs moldability. Therefore, when B is contained, the content is made 0.0002 to 0.0050%.
  • Cr 0.1-0.3% Cr is useful for strengthening steel and improving hardenability. In order to exhibit such effects, addition of 0.1% or more is preferable. On the other hand, since the alloy cost is high, adding over 0.3% leads to a significant cost increase. Therefore, when Cr is contained, the content is set to 0.1 to 0.3%.
  • Sb 0.003 to 0.030% Sb also has the effect of suppressing the decarburization of the steel sheet surface layer during the hot pressing process. In order to exhibit such an effect, it is necessary to add 0.003% or more. On the other hand, when the amount of Sb exceeds 0.030%, the rolling load is increased, so that the productivity is reduced. Therefore, when Sb is contained, the content is made 0.003 to 0.030%.
  • the hot pressing step for producing a hot pressed member using the steel sheet for hot pressing of the present invention is not limited at all, and a known hot pressing step can be applied.
  • the steel sheet for hot pressing of the present invention is heated to a temperature range of from the Ac3 transformation point to 950 ° C., then hot pressed, and subsequently cooled using a mold or a coolant such as water.
  • a hot pressed member is manufactured.
  • the said heating temperature means the highest attainment temperature of a steel plate. Examples of the method for performing the heating include heating using an electric furnace or a gas furnace, flame heating, electric heating, high-frequency heating, induction heating, and the like.
  • the conditions of the hot-dip plating treatment were such that the hot-dip plating bath composition was adjusted so as to obtain a desired composition, and the bath temperature was set to the melting point of each composition + 20 ° C. Further, the amount of adhesion was controlled by adjusting the wiping pressure.
  • the conditions of the electroplating treatment were such that the metal salt ratio in the bath and the current value were adjusted so as to obtain a desired composition, and the amount of deposition was controlled by changing the line speed.
  • the deposition conditions for PVD of the oxide layer were such that a desired metal or oxide target was used, and a desired amount of deposition was controlled by controlling the voltage, the oxygen partial pressure, and the processing time.
  • a test piece of 150 mmC ⁇ 300 mmL was sampled from the obtained steel sheet for hot pressing, heated to 900 ° C. for 4 minutes by an electric furnace, held at 900 ° C. for 1 minute, and then taken out of the electric furnace to remove a hat mold. Hot pressing was performed at 700 ° C. by a mold.
  • the shape of the part after molding is such that the length of the flat portion on the upper surface is 100 mm, the length of the flat portion on the side surface is 50 mm, and the length of the flat portion on the lower surface is 50 mm.
  • the bending R of the mold is 7R for both shoulders on the upper surface and both shoulders on the lower surface.
  • the galling resistance was evaluated according to the following criteria. :: The peeled area is reduced by 20% or more as compared with the case without the oxide layer. ⁇ : The peeled area is reduced by 0% or more and less than 20% as compared with the case without the oxide layer. X: The peeled area is oxidized. When the increase evaluation was ⁇ compared to the case without the material layer, it was judged that the steel sheet for hot pressing was excellent in galling resistance.
  • Table 1 shows the evaluation results.
  • the steel sheet for hot pressing of the present invention has improved slidability during hot press forming and has excellent galling resistance.
  • the hot-pressed steel sheet containing 10 to 25% by mass of Ni and having a Zn—Ni alloy plating layer composed of a balance of Fe and unavoidable impurities evaluated in Example 1 was evaluated for LME resistance (LME: Liquid Metal Embrymentment). , Liquid metal embrittlement).
  • LME Liquid Metal Embrymentment
  • a sample for cross-sectional SEM observation is taken from the upper shoulder R of the hat-formed part obtained in Example 1, and penetrates into the base material in a visual field having a cross-sectional length of 5 mm outside the shoulder R by observation.
  • the crack depth was measured at a total of 20 points at a pitch of 250 ⁇ m, and the LME resistance was evaluated based on the following criteria. :: No crack generation or average crack depth of less than 10 ⁇ m ⁇ : Average crack depth of 10 ⁇ m or more and less than 200 ⁇ m ⁇ : Average crack depth of 200 ⁇ m or more Excellent.
  • Table 2 shows the evaluation results of the LME resistance characteristics.
  • the Zn—Ni alloy plating layer contains 10 to 25% by mass of Ni, and the Zn—Ni alloy plating layer is composed of the balance of Fe and unavoidable impurities. It can be seen from the graph that, in addition to the galling resistance, it also has excellent LME resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

熱間プレス成形時の摺動性を向上し、耐カジリ特性に優れた熱間プレス用鋼板を提供することを目的とする。 鋼板表面に、片面当たりのめっき付着量が120g/m以下のZn合金めっき層を有し、さらに前記Zn合金めっき層の表面に、融点が900℃超えの金属酸化物からなる金属酸化物層を有する熱間プレス用鋼板。

Description

熱間プレス用鋼板
 本発明は、主に自動車用鋼板に使用される熱間プレス用鋼板に関するものである。
 近年、自動車の分野では素材鋼板の高性能化と共に軽量化が促進されており、防錆性を有する高強度溶融亜鉛めっき鋼板または電気亜鉛めっき鋼板の使用が増加している。しかし、多くの場合、鋼板の高強度化に伴ってそのプレス成形性が低下するため、複雑な部品形状を得ることは困難になる。例えば自動車用途で、防錆性が必要であり、かつ難成形部品としてはシャシーなどの足回り部材やBピラーなどの骨格用構造部材が挙げられる。
 このような背景から、近年では冷間プレスに比べてプレス成形性と高強度化の両立が容易である熱間プレスによる自動車用部品の製造が急速に増加しており、熱間プレス技術の諸課題を解決する様々な技術が開示されている。
 例えば、特許文献1では、鋼板表層のめっき層融点を800℃以上とすることで、液体金属脆化割れの無い熱間プレス部材を得る製造方法が開示されている。
 また、特許文献2では、めっき層表層にZnOを主体とする酸化皮膜を備えることで、熱間プレス加熱時の亜鉛蒸発を防止する熱間プレス用鋼板が開示されている。
 また、特許文献3では、熱間プレス前に空気ジェットなどを用いて鋼板を450~700℃に急速中間冷却した後、プレスによる金型冷却を実施することによってマイクロクラックの無い熱間プレス部材を製造する方法が開示されている。
特許第5817479号公報 特許第3582504号公報 特許第5727037号公報
 上述した様に、熱間プレス技術の諸課題に対して、鋼板、めっきおよび工法などの観点から様々な解決策が提案され、熱間プレス技術の進歩・発展を支えてきた。
 しかしながら、熱間プレス部品の生産量増加や新規部品への技術適用に伴って、従来に無かった新たな課題が顕在化するようになってきた。
 例えば、金型と鋼板のクリアランス調整などが不十分な場合では、熱間プレス成形時に硬質なプレス金型と軟質なめっき層が摺動し、硬質なプレス金型によって軟質なめっき層が傷つけられる現象、いわゆるカジリが熱間プレス成形時にも生じることがある。カジリ部ではめっきが剥離するため、Znめっきの耐食性向上効果を十分に享受できないという問題がある。
 本発明はかかる事情に鑑みてなされたものであって、熱間プレス成形時の摺動性を向上し、耐カジリ特性に優れた熱間プレス用鋼板を提供することを目的とする。
 本発明者らは、Zn合金めっき層の表面に、湿式プロセスまたは乾式プロセスによって種々の金属酸化物層を成膜し、得られた熱間プレス部材について、耐カジリ特性を調査した。その結果、一般的な熱間プレスの加熱温度である900℃よりも融点が高い金属酸化物層をZn合金めっき層表面に付与することで、熱間プレスの際に金型と接触する熱間プレス用鋼板表面の硬度を確保でき、その結果、熱間プレス成形時の摺動性が向上し、耐カジリ特性が改善されることを見出した。
 本発明は上記知見に基づくものであり、その特徴は以下の通りである。
[1]鋼板表面に、片面当たりのめっき付着量が120g/m以下のZn合金めっき層を有し、さらに前記Zn合金めっき層の表面に、融点が900℃超えの金属酸化物からなる金属酸化物層を有する熱間プレス用鋼板。
[2]前記金属酸化物層は、Al、Ti、Cr、Fe、Niのうちの1種または2種以上から選択される金属酸化物である[1]に記載の熱間プレス用鋼板。
[3]前記Zn合金めっき層は、Zn-Al合金めっき層、Zn-Al-Mg合金めっき層、Zn-Al-Mg-Si合金めっき層、Zn-Fe合金めっき層、Zn-Ni合金めっき層のうちのいずれか1種である[1]または[2]に記載の熱間プレス用鋼板。
[4]前記Zn-Ni合金めっき層は、10~25質量%のNiを含み、残部はZnおよび不可避的不純物からなる[3]に記載の熱間プレス用鋼板。
 本発明によれば、熱間プレス成形時の摺動性を向上し、耐カジリ特性に優れた熱間プレス用鋼板が得られる。
 以下、本発明について具体的に説明する。なお、以下の説明において、鋼成分組成の各元素の含有量、めっき層成分組成の各元素の含有量の単位はいずれも「質量%」であり、以下、特に断らない限り単に「%」で示す。
 まず、熱間プレス用鋼板のZn合金めっき層の限定理由について述べる。
 片面当たりのめっき付着量が120g/m以下のZn合金めっき層
 一般的なめっき製造ラインで120g/m超えの厚めっきを形成させるためには、ラインスピードを大幅に抑制する必要があり、コストアップを招く。したがって、片面当たりのめっき付着量は120g/m以下とする。なお、好ましくは、90g/m以下である。また、10g/m未満では熱間プレス加熱時のFeスケール生成抑制効果が不十分になるため、10g/m以上であることが好ましい。また、自動車用熱間プレス部材は主に足回りや骨格部材など耐食性を必要とする部位に適用される。そのため、めっき層としては犠牲防食作用を有するZn合金めっき層であることが必要である。
 防錆性の観点から、めっき層の主成分がZnであれば組成に関しては特に限定されないが、Zn合金めっき層としては、Zn-Al合金めっき層、Zn-Al-Mg合金めっき層、Zn-Al-Mg-Si合金めっき層、Zn-Fe合金めっき層、Zn-Ni合金めっき層のうちのいずれか1種が好ましい。
 また、本発明では、Zn合金めっき層は、10~25質量%のNiを含み、残部はZnおよび不可避的不純物からなるZn-Ni合金めっき層であることが好ましい。Zn合金めっき層中のNi量を10~25質量%に制御することで、融点の高いNiZn11、NiZn、NiZn21のいずれかの結晶構造を有するγ相が形成されるため、他のZn合金めっき層に比べて耐液体金属脆化の観点で有利である。
 次に、Zn合金めっき層の表面に形成される金属酸化物層について説明する。
 融点が900℃超えの金属酸化物からなる金属酸化物層
 本発明では、Zn合金めっき層の表面に、融点が900℃超えの金属酸化物からなる金属酸化物層を有する。一般的な熱間プレス成形時の到達温度である900℃において、熱間プレス用鋼板の表面を高硬度、すなわち固体状態を保つことができる表層とすることにより、熱間プレス成型時の表層硬度を高く保つことができる。本発明では、Zn合金めっき層の表面に、融点が900℃超えの金属酸化物からなる金属酸化物層を設けることで、硬質なプレス金型によって軟質なめっき層が傷つけられるといったカジリを抑制することができる。その結果、摺動性が向上し耐カジリ特性を改善することができる。
 金属酸化物層は、Al、Ti、Cr、Fe、Niのうちの1種または2種以上から選択される金属酸化物であることが好ましい。ここに挙げた金属酸化物はいずれも融点が900℃超えである。金属酸化物層の付着量の下限について、微量でも金属酸化物層が無い場合に比べて耐カジリ特性効果が認められるが、本発明においては、0.1g/m以上が好ましい。また、上限も特に規定しないが過剰な厚さの金属酸化物層はコスト増加を招くため、30g/m以下であることが好ましい。より好ましくは10g/m以下、さらに好ましくは5g/m以下である。
 金属酸化物層の形成方法については、特に制限されず、例えば、PVD(Physical Vapor Deposition)、CVD(Chemical Vapor Deposition)、コールドスプレーといった乾式プロセスを用いて形成することができる。
 本発明において、1470MPa級を超えるような熱間プレス部材を得るためには、めっき層の下地鋼板としては、例えば、質量%で、C:0.20~0.35%、Si:0.1~0.5%、Mn:1.0~3.0%、P:0.02%以下、S:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する冷延鋼板または熱延鋼板を用いることができる。以下に各成分の限定理由を記載する。
 C:0.20~0.35%
 Cは、鋼組織としてマルテンサイトなどを形成させることで強度を向上させる。1470MPa級を超えるような強度を得るためには0.20%以上必要である。一方、0.35%を超えるとスポット溶接部の靱性が劣化する。したがって、C量は0.20~0.35%とすることが好ましい。
 Si:0.1~0.5%
 Siは鋼を強化して良好な材質を得るのに有効な元素である。そのためには0.1%以上必要である。一方、0.5%を超えるとフェライトが安定化されるため、焼き入れ性が低下する。したがって、Si量は0.1~0.5%とすることが好ましい。
 Mn:1.0~3.0%
 Mnは鋼の高強度化に有効な元素である。機械特性や強度を確保するためは1.0%以上含有させることが必要である。一方、3.0%を超えると焼鈍時の表面濃化が増加し、めっき密着性の確保が困難になる。したがって、Mn量は1.0~3.0%とすることが好ましい。
 P:0.02%以下
 P量が0.02%を超えると鋳造時のオーステナイト粒界へのP偏析に伴う粒界脆化により、局部延性の劣化を通じて強度と延性のバランスが低下する。したがって、P量は0.02%以下とすることが好ましい。
 S:0.01%以下
 SはMnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となる。したがって、極力低減することが望ましく0.01%以下とすることが好ましい。また、良好な伸びフランジ性を確保するため、より好ましくは0.005%以下とする。
 また、本発明では上記した基本成分のほかに鋼板の特性の更なる改善を意図して、Nb:0.05%以下、Ti:0.05%以下、B:0.0002~0.0050%、Cr:0.1~0.3%、Sb:0.003~0.030%のうちから選ばれた少なくとも1種を必要に応じて適宜含有させることが可能である。
 Nb:0.05%以下
 Nbは鋼の強化に有効な成分であるが、過剰に含まれると形状凍結性が低下する。したがって、Nbを含有させる場合は0.05%以下とする。
 Ti:0.05%以下
 TiもNbと同様に鋼の強化には有効であるが、過剰に含まれると形状凍結性が低下するという課題がある。したがって、Tiを含有させる場合は0.05%以下とする。
 B:0.0002~0.0050%
 Bはオーステナイト粒界からのフェライト生成および成長を抑制する作用を有するため、0.0002%以上の添加が好ましい。一方、過剰なBの添加は成形性を大きく損なう。したがって、Bを含有させる場合は0.0002~0.0050%とする。
 Cr:0.1~0.3%
 Crは鋼の強化および焼き入れ性を向上させるために有用である。このような効果を発現するためには0.1%以上の添加が好ましい。一方、合金コストが高いため0.3%超えの添加では大幅なコストアップを招く。したがって、Crを含有させる場合は0.1~0.3%とする。
 Sb:0.003~0.030%
 Sbも熱間プレスのプロセス中に鋼板表層の脱炭を抑止する効果がある。このような効果を発現するためには0.003%以上の添加が必要である。一方、Sb量が0.030%を超えると圧延荷重の増加を招くため生産性を低下させる。したがって、Sbを含有させる場合は0.003~0.030%とする。
 上記以外の残部は、Feおよび不可避的不純物からなる。
 本発明の熱間プレス用鋼板を用いて熱間プレス部材を製造するための熱間プレス工程は何ら限定されるものではなく、公知の熱間プレス工程が適用可能である。例えば、本発明の熱間プレス用鋼板に対して、Ac3変態点~950℃の温度範囲に加熱し、次いで、熱間プレス加工を行い、引き続き金型や水などの冷媒を用いて冷却を行うことにより熱間プレス部材が製造される。なお、上記加熱温度とは鋼板の最高到達温度のことをいう。また、上記加熱を行う方法としては、電気炉やガス炉などによる加熱、火炎加熱、通電加熱、高周波加熱、誘導加熱などを例示できる。
 以下、本発明を実施例に基づいて具体的に説明する。下記の実施例は本発明を限定するものではなく、要旨構成の範囲内で適宜変更することは、本発明の範囲に含まれるものとする。
 下地鋼板として、質量%で、C:0.30%、Si:0.25%、Mn:1.2%、P:0.005%、S:0.005%、Nb:0.005%、Ti:0.02%、B:0.0020%、Cr:0.2%、Sb:0.008%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する、板厚1.4mmの冷延鋼板を用いた。この冷延鋼板の表面に、表1に示すめっき方法で、種々のZn合金めっき層を形成した。次いで、Zn合金めっき層の表面に、表1に示す成膜法で種々の金属酸化物層を被覆し、熱間プレス用鋼板を得た。なお、めっき層について、溶融めっき処理の条件は、所望の組成が得られるよう溶融めっき浴組成を調整し、浴温度を各組成の融点+20℃とした。また、ワイピング圧力を調整することで付着量を制御した。電気めっき処理の条件は、所望の組成が得られるように浴中の金属塩比および電流値を調整し、ライン速度を変えることで付着量を制御した。また、酸化物層のPVDの成膜条件は、所望の金属または酸化物ターゲットを使用し、電圧、酸素分圧および処理時間を制御することで所望の付着量を制御した。
 得られた熱間プレス用鋼板から150mmC×300mmLの試験片を採取し、電気炉によって900℃まで4分間で加熱し、900℃で1分間保持した後、電気炉から試験片を取り出しハット型金型によって700℃で熱間プレスを実施した。成形後の部品形状は上面の平坦部長さ100mm、側面の平坦部長さ50mm、下面の平坦部長さ50mmである。また、金型の曲げRは上面の両肩、下面の両肩いずれも7Rである。
 以上より得られたハット成形部品の竪壁部において、プレス成形時のカジリによってZn合金めっきが剥離した面積を測定し、耐カジリ特性を以下の基準で評価した。
○:剥離面積が、酸化物層無しの場合と比較して20%以上減少
△:剥離面積が、酸化物層無しの場合と比較して0%以上20%未満減少
×:剥離面積が、酸化物層無しの場合と比較して増大
 評価が○であれば、耐カジリ特性に優れた熱間プレス用鋼板であると判断した。
 表1に評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1によれば、本発明の熱間プレス用鋼板は熱間プレス成形時の摺動性を向上させ、優れた耐カジリ特性を有する。
 実施例1において評価した、10~25質量%のNiを含有し、残部Feおよび不可避的不純物からなるZn-Ni合金めっき層を有する熱間プレス用鋼板について、耐LME特性(LME:Liquid Metal Embrittlement、液体金属脆化)を評価した。具体的には、実施例1で得られたハット成形部品の上面肩R部から断面SEM観察用サンプルを採取し、観察により肩R外側で断面長さ5mmの視野における母材に浸入しているクラック深さを250μmピッチで合計20か所測定し、以下の基準で耐LME特性を評価した。
○:クラック発生無しまたはクラック深さの平均値が10μm未満
△:クラック深さの平均値が10μm以上200μm未満
×:クラック深さの平均値が200μm以上
 評価が○であれば、耐LME特性に優れるとした。
 表2に耐LME特性の評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、本発明の熱間用プレス鋼板において、Zn-Ni合金めっき層が10~25質量%のNiを含有し、残部Feおよび不可避的不純物からなるZn-Ni合金めっき層であれば、耐カジリ特性に加えて優れた耐LME特性も兼ね備えることが分かる。

Claims (4)

  1.  鋼板表面に、片面当たりのめっき付着量が120g/m以下のZn合金めっき層を有し、
    さらに前記Zn合金めっき層の表面に、融点が900℃超えの金属酸化物からなる金属酸化物層を有する熱間プレス用鋼板。
  2.  前記金属酸化物層は、Al、Ti、Cr、Fe、Niのうちの1種または2種以上から選択される金属酸化物である請求項1に記載の熱間プレス用鋼板。
  3.  前記Zn合金めっき層は、Zn-Al合金めっき層、Zn-Al-Mg合金めっき層、Zn-Al-Mg-Si合金めっき層、Zn-Fe合金めっき層、Zn-Ni合金めっき層のうちのいずれか1種である請求項1または2に記載の熱間プレス用鋼板。
  4.  前記Zn-Ni合金めっき層は、10~25質量%のNiを含み、残部はZnおよび不可避的不純物からなる請求項3に記載の熱間プレス用鋼板。
PCT/JP2019/024470 2018-09-07 2019-06-20 熱間プレス用鋼板 WO2020049832A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019548338A JP6819796B2 (ja) 2018-09-07 2019-06-20 熱間プレス用鋼板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-167594 2018-09-07
JP2018167594 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020049832A1 true WO2020049832A1 (ja) 2020-03-12

Family

ID=69721520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024470 WO2020049832A1 (ja) 2018-09-07 2019-06-20 熱間プレス用鋼板

Country Status (2)

Country Link
JP (1) JP6819796B2 (ja)
WO (1) WO2020049832A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214544A (ja) * 1991-04-10 1993-08-24 Kawasaki Steel Corp 高耐食性亜鉛系めっき鋼板およびその製造方法
JP2009235430A (ja) * 2008-03-26 2009-10-15 Jfe Steel Corp 亜鉛系めっき鋼板およびその製造方法
JP2010090463A (ja) * 2008-10-10 2010-04-22 Jfe Steel Corp 熱間プレス成形用めっき鋼板およびその製造方法
JP2010090462A (ja) * 2008-10-10 2010-04-22 Jfe Steel Corp 熱間プレス成形用めっき鋼板およびその製造方法
JP2010090464A (ja) * 2008-10-10 2010-04-22 Jfe Steel Corp 熱間プレス成形用めっき鋼板およびその製造方法
WO2013132816A1 (ja) * 2012-03-07 2013-09-12 Jfeスチール株式会社 熱間プレス用鋼板、その製造方法、およびそれを用いた熱間プレス部材の製造方法
JP2014040628A (ja) * 2012-08-21 2014-03-06 Nippon Steel & Sumitomo Metal 熱間プレス用鋼板および表面処理鋼板とそれらの製造方法
WO2016063467A1 (ja) * 2014-10-24 2016-04-28 Jfeスチール株式会社 高強度ホットプレス部材およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214544A (ja) * 1991-04-10 1993-08-24 Kawasaki Steel Corp 高耐食性亜鉛系めっき鋼板およびその製造方法
JP2009235430A (ja) * 2008-03-26 2009-10-15 Jfe Steel Corp 亜鉛系めっき鋼板およびその製造方法
JP2010090463A (ja) * 2008-10-10 2010-04-22 Jfe Steel Corp 熱間プレス成形用めっき鋼板およびその製造方法
JP2010090462A (ja) * 2008-10-10 2010-04-22 Jfe Steel Corp 熱間プレス成形用めっき鋼板およびその製造方法
JP2010090464A (ja) * 2008-10-10 2010-04-22 Jfe Steel Corp 熱間プレス成形用めっき鋼板およびその製造方法
WO2013132816A1 (ja) * 2012-03-07 2013-09-12 Jfeスチール株式会社 熱間プレス用鋼板、その製造方法、およびそれを用いた熱間プレス部材の製造方法
JP2014040628A (ja) * 2012-08-21 2014-03-06 Nippon Steel & Sumitomo Metal 熱間プレス用鋼板および表面処理鋼板とそれらの製造方法
WO2016063467A1 (ja) * 2014-10-24 2016-04-28 Jfeスチール株式会社 高強度ホットプレス部材およびその製造方法

Also Published As

Publication number Publication date
JPWO2020049832A1 (ja) 2020-09-10
JP6819796B2 (ja) 2021-01-27

Similar Documents

Publication Publication Date Title
CN109072380B (zh) 钢板、镀覆钢板和它们的制造方法
JP6458834B2 (ja) 熱延鋼板の製造方法、冷延フルハード鋼板の製造方法及び熱処理板の製造方法
JP6458833B2 (ja) 熱延鋼板の製造方法、冷延フルハード鋼板の製造方法及び熱処理板の製造方法
CN108603263B (zh) 高屈服比型高强度镀锌钢板及其制造方法
JP4837604B2 (ja) 合金化溶融亜鉛めっき鋼板
KR20150029736A (ko) 성형성 및 형상 동결성이 우수한 고강도 용융 아연 도금 강판, 그리고 그의 제조 방법
JPWO2016072478A1 (ja) 溶融亜鉛めっき鋼板
JP6209175B2 (ja) めっき表面外観およびバーリング性に優れた溶融Zn−Al−Mg系めっき鋼板の製造方法
CN108603262B (zh) 高屈服比型高强度镀锌钢板及其制造方法
JP7063430B1 (ja) 熱間プレス部材、塗装部材、熱間プレス用鋼板、および熱間プレス部材の製造方法ならびに塗装部材の製造方法
JP7255634B2 (ja) 熱間プレス部材およびその製造方法
TWI652355B (zh) 熱浸鍍鋅鋼材及其製造方法
JP2020041175A (ja) 熱間プレス用鋼板
RU2737371C1 (ru) Листовая сталь с нанесенным погружением в расплав покрытием
JP6011629B2 (ja) 熱間プレス部材およびその製造方法
WO2022091529A1 (ja) 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法
JP6981385B2 (ja) 熱間プレス用鋼板
JP7215519B2 (ja) 熱間プレス部材およびその製造方法
WO2020049833A1 (ja) 熱間プレス用鋼板
JP7215518B2 (ja) 熱間プレス部材およびその製造方法
JP2020041174A (ja) 熱間プレス用鋼板
JP6819796B2 (ja) 熱間プレス用鋼板
JP7126093B2 (ja) 熱間プレス部材およびその製造方法
JP6933197B2 (ja) 熱間プレス用鋼板
JP2003105492A (ja) 耐食性に優れた高強度高延性溶融亜鉛めっき鋼板及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019548338

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857932

Country of ref document: EP

Kind code of ref document: A1