WO2020049057A1 - Etage de sortie classe a notamment pour casque audio - Google Patents

Etage de sortie classe a notamment pour casque audio Download PDF

Info

Publication number
WO2020049057A1
WO2020049057A1 PCT/EP2019/073605 EP2019073605W WO2020049057A1 WO 2020049057 A1 WO2020049057 A1 WO 2020049057A1 EP 2019073605 W EP2019073605 W EP 2019073605W WO 2020049057 A1 WO2020049057 A1 WO 2020049057A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
translinear
transistors
output stage
bias
Prior art date
Application number
PCT/EP2019/073605
Other languages
English (en)
Inventor
Alexandre Huffenus
Original Assignee
Devialet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Devialet filed Critical Devialet
Publication of WO2020049057A1 publication Critical patent/WO2020049057A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3083Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the power transistors being of the same type
    • H03F3/3086Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the power transistors being of the same type two power transistors being controlled by the input signal
    • H03F3/3088Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the power transistors being of the same type two power transistors being controlled by the input signal with asymmetric control, i.e. one control branch containing a supplementary phase inverting transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • H03F1/0272Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A by using a signal derived from the output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • H03F3/183Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3083Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the power transistors being of the same type
    • H03F3/3086Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the power transistors being of the same type two power transistors being controlled by the input signal
    • H03F3/3093Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the power transistors being of the same type two power transistors being controlled by the input signal comprising a differential amplifier as phase-splitting element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/30Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
    • H03F2203/30015An input signal dependent control signal controls the bias of an output stage in the SEPP

Definitions

  • the present invention relates to a class A output stage of the type comprising, between two supply rails:
  • an amplification stage comprising two MOS power transistors of the same polarities connected together in series between a first supply voltage and a reference voltage to form, at their midpoint, an output of the output stage, and
  • an input stage comprising an input for the output stage class A, the input stage output of which is applied to the gates of the MOS power transistors, It is desired, for the analog power amplifiers, that the output voltage can be understood over most of the range of the supply range between the two extreme DC supply voltages. In this case, the amplifier is qualified as rail to rail, the output being able to take any value between the two voltages of the supply rails.
  • the circuit described in the above-mentioned document implements a minimum selector for defining the quiescent current of the power transistors, which requires the stabilization of a loop. It is relatively complex to develop.
  • the purpose of the invention is to propose a class A output stage allowing a quasi rail-to-rail output and of simple structure.
  • the invention relates to a class A output stage of the aforementioned type, characterized in that it comprises:
  • a translinear loop circuit comprising a translinear loop bias circuit comprising a main translinear bias transistor and a secondary bias transistor of different polarities, connected in parallel between a second supply voltage and the reference voltage across two current sources, the source of the main translinear transistor and the drain of the translinear transistor secondary of each translinear loop bias circuit being connected to the gate of a corresponding power transistor;
  • the class A output stage comprises one or more of the following characteristics:
  • Each reference voltage generator comprises at least one transistor connected in series with a bias current source, the gates of one of the transistors and of the corresponding translinear transistors being connected together;
  • each voltage generator has two transistors connected in series.
  • the two MOS power transistors are each with N channel.
  • the invention also relates to an audio amplifier, characterized in that it includes an output stage as defined above.
  • a wireless audio headset comprising a low-capacity power supply battery having a voltage across its terminals of 3.6 V.
  • the output stage 8 for an audio amplifier has an input 10 for a signal V in to be amplified and an output 12 for an amplified signal V out . It comprises two continuous supply rails 14, 15, between which the output voltage V out is liable to vary.
  • the rail 14 here corresponds to a reference voltage formed from ground and the rail 15 to a first continuous supply voltage V dd for example equal to 1 V.
  • the voltage of 1 V is supplied by the battery via a DC converter - direct current.
  • the output stage comprises means for controlling the converter so that the voltage V dc i is modulated as a function of the amplitude of the output signal.
  • the voltage V dc i is lowered when the amplitude of the output signal decreases in order to limit the electrical consumption.
  • the output stage 8 comprises an amplification stage 16 formed by two MOS power transistors 17, 18 of the same polarities.
  • the output 12 is arranged between the two transistors connected together in series.
  • the transistors 17, 18 are each of the N channel MOS type.
  • the transistors are connected between the two supply rails 14, 15.
  • the MOS transistor 17 has its drain connected to the rail 15 while the transistor 18 has its source connected to the rail 14.
  • the output stage 8 comprises a differential input stage 22, suitable for receiving between its two inputs 24, 26, the differential input signal V in .
  • the input stage 22 comprises a transconductance gain stage 28, the two outputs 30, 32 of which are each connected directly to the gates of the transistors 17, 18 respectively for their control.
  • the output stage comprises a translinear loop circuit 50, 52 respectively.
  • Each circuit 50, 52 is connected between earth 14 and a second complementary reference voltage 54 to define a quiescent current in the transistors 17 and 18 and fix a minimum current so that the transistors 17, 18 do not turn off.
  • the second reference voltage is for example 3.6 V and is supplied by the battery.
  • the circuits 50, 52 each comprise a polarization circuit 60, 62 with translinear loop respectively connected between the reference voltage 14 and the only supply voltage 54 through two current sources denoted respectively 64, 66 for the polarization circuit with translinear loop 60 and denoted 68, 70 for the translinear loop bias circuit 62.
  • Each translinear loop polarization circuit 60, 62 comprises two branches connected in parallel, one for a main translational polarization MOS transistor 72, 74 and for the other a secondary polarization transistor 76, 78.
  • the transistors of a same polarization circuit with translinear loop have different polarities.
  • each main transistor 72, 74 of each translinear loop bias circuit 60, 62 is connected to an own reference voltage generator denoted respectively 92, 94.
  • the gates of the secondary transistors 76, 78 are connected to the same bias voltage V ca sc Alternatively, the gates of the transistors 76, 78 are subjected to separate bias voltages.
  • the voltage generators 92, 94 each include two transistors 96, 98 respectively 106, 108 connected in diode and connected in series with a bias current source 1 12, 1 14.
  • each MOS type transistor connected in diode, has its drain connected to the grid.
  • the gates of the transistors 72, 74 are connected between the two transistors connected in diodes 96, 98 and 106, 108 respectively and the corresponding current source 1 12, 1 14.
  • the diode-connected transistors 96, 98 of the voltage generator 92 connected to the gate of the transistor 72 have respectively form factors W / L ratiometric to those of the corresponding transistors 72 and 17 so that the gate-source voltages V gs are substantially identical.
  • the diode-mounted transistors 106, 108 of the voltage generator 94 connected to the gate of the transistor 74 have respectively W / L form factors ratiometric to those of the translinear transistor 74 and of the power transistor 18.
  • the reference voltage generator 92 specific to the translinear loop bias circuit 60 for biasing the transistor 17 is connected between the second supply voltage 54 and the floating output 12, while the reference voltage generator 94 specific to the circuit translinear loop 62 for biasing the transistor 18 is connected between the second supply voltage 54 and the reference voltage 14, the current sources 1 12, 1 14 being connected directly to the second supply voltage 54.
  • Two translinear loops are thus formed. A first successively integrating the transistors 72, 17, 98 and 96 and a second successively integrating the transistors 74, 18, 108 and 106.
  • the operation of a translinear loop for example that which fixes the quiescent current of transistor 18, is as follows.
  • the sum of the gate-source voltages Vgs of the transistor 18 and of the main translinear polarization transistor 74 is equal to the sum of the voltages Vgs of the transistors 108 and 106. If two by two (the transistor 18 with the transistor 108 and the transistor of main translinear polarization 74 with transistor 106) the transistors have ratiometric form factors, the voltages Vgs of the main translinear polarization transistor 74 and of transistor 106 are identical and the voltages Vgs of transistor 18 and of transistor 108 are also identical.
  • the quiescent current in transistor 18, defined by its voltage Vgs is therefore a function of the current in transistor 108 imposed by the bias current source 1 14 and the size ratio between transistor 108 and transistor 18.
  • the output voltage can explore a large part of the voltage range between the two supply rails 14, 15 before being saturated.
  • the input stage 22 comprises several input stage modules each with or without a transconductance gain stage 28, the input stage modules being adapted to receive different signals.
  • the entrance stage comprises only one entry 24 forming the entry 10 and the entry 26 is absent.
  • This input 24 is connected, on the one hand, directly without gain stage to output 30 connected to the gate of transistor 18 and, on the other hand, with the interposition of a gain stage at output 32 connected to the gate of transistor 17.
  • the input stage comprises two distinct transconductance gain stages with possibly different gains and inputs 24, 26 suitable for receiving identical or different input signals so as to produce at output 30, 32 two signals from two separate gain stages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Amplifiers (AREA)

Abstract

L'étage (8) de sortie classe A comporté, entre deux rails d'alimentation (14, 15) : - un étage (16) d'amplification comportant deux transistors de puissance MOS (17, 18) de mêmes polarités reliés ensemble en série entre une première tension d'alimentation (15) et une tension de référence (14) pour former, en leur point milieu, une sortie (12) de l'étage de sortie; - un étage d'entrée (22) comportant une entrée (10) pour l'étage de sortie classe A, dont la sortie d'étage d'entrée (22) est appliquée aux grilles des transistors de puissance MOS (17, 18); - pour chaque transistor de puissance MOS (17, 18), un circuit à boucle translinéaire (50, 52), comportant un circuit de polarisation à boucle translinéaire (60, 62) comprenant un transistor de polarisation translinéaire principal (72, 74) et un transistor de polarisation secondaire (76, 78) de polarités différentes, reliés en parallèle entre une seconde tension d'alimentation (54) et la tension de référence (16) au travers de deux sources de courant (64, 66, 68, 70), la source du transistor translinéaire principal (72, 74) et le drain du transistor translinéaire secondaire (76, 78) de chaque circuit de polarisation à boucle translinéaire (60, 62) étant reliés à la grille d'un transistor de puissance (17, 18) correspondant; et - deux générateurs de tension de référence distincts (92, 94) reliés chacun à la grille du transistor translinéaire principal (72, 74) d'un circuit à boucle translinéaire (50, 52) pour fixer le courant de repos des transistors de puissance (17, 18).

Description

Etage de sortie classe A notamment pour casque audio
La présente invention concerne un étage de sortie classe A du type comportant, entre deux rails d’alimentation :
- un étage d’amplification comportant deux transistors de puissance MOS de mêmes polarités reliés ensemble en série entre une première tension d’alimentation et une tension de référence pour former, en leur point milieu, une sortie de l’étage de sortie, et
- un étage d’entrée comportant une entrée pour l’étage de sortie classe A, dont la sortie d’étage d’entrée est appliquée aux grilles des transistors de puissance MOS, Il est souhaité, pour les amplificateurs de puissance analogique, que la tension de sortie puisse être comprise sur l’essentiel de l’étendue de la plage d’alimentation comprise entre les deux tensions continues extrêmes d’alimentation. Dans ce cas, l’amplificateur est qualifié de rail à rail, la sortie pouvant prendre toutes les valeurs comprises entre les deux tensions des rails d’alimentation.
Une excursion de la tension de sortie entre les tensions des deux rails d’alimentation est complexe à obtenir lorsque les transistors de puissance utilisés sont des transistors de type MOS en montage suiveur (« source follower » en anglais), du fait de la différence de tension existant par nature entre la grille et la source d’un tel transistor surtout lors de courants de sortie importants.
Un circuit permettant de limiter cet obstacle est décrit dans le document EP 2.518.896.
Pour la commande des transistors, le circuit décrit dans le document précité met en oeuvre un sélecteur de minimum pour la définition du courant de repos des transistors de puissance, qui nécessite la stabilisation d’une boucle. Il est relativement complexe à mettre au point.
L’invention a pour but de proposer un étage de sortie classe A permettant une sortie quasi rail à rail et de structure simple.
A cet effet l’invention a pour objet un étage de sortie classe A du type précité, caractérisé en ce qu’il comporte :
- pour chaque transistor de puissance MOS, un circuit à boucle translinéaire, comportant un circuit de polarisation à boucle translinéaire comprenant un transistor de polarisation translinéaire principal et un transistor de polarisation secondaire de polarités différentes, reliés en parallèle entre une seconde tension d’alimentation et la tension de référence au travers de deux sources de courant, la source du transistor translinéaire principal et le drain du transistor translinéaire secondaire de chaque circuit de polarisation à boucle translinéaire étant reliés à la grille d’un transistor de puissance correspondant ; et
- deux générateurs de tension de référence distincts reliés chacun à la grille du transistor translinéaire principal d’un circuit à boucle translinéaire pour fixer le courant de repos des transistors de puissance.
Suivant des modes particuliers de réalisation, l’étage de sortie classe A comporte l’une ou plusieurs des caractéristiques suivantes :
- chaque générateur de tension de référence comporte au moins un transistor relié en série avec une source de courant de polarisation, les grilles d’un des transistors et des transistors translinéaires correspondant étant reliées ensemble ;
- chaque générateur de tension comporte deux transistors montés en série.
- les deux transistors montés en série de chaque source de tension, d’une part, et le transistor de puissance et le transistor translinéaire principal, d’autre part, ont deux à deux des facteurs de formes ratiométriques ;
- les grilles des deux transistors de polarisation secondaire sont reliées à une même tension ;
- les grilles des deux transistors de polarisation secondaire sont reliés à des tensions différentes ; et
- les deux transistors de puissance MOS sont chacun à canal N.
L’invention a également pour objet un amplificateur audio, caractérisé en ce qu’il comporte un étage de sortie tel que défini ci-dessus.
L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple, et faite en se référant à la figure unique qui est une vue schématique du circuit électrique d’un mode de réalisation de l’étage de sortie de classe A selon l’invention.
Il est destiné par exemple à être intégré dans un casque audio sans fils comprenant une batterie d’alimentation de faible capacité ayant une tension à ses bornes de 3,6 V.
L’étage de sortie 8 pour un amplificateur audio présente une entrée 10 pour un signal Vin à amplifier et une sortie 12 pour un signal amplifié Vout. Il comporte deux rails d’alimentation continue 14, 15, entre lesquels la tension de sortie Vout est susceptible de varier. Le rail 14 correspond ici à une tension de référence formée de la masse et le rail 15 à une première tension d’alimentation continue Vdd par exemple égale à 1 V. La tension de 1 V est fournie par la batterie via un convertisseur courant continu - courant continu. L’étage de sortie comporte des moyens de commande du convertisseur de sorte que la tension Vdc i est modulée en fonction de l’amplitude du signal de sortie. Avantageusement, la tension Vdc i est abaissée lorsque l’amplitude du signal de sortie diminue afin de limiter la consommation électrique.
Comme connu en soi, l’étage de sortie 8 comporte un étage d’amplification 16 formé de deux transistors de puissance MOS 17, 18 de mêmes polarités. La sortie 12 est aménagée entre les deux transistors reliés ensemble en série.
Les transistors 17, 18 sont chacun de type MOS à canal N.
Les transistors sont reliés entre les deux rails d’alimentation 14, 15. Le transistor MOS 17 a son drain relié au rail 15 alors que le transistor 18 a sa source reliée au rail 14.
L’étage de sortie 8 comporte un étage d’entrée différentiel 22, propre à recevoir entre ses deux entrées 24, 26, le signal d’entrée différentiel Vin. L’étage d’entrée 22 comporte un étage de gain à transconductance 28, dont les deux sorties 30, 32 sont reliées chacune directement aux grilles des transistors 17, 18 respectivement pour leur commande.
Pour chaque transistor 17, 18 de l’étage d’amplification, l’étage de sortie comporte un circuit à boucle translinéaire 50, 52 respectivement. Chaque circuit 50, 52 est relié entre la masse 14 et une seconde tension de référence complémentaire 54 pour définir un courant de repos dans les transistors 17 et 18 et fixer un courant minimum pour que les transistors 17, 18 ne s’éteignent pas.
La seconde tension de référence est égale par exemple à 3,6 V et est fournie par la batterie.
Les circuits 50, 52 comportent chacun un circuit de polarisation 60, 62 à boucle translinéaire respectivement relié entre la tension de référence 14 et la seule tension d’alimentation 54 au travers de deux sources de courant notées respectivement 64, 66 pour le circuit de polarisation à boucle translinéaire 60 et notés 68, 70 pour le circuit de polarisation à boucle translinéaire 62.
Chaque circuit de polarisation à boucle translinéaire 60, 62 comporte deux branches reliées en parallèle comportant pour l’une un transistor MOS de polarisation translinéaire principal 72, 74 et pour l’autre un transistor de polarisation secondaire 76, 78. Les transistors d’un même circuit de polarisation à boucle translinéaire ont des polarités différentes.
La grille de chaque transistor principal 72, 74 de chaque circuit de polarisation à boucle translinéaire 60, 62 est reliée à un générateur de tension de référence propre noté respectivement 92, 94. Les grilles des transistors secondaires 76, 78 sont reliées à une même tension de polarisation Vcasc En variante, les grilles des transistors 76, 78 sont soumises à des tensions de polarisation distinctes.
Les générateurs de tension 92, 94, de structures identiques, comportent chacun deux transistors 96, 98 respectivement 106, 108 connectés en diode et reliés en série avec une source de courant de polarisation 1 12, 1 14. Ainsi, chaque transistor de type MOS, connecté en diode, a son drain relié à la grille.
Les grilles des transistors 72, 74 sont reliées entre les deux transistors reliés en diodes 96, 98 et 106, 108 respectivement et la source de courant correspondante 1 12, 1 14.
Les transistors reliés en diode 96, 98 du générateur de tension 92 connecté à la grille du transistor 72 ont respectivement des facteurs de forme W/L ratiométriques à ceux des transistors correspondants 72 et 17 de sorte que les tensions grille-source Vgs sont sensiblement identiques.
De même, les transistors montés en diode 106, 108 du générateur de tension 94 connecté à la grille du transistor 74 ont respectivement des facteurs de forme W/L ratiométriques à ceux du transistor translinéaire 74 et du transistor de puissance 18.
Le générateur de tension de référence 92 propre au circuit de polarisation à boucle translinéaire 60 de polarisation du transistor 17 est relié entre la seconde tension d’alimentation 54 et la sortie flottante 12, alors que le générateur de tension de référence 94 propre au circuit à boucle translinéaire 62 de polarisation du transistor 18 est relié entre la seconde tension d’alimentation 54 et la tension de référence 14, les sources de courant 1 12, 1 14 étant reliées directement à la seconde tension d’alimentation 54.
La grille de chaque transistor 72, 74 du circuit de polarisation à boucle translinéaire est reliée au drain du transistor respectivement 96, 106, dont le drain est relié à la source de polarisation 1 12, 1 14 de sorte que les tensions grille-source Vgs des deux transistors d’un même générateur de tension sont rigoureusement égales aux tensions grille-source Vgs d’un transistor du circuit de polarisation à boucle translinéaire et du transistor de puissance correspondant pour le point de repos lout=0.
Deux boucles translinéaires sont ainsi formées. Une première intégrant successivement les transistors 72, 17, 98 et 96 et une seconde intégrant successivement les transistors 74, 18, 108 et 106.
Le fonctionnement de la polarisation à base de boucle translinéaire est expliqué en détail dans le brevet US4570128A.
Ici le fonctionnement d’une boucle translinéaire, par exemple celle qui fixe le courant de repos du transistor 18, est le suivant. Par construction la somme des tensions grille-source Vgs du transistor 18 et du transistor de polarisation translinéaire principal 74 est égale à la somme des tensions Vgs des transistors 108 et 106. Si deux à deux (le transistor 18 avec le transistor 108 et le transistor de polarisation translinéaire principal 74 avec le transistor 106) les transistors ont des facteurs de forme ratiométriques, les tensions Vgs du transistor de polarisation translinéaire principal 74 et du transistor 106 sont identiques et les tensions Vgs du transistor 18 et du transistor 108 sont identiques également. Le courant de repos dans le transistor 18, défini par sa tension Vgs, est donc fonction du courant dans le transistor 108 imposé par la source de courant de polarisation 1 14 et du ratio de taille entre le transistor 108 et le transistor 18.
Dans le cas d’un fonctionnement à faible signal de sortie (quelques mV par exemple), il est idéal de réduire le plus possible la tension Vdd pour ne pas dissiper inutilement en chaleur la différence entre la tension de sortie et Vdd. Dans le cas où le circuit 50 et 52 serait alimenté par la même tension Vdd que l’étage de sortie, la tension minimale pour Vdd serait de l’ordre d’une tension grille-source Vgs d’un des transistors 17, 18 donc autour de 1 V. Le fonctionnement présenté ici avec une tension différente pour l’étage de sortie permet d’alimenter ce dernier avec une tension bien moindre pouvant descendre à moins de 200mV donc une réduction significative des pertes dans celui-ci.
Ainsi, la tension de sortie peut explorer une grande partie de la plage de tension entre les deux rails d’alimentation 14, 15 avant de subir une saturation.
En variante, l’étage d’entrée 22 comprend plusieurs modules d’étage d’entrée chacun avec, ou non, un étage de gain à transconductance 28, les modules d’étage d’entrée étant propres à recevoir des signaux différents.
Suivant encore une variante, l’étage d’entrée comporte seulement une entrée 24 formant l’entrée 10 et l’entrée 26 est absente. Cette entrée 24 est reliée, d’une part, directement sans étage de gain à la sortie 30 reliée à la grille du transistor 18 et, d’autre part, avec interposition d’un étage de gain à la sortie 32 reliée à la grille du transistor 17.
Plus généralement, en variante, l’étage d’entrée comporte deux étages de gain à transconductance distincts avec des gains éventuellement différents et des entrées 24, 26 propres à recevoir des signaux d’entrée identiques ou différents de manière à produire en sortie 30, 32 deux signaux provenant de deux étages de gain distincts.

Claims

REVENDICATIONS
1. Etage (8) de sortie classe A comportant, entre deux rails d’alimentation
(14, 15) :
- un étage (16) d’amplification comportant deux transistors de puissance MOS (17, 18) de mêmes polarités reliés ensemble en série entre une première tension d’alimentation (15) et une tension de référence (14) pour former, en leur point milieu, une sortie (12) de l’étage de sortie ; et
- un étage d’entrée (22) comportant une entrée (10) pour l’étage de sortie classe A, dont la sortie d’étage d’entrée (22) est appliquée aux grilles des transistors de puissance MOS (17, 18), caractérisé en ce qu’il comporte :
- pour chaque transistor de puissance MOS (17, 18), un circuit à boucle translinéaire (50, 52), comportant un circuit de polarisation à boucle translinéaire (60, 62) comprenant un transistor de polarisation translinéaire principal (72, 74) et un transistor de polarisation secondaire (76, 78) de polarités différentes, reliés en parallèle entre une seconde tension d’alimentation (54) et la tension de référence (16) au travers de deux sources de courant (64, 66, 68, 70), la source du transistor translinéaire principal (72, 74) et le drain du transistor translinéaire secondaire (76, 78) de chaque circuit de polarisation à boucle translinéaire (60, 62) étant reliés à la grille d’un transistor de puissance (17, 18) correspondant ; et
- deux générateurs de tension de référence distincts (92, 94) reliés chacun à la grille du transistor translinéaire principal (72, 74) d’un circuit à boucle translinéaire (50, 52) pour fixer le courant de repos des transistors de puissance (17, 18).
2. Etage de sortie selon la revendication 1 , caractérisé en ce que chaque générateur de tension de référence (92, 94) comporte au moins un transistor (96, 98, 106, 108) relié en série avec une source de courant de polarisation (1 12, 1 14), les grilles d’un des transistors (96, 98, 106 ,108) et des transistors translinéaires (72, 74) correspondant étant reliées ensemble.
3. Etage de sortie selon la revendication 2, caractérisé en ce que chaque générateur de tension (92, 94) comporte deux transistors (96, 98, 106, 108) montés en série.
4. Etage de sortie selon la revendication 3, caractérisé en ce que les deux transistors (96, 98, 106, 108) montés en série de chaque source de tension (92, 94), d’une part, et le transistor de puissance (17, 18) et le transistor translinéaire principal (72, 74), d’autre part, ont deux à deux des facteurs de formes ratiométriques.
5. Etage de sortie selon l’une quelconque des revendications précédentes, caractérisé en ce que les grilles des deux transistors de polarisation secondaire (76, 78) sont reliées à une même tension (Vcasc) .
6. Etage de sortie selon l’une quelconque des revendications 1 à 4, caractérisé en ce que les grilles des deux transistors de polarisation secondaire (76, 78) sont reliés à des tensions différentes.
7. Etage de sortie selon l’une quelconque des revendications précédentes, caractérisé en ce que les deux transistors de puissance MOS (17, 18) sont chacun à canal N.
8. Amplificateur audio, caractérisé en ce qu’il comporte un étage de sortie (8) selon l’une quelconque des revendications précédentes.
PCT/EP2019/073605 2018-09-04 2019-09-04 Etage de sortie classe a notamment pour casque audio WO2020049057A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857932A FR3085563B1 (fr) 2018-09-04 2018-09-04 Etage de sortie classe a notamment pour casque audio
FR1857932 2018-09-04

Publications (1)

Publication Number Publication Date
WO2020049057A1 true WO2020049057A1 (fr) 2020-03-12

Family

ID=65201270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/073605 WO2020049057A1 (fr) 2018-09-04 2019-09-04 Etage de sortie classe a notamment pour casque audio

Country Status (2)

Country Link
FR (1) FR3085563B1 (fr)
WO (1) WO2020049057A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921090A (en) * 1974-11-14 1975-11-18 Rca Corp Operational transconductance amplifier
US4361816A (en) * 1980-06-30 1982-11-30 Rca Corporation Current mirror amplifiers with programmable gain
US4570128A (en) 1984-07-05 1986-02-11 National Semiconductor Corporation Class AB output circuit with large swing
EP2518896A1 (fr) 2011-04-27 2012-10-31 Easii Ic Amplificateur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921090A (en) * 1974-11-14 1975-11-18 Rca Corp Operational transconductance amplifier
US4361816A (en) * 1980-06-30 1982-11-30 Rca Corporation Current mirror amplifiers with programmable gain
US4570128A (en) 1984-07-05 1986-02-11 National Semiconductor Corporation Class AB output circuit with large swing
EP2518896A1 (fr) 2011-04-27 2012-10-31 Easii Ic Amplificateur

Also Published As

Publication number Publication date
FR3085563A1 (fr) 2020-03-06
FR3085563B1 (fr) 2020-11-20

Similar Documents

Publication Publication Date Title
FR2988184A1 (fr) Regulateur a faible chute de tension a stabilite amelioree.
FR2819652A1 (fr) Regulateur de tension a rendement ameliore
FR3032309A1 (fr) Circuit de regulation de tension adapte aux fortes et faibles puissances
EP1771944B1 (fr) Amplificateur audio classe ad
FR3059493B1 (fr) Regulation d'un amplificateur rf
FR2621190A1 (fr) Amplificateur d'instrumentation a gain programmable
FR2478347A1 (fr) Systemes de commande de gain
EP0737003B1 (fr) Amplificateur de lecture de registre CCD
FR2771227A1 (fr) Amplificateur differentiel integre a reponse lineaire
FR2842963A1 (fr) Dispositif de charge active permettant de polariser un circuit amplificateur distribue tres large bande avec controle de gain
EP3082072A1 (fr) Bloc récepteur d'une radio-étiquette
EP2788782B1 (fr) Dispositif de détection de rayonnement électromagnétique impulsionnel
EP0022015B1 (fr) Dispositif amplificateur et procédé d'amplification pour audio-fréquences
FR2661790A1 (fr) Dispositif d'amplification tres large bande continu-hyperfrequences, notamment realisable en circuit integre.
FR3084223A1 (fr) Etage de sortie suiveur classe a
FR2476937A1 (fr) Circuit de charge differentielle realise a l'aide de transistors a effet de champ.
WO2020049057A1 (fr) Etage de sortie classe a notamment pour casque audio
EP1870716A1 (fr) Dispositif de detection hyperfrequence large bande
FR2560468A1 (fr) Dispositif de polarisation d'etage d'amplification a transistors et son utilisation dans un tel etage
EP2518896B1 (fr) Amplificateur
FR2602379A1 (fr) Circuit repeteur de tension pour charges a composante ohmique, avec compensation de la distorsion harmonique
EP0716503B1 (fr) Amplificateur à taux de distorsion réduit
FR2473745A1 (fr) Comparateur verrouille par diodes rapides a haute resolution
FR2872648A1 (fr) Amplificateur a transconductance rapide
FR3048315B1 (fr) Convertisseur courant-tension, etage d'entree d'un amplificateur et amplificateur correspondant.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19765445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19765445

Country of ref document: EP

Kind code of ref document: A1